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Preface

With the advent of high-throughput DNA sequencing and chromosome conformation
capture technologies,more andmore high quality genome sequences andgenome-related
data are available. The challenges for computational comparative genomics are also
increasing. The comparison of related genomes provides a great inferential power for
analyses of genome evolution, gene function, ancestral genome organization, cellular
processes, mechanisms of evolution, and the evolution of cancer genomes.

This volume contains the papers presented at the 19th Annual RECOMB Satel-
lite Workshop on Comparative Genomics, held at La Jolla, USA, during May 20–21,
2022. RECOMB-CG is a forum that brings together leading researchers in the mathe-
matical, computational, and life sciences to discuss cutting edge research in compara-
tive genomics, with an emphasis on computational approaches and novel experimental
results.

There were 28 submissions from authors in 15 countries. Each manuscript was
reviewed by at least three, but usually four, members of the Program Committee (PC)
as well as sub-reviewers who were sought based on their expertise for specific papers.
The review process was single blind. After careful consideration, 18 papers (64%) were
accepted for oral presentation at the meeting and inclusion in this proceedings.

RECOMB-CG 2022 would like to thank the invited speakers: Aoife McLysaght
(University of Dublin, Trinity College, Ireland), Rachel Dutton (University of California
at San Diego, USA), and Nandita Garud (University of California at Los Angeles, USA).

We express our appreciation to the PC members and sub-reviewers for their diligent
work reviewing the manuscripts and providing thorough discussion and review reports
that informed the review process.

We also thank the other members of the Steering Committee, Marília Braga, Jens
Lagergren, Aoife McLysaght, Luay Nakhleh, and David Sankoff for their guidance and
helpful discussions.

Special thanks to the local organizer, Siavash Mirarab, and to the Jacobs School of
Engineering, University of California, San Diego, for organizing and providing financial
support for the conference.

We used the EasyChair conference system to handle submissions, reviews, and
formatting.

In closing, we would like to thank all the scientists who submitted papers and posters
and those who enthusiastically attended RECOMB-CG 2022.

May 2022 Lingling Jin
Dannie Durand
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On the Comparison of Bacteriophage
Populations

Anne Bergeron1(B), Marie-Jean Meurs1, Romy Valiquette-Labonté1,
and Krister M. Swenson2

1 Université du Québec à Montréal, Montreal, Canada
bergeron.anne@uqam.ca

2 LIRMM, Université de Montpellier, CNRS, Montpellier, France

Abstract. The production of cheese and other dairy products relies on
the constant monitoring of viruses, called bacteriophages, that attack
the organisms responsible for the fermentation process. Bacteriophage
species are characterized by a stable core genome, and a ‘genetic reser-
voir’ of gene variants that are exchanged through recombination. Phylo-
genetic analysis of phage populations are notably difficult due not only to
extreme levels of horizontal exchange at the borders of functional mod-
ules, but also inside of them.

In this paper we present the first known attempt at directly model-
ing gene flux between phage populations. This represents an important
departure from gene-based alignment and phylogenetic reconstruction,
shifting focus to a genetic reservoir-based evolutionary inference. We
present a combinatorial framework for the comparison of bacteriophage
populations, and use it to compute recombination scenarios that gener-
ate one population from another. We apply our heuristic, based on this
framework, to four populations sampled from Dutch dairy factories by
Murphy [14]. We find that, far from being random, these scenarios are
highly constrained. We use our method to test for factory-specific diver-
sity, and find that there was likely a large amount of recombination in
the ancestral population.

Find instructions for reproducing the results at:
https://bitbucket.org/thekswenson/phage population comparison
The code is publicly available at:
https://bitbucket.org/thekswenson/phagerecombination

1 Introduction

Bacteriophages – or simply phages – are viruses that infect bacteria. They are
the most abundant and diverse organisms on the planet, and are found in every
community where bacteria thrive: soil, water, air, lungs, guts, sewers, plants, and
milk [9]. Where their presence intersects human activity, they can be beneficial,
when they are used in therapies to combat bacterial infections [4], or detrimental,
when they destroy batches of dairy fermentation in artisanal or industrial food
factories [13]. Due to their economic impacts, dairy bacteriophage populations
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Jin and D. Durand (Eds.): RECOMB-CG 2022, LNBI 13234, pp. 3–20, 2022.
https://doi.org/10.1007/978-3-031-06220-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06220-9_1&domain=pdf
https://bitbucket.org/thekswenson/phage_population_comparison
https://bitbucket.org/thekswenson/phagerecombination
https://doi.org/10.1007/978-3-031-06220-9_1
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have been extensively sequenced in the last few years. These populations can be
separated by geography [5,6,14], by time [10,11], or by their bacterial host [3].

Bacteriophages are divided into species, characterized by a common core
genome distributed along their single chromosome, where genes appear in the
same order for each member of the species. Between these regions of core genome,
there is a variable genome composed of regions that are shared by some members
of the family, but not all of them. In an individual phage, the variable region
between two consecutive regions of core genome may be empty, or may have one
or more variants that are presumed to perform the same biological function, but
with different proteins [3, & references therein].

Kupczok [10] sequenced 34 dairy phages from a single German dairy factory,
sampled over three decades. Their analyses concluded that, over such a period
of time, point mutations were “[...] unlikely to constitute the major driver of
phage genome evolution”. However, the variable genome of the sequenced phages
changed considerably over time: “The frequent gene loss and regain suggest the
existence of a pangenome (i.e. genetic reservoir) that is accessible by genetic
recombination.”

1.1 Recombinations and Mosaicism in Phage Genomes

Genetic recombination allows two phages to exchange or borrow significant parts
of their genomes, creating novel viruses. These exchanges take place inside a
single cell, and are presumed to occur either between two co-infecting phages, or
by an infecting phage and a prophage (i.e. a phage genome that inserted itself
into a host bacterium). When the exchanges occur between similar sequences,
recombinations are called homologous, and when they occur between unrelated
sequence they are called illegitimate.

A striking feature of the comparison of phage genomes is their extreme
mosaicism, where regions of unrelated sequences alternate with regions of very
high similarity, as illustrated in Fig. 1.

High
similarity

High
similarity

No detectable
similarity

Phage 1

Phage 2

Fig. 1. Alignments of phage genomes exhibit alternating regions of high local similarity
and unrelated regions.

A few decades ago, Botstein [2] proposed a theory of modular evolution for
bacteriophages based on homologous recombinations. In this model, recombina-
tions are mediated by flanking regions of high sequence similarity. DePaepe [7]
characterized biological mechanisms that could be responsible for such rearrange-
ments, calling them relaxed homologous recombinations, and qualifying them as
“...strangely dependent on the presence of sequence homology, but highly tolerant
to divergence”.
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Recombination that does not follow the Botstein model also likely plays an
important role in phage evolution. Pedulla [15] found three recent recombinations
in Mycobacteriophages that have no flanking regions of similarity. Yahara [18]
analyzed recombination within soft-core genes (i.e. the genes that exist in at
least 90% of the phages they studied) of Helicobacter pylori prophages, showing
extreme sequence divergence that they attribute to recombination within genes.

Thus, phages are particularly ill suited to traditional evolutionary analyses
using multiple sequence alignment. The extraordinary mosaicism implies that
not any set of genes with the same function can be used for phylogenetic infer-
ence, since in this case shared function does not imply homology. Instead, Brus-
sow [3] recommends that evolutionary histories should be established using only
the homologous sequences belonging to the same functional module (i.e. what
we call a variant in the present article). Yet, to make matters worse, the high
dissimilarity attributed to pervasive recombination within genes makes phyloge-
netic reconstruction on individual variants very difficult [18].

1.2 Recombination Between Phage Populations

The conditions of high mosaicism in bacteriophages motivate a fresh perspective
on evolutionary history inference, one that uses the fact that a population of
phages represent a genetic reservoir that is constantly testing combinations. To
this end, in a previous work we inferred a recombination scenario within a popu-
lation of phages while explicitly using the Botstein model of recombination with
flanking homologous regions [17]. The present article differs from our previous
work in two important ways:

1. here we infer recombination scenarios between phage populations instead of
within them, and

2. our present model can accomodate flanking homology or ignore it.

When building our modules we assume the existence of flanking homology
“anchors” between every adjacent module (see Sect. 3.1 for details on how we
constructed our modules).

Our work is timely, given that “little is known about genetic flux by recombina-
tion between populations” [18]. While it represents a first attempt at reconstruct-
ing the evolution of phages in such a global sense, we expect this perspective to
increase in importance as phage sequencing becomes more prevalent.

Dutch Dairy Factories. In Murphy [14], phages are sampled across geographic
regions. They sequenced 38 phage genomes from four Dutch dairy factories, and
added to their dataset phages of the same species from various countries and con-
tinents (Australia, Canada, Denmark, France, Germany, Ireland, Italy, Poland,
United Kingdom, United States, and New Zealand). By using hierarchical clus-
tering on protein families presence/absence data, they were able to – mostly
– separate continents and countries. However, this technique was not able to
separate the four Dutch factories.
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Factory 1
A: A---AAAA-A-A-AAAA-A----A-AA-AAAAAAAAAA----AAAAAAA--AAA-AAAA-A-AA---A--A-A--A--AAAA-A
B: B---BAA-BABA-AABA-A-B-B-BBB-BABBABAB-BB------BBABBBBBA-A--B-B-BB-----BB-BBBB-BBAAA-A
C: B---BA-A-A-A-AACA-CC--C--CA-BCCCACCCCBC-CCCC-CCACCCBBACA--CCCCCC-C---CACC--CC-C-CACA
D: D---BA-D-A-D-AABA-ACD-D-BCA-DADDDDADDD-------DDABD-DBA-A-DD-ADDD-----BB-D--DC-DADADA
E: B-E-BAA--A-AEAACE-AC--E--C--EAEEECAE-B------EEEAECCBBA-E--E-A-EE-C--E-A-E--E--EAEADE
F: B---BA-A-A-A-AACA-CCF-C--CA-BCCCACCCCBC-CCCC-CCAFCCBBACA--CCCCFC-C---CACC--CC-F-CACA
G: D---BA-D-A-D-AABA-AC--D-BCA-DADDEDAGDD-------DDABD-DBA-A-DD-ADDD-----BB-G--D--GADADA
H: BH--BA-A-A-A-AACA-CC--C--CA-BCCCACCCCBC-CCCC-CCAHCCBBACA--CCCCHH-CH--BB-H--CC-HAEACA
I: B-E-BAA--A-AEAACE-AC--E--C--EAEIECAE-B------EEIAECCBBA-E--I-A-EE-C----A-I--E--I-EA-E
J: A---AAAA-A-A-AAAA-AJ---A-AA-AAAAAAAAAA----AAAJAAA--AAA-AAAJ-A-JJ---A--A-A--J--JAAA-A
K: D---BA-D-A-D-AABA-AC--D-BCA-DADDDDADDD-------DDABD-DBA-A--K-ADKK---KKBB-K--DC-KAAADA
L: L---BAL----A-A-BAL-C-L---LA-DALLDLAL-B------ELLALL-DBA-L-DL-A-L--L----A-L--L--LAAADA
M: A---AAAA-A-A-AAAA-AJ--MA-CA-AAAAAAAAAA----AAAMAAM-MMBM-AAAJ-A-MA---A--A-MM-J--MAAA-A
Factory 2
N: N---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAAMAAN-MMBM-AAAJ-A-MJ---A--A-N--A--NAAA-A
O: O---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAAMAAO-MMBM-AAAJ-A-OO---A--A-O--A--OAAA-A
P: P---BAAA-A-A-AAAE-AC--E--C--EAEPECAE-B------EEEAECCBBA-E--E-A--P-CH---A-P--E-BP-EA-E
Q: BH--BA-A-A-A-AAC--CC--C--CA-BCCQACCCCBC-CCCC-CCAQCCBBACA--CCCCQH-CH--BB-Q--CC-QAEACA
Factory 3
R: A---AAAA-A-A-AAAA-AJ--RA-CA-AAAAARAAAA----AAARAAA--AAA-AAAR-A-AJ---A--A-R--A--RAAA-A
S: A---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAASAAA--AAA-AAAJ-A-AA---A--A-A--A--SAAA-A
T: L---BAA-BABA-AABA-A-B-T-BBB-BABBABAB-BB------TTATL-DBA-L--T-B-TT----TBB-T--B--TAAA-A
U: L---BAA-BABA-AABA-A-B-T-BBB-BABBABAB-BB------TUAUBBBBA-L--T-B-TT----TBB-T--B--UAAA-A
V: L---BAA-BABA-AABA-A-B-T-BBB-BABBABAB-BB------TTAVBBBBA-L--T-B-TT-----BB-VBBB--VAAA-A
W: W---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAAWAAA--AAA-AAAJ-A-AJ---A--A-A--J--WAAA-A
X: X---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAAMAAX-MMBM-AAAJ-A-OO---A--A-X--A--XAAA-A
Y: Y---B--D-A-A-AABALA-Y-----A-AAYYAYA---C------YYAAD-YB--A-AY-A-Y------BB-Y--Y--YAA--A
Z: B---BAA-BABA-AABA-A-B-Z-BBB-BABBABAB-BB------BBABBBBBA-A--B-B-ZB-----BB-BBBB-ZZAAA-A
a: B---BAA-BABA-AABA-A-B-a-BBB-BABBABAB-BB------BBABBBBBA-A--B-B-aB-----BB-BBBB-ZaAAA-A
b: b---AAA--AbA-AABALA------bA-AAAbAbAbAA----AAAbbAA--AAA-AAAb-A-bb------A-b--A--bAAA-A
c: L-E-BAL-cAbA-AAcALA-B---Bc--BCcc---c-BB-----ELcAcBBBBA-A--c-A--c-C---BB-c--CCBcAAA-A
d: A---AAAA-A-A-AAAA-A----A-AA-AAAAAAAAAA----AAAMAAA--AAA-AAAJ-A-ddd--A--A-d--J--dAAA-A
Factory 4
e: D---BA-D-A-D-AABA-AC--D-BCA-DADDDDAeDD-------DDABD-DBA-A--K-ADee---KK-A-e--D--eAAA-A
f: L---BA-A-A-A-AACA-CC--C--CA-BCCCACCCCBC-CCCC-CCAfCCBBACA--CCCCCf-CH--BBCf--CC-f-CACA
g: B--gBA-gcA-A-gABA-A--Lg--gAg-AgggCAggB-g----EggAgLgDBACL--g-A-gg-C---BB-g--g--g-AADA
h: A---AAAA-A-A-AAAA-A----A-AA-AAAAAAAAAA----AAAMAAA--AAA-AAAJ-A-ddd--A--A-d--J--hAAA-A
i: B--gBA-gcA-A-gABA-A--Lg--gAg-AgggCAggB-g----EgiAiLgDBACL--g-A-gg-C---BB-g-Bg--iAAADA
j: j---B--A-A-A-A-BALA---j---A--AjjACAjDD-------D--jD-DBA-A--j-A-jj-C-A-BB-jj-CC-jAAA-A
k: L---AAAA-A-A-AAAA-AJ---A-AA-AAAAAAAAAA----AAAMAAA--AAA-AAAk-A-kbd--A--A-k--J--kAAA--
l: O---AA---A-A-AAAA-A----A-AA-AAAAAAAAAA----AAAllAA--AAA-AAAk-A-lbd--A--A-l--J--l-AA-A

(a) Grouping by factories

Group A 
A: A---AAAA-A-A-AAAA-A----A-AA-AAAAAAAAAA----AAAAAAA--AAA-AAAA-A-AA---A--A-A--A--AAAA-A
J: A---AAAA-A-A-AAAA-AJ---A-AA-AAAAAAAAAA----AAAJAAA--AAA-AAAJ-A-JJ---A--A-A--J--JAAA-A
M: A---AAAA-A-A-AAAA-AJ--MA-CA-AAAAAAAAAA----AAAMAAM-MMBM-AAAJ-A-MA---A--A-MM-J--MAAA-A
N: N---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAAMAAN-MMBM-AAAJ-A-MJ---A--A-N--A--NAAA-A
O: O---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAAMAAO-MMBM-AAAJ-A-OO---A--A-O--A--OAAA-A
R: A---AAAA-A-A-AAAA-AJ--RA-CA-AAAAARAAAA----AAARAAA--AAA-AAAR-A-AJ---A--A-R--A--RAAA-A
S: A---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAASAAA--AAA-AAAJ-A-AA---A--A-A--A--SAAA-A
W: W---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAAWAAA--AAA-AAAJ-A-AJ---A--A-A--J--WAAA-A
X: X---AAAA-A-A-AAAA-AJF--A-AA-AAAAAAAAAA----AAAMAAX-MMBM-AAAJ-A-OO---A--A-X--A--XAAA-A
d: A---AAAA-A-A-AAAA-A----A-AA-AAAAAAAAAA----AAAMAAA--AAA-AAAJ-A-ddd--A--A-d--J--dAAA-A
h: A---AAAA-A-A-AAAA-A----A-AA-AAAAAAAAAA----AAAMAAA--AAA-AAAJ-A-ddd--A--A-d--J--hAAA-A
k: L---AAAA-A-A-AAAA-AJ---A-AA-AAAAAAAAAA----AAAMAAA--AAA-AAAk-A-kbd--A--A-k--J--kAAA--
l: O---AA---A-A-AAAA-A----A-AA-AAAAAAAAAA----AAAllAA--AAA-AAAk-A-lbd--A--A-l--J--l-AA-A
Group B
B: B---BAA-BABA-AABA-A-B-B-BBB-BABBABAB-BB------BBABBBBBA-A--B-B-BB-----BB-BBBB-BBAAA-A
T: L---BAA-BABA-AABA-A-B-T-BBB-BABBABAB-BB------TTATL-DBA-L--T-B-TT----TBB-T--B--TAAA-A
U: L---BAA-BABA-AABA-A-B-T-BBB-BABBABAB-BB------TUAUBBBBA-L--T-B-TT----TBB-T--B--UAAA-A
V: L---BAA-BABA-AABA-A-B-T-BBB-BABBABAB-BB------TTAVBBBBA-L--T-B-TT-----BB-VBBB--VAAA-A
Z: B---BAA-BABA-AABA-A-B-Z-BBB-BABBABAB-BB------BBABBBBBA-A--B-B-ZB-----BB-BBBB-ZZAAA-A
a: B---BAA-BABA-AABA-A-B-a-BBB-BABBABAB-BB------BBABBBBBA-A--B-B-aB-----BB-BBBB-ZaAAA-A
Group C
C: B---BA-A-A-A-AACA-CC--C--CA-BCCCACCCCBC-CCCC-CCACCCBBACA--CCCCCC-C---CACC--CC-C-CACA
F: B---BA-A-A-A-AACA-CCF-C--CA-BCCCACCCCBC-CCCC-CCAFCCBBACA--CCCCFC-C---CACC--CC-F-CACA
H: BH--BA-A-A-A-AACA-CC--C--CA-BCCCACCCCBC-CCCC-CCAHCCBBACA--CCCCHH-CH--BB-H--CC-HAEACA
Q: BH--BA-A-A-A-AAC--CC--C--CA-BCCQACCCCBC-CCCC-CCAQCCBBACA--CCCCQH-CH--BB-Q--CC-QAEACA
f: L---BA-A-A-A-AACA-CC--C--CA-BCCCACCCCBC-CCCC-CCAfCCBBACA--CCCCCf-CH--BBCf--CC-f-CACA
Group D
D: D---BA-D-A-D-AABA-ACD-D-BCA-DADDDDADDD-------DDABD-DBA-A-DD-ADDD-----BB-D--DC-DADADA
G: D---BA-D-A-D-AABA-AC--D-BCA-DADDEDAGDD-------DDABD-DBA-A-DD-ADDD-----BB-G--D--GADADA
K: D---BA-D-A-D-AABA-AC--D-BCA-DADDDDADDD-------DDABD-DBA-A--K-ADKK---KKBB-K--DC-KAAADA
e: D---BA-D-A-D-AABA-AC--D-BCA-DADDDDAeDD-------DDABD-DBA-A--K-ADee---KK-A-e--D--eAAA-A
Group E
E: B-E-BAA--A-AEAACE-AC--E--C--EAEEECAE-B------EEEAECCBBA-E--E-A-EE-C--E-A-E--E--EAEADE
I: B-E-BAA--A-AEAACE-AC--E--C--EAEIECAE-B------EEIAECCBBA-E--I-A-EE-C----A-I--E--I-EA-E
P: P---BAAA-A-A-AAAE-AC--E--C--EAEPECAE-B------EEEAECCBBA-E--E-A--P-CH---A-P--E-BP-EA-E

(b) Grouping by genome organization

Fig. 2. (a) The variable parts of the 38 phage genomes of Murphy [14], color-coded by
factory. Each letter stands for a variant spanning the interval between two regions of
the core genome. (b) Highly similar genome organization is observed in 31 of the 38
phage genomes. Using the color-coding of panel (a), we see that each of the 5 groups
has a representative in at least two different factories.

Figure 2a shows the variable parts for the 38 phage genomes of [14], color-
coded by factory. Each letter stands for a variant spanning the interval between
two consecutive anchors (i.e. regions of core genome), and dashes represent
empty variants. The phages were grouped by similar genome organizations and
variants. Seven of these phages were in groups occurring in only a single factory,
having few shared modules with the other factories, so were removed from con-
sideration. Figure 2b shows the 31 remaining phages. The comparison of Figs. 2a
and 2b implies that each factory hosts a crew of different phages, that is more
or less conserved across factories, suggesting a common ancestral population.

We apply the algorithm described in this paper to the populations from each
pair of the Dutch factories. The lengths of the calculated recombination scenarios
are used to infer relative properties of population diversity between the factories.
Experiments are performed to determine if factories have specific qualities, and
to demonstrate a likely high amount of ancestral recombination within phage
populations.

Paper Outline. In this paper, we introduce the concept of recombination sce-
narios, describing how a phage population can be derived from another.

The next section gives the basic definitions and properties, Sect. 2.2 presents
the theoretical basis of the greedy heuristics, and Sect. 2.3 derive lower bounds
adapted to specific characteristics of biological data. Finally in Sect. 3, our heuris-
tic is used to compare the four dairy factories of Fig. 2a.
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2 Methods

2.1 Basic Definitions and Properties

A phage species is a set of phage genomes whose core genome contains the same
number m of distinct regions, called anchors, thus the same number m of variable
regions called modules. Each module has two or more variants within the species.
In this paper, we work with circularized versions of phage genomes1.

Fig. 3. Each phage in a set can be represented by the sequence of its variants. For each
module, an arbitrary symbol is assigned to each variant, including empty variants.
This compact representation captures the different assortments of modules within the
population. Intervals are sequences of consecutive modules in the circular order. A
recombination exchanges intervals between two parents, creating two new phages.

By representing variants of a module by single symbols such as a, b, c, . . ., it
is possible to represent individual members of a species by the sequence of their
variants, as in Fig. 3. Anchors are numbered from 0 to m − 1 in the clockwise
direction, where m ≥ 2 is the number of modules.

More formally, given sets of variants Vi for each module i, a phage p can be
represented by p = p0p1 . . . pm−1 where pi ∈ Vi. The recombination operation at
anchors a and b between two phages p and q yields new phages c and d:

p = p0p1 . . . pa−1|pa . . . pb−1|pb . . . pm−1

q = q0q1 . . . qa−1|qa . . . qb−1|qb . . . qm−1

yields

1 After invading a cell, linear phage genomes are often circularized. This is due to a
variety of mechanisms: a circular configuration may protect phages from degradation
by the defense mechanisms of the bacteria; it may allow the phage genome to be
duplicated as a plasmid, or to be integrated in the host genome; or it may be used
to initiate a rolling circle replication procedure that leads to a concatenamer [16].
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c = p0p1 . . . pa−1|qa . . . qb−1|pb . . . pm−1

d = q0q1 . . . qb−1|pa . . . pb−1|qb . . . qm−1.

The recombining phages are called parents, and the newly constructed
phages, their children or descendants, the pair {c, d} is a pair of twins. Com-
parisons between phage populations are based on the following relation, which
is the main focus of this paper:

Definition 1. Given two populations P and Q, a recombination scenario from
P to Q is a sequence of recombinations that constructs all phages of Q using
phages of P and their descendants. When there exists at least one recombination
scenario from P to Q, we say that P generates Q, and we write P → Q. The
number of recombinations in a shortest scenario is �PQ.

There is a simple way to check whether P → Q. Indeed we have:

Proposition 1. The relation P → Q holds if and only if, for each module, every
variant that appears in Q also appears in P .

If follows from Proposition 1 that the existence of P → Q does not imply the
existence of Q → P , since certain variants of modules of population P may have
been lost in the recombination process. The operation P → Q has the following
properties:

Proposition 2. For any population P , P → P and �PP = 0. If P → Q and
Q → R, then P → R, and �PR ≤ �PQ + �QR.

Since the measure �PQ is not symmetric, it is not a distance, but it is always
possible to convert it to a distance by considering the sum �PQ + �QP . However,
with actual biological data, it turns out to be much more interesting to compare
�PQ and �QP .

The central problem that we address in this paper is the following:

Problem 1. Given phage populations P and Q such that P → Q, compute a
recombination scenario of length �PQ.

The computational complexity of Problem 1 is currently unknown, even when
|Q| = 1. The main theoretical hurdle is that the notion of breakpoint, which is
central to most genome rearrangement problems, is not well-defined: it is often
impossible to determine a priori the number, nature, or positions of breakpoints.

In order to develop approximate solutions, we need objective functions that
are guaranteed to decrease at each iteration of the process, these are developed
in Sect. 2.2, where a first greedy heuristics is outlined. Evaluating the perfor-
mance of the heuristics requires theoretical lower bounds for the length of a
recombination scenario. These bounds are derived in Sect. 2.3.
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2.2 Minimum Covers

We define a circular interval (s..t) as the subset of integers {s, s+1, . . . , t}, where
additions are done modulo m. An interval in a phage p is denoted by p(s..t);
a phage interval p(s..t) is contained in a phage interval q(s′..t′) if the circular
interval (s..t) is contained in (s′..t′), and pk = qk for all k in (s..t).

In particular, the equality of phage intervals p(s..t) = q(s..t) implies that
they share the same modules with the same variants.

Definition 2 (Covers and minimum covers)
Let P be the population of parents, and Q the population of children. A cover
of a child c is a set C(c) = {p1(s1..t1), p2(s2..t2), . . . , pn(sn..tn)} of n intervals,
where each phage pk ∈ P , and such that:

1. The union
⋃

k∈{1..n} pk(sk..tk) is equal to c;
2. No interval in C(c) is contained in another interval of C(c).
3. Each interval pk(sk..tk) is maximal, in the sense that neither pk(sk − 1..tk),

nor pk(sk..tk + 1) is contained in phage c;

A minimum cover is a cover with the smallest number of intervals.

(a) (b)

Fig. 4. (a) A cover of a circular phage, in black, by intervals of four potential parents.
(b) A minimum cover extracted from cover (a).

Figure 4 gives an example of a cover and a minimum cover. The condition
that no interval of a cover is contained in another implies that, in a cover, all left
bound sk are distincts and all right bounds tk are distincts. Thus the intervals of
a cover can be ordered along the circle by their distinct and increasing left bounds
sk, and we can refer without ambiguity to a pair of consecutive intervals of a
cover p(sk..tk) and q(sk+1..tk+1). These can be used to propose a first definition
of breakpoints induced by covers:

Definition 3 (Breakpoint interval). Given two consecutive intervals of a
cover p(sk..j −1) and q(i..tk+1), where i ≤ j, of a child c, then the interval (i..j)
of anchors is called a breakpoint interval.
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Fig. 5. Breakpoint interval. All variants of modules in shaded areas are equal. A recom-
bination of p and q with anchors a ∈ (i..j) and b outside the interval (sk..tk+1) will
create the interval c(sk..tk+1) of child c. Note that the interval (i..j) corresponds either
to the overlap of parents p and q, or, when i = j, is the single anchor shared by p and
q.

Note that when i = j, there is a single anchor in the interval, and this
corresponds to the classical notion of a breakpoint. However, breakpoint inter-
vals can be arbitrary wide in the general case. Figure 5 illustrates the concept.
Breakpoint intervals correspond to anchors that can be used to construct the
union of two consecutive intervals. Indeed, a recombination of phages p and q,
with anchors a ∈ (i..j) and b outside the union of p(sk..j − 1) and q(i..tk+1),
that is b ∈ (tk+1 + 1..sk), will create the interval c(sk..tk+1) of child c. Such a
recombination is said to repair the breakpoint interval.

Proposition 3 (Upper bound). Let s(c) be the size of a minimum cover by
P for each child c ∈ Q, then there exists a recombination scenario from P to Q
of length less than or equal to R(Q) =

∑
c∈Q(s(c) − 1). Each recombination in

the scenario lowers the value of R(Q) by at least 1, and by at most 2|Q|.
Proof. A recombination can repair at most two breakpoint intervals, and there
always exists a recombination that repairs one breakpoint interval of a child. In
the worst case, each child will be reconstructed independently, and with recom-
binations that repair only one breakpoint interval, except for the last one, since
a child with a minimum cover of size 2 can always be constructed in one recom-
bination. In the best case, all children share the same two breakpoint intervals
in their minimum covers, implying that R(Q) may decrease by as much as 2|Q|.

From Proposition 3, we can sketch a greedy heuristics that tests all candidate
recombinations and selects an optimal one. Performance, in terms of computer
resources, is not a priority, unless some steps have the potential to lead to com-
binatorial explosions.

Greedy Heuristics
Input: Two populations P , Q such that P → Q, and P ∩ Q = ∅
While Q �= ∅
1. Compute the size s(c) of a minimum cover for each phage c ∈ Q, and R(Q).
2. If there exists c such that s(c) = 2, remove c from Q. Add the two children

of the recombination that creates c to P .
3. Otherwise, find a recombination that maximizes R(Q) − R′(Q), where R′(Q)

is computed after simulating each possible candidate recombination. Add the
children of this recombination to P .



On the Comparison of Bacteriophage Populations 11

Fortunately, due to applications in surveillance systems, the problem of com-
puting minimum covers of circles has received a lot of attention. Lee and Lee [12]
gave a solution in O(|S|) if the intervals of S are maximal elements, in terms
of inclusion, and the intervals are sorted by their increasing starting points. In
this case, there is at most one interval in S that begins, or ends, at any point in
(0..m − 1). Let I be an interval in S that ends at t, its successor succ(I) is the
– unique – interval that contains (t mod m), and has the largest starting point.
The algorithm described in [12] finds a minimum cover by iterating the function
succ(I). When the iteration begins with the largest interval of S, a minimum
cover is found after at most 2m iterations.

However, in general, minimum covers are far from unique: many pairs of
parents can repair a breakpoint interval, and a child may have alternate min-
imum covers that do not share any breakpoint interval. Moreover, there exists
the theoretical possibility that a shortest scenario must use breakpoint intervals
of covers that are not minimal (see Example 1 of Annex 1).

Our first experiments with phage data appeared to yield “pretty good”
results. Many recombinations were shared by two or more children, and many
children were constructed using exactly

⌊
s(c)+1

2

⌋
recombinations, where s(c) is

the size of a minimal cover of child c, which is a strict lower bound for a single
child.

Quantifying “pretty good” without relying on minimum covers is discussed
in the next section.

2.3 Lower Bounds

In this section, we explore under which conditions some breakpoints are manda-
tory, in the sense that they belong to any possible cover. As we will show, it
is easy to construct an example with no mandatory breakpoints. Thus, a lower
bound based on mandatory breakpoints has the potential to be useless in the
general case, but, in datasets that come from the comparison of phages popula-
tions, they are sufficiently abundant to provide practical lower bounds.

The formal definition is based of the detection of useful breakpoints, that
identify intervals that no single parent can cover, but that are covered by two
consecutive intervals of a cover.

Definition 4. A useful breakpoint is an interval c(i − 1, j) of a child c in Q,
that is not contained in any parent of P , yet both c(i − 1, j − 1) and c(i, j) are.
A useful breakpoint is thus the interval spanning a breakpoint interval together
with its two flanking modules.

A useful breakpoint can be erased by simply adding to the set of parents P
a new parent that contains the interval c(i − 1..j): Example 1 of Annex 1 shows
a population whose only child has 9 breakpoint intervals, but only two of them
are useful. On the other hand, in our phage comparisons, almost all breakpoint
intervals are useful.
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Fig. 6. In this example child Y has 6 mandatory breakpoint. Five have a single anchor:
a|b with anchor {2}, b|c with anchor {3}, c|d with anchor {5}, c|a with anchor {8},
c|a with anchor {12}; and one has two anchors d|c|c with anchors {6, 7}. One region,
in gray, contains two overlapping useful breakpoint, a|a|b with anchors {9, 10}, and
a|b|c with anchors {10, 11}. Breakpoints in blue are exclusive to Y, breakpoints in red
are exclusive to X, and the three breakpoints in violet are shared.

Two sets overlap if their intersection is non-empty, and neither is contained
into the other. When the sets of anchors of two or more useful breakpoint overlap,
then there exists alternative covers of different lengths for that region. We want
to eliminate this possibility:

Definition 5 (Mandatory breakpoint). A mandatory breakpoint of a child
c in Q is a useful breakpoint whose set of anchors does not overlap any other
such set of anchors.

In Fig. 6, all breakpoints of child X are mandatory, and we can deduce a
cover from these breakpoints by constructing the sequence of parents that are
exchanged at each breakpoint. In this case the only possible cover is ADBCDCDBA.

However, child Y = aabccdccaabca that has two overlapping useful break-
point: a|a|b with anchors {9, 10}, and a|b|c with anchors {10, 11}. This yield
two different covers of Y, one of length 9, ABCDCABCA, and one of length 8,
ABCDCACA.

We say that two mandatory breakpoints c(i− 1, j) and d(i− 1, j) are shared,
if they have the same set of anchors and a common pair of parents (p, q) that
can repair them. Then either c(i − 1, j) = d(i − 1, j), or c(i − 1, j) and d(i − 1, j)
are a pair of twins constructed by the same recombination.

In Fig. 6, there is one pair of equal mandatory breakpoints between children
X and Y at anchor {3} with parents B and C, and two pair of twins, one with
anchor {5}, and one with anchors {6, 7}, both with parents C and D.

Being based on equality, the ‘shared’ relation is an equivalence relation on the
set of mandatory breakpoints. In the example of Fig. 6, child Y has 6 mandatory
breakpoints and X has 8. Three of them are shared, thus there are 11 break-
points that must be repaired, yielding a minimum of 6 recombinations, since a
recombination repairs at most two shared mandatory breakpoints (see Example
2 of Annex 1 for a recombination scenario of length 6).
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In general, we have:

Proposition 4. Let P and Q be two populations such that P → Q, let M be
the number of shared mandatory breakpoints of children in Q with respect to P ,
then the length of a shortest recombination scenario is at least r(Q) =

⌊
M+1

2

⌋
.

3 Experiments

3.1 Dataset Construction

In order to identify core and variable genomes, we aligned the 38 genomes of
the Murphy study [14] using the Alpha aligner [1]. This aligner identifies the
core and variable genomes, the core becoming the anchors between the variable
regions that comprise the modules. For this experiment, we used the default
values of the software. Alpha was the preferred alternative to a painstaking and
time consuming breakpoint analysis done by hand, where sequence similarity is
queried using a tool such as BLAST. Alpha is adapted specifically to phages,
and identifies major breakpoints and variants in a single automated step.

The size of the 38 genomes varied between 29 097 and 31 049 bps, with a
core genome of size 7722 bps distributed across 84 anchors.

Each phage pj from the collection receives an identifier that is a single unique
letter, and a new variant for module i in phage pj receives the identifier of pj as
its variant identifier. This yields the set of strings displayed in Fig. 2a, which is
processed by the greedy algorithm. Each phage belongs to one of four factories,
identified by F1, F2, F3 and F4 in the original paper. The number of phages per
factory are, respectively, 13, 4, 13 and 8.

When computing a recombination scenario from a source factory to a target
factory, we may encounter a variant that occurs only in the target and not in
the source. We call such a variant a missing variant. The algorithm deals with
missing variants in two ways: if stretches of missing variants are shared by two
or more children in the target factory, supplementary chromosomes that contain
these stretches are added to population P ; if stretches of missing variants are
unique to a child, the importation of each stretch counts as one recombination,
and these recombinations can be done at the end of the scenario. These strategies
simulate the ‘genetic reservoir’, and should be sound as long as the stretches are
not too long.

3.2 Comparing Factories

Each factory was compared with the three others, resulting in 12 recombination
scenarios whose length varied from 29 to 158. Table 1 presents various statistics of
these scenarios, and a gap ratio that compares the performance of the heuristics
to both the lower bound r(Q), given by Proposition 4 and the upper bound
R(Q), given by Proposition 3. If L ≤ R(Q) is the length of an actual scenario,
we score it with the formula:

Gap ratio =
(R(Q) − L)

(R(Q) − r(Q))
.
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Gap ratios range from 0, for the worst scenario, to 1 for a scenario whose length
is equal to r(Q).

Since �PQ depends on the number of phages to reconstruct, we also give in
Table 1 the average length needed to reconstruct one child.

Table 1. Comparisons of four Dutch dairies. Scenario F1 → F2 computed by the
greedy algorithm has 29 recombinations, and theoretical lower bound of 24, and upper
bound of 47, yielding a gap ratio of 0.78; among the 29 recombinations, 20 were used to
import missing data; the size of target factory F2 is 4 phages, thus the average length
of the scenario is 7.25 recombinations per phage.

Factories
Scenario
Length

Lower
Bound
r(Q)

Upper
Bound
R(Q)

Gap
ratio

Missing
Data

Target
Dairy
Size

Average
Length

F1 → F2 29 24 47 0.78 20 4 7.25

F1 → F3 112 88 213 0.81 77 13 8.62

F1 → F4 84 60 161 0.76 53 8 10.50

F2 → F1 158 111 358 0.81 190 13 12.15

F2 → F3 149 107 402 0.86 105 13 11.46

F2 → F4 109 80 231 0.81 79 8 13.63

F3 → F1 152 90 361 0.77 101 13 11.69

F3 → F2 53 39 90 0.73 40 4 13.25

F3 → F4 110 81 209 0.77 73 8 13.75

F4 → F1 151 109 282 0.76 100 13 11.62

F4 → F2 54 42 90 0.75 36 4 13.50

F4 → F3 151 103 370 0.82 94 13 11.62

Gap ratios range from 0.73 to 0.86, which is promising, given our very con-
servative lower bounds that assume that all recombinations occur between pairs
of mandatory breakpoints; and given the fact that the upper bounds, based on
minimum covers, cannot be lowered in the general case. Indeed, upper bounds
are reached on recombination scenarios in which children do not share break-
points, and on parents who contribute at most a single interval of contiguous
modules in a child. In our dataset, specialized subpopulations were apparent in
Fig. 2, implying that children of these subpopulations did not share breakpoints,
and parents that contribute a single interval of contiguous modules in a child
are used to model the “genetic reservoir”.

Another interesting aspect of these comparisons is that Factory F1 is obvi-
ously the best ‘constructor’, with an average of 8.79 recombinations to recon-
struct all other factories, compared to 12.90 for Factory F3, for example. On the
other hand, F4 is the hardest to construct, being the highest result for each of
the other factories.
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3.3 Shared Evolution

We tested how much shared evolution there was when creating the phages from
one factory using the phages from another. To do this, we compared the sce-
nario lengths from Table 1 to the scenario lengths obtained separately from each
factory to each phage individually. The results are shown in Table 2. The table
shows that, by considering the phages in the target factories simultaneously, we
economize 12, 1.75, 15.7, and 7.6 recombinations per phage for target factories
F1, F2, F2, and F4 respectively.

Table 2. Creating each phage individually instead of creating all phages from a factory
at once. Each individual phage for a factory was created independently of the others.
The sum of the lengths of the recombination scenarios creating all phages from F1,
using the phages from F2, is in the first row: 61 more recombinations were required to
do this as compared to creating all phages of F1 with shared recombinations. Overall,
to create F1 from each of the other factories we use 13.63 recombinations more per
phage.

Factories Scenario length Sum of individual
lengths

Difference Economy per
phage

F2 → F1 158 219 61 13.23

F3 → F1 152 230 78

F4 → F1 151 184 33

F1 → F2 29 31 2 2.75

F3 → F2 53 55 2

F4 → F2 54 61 7

F1 → F3 112 131 19 15.85

F2 → F3 149 247 98

F4 → F3 151 244 89

F1 → F4 84 100 16 10.25

F2 → F4 109 150 41

F3 → F4 110 135 25

Due to the limited numbers of phages sampled from each factory, the variants
from a target factory was not always present in a source factory. These missing
variants played a role in our comparison, as they favored single-recombination
replacement of longer stretches in the single-target comparisons. As described
in Sect. 3.1, each stretch of missing variants that did not exist in any phage of
a target factory were counted as a single recombination. Consider one of these
stretches defined on a target factory with a single phage. Adding phages to this
factory can only fragment these stretches, implying more stretches and more
recombinations.

This gives single phage targets a significant advantage, in that they will
have longer stretches of missing variants that each can be repaired with a single
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recombination. Despite this advantage enjoyed by the single phage targets, we
observe large savings in all cases.

3.4 Population Structure

How distinctive are the populations within the factories? We approached this
question by conducting experiments to test how random the structure is within
the factories. The test statistic that we used was the sum of the scenario lengths
over all pairs of factories.

The first null hypothesis was that the phages were randomly partitioned
into factories of sizes 13, 4, 13, and 8. We tested this hypothesis by repeatedly
(n times) partitioning the data uniformly at random into the prescribed sizes
and rerunning the experiment of Sect. 3.2. This gave us the null distribution on
the test statistic. A single sample T-test against this null distribution yielded
a p-value lower then 10−6 even with n = 20. For larger n the p-value dropped
precipitously.

The second null hypothesis we tested took into account the group structure
as defined in Fig. 2b. The null hypothesis was that the phages were randomly
distributed to the factories while preserving the group structure within each
factory. That is, define a group structure vector [A, B, C, D, E] for a factory,
containing the frequency of each group in the factory. We construct four random
factories with the following frequency vectors:

F1 = [3, 1, 3, 3, 2],
F2 = [2, 0, 1, 0, 1],
F3 = [5, 5, 0, 0, 0], and
F4 = [3, 0, 1, 1, 0].

We run the experiment of Sect. 3.2 on n of these randomly constructed factories
to obtain the null distribution on our test statistic. A single sample T-test against
this null distribution for n = 100 gives a p-value is less than 10−11.

4 Discussion and Conclusion

In this paper, we described the first combinatorial framework for the comparison
of bacteriophage populations using recombinations. Our work represents a shift
to a more global perspective of evolutionary analysis for bacteriophages, since
the alignment-centric view breaks down in the presence of large amounts of
recombination [3,18].

Our experiments show that the populations of phages sampled within the
factories are not random, suggesting isolated evolution within individual facto-
ries. They also illuminate the potentially large amount of shared evolution in the
recombination histories leading to the factories that we see today, supporting the
genetic reservoir hypothesis.

While the application of our methods to the Dutch factories gives us insight
into the relative diversity of phages in one factory with respect to another, our
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application is “still seriously data limited” due to the disproportionately sparse
sampling of phage populations [3]. We expect the gene reservoir paradigm of
variant sharing between populations to gain tremendous significance as better
samplings become possible. There are signs that this time could be near, as a
recent survey estimates the number of different phage species in the ocean to be
more than 195,000 [8].

The problem of recombination scenario inference is a tricky one, whose com-
putational complexity remains unknown. However, with some realistic assump-
tions on real data, we were able to give good solutions to comparisons arising
from biological data. There are still many combinatorial problems that arise
from this framework, which include increasing the lower bound—since we used
a very conservative approach—and the development of better algorithms to find
recombination scenarios.

Dataset

Bacteriophage genomes used in this paper identified by their one letter code,
their name, and their accession number.

A Phi17 KP793114 B Phi13.16 KP793116

C Phi19 KP793103 D PhiJF1 KP793129

E Phi43 KP793110 F Phi4 KP793101

G PhiG KP793117 H PhiA.16 KP793102

I PhiD.18 KP793107 J PhiL.18 KP793120

K PhiF.17 KP793113 L Phi5.12 KP793108

M PhiM.16 KP793128 N Phi109 KP793121

O Phi93 KM091443 P Phi129 KP793112

Q PhiLj KP793133 R Phi155 KP793130

S Phi16 KP793135 T Phi44 KP793124

U Phi114 KP793115 V Phi15 KM091442

W Phi40 KP793127 X Phi145 KM091444

Y Phi10.5 KP793119 Z Phi19.3 KP793105

a Phi19.2 KP793111 b PhiL.6 KP793122

c Phi4.2 KP793123 d PhiM.5 KP793126

e PhiF0139 KP793118 f PhiA1127 KP793106

g PhiC0139 KP793109 h Phi91127 KP793125

i PhiB1127 KP793104 j PhiS0139 KP793134

k PhiE1127 KP793131 l PhiM1127 KP793132
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Annex 1

Example 1. A shortest scenario is not necessarily tied to a minimum cover.

Child J has a minimum cover of size 5, namely ABCDE. Thus a shortest sce-
nario must have at least 3 recombinations. Using the minimum cover, there is a
trivial scenario of length 4, but there is an alternate one of length 3 that uses
the cover AFGHGF, which is not a minimal cover.
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Example 2. A recombination scenario of length 6 for the example of Fig. 6.
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Abstract. We compare several types of evolutionary divergence of syn-
teny blocks: sequence level divergence of the genes in the block, loss of
genes affecting the length and structure of the blocks and spatial posi-
tion of the block in relation to the chromosomal centromere, and suggest
other dimensions, such as the predominant functional characteristic of
the genes in the block. We focus on the evolutionary history of the allote-
traploid Coffea arabica genome and its two progenitor genomes through
three major genomic events spanning 120 million years.

Keywords: Synteny block · Coffee fractionation · Sequence
divergence · Chromosomal structure · Principal components

1 Introduction

Sequence-level divergence is the universal criterion for the degree of genomic
evolution. There is a widely-assumed need to align this divergence to chrono-
logical time, whether by fossil dating or strictly comparative techniques. The
divergence of sequences, however, is measured in many different ways. The Ks

score is essentially an assessment of the amount of evolutionary drift due to
synonymous, i.e. translationally neutral, mutations in the codons of a gene, a
way of avoiding biases due to selection acting on proteins. In contrast, total
sequence difference Dist includes mutations which change protein, especially as
synonymous coding positions become saturated over time. The fourfold degen-
eracy transversion rate 4DTv [1] measures not the evolutionary drift as does
Ks, and not non-synonymous changes as does Dist, but how far evolution has
proceeded in the direction of increased transversions over transitions in muta-
tions at synonymous sites (e.g. [2]). The three measures Ks, Dist and 4DTv
measure three different aspects of sequence evolution, somewhat independant
of each other, and are thus of more biological interest than merely competing
approaches to the inference of chronological time.

In Sects. 4 and 5, we introduce a number of other ways of quantifying the
degree of evolution and investigate to what extent these new ways, as well as
Ks and Dist developed in Sect. 3, proceed independently of each other. These
new approaches are based not on individual genes, but on syntenic blocks, sets
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Jin and D. Durand (Eds.): RECOMB-CG 2022, LNBI 13234, pp. 21–30, 2022.
https://doi.org/10.1007/978-3-031-06220-9_2
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containing several (default at least 5) collinear homologous genes in two genomes
or two subgenomes, created by evolutionary events such as speciation and poly-
ploidization. In particular we assess the length of the synteny blocks, the rate
of fractionation (loss of one of a pair of homologous genes), gap size between
two unfractionated pairs of genes, and position of the synteny block on the chro-
mosome in relation to the centromere. For comparability, we include Dist and
Ks in terms of their mean values over all genes in a synteny block. In Sect. 2
we discuss how synteny blocks may be constructed or inferred from comparative
genomic data.

We study these properties of syntenic blocks in the context of a soon-to-be
published project on the sequence, evolution and population history of the Cof-
fea arabica genome1. We access the annotated sequence of this allotetraploid
genome, with 11 pairs (n = 22) of homologous chromosomes, as well as the two
11-chromosome progenitor genomes C. canephora and C. eugenioides. We focus
on three evolutionary events occurring at three points of time, namely the gamma
hexaploidization at the root of the core eudicot clade 1.2 × 108 Mya, the spe-
ciation event giving rise to the ancestors of C. canephora and C. eugenioides
≈ 107 Mya, and the allotetraploidization event creating C. arabica < 1 Mya, as
schematized in Fig. 1.

Fig. 1. Three genomic events in the evolutionary history of C. arabaca: the gamma
hexaploidization at the root of the core eudicots, the speciation giving rise to C.
canephora (CC) and C. eugenioides (CE), and the allotetraploidization event pro-
ducing C. arabica (CA), composed of subgenomes subCC and subCE.

2 The Construction and Biological Significance
of Synteny Blocks

Synteny blocks are in the first instance analytical constructs. In the genomes of
two species such as CC versus CE or CC versus subCE, the two sets of collinear
1 J. Salojärvi, personal communication.
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genes in a block are of course “unaware” of each other, and what happens to one
is independent of what happens to the other. In the subgenomes of a polyploid,
on the other hand, such as subCC versus subCE, there is likely some degree of
interaction, at least in the early days (measured in My), due to dosage consid-
erations, often leading to fractionation, the loss of one of a pair of homologous
genes in the block, usually not both.

The methodology we employ to infer synteny blocks is contained in the
widely-used and well-documented SynMap package on the CoGe platform [3,4].
This combines a syntenically-validated version of Blast with a gap-size con-
strained search for collinear genes, DAGChainer [5], which is followed by the
QuotaAlign algorithm [6] for piecing together neighbouring synteny blocks.

This pipeline is designed to balance the search for all blocks in the data, and
their full extents, against coincidence, random effects and other noise. Thus, for
example, short blocks may be missed and long blocks with gaps may appear as
two blocks.

For the four Coffea genomes and subgenomes CC, CE, subCC and subCE
(denoted just subCE), we carried out six SynMap comparisons of pairs, and four
self-comparisons, as listed in Table 1. Each comparison of two genomes reveals
synteny blocks for all the events that have affected both. All ten comparisons
contain synteny blocks created by the core eudicot hexaploidization gamma. Four
these comparisons, those involving either CC or subCC versus CE or subCE, also
contain synteny blocks created by the speciation of CC and CE, while CC versus
subCC and CE versus subCE contain synteny blocks caused by the tetraploidiza-
tion event.

Whereas estimates of Ks or Dist for a pair of homologous genes may have a
large variance, the average of these quantities in a synteny block containing many
pairs, all of which were created at the same time, is much more precise. This
makes it fairly easy to assign each of the hundreds of synteny blocks encountered
in a genomic comparison to one of the three genomic events.

3 Review of Sequence Divergence

The distinctions between the measures of sequence divergence are based on their
different focus on synonymous and non-synonymous mutations and on the dif-
ferent quantities that are inferred from the mutational counts.

The aim of this section is to emphasize the multiplicity of evolutionary direc-
tions followed by genomes. Thus although we model the connection between each
measure of sequence divergence and elapsed time, this does not detract from the
conceptual independence of the biological quantities that underlie them.

For our purposes, the sequence distance Dist between two homologous genes,
normalized by the total number of nucleotides in the coding sequence (CDS), is
most simply modelled as
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E(Dist) = E(Dist1 + Dist2)
= E(Dist1) + E(Dist2)

=
3
4
θ1(1 − e−λ1t) +

3
4
θ2(1 − e−λ2t),

(1)

where t measures the time since the divergence of the two aligned genes, and
θ1 and θ2 are the proportions of non-synonymous and synonymous positions,
respectively, in its codons. The factor 3

4 is due to mutations back to the original
state. λ1 < λ2 are rate parameters. Dist can be predicted by a linear combination
of the Jukes-Cantor distances [8] for non-synonymous and synonymous sites.
The proportions θ1 and θ2 are often taken to be 2

3 and 1
3 , respectively. For larger

t, such as that for the gamma hexaploidization, the synonymous regions tend
toward saturation, so Dist effectively becomes a measure of protein evolution.

Again, for the purposes of our model, we set

E(Dist2) =
3
4
[1 − e−λ2E(Ks)],

E(Ks) =
− log[1 − 4

3E(Dist2)]
λ2

(2)

so that Ks depends only on the synonymous positions. Even if Dist1 and Dist2
are inferred from the sequence data in much the same way, i.e., as counts of
mutations, Ks is formulated as a direct estimate of t, while Dist is understood
to approach a limiting value of 3

4 as t increases, so is only an indirect measure
of elapsed time.

In contrast to Dist, the quantity Ks does not reflect any evolution in the
protein produced by the gene.

Since some synonymous sites can have fourfold degeneracy while others have
two fold degeneracy, a more accurate model would have

E(Ks) = E(Ks4 + Ks2)

E(Ks4) =
− log[1 − 4

3E(Dist2,4)]
λ2

E(Ks2) =
− log[1 − 2E(Dist2,2)]

λ2

(3)

where s4 and s2 refer to mutations in the fourfold and twofold synonymous sites,
respectively.

Yet another measure of sequence divergence is the so-called 4DTv transver-
sion ratio [7], observed in the fourfold degenerate positions. Although this
involves compiling all the observed mutations in these positions, it is not inter-
preted directly in terms of time elapsed as in Eq. (3). Instead, mutations are
classified into transitions (purine-purine or pyrimidine-pyrimidine mutations) or
transversions (purine-pyrimidine or pyrimidine-purine), and it is the proportion
of transversions or the ratio of transversions versus transitions that is used as a
statistic for gauging elapsed time. The rationale is that transversions are rarer,
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for DNA-structural reasons, but as time progresses the transitions become satu-
rated so that the transversions reach equity with them. Modelling this process,
undertaken by Hasegawa et al. [7], is complicated by the fact that an observed
mutation may be the result of a series of transitions and transversions before
the moment of observation.

What is important is that all three measures we have discussed, Dist, Ks and
4DTv, pertain to distinct biological processes, protein evolution, neutral DNA
evolution, and local structural change within the class of neutral mutations,
respectively, although Dist is of course affected by neutral change, especially at
early times.

Besides Dist, Ks and 4DTv, there are several other ways of measuring
sequence divergence, but in the analysis in Sects. 6 and 7 below, we will focus
on two representatives, Ks and 4DTv, to compare with the other measures of
evolution we develop.

4 Fractionation and Gap Size

The evolutionary process of gene loss from a genome, such as through DNA
excision or pseudogenization [9], counterbalances novel gene acquisition through
processes such as tandem duplication, gene family expansion and whole genome
doubling. Loss serves a number of functions, not least in compensating for the
energetic, material and structural costs of gene complement expansion.

A measure of evolution reflecting gene loss is the decreasing length of synteny
blocks. Two processes erode gene length. One is genome rearrangement, which
simply breaks blocks into two shorter ones. The other is gene loss, creating gaps
within the block, leading eventually to the fragmentation of a block.

One type of gene loss widespread in the lineages of plant genomes, and also
occurring in a few yeast, fish and amphibian genomes, is “fractionation” after
whole genome doubling or tripling, where over time one of a pair or triplet of
paralogous genes in parallel syntenic contexts is discarded. A second measure
of evolution is then the proportion of fractionated gene pairs (i.e., singletons)
within a synteny block.

It is not always clear whether gene pairs are fractionated randomly or whether
whole chromosomal fragments are excised in a single event [10]. Our third mea-
sure reflects this, the mean of the frequency distribution of gap lengths within
syntenic blocks calculated during the comparison of chromosomes from two
genomes or subgenomes.

A somewhat surprising result from [9] is that the dynamics of gene loss from
syntenic blocks of orthologous genes after speciation parallels the process of
fractionation after polyploidization. This includes the fate of deleted genes, the
erosion of synteny blocks, the increase in fractionation rate and the size of gaps
in the synteny blocks. Indeed, in many ancient polyploids, we cannot assume
that fractionation has involved interaction between the two subgenomes, since
the same statistics pertain equally well to gene loss from orthologous synteny
blocks in the genomes of independent species.
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Fig. 2. Gap size frequencies (log scale) in syntenic blocks generated by three events.

Figure 2 shows the frequency distribution of gap lengths within syntenic
blocks calculated during the comparison of chromosomes from two genomes or
subgenomes.

All three measures related to gene loss are tabulated in Table 1.

5 Spatial Evolution

The distribution of genes on chromosomes is not homogeneous. Heterochromatin,
particularly constitutive heterochromatin, including the subtelomeric region and
the pericentromeric heterochromatin around the centromere are gene poor.

Part of this relative gene sparsity in the pericentromeric region in Coffea is
due to the high rate of fractionation there. Figure 3 shows how fractionation
rates are highest in this region in almost all chromosomes.

Though we have not explored this in the present research, we know that gene
function also tends to differ according to chromosomal position. As with many
plant genomes, genes on the chromosomal arms remote from the centromere
may be enriched for housekeeping functions whereas more species-specific genes
acting in response to external stimuli will be situated preferentially close to the
centromere, possibly in relation to elevated tandem duplication in this region
[11,12].

To see whether the position of the synteny block with respect to the cen-
tromere is affected by evolution, we tabulated the distance (in bp) between the
centromere-containing region and the nearest end of the synteny block (Fig. 3).
We can call this measure “distance to centromere”, or simply “c-mere distance”.
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Fig. 3. Gene retention rates (1.0 − fractionation rate) in synteny blocks only, calculated
in sliding 100-gene (or gene-pairs) windows along subCC chromosomes; subCE orange
points (from tetraploidization) obscuring almost identical trends in subCC grey points
(also from teraploidization), subCC from gamma (blue) and subCE from gamma (red).
Green box indicates region predicted to contain the centromere on subCC. (Color figure
online)

6 Data Summary

Table 1 lists statistics for the hundreds of synteny blocks located in each of
the ten SynMap comparisons, segregated according to the genomic event that
generated them. Note that the same comparison shows up as containing as many
as three sets of synteny blocks, one set pertaining to each genomic event.

The age value is log10 tens of millions of years, normalized to span the interval
[0, 1].

7 Correlational Analysis

Table 2 contains the matrix of Spearman correlations among the seven measures.
It is clear that age is highly correlated with the other six measures, which is not
surprising in that they all represent aspects of genome evolution. More important
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Table 1. Seven measure of evolution, including chronological time. Note that to assure
the positive directionality of evolution in our subsequent analysis, we will multiply
length by −1. We do the same for similarity, so that resulting rank order is the same
as Dist.

Comparison Age Number
of blocks

Ks Similarity (%) Length
(pairs/singles)

Gap size Fract rate c-mere
dist.
(Mbp)

Gamma

CC vs CE 1 253 2.42 70.70 8.48 3.69 0.680 26.4

subCC vs CE 1 232 2.63 70.85 8.26 3.72 0.686 23.6

subCE vs CC 1 262 2.60 70.87 8.56 3.80 0.684 20.0

subCC vs subCE 1 244 2.69 70.97 8.10 3.84 0.691 17.2

CC vs CC 1 263 2.50 70.77 8.79 3.84 0.694 22.2

CE vs CE 1 255 2.88 70.83 8.27 3.68 0.679 29.6

subCC vs subCC 1 215 2.62 70.62 8.47 3.79 0.694 17.5

subCE vs subCE 1 256 2.47 70.78 7.98 3.74 0.683 17.7

subCC vs CC 1 238 2.71 70.82 8.93 3.85 0.694 20.2

subCE vs CE 1 248 2.73 70.82 8.46 3.67 0.675 24.5

Speciation

CC vs CE 0.05 465 0.0261 97.50 37.89 2.54 0.421 17.0

subCC vs CE 0.05 446 0.0350 97.30 36.43 2.46 0.420 14.4

subCE vs CC 0.05 258 0.0307 97.29 63.98 2.52 0.442 12.3

subCC vs subCE 0.05 240 0.0335 97.07 65.35 2.54 0.442 9.3

Tetraploidization

CC vs subCC 0 210 0.015 98.40 79.54 2.50 0.435 11.7

CE vs subCE 0 524 0.018 98.20 33.82 2.33 0.393 14.8

is that all the other six are substantially less correlated with each other than
with age, confirming that they all represent somewhat independent aspects of
evolution.

Two groups, or clusters, have generally higher within-group than between-
group correlations, as indicated in the shaded cells in the table.

A principal component analysis of Table 2 produces the configuration in
Fig. 4, clearly displaying the distinction between the two clusters discussed in
the table. The first principal component contrasts - similarity (or Dist) and
the measures of fractionation, namely fractionation rate and average gap size,
against Ks, distance to centromere and decrease in the length of synteny blocks.

That the two fractionation measures are closely associated stems from the
fact that if step-by-step fractionation tends to involve two or more neighbouring
genes at a time, this will also increase fractionation rate. On the other hand, for
the a block to show many large gaps, and to host a large number of singletons, it
must have sufficient length. This explains why -length is widely separated from
the two measures of fractionation.

That distance to centromere is associated with -length, turns out to be a con-
sequence of the near-telomeric positioning of the short synteny blocks originally
generated by the gamma hexaploidization event. That there are ten comparisons
bearing on gamma amplifies this effect.
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Table 2. Correlations among the measures. Two distinct groups emerge, indicated by
gray cells above and below the diagonal, respectively. in the table

distance Ks -length gap c-mere fract age

Dist size dist rate

Dist 0.668 0.621 0.703 0.709 0.795 0.861

Ks 0.668 0.794 0.671 0.715 0.634 0.861

-length 0.621 0.794 0.591 0.703 0.575 0.820

gap size 0.703 0.671 0.591 0.532 0.936 0.851

c-mere dist 0.709 0.715 0.703 0.532 0.518 0.820

fract rate 0.795 0.634 0.575 0.936 0.518 0.841

age 0.861 0.861 0.820 0.851 0.820 0.841

The same explanation holds for the proximity of -similarity (and thus Dist)
to the two measures of fractionation. For Ks on the other hand, the synonymous
positions in the synteny blocks generated by gamma will be saturated or nearly
so. The longer synteny blocks associated with speciation and tetraploidization
will have smaller Ks than the saturated short blocks associated with gamma,
explaining the proximity of Ks and -length.

The second component clearly contrasts all six measures with chronological
age. This effect is likely due to correspondences between the measures at the
gamma event, while there is no correspondence between any of them and age,
which is constant.

The third component reveals a secondary association between distance from
centromere and -similarity, which explains a non-neglible percentage of the
variance.

Fig. 4. First three components of principal components analysis
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8 Discussion

The picture of syntenic evolution that emerges from this work is that there are
at least five types of components of divergence of synteny blocks: neutral and
protein-level sequence divergence of the genes in the block, loss of genes affecting
the structure of the blocks (two such measures in our data) and their lengths,
and spatial position of the block in relation to the chromosomal centromere. We
predict that the predominant functional characteristic of the genes in the block
will be another such measure. There are certainly other components of genomic
evolution, such as genomic rearrangements, retropositional activity, gene move-
ment in and out of blocks, that are not accessible to the analyses of single synteny
blocks, but could be analyzed with the same philosophy of genomic evolution we
advocate here.
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Abstract. Placing a new sequence onto an existing phylogenetic tree is
increasingly used in downstream applications ranging from microbiome
analyses to epidemic tracking. Most such applications deal with noisy
data, incomplete references, and model misspecifications, all of which
make the correct placement uncertain. While recent placement methods
have increasingly enabled placement on ultra-large backbone trees with
tens to hundreds of thousands of species, they have mostly ignored the
issue of uncertainty. Here, we build on the recently developed distance-
based phylogenetic placement methodology and show how the distribu-
tion of placements can be estimated per input sequence. We compare
parametric and non-parametric sampling methods, showing that non-
parametric bootstrapping is far more accurate in estimating uncertainty.
Finally, we design and implement a linear algebraic implementation of
bootstrapping that makes it faster, and we incorporate the computation
of support values as a new feature in the APPLES software.
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1 Introduction

Phylogenetic placement of a query sequence onto an existing backbone tree is
increasingly adopted across applications such as microbiome analyses [2,11,22,
31,33,38,49], genome skimming [5,9], and epidemic tracking [28,50]. Phyloge-
netic placement treats all the queries as independent, resulting in two advantages:
the running time scales linearly with the number of queries, and there may be
reduced sensitivity to errors in individual sequences as they would not impact
the placement of other queries [22]. The price is that the relationship between
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queries is not inferred, queries do not help the placement of other queries, and
the backbone remains fixed. Notwithstanding these shortcomings, the appeal of
having scalable methods has made placement an increasingly popular approach.

A large number of placement methods have been developed based on diverse
approaches, including maximum likelihood (ML) [e.g., 6,32,48,52], distance-
based estimation [e.g., 3–5], maximum parsimony [e.g., 50], HMMs [e.g., 36,54],
supertree approaches [e.g., 30,41], k-mers [e.g., 29], and even machine learn-
ing [e.g., 10,24]. The accuracy of these methods depends on the context, but
generally, ML methods such as pplacer [32] have been highly accurate [5]. How-
ever, these methods do become slow as the backbone grows large (e.g., more than
1000). Meanwhile, denser backbones are known to increase accuracy and improve
downstream applications [34,37,39]. This need to scale to large backbone trees
has motivated both divide-and-conquer [36,52] methods and the distance-based
method APPLES(-2) [3,5]. In particular, APPLES-2 uses divide-and-conquer
and dynamic programming to provide sub-linear scaling with the size of the
backbone tree when amortized over all queries and provides accuracy levels that
match the ML method EPA-ng [6] and comes close to pplacer.

Despite these advantages, the existing distance-based methods lack a key
feature: support estimation. The ML placement methods, pplacer and EPA-ng,
provide a natural notion of support based on the normalized likelihood of place-
ment across branches. These support values reveal uncertainty, and their incor-
poration has been known to improve downstream applications of placement such
as taxonomic identification [38] and sample comparison [33]. The distance-based
method APPLES-2 [3] currently does not output any measure of uncertainty
around its placements.

In this paper, we offer parametric and non-parametric methods of measur-
ing support for distance-based placement in the presence of a multiple sequence
alignment (MSA). Our non-parametric approach relies on the traditional boot-
strapping method, with an efficient implementation that utilizes a linear alge-
braic formulation to achieve higher speeds. The parametric approach relies on
a binomial model paired with the Jukes-Cantor (JC) model [25] or a Poisson
approximation of Binomial. We carefully test the accuracy of the support val-
ues in extensive simulations, showing that the non-parametric approach pro-
vides highly accurate support values. This new feature is fully integrated into
APPLES-2 software and is available at https://github.com/navidh86/apples.

2 Approach

We start with some background on APPLES(-2) and the goal of branch support
estimation. We then introduce two models for computing support for distance-
based placement, one based on a Poisson model approximation and the other
based on bootstrapping, along with a particularly optimized implementation of
bootstrapping using a linear algebraic formulation.

https://github.com/navidh86/apples
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2.1 Background on APPLES-2

The Least Squares Phylogenetic Placement (LSPP) problem [5] takes as input a
reference phylogenetic tree T with n leaves and a vector of distances δqi between
a query taxon q and every taxon i on T . It outputs the placement that minimizes
the weighted least squares error:

n∑

i=1

wqi(δqi − dqi(T ))2

where dqi(T ) is the path distance from q to backbone taxon i on T . The wqi

weights reduce the impact of long distances and by default are δ−2
qi following

Fitch-Margoliash (FM) weighting [17]. APPLES used a dynamic programming
algorithm to solve this problem in time that increases linearly with the size of
the tree. APPLES-2, a recent improvement [3], is a sub-linear heuristic that
solves the LSPP problem on a subset of the leaves. To achieve sub-linear time,
APPLES-2 avoids computing all distances to the reference using a heuristic
method that clusters backbone leaves. APPLES-2 is faster and more memory-
efficient than APPLES, and it is also more accurate in simulation studies. The
increased accuracy likely is due to the reduced impact of long distances, esti-
mation of which is a known major challenge [12,16]. The divide-and-conquer
method used in APPLES-2 builds on a rich history of methods with strong
theoretical guarantees [14,21,51].

The distances used by APPLES-2 can come from any source. Given an MSA,
they can be computed by comparing sequences and calculating a phylogeneti-
cally corrected distance. For DNA, the simplest model is JC [25], which requires
simply computing the normalized hamming distance hqi (ignoring gap positions)
and then correcting it using the simple formula: − 3

4 ln (1 − 4
3hqi). For amino acid

(AA) alignments, APPLES-2 uses the Scoredist [47] algorithm. Scoredist com-
putes normalized pairwise distances according to the BLOSUM62 [20] matrix
and then performs a logarithmic correction.

2.2 Distance-Based Support Estimation: Goals and Background

Branch support estimation aims to show the amount of uncertainty. In the case of
placement, we seek a set of placements that collectively have a high probability of
including the correct location and a probability assigned to each placement that
ideally predicts whether it is correct. We note that the correct interpretation of
support is a subtle issue [e.g., 8,35,43,46]. What methods provide (an estimate
of the variance of the estimator) is different from what biologists would ideally
like to have (an indication of whether a branch is correct). Nevertheless, we can
measure the usefulness of a measure of support based on the biologically desired
outcome (i.e., probability of correctness).

Standard methods or computing support provide a set of trees. Bayesian
analyses approximate the posterior tree distribution. Maximum likelihood and
distance-based methods also build a tree distribution but use sampling methods,
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in particular the bootstrapping procedure [15] that repeatedly resamples sites
with replacement. Bootstrapping is a general and valid method for comput-
ing distributions around a statistically consistent estimator that asymptotically
resembles the distribution of the estimator around the true value if the data gen-
eration process was to be repeated [13,45]. Despite being highly parallelizable,
repetitive resampling of sites of the input alignment increases the running time,
motivating alternative methods [1,18,26,44]. Finally, in phylogenetic placement,
support values are computed using the likelihood ratio (i.e., normalizing the
likelihood of placement on each branch by the likelihood of other highly likely
branches) [6,7] or a Bayesian variation of the same idea [31].

2.3 Non-parametric Bootstrapping

Bootstrapping is adopted to phylogenetic placement as follows. The L sites of
the given MSA are subsampled with replacement L times, repeating this process
B times to produce B replicate datasets. Each replicate alignment is used for
the placement of the query. The placement support on each branch is then set
to the fraction of the B replicate placements that fall on that branch. While the
backbone topology should ideally be allowed to change for each replicate, this
would make it difficult to draw meaningful support values for placements. Thus,
we keep the tree topology fixed. We will test if re-estimating branch lengths of
the backbone tree for each replicate can improve the exactness of support values.

Noting that the bottleneck in APPLES-2 is computing distances (not the
placement step), we improve running time using a linear algebraic formula-
tion. Let M be the MSA of the given reference and query sequences, and let
M1,M2, . . . , MB be the set of B bootstrapped multiple sequence alignments
sampled from the original alignment M with replacement. We compute dis-
tances between a query and a reference sequence in all of these B +1 alignments
efficiently using matrix multiplication. Let H be a (B+1)×L matrix, where each
Hij is the number of times the j-th site was sampled in the i-th bootstrapped
alignment Mi, and H0j = 1 for 0 ≤ j ≤ L − 1. We precompute H once. For
each query sequence q, we compute an L × n matrix V by setting Vi,j = 1 if
and only if the i-th sites in the query q and the reference j disagree and neither
one is a gap in the original alignment M . We then compute the (B + 1) × n
matrix P = H · V. Note that Pi,j gives the number of mismatches between q
and reference j in Mi. The normalized Hamming distance is simply computed
as Pi,j/L′

i,j , where L′
i,j is the number of sites in Mi where neither the query

q nor the reference j is a gap, and is transformed using the JC69 correction.
This strategy is faster than the naive approach because 1) string comparisons
are made only once (in constructing V) and not once per replicate, 2) site sub-
sampling is implicit in building H and does not require string operations, and
3) matrix multiplication is a highly optimized operation in most platforms such
as NumPy used here.

Considering the two points mentioned earlier, we study two versions of boot-
strapping, a “slow” version that does not use the linear algebraic trick and re-



Branch Support Calculation for Distance-Based Phylogenetic Placements 37

estimates branch lengths per replicate, and a “fast” version that uses the linear
algebraic formulation and avoids re-estimating branch lengths.

2.4 Parametric Bootstrapping (Binomial and Poisson Models)

We propose a parametric alternative to non-parametric bootstrapping where we
sample a collection D = {D1,D2, . . . , DB} of B new distance matrices from
the original distance matrix D0 computed from original alignment M . These
matrices in D are of the same size as the original distance matrix D0, each of
which can be analyzed to find the placements of a query. The approach does not
require repeated distance calculation and thus should be faster.

We model the distribution of distances between each pair of query and ref-
erence sequences using the Binomial distribution or its Poisson approximation.
Under the JC69 model, the number of mutations observed between a query q and
a reference r that have l non-gap aligned sites and are separated by a branch of
true length t follows a binomial distribution with l tries and success probability
h = 3

4 (1−e− 4
3 t). Given the observed normalized hamming distance ĥ, we can use

the parametric bootstrapping approach: i) draw new values x1 . . . xB from the
binomial distribution with l tries and ĥ probability of success, ii) normalize each
xi by l to get ĥ1 . . . ĥB, and iii) transform each drawn hamming distance to get
t̂i = − 3

4 ln (1 − 4
3 ĥi). The binomial distribution can be approximated by a Pois-

son distribution with rate λ = ĥ × l if we allow ourselves to forget that h does
not diminish as l increases. Importantly, we apply this procedure to each element
of the distance matrix independently. This part of the procedure is essentially
incorrect since distances are not independent. Thus, the independent draws are
based on a consciously incorrect assumption and will be tested empirically.

3 Experimental Study

3.1 Dataset

Simulated Single-Gene RNASim. We use an existing RNASim-VS simulated
dataset [5], which contains subsets of a simulated RNASim data set [19]. We
used the same data as the original paper [5] who randomly select 1000 queries
over 5 replicates (200 queries in each replicate) with various novelty levels. The
backbone is a set of 5000 taxa randomly chosen from the full tree (five replicates).
Each replicate contains an MSA of 1596 sites of a single gene and the true tree
as backbone. The branch lengths have been re-estimated in minimum evolution
units using FastTree-2 [40]. In order to assess the performance of our method
on fragmentary data and compare it with alternative techniques (e.g., EPA-
ng, pplacer) that are specially designed for placing reads, we also created a
fragmentary version of the dataset by randomly selecting 200 bp from a random
position of the sequence and replacing other letters with a dash.
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Web of Life (WoL). We use the Web of Life (Wol) dataset [56] which contains
381 marker genes and a species tree of 10,575 prokaryotic genomes built from
ML gene trees using ASTRAL [53]. We reuse the WOL-random subset from
a previous publication [3], limited to 1000 species for the backbone (randomly
selected) and the best k ∈ {5, 10, 25, 30, 40, 50} genes (one replicate), defined
as those with the lowest quartet distance to the species tree. We concatenated
nucleotide MSAs of the top k genes (one replicate), removing the third codon
position (C12), and used this C12 MSA in all our analyses. We use C12 because
the third codon significantly misleads the placement accuracy of APPLES-2 on
this data [3]. A set of 1000 species not among the 1000 used in the backbone are
used as queries. As the backbone, we utilize the ASTRAL tree limited to 1000
backbone species but recalculate its branch lengths using minimum evolution
with FastTree-2 [40]. The position of the queries on the full ASTRAL tree is
taken as the correct placement because it is obtained using a comprehensive
pipeline that uses ML to infer 381 gene trees and ASTRAL to summarize gene
trees.

3.2 Measurements

To assess the quality of the branch supports, we first ask how calibrated the
support values are by investigating the relationship between bins of branch sup-
port and the percentage of correctly placed queries in each bin (accuracy). For
example, for branches in the 60–70% support bin, calibrated supports result in
roughly 65% accuracy. We report the mean squared error (MSE) of the accuracy
versus the median of bins, separately computed for branches with support below
or above 70%. However, even when support values are not calibrated, they may
be useful in distinguishing correct and incorrect branches (imagine dividing all
support values by two). To assess the ability to distinguish correct branches, we
use receiver operating characteristic (ROC) curves. ROC curves show the rela-
tionship between recall (the percentage of all true branches with support above
a threshold t), and false-positive rate (FPR) (the percentage of all false branches
with support below t). For thresholds t ∈ {0, 1, . . . , 100} we classify each branch
as: TP : support ≥ t and branch is correct, FP : support ≥ t and branch is
incorrect, TN : support ≤ t and branch is incorrect, and FN : support ≤ t and
branch is correct. We plot FPR = FP

FP+TN versus Recall = TP
TP+FN . Finally, we

draw the Empirical Cumulative Distribution Function (ECDF) of the support
values drawn separately for correct and incorrect branches.

4 Results and Discussion

4.1 Simulated Single-Gene RNASim Dataset: Full-Length
Sequences

We start with a comparison of alternative APPLES-2 support measures. The
support values obtained by both slow and fast non-parametric bootstrapping are
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better calibrated with the accuracy (i.e., support values are closer to the expected
values) than those obtained by the parametric Poisson and binomial sampling
methods (Fig. 1A). The difference between bootstrapping- and Poisson-based
methods is more pronounced at lower support levels, where parametric methods
tend to underestimate supports. The MSE of the branches with support ≤ 70%
is more than 0.17 for parametric methods and only 0.018 for fast bootstrapping.
Conversely, parametric sampling over-estimates support at higher ends, leading
to at least three times higher MSE than bootstrapping methods.

The slow bootstrapping method produced only slightly better support values
than the fast bootstrapping method, especially for high support values where the
MSEs are 0.001 and 0.0008 for fast and slow bootstrapping, respectively.

Investigating the distribution of the support values, there is a large gap
between the support distribution of correct and incorrect placements, and the
gap is more prominent for bootstrapping than the parametric methods (Fig. 1B).
Parametric sampling results in many more correct placements with low support
and more incorrect placement with high support. With bootstrapping, around
75% of the correct placements have more than 75% support, and around 75%
of the incorrect placements have less than 60% support. In contrast, around 60–
65% of the correct placements have support above 75% for parametric methods.
Parametric methods also have a long tail of incorrect placement with high sup-
port. For example, no placement with ≥99% bootstrapping support is wrong,
but around 4% of such placements are incorrect with parametric sampling.

Examining the predictive power of support (irrespective of their calibra-
tion) using ROC curves confirms the superiority of bootstrapping and shows
a slight advantage for slow compared to fast bootstrapping (Fig. 1C). The area
under ROC curves (AUROC) for the slow and fast bootstrapping is 0.883 and
0.864, respectively, compared to 0.765 and 0.771 for Poisson and Binomial. The
AUROCs for parametric methods, while inferior to bootstrapping, nevertheless
show fair levels of predictive power. Focusing on bootstrapping, we observe that
changing the support threshold from 65% to 100% can lead to FPRs ranging
from around 25% to 0%, and recalls ranging from above 80% to 40%, with the
80% support threshold providing a practically useful trade-off (recall: 72% and
FPR: 15%).

Finally, examining the top ten highest support placements, we observe that
the correct placement is among the top 6 placements for almost all queries with
bootstrapping (Fig. 1D). In contrast, going to even the top 10 placements does
not capture the correct placement in more than 10% of queries when using para-
metric models. Furthermore, note that 77%, 75%, 60%, and 55% of the correct
placements are within the placements with the highest support obtained by slow
bootstrapping, fast bootstrapping, Poisson, and binomial methods, respectively.

Comparison with pplacer and EPA-ng. Comparing fast bootstrapping for
APPLES-2 to alternative ML methods EPA-ng and pplacer shows that ML
methods result in far higher levels of support than distance-based methods
(Fig. 2). For example, close to 76% and 82% of correct placements with pplacer
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(A) (B)

(C) (D)

Fig. 1. Results on RNAsim single-gene dataset. (A) Support versus the percent-
age of correctly placed queries over five replicates. Support values are binned at 0%,
10% . . . 80%, 85%, 90%, 95%, and 100% left inclusive (e.g., [0,10)); the last bin only
includes 100%. Unity line (y = x): fully-calibrated support. Dot sizes are proportional
to the number of queries within each bin. The mean squared error (MSE) of the points
computed with respect to the unity line and divided between low and high support
values are as follows. For low support (support ≤ 70%) values, MSE is 0.21 for Pois-
son, 0.17 for Binomial, 0.018 for Fast BS, and 0.007 for slow BS; for high support
(support > 70%) values, MSE is 0.003 for Poisson, 0.004 for Binomial, 0.001 for Fast
BS, and 0.0008 for slow BS. (B) Empirical cumulative distribution function (ECDF)
of the support for correct/incorrect placements. (C) Receiver operating characteristic
(ROC) curves using a range of 0–100 of support thresholds. Selected thresholds are
marked. (D) The frequency of the correct placement being among the top 1 ≤ x ≤ 10
highest support placements.

and EPA-ng have 100% support, compared to only 38% for APPLES-2. How-
ever, such increased support is not universally good. Unlike APPLES-2, pplacer
and especially EPA-ng result in high support for incorrect branches often (10%
and 40% of their incorrect branches have 100% support, respectively). In other
words, both ML methods over-estimate support, but this problem is far worse
for EPA-ng. The MSE error of EPA-ng for > 70% branches (0.02) is much higher
than pplacer (0.004), which is higher than APPLES-2 (0.001). The high number
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(A) (B)

(C) (D)

Fig. 2. Comparison to EPA-ng and pplacer on RNASim dataset. Settings are
similar to Fig. 1. MSE among support ≤ 70%: 0.02 for APPLES-2, 0.013 for pplacer,
and 0.1 for EPA-ng; MSE among support > 70%: 0.001 for APPLES-2, 0.004 for
pplacer, and 0.02 for EPA-ng.

of incorrect but confident placements by EPA-ng results in an AUROC of 0.574,
which is worse than APPLES-2 (0.861) or pplacer (0.849). For (high) FPR values
that both pplacer and APPLES-2 are able to achieve, pplacer has better recalls,
showing its better predictive accuracy in that range. Note that even with 100%
support, pplacer has substantially higher FPR than APPLES-2.

4.2 Simulated Single-Gene RNASim Dataset: Fragmentary
Sequences

Support values dramatically reduce when we examine short fragmentary
sequences, especially for APPLES-2 and EPA-ng (Fig. 3). With APPLES-2 boot-
strapping, very few placements have support at or close to 100%, and most
of those are correct. APPLES-2 support also has high predictive power, with
AUROC equal to 0.765, which is lower than full-length sequences but is reason-
ably high. As we go from 1 to 10 top placements, the number of queries with
the correct placement captured among the picks increases from 32% to 72%.
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(A) (B)

(C) (D)

Fig. 3. Results on simulated fragmentary 200 bp dataset. Comparison of
APPLES-2 (fast bootstrapping) with EPA-ng and pplacer. MSE among support ≤ 70%:
0.01 for APPLES-2, 0.009 for pplacer, and 0.09 for EPA-ng; among support > 70%:
0.02 for APPLES-2, 0.002 for pplacer, and 0.37 for EPA-ng.

We also compare APPLES-2 with EPA-ng and pplacer, which, unlike
APPLES-2, are designed explicitly for fragmentary sequences. The behavior of
the two ML methods diverges on fragmentary data. The pplacer support values
remain highly accurate in terms of calibration with accuracy, the distribution
gap between correct and incorrect placements, and ROC. Here, pplacer has the
best MSE (0.002 for > 70% supported branches), followed by APPLES-2 (0.02),
and EPA-ng as a distant third (0.37). The AUROC of pplacer is 0.820, which is
better than APPLES-2. In particular, at very low FPR values, pplacer is clearly
more sensitive than APPLES-2. Note also that pplacer placements (not just their
support) are substantially more accurate than APPLES-2 on these fragmentary
data. In particular, taking the top 1 to 6 placements from pplacer achieves 63%–
91% accuracy, compared with 32%–66% for APPLES-2. Unlike pplacer, EPA-ng
is about as accurate as APPLES-2 in terms of placement and has far worse sup-
port values. EPA-ng is overtly confident in its placements, producing close to
100% support for almost all queries. The gap between distributions of correct
and incorrect branches of EPA-ng is narrow, and the ROC curve confirms a
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lack of predictive power (AUROC equals 0.308). As a result, unlike APPLES-2,
EPA-ng does not benefit from increasing the number of top placements in terms
of finding the right branch.

4.3 Multi-gene Web of Life (WoL) Dataset

On the biological multi-gene WoL dataset, the relative accuracy of APPLES-2
support methods is similar to the single-gene RNAsim dataset (Fig. 4). Boot-
strapping support values are better calibrated with the frequency of correctness
and are more predictive of correctness compared to those obtained by parametric
methods. The ROC plots indicate bootstrapping can better distinguish correct
and incorrect edges, especially when concatenating fewer genes. However, ROC
plots also reveal that on the WoL dataset, the difference between methods is
not as substantial as it is in the RNAsim dataset. Across different numbers of
genes, both Poisson and binomial methods inferred low supports (≤30) for fairly
large numbers of correct placements, especially with fewer genes, in contrast
to bootstrapping. However, unlike the single gene dataset where bootstrapping
was accurate for high support values, on WoL, all the methods tend to overesti-
mate medium to high support levels (e.g., ≥50%). Nevertheless, bootstrapping
continues to be more accurate for high support.

Impact of the Number of Genes. Increasing the number of genes results in higher
support values for all methods (Fig. 4). Having higher support values, of course,
is not always desirable: the support values of the correct and incorrect placements
both increase with more genes. Thus, using more genes narrows the gap between
the distribution of correct and incorrect results. For example, the proportion
of correct placements with ≤ 80% bootstrap support goes from 18% with 10
genes to 7% with 50 genes; on the other hand, with only 10 genes, almost half of
the incorrect placements have low (<50%) support, whereas with 50 genes, only
about a quarter of the incorrect edges have low support. Moreover, as we increase
the number of genes, all the methods tend to have longer tails of incorrect
placements with high support (≥80%). Around 25% of the incorrect placements
have more than 90% support with 10 genes, compared to around 40% of the
incorrect placements with 50 genes. The ROC curves show a reduced ability to
distinguish correct and incorrect branches with more genes, with AUROC value
decreasing (e.g., the AUROC for slow bootstrapping goes from 0.826 with 10
genes to 0.687 with 50 genes). Notably, unlike the RNAsim dataset, no method
achieves 0 FPR at any threshold regardless of the number of genes used. The
lowest possible FPR is close to 25% with 50 genes and 9% with 10 genes.

Thus, overall, results indicate that increasing the number of genes causes all
the methods to over-estimate the branch supports, even when the placements are
incorrect. Consequently, the difference between methods shrinks as more genes
are concatenated, a pattern most visible in the ROC plots.

Less accurate support with increased numbers of genes does not mean less
accurate placements. The accuracy of the highest support placement is higher
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Fig. 4. Results on the WoL multi-gene dataset. We vary the number of genes
from 10 to 50. We show the results of four different analyses as in Fig. 1. (i) Relationship
between support calculations and frequency of correct placements. Each figure shows
the aggregated results on 1000 queries. (ii) Empirical cumulative distribution function
(ECDF) plot of the support values, showing the percentage of the correct/incorrect
placements (shown in the y-axis) at or below specified placement support levels (in the
x-axis). (iii) ROC curves, built using a range of 0–100 of support thresholds. Selected
thresholds are shown on the graph. (iv) We show how often the correct placement is
among the top x placements (in terms of support values) for different values of x.

for 50 genes than 10 genes. While the correct branch is among the top 4 place-
ments for around 80% of queries 10 with genes, when we go to 50 genes, the
correct branch is among the top 2 placements for around 83% of queries for all
methods. Thus, placements are more accurate with more genes even if the ability
to distinguish correct and incorrect placement diminishes.
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(A) (B)

Fig. 5. Evaluation of the support values obtained using one gene at a time
from the best 50 genes in the WoL dataset. (A) Individual ROC curves for all 50
genes, along with the ROC curve of the concatenation of 50 genes. (B) Quartet distance
of the gene trees to the species tree versus AUROC. We color the data points with a
color gradient that varies continuously from light blue to dark blue with increasing
gene lengths. (Color figure online)

Individual Genes. We also assess the impact of each of the 50 genes separately
(Fig. 5) and observe that various genes are substantially different in their abil-
ity to distinguish correct and incorrect placements. The AUROC ranges from
values as high as 0.87 for the gene that is most similar to the species tree to
0.77 for the second worst gene. An outlier gene has an AUROC of only 0.66.
There is a clear decline in AUROC as the quartet distance between the species
tree and the gene trees increases (Fig. 5B). Moreover, there is a slight tendency
for decreased AUROC as the length of alignments increases (most of the long
sequences resulted in AUROC values < 0.82). Unlike conditions with multiple
genes concatenated, FPR values very close to 0 can be obtained with most genes
(Fig. 5A). For any given FPR threshold, we also see recall values that can vary
by up to 25%. For example, for 5% FPR, the best gene obtains a recall of 0.59,
and the second worst gene has a recall of only 0.24.

4.4 Runtimes

The running time of the slow bootstrapping method is about 200 times slower
than the placement without support for 100 replicates. The fast implementation
reduces the run time dramatically: a 33X speedup for the RNASim dataset and
a 11–15X speedup for WoL (depending on the number of genes). Thus, fast
bootstrapping with 100 replicates is 10–20 times slower than no bootstrapping.
Since parametric methods were not accurate, we have not tried to optimize them,
leaving them slower than non-parametric methods.
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5 Discussions

We introduced parametric and non-parametric methods of estimating statistical
support for phylogenetic placement using the distance-based method APPLES.
The results clearly suggested that our suggested parametric method is inferior to
non-parametric bootstrapping. To make bootstrapping more practical, we intro-
duced a linear algebraic implementation that had almost the same accuracy but
reduced the running times by orders of magnitude. Fast bootstrapping support
values were highly accurate on the single-gene full-length dataset and found
the correct placement among the top six or seven candidates with full-length
sequences. With fragmentary data, bootstrapping within APPLES-2 remained
effective though pplacer was clearly more accurate. On the more challenging
biological multi-gene dataset, bootstrap support could still effectively distin-
guish correct and incorrect branches. Thus, we can reliably estimate support for
distance-based placements, addressing one of its main shortcomings compared
to slower ML methods.

We only evaluated the method under challenging conditions where the model
assumptions of the APPLES-2 were violated. The RNASim dataset is generated
under a complex model of sequence evolution [19] and includes many processes
not captured by our JC model (e.g., rate variation across sites, selection, and
varying substitution rates). Model violations in the multi-gene WoL are even
greater. The reference tree used on the WoL dataset, taken as ground truth, is
inferred using ASTRAL from a collection of 381 incongruent gene trees inferred
under an AA model paired with rate heterogeneity [55]. Instead, we simply con-
catenate genes and use a JC model with no rate heterogeneity, thereby ignoring
not just the complexities of the sequence evolution model but also gene discor-
dance. Recapturing the ASTRAL from 381 gene trees inferred under complex
models using concatenation is a difficult task. Nevertheless, while far from per-
fect, our support values still were informative in detecting incorrect branches
(AUROC varied between 69% to 83% with 50 to 10 genes). We chose datasets
that violate our model because we believe biological data always do. Neverthe-
less, our accuracy levels should be interpreted with this point kept in mind.

An interesting pattern was that as the number of concatenated genes
increases, so does the support, and not always for better. While more genes
increased the accuracy of the placements, they also left us with more positively
misleading results (i.e., incorrect placements with high support). Such a result
is not unexpected or new. Concatenation is known to result in high support for
incorrect branches in the presence of high levels of discordance [27]. Methods
such as bootstrapping are meant to find the variance of statistically consistent
estimators on limited data; when the method is used in conditions that violate
their assumption, they can be inconsistent or even misleading. In such conditions,
increasing the amount of data (e.g., the number of genes) reduces the variance
but does not eliminate the bias. Therefore, one gets higher support for correct
and incorrect answers alike. Since concatenation is not consistent with highly
discordant gene trees [42], when the concatenation is misled, its support values
can be misleading, a challenge constantly faced by phylogenomic analyses [e.g.,
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23,43]. We note that other than gene discordance, several factors may lead to the
systematic biases in our analyses, including uneven and non-random patterns of
missing data, rate heterogeneity across genes, heterotachy, and the use of the
simple JC model. These persistent biases can explain the reduced accuracy of
support values as the number of genes increases (and variance reduces). Note
also that our 10 genes are, by construction, less discordant than 50 genes, and
thus, increasing the number of genes may even increase bias.

The fact that Poisson and Binomial parametric sampling methods had low
accuracy was also interesting. Two reasons can be considered. First, these meth-
ods assumed the JC model generated the data, but our data are generated under
more complex models. However, the relatively high accuracy of APPLES-2 place-
ments suggests that the method is not terribly sensitive to model misspecifica-
tions. A far more likely problem is that parametric models are used here to esti-
mate a different distance for each pair independently from others. A parametric
draw of a distance below (or above) the observed value implies an evolutionary
scenario with fewer (or more) mutations along the path between the two leaves
compared to what is observed. However, if there are more/fewer mutations on
any branch on the path, it should affect all pairs that connect through that
branch. This concept is missing from the parametric method and cannot be eas-
ily incorporated. Essentially, we need ways that add noise to all elements of the
distance vector for each query jointly, using a model that considers dependence.
Such a method would require a covariance matrix, which is not known since the
position of the query is not known. However, future work can seek to approx-
imate such a matrix given the optimal placement of the query. We leave the
exploration of such an approach for future work.

In this analysis, we focused on the accuracy of support values, not their
downstream use. Once calculated, support can be used as weights in downstream
applications such as calculating distance between samples using UniFrac, and
taxon identification of metagenomic samples (e.g., TIPP [38] uses support to
improve taxon id). Such analyses would be most interesting if performed for
short sequences where uncertainty is high.
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Abstract. A phylogenetic network is a simplex network if the child of
every reticulation node is a network leaf and each tree node has at most
one reticulation node as its child. Simplex networks are a superclass of
phylogenetic trees and a subclass of tree-child networks. Generalizing
the Sackin index to phylogenetic networks, we prove that the expected
Sackin index of a random simplex network is asymptotically Θ(n7/4) in
the uniform model.

Keywords: Phylogenetic trees · Tree-child networks · Simplex
networks · Sackin index

1 Introduction

Phylogenetic networks have been frequently used for modeling evolutionary
history of genomes and genetic flow in population genetics and comparative
genomics. Since network models are much more complex than phylgoenetic trees,
different classes of phylgoenetic networks have been introduced to investigate
different issues of reconstruction of phylogenetic networks [5,8,15,16]. For each
special class of phylogenetic networks, algorithmic problems for determining the
relationship between phylogenetic trees and networks and for reconstruction of
phylogenetic networks from DNA sequences, gene trees and other data have been
extensively studied [12,14,17].

The combinatorial and stochastic properties of different classes of phyloge-
netic networks have received increasing attention in the study of phylogenetic
networks recently. Counting tree-child networks was first studied in [18]. A tight
asymptotic value of the number of tree-child networks is given in [10]. Although
algorithms are presented for enumerating tree-child networks [4,26], closed for-
mulas and even simple recurrence formulas for counting tree-child networks are
unknown [6,20]. Counting ranked tree-child networks is studied in [2]. In addi-
tion, asymptotic and exact counts of galled trees and galled networks are given
in [3] and [9,13], respectively.

The expected height of random binary trees has been known for decades [7].
Recently, the problem of computing the height of random phylogenetic networks
is raised in [9,18,24]. The Sackin index of a phylogenetic tree is defined to be
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the sum of the depths of its leaves [21,22]. It is one of the widely-used indices
for measuring the balance of phylogenetic trees and testing evolutionary models
[1,22,25]. In this paper, we first generalize the Sackin index to phylogenetic
networks, where there may be multiple directed paths from the root to each
leaf, for measuring the network balance. The Sackin index of a phylogenetic
network is defined to be the sum of the lengths of the longest paths from the
root to all the leaves. We then prove that the expected Sackin index of a random
simplex network on n taxa is Θ(n7/4) in the uniform model, which is significantly
larger than the Sackin index of phylogenetic trees on n taxa [23]. As we will see
later, simplex networks are the most natural generation of phylogenetic trees,
where the child of each reticulation node is a leaf and no two reticulation nodes
have a common parent.

The rest of this paper is divided into three parts. In Sect. 2, basic concepts
and notation of phylogenetic networks are introduced. In particular, we define
the depth of nodes and the Sackin index of phylogenetic networks. In Sect. 3, we
present the bound of the expected Sackin index of a random simplex network in
the uniform model that is mentioned above. In Sect. 4, we conclude the study
with several remarks and open questions.

2 Basic Concepts and Notation

2.1 Tree-Child Networks

For convenience, we consider “planted” phylogenetic networks over taxa (Fig. 1).
Such phylogenetic networks over a set X of n taxa are acyclic rooted graphs in
which (i) the root is of out-degree 1, (ii) there are n nodes of indegree 1 and
outdegree 0, called the leaves, that are labeled one-to-one by the taxa of X, and
(ii) all the other nodes are of degree 3.

Each degree-3 node is called a tree node if it is of out-degree 2 and indegree-1;
it is a reticulate node if it is of indegree 2 and out-degree 1. Note that binary
phylogenetic trees are simply phylogenetic networks with no reticulate nodes.
An edge (p, q) is a tree edge if q is either a tree node or a leaf; it is a reticulation
edge if q is a reticulation node.

Let N be a phylogenetic network. We use ρ to denote the root of N , E(N)
to denote the set of edges. We also use L(N), R(N) and T (N) to denote the set
of the leaves, reticulation and tree nodes, respectively.

Let u, v ∈ {ρ} ∪ L(N) ∪ R(N) ∪ T (N). If (u, v) ∈ E(N), u is said to be a
parent of v and, alternatively, v is a child of u. If there is a path from the network
root to v that passes u, u is said to be an ancestor of v and, alternatively, v is a
descendant of u.

Let e′ = (u, v) ∈ E(N) and e′′ = (s, t) ∈ E(N). The edge e′ is said to be
above e′′ if v is an ancestor of s, denoted by e′ ≺ e′′. The edges e′ and e′′ are
said to be parallel, denoted by e′‖e′′, if neither of e′ and e′′ is above the other.

A phylogenetic network is simplex if and only if the child of every reticulation
is a leaf and every tree node has at most one reticulation node as its child. The
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Fig. 1. A phylogenetic network with a single leaf (left), a simplex network on 4 taxa
and a tree-child network on 3 taxa that is not simplex (right), where reticulation nodes
are represented by filled circles.

middle network in Fig. 1 is simplex, where the child of the reticulations are Leaf
3 and 4.

A phylogenetic network is tree-child if every non-leaf node has a child that
is either a tree node or a leaf. In Fig. 1, the right phylogenetic network is a
tree-child network with 2 reticulation nodes. It is easy to see that a phylogenetic
network is tree-child if and only if for every node v, there exists a leaf � such
that v and � are connected by a path consisting of tree edges.

It is easy to see that phylogenetic trees are simplex networks, whereas simplex
networks are tree-child networks. Simplex networks are also called 1-component
tree-child networks [6]. In this paper, we will use the following facts frequently
without mention of them, whose proof can be found in [27].

Theorem 1. Let r(N), �(N) denote the number of the reticulation nodes and
leaves of a tree-child network N , respectively. Then,

(1) |T (N)| = �(N) + r(N) − 1.
(2) There are exactly 2�(N) + r(N) − 1 tree edges and 2r(N) reticulation edges

in N .

2.2 Node Depth, Network Height and Sackin Index

Let P be a phylogenetic tree and u ∈ T (P ) ∪ L(P ). The depth of u is defined to
be the number of edges in the unique path from the tree root ρ to u, which is
also equal to the number of ancestors of u. Obviously, the depth of the tree root
is 0. The height of P is defined to be the largest depth from ρ to a leaf of P .

In a phylogenetic network N , there are more than one path from the root ρ
to a descendant of a reticulation node. We generalize the concept of node depth
to phylogenetic networks as follows.

Let u be a node of N . The depth of a node u is defined to be the number of
edges in the longest path from the root ρ to u, written as dN (u). The ancestor
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number of a node u is defined to be the number of the ancestors of the node,
written as αN (u). For example, the depth and ancestor number of Leaf 4 are
five and six, respectively, in the right phylogenetic network in Fig. 2.

For a tree-child network N , we define the following parameters:

– The height of N is defined to be the largest depth of a leaf, denoted by h(N).
– The Sackin index of N is defined to be the sum of the depths of its leaves,

denoted by K(N).

Consider a family F of tree-child networks. The expected height of a network
of the family F in the uniform model is defined by:

H(F) =
1

|F|
∑

N∈F
h(N),

where |F| is the cardinality of the set F . The expected Sackin index of a random
network in F in the uniform model is defined by:

K(F) =
1

|F|
∑

N∈F
K(N).

The following results are well known for the class of phylogenetic trees.

Theorem 2. Under the uniform model,

(1) [7] The expected height of a random phylogenetic tree over n taxa is asymp-
totically 2

√
πn.

(2) [19] The expected Sackin index1 of a random phylogenetic tree on n taxa
is 22n−2n!(n−1)!

(2n−2)! , which is asymptotically
√

πn3/2.

3 The Expected Sackin Index of Random Simplex
Networks

In this section, we will use an enumeration procedure and a simple counting
formula for simplex networks that appear in [6] to obtain the asymptotic Sackin
index of a simplex network in the uniform model.

3.1 Enumerating Simplex Networks

We first briefly introduce a procedure for enumerating simplex networks appear-
ing in [6]. Let OCn denote the class of simplex networks on n taxa and
on = |OCn|.

Let N ∈ OCn. N may contain 0 to n − 1 reticulations. Recall that the child
of each reticulation is a leaf. All the tree nodes and leaves that are not below
1 The expected Sackin index of a phylogenetic tree on n is different from that reported

in literature by n. Here, we work on “planted” phylogenetic trees.
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Fig. 2. The Illustration of the procedure for enumerating simplex networks by attaching
the grandparents (p, q) of a new leaf (4) below a reticulation node (r) onto either a
tree edge (left) or a pair of tree edges (right) in the top tree component of a simplex
network.

any reticulations are connected to the root by tree edges, forming a connected
subtree, which we call the top tree component and denote by C(N) (see [12]).
For instance, the top tree component of the simplex network in the middle of
Fig. 1 consists of Leaf 1, Leaf 2 and their ancestors, including ρ.

Let [i, j] denote the integer set {i, i + 1, · · · , j}, where 0 < i ≤ j. For any
nonempty I ⊆ [1, n], OCI,n denotes the subset of simplex networks in which
there are n−|I| reticulations whose child are labeled uniquely with the elements
of [1, n] \ I. Clearly, when I = [1, n], OCI,n is just the set of phylogenetic trees
on [1, n].

For simplicity, we write OCk,j for OC[1,k],k+j for j > 1. The networks of
OCk,j+1 can be generated by attaching the two grandparents p and q of Leaf
k + j + 1 to each network N of OCk,j in the following two ways [6], where the
parent of k + j + 1 is denoted by r:

– (Type-I insertion) For each tree edge e = (u, v) of C(N), where u 	∈ R(N),
subdivide e into (u, p), (p, q) and (q, v), and add three new edges (p, r), (q, r)
and (r, k + j + 1), This expansion operation is shown on the left network in
Fig. 2, where k + j + 1 = 4.

– (Type-II insertion) For each pair of tree edges e′ = (u, v) and e′′ = (s, t) of
C(N), i.e. u 	∈ R(N) and s 	∈ R(N), subdivide e′ into (u, p) and (p, v) and e′′

into (s, q) and (q, t), and add three new edges (p, r), (q, r) and (r, k + j + 1).
This insertion operation is shown in the right network in Fig. 2.

Each N of OCk,j contains exactly 2(k + j) − 1 tree edges in its C(N). Addi-
tionally, all the networks generated using the above method are distinct [6], as
the subset of leaves below the lower end of each tree edge is unique in a tree-child
network. This implies that |OCk,j+1| = (2(k + j) − 1)(k + j)|OCk,j | and thus

|OCk,j | =
(2(k + j) − 2)!
2k+j−1(k − 1)!

. (1)
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Note that the simple formula for counting the phylogenetic trees with k leaves
is obtained by simply setting j to 0.

By symmetry, OCI,n = OCJ,n if |I| = |J |. Therefore, we obtain [6]:

on =
n∑

k=1

(
n

k

)
|OCk,n−k| =

(2n − 2)!
2n−1

n∑

k=0

(
n

k

)
1

(k − 1)!
(2)

3.2 The Total Depths of the Nodes in the Top Tree Component

Recall that α(u) denotes the number of ancestors of a node u. Let δC(N)(u)
denote the number of descendants of u that are in C(N). We also use ToT(N)
to denote the tree edges of C(N). We define:

AC(N) =
∑

v∈C(N)

αN (v) =
∑

u∈C(N)

δC(N)(u) (3)

and

AC(OCk,j) =
∑

N∈OCk,j

AC(N). (4)

Lemma 1. Assume N ∈ OCk,j and let n = k + j. For each e of ToT(N), we
use N(e) to denote the network obtained from N by applying the type-I insertion
onto e. Then,

∑

e∈ToT (N)

AC(N(e)) = (2n + 3)AC(N) + (2n − 1) (5)

Proof. Let e = (u, v) ∈ ToT(N). By the description of the Type-I insertion
operation, the set of nodes and edges of N(e) are respectively:

V(N(e)) = V(N) ∪ {p, q, r, n + 1}

and

E(N(e)) = E(N) ∪ {(u, p), (p, q), (q, v), (p, r), (q, r), (r, n + 1)} \ {(u, v)}

(see Fig. 2).
Let D(v) be the set of descendants of v in C(N). We have the following facts:

|αN(e)(x)| = 2 + |αN (x)|, ∀x ∈ D(v)
|αN(e)(y)| = |αN (y)|, ∀y 	∈ D(v) ∪ {v, p, q}
|αN(e)(p)| = |αN (v)|,

|αN(e)(q)| = |αN (v)| + 1,

|αN(e)(v)| = |αN (v)| + 2.
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By summing above equations, we obtain:

AC(N(e)) = AC(N) + 2δC(N)(v) + 2αN (v) + 3. (6)

Eq. (3) and (6) imply that
∑

e∈ToT(N)

AC(N(e))

= (2n − 1)AC(N) + 2
∑

(u,v)∈ToT(N)

δC(N)(v) + 2
∑

(u,v)∈ToT(N)

αN (v) + 3(2n − 1)

= (2n − 1)AC(N) + 2

⎛

⎝
∑

v∈C(N)

δC(N)(v) − δC(N)(ρ)

⎞

⎠ + 2AC(N) + 3(2n − 1)

= (2n + 3)AC(N) + (2n − 1),

where n = k + j and we use the fact that δC(N)(ρ) = 2n−1 for the network root
ρ.

Lemma 2. Let N ∈ OCk,j and N(e′, e′′) denote the network obtained from N
by applying type-II insertion to a pair of distinct edges e′, e′′ of C(N). Then,

∑

{e′,e′′}⊂ToT (N)

AC(N(e′, e′′)) = (2n2 + n − 2)AC(N) − (2n − 1), (7)

where n = k + j.

Proof. After attaching the reticulation node r onto the edges e′ = (u, v) and
e′′ = (s, t), the tree edge e′ is subdivided into e′

1 = (u, p) and e′′
1 = (p, v); the

edge e′′ is subdivided into e′
2 = (s, q) and e′′

2 = (q, t), where p, q are the parents
of r in N(e′, e′′). We consider two possible cases.

First, we consider the case that e′ ≺ e′′. In N(e′, e′′), for each descendant x
of u in C(N(e′, e′′)) such that x 	= p and x is not below s, α(x) increases by
1 because of the subdivision of e′. For each descendant y of s in C(N(e′, e′′))
such that y 	= q, α(y) increases by 2 because of the subdivision of e′ and e′′.
Additionally,

αN(e′,e′′)(p) = αN (v)

and because q is below v,

αN(e′,e′′)(q) = αN (t) + 1.

For any tree node or leaves that are not the descendants of u, α(x) remains the
same. Summing all together, we have that

AC(N(e′, e′′)) = AC(N) + δC(N)(v) + δC(N)(t) + αN (v) + αN (t) + 1 + 2, (8)

where 2 is the sum of the total increase of α(v) and α(t).
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Summing over all the comparable edge pairs, we have
∑

e′,e′′∈ToT(N):e′≺e′′
AC(N(e′, e′′))

= (AC(N) + 3)|{(e′, e′′) | e′ ≺ e′′}| +
∑

(u,v)∈ToT(N)

(δC(N)(v) + αN (v))δC(N)(v)

+
∑

(u,v)∈ToT(N)

(δC(N)(v) + αN (v))(αN (v) − 1)

= (AC(N) + 3)|{(e′, e′′) | e′ ≺ e′′}| +
∑

v∈C(N)\{ρ}
(δC(N)(v) + αN (v))2

−2AC(N) + (2n − 1), (9)

where we use the fact that
∑

v∈C(N)\{ρ} δN (v) = AC(N) − (2n − 1).
Second, we assume e′‖e′′. In N(e′, e′′), for each descendant x of u in

C(N(e′, e′′)), α(x) increases by 1 because of the subdivision of e′. For each
descendant y of p in C(N(e′, e′′)), α(y) increases by 1 because of the subdivision
of e′′. Additionally, αN(e′,e′′)(p) = αN (v) and αN(e′,e′′)(q) = αN (t). For any tree
node or leaves that are the descendants of neither u nor p, α(x) remains the
same. Hence,

AC(N(e′, e′′)) = AC(N) + δC(N)(v) + δC(N)(t) + αN (v) + αN (t) + 2, (10)

where 2 counts for the increase by 1 of both α(v) and α(t).
Summing Eq. (10) over parallel edge pairs, we obtain:

∑

e′,e′′∈ToT(N):e′‖e′′
AC(N(e′, e′′))

= (AC(N) + 2) |{(e′, e′′) : e′‖e′′}|
+

∑

(u,v)∈ToT(N)

oN ((u, v))(δC(N)(v) + αN (v)), (11)

where oN ((u, v)) is the number of the edges of C(N) that are parallel to (u, v).
Summing Eq. (9) and (11) and using the facts that n = k + j and

|{(e′, e′′) | e′ ≺ e′′}| = AC(N) − (2n − 1) and
∑

(u,v)∈ToT(N)

(δC(N)(v) + αN (v)) = 2AC(N) − δC(N)(ρ) = 2AC(N) − (2n − 1),

we obtain:
∑

{e′,e′′}⊂ToT (N)

AC(N(e′, e′′))

= (AC(N) + 2)
(

2n − 1
2

)
+ |{(e′, e′′) | e′ ≺ e′′}| − 2AC(N) + (2n − 1)

+(2n − 1)
∑

(u,v)∈ToT(N)

(δC(N)(v) + αN (v))

= AC(N)(2n2 + n − 2) − (2n − 1).



60 L. Zhang

Theorem 3. Let k ≥ 1 and j ≥ 0. For the subclass of simplex networks with j
reticulations whose children are k + 1, · · · , k + j on n = k + j taxa,

AC(OCk,j) =
(2n)!

2j(2k)!

(
2kk! − (2k − 1)!

2k−1(k − 1)!

)
. (12)

Proof. Summing Eq. (5) and (7), we obtain
∑

e∈ToT (N)

AC(N(e)) +
∑

{e′,e′′}⊂ToT (N)

AC(N(e′, e′′)) = (2n + 1)(n + 1)AC(N)

for each N ∈ OCk,j . Summing the above equation over all networks of OCk,j ,
we have

AC(OCk,j+1) = (2n + 1)(n + 1)
∑

N∈OCk,j

AC(N) = (2n + 1)(n + 1)AC(OCk,j)

or, equivalently, AC(OCk,j) = n(2n − 1)AC(OCk,j−1).
Since it is proved in [26] that

AC(OCk,0) = 2kk! − (2k − 1)!
2k−1(k − 1)!

,

we obtain Eq. (12) by induction.

3.3 The Expected Total C-Depth of Random Simplex Networks

Recall that OCk,j denotes the set of simplex networks on k+ j taxa in which the
children of the j reticulations are the leaves labeled with k + 1, k + 2, · · · , k + j,
respectively. Since the children of the k reticulations of a simplex network with
j reticulations on k + j taxa can be labelled with any j out of k + j taxa, the
expected total c-depth of simplex networks with j reticulations on k + j taxa is
defined as:

DC(k, j) =

(
k+j

k

) ∑
N∈OCk,j

AC(N)
(
k+j

k

)
|OCk,j |

=
AC(OCk,j)

|OCk,j |
(13)

in the uniform model. For each n ≥ 1, the expected total c-depth of simplex
networks on n taxa becomes:

DC(n) =

(
n∑

k=1

(
n

k

)
AC(OCk,n−k)

)
/

(
n∑

k=1

(
n

k

)
|OCk,n−k|

)
(14)

in the uniform model.

Proposition 1. For any k ≥ 1 and j ≥ 0, the average total c-depth DC(k, j)
has the following asymptotic value

DC(k, j) =
√

πn(2n − 1)√
k

(
1 − π−1/2k−1/2 + O(k−1)

)
, (15)

where n = k + j.
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Proof. Since
(
2k
k

)
= 22k√

πk
(1 − (8k)−1 + O(k−2)), by Eq. (1),

DC(k, j) =
(2n)!

2n−k(2k)!

(
2kk! − (2k − 1)!

2k−1(k − 1)!

)
/

(
(2n − 2)!

2n−1(k − 1)!

)

=
n(2n − 1)

k

(
22kk!k!
(2k)!

− 1
)

=
n(2n − 1)

k

( √
πk

1 − (8k)−1 + O(k−2)
− 1

)

=
√

πn(2n − 1)√
k

(
1 − 1√

πk
+

1
8k

+ O(k−2)
)

.

Thus, Eq. (15) is proved.

Proposition 2. For any n > 1, DC(n) has the following bounds.

(
√

2 − 1)(1 + O(n−1/4)) ≤ DC(n)√
πn3/4(2n − 1)

≤ 2(1 + O(n−1/4)). (16)

Proof. Here, we use the idea of Laplace method [11] to prove the bounds here.
Let Sk =

(
n
k

)
|OCk,n−k| =

(
n
k

) (2n−2)!
2n−1(k−1)! and k0 =

√
n + 1 − 1.

By considering the ratio Sk+1/Sk, we can show (in Appendix A):

– Sk ≤ Sk+1 for k ∈ [1, k0];
– Sk > Sk+1 if k0 < k < 2k0;
– Sk > 2Sk+1 if k ≥ 2k0.

First, we define

f1 =

⎛

⎝
∑

k≤k0

DC(k, n − k)Sk

⎞

⎠ /

⎛

⎝
∑

k≤k0

Sk

⎞

⎠ .

Since DC(k, n − k) is a decreasing function (which is proved in Appendix A),

f1 ≥ DC(�k0, n − �k0) =
√

πn3/4(2n − 1)(1 + O(n−1/4))

Furthermore, since Sk is increasing on [1, k0),

f1 ≤ 1
�k0

∑

k≤
k0�
DC(k, n − k)

=
√

πn(2n − 1)
�k0

∑

k≤
k0�

(
k−1/2 −

√
πk−1 + (1/8)k−3/2 + O(k−5/2

)

=
√

πn(2n − 1)
�k0

[
2(�k01/2 − 1) −

√
π ln�k0 + O(�k0−1/2)

]

= 2
√

πn3/4(2n − 1)(1 + O(n−1/4))
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Second, define

f ′ =

∑
k∈[k0,2k0]

DC(k, n − k)Sk∑
k∈[k0,2k0]

Sk
. (17)

Since the DC(k, n−k) is a decreasing function and Sk is decreasing on [k0, 2k0],

f ′ ≤ DC(�k0�, n − �k0) =
√

πn3/4(2n − 1)(1 + O(n−1/4))

and, by Eq. (15),

f ′ ≥ 1

k0

∑

k∈[k0,2k0]

DC(k, n − k)

=

√
πn(2n − 1)

k0

∑

k∈[k0,2k0]

(
k−1/2 − √

πk−1 + (1/8)k−3/2 + O(k−5/2
)

=

√
πn(2n − 1)

k0

[
2(

√
2 − 1)k

1/2
0 − √

π ln 2 + (1/4)(1 −
√

1/2)k
−1/2
0 + O(k−1

0 )
]

= 2(
√

2 − 1)
√

πn3/4(2n − 1)(1 + O(n−1/4))

Now, we consider

f2 =

∑
k>k0

DC(k, n − k)Sk∑
k>k0

Sk
.

For each k > 2k0, DC(k, n − k) ≤ DC(2k0, n − 2k0) ≤ f ′. This implies that
∑

k>2k0

DC(k, n − k)Sk ≤ f ′ ∑

k>2k0

Sk

and thus

f2 =

∑
k0≤k≤2k0

DC(k, n − k)Sk +
∑

k>2k0
DC(k, n − k)Sk∑

k>k0
Sk

=
f ′ ∑

k0≤k≤2k0
Sk +

∑
k>2k0

DC(k, n − k)Sk∑
k>k0

Sk

≤
f ′ ∑

k0≤k≤2k0
Sk + f ′ ∑

k>2k0
Sk∑

k>k0
Sk

= f ′

On the other hand, Sk ≥ 2Sk+1 for k ≥ 2k0 and thus
∑

k>2k0
Sk ≤ 2S�2k0

f2 ≥
∑

k∈[k0,2k0]
DC(k, n − k)Sk∑
k>k0

Sk
=

f ′ ∑
k∈[k0,2k0]

Sk∑
k∈[k0,2k0]

Sk +
∑

k>2k0
Sk

≥
f ′ ∑

k∈[k0,2k0]
Sk

2
∑

k∈[k0,2k0]
Sk

= f ′/2
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The bounds on f1 and f2 implies that the mean value f over the entire region
is between f1 and f2, Thus we have proved that

(
√

2 − 1)
√

πn3/4(2n − 1)(1 + O(n−1/4)) ≤ min(f ′/2, f1) ≤ DC(n),

and
DC(n) ≤ max(f1, f2) ≤ 2

√
πn3/4(2n − 1)(1 + O(n−1/4)).

3.4 Bounds on the Sackin Index for a Random Simplex Network

Recall that K(N) =
∑

�∈L(N) dN (�) for a network N .

Proposition 3. For any N ∈ OCk,j, K(N) ≤ AC(N) + 1 ≤ 2K(N), where
k ≥ 1, j ≥ 0.

Proof. Let N ∈ OCk,j . If j = 0, N does not contain any reticulation node
and thus every node of N is in the top tree component of N . By definition,
K(N) ≤ AC(N). Since N is a phylogenetic tree, N contains the same number of
internal nodes (including the root ρ) as the number of leaves. By induction, we
can prove that there exists a 1-to-1 mapping φ : T (N) ∪ {ρ} → L(N) such that
u is an ancestor of φ(u) for every u (see Appendix B). Noting that dN (ρ) = 0
and dN (φ(ρ)) ≥ 1, we have:

AC(N) + 1 ≤
∑

�∈L(N)

dN (�) +
∑

u∈T (N)

dN (φ(u)) = 2K(N).

We now generalize the above proof for phylogenetic trees to the general case
where j > 0 as follows.

We assume that r1, r2, · · · , rj are the j reticulation nodes and their parents
are p′

j and p′′
j . Since p′

i and p′′
i are both found in the top tree component of

N and they cannot be the network root ρ, dN (p′
i) ≥ 1 and dN (p′′

i ) ≥ 1 for
each i ∈ [1, j]. Since Leaf (k + i) is the child of ri, by definition, dN (k + i) =
max(dN (p′

i), dN (p′′
i ))+2. Now we prove that K(N) ≤ AC(N)+1 by considering

two cases.
First, if dN (p′

i) ≥ 2 and dN (p′′
i ) ≥ 2 for every i ∈ [1, j], then dN (k + i) =

max(dN (p′
i), dN (p′′

i )) + 2 ≤ dN (p′
i) + dN (p′′

i ) for every i. Since N is tree-child,
the parents p′

i and p′′
i are distinct nodes in the top tree component for different

i, K(N) ≤
∑

1≤i≤k dN (i) +
∑

1≤i≤j(dN (p′
i) + dN (p′′

i )) ≤ AC(N).
Second, if dN (p′

i) = min(dN (p′
i), dN (p′′

i )) = 1 for some i, then p′
i is the

unique child of the root ρ. This implies that there is exactly one index i0 for
which min(dN (p′

i0
), dN (p′′

i0
)) = 1 and max(dN (p′

i0
), dN (p′′

i0
)) ≥ 2. In this case,

dN (k + i0) ≤ dN (p′
i0

) + dN (p′′
i0

) + 1 and dN (k + i) = max(dN (p′
i), dN (p′′

i )) + 2 ≤
dN (p′

i) + dN (p′′
i ) for every i 	= i0. Therefore, K(N) ≤ AC(N) + 1.

The tree-component C(N) contains k + 2j internal tree nodes including ρ.
We set

T (C(N)) \ {p′
i, p

′′
i : 1 ≤ i ≤ j} = {ρ, u1, · · · , uk−1}.
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Again, there is an 1-to-1 mapping φ from {ρ, u1, · · · , uk−1} to L(C(N)) =
{1, 2, · · · , k} such that the leaf φ(ui) is a descendant of ui. Therefore, since
dN (ρ) = 0 and dN (φ(ρ)) ≥ 1,

dN (ρ) + 1 ≤ dN (φ(ρ));
dN (p′

i) + dN (p′′
i ) ≤ 2max(dN (p′

i), dN (p′′
i )) < 2dN (k + i), 1 ≤ i ≤ j;

dN (ui) + dN (φ(ui)) ≤ 2dN (φ(ui)), 1 ≤ i ≤ k − 1.

Therefore, AC(N) + 1 ≤ 2K(N).

Theorem 4. The expected Sackin index K(OCn) of a simplex network on n
taxa is Θ(n7/4).

Proof. We define
K(OCk,j) =

∑

N∈OCk,j

K(N),

where k ≥ 1 and j ≥ 0. By Proposition 3,

K(OCk,j) ≤ AN (OCk,j) + |OCk,j | ≤ 2K(OCk,j).

By Eq. (16), we have:

K(OCn) =
1∑n

k=1

(
n
k

)
|OCk,n−k|

(
n∑

k=1

(
n

k

)
K (OCk,n−k)

)

≤ 1∑n
k=1

(
n
k

)
|OCk,n−k|

(
n∑

k=1

(
n

k

)
AC (OCk,n−k)

)
+ 1

= DC(n) + 1
= 4

√
πn7/4 + 1.

Similarly, using Eq. (16), we have that

2K(OCn) ≥ DC(n) = 2(
√

2 − 1)
√

πn7/4 + O(1),

equivalently,
K(OCn) ≥ (

√
2 − 1)

√
πn7/4 + O(1).

This concludes the proof.

4 Conclusion

What facts about phylogenetic trees remain valid for phylogenetic networks is
important in the study of phylogenetic networks. In this paper, a version of the
Sackin index is proposed to measure the balance of phylogenetic networks. Here,
the asymptotic estimate (up to constant ratio) for the expected Sackin index of
a simplex network is given in the uniform model. This is just the first step to
develop statistic for imbalance analysis for simplex networks.
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This study raises a few research problems. First, the asymptotic value of the
expected Sackin index of tree-child networks over n taxa is still unknown. It is
also interesting to investigate the Sackin index for galled trees, galled networks
and other classes of networks (see [27] for example).

Second, it is even more challenging to estimate the expected height of sim-
plex networks and tree-child networks. Recently, Stufler introduces a branching
process method to study the asymptotic global and local shape properties of
level-k phylogenetic networks [24]. It is interesting to see whether or not Stu-
fler’s method can be used to answer this question.

Third, the phylogenetic trees with the minimum and maximum Sackin index
have been characterized [22]. Characterizing the simplex (resp. tree-child) net-
works with the minimum (resp. maximum) Sackin index is also interesting.
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Appendix A

Proposition A.1. Let Sk =
(
n
k

) (2n−2)!
2n−1(k−1)! and k0 =

√
n + 1 − 1. Then,

– Sk ≤ Sk+1 for k ∈ [1, k0];
– Sk > Sk+1 if k0 < k < 2k0;
– Sk > 2Sk+1 if k ∈ [2k0,∞).

Proof. Note that

Sk+1 =
n − k

k(k + 1)
Sk.

If k ≤ k0, (k+1)2 ≤ (
√

n + 1−1+1)2 = n+1 and, equivalently, k(1+k) ≤ n−k
and thus Sk+1 = n−k

k(k+1)Sk ≥ Sk. Similarly, Sk+1 < Sk if k > k0.
If k ≥ 2k0, (k + 2)2 ≥ 4(n + 1) and k2 + k ≥ 4(n − k) + k ≥ 4(n − k) and

therefore, Sk+1 ≤ 1
4Sk < 1

2Sk.

Proposition A.2. DC(k, n − k) is a decreasing function of k on [1, n − 1].

Proof. By Eq. (1) and Eq. (12),

DC(k, n − k) =
n(2n − 1)

k

(
4kk!k!
(2k)!

− 1
)

.
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Hence,

n(2n − 1)[DC(k, n − k) − DC(k + 1, n − k − 1)]

=
22k(k − 1)!k!

(2k)!
− 22k4k!(k + 1)!

(2k + 2)!
− 1

k(k + 1)

=
22kk!(k − 1)!

(2k + 1)!
− 1

k(k + 1)

=
1

k(k + 1)

[
22kk!(k + 1)!

(2k + 1)!
− 1

]

=
1

k(k + 1)

[
4 × 6 × · · · 2k × (2k + 2)

3 × 5 × · · · (2k + 1)
− 1

]

> 0.

Appendix B

Proposition B.1. Let P be a phylogenetic tree on n taxa. there exists a 1-to-1
mapping φ : T (P ) ∪ {ρ} → L(P ) such that u is an ancestor of φ(u) for each
u ∈ T (P ) ∪ {ρ}.

Proof. We prove the fact by mathematical induction on n. When n = 1, we
simply map the root ρ to the only leaf.

Assume the fact is true for n ≤ k, where k ≥ 1. For a phylogenetic tree P
with k + 1 leaves, we let the child of the root ρ be u and the two grandchildren
be v and w. We consider the subtree P ′ induced by u, v and all the descendants
of v and the subtree P ′′ induced by u, w and all the descendants of w.

Obviously, both T ′ and T ′′ have less than k leaves. By induction, there is a 1-
to-1 mapping φ′ : T (P ′) ∪ {u} → L(P ′) satisfying the constraints on leaves, and
there is a 1-to-1 mapping φ′′ : T (P ′′) ∪ {u} → L(P ′′) satisfying the constraints
on leaves. Let φ′(u) = �. Then, the function that maps ρ to �, u to φ′′(u) and all
the other tree nodes x to φ′(x) or φ′′(x) depending whether it is in P ′ or P ′′. It
is easy to verify that φ is a desired mapping.
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Abstract. Phylogenetic trees define a metric space over their vertices,
an observation that underlines distance-based phylogenetic inference. Sev-
eral authors, including Layer and Rhodes (2017), have noted that we
can embed leaves of a phylogenetic tree into high-dimensional Euclidean
spaces in such a way that it minimizes the distortion of the tree dis-
tances. Jiang et al. (2021) use a deep learning approach to build a mapping
from the space of sequences to the Euclidean space such that the mapped
sequences accurately preserve the leaf distances on a given tree. Their
tool, DEPP, uses this map to place a new query sequence onto the tree
by first embedding it, an idea that was particularly promising for updat-
ing a species tree given data from a single gene despite the potential dis-
cordance of the gene tree and the species tree. In focusing on Euclidean
spaces, these recent papers have ignored the strong theory that suggests
hyperbolic spaces are more appropriate for embedding vertices of a tree. In
this paper, we show that by moving to hyperbolic spaces and addressing
challenges related to non-linearity and precision, we can reduce the dis-
tortion of distances for any given number of dimensions. The distortion of
distances obtained using hyperbolic embeddings is lower than Euclidean
embeddings with the same number of dimensions, both in training (back-
bone) and testing (query). The low-distortion distances of embeddings
result in better topological accuracy in updating species trees using a sin-
gle gene compared to its Euclidean counterpart. It also improves accuracy
in placing queries for some datasets but not all.

Keywords: Phylogenetic placement · Deep learning · Hyperbolic
spaces · Tree embedding · Distance-based phylogenetics

1 Introduction

Branch lengths of a phylogenetic tree define distances between species or genes
represented at their leaves. Thus, a discrete metric space is defined by the tree
topology and branch lengths. Given this observation, we can now ask whether
such a discrete metric space can be embedded in a continuous low-dimensional
space. The goal is not to embed each tree as a vector, as has been the focus
of a rich literature [5]. Rather, the goal is to provide a vector representation
for each tree node so that certain properties of the original discrete space are
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preserved as much as possible. If such embedding is obtained, continuous opti-
mization methods, widely used in machine learning and elsewhere, can be utilized
to analyze phylogenetic trees. For example, a method called Phylo-MCOA uses
metric embedding in the Euclidean space paired with an approach called mul-
tiple co-inertia analysis to find outlier species among a set of gene trees [30].
Such Euclidean embeddings have the following theoretical underpinning: the N
vertices of any tree T can be embedded in R

N−1 such that Euclidean distances
exactly match with the square root of the tree distances [14].

More recently, metric embedding has been used by Jiang et al. [12] to adopt
deep learning to the problem of adding novel query sequences onto an existing
backbone tree (i.e., phylogenetic placement). They posed the placement task as
a metric learning problem: a deep neural network model can be trained to map
observed sequences to the backbone trees. The neural network learns a map from
the sequence space into the Euclidean space while aiming to preserve the met-
ric information in the backbone tree. In their proposed method, called DEPP,
they train a neural network that maps gene sequences to a high-dimensional
Euclidean space while minimizing the difference between Euclidean distances
and square roots of the tree distances. The learned map can then be used to
embed queries and compute their distances to the backbones species. They then
use distance-based phylogenetic placement [3,4] to find the optimal placement
of each query on the backbone tree using the computed distances from the query
to the backbone species. Embedding tree leaves in a continuous space simplifies
the training process because it enables us to define differentiable loss functions
that can be minimized using standard back-propagation and stochastic gradi-
ent descent operating on the neural network model. Essentially, DEPP relaxes
the combinatorial nature of the placement problem by operating in a continu-
ous space. However, a question naturally arises: are fixed-dimensional Euclidean
spaces the best choice for embedding all trees?

The result that a tree can be perfectly embedded in the Euclidean spaces
comes with a major limitation: the number of dimensions has to increase linearly
with the number of leaves. Perhaps one can hope that with fewer dimensions,
imperfect but low-distortion embeddings can still be obtained. Linial et al. [16]
have considered the problem of low-distortion Euclidean embedding within a con-
trolled distortion rate and proved that for an isometric embedding of a tree with
N vertices, the Euclidean embedding dimension must be at least d = O(log(N)).
Thus, the dimensions need to grow with the size of the tree to obtain low dis-
tortion. Euclidean geometry, however, is not the only option.

Hyperbolic spaces provide better representations than Euclidean spaces for
tree-like data structures. Sarkar [25] showed that weighted trees can be embed-
ded with arbitrarily low distortion into a two-dimensional hyperbolic space. Intu-
itively, the reason is that the volume of a d-dimensional hyperbolic ball of fixed
radius grows exponentially with its radius as opposed to Euclidean balls that
grow polynomially in volume. The exponential growth enables hyperbolic spaces
to embed any weighted tree while almost preserving their metric [10]. Thus,
theory suggests hyperbolic spaces are a better fit for working with trees [24].
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These advantages have motivated wide-spread adoption of hyperbolic spaces by
the machine learning community for problems as varied as classification, manifold
learning, and high-dimensional distribution approximation [10,28,29]. In particu-
lar, hyperbolic neural networks (HNNs) have been developed to combine the repre-
sentational power of hyperbolic geometry with the feature extraction capabilities
of neural networks [10,26]. More recent advances include hyperbolic graph neural
networks [2,6,17], and mixed-curvature variational autoencoders [27].

Despite the theoretical advantages, optimization and embedding in hyper-
bolic spaces pose their own practical challenges, including the impact of bit
precision on embeddings [24]. For embedding trees in hyperbolic spaces, Sala et
al. [24] showed that the representation tradeoff depends on the maximum degree
and the longest path length in the tree. For a fixed precision, the required num-
ber of bits scales linearly with the length of the longest path, while it also scales
logarithmically with the maximum degree of the tree. In an ideal case of infinite
bit precision, two-dimensional hyperbolic embeddings should suffice; but in prac-
tice, we may need larger embedding dimensions or high precision for representing
vertices of trees. In fact, the main challenge in designing HNNs is performing
arithmetics in non-Euclidean geometry, a problem approached in various ways
in the literature. For instance, Chen et al. [7] use the Lorentz model in building
computationally stable HNNs.

Recently, hyperbolic embedding has also been adopted for phylogenetics.
Matsumoto et al. [19] propose an altered version of hyperbolic distance func-
tion with the purpose of gaining distance additivity for perpendicular incident
(embedded) branches. They evaluated the performance of their proposed dis-
tance function for phylogenetic tree distance embedding, embedding internal
nodes from partial distance measurements, and integrating the embeddings of
multiple phylogenetic trees. Their experiments use small trees (≈100 leaves).
Hence it is not clear whether the proposed distance function outperforms the
classic hyperbolic distance function in representing additive distances. Corso et
al. [8] present Neural Distance Embeddings, a framework to embed sequences in
geometric spaces—including hyperbolic spaces—to tackle different tasks in bioin-
formatics, including edit distance approximation, hierarchical clustering, and
multiple sequence alignment. They provide extensive numerical experiments on
large 16S rRNA gene data and show that embedding methods (data-dependent
approaches) outperform classical data-independent approaches with respect to
accuracy and inference speed. They also emphasize the importance of using an
appropriate geometry for the embedded sequences and how it alone can drasti-
cally improve the accuracy of the relevant algorithms.

We consider the problem of discordant phylogenetic placement where gene
sequences have evolved on a gene tree but are placed on the backbone species
tree. Building on the work of Jiang et al. [12], we introduce the Hyperbolic
Deep-learning Enabled Phylogenetic Placement (H-DEPP) framework to find
low-dimensional hyperbolic embeddings for gene sequences while preserving their
phylogenetic distances determined by the backbone tree. The choice of hyper-
bolic embedding space is motivated by the fact that trees can be accurately rep-
resented in low-dimensional hyperbolic spaces, as opposed to high-dimensional
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Euclidean spaces utilized in DEPP. This reduction in the dimension of the
embedding space leads to i) a simplified neural network with fewer parameters
to train and ii) improved performance in estimating the phylogenetic distances
for both observed and novel organisms—i.e., small training and testing errors.

2 Background on Hyperbolic Spaces

Hyperbolic space is a connected, negatively curved metric space. There are sev-
eral isometric models of hyperbolic space, including Poincaré ball and ’Loid
model. In the d-dimensional Poincaré space of curvature C < 0 (denoted by I

d
C)

the points reside in Euclidean ball of radius 1√−C
, i.e.,

I
d
C = {x ∈ R

d :
√−C‖x‖2 ≤ 1}, (1)

where ‖x‖2 denotes �2 norm. The distance between two points x, y ∈ I
d
C is

d(x, y) =
1√−C

acosh
(
1 − 2

C‖x − y‖22
(1 + C‖x‖2)(1 + C‖y‖2)

)
. (2)

The points in the ’Loid model of d-dimenaional hyperbolic spaces (with cur-
vature C < 0) reside in L

d
C = {x ∈ R

d+1 : x�Hx = C−1, x1 > 0}, where
H = diag(−1, 1, 1, . . . , 1) ∈ R

(d+1)×(d+1) and x1 is the first element of vector x.
The distance between x, y ∈ L

d
C is

d(x, y) =
1√−C

acosh(Cx�Hy). (3)

We can use the exponential map to have a bijection between a tangent space
(which is a vector space) and the hyperbolic space, namely the ’Loid model. Let
e1 be the first standard basis for R

d+1 and p◦
def.= 1√−C

e1. Then in the ’Loid
model, the exponential map is defined for v ∈ R

d as follows

expp◦(
[
0
v

]
) = cosh(

√−C‖v‖2)p◦ +
sinh(

√−C‖v‖2)
‖v‖2

[
0
v

]
. (4)

The exponential map (4) provides a way of defining a hyperbolic embedding
function from a Euclidean embedding function. If φEuc. maps sequences to a d-
dimensional Euclidean space, then expp◦ ◦ φEuc. maps them into the hyperbolic
space L

d
C . Note that the ’Loid and Poincaré models are equivalent to each other

in their embedding capabilities. However, the ’Loid model provides a more stable
distance function suitable to perform optimization tasks.

3 Problem Definition

Suppose we are given a backbone species tree and a set of single-gene sequence
data, where each sequence corresponds to a leaf on the backbone tree. Sequences
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have evolved on the gene tree, which generally is not congruent with the backbone
tree. Then, we ask: can we find the correct placement for a new query species
using its single gene sequence on the backbone tree? The reference sequences
and the query sequence must all be from the same marker gene and need to be
properly aligned (though missing data are allowed).

More formally: let T be the weighted backbone tree with leaf set V =
{v1, . . . , vN} and dT be the path length distance between vertex pairs of T .
Let s1, . . . , sN be a set of aligned gene sequences (of length L) corresponding to
leaves of the backbone tree. We aim to learn an embedding function φ from the
space of gene sequences to a metric space (M,d) such that for all i, j ∈ [N ], the
difference between d (φ(si), φ(sj)) and dT (vi, vj) is minimized. We call the prob-
lem discordant phylogenetic placement when T is the species tree as opposed to
the gene tree corresponding to sequences s1, . . . , sN . The goal is that for a new
query sequence s, the φ(s) would have distances to all φ(si) embeddings that
match the correct placement of s on the (species) tree T .

In practice, given N training sequences, we estimate the function φ̂N as
follows

φ̂N = arg min
φ∈Φ

∑

i,j∈[N ]

(d(φ(si), φ(sj))
dT (vi, vj)

− 1
)2

, (5)

where Φ is the set of functions from sequences to the d-dimensional hyperbolic
space, Hd, represented by neural networks. The cost function is similar to the
weighted least square method in [9], with the only difference being that weights
are squared tree distances as opposed to sequence distances. We use the tree dis-
tance as the weights because it leads to bounded derivatives in back-propagation.
Note that the cost function (5) aims to minimize the deviation of distance ratios
from the unit scale and hence it incurs multiplicative errors.

After the training, we use the learned map φ̂N to estimate the dis-
tance between the query species and the species in the backbone tree; i.e.,
d(φ̂N (s), φ̂N (sn)) for n ∈ [N ], where s is the query gene sequence. We then
place the query on the backbone tree using the distance-based placement method
APPLES-II [3].

4 H-DEPP

The structure of the CNN model used in H-DEPP is identical to DEPP [12].
It encodes each sequence letter as a four-dimensional binary vector and feeds
the encodings into three linear convolutional layers of kernel size 1, 5, and 5,
respectively. Then, it uses feedforward from the second layer to the third to
make the third layer a residual block. The last convolutional layer is followed
by a fully-connected layer with d-dimensional outputs. To make the network
operate in hyperbolic space, we use two approaches:

Exponential Maps. In this approach, we avoid adding any layers to the network.
Instead, we can simply use a Euclidean neural network followed by the expo-
nential map of the ’Loid (or Poincaré) model. Then, the cost function becomes:
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cost(φEuc., s) =
∑

i,j∈[N ]

|sd(exp ◦ φEuc.(si), exp ◦ φEuc.(sj))
dT (vi, vj)

− 1|2,

where s is a scale factor (we elaborate later) and exp(·) is the exponential map
for the appropriate model with curvature −1.

HNN++. We add to DEPP a final hyperbolic layer designed by Shimizu et
al. [26]. This essentially is an all-by-all layer that performs matrix multiplication
in the hyperbolic space. Its input is the exponential map of outputs from a
Euclidean layer, and its output consists of points in hyperbolic space. These
points are used in the cost function (5). We update the parameters according to
the hyperbolic back-propagation as implemented by Shimizu et al. [26].

Once the method is made hyperbolic, two challenges need to be addressed.

Curvature. We learn the curvature of the hyperbolic space. For any x1, x2 ∈ I
d
C ,

let x′
1 =

√−Cx1 and x′
2 =

√−Cx2. We can easily verify that x′
1 and x′

2 ∈ I
d
−1

and d(x1, x2) = 1√−C
d(x′

1, x
′
2). With this transformation, we keep the domain

and distance functions independent of curvature (they are defined for the default
curvature of −1) and add a scale parameter s := 1√−C

to the distance function:

d(x, y) = s . d(x′
1, x

′
2) = s . acosh

(
1 + 2

‖x′
1 − x′

2‖22
(1 − ‖x′

1‖22)(1 − ‖x′
2‖22)

)
, (6)

where x′
1, x

′
2 ∈ {x : Rd : ‖x‖2 ≤ 1}. To jointly optimize s and the neural network,

we alternate between optimizing them, using the alternative updates:

sk+1 := (1 − αk)sk + αks∗
φk

,

where φk, sk, and αk are the network, scale, and learning rate at iteration k.
Note that since models of hyperbolic space are isometric to each other, the same
argument can be made for the ’Loid model as well.

Heterogeneous Distances. The maximum and minimum measured distances vary
six orders of magnitude in scale. Hence, any gradient-based training method
has to approximate large and small sequences equally accurately; see (5). We
exponentially decrease the learning rate to capture and correct for a large range
of errors in a fixed number of epochs; i.e., the learning rate at iteration k is
αk = α0p

−	 k
K 
 where p is the decay factor (e.g., p = 0.95), K = 10 is the number

of epoch with a fixed learning rate, and α0 is the initial learning rate. Moreover,
to deal with potential issues with limited precision operations, we normalize the
tree distances to be at most 1, and the normalizing factor is absorbed in the
scale factor in (6).
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5 Experimental Setup

5.1 Datasets

Simulated Data. We first evaluate our method on a published simulated
dataset of 201-taxon trees [20]. In this dataset, the species tree and gene trees
(simulated by Simphy [18]) are discordant due to incomplete lineage sorting
(ILS). We analyze example replicates from two of the six original model con-
ditions corresponding to high and low ILS levels with rate 10−6, each with 50
replicates. From each replicate of both datasets, we chose the first gene that
doesn’t have identical sequences. The selected true gene trees have on average
a normalized [23] (RF) distance of 0.69 and 0.21 to their corresponding species
tree, respectively for high and low ILS conditions. We ignore the replicates with
all the genes containing identical sequences, which leaves us with 43 replicates
for the high ILS condition and 47 replicates for the low ILS condition in total.
Note that these simulations include no gaps and thus pose no need for align-
ment. During the data training, we use the true species tree with branch lengths
recalculated using the sites randomly selected from the first 32 genes (with each
gene providing 500 sites) as the backbone.

Biological Data. We use the Web-of-life (WoL) dataset by Zhu et al. [31]
with 10,575 genomes. An ASTRAL [20] tree built from 381 gene trees with
substitution-length branch lengths computed using ML from concatenated genes
is available. To evaluate the proposed method, we use sequences from the 16S
marker gene predicted from the 10,575 genomes using RNAmmer [13]. We align
all 16S copies across all the 7,797 species that have at least one copy using
UPP [21], which selects a backbone of 1000 sequences and aligns the other
sequences independently to those in the backbone.

5.2 Evaluation

We evaluate the method in a leave-out fashion. We remove 5% of the species
from the reference species tree to obtain a backbone tree used for training and
use the left-out species as queries (i.e., testing). For WoL data, the alignment
was not redone after removing queries since UPP aligns most of the sequences
independently. A genome can have multiple 16S copies, and we pick one copy
randomly to include in the backbone tree for training. For testing, we keep all
the copies and test each one separately. Overall, we have 815 query sequences
from 319 query species in the WoL dataset.

We also test the ability of our learned model to update a species tree using
new sequences. Updating, unlike placement, infers a fully resolved tree start-
ing from a given tree and finds the relationship between queries. To do so, we
calculate a distance matrix from the learned embeddings including all the back-
bone and query sequences used in the placement experiment. We then infer the
species tree using FastME2 with default options [15]. Note that the relationship
between backbone sequences can in fact also change as part of this tree update.
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Thus, update here simply means that the information in the starting tree is used
(through training) in obtaining the updated tree. We evaluate the performance
of the model using both the accuracy of distances and the accuracy of the tree
placements or updates.

Distortion: The distortion of the model is measured by the mean squared error
between the model prediction and the tree distances. The quantity is computed
under two settings. One is the standard mean square error; the other is the
average over the square error normalized by the tree distance, as in (5).

Placement or Tree Accuracy. We place each query independently onto the back-
bone tree and report the placement error—defined as the number of branches
between the placement position and the position on the reference tree before
removing the query. For tree updating, we compare the full tree inferred using
DEPP distances or the tree restricted only to queries (i.e., novel species) against
the true species tree (simulated data) or ASTRAL species tree (WoL data) using
RF or quartet distance metrics. For WoL data, since query species have multi-
ple copies, we subsample one random copy per species and remove all the other
copies from the estimated tree, repeating this process 100 times and reporting
the distribution.

6 Results and Discussions

6.1 Comparison of H-DEPP Alternatives

We first compare the various H-DEPP models on the WoL dataset (Fig. 1). Using
the HNN++ layer has a higher training and testing distortion error compared to
using the exponential maps (Fig. 1(a)–(b)); the HNN layer increases the training
error three-folds and the testing distortion close to two-folds. Examining the
training distortion versus epochs of learning shows that the HNN layer has made
training more challenging (Fig. 1(c)). Even after 9000 epochs, the training error
does not seem to have converged for the HNN layer, compared to exponential
maps that seem to have converged by 3000 epochs. This pattern may be due to
the fact that the exponential maps do not perform any arithmetic operations in
the hyperbolic space through the network layers and instead map points from
the Euclidean to the hyperbolic space in the loss function. In doing so, they avoid
the difficulty of propagating (back) the gradient of the loss function through the
more complex arithmetic operations needed in the hyperbolic space.

Comparing the two models realized with exponential maps, ‘Loid has lower
testing distortion, and its training error converges slightly faster than the
Poincaré model; see Fig. 1(a)–(c). While the two models are equivalent mathe-
matically (with infinite precision), these improvements point to different levels
of difficulty in optimization given limited precision and the idiosyncrasies of how
stochastic gradient descent and learning rates interact in each model.

The differences in training and testing distortion errors, however, do not
translate to dramatically varied placement errors (Fig. 1-(d)). The placement
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of the exponential map approach is slightly lower than the HNN+ approach.
Mean placement errors are 1.88, 1.77, 1.78 for HNN++, Poincaré (Exp. map),
and ’Loid (Exp. map). The lack of improvement in placement accuracy when
distances become far more accurate may seem surprising. However, we note
that these levels of error are very low to begin with, leaving relatively little
room for improvement. Moreover, note that APPLES-2 does not use all of the
distances; to achieve high accuracy and scalability, APPLES-2 only considers
small distances (in our runs, only five smallest distances). Thus, the reduced
distortion among high distances does not directly benefit placement accuracy.

Fig. 1. Comparison of Poincare model and Loid model. Fixing d = 128, we
show (a, b) the median of mean squared error of predicted distances on backbone and
query species (i.e., training and testing distortion), respectively. (c) Convergence of
the training loss versus the number of epochs of training. (d) Empirical cumulative
distribution function (ECDF) of placement errors.

6.2 Comparison to Euclidean Embedding

The theoretical advantages of hyperbolic spaces compared to Euclidean space
translate to much better training and testing distortion error, regardless of the
number of dimensions d used; see Fig. 2(a) for the simulated and Fig. 3(a), (b) for
the WoL dataset. The distortion of hyperbolic distances is between half to two
orders of magnitude lower for testing and training compared to the Euclidean
distances. As the theory suggests, fewer dimensions in the hyperbolic spaces are
enough to achieve the same distortion as higher dimensional Euclidean spaces.
For example, for high ILS simulated data, the testing distortion is lower with
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4 hyperbolic dimensions compared to 128 Euclidean dimensions; or, with low
ILS, the training distance obtained by R

128 is approximately obtained by H
16.

WoL dataset also offers stark examples: the training distortion of H4 is similar
to R

16, and the H
32 space results in the same distortion of queries as R

512.
Similar patterns are observed when we examine the weighted loss (5) instead of
the simple (unweighted) distortion. These results show that far fewer hyperbolic
dimensions can match the Euclidean distortion in high dimensions.

Visual inspection of distances shows several interesting patterns; see Fig. 2(c)
for simulated and Fig. 3(d) for biological data. With d = 4, distortions are
already low for the 201-taxon simulated dataset using hyperbolic but not
Euclidean distances. However, on the larger WoL dataset, despite theoretical
guarantees with infinite-precision computation, hyperbolic embedding shows not
only considerable levels of distortion but also signs of a bias towards under-
estimating distances. The problem is far worse at the testing time. Euclidean
spaces, however, lead to far greater distortion and bias with d = 4 for both the
small and the large dataset. Particularly, the predicted distances from the query
seem divorced from true distances with R

4 for the WoL dataset. At d = 16,
no bias is detectable for hyperbolic distances in either dataset, but Euclidean
distances remain biased and noisy for both datasets, especially the larger WoL.
With d = 64 on WoL data, only a small amount of distortion is left in hyper-
bolic spaces, compared to high levels of noise (and some outliers) for Euclidean.
Training and testing fidelities are high for Euclidean distance given the highest
numbers of dimensions and are nearly perfect for hyperbolic.

The impact of lowered distortion on improved placement accuracy depends on
the dataset. On the simulated data, hyperbolic distances have far lower place-
ment error with small d; see Fig. 2(b). The placement error reduces for both
methods with more dimensions, but in the high ILS case, hyperbolic continues
to have an advantage in placement accuracy even when d is increased to 128.
In particular, in this condition, Euclidean distances are never able to match the
accuracy of EPA-ng, whereas hyperbolic distances do with 16 to 64 dimensions.
On the low ILS dataset, where error levels are generally much lower, all methods
converge to the same error with enough dimensions.

On the WoL data, the impact of reducing loss on placement error is somewhat
muted (Fig. 3(c)). The placement error quickly drops for both spaces from 2 to 16
dimensions. In this range, hyperbolic embedding has lower placement error, and
the reductions in error are substantial (e.g., 1.4 edge with d = 4). As the number
of dimensions increases to 32 and beyond, the reduced distortion of backbone and
query sequences stops translating into substantially reduced placement errors.
With d ≥ 64, the two methods are essentially tied in their placement errors and
are also tied with ML placement using EPA-ng. Furthermore, when given d > 16,
APPLES2 placements with DEPP distances are more accurate than APPLES2
placements using the simple JC model.

The slower pace or lack of improvements in placement accuracy for higher
dimensions on the WoL and low ILS datasets can be explained in several ways.
First, as the number of dimensions increases (e.g., beyond 32 for WoL), the
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Fig. 2. Comparison of embeddings in Euclidean space and Hyperbolic space using
the ’Loid model (exp. map) on simulated data. (a) Training and testing distortion
versus dimensions. The distortion is measured by the median of mean square errors
of predicted distances with normalization (b) The mean and standard error of the
placement error versus dimensions. The horizontal lines show error with EPA-ng and
APPLES2+JC model. (c) The comparison between ML distances on the reference tree
used to train the model (i.e., ground truth) versus the distances obtained from the
trained E-DEPP (Euclidean) or H-DEPP (hyperbolic) models. Each dot represents
one pairwise distance between a pair of backbone species or a particular query selected
arbitrarily and all backbones. The unit line is indicated on the graph as a dashed line.
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Fig. 3. Comparison of embeddings in Euclidean space and Hyperbolic space using
the ’Loid model (exp. map) on WoL 16S data. (a, b) Training and testing distortion
measured using the median of mean square errors of predicted distances without (a)
or with (b) normalization. (c) The mean and standard error of the placement error
versus the number of dimensions. The horizontal lines show error with EPA-ng and
APPLES2+JC model. (d) The comparison between ML distances on the reference tree
used to train the model (i.e., ground truth) versus the distances obtained from the
trained E-DEPP (Euclidean) or H-DEPP (hyperbolic) models. Each dot represents
one pairwise distance between a pair of backbone species (10% selected randomly) or
a particular query selected arbitrarily and all backbones. The unit line is indicated on
the graph as a dashed line.

reduction in testing distortion slows down compared to the training distortion
and the placement error is a function of the testing distortion. However, there
must be more to this pattern because testing distortion does continue to dimin-
ish, albeit slower. Another potential explanation is that APPLES-2 has some
tolerance for error in its input distances. Such tolerance (or safety radius) is a
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key feature of all phylogenetic distance-based methods [1,11], and APPLES-2
may further increase the tolerance by focusing on small distances. We see evi-
dence for such tolerance. For example, improving unweighted testing from an
order of 10−2 to 10−3 as we go from d = 2 to d = 8 on WoL dramatically
reduces placement error (from 12 edges to 3), but as we further reduce the test-
ing error to 10−4 and closer to 10−5, the placement error starts to plateau. Note
that on WoL, all the methods have errors below 2 edges in a tree of roughly
7500 edges; thus, the errors are already low and have little room for improve-
ment. Similarly, error is small on the low ILS simulated dataset. On the high
ILS simulated dataset when errors are high (a random placement would have
14 edges of error), the improved accuracy of distortions do translate to better
placements.

6.3 Tree Updates

Since H-DEPP learns better distances than E-DEPP, we next ask if it has better
accuracy in updating trees with more species to get a fully resolved tree (as
opposed to only the placements). Unlike the placement accuracy, the accuracy
of the updated tree shows dramatic improvements compared to E-DEPP for the
WoL datasets and consistent improvements for the simulated dataset (Fig. 4).
The advantages are more clear when we measure the tree distance using the
quartet score, which is not sensitive to rogue taxa; the presence of paralogous
16S copies and HGT can create unstable leaves. The quartet distance of the
updated tree reduces by three (or two) folds for the full tree (or the tree induced
down to queries) on the WoL datasets. The RF distance also improves, though
less dramatically, likely due to the effects of rogue taxa. On the simulated dataset,
clear improvements are obtained for the low ILS dataset. In particular, for most
cases, the error is sufficiently low, which is remarkable given the fact that we are
updating the species tree using a single gene. However, in the high ILS case, the
error, which does reduce with hyperbolic compared to Euclidean embeddings,
remains unacceptably high. Note that the task of updating a very high ILS
species tree of only 190 species using data from only a single gene is likely futile,
irrespective of the model used. Nevertheless, overall, the results indicate that the
smaller distortion of hyperbolic distances has the potential to enable distance-
based phylogenetic inference to update species trees using data from a single
gene for conditions with sufficiently low gene tree discordance.
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Fig. 4. Tree update error. Normalized quartet (left column) and RF (right column)
distances between (a, b) true species trees and FastME trees inferred using DEPP
distances on simulated data under High ILS (a) and Low ILS (b) model conditions, (c)
the ASTRAL tree and a FastME tree inferred using DEPP distances on WoL 16S data.
Here we show the results of trees including all the species (200 species for simulated
data per tree and 7797 species for WoL tree) or the full tree restricted to query species
(10 species for simulated data per tree and 319 species species for WoL tree), labeled
as full and query respectively on the x-axis. For the WoL 16S data, results are obtained
by sampling a single copy for multi-copy queries, repeating the process 100 times.

7 Conclusions and Future Work

The DEPP framework has shown promise in marrying deep learning with the
phylogenetic placement problem in cases where one wants to update a species
tree given limited data coming from a single gene. This application can become
far more common than it may appear because most of the researchers using



82 Y. Jiang et al.

single marker genes such as 16S are really interested in species relationships
not gene relationships. In fact, the most common use of marker genes is for
species identification where gene tree discordance is only a nuisance. Thus, while
updating a species tree using a single gene may seem counter-intuitive or even
ill-posed, it addresses a very real biological need. By moving DEPP into the
hyperbolic space, we attempted to improve its accuracy for such applications.
This improvement comes at no cost as the training and testing times of H-DEPP
and E-DEPP were similar for a fixed numbers number of dimensions.

Our results were mixed. On the one hand, we obtained far better train-
ing and testing accuracy in terms of the reduced distortion in the distances
among embedded points. In particular, with hyperbolic models, orders of mag-
nitude fewer dimensions are enough to obtain the same level of distortions as
the Euclidean space. The lower distortions are not simply due to over-fitting
as improvements in testing error were more pronounced than training. Lower
distortion translated to better topological accuracy of updated fully resolved
trees that include all queries on all datasets. On the other hand, the dramatic
improvements in learned distances translated to better placement accuracy on
high discordance simulated dataset but not on the other two datasets. We spec-
ulated the reason may be the reliance of APPLES-2 on the smallest distances
and also low levels of placement error on less challenging datasets.

Given that hyperbolic distances are better trained than Euclidean distances,
they open up the path for updating trees—a problem that is more ambitious than
placement. Tree updating can be very impactful. For example, for the bacterial
tree of life, very large species trees such as the one we used here and others
that are similarly expansive [22] are available. Once such a tree is inferred using
genome-wide data with much computational and human effort, we can hope to
update it to include new species using marker genes only. By improving the
accuracy of such updates, H-DEPP can enable building much larger references
trees. We can train a model based on the existing trees and single-gene data (e.g.,
16S), use the model to embed both existing species and new ones in hyperbolic
spaces, compute distances from the embeddings, and infer updated trees using
distance-based methods such as FastME. While our results are promising, we
leave a full exploration of this approach to future work.

Our experiments were limited in scope, and future work should explore a
wider range. For the WoL dataset, we only tested 16S, and only when the
sequences are full length. In microbiome analyses, often fragmentary data are
given. While the method can handle such data, we did not test the method
with fragmentary queries. Also, our queries and reference sequences were aligned
jointly, which is not how most analysis pipelines proceed (however, note that
UPP aligns most of the sequences independently from others). Future work
should further explore the impact of alignment errors.

Our experiments identified many challenges that had to be overcome to
obtain high accuracy with hyperbolic embeddings. The tricks we used for training
the curvature, data scaling, changing learning rates, and our results comparing
exponential maps versus HNN layers can have downstream ramifications beyond



Phylogenetic Placement Problem: A Hyperbolic Embedding Approach 83

training phylogenetic trees. Our techniques and findings may be useful more
broadly for clustering applications using hyperbolic embedding, as attempted
in various machine learning settings. Conversely, the rapidly evolving advances
in building hyperbolic neural networks in the machine learning community may
help us further improve the accuracy of our proposed H-DEPP framework.
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Abstract. Dissimilarity measures for phylogenetic trees have long been
used for analyzing inferred trees and understanding the performance of
phylogenetic methods. Given their importance, a wide array of such mea-
sures have been developed, some of which are based on the tree topologies
alone, and others that also take branch lengths into account. Similarly,
a number of dissimilarity measures of phylogenetic networks have been
developed in the last two decades. However, to the best of our knowl-
edge, all these measures are based solely on the topologies of phylogenetic
networks and ignore branch lengths. In this paper, we propose two phy-
logenetic network dissimilarity measures that take both topology and
branch lengths into account. We demonstrate the behavior of these two
measures on pairs of related networks. Furthermore, we show how these
measures can be used to cluster a set of phylogenetic networks obtained
by an inference method, illustrating this application on the posterior
sample of phylogenetic networks. Both measures are implemented in the
publicly available software package PhyloNet.

Keywords: Phylogenetic networks · Dissimilarity · Topology · Branch
lengths

1 Introduction

Phylogenetic trees and networks are widely used to model the evolution of genes,
species and languages. In the case of genomes and species, a deluge of data is
available in the form of whole genomes being assembled and made available for
phylogenetic inference [15,20,25]. However, the space of phylogenetic trees is
notoriously complex due to a mix of discrete and continuous parameters. There-
fore, this complexity must be confronted, as probability and likelihood distribu-
tions over phylogenetic trees often lack closed form solutions, requiring explo-
ration of this space using algorithms such as hill climbing or Markov-chain Monte
Carlo. Worse still, the discrete and continuous parameters are highly dependant,
making this exploration fiendishly difficult. Phylogenetic network distributions
are more complex again, among other reasons because dimensionality of the
problem is no longer fixed.
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Nonetheless, phylogenetic trees and networks remain successful models due
to their strong and direct relationship to actual evolution. Evolving units such
as species split and diverge over time, and patterns of splits are encoded by the
nodes of phylogenetic trees. Each node represents a species (or other kind of
evolving unit), and has one parent and a certain number of children (typically
zero or two) to connect with its immediate ancestor and descendants respectively.
Units which we have data for are typically represented as external nodes, often
called taxa for trees of species or populations. The degree of divergence can be
encoded as either the branch lengths or, for ultrametric phylogenies, as node
ages. The pattern of splits and reticulations without continuous parameters is
known as the tree topology and is an unordered discrete variable that grows
hyperexponentially with the number of taxa [10].

Because phylogenetic trees do not account for reticulate evolution, such as
introgression, hybridization, or horizontal gene transfer between species, or loan-
words borrowed between languages [13], phylogenetic networks were developed in
order to model splitting and reticulation. These networks may contain reticulation
nodes, with two parents and one child, in addition to the nodes used to encode
splits. The probability of inheriting evolutionary subunits, such as genes or words,
may be encoded as additional continuous parameters associated with the reticu-
lation nodes. By permitting two immediate ancestors with inheritance probabili-
ties, phylogenetic networks can effectively encode the aforementioned examples of
reticulate evolution [9,21]. The addition of reticulation nodes makes the number
of possible phylogenetic network topologies far greater than the number of trees.
Deriving these numbers are non-trivial, and so far have been restricted to specific
classes of networks. For level-2 networks, there are 1,143 network topologies for
three external nodes, compared with only three tree topologies [5].

The complexity of phylogenetic tree and network space has some immediate
implications. For example, to quantify the dissimilarity between sets of contin-
uous parameter values we can choose among the Lp-norms (e.g. the Euclidean
norm), but this is not directly applicable to phylogenies due to their complex
mixture of discrete and continuous parameters that cannot naturally be embed-
ded in Lp spaces. However, we often wish to measure this dissimilarity to com-
pare different inference methods with each other, to compare them with ground
truths, or to study how different sets of evolutionary units co-evolve [2]. Fur-
thermore, novel efficient proposal kernels such as Zig-Zag cannot be applied to
phylogenetic trees without thorough preliminary theoretical work [17]. The Zig-
Zag traverses tree space, randomly reversing direction along a given dimension at
intervals. It is not obvious how a particle can sample multiple tree topologies by
proceeding along or reversing the direction of travel, although some preliminary
work has been done in this area [8].

These implications have motivated the development of myriad measures and
metrics of dissimilarity and distances to compare phylogenetic trees, which have
enabled the comparison of different phylogenies and improved our understanding
of the algorithms used in phylogenetic inference [34]. We can classify many of
these measures and metrics into three broad categories: clade-based, move-based,
and geometric.
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Clade-based measures are based on the presence or absence of clades (or, for
unrooted phylogenies, splits). These may be limited to the difference in topol-
ogy as in the Robinson-Foulds (RF) distance [26], or incorporate branch lengths
as in weighted RF and branch score (BS) distances [18]. Move-based measures
are based on the number of random-walk moves, such as Nearest-Neighbor Inter-
change (NNI), needed to modify one topology to be identical with another topol-
ogy [1]. Geometric measures rely on the embedding of phylogenies in geometric
spaces, such as the Billera-Holmes-Voghtmann (BHV), τ and t spaces [3,11].
The distance between phylogenies is then the shortest path between the corre-
sponding points.

The additional complexity of phylogenetic networks means that available
measures and metrics are far less developed. However, the need to accurately
model evolution with reticulation demands much greater development and moti-
vates our present study. Presently, beyond simple identity, there are several
measures of topological dissimilarity with proofs of constituting metrics on sub-
spaces of phylogenetic networks, e.g., [6,7,22].

None of these existing measures considers branch lengths or node ages,
despite the importance of these distances in evolutionary biology. To address
this absence, in this paper we propose rooted network branch score (rNBS)
and average path distance (APD), two novel measures to compute dissimilarity
between two rooted phylogenetic networks Ψ1 and Ψ2 that are sensitive to branch
lengths in addition to the topology. When comparing pairs of simulated networks
that undergo reticulation elimination and branch-length scaling, we observe an
increase in dissimilarity value from both measures with respect to the amount
of distortion applied to one of the pairs. Additionally, when we use rNBS, APD,
and the topological distance of [22] to cluster networks obtained from a Bayesian
Markov chain Monte Carlo (MCMC) sample based on their dissimilarity, we find
that both rNBS and APD can highlight structure within searches of tree space
that may not be obvious from other parameters and statistics. Thus, we believe
both rNBS and APD are suitable in evaluating, prototyping and refining network
inference. Both measures are implemented in PhyloNet [31,33] and are publicly
available to download and use. The source code is available at https://github.
com/NakhlehLab/PhyloNet/.

2 Methods

Our focus in this paper is binary evolutionary (or, explicit) phylogenetic net-
works. Furthermore, we assume all networks are leaf-labeled by the same set of
taxa.

Definition 1. The topology of a phylogenetic network Ψ is a rooted directed
acyclic graph (V,E) such that V contains a unique node with in-degree 0 and
out-degree 2 (the root) and every other node has either in-degree 1 and out-degree
2 (an internal tree node), in-degree 1 and out-degree 0 (an external tree node, or
leaf), or in-degree 2 and out-degree 1 (a reticulation node). Edges incident into

https://github.com/NakhlehLab/PhyloNet/
https://github.com/NakhlehLab/PhyloNet/
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reticulation nodes are referred to as reticulation edges. The leaves are bijectively
labeled by a set X of taxa, with |X | = n. The phylogenetic network Ψ has branch
lengths λ : E → R

+, where λb denotes the branch length of branch b in Ψ .

In this section, we propose two different methods of measuring the dissim-
ilarity of a pair of phylogenetic networks Ψ1 and Ψ2 while taking their branch
lengths into account.

2.1 Rooted Network Branch Score (rNBS)

In this subsection, we describe a dissimilarity measure based on viewing a net-
work in terms of the trees it displays, similar to the tree-based measure for
topological comparison of phylogenetic networks implemented in PhyloNet [31].

Definition 2. Let Ψ be a phylogenetic network leaf-labeled by set X of taxa.
A tree T is displayed by Ψ if it can be obtained from Ψ by removing for each
reticulation node exactly one of the edges incident into it followed by repeatedly
applying forced contractions until no nodes of in- and out-degree 1 or in-degree
0 and out-degree 1 remain. A forced contraction of a node u of in-degree 1 and
out-degree 1 consists of (i) adding an edge from u’s parent to u’s child, and (ii)
deleting node u and the two edges that connect it to its parent and child. A forced
contraction of a node u of in-degree 0 and out-degree 1 consists of removing the
node u and its incident edge. The resulting tree has a unique root, whose in-degree
is 0 and out-degree is 2, leaf nodes, whose in-degrees are 1 and out-degrees are
0, and other internal nodes, whose in-degrees are 1 and out-degrees are 2. We
denote by U(Ψ) the set of all trees displayed by Ψ , where each tree in U(Ψ) is
leaf-labeled by set X of taxa; that is, no tree whose leaves are not bijectively
labeled by X is included in the set U(Ψ).

It is important to note here that since branch lengths are taken into account, the
set U(Ψ) can have trees with identical topologies but different branch lengths.
This is illustrated in Fig. 1.
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Fig. 1. A phylogenetic network (left) and its displayed trees. Since branch lengths are
taken into account, the network displays three different trees. In the case of topology
alone, the network displays a single tree.

We build a weighted complete bipartite graph g = (V = U(Ψ1) ∪ U(Ψ2), E)
where the weight of edge (t1, t2) ∈ E equals the rooted branch score of t1 and
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t2 [12], which is the rooted equivalent of the branch score of [18]. The rNBS of
Ψ1 and Ψ2 is then computed as the minimum-weight edge cover of g normalized
by the number of edges in the edge cover. An edge cover of g is a subset E′ ⊆ E
of its edges so that every node in V is the endpoint of at least one edge in E′.
The weight of an edge cover E′ is the sum of the weights of the edges in E′. A
minimum-weight edge cover is an edge cover of g whose weight is smallest among
all possible edge covers of g.

In our implementation, we use the Hungarian method to compute edge cover,
which runs in O(|V |3). However, in its current implementation, rNBS is not
scalable with respect to the number of reticulations, since the size of V grows
exponentially in the number of reticulation nodes. Exploring whether the rNBS
value between two networks can be computed more efficiently without explicitly
building the bipartite graph is a direction for future research. Figure 2 illustrates
the rNBS of two phylogenetic networks.

Fig. 2. Illustrating the rooted network branch score (rNBS) of two phylogenetic net-
works Ψ1 and Ψ2. T1 = U(Ψ1) and consists of the two trees (a–b) with distinct branch
lengths and T2 = U(Ψ2) and consists of the two trees (c–d) with distinct branch lengths.
The complete bipartite graph g = (T1 ∪ T2, E) is shown. Assuming the minimum-
weight edge cover consists of the two edges depicted by the blue solid lines, then
rNBS(Ψ1, Ψ2) = w(a,d) · 0.5 + w(b, c) · 0.5. (Color figure online)
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Additionally, it is important to note that the rNBS is not a metric, in partic-
ular failing to satisfy the condition that rNBS(Ψ1, Ψ2) = 0 if and only if Ψ1 and
Ψ2 are isomorphic (while respecting the leaf labeling). Figure 3 shows two net-
works that display the same set of trees even when branch lengths are included.
One setting of the network branch lengths that would lead to this scenario is
given by the following Rich Newick strings of the two networks:

Psi1 = ( ( ( ( (X2:7 .0)#H2:4 .0)#H1 : 6 . 0 ,X3 : 8 . 0 ) : 4 . 0 , (#H1 : 4 . 0 ,
X4 : 5 . 0 ) : 2 . 0 ) : 3 . 0 , ( #H2 : 2 . 0 ,X1 : 2 . 0 ) : 1 . 0 ) Root ;
Psi2 = ( ( ( (X2:4 .0)#H1 : 1 3 . 0 ,X3 : 8 . 0 ) : 4 . 0 , ( (#H1:3 .0)#H2 : 8 . 0 ,
X4 : 5 . 0 ) : 2 . 0 ) : 3 . 0 , ( #H2 : 2 . 0 ,X1 : 2 . 0 ) : 1 . 0 ) Root ;

In this case, rNBS(Ψ1, Ψ2) = 0 even though the two networks are different.

Fig. 3. Two networks Ψ1 and Ψ2 that display the same set of trees {T1, T2, T2}. (adapted
from [23])

2.2 Average Path Distance (APD)

Here we present a dissimilarity measure that is based directly on the networks,
rather than the trees they display. We view phylogenetic networks Ψ1 and Ψ2

as two n × n matrices M1 and M2, respectively, where entries [i, j] in M1 and
M2 correspond to the average path distance between the two leaves labeled i
and j in Ψ1 and Ψ2, respectively. Thus, it can be viewed as an extension of path
distance by [28] to networks.

In a phylogenetic tree, the path distance between two leaves is the sum of
weights of edges on the unique (simple) path between those two leaves. In a
phylogenetic network, there could be more than one path between two leaves.
Let M(Ψ, i, j) be the set of all most recent common ancestors (MRCAs) of i and
j in network Ψ . Here, an MRCA is a node from which there is a path to i and a
path to j and these two paths do not share any edge. The average path distance
(APD) between two leaves i and j is the average of all such paths between the
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two leaves. For example, in the network shown in Fig. 4, there are three MRCAs
of X2 and X3.

Fig. 4. Illustrating the average path distance (APD) on a phylogenetic network. The
blue solid circles correspond to the three MRCAs of X2 and X3. The distances between
X2 and X3 that go through these three MRCAs are: (λ10 + λ6 + λ2 + λ1) + (λ12 +
λ8 + λ7 + λ4) (through the root node as the MRCA), (λ10 + λ6 + λ2) + (λ12 + λ8 + λ5)
(through the MRCA that is a child of the root), and (λ10 + λ9) + λ12 (through the
MRCA that is the parent node of X3). The average path distance (APD) of X2 and
X3 is the average of these three distances. (Color figure online)

To compute matrices M1 and M2 we utilize a BFS-like approach to traverse
networks Ψ1 and Ψ2, starting from their leaves and finishing at the root, visiting
each internal node if and only if we have explored all of its children first. If we
are currently at an MRCA of leave pairs i and j, we add their path distance to
matrix entries [i, j] and [j, i]. After traversing the graph, we divide each entry in
the matrices by the number of MRCAs per pair of leaves to obtain the average
path distance. After building matrices M1 and M2 for networks Ψ1 and Ψ2,
respectively, APD can be computed by taking the Frobenius norm of the matrix
difference:

APD(Ψ1, Ψ2) = ‖M1 − M2‖F . (1)

Overall, the graph traversal runs in O(m), where m is the number of edges
in the network. Building and summarizing each matrix takes O(n2). The com-
putation in Eq. 1 also takes O(n2) operations. Thus, APD is computable in
polynomial time with respect to the number of nodes in the phylogenetic net-
work.
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However, it is important to note that the APD of the two different networks
of Fig. 3 is also 0 under the branch length settings above. Therefore, APD is not
a metric either.

Normalized Average Path Distance (NormAPD). We can obtain a nor-
malized APD measure (NormAPD) as follows, which assumes Ψ1 is a reference
network and is useful in settings where an inferred network is compared to a
reference one.

NormAPD(Ψ1, Ψ2) =
‖M1 − M2‖F

‖M1‖F =
APD(Ψ1, Ψ2)

‖M1‖F . (2)

3 Results and Discussion

3.1 Dissimilarity Under Various Network Perturbations

To study the behavior of our dissimilarity measures on pairs of related networks,
we simulated rooted phylogenetic networks that are leaf-labeled by the same
set of 8 taxa using the SpeciesNetwork [35] add-on in BEAST 2.5 [4]. For the
simulation, we set the origin to 0.1, birth rate to 30, and hybridization rate to
5. We then filtered out networks that contain more than 7 reticulations to limit
the number of trees displayed by the networks. Our final data set contained
500 rooted phylogenetic networks. For each network Ψ0 in the set of simulated
networks, we generated perturbed versions of Ψ0 and calculated the dissimilarity
between the perturbed networks and Ψ0.

Uniform Scaling. Here we obtain Ψi by scaling each branch of Ψ0 by a factor of
1.5 for 10 iterations. At the end of iteration i, we have network Ψi whose branch
lengths are (1.5)iλ0, where λ0 is the branch length of the particular branch
on the original network Ψ0. We computed rNBS(Ψ0, Ψi) and APD(Ψ0, Ψi), for
i = 1, 2, . . . , 10, and plotted the results as a function of the iteration number.
The results for rNBS and APD are shown in Figs. 5a and 5b, respectively. Both
figures show an exponential relationship between the number of iterations and
the dissimilarity between the original and perturbed networks measured by rNBS
and APD. Furthermore, we observe that neither of the measures have a consistent
rate of increase in the dissimilarity values across pairs of networks. In fact,
without normalization, both measures report higher values of dissimilarity when
the network contains more edges.

Non-uniform Scaling. Here, we obtain Ψi, for i = 1, 2, . . . , 10 from Ψ0 in a
similar fashion to what we did in the case of uniform scaling, except that in each
of the 10 iterations, we scaled each branch by a value drawn from N (1.5, 0.12).
The results for rNBS and APD are shown in Figs. 5c and 5d, respectively. Even
though scale factors are sampled from a distribution, the rates of increase of
dissimilarity values computed by both rNBs and APD are consistent with the
results from uniform scaling.
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(a) rNBS: Uniform Scaling (b) APD: Uniform Scaling

(c) rNBS: Non-Uniform Scaling (d) APD: Non-Uniform Scaling

(e) rNBS: Removing Reticulations (f) APD: Removing Reticulations

Fig. 5. Dissimilarity measures on pairs of networks using three different perturbations.
(a–b) Perturbed networks are obtained by uniform scaling of all branches and compar-
ing perturbed networks to a reference network. (c–d) Perturbed networks are obtained
by non-uniform scaling of all branches and comparing perturbed networks to a refer-
ence network. (e–f) Perturbed networks are obtained by removing reticulation edges
and comparing perturbed networks to a reference network. Each gray line shows the
relationship between number of iterations and the amount of dissimilarity between the
original and perturbed networks. Blue lines show the average dissimilarity value at
each iteration. (Color figure online)
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Reticulation Elimination. Here, we further filter out networks that have
fewer than 5 reticulation nodes, thus limiting our dataset to networks with at
least 5 and at most 7 reticulations, which accounts for 157 networks. We produce
Ψi at each iteration as follows: Ψ1 is obtained by removing a random reticulation
edge from Ψ0, and then Ψi is obtained by removing a random reticulation edge
from Ψi−1, for i = 2, . . . , 5. The results for rNBS and APD are shown in Figs. 5e
and 5f, respectively.

As the figure shows, the dissimilarity values increase as more reticulations
are removed, but that increase slows down for the APD values with the num-
ber of removed reticulations, which is apparent in Fig. 5f. For the rNBS values
(Fig. 5e), observe that the change in values is slow as the average value goes
from 0 to around 0.06 when 5 reticulations are removed. The reason for this
is that while reticulations are removed, the rest of the topologies and branch
length are unperturbed. Therefore, it is natural that the removal of reticulations
would have much less of an effect than, say, having all branches differ in lengths
between the reference and perturbed networks.

In summary, perturbation experiments show that the measures we introduce
here are sensitive to both changes in branch lengths and reticulation edges and
behave as expected from dissimilarity measures.

3.2 Analyzing Posterior Samples Using the Dissimilarity Measures

Phylogenetic analyses oftentimes produce thousands of candidates. To summa-
rize the tree candidates, a consensus tree is often computed, e.g., [16,30]. As an
alternative to a single consensus tree, clustering was offered as early as 1991 by
W. Maddison [19]. Subsequently, it was shown that clustering indeed provides a
more powerful and informative summary than single consensus trees [29]. Here,
we explore the use of our dissimilarity measures for clustering networks in the
posterior sample of a Bayesian inference method. We also compare them to clus-
tering based on the topological dissimilarity measure of [22], referred to hereafter
as TD.

MCMC SEQ [32] is a method in PhyloNet [31,33] for Bayesian inference of
phylogenetic network topology, divergence times, and inheritance probabilities,
along with various other parameters from sequence alignment data. The method
samples from the posterior distribution of these parameters. We analyzed the
posterior samples obtained by MCMC SEQ on one simulated data set and one
empirical data set.

Analysis of a Simulated Data Set. We analyze the posterior sample obtained
on a simulated data set of 5 species and a single individual per species. To gen-
erate the data set, we first simulated the homogeneous gene trees with MS [14],
obtaining 100 gene trees with 500 sites per gene tree. Finally, we use Seq-
Gen [24] to generate the simulated sequences. For this, we set the base frequencies
{A,C,G, T} = {0.2112, 0.2888, 0.2896, 0.2104} and theta to 0.018. We also varied
the substitution rates to follow a flat Dirichlet distribution. The sequences are then
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inputted to MCMC SEQ, setting the Markov chain Monte Carlo (MCMC) chain
length to 50, 000, 000, the burn-in period to 10, 000, 000, and the sample frequency
to 5000.

The networks in the posterior sample vary in their number of reticulation
nodes between 0 (i.e., trees) and 4. However, if we only consider the samples
after burn-in period is completed (that is, ignoring the first 2,000 samples), the
number of reticulations alternate between 3 and 4. Since clustering would require
computing all pairwise distances between the networks in the sample, we further
reduced the sample by keeping only every 5th sample, i.e., the 2000th, 2005th,
..., and 9995th samples (the first 2, 000 samples were discarded as part of the
burn-in period). We then computed pairwise dissimilarity matrices using rNBS,
APD, and TD of [22]. Afterwards, we clustered the posterior networks in two
different ways:

1. Clustering I: We partitioned the samples based on the number of reticulation
nodes in the networks, thus resulting in two clusters, one consisting of all
networks with 3 reticulations and another consisting of all networks with 4
reticulations.

2. Clustering II: We applied agglomerative clustering to the pairwise distance
matrices, and set the linkage criterion to “complete,” which makes the clus-
tering algorithm use the maximum distances between all observations of the
two sets when merging pairs of clusters. To determine the number of clusters,
we looked at the dendrogram from each figure and manually curated the num-
ber to split. Note that cluster labels are arbitrarily assigned independently
for each plot.

As the number of reticulations in networks is a major distinguishing factor when
contrasting networks inferred on biological data, the rationale of the two ways
of clustering is to understand (i) how the different iterations of MCMC SEQ
correlated in terms of the clustering, and (ii) whether clustering II is a refinement
of clustering I.

For visualization, we plot the log-posterior density per iteration, number
of reticulations per iteration (which corresponds to clustering I), the assigned
cluster per iteration (which corresponds to clustering II), and the pairwise dis-
similarity matrix computed by rNBS, APD, and TD of [22]. Here, we did not
visualize the clustered heatmaps, but rather kept them ordered according to the
sampling order since we are focused on understanding the correlation, in terms
of dissimilarity, between adjacent samples. The results are shown in Fig. 6.

From Fig. 6 we can observe that rNBS, APD, and TD all cluster the networks
with respect to the number of reticulations, shown by the purple vs blue shades
in Fig. 6(a) for rNBS, purple vs green shades in Fig. 6(b) for APD, and green vs
yellow shades in Fig. 6(c) for TD. While all heat-maps support the clustering by
the number of reticulations, the clusters are best defined based on APD pairwise
distances, followed by rNBS pairwise distances, and then least defined based on
TD pairwise distances.

Additionally, agglomerative clustering obtained based on rNBS and APD
pairwise distances shows distinct sub-clusters within the two clusters based on
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Fig. 6. Clustering of samples (networks and their branch lengths) from the posterior
distribution obtained by MCMC SEQ on a simulated data set. Each panel shows the
log-posterior density, the number of reticulations in each sampled network, the assigned
clustering label obtained by agglomerative clustering, and the heatmap of the dissimi-
larity values arranged by the number of MCMC iterations. Panels (a)–(c) correspond
to the three dissimilarity measures rNBS, APD, and TD, respectively. (Color figure
online)

the number of reticulations alone. For example samples in two distinct clusters B
and C for both rNBS and APD contain samples with 4 reticulations, suggesting
cluster analyses can help discern patterns of similarity in terms of the posterior
values and obtain a refined clustering of the posterior sample. The fact that
these structures were only sampled in one segment of the posterior chain also
suggests it is less converged than the log-posterior probability trace suggests,
and that APD- and rNBS-based clustering are more powerful diagnostic tools
for convergence.

Analysis of an Empirical Data Set. For the empirical results, we analyzed
the yeast data set of [27] with seven Saccharomyces species. We utilized the same
methods as in the previous section, with the exception of setting the MCMC
chain length to 35, 000, 000, obtaining 5, 000 samples after discarding the first
2, 000. The results are shown in Fig. 7.

From Fig. 7, we see that both rNBS and APD highlight similar pairwise dis-
similarity characteristics between posterior samples. While TD mostly agrees
with both rNBS and APD, there exists an anomalous region with high dis-
similarity values based on TD at around iteration 6, 250. Upon inspection, we
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Fig. 7. Clustering of samples (networks and their branch lengths) from the posterior
distribution obtained by MCMC SEQ on an empirical yeast data set. Each panel shows
the log-posterior density, the number of reticulations in each sampled network, the
assigned clustering label obtained by agglomerative clustering, and the heatmap of
the dissimilarity values arranged by the number of MCMC iterations. Panels (a)–(c)
correspond to the three dissimilarity measures rNBS, APD, and TD, respectively.

observe a minor topological change close to a pair of leaves, causing the topo-
logical dissimilarity value to peak at 7.0. While both rNBS and APD report a
slight increase in dissimilarity in that region as well, the reported dissimilarity
from neither measure is high enough to affect the dissimilarity scales of rNBS
and APD. This highlights topological dissimilarity’s over-sensitivity to minor
topological changes, which is not the case for either rNBS or APD.

3.3 Runtime Comparison

We report on the runtimes of the current implementations of rNBS, APD, and
TD of [22] with respect to the number of reticulations in the pairs of networks.
All experiments were run on a desktop running Linux Mint 20.3 on a single
AMD Ryzen 9 5900X 12-Core Processor and 31.3 GiB available memory. Figure 8
summarizes the results.

We find that APD is one fold slower than TD. Additionally, while the run-
time increases as the number of reticulations increases, the rate of increase is
very small. When there are no reticulations, APD can compute approximately
2, 082 dissimilarities per second, and when there are 10 reticulations, APD can
compute approximately 649 dissimilarities per second. In contrast, rNBS slows
down significantly as the number of reticulations increases, which supports the
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Fig. 8. Runtimes of rNBS, APD, and TD of [22] with respect to number of reticulation
nodes in the networks. Time is measured in milliseconds.

asymptotic time complexity of the edge covering algorithms used for bipartite
graphs formulated for rNBS (11, 278 per second when there are no reticulations
vs. 0.03 per second when there are 10 reticulations). It should be noted that
our implementation of APD is written in Java and does not currently use any
libraries or hardware acceleration to transform matrices.

4 Conclusions and Future Work

By taking branch lengths into account, our two novel dissimilarity measures of
phylogenetic networks will address an important deficit in the ability to analyse
phylogenetic network space and its exploration. By taking different approaches
to measuring dissimilarity, and through our analysis of scaled, perturbed, and
MCMC sampled phylogenetic networks, we have shown that the path distance
approach has more immediate promise than edge-covering of displayed trees. We
implemented both measures in PhyloNet [31,33] and studied their properties on
pairs of perturbed networks. Furthermore, we illustrated the use of the dissim-
ilarity measures for clustering and summarizing the phylogenetic networks in
a posterior sample of the Bayesian inference method MCMC SEQ. There are
many directions for future work, two of which we will discuss here.

Incorporating Inheritance Probabilities in the Dissimilarity Measures.
Statistical inference of phylogenetic networks results not only in estimates of the
topologies and branch lengths, but also of inheritance probabilities, which anno-
tate the reticulation edges. The measures we presented above ignore inheritance
probabilities. In particular, the APD measure treats all paths equally. One pos-
sible extension that accounts for inheritance probabilities is to weight each path
that is counted by a combination of the inheritance probabilities used by the
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reticulation edges on that path. Thus, a further extension to average path dis-
tance can incorporate inheritance probabilities by weighting the path distance
between two leaves i and j at each MRCA. Thus, for each MRCA, we multiply
the path distance from the MRCA to leaf i with the inheritance probabilities
along the path, perform the same for the path from the MRCA to leaf j, and
sum them up. Finally, the weighted path distance (WPD) becomes the sum of
weighted distances at each MRCA of i and j. For example, for the network of
Fig. 4, the weighted path distance between x2 and x3 in the network is the sum of
weighted path distances at the three MRCAs: [(λ10+λ6+λ2+λ1)·γ2+(λ12+λ8+
λ7+λ4)·(1−γ1)]+[(λ10+λ6+λ2)·λ2+(λ12+λ8+λ5)·λ1]+[(λ10+λ9)·(1−λ2)+λ12].
Similarly, for the rNBS measure, we can weight each tree by the product of the
inheritance probabilities of the reticulation edges used to display the tree. How-
ever, it is important to note here that these measures could be very sensitive to
inaccuracies of the inheritance probability estimates. For example, two networks
that are identical in terms of topologies and branch lengths but vary significantly
in the inheritance probabilities of even a small number of reticulation edges could
result in a very large dissimilarity value, unless the inheritance probabilities are
weighted carefully. We will explore these directions.

Tree-Based Dissimilarity in the Presence of Incomplete Lineage Sort-
ing. Zhu et al. [36] showed that when incomplete lineage sorting occurs, inference
and analysis of phylogenetic networks are more adequately done with respect to
the set of parental trees of the network, rather than the set of displayed trees.
Thus, a different approach to defining the rooted network branch score could
involve building a complete bipartite graph on the sets of parental trees of the two
networks. A major challenge here could be computational. As we demonstrated
in our analysis of rNBS, the runtime of the current implementation increases
exponentially with the number of reticulations k. Worse, while a phylogenetic
network has up to 2k displayed trees, the number of parental trees could be
significantly much larger to the extent that 2k is feasible in the case of a small
k whereas computing the set of all parental trees explicitly for the same value
of k can be infeasible. Therefore, faster computations and/or heuristics for com-
puting such a dissimilarity measure would be needed. As we discussed above,
we will study whether constructing the bipartite graph explicitly is necessary
for computing rNBS, as avoiding such construction could result in significant
improvement to the computational requirements.
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Abstract. Partitioning genomes into syntenic blocks has many uses in
comparative genomics, such as inferring phylogenies or ancestral gene
order. These blocks are usually required to contain enough genes to be
qualified as syntenic. This leads to the problem of finding a common par-
tition of the genomes in which the size of the blocks are above a certain
threshold (usually at least two). When this is not feasible, one can ask
to remove a minimum number of “noisy” genes so that such a partition
exists. This is known as the Strip Recovery problem and is similar to the
well-known Minimum Common String Partition problem, but also quite
different since the latter has no restriction on the block sizes.

The algorithmic aspects of Strip Recovery are not well-understood,
especially in the presence of duplicated genes. In this work, we present
several new complexity results. First, we solve an open problem men-
tioned by Bulteau and Weller in 2019 who asked whether, in polynomial
time, one can decide if a common partition with block sizes at least two
can be achieved without deleting any genes. We show that the problem
is actually NP-hard for any fixed list of allowed block sizes, unless blocks
sizes are all multiples of the minimum allowed size. The problem is also
hard on fixed alphabets if this list is part of the input. However, the
minimum number of required gene deletions can be found in polynomial
time if both the allowed blocks sizes and alphabet are fixed.

1 Introduction

In comparative genomics, a common task is to partition two genomes with dupli-
cated genes into syntenic blocks, which are blocks that have the same gene con-
tent. Finding these blocks can have many applications, including the inference
of ancestral gene order [2,3], the reconstruction of phylogenies [15,20], gene
tree/species tree reconciliation [14], the study of whole genome duplications [16],
or the prediction of orthologous genes [27,29]. Synteny is a somewhat loosely
defined concept, but almost every definition requires that syntenic blocks have
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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a minimum number of genes in common. By representing the two genomes G1

and G2 as strings, finding syntenic blocks can be modeled as a common string
partition problem, where the goal is to split the genomes into two equal sets
of substrings. A popular formulation is the Minimum Common String Partition
(MCSP), where one asks for the minimum number of blocks in a common par-
tition. This problem was initially proposed for the purpose of orthology assign-
ment [9]. However, it has been argued that MCSP does not necessarily find the
“best” partition in terms of syntenic blocks. This is because MCSP might infer
blocks that are too small for syntenies, possibly of size 1, in order to attain its
optimization criterion.

In [35], the authors argued that these small blocks can be treated as noise
in the context of genome comparison, and propose the alternate Strip Recovery
formulation. In this problem, the goal is to find a common string partition in
which every block has length at least k, where k is a given parameter (the
simplest version puts k = 2). Of course, such a partition does not always exist,
which led to the Maximal Strip Recovery (MSR) problem. Here, the objective
is to find maximum-length subsequences G′

1 and G′
2 of G1 and G2, respectively,

such that G′
1 and G′

2 do admit a common string partition with the desired block
sizes. The minimization version of the problem is called Complementary MSR,
and asks to delete a minimum number of genes from the two strings so that they
admit the desired block partition. Either way, this formulation has the advantage
over MCSP of placing more genes into syntenic blocks of interesting sizes.

Despite this, MSR has received much less attention than its MCSP sister
problem. In particular, an open problem from [8] states that it is not even known
whether, in polynomial time, one can find a common partition into blocks of size
two or more without deleting any gene. Moreover, previous work on MSR mainly
focused on the permutation model, i.e., genomes without duplicates, whereas
most of the aforementioned applications deal with paralogs. In this paper, we are
interested in gaining a better understanding of the theoretical and algorithmic
aspects of MSR with duplicated genes. In fact, we generalize the problem in
several ways (see Fig. 1). First, we allow the input to specify an arbitrary list
F of allowed block sizes in the desired partition, with F possibly infinite. The
Maximal Strip Recovery problem becomes a special case that asks for a common
partition with block sizes in F = {2, 3, . . .}. More generally, blocks of size at least
k can be specified with F = {k, k + 1, . . .}. Our framework does handle block
sizes of non-contiguous integer sets, for instance requiring blocks of size 7 or 11
with F = {7, 11}. Although this does not appear to be biologically relevant, this
level of genericity is actually crucial for our purposes. As we will show in Section
3, any infinite set F of block sizes can be reduced to an equivalent finite set F ′

that is not necessarily contiguous but that is easier to handle algorithmically.
For instance, the case F = {4, 5, . . .} is equivalent to the case F ′ = {4, 5, 6, 7, 9},
motivating the need to handle arbitrary F . Second, we allow the input to consist
of two sets of strings W1 and W2 instead of individual strings. The two sets may
differ in size and in total string length. This can be useful for genome analyses
that require the comparison of multiple chromosomes or unrelated segments
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between two species. Moreover, this can be useful to devise simple NP-hardness
reductions. We provide several algorithmic results for these generalizations.

sequence A = abccabcbab

sequence B = cbabcababc

partition of A = abc · cab · cbab
partition of B = cbab · cab · abc

Fig. 1. An example of partition of A and B without deleting any letter, with F = {3, 4}
and the alphabet Σ = {a, b, c}. Note that when we change F to F = {4}, then no such
partition exists. In this case, it seems the best one can do is to delete the first 6 letters
of A and the last 6 letters of B.

Related Work. Wang and Zhu first proved that both (the decision versions
of) MSR and Complementary MSR are NP-complete [34] in the permutation
model. Almost at the same time, MSR was proved to be APX-hard [6,26], and
CMSR was also proved to be APX-hard by Jiang [26]. On the positive side,
some heuristic approaches based on Maximum Independent Set and Maximum
Clique were applied [11,35] and they were shown to be effective. For MSR, Chen
et al. proposed a factor-4 (polynomial-time) approximation algorithm for MSR
[10]. In [23], a factor-3 approximation algorithm was proposed for CMSR and
an O∗(3k) fixed-paramter tractable (FPT) algorithm, where k is the parameter
representing the minimum number of deleted genes, was also proposed for CMSR
(the O∗ notation suppresses polynomial factors). The approximation factor for
CMSR was improved to 2.33 [32], then more recently to 2 [22]. The best FPT
algorithmic bound for CMSR is O(2.36kn2) [4]. In 2014, Jiang and Zhu obtained
a linear kernel of size 78k for CMSR [24]. This kernel was improved to 58k [21]
and more recently to 42k [31]. Combined with these kernel bounds, CMSR can
be solved in O(n2 + 2.36kk2) time. Of course, the MCSP problem also received
quite some algorithmic attention [12,19]. The best known approximation (to
minimize the number of blocks) has a factor of O(log n) [17]. For these reasons,
the fixed-parameter tractability of MCSP was considered in 2008 [13]. For d-
occurrence strings, the problem was first shown to be FPT in [5,25]. In 2014, it
was shown that MCSP parameterized by the solution size � is FPT [7]. In 2021,
Lafond and Zhu also studied the important variant when a permutation (on the
final blocks) is given in advance [28].

Our Contributions. In addition to generalizing the MSR problem to arbitrary
block sizes F and multiple sets of strings, we solve the open problem stated in [8]
mentioned above. Recall that the problem asks whether it is possible to decide
in polynomial time if a common partition with block sizes in F = {2, 3, . . .} can
be found without deleting any marker. We actually obtain a dichotomy result
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in terms of F : the problem is in P if each member of F is a multiple of its
minimum, and is NP-hard otherwise. This holds whether the input consists of
two strings or two sets of strings, and even on instances in which each symbol
of the alphabet occurs at most 6 times. The open problem of [8] is solved as a
special case of this result.

On the positive side, we show that if F and the alphabet Σ are both fixed
finite sets, then the generalized strip recovery problem can be solved in polyno-
mial time. More precisely, we show that the problem is in the XP complexity
class with respect to the parameters max(F ) and |Σ| by proposing an algorithm
that runs in time O(n|F ||Σ|max(F )+3). Although this may be impractical, we show
that unfortunately, fixing both Σ and F is necessary and in some sense best
possible, since the problem is NP-hard if Σ is fixed but not F .

2 Preliminary Notions

We use the notation [n] = {1, 2, . . . , n}. Let S be a string. We write |S| for
the size of S and S[i..j] for the substring of S containing positions from i to
j, inclusively. Each individual character of S is called a marker. Thus, S has
|S| distinct markers, and two markers may represent the same symbol but are
considered distinct if they are located at different positions of S. We say that S′

is a subsequence of S if S′ can be obtained by deleting some set of markers form
S. A permutation string is a string in which each symbol occurs exactly once.

A partition of S is a multiset of strings that can be concatenated to obtain S.
The strings in the partition are called blocks. If W is a set of strings, a partition
of W is the union (in the multiset sense) of a partition of each of its strings. For
a set of integers F , we say that a partition M is an F -partition if the length of
each block of M is in F . A common partition of two sets of strings W1 and W2

is a multiset of strings M such that M is a partition of both W1 and W2. Also,
M is a common F -partition if M is also an F -partition.

The General and Exact F -Strip Recovery Problems
Assume that F is a fixed set of integers, possibly infinite. The general version of
the original Strip Recovery problem that we propose is the following.

The General F -Strip Recovery Problem (GSR-F )
Input : two sets of strings W1 and W2;
Question : delete a minimum number of markers from the strings in W1 and
W2 so that the resulting strings admit a common F -partition.

We will also study the following variant.

The Exact F -Strip Recovery Problem (XSR-F )
Input : two sets of strings W1 and W2;
Question : does there exist a common F -partition of W1 and W2?

The original Strip Recovery problem is the special case of GSR-F where
|W1| = |W2| = 1 and F = {2, 3, . . .}. As we mentioned, the problem of [8] asks
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whether XSR-F is polynomial-time solvable with F = {2, 3, . . .}. Notice that F
is considered fixed, not part of the input. We will consider the case where F is
in the input later.

3 The Exact F -Strip Recovery Problem with Fixed F

We now obtain a dichotomy result on XSR-F . If all elements of F are multiples of
its minimum, then XSR-F can easily be solved in polynomial time, and otherwise
XSR-F is NP-hard (assuming that F is enumerable, as we describe below).
Before we proceed, let us discuss some aspects of fixed but infinite F sets. The
fact that F can be infinite introduces ambiguity as to how an algorithm can
access its elements, since it depends on how F is specified. As it turns out,
infinite sets can always be replaced by a finite, but equivalent set. This requires
knowledge of the greatest common divisor gcd(F ) of F , but it always exists.

We need a few more definitions beforehand. For two sets F and F ′, we say
that XSR-F and XSR-F ′ are equivalent if W1,W2 is a Yes-instance of XSR-F
if and only if W1,W2 is a Yes-instance of XSR-F ′. For a set F of integers and
an integer t, we say that t is expressible by F if there exist {g1, . . . , gk} ⊆ F and
positive integer coefficients a1, . . . , ak such that t =

∑k
i=1 aigi.

For instance, when F = {2, 3, . . .} as in the MSR problem, every integer
equal to or greater than 2 is expressible by F .

Lemma 1. XSR-F and XSR-F ′ are equivalent if and only if the set of integers
expressible by F is equal to the set of integers expressible by F ′.

Proof. Assume that XSR-F and XSR-F ′ are equivalent. Consider k ∈ F . Take
an instance of XSR-F that consists of W1 = W2 = {ak}, where ak is the string
with k a’s. This is clearly a Yes-instance of XSR-F . By equivalence, this is also
a Yes-instance of XSR-F ′, which is only possible if k is expressible by F ′. Since
this holds for every k ∈ F , all elements of F are expressible with F ′. By the
same argument, all elements of F ′ are expressible by F .

Conversely, suppose that F and F ′ express the same set of elements. Let
W1,W2 be a Yes-instance of XSR-F and let M be a common F -partition. Let
S be any block in M . Then |S| is expressible by F , and thus also by F ′. This
means that S can be partitioned into substrings of lengths in F ′. We can apply
this to every S of M , resulting in a common F ′-partition, and thus W1,W2 is
also a Yes-instance of XSR-F ′. By the same argument, a Yes-instance of XSR-F ′

is also a Yes-instance of XSR-F , and thus they are equivalent. ��
Again relating to the F = {2, 3, . . .} case, the above implies that MSR is

equivalent to the case F ′ = {2, 3}, since they suffice to express every integer in
F . We show that this behavior works for every infinite F .

Proposition 1. Let F be an infinite set of positive integers. Then there exists
a finite set F ′ ⊆ F such that XSR-F and XSR-F ′ are equivalent.
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Proof. First observe that there must exist a finite set G ⊆ F such that gcd(G) =
gcd(F ). One way to see this is to start with G = {min(F )}. If gcd(G) = gcd(F ),
we are done. Otherwise, there is some k ∈ F such that gcd(G) does not divide k.
Add k to G. The gcd of {min(F ), k} is strictly smaller than the gcd of {min(F )}.
We can repeat this process of adding elements of F to G until we obtain a set
G that satisfies gcd(G) = gcd(F ). Because gcd(F ) ≥ 1 and because the gcd of
G starts at min(F ) and decreases monotonically, the process finishes in at most
min(F ) step, a finite number.

Let us denote g := gcd(G) = gcd(F ) for the rest of the proof. Now, since
every k ∈ F is a multiple of g, every integer expressible by F (and by G) is a
multiple of g. Let us now argue that there exists an integer t(G) such that every
multiple of g greater than t(G) is expressible by G. If g = 1, this is saying that
every integer above some t(G) is a linear combination of elements of G. In this
case, t(G) is known to exist by one of Schur’s theorems (note that finding the
smallest such t(G) is known as the coin problem, see [1]). Note that the best
known upper bound for t(G) is in the order of O(max(G)2) [30]. Now assume
that g ≥ 2. Let G′ = {x/g : x ∈ G}. Then gcd(G′) = 1, as otherwise G would
have the common divisor g · gcd(G′), which is larger than g. Thus there is some
t(G′) such that every integer greater than t(G′) is expressible by G′. This implies
that every multiple of g greater than t(G) := g · t(G′) is expressible by G, as
desired.

Since G ⊆ F , every multiple of g greater than t(G) can be expressed by
F , and these are the only expressible integers greater than t(G). It follows the
integers expressible by F and by F ′ = G ∪ {x ∈ F : x ≤ t(G)} are equal. By
Lemma 1, XSR-F and XSR-F ′ are equivalent. ��

Note that if F ′ is the finite subset of F generated by the above proof, then
max(F ′) (and thus |F ′|) can be upper bounded by max(G)2, where G satisfies
G ⊂ F and gcd(G) = gcd(F ). It seems difficult to make a more precise analysis
of these values for generic F . We now obtain our dichotomy result.

Proposition 2. Let F be a set of integers and let � = min(F ). If every member
of F is a multiple of �, then XSR-F can be solved in polynomial time.

Proof. Let W1,W2 be an instance of XSR-F . By Lemma 1, XSR-F and XSR-{�}
are equivalent. Thus, we may assume that F = {�}. In this case, all strings of the
partition must have the same length and there is only one way to split W1 and
W2. It is then easy to see that W1 and W2 admit a common F -partition if and
only if each substring in the forced partitions appears with the same number of
occurrences. ��
Theorem 1. Let F be any set of integers in which some element is not a mul-
tiple of min F . Then XSR-F is NP-hard, even if each symbol occurs at most 6
times in the input strings.

Proof. Our reduction is from the Positive Cubic XSAT problem. In this variant
of SAT, we are given a boolean formula φ in CNF form in which each variable
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occurs exactly three times, and in which each clause has exactly three literals
that are all positive. The goal is to decide whether there exists an assignment of
the variables such that for each clause, exactly one of its variables is true (and
two are false). When this is possible, we say that φ is 1-in-3 satisfiable. Note
that this can also be seen as an exact set cover problem in which each set has
three elements and each element has frequency three. The Positive Cubic XSAT
problem was shown NP-hard in [33].

Let φ be an instance of this problem. Let x1, . . . , xn be its variables and let
C1, . . . , Cm be its clauses. Let � = min F and let h be the smallest element of F
such that h is not a multiple of �. By the previous proposition, we may assume
that h exists. Moreover by Proposition 1, we may assume that F is finite. Indeed,
if F is infinite, it is equivalent to some finite F ′. Since F is fixed, F ′ is also fixed
and we may assume that an algorithm has knowledge of F ′ for the purposes of
the reduction. We will thus treat F as a finite set. Hence, we can find � and
h in constant time (this allows the reduction to run in polynomial time). Note
that every element between � and h (exclusively) in F is a multiple of � and,
by Lemma 1, we may ignore them and still have an equivalent instance. We will
therefore assume that h is the second smallest element of F .

Let r = 
h/�� be the number of times we can fit � into h. Let s = �(r+1)−h,
which is the excess we get if we try to fit one more �. Since � is not a divisor
of h, we know that 0 < s < �. Also note for later reference that h = r� + � − s
(obtained by rearranging).

For our reduction, we will define several short strings that serve as build-
ing blocks for our instance. Unless stated otherwise, each string we define is a
permutation string, and no symbol occurs in two of those strings. Thus, only
the length of these strings matters, and the exact nature of their symbols is
arbitrary.

To each clause Ca in φ corresponds four strings La,Ma,M′
a and Ra (here,

L,M and R stand for left, middle and right, respectively), where

– La and Ra are permutation strings of length s;
– Ma and M

′
a are permutation strings of length h − s;

– none of the La,Ma,M′
a,Ra have a symbol in common;

Intuitively, the strings LaMa and M
′
aRa will represent the fact that clause

Ca is “chosen” by a variable, whereas the strings MaRa and LaM
′
a will represent

the fact that clause Ca is “not chosen” by a variable.
Now let xi be a variable. Let Ca, Cb, Cc be the three clauses containing xi.

The xi variable has two corresponding strings Xi and X ′
i built from the clause

strings from above, and from other substrings P j
i , P ∗

i , Qi, Si, T
∗
i and T j

i , where
j ∈ [r]. They are defined as follows:

– for j ∈ [r], P j
i is a permutation string of length �;

– P ∗
i , Qi, Si, T

∗
i are permutation strings of length � − s;

– for j ∈ [r], T j
i is a permutation string of length �.

The above strings do not share any symbol, neither between themselves or with
strings from other variables or from clauses.
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Define Xi and X ′
i as

Xi = P 1
i P 2

i . . . P r
i P ∗

i La Ma Ra Qi Lb Mb Rb Si Lc Mc Rc T ∗
i T 1

i T 2
i . . . T r

i

X ′
i = P 1

i P 2
i . . . P r

i P ∗
i La M

′
a Ra Qi Lb M

′
b Rb Si Lc M

′
c Rc T ∗

i T 1
i T 2

i . . . T r
i

Notice that each Xi and each X ′
i is a permutation string, and that Xi and

X ′
i do have symbols in common (in fact, they only differ in terms of the

Ma,M′
a,Mb,M

′
b,Mc,M

′
c substrings).

We put W1 = {X1,X
′
1,X2,X

′
2, . . . , Xn,X ′

n}.
As for W2, each of its strings has length � or h. First, for each variable xi,

with Ca, Cb, Cc the clauses containing xi, add the following strings to W2:

− P 1
i , P 2

i , . . . , P r
i (r strings of length �)

− P 1
i P 2

i . . . P r
i P ∗

i (one string of length r� + � − s = h}
− P ∗

i La (one string of length � − s + s = �)
− RaQi, QiLb, RbSi, SiLc (four strings of length s + � − s = �)
− RcT

∗
i (one string of length s + � − s = �)

− T ∗
i T 1

i T 2
i . . . T r

i (one string of length r� + � − s = h}
− T 1

i , T 2
i , . . . , T r

i (r strings of length �)

Then, for each clause Ca, add the following strings to W2:

− LaMa, M
′
aRa (two strings of length h)

− MaRa, LaM
′
a, MaRa, LaM

′
a (four strings of length h)

Note that the latter includes the same string MaRa twice, and the same string
LaM

′
a twice. However, LaMa and M

′
aRa is included once.

This concludes the construction of W1 and W2. Note that because � and h are
constants, we can easily build W1 and W2 in polynomial time. Let us consider
the maximum number of occurrences of a symbol. Note that for each i ∈ [n],
each variable substring P j

i , P ∗
i , Qi, Si, T

j
i , T ∗

i occurs only twice in W1, namely in
Xi and X ′

i. One can also see from the construction of W2 that they occur twice.
As for the clause substrings La,Ma,M′

a and Ra, we note that La and Ra occur
six times in W1, twice for each variable that Ca contains. Also, each of Ma and
M

′
a occurs three times. The same holds for W2. It follows that the maximum

number of occurrences of a symbol is six.
It might be useful to describe how the reasoning before proceeding further.

As we will show, for each xi, there are only two ways to partition Xi and X ′
i.

Putting xi = true will correspond to the partition in Fig. 2:

Xi = P 1
i P 2

i . . . P r
i P ∗

i La Ma Ra Qi Lb Mb Rb Si Lc Mc Rc T ∗
i T 1

i T 2
i . . . T r

i

X ′
i = P 1

i P 2
i . . . P r

i P ∗
i La M

′
a Ra Qi Lb M

′
b Rb Si Lc M

′
c Rc T ∗

i T 1
i T 2

i . . . T r
i

Fig. 2. Partition of Xi and X ′
i corresponding to xi = true.
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where a double-underline indicates a substring of length h, and a single under-
line a substring of length �. The LaMa and M

′
aRa substrings are included as

blocks here, which correspond to choosing xi to satisfy clause Ca. The same
holds for Cb and Cc. Since LaMa and M

′
aRa are only present once in W2, no

other xj can choose these substrings again. Putting xi = false corresponds to
the partition in Fig. 3.

Xi = P 1
i P 2

i . . . P r
i P ∗

i La Ma Ra Qi Lb Mb Rb Si Lc Mc Rc T ∗
i T 1

i T 2
i . . . T r

i

X ′
i = P 1

i P 2
i . . . P r

i P ∗
i La M

′
a Ra Qi Lb M

′
b Rb Si Lc M

′
c Rc T ∗

i T 1
i T 2

i . . . T r
i

Fig. 3. Partition of Xi and X ′
i corresponding to xi = false.

where here, the MaRa and LaM
′
a substrings are included. They correspond

to not choosing xi to satisfy clause Ca. These substrings are present twice in
W2, and so two variables of Ca will need to choose not to satisfy it.

Let us now proceed with the details. We show that φ is 1-in-3 satisfiable if
and only if there exists a common F -partition of W1 and W2.

(⇒) Suppose that φ is 1-in-3 satisfiable by some assignment A of the xi’s.
We describe how to partition the strings of W1. For each xi such that xi = true
under assignment A, partition Xi and X ′

i as in Fig. 2. If instead xi = false,
partition Xi and X ′

i as in Fig. 3. One can verify through manual inspection that
each substring is of length either � or h.

As for W2, none of its strings is partitioned further in our solution. Thus
each substring is of length � or h.

Let us argue that there is a bijection between the strings of our partition
of W1 and the strings of W2. Consider a clause Ca and let xi, xj , xk be its
variables. Assume without loss of generality that xi = true and xj = xk = false.
Hence we partitioned Xi as in Fig. 2 and Xj ,Xk as in Fig. 3. Note that in W1,
the substrings LaMa,MaRa,MaRa,M′

aRa occur only in Xi,X
′
i,Xj ,X

′
j ,Xk,X ′

k.
Moreover, LaMa occurs exactly once in our partition of W1, namely in the
partition of Xi. This is correct since LaMa is also present once in W2. The
string MaRa is present exactly twice in our partition of W1 because of how we
partition Xj and Xk, and MaRa is also twice in W2. Similarly, M′

aRa is chosen
once in X ′

i, and LaM
′
a is chosen twice, namely in X ′

j and X ′
k. These correspond

to the number of times these substrings occur in W2, and we may put those in
a one-to-one correspondence.

Consider now the strings of W2 added for a variable xi. If xi = true, then
P 1

i . . . P r
i P ∗

i ,RaQi,RbSi,RcT
∗
i and the T j

i strings are covered by Xi. Moreover,
the P j

i , P ∗
i La, QiLb, SiLc and T ∗

i T 1
i . . . T r

i strings are covered by X ′
i. These are

distinct for each Xi and can be put in a one-to-one correspondence. If xi = false,
one can easily check that the same strings are covered, but with the roles of Xi

and X ′
i reversed. Therefore, a common partition exists.

(⇐) Suppose that W1 and W2 admit a common partition. We first argue
that none of the strings of W2 is partitioned into smaller substrings. Since � is
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the minimum of F , none of its strings of length � can be partitioned. Consider
a string of length h of W2. Recall that by assumption h is the second smallest
value of F . Thus, it cannot be partitioned further either, since the only way
would be to split it into substrings of length �, which is not possible since � is
not a divisor of h.

Now, consider a string Xi of W1 and let Ca, Cb, Cc be the clauses that xi occurs
in. We argue that Xi can only be split in two ways, those shown in Figs. 2 and 3.
To see this, let W1,W2, . . . ,Wk be the blocks in the partition of Xi, such that the
concatenation W1W2 . . . Wk is Xi. Since all strings of W2 are of length � or h, there
are only two options for W1: it must either be the prefix of length h or the prefix
of length � of Xi. That is, W1 must be P 1

i . . . P r
i P ∗

i , or it must be P 1
i .

First assume that W1 = P 1
i . . . P r

i P ∗
i . It is easily seen that the partition of

Fig. 2 is forced from that point. This is because in Xi, W1 is followed by La,
and the only strings of W2 that starts with the first symbol of La are LaMa and
LaM

′
a, so here we are forced to include LaMa from Xi. Then, the only substring

of Xi that starts with a prefix of Ra and that is in W2 is RaQi. Then, in a
similar fashion, we are forced to choose LbMb then RbSi, then LcMc and then
RcT

∗
i , followed by the T j

i ’s individually. Thus Xi is partitioned as in Fig. 2. Now
consider X ′

i. The partition of W1 must include P 1
i , . . . , P r

i , P ∗
i La, QiLb, SiLc,

and T ∗
i T 1

i . . . , T r
i . All of these include symbols that are unique to Xi and X ′

i, and
since they were not included in the Xi partition above, they must be substrings
of the X ′

i partition. This implies that X ′
i must be partitioned as in Fig. 2.

The other possibility is that W1 = P 1
i . In this case, the first string of X ′

i

in the partition must be P 1
i . . . P r

i P ∗
i . We can apply the arguments from above

symmetrically by interchanging the roles of Xi and X ′
i to deduce that in this

case, Xi and X ′
i are partitioned as in Fig. 3.

Now assign xi = true if Xi and X ′
i are partitioned as in Fig. 2, and assign

xi = false if instead Xi and X ′
i are partitioned as in Figure 3. Let Ca be a clause

with variables xi, xj , xk. Since the LaMa and M
′
aRa strings are in W2 exactly

once, it follows that exactly one of Xi,Xj or Xk is partitioned as in Fig. 2. This
means that exactly one of xi, xj or xk is true. Thus φ is 1-in-3-satisfiable. ��

The above reduction made heavy use of the fact that we allow the input to be
sets of strings instead of individual strings. The problem might not be NP-hard
if we receive only two input strings. Unfortunately, we show that it does not
make the problem easier.

Theorem 2. Let F be any set of integers in which at least one element is not
a multiple of min F . The XSR-F problem is NP-hard, even when restricted to
instances in which W1,W2 both contain only one string, and even if each symbol
occurs at most 6 times.

Proof. We reduce from the XSR-F problem in which the input sets may have
more than one string but occurrences at most 6, which is NP-hard by Theorem 1.
Let W1,W2 be an instance of this problem. Denote W1 = {A1, . . . , An} and
W2 = {B1, . . . , Bm}, and assume without loss of generality that n ≥ m. Let �
be the minimum of F . Let Λ = {X1, Y1, Z1,X2, Y2, Z2, . . . , Xn, Yn, Zn} be new
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permutation strings, each of length � and each containing symbols that occur in
no other string. Form the new instance of XSR-F with string sets W ′

1 = W1 ∪ Λ
and W ′

2 = W2∪Λ. It is clear that W1,W2 is a Yes-instance if and only if W ′
1,W ′

2

is a Yes-instance, since the Λ strings must be matched. We shall therefore use
the W ′

1,W ′
2 instance for our reduction.

Now build single strings S and T as follows:

S = A1 X1 Y1 Z1 A2 X2 Y2 Z2 . . . An Xn Yn Zn

T = B1 Z1 Y1 X1 B2 Z2 Y2 X2 . . . Bm Zm Ym Xm Zm+1 Ym+1 Xm+1 . . . Zn Yn Xn

Note that the order of the Λ triples is flipped from S to T , i.e. XiYiZi occurs
in S but ZiYiXi occurs in T . Also note that An and Bm are visually aligned
above, which is slightly misleading since n is possibly much larger than m. We
now show that W ′

1,W ′
2 admit a common F -partition if and only if S, T admit a

common F -partition.
Suppose that W ′

1,W ′
2 admit a common F -partition. Observe that S is a

concatenation of the elements of W ′
1 and T of the elements of W ′

2. For this
reason, this partition is also a common F -partition of S and T .

Conversely, assume that S, T admit a common F -partition. Consider some
Xi substring. Notice that Xi is preceded and succeeded by a different symbol
in S and T (i.e. preceded by some symbol of Ai in S and preceded by Yi in
T , and succeeded by Yi in S and succeeded by some Bi symbol or by Zi+1 in
T ). Because of this, and because Xi has length �, any common F -partition must
contain Xi as a block. By the same reasoning, each Yi and Zi substring must also
be a block. It follows that the other blocks must form a partition of {A1, . . . , An}
and {B1, . . . , Bm}, and thus there is a common F -partition of W ′

1 and W ′
2. ��

4 GSR-F in Polynomial Time for Fixed F and Alphabet

We now return to the optimization version GSR-F , where our goal is to delete
a minimum number of characters from the input strings so that they admit a
common F -partition. Note that this problem is NP-hard, by the previous section.
However, the hardness reduction requires strings with alphabets of arbitrary size.
We show that if Σ is a fixed alphabet, and if F is a fixed set of integers, then
GSR-F can be solved in polynomial time. More specifically, we show that GSR-F
can be solved in time O(n|F ||Σ|k+3), where k = max(F ).

Note that this can be used to solve the XSR-F problem under the same
conditions. Moreover, owing to Proposition 1, requiring F to be finite is not a
strong constraint for XSR-F , since most infinite sets of interests reduce to the
finite case (including F = {2, 3, . . .}, which can be replaced with F = {2, 3}).

Let B be the set of strings on alphabet Σ whose length is in F . Note that
|B| =

∑
c∈F |Σ|c ≤ ∑k

c=1 |Σ|c ≤ |F ||Σ|k, which is a constant. Moreover, in any
F -partition, each block must be a string of B.

To obtain a polynomial time algorithm, it suffices to compute the set of
possible ways to split the input into blocks that are in B, and to check whether
there is a common split between the input sets of strings. This is not too hard
to achieve using dynamic programming, as we describe.
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A block count table is a map C : B → N that assigns to each X ∈ B an entry
C(X) that, for our purposes, represents a number of desired occurrences for X
in a common F -partition. For a set of strings W and a block count table C, we
say that W is C-splittable if there is an F -partition of W in which each string
X ∈ B occurs exactly C(X) times.

In our dynamic programming, we order the strings of W1 and W2 arbitrarily,
and process each string in order one marker at a time, from left to right. We will
rely on the table described as follows.

Definition 1. Let W be a set of strings and let C be a block count table. Then we
denote by D(W, C) the minimum number of markers to delete from the strings
in W so that the resulting strings are C-splittable (with D(W, C) = ∞ if this is
not possible).

Our goal is to find minC(D(W1, C) + D(W2, C)). Note that this is always
less than infinity, since in the worst case we can take C with all zeroes, i.e. delete
everything from W1 and W2. However, the number of C’s to consider is possibly
infinite. We will bound it to polynomial size later.

We need to add a few definitions. For two strings X and Y , we write X ≺ Y if
X is a subsequence of Y . Furthermore, for a block count table C and X ∈ B, let
C − X denote the block count table in which C(X) is reduced by one. Precisely
C − X = C ′, where C ′(X) = C(X) − 1 and C ′(Y ) = C(Y ) for all Y ∈ B \ {X}.
Note that C ′(X) = −1 is possible under this definition. By a slight abuse of
notation, we still call C ′ a block count table, and allow negative values (observing
that in this case, no string is C ′-splittable).

We can now define a recurrence, stated in Lemma 2, for D(W, C) where W
is a general set of strings. Aside from a few trivial cases, the main idea is that
to find a partition of W with counts C, we can fix some Wh ∈ W and focus on
the last block of Wh in this partition. For each suffix Wh[j + 1..|Wh|] and each
possible X ∈ B that is a subsequence of this suffix, we count |Wh| − j − |X|
deletions from that suffix to obtain X. We then remove this suffix, resulting in
a set of strings of shorter total length. We can then use a recurrence on this
shorter set of strings, but with the target count table C − X.

Lemma 2. Let W = {W1, . . . ,Wh} be a set of strings and let C be a block count
table. Then the following holds:

1. if C(X) = 0 for all X ∈ B, then D(W, C) =
∑h

i=1 |Wi|;
2. otherwise, if C(X) < 0 for some X, then D(W, C) = ∞;
3. otherwise, if W = ∅, then D(W, C) = ∞;
4. otherwise, if |Wh| < min(F ), then D(W, C) = D(W \ {Wh}, C) + |Wh| (note

that this includes the case where Wh is the empty string);
5. otherwise, for j ∈ {0, 1, . . . , |Wh| − min(F )}, define W(j) = (W \ {Wh})∪

{Wh[1..j]}. Then D(W, C) is the minimum between D(W \ {Wh}, C) + |Wh|
and the expression

min
0≤j≤|Wh|−min(F )

(

min
X∈B:X≺Wh[j+1..|Wh|]

(
D(W(j), C − X) + |Wh| − j − |X|

))
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Proof. We begin with the first four cases. If C(X) = 0 for each X, then the only
way to achieve a count table with all zeroes is to delete every marker from every
W string, which justifies Case 1. Otherwise, if C(X) < 0 for some X, then this
is impossible to achieve, which justifies Case 2. At this point, we may assume
that C(X) ≥ 0 for all X, and that C(X) > 0 for at least one X ∈ B. If W = ∅,
then we must achieve count table C with an empty set of strings, but this is
not possible for those X with C(X) > 0, and so D(W, C) = ∞ as in Case 3. If
|Wh| < min(F ), we must delete all of its markers since it cannot contribute to a
block, which justifies Case 4.

We now proceed which Case 5. Let Wh and W(j) be defined as in the state-
ment. We shall refer to the longer, double-minimization expression of Case 5 as
the long expression. First note that the long expression is well-defined, i.e. the
two minimizations are not over empty sets. Indeed, at this point we may assume
that |Wh| ≥ min(F ), which means that for any j ≤ |Wh|−min(F ), there is some
X ∈ B that is a subsequence of Wh[j + 1..|Wh|].

Now, let j∗ ∈ {0, 1, . . . , |Wh| − min(F )} and X∗ ∈ B, with X∗ ≺ Wh[j∗ +
1..|Wh|], such that j∗ and X∗ minimize the long expression. Let us define

d = min

{
D(W \ {Wh}, C) + |Wh|
D(W(j∗), C − X∗) + |Wh| − j∗ − |X∗|

which is the value chosen in Case 5. Let M be a minimum-size set of markers
to delete from W so that after deleting these markers, we obtain a C-splittable
set of string. By definition, we have |M | = D(W, C), and we need to prove that
|M | is both an upper bound and a lower bound on d.

Let us start by showing that |M | ≤ d. If d = ∞, then this is
clear. Otherwise, we can find a set of d markers to delete from W to
get a C-splittable string as follows. First if d = D(W \ {Wh}, C) +
|Wh|, we delete all markers from Wh, plus D(W \ {Wh}, C) markers
from the other strings to obtain a C-splittable set of strings. Second if
d = D(W(j∗), C − X∗) + |Wh| − j∗ − |X∗|, we delete |Wh| − j∗ − |X∗| markers
from Wh[j∗ + 1..|Wh|] to obtain X∗, thereby using the suffix of Wh to make the
X∗ block (which is in B). Then, we delete D(W(j∗), C−X∗) markers in W(j∗) to
obtain a (C − X∗)-splittable string. The result is a C-splittable string obtained
by the deletion of d markers. In either case, the optimality of M implies that
|M | ≤ d.

We next show that |M | ≥ d. Let W ′ be the set of strings obtained after
deleting each marker of M from W. Consider an F -partition P ′ of W ′ that
attains count table C. One possibility is that all markers of Wh get deleted
by M . If this is the case, P ′ is obtained only with W \ {Wh} and obviously,
|M | = |Wh| + D(W \ {Wh}, C) ≥ d.

We thus assume that Wh contributes to at least one block. Then, there is a
suffix Wh[j′ + 1..|Wh|] of Wh of length at least min(F ) such that some markers
of M are deleted from that suffix, resulting in a block X ′ that is part of P ′.
Note that j′ is between 0 and |Wh| − min(F ), and that |Wh| − j′ − |X ′| markers
must be deleted from that suffix. Also, this means that the block count table
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C − X ′ is attained by deleting markers from (W \ {Wh}) ∪ {Wh[1..j′]} = W(j′).
Thus D(W, C) = |M | = D(W(j′), C − X ′) + |Wh| − j′ − |X ′|. The value of d is
smaller of equal to that value, since d is obtained by minimizing over all possible
values of j and X, including j′ and X ′. Therefore, |M | ≥ d. This concludes the
proof. ��

It only remains to describe the computational aspects of our approach.
The recurrence needs to be computed on both W1 and W2. Let n =
max(

∑
W∈W1

|W |,∑W∈W2
|W |). Notice that if there is a common F -partition P

of W1 and W2, then no string of B occurs more than n times in P . Let C(n) be the
set of all possible count tables whose values are all at most n. That is, C ∈ C(n)
if and only if C(X) ≤ n for every X ∈ B. Then |C(n)| = (n + 1)|B| ∈ Θ(n|B|),
which is polynomial in n since |B| is constant1.

To solve the strip recovery problem for W1 and W2, we must find C such
that W1 and W2 are both C-splittable after a minimum number of deletions. It
therefore suffices to compute

min
C∈C(n)

(D(W1, C) + D(W2, C))

Also, note that this idea generalizes trivially to the case where more than two
sets of strings are given. The main algorithm is given below.

1 function getMinStripRecovery(W1,W2)
2 computeD(W1)
3 computeD(W2)
4 return minC∈C(n)(D(W1, C) + D(W2, C))
5 function computeD(Wa = {W1, . . . ,Wl})
6 Let D be a map, initially empty
7 for h = 1..l do
8 for i = 1..|Wh| do
9 Let W = {W1,W2, . . . ,Wh−1,Wh[1..i]}

10 for C ∈ C(n) do
11 Compute D(W, C) using Lemma 2
12 end
13 end
14 end
Algorithm 1: Pseudocode for the computation of the dynamic
programming.

Theorem 3. Algorithm 1 solves the GSR-F problem in time O(n|F ||Σ|max(F )+3)

1 Let us note that in practice, the same block can’t actually occur more than n/ min(F )
times, where here n can be the minimum total length of W1 or W2. Hence, the
smaller set C(n/ min(F )) should be considered in practice, but this does not help
the complexity analysis.
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Proof. The correctness of the algorithm is easy to see if we assume that
computeD computes the correct D values. To see that this is the case, notice
that it computes D(W, C) in increasing order of number of strings and increasing
order of the prefix of the last string. Focus on one particular iteration with some
h ∈ [l] and W = {W1, . . . ,Wh−1,Wh[1..i]}. As can be seen from the recurrence of
Lemma 2, the computation of D(W, C) requires either access to D(W\{Wh}, C),
which has one less string, or requires some D(W(j), C −X), where W(j) has the
same number of strings as W but whose last string is shorter. In either case,
the order of computation lets us assume that all values required for a specific
D(W, C) value have been calculated on previous iterations. It follows that the
algorithm is correct.

Let us now look at the time complexity, starting with the time spent in
computeD(W1). One can see from the structure of the loops that this procedure
iterates over n · |C(n)| combinations of W and C. We can thus focus on the time
required to calculate one D(W, C) entry. Note that Case 5 is the worst case
of the recurrence. It needs to enumerate O(n) values of j and |B| values of X.
For each such j and X combination, we must spend time O(n) to check X ≺
Wh[j+1..|Wh|]. Thus, one D(W, C) computation takes time O(n2 ·|B|) = O(n2).
The total time spent in computeD(W1) is therefore O(n3 · |C(n)|) = O(n|B|+3).
Similarly, the time spent in computeD(W2) is O(n|B|+3). Finding the best C
after these computations does not add complexity, and so the running time is
O(n|B|+3) = O(n|F ||Σ|max(F )+3). ��

5 Fixed Alphabet with Unbounded F is NP-Hard

So far, we have assumed that F was a fixed set of integers. We now show that if
F is part of the input, then XSR-F is NP-hard, even if the alphabet is constant.
This shows that unless P = NP, polynomial-time feasibility requires F and Σ to
be fixed.

We use a reduction from 3-Partition which is known to be strongly NP-
complete [18]. In 3-Partition, we are given an integer D and a set of integers
S = {ai|i = 1..3m} with D/4 < ai < D/2 for all i, and the question is whether
we can partition S into m subsets, each with three integers such that the sum of
each subset is exactly D. Since 3-Partition is strongly NP-complete, each ai ∈ S
is bounded by a polynomial in m.

For our XSR-F instance, we construct the input strings A,B and the input
set F as follows. The alphabet of A and B is Σ = {0, 1,#, $}, and we put
F = {a1, a2, ..., a3m,D + 1}. The strings A and B are defined as

A =

D+1
︷︸︸︷
$...$

a1
︷︸︸︷
1...1

D+1
︷︸︸︷
$...$

a2
︷︸︸︷
1...1 · · ·

D+1
︷︸︸︷
$...$

a3m
︷︸︸︷
1..1

D+1
︷ ︸︸ ︷
#...#

m(D+1)
︷︸︸︷
0...0 ,

B =

D+1
︷ ︸︸ ︷
#...#

3m(D+1)
︷︸︸︷
$...$ (

D+1
︷︸︸︷
0...0

D
︷︸︸︷
1...1)m.
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The idea is that because F only contains the ais and D + 1, any common
F -partition must have the 1...1 blocks of A. To handle the 1...1 blocks of B,
there must be a way to partition them into groups of three that achieve length
D. We now proceed with the details.

Theorem 4. The XSR problem is NP-hard, even if the input consists of two
strings on an alphabet of size four.

Proof. First note that the above construction can easily be carried out in poly-
nomial time, since the values of the ai’s (and therefore of D) are polynomial.
We show that a 3-Partition instance (S,D) admits a 3-Partition if and only if
the constructed A and B strings admit a common F -partition.

First assume that (S,D) admit a 3-Partition {S1, . . . , Sm}. Create a common
F -partition M of A and B as follows. In M , we add 3m copies of $...$ of length
D + 1, one copy of #...# of length D + 1, m copies of 0...0 of length D + 1, and
for each ai ∈ S, we add a 1...1 substring of length ai. It is clear that each string
of M has its length in F , and it remains to argue that they can be concatenated
to obtain A or B. For A, this is easy to see, as M is partitioned as the braces
indicate in the above Figure (plus the m copies of 0...0 that result in the last 0
block of A). For B, the #-block and $-blocks are easily covered. We must form m
copies of 0...01...1 blocks. This can be done by taking, for each St = {ai, aj , ak}
in the 3-Partition, one 0...0 block of length D + 1 followed by the 1...1 blocks
of length ai, aj , and ak. Since these sum to D, this can be used to create the
desired m blocks of the form 0...01...1.

Conversely, assume that A and B admit a common F -partition M . Note
that the unique #-block in A is adjacent to the unique 0-block and to the last
1-block, but in B the #-block is not adjacent to a 0 or a 1. This means that
in M , the substrings that contain a # can only contain # symbols. Also, the
$-blocks in A are adjacent to the 1-blocks in A but no $ is adjacent to a 1
in B, and so the substrings of M with a $ only contain $ symbols. Moreover,
the 0-block in A is only adjacent to the #-block but not in B, and thus each
substring of M with a 0 only contains 0s. It follows that the substrings of M
that contain a 1 only contain 1s. Now, consider the 1...1 block of A of length
ai. Because D/4 < ai < D/2, that block must be in M (otherwise, that block
would be obtained by concatenating two or more blocks of 1s from M with a
smaller length in F , which is not possible because of the bounds on ai). Thus,
M contains a 1-block of length ai, for each ai ∈ S. It is then easy to see that
each of the 1-blocks in B must be partitioned into 3 blocks, of length ai, aj and
ak respectively such that ai + aj + ak = D. This corresponds to a solution for
the 3-Partition instance. ��

6 Conclusion

We have provided several negative results on the complexity of the MSR problem
in the presence of duplicated genes. Notably, it is hard to even partition two
genomes into blocks of sizes of any fixed list, unless we restrict ourselves to one
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size. Limiting the number of duplicates does not seem to help, although the
problem is still open if less than 6 copies per gene are allowed. Our polynomial-
time algorithm shows that there may be hope for cases where block sizes are fixed
and the number of distinct genes is bounded, but the algorithm presented here
needs improvement to be usable in practice. In fact, heuristics are currently used
to partition genomes, and our results lead us to believe that it will be difficult to
aim for practical algorithms that also offer theoretical guarantees. This is not the
end of the road though, as future work may focus on approximation algorithms
with a bounded ratio on the number of deleted genes, or on novel parameters
not considered here that can be used for efficient parameterized algorithms.
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Abstract. We generalize the reconciliation approach, used for inferring
the evolution of a single gene family given a species tree, to groups of
co-localized genes, also called syntenies. More precisely, given a set X
of syntenies in a set Σ of genomes, a tree T for X and a tree S for Σ,
the problem is to find a most parsimonious history for X with respect to
a given evolutionary model. We extend a previous model involving seg-
mental duplications and losses, to also include segmental horizontal gene
transfers (HGTs) and gene gains. We present a polynomial-time dynamic
programming algorithm to solve the problem. We apply it to CRISPR-
associated (Cas) gene syntenies. These genes are part of CRISPR-Cas
systems, one of its members (CRISPR-Cas9) well-known as currently
the most reliable and accurate molecular scissor technology for genome
editing. The inferred evolutionary scenario is a plausible explanation of
the diversification of this system into its different types. An implemen-
tation of the algorithm presented in this paper is available at: https://
github.com/UdeM-LBIT/superrec2/releases/tag/rcg2022.

Keywords: Reconciliation · Synteny · CRISPR-Cas · Horizontal gene
transfer

1 Introduction

The incongruence between the tree of a given gene family and the phylogenetic
tree of the corresponding species can be explained through reconciliation (an
embedding of the gene tree into the species tree) by the fact that genes have
been subject to events changing their occurrence in genomes, typically gene
duplications (D) and gene losses (L) [12]. The standard parsimony criteria used
to choose among all possible reconciliations is to minimize the number of dupli-
cations (D distance) and losses (DL distance) induced by the reconciliation. This
can be computed in linear time by LCA-mapping [12,31,32].

Horizontal gene transfer (HGT), largely involved in shaping bacterial gene
content, has also been considered in the analysis of gene families through rec-
onciliation. In this case, the parsimony problem consists in finding a minimum
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Jin and D. Durand (Eds.): RECOMB-CG 2022, LNBI 13234, pp. 124–145, 2022.
https://doi.org/10.1007/978-3-031-06220-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06220-9_8&domain=pdf
http://orcid.org/0000-0002-6689-1163
http://orcid.org/0000-0003-4561-683X
https://github.com/UdeM-LBIT/superrec2/releases/tag/rcg2022
https://github.com/UdeM-LBIT/superrec2/releases/tag/rcg2022
https://doi.org/10.1007/978-3-031-06220-9_8


Reconciliation with Segmental Duplication, Transfer, Loss and Gain 125

scenario of duplication, loss and transfer events (DTL distance) explaining a gene
tree with respect to a given species tree. The problem of finding a most parsi-
monious acyclic DTL scenario has been shown NP-hard, becoming polynomial
when the acyclicity requirement is relaxed [1,27].

Although used successfully for many years, one of the major drawbacks of the
reconciliation model is that gene families are considered to evolve independently
from one another. While some work has been done on inferring the evolution
of co-localized genes (such as operons in bacteria or paralogons), also called
syntenic groups of genes (or simply syntenies) [2,9], adjusting the computation
of the evolutionary cost to favour co-evolution events—hence grouping individ-
ual events into single segmental ones [7]—or inferring the minimum number of
“duplication episodes” defined as sets of single duplications mapped to the same
node in the species tree [6,23], none of these methods explicitly seek for an evo-
lutionary scenario minimizing segmental duplication, loss and HGT events (see
a recent review [8]).

The first attempt to generalize the reconciliation approach to a set of gene
trees was described in [5]. Given a set of gene families grouped into ordered
syntenies (i.e., ordered groups of genes), a gene tree for each gene family and
a species tree, the DL Super-reconciliation problem was defined as finding an
evolutionary scenario for the syntenies agreeing with the individual gene trees,
whilst minimizing the number of segmental duplications and losses. The problem
admits a solution only in the case of “consistent” gene trees and gene orders.
It was shown that the associated decision problem is NP-hard, and that a two-
steps method on the synteny tree (obtained as a supertree of the gene trees), first
assigning an event labeling from the LCA-mapping and then inferring ancestral
syntenies and losses, leads to an optimal solution. Moreover, ignoring gene orders,
a polynomial-time algorithm exists for the second step.

In this paper, we describe DTL Super-reconciliation, generalizing the model
to handle HGT and gene gain events. We restrict the problem to the unordered
case, where syntenies are defined as unordered groups of genes. We introduce the
evolutionary model in Sect. 3 and the formal optimization problem in Sect. 4. We
show in Sect. 5 that the two-steps method for solving the DL Super-reconciliation
problem does not apply in this case, then present a polynomial-time dynamic pro-
gramming algorithm for DTL Super-reconciliation in Sect. 6. Finally, in Sects. 7
and 8, we apply our algorithm to CRISPR-associated (Cas) gene syntenies. These
genes are part of CRISPR-Cas systems, one of its members (CRISPR-Cas9) well-
known as currently the most reliable and accurate molecular scissor technology
for genome editing. The inferred evolutionary scenario leads to an interesting
explanation of the diversification of this system into its different types, which
opens the door to further investigations.

2 Preliminary Definitions

All trees are considered rooted. Given a tree T , we denote by r(T ) its root, V(T )
its node set and by L(T ) ⊆ V(T ) its leaf set. A node v′ is an ancestor of v if
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v′ is on the path from r(T ) to v; the parent p(v) of v, of which v is a child,
directly precedes v on this path. Conversely, v is a descendant of v′. Notice that
a node v is both an ancestor and a descendant of itself; where this case needs to
be excluded, we will talk about strict ancestors and descendants. Two nodes are
separated in T if neither is an ancestor of the other. We denote by E(T ) the set
of edges of T , where each edge is represented by a pair of nodes (p(v), v). For
any two nodes v1 and v2 of T , the node distance Dnode

T (v1, v2) is defined as the
number of edges on the unique path from v1 to v2.

Given a node v of T , T [v] is the subtree of T rooted at v (i.e., containing
only the descendants of v). The lowest common ancestor (LCA) of a subset V
of nodes, denoted lcaT (V ), is the ancestor of all nodes in V that is the most
distant from the root. A node is said to be unary if it has exactly one child and
binary if it has exactly two. A binary tree is a tree where all internal (non-leaf)
nodes are binary. If all internal nodes are unary or binary, then the tree is called
partially binary. The two children of a binary node v are denoted vl and vr for
the “left” and “right” child. Notice that the considered trees are unordered, and
thus left and right are set arbitrarily.

If A is a set of labels (on a given finite alphabet), then any tree T such that
there exists a one-to-one relation between A and L(T ) is said to be a tree for
A. In particular, a species tree S for a set Σ of species represents an ordered
set of speciation events that led to Σ (i.e., each internal node of S represents
an ancestral species preceding a speciation event). Similarly, a gene tree T for
a gene family Γ is a branching history encoding each gene divergence that led
to the gene family Γ . For a gene g of Γ , we denote by s(g) the species of Σ the
gene g belongs to.

Let F be a set of gene families. In this paper, a syntenic group or synteny X
is a non-empty subset of F representing a group of co-localized genes, where the
relative order of genes in the genomic region is ignored. The genes of a synteny
are considered to all belong to different gene families (i.e., duplications inside a
syntenic group are not allowed), therefore the genes are simply identified by their
family Γ of F . Given two syntenies X and Y , we say that there is a loss between
X and Y if at least one of the gene families from X is absent in Y . Notice
that, due to the possibility of gene gains, Y may contain genes not found in X.
The loss indicator function Dsub(X,Y ) (sub for “subset”) is therefore defined as
Dsub(X,Y ) = 0 if X ⊆ Y , otherwise Dsub(X,Y ) = 1.

A synteny family is a set X of syntenies. A synteny tree T is a tree for a
synteny family X , x(l) being the synteny of X associated to each leaf l of T . In
this paper, the species and synteny trees are considered binary. See the left part
of Fig. 1 for an example of a synteny tree.

3 Evolutionary Histories for Syntenies

The Super-reconciliation framework introduced in [5] generalizes the reconcili-
ation framework from a single gene family Γ to a family X of syntenies. More
precisely, while an instance of a reconciliation problem is a tuple 〈Γ, T,Σ, S〉, T
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being a gene tree for Γ , an instance of a Super-reconciliation problem is a tuple
〈X ,F , T,Σ, S〉 where T is a synteny tree for the synteny family X on a set F
of gene families. Notice that, while in [5] the synteny tree is inferred from a set
of “consistent” gene trees, in this paper we start from the synteny tree itself,
whatever the way used to infer it (e.g., from a set of gene trees, or alternatively
from an alignment of the concatenated gene sequences).

The goal of the reconciliation approach is to infer a correct and optimal evo-
lutionary history explaining T given S. Correctness depends on the considered
evolutionary events, while optimality is stated as a parsimony criterion, given a
cost function for the evolutionary events. As for Super-reconciliation, in addition
to evolutionary events, ancestral syntenies should also be inferred.

The DL Super-reconciliation model [5], defined both on ordered and
unordered syntenies, only involves speciations, duplications and losses. Here, we
extend the unordered version to also allow for HGTs. We assume that evolution
only takes place inside the S species tree, excluding speciations and transfers to
and from extinct or unsampled lineages [26,30]. Also notice that the constraints
on HGTs do not exclude cyclic reconciliations. In addition, in order to avoid the
unrealistic assumption of having all gene families present at the root, we allow
for gene gains.

Definition 1 (Evolutionary history for syntenies). Let X be a set of syn-
tenies on a set F of gene families, Σ be the set of taxa to which these syn-
tenies belong and S be the species tree for Σ. An E evolutionary history, with
E ⊆ {Spe,Dup,HGT,Loss,Gain}, is a partially binary tree with leaves mapped
to X and where each internal node v corresponds to an event e(X) of E with
X ⊆ F being the synteny at v belonging to a genome s(v) such that:

– Spe produces two syntenies Y and Z verifying X = Y = Z and s(Y ), s(Z)
are the two children of s(X) in S.

– Dup (D) produces two syntenies Y and Z verifying Y = X, Z ⊆ X, and
s(X) = s(Y ) = s(Z).

– HGT (T) produces two syntenies Y and Z verifying Y = X, Z ⊆ X, s(Y ) =
s(X) and s(Z) is separated from s(X).

– Loss (L) produces a single synteny Y verifying Y ⊂ X and s(Y ) = s(X). A
loss is full if Y is the empty synteny (i.e., Y = ∅) and partial otherwise.

– Gain (G) produces a single synteny Y verifying X ⊂ Y and s(Y ) = s(X).

We denote by H = 〈Htree, e, x, s〉 such a history where Htree is the supporting
partially binary tree and for each of its nodes v, e(v) is the event, x(v) is the
synteny, and s(v) is the species to which x(v) belongs. We have X = {x(l) :
l ∈ L(Htree)} (Fig. 1, center). Note that for an internal node v of Htree, x(v) is
not necessarily in X . In general, x is not an onto function, as not all possible
syntenies on F are required to be represented in the history.

We next define a Super-reconciliation from a history. In Definition 2, the
E-Super-reconciliation obtained from H is 〈TH , e, x, s〉 where TH is the binary
tree obtained from Htree by removing edges adjacent to empty syntenies (due
to full losses) and then removing unary nodes, and e, x and s are restrictions of
the event, synteny and species mappings to the nodes of TH (Fig. 1, right).
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Fig. 1. (Left.) A synteny tree T for the family X = {{b}, {b, c}, {c}, {a}, {a, b}} on
the set of species Σ = {X,Y,Z}. Under each leaf l are shown its associated synteny
x(l) and species s(l). (Center.) An evolutionary history Htree for T , embedded in the
species tree S. For binary nodes, rounded rectangles correspond to Spe, plain rectangles
to Dup, and chamfered rectangles to HGT. For unary nodes, circles correspond to Gain,
and crosses to Loss. For a binary node v, the value of x(v) is shown inside the shape
(omitted when unchanged from its parent). For unary nodes, the synteny difference is
shown beside the node. (Right.) The Super-reconciliation 〈T, x, s〉 obtained from Htree.
For each internal node v, we exhibit e(v) (shape of the node), s(v) (letter beside the
node) and x(v) (content of the node).

Definition 2 (Super-reconciliation). Let I = 〈X ,F , T,Σ, S〉 be an instance
of a Super-reconciliation problem. An E-Super-reconciliation for I is a tuple
R = 〈TH , e, x, s〉 obtained from an E history H = 〈Htree, e, x, s〉. We say that H
is a history for I leading to R.

Note that an E-Reconciliation is defined as an E-Super-reconciliation but
on an instance 〈Γ, T,Σ, S〉. The next lemma, which will be required later for a
simple inference of the event labeling from the species labeling, directly follows
from Definition 1 and Definition 2.

Lemma 1 (Synteny and species trees coincide). Let I = 〈X ,F , T,Σ, S〉
and R = 〈T, e, x, s〉 be a DTLG Super-reconciliation for I (i.e. a Super-reconci-
liation on the set of events E = {Spe,D, T, L,G}). Then s satisfies the following
conditions: (1) neither s(vl) nor s(vr) is a strict ancestor of s(v) (i.e. each one
can either be a descendant of s(v) or be separated from it in the case of HGTs);
(2) at least one of s(vl) or s(vr) is a descendant of s(v).

Restrictions on Gain Points: Allowing for segmental gains and losses may lead
to unrealistic optimal scenarios where full syntenies are lost and gained again.
In order to ensure more realistic scenarios, we will assume that a gene family
can only appear once in the history (i.e., not allowing for convergent evolution).

Definition 3 (Gain point). Let T be a synteny tree for a synteny family X on
F and x be a synteny assignment on the internal nodes of T . A node v ∈ V(T ) is
a gain point for Γ ∈ F in 〈T, x〉 iff Γ ∈ x(v) and either v = r(T ) or Γ /∈ x(p(v)).
The set of gain points for Γ is denoted as Gain〈T,x〉(Γ ).
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Moreover, as gain of function affects genes individually, we will restrict a gain
to an event inserting a single gene in a synteny. Formally, we add a restriction
to the Gain event of Definition 1 specifying that the synteny Y produced from
a synteny X by a gain is such that |Y | = |X| + 1.

Consequently, each gene family Γ ∈ F can only be gained once in the history,
leading to exactly |F| gains. In other words, we account for gene gains only to
avoid imposing all gene families to be present at the root of T , but without
including them in the cost function for inferring a most parsimonious history.
Consequently, we can define our problem as a DTL (for D, T, and L events)
rather than a DTLG problem (D, T, L, and G events) as follows, considering
the above restriction on the Gain event.

Definition 4 (DTL Super-reconciliation). Let I = 〈X ,F , T,Σ, S〉. A DTL
Super-Reconciliation for I is a DTLG Super-reconciliation 〈T, e, x, s〉 such that,
for each Γ ∈ F , |Gain〈T,x〉(Γ )| = 1.

4 Most Parsimonious Super-Reconciliations

In this paper, we assume a null cost for speciations and, according to the restric-
tion on Gain events described above, we can ignore the cost of gains. We then
define δ = 〈cDup, cHGT, cLoss〉 ∈ (R+ ∪ {∞})3 the cost for, respectively, a dupli-
cation, an HGT and a loss event. For a history H = 〈Htree, e, x, s〉 and a node
v ∈ V(Htree), we define cδ(H, v) to be the sum of costs of events in the Htree[v]
subtree, up to and including v itself. The history’s overall cost cδ(H) is equal to
cδ(H, r(Htree)).

The goal is to find a most parsimonious history (i.e., a history of minimum
cost), explaining a given synteny tree T with respect to a species tree S. From
Definition 2, a Super-reconciliation R for an instance I represents not a single,
but rather a set of histories H from which R can be obtained. In the rest of this
section, we give some results allowing to reduce the problem to the exploration
of the Super-reconciliation space rather than the history space.

The next lemma states that gain points can be inferred from the synteny
tree. For each family Γ ∈ F , denote by L(T )Γ = {l ∈ L(T ) : Γ ∈ x(l)} the set
of leaves whose corresponding synteny contains Γ and lca(Γ, T ) = lcaT (L(T )Γ ).

Lemma 2 (Optimal gain point position). Let I = 〈X ,F , T,Σ, S〉. There is
an optimal history H for I such that, in the Super-reconciliation R = 〈T, e, x, s〉
obtained from H, for each Γ ∈ F , lca(Γ, T ) is the gain point for Γ in T .

Proof. This proof and all subsequent ones can be found in the appendix.

We denote by xgain(v) the set of genes gained at node v of T . We next
introduce a way to assign a cost to a Super-reconciliation which, as we show in
the subsequent lemma, matches the minimum cost of any history leading to that
Super-reconciliation.
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Definition 5 (Super-reconciliation cost). Let R = 〈T, e, x, s〉 be a Super-
reconciliation for I = 〈X ,F , T,Σ, S〉. The cost Cδ(R, v) of R for the T [v] subtree
(or simply C(R, v) or C(v) if no ambiguity) is defined recursively as follows:

– if v is a leaf, then Cδ(R, v) = 0;
– if e(v) = Spe and vl, vr are the two children of v, then

Cδ(R, v) = Cδ(R, vl) + Cδ(R, vr) +

cLoss × (Dsub(x(v), x(vl)) + Dsub(x(v), x(vr))

+ Dnode
S (s(v), s(vl)) + Dnode

S (s(v), s(vr)) − 2);

– if e(v) = Dup and vl, vr are the two children of v, then

Cδ(R, v) = cDup + Cδ(R, vl) + Cδ(R, vr) +

cLoss × ( min
{
Dsub(x(v), x(vl)),Dsub(x(v), x(vr))

}

+ Dnode
S (s(v), s(vl)) + Dnode

S (s(v), s(vr)));

– if e(v) = HGT, v′ is the separated child, and v′′ is the conserved one, then

Cδ(R, v) = cHGT + Cδ(R, vl) + Cδ(R, vr)

+ cLoss × (Dsub(x(v), x(v′′)) + Dnode
S (s(v), s(v′′))).

The global cost of R is defined as Cδ(R) = Cδ(R, r(T )) (or simply C(R) if no
ambiguity).

Lemma 3 (Super-reconciliations minimize history cost). Let R =
〈T, e, x, s〉 be a Super-reconciliation for I = 〈X ,F , T,Σ, S〉 and H be the set
of histories leading to R. Then, for any Cδ(R) = minH∈H cδ(H).

Searching for a most parsimonious history is therefore equivalent to searching
in the smaller space of super-reconciliations. Finally, the following definition
makes the link between the values of the s mapping and the evolutionary events
at the internal nodes of a Super-reconciliation.

Definition 6 (Min-event labeling). Given I = 〈X ,F , T,Σ, S〉, an internal
node v of T , and three species σ, σ′, σ′′ of S, we define the min-event function
emin(σ, σ′, σ′′), used to label v if s(v) = σ, s(vl) = σ′, and s(vr) = σ′′, as follows:

– If σ is an ancestor of both σ′ and σ′′, then
• if σ′ is separated from σ′′ and σ = lca(σ′, σ′′), then emin(σ, σ′, σ′′) = Spe;
• if σ′ and σ′′ are not separated or σ 
= lca(σ′, σ′′), then emin(σ, σ′, σ′′) =

Dup.
– If either σ′ or σ′′ is separated from σ, then emin(σ, σ′, σ′′) = HGT.
– Species σ′ and σ′′ cannot be both separated from σ as per Lemma 1, therefore

in such cases emin(σ, σ′, σ′′) equals an error value not in {Spe,Dup,HGT}.
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Additionally, given a mapping s from V(T ) to V(S), we define emin
s so that for

any internal node v of T , emin
s (v) = emin(s(v), s(vl), s(vr)).

The following lemma shows that the min-event labeling leads to the most
parsimonious Super-reconciliation.

Lemma 4 (Min-event labeling is optimal). Let R = 〈T, e, x, s〉 and Rmin =
〈T, emin

s , x, s〉 be two DTL Super-reconciliations for I = 〈X ,F , T,Σ, S〉. Then,
Cδ(Rmin) ≤ Cδ(R).

It follows that event labeling can be ignored, as it can be directly inferred
from the species mapping. Therefore, from now on, a Super-reconciliation will
be simply designed as a triplet 〈T, x, s〉. We are now ready to formally define the
considered optimization problem.

δ-Super-Reconciliation Problem
Input: An input I = 〈X ,F , T,Σ, S〉.
Output: A Super-reconciliation R = 〈T, x, s〉 for I minimizing Cδ(R).

5 A Two-Steps Method

Finding a DL Reconciliation of a gene tree with a species tree is a classical prob-
lem [10,12,14,22]. Given an instance I = 〈Γ, T,Σ, S〉, define its LCA-mapping
from T to S as s(v) = lcaS({s(l) | l ∈ L(T [v])}) for any v ∈ V(T ) \ L(T ), and
s(l) = x for any l ∈ L(T ), where x is the extant species to which l belongs.
This mapping leads to an optimal DL Reconciliation (with constant costs on
operations) and can be computed in time O(|V(T )| + |V(S)|) [13].

As for DL Super-reconciliation, an approach using two steps to infer an opti-
mal R = 〈T, x, s〉 for an instance I = 〈X ,F , T,Σ, S〉 was presented in [5]:

1. Compute s as the LCA-mapping of T to S;
2. Infer x in a way minimizing segmental losses and with the constraint that

x(r(T )) = F (as gains were not allowed).

Using this approach, an optimal DL Super-reconciliation can be computed in
time O(|X |×|F|). Crucially, this approach works because any optimal DL Super-
reconciliation 〈T, x, s〉 is such that s is the LCA-mapping of T to S. Otherwise,
we would not be able to compute s separately from x.

Unfortunately, this two-steps method does not work for solving the DTL
Super-reconciliation problem. In fact, for a given input I = 〈Γ, T,Σ, S〉, the
mapping sDT from T to S allowing to minizime the duplication and loss cost
is not necessarily the mapping s of an optimal DTL Super-reconciliation R =
〈T, x, s〉. In particular, changing a speciation node (inferred from sDT) to a HGT
event may lead to less losses, and thus to a better cost in total. Figure 2 shows
a counter example of the two-steps method for solving the DTL problem.
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Fig. 2. Two solutions for the same DTL Super-reconciliation problem input. (Left.)
Solution obtained by first computing s to minimize duplications and HGTs (yielding
one such event) and then labeling internal nodes to minimize losses (yielding 4 losses).
(Right.) A more parsimonious solution with two HGTs and only two losses.

6 A Dynamic Programming Algorithm for DTL Super-
Reconciliation

In this section, we introduce SuperDTL, a polynomial-time algorithm for solving
the DTL Super-Reconciliation problem. Let I = 〈X ,F , T,Σ, S〉 be any input
for this problem. For any node v of T , we define xlca(v) to be the leafset of T [v]
excluding genes gained below v, namely:

xlca(v) =

{
x(v) if v ∈ L(G)
xlca(vl) ∪ xlca(vr) \ (xgain(vl) ∪ xgain(vr)) otherwise.

For a synteny X and a node v of T , denote by CX(v) the minimum cost of a
Super-reconciliation 〈T [v], x, s〉 between T [v] and S in which x(v) = X. Notice
that xlca(v) should be a subset of X as otherwise there would be a gene family
with two or more gain points (by Definition 3). In other words, if xlca(v) 
⊆ X,
then CX(v) = ∞. However, X may contain genes in F \xlca(v), which may allow
grouping losses in the evolutionary history thus leading to a lower cost. Testing
all possible subsets of F \xlca(v) would be costly, but as shown in [5], this can be
avoided due to a property that still holds in our case: all that matters is to know
whether xlca(v) is included in X in a strict or not strict way, and the nature and
number of “extra” genes is irrelevant for the computation of the optimal cost.
In other words, the following lemma from [5] holds.

Lemma 5. Let v be an internal node of T and X, Y be two subsets of F such
that xlca(v) ⊆ X,Y . Then CX(v) = CY (v).

We therefore only need to consider two possibilities for x(v). We define C(v, σ)
(respec. C�(v, σ)) to be the minimum cost of a Super-reconciliation 〈T [v], x, s〉
between T [v] and S in which s(v) = σ and x(v) = xlca(v) (respec. x(v) �

xlca(v)). Algorithms 1 and 2, described below, provide a method for computing
those two functions.
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Algorithm 1. Computing the value of C(v, σ)
function C(v, σ)

if v ∈ L(T ) then
return 0 if σ = s(v) else ∞

else
c ← ∞
for σ′, σ′′ ∈ V(S)2 do

starl ← ∞ if xlca(v) ⊆ xlca(vl) else 0
starr ← ∞ if xlca(v) ⊆ xlca(vr) else 0
partiall ← Dsub(xlca(v), xlca(vl))
partialr ← Dsub(xlca(v), xlca(vr))
if emin(σ, σ′, σ′′) = Spe then

c ← min{c, min{C�(vl, σ
′) + starl , C(vl, σ

′) + cLoss × partiall} +

min{C�(vr, σ
′′) + starr , C(vr, σ

′′) + cLoss × partialr} +

cLoss × (Dnode
S (σ, σ′) + Dnode

S (σ, σ′′) − 2)}
else if emin(σ, σ′, σ′′) = Dup then

c ← min{c, min{ C�(vl, σ
′) + C�(vr, σ

′′) + starl + starr ,

C(vl, σ
′) + C�(vr, σ

′′) + starr ,

C�(vl, σ
′) + C(vr, σ

′′) + starl ,

C(vl, σ
′) + C(vr, σ

′′) +

cLoss × min{partiall , partialr}} +

cDup + cLoss × (Dnode
S (σ, σ′) + Dnode

S (σ, σ′′))}
else if emin(σ, σ′, σ′′) = HGT then

full ← Dnode
S (σ, σ′′) if σ′ is separated from σ else Dnode

S (σ, σ′)
if σ′ is separated from σ then partiall ← 0
if σ′′ is separated from σ then partialr ← 0
c ← min{c, min{ C�(vl, σ

′) + C�(vr, σ
′′),

C(vl, σ
′) + C�(vr, σ

′′) + starr + cLoss × partiall ,

C�(vl, σ
′) + C(vr, σ

′′) + starl + cLoss × partialr ,

C(vl, σ
′) + C(vr, σ

′′) + cLoss} +

cHGT + cLoss × full}
return c

Lemma 6 (Termination and Correctness). For any v ∈ V(T ) and σ ∈
V(S), C(v, σ) = C(v, σ) and C�(v, σ) = C�(v, σ) (as computed by Algorithms 1
and 2 respectively).

Algorithm SuperDTL computes the minimal cost of a Super-reconciliation
for I by computing minσ∈V(S) C(r(T ), σ) using Algorithm 1, which recursively
invokes itself and Algorithm 2. Additionally, an actual solution can be con-
structed by keeping track of which σ′, σ′′ pairs and which of C or C� yield the
minimum values of the min expressions in both algorithms. To make SuperDTL
efficient, it should not be implemented as a naive recursion, but rather C and
C� should be considered as dynamic programming tables with |V(T )| × |V(S)|
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Algorithm 2. Computing the value of C�(v, σ)
function C�(v, σ)

if v ∈ L(T ) then return ∞
else

c ← ∞
for σ′, σ′′ ∈ V(S)2 do

if emin(σ, σ′, σ′′) = Spe then
c ← min{c, min{C�(vl, σ

′), C(vl, σ
′) + cLoss} +

min{C�(vr, σ
′′), C(vr, σ

′′) + cLoss} +

cLoss × (Dnode
S (σ, σ′) + Dnode

S (σ, σ′′) − 2)}
else if emin(σ, σ′, σ′′) = Dup then

c ← min{c, min{ C�(vl, σ
′) + C�(vr, σ

′′), C(vl, σ
′) + C�(vr, σ

′′),

C�(vl, σ
′) + C(vr, σ

′′), C(vl, σ
′) + C(vr, σ

′′) + cLoss}
+ cDup + cLoss × (Dnode

S (σ, σ′) + Dnode
S (σ, σ′′))}

else if emin(σ, σ′, σ′′) = HGT then
full ← Dnode

S (σ, σ′′) if σ′ is separated from σ else Dnode
S (σ, σ′)

partiall ← 0 if σ′ is separated from σ else 1
partialr ← 0 if σ′′ is separated from σ else 1
c ← min{c, min{ C�(vl, σ

′) + C�(vr, σ
′′),

C(vl, σ
′) + C�(vr, σ

′′) + cLoss × partiall ,

C�(vl, σ
′) + C(vr, σ

′′) + cLoss × partialr ,

C(vl, σ
′) + C(vr, σ

′′) + cLoss} +

cHGT + cLoss × full}
return c

entries each. Using this implementation trick allows finding a minimal Super-
reconciliation in polynomial time, as shown in the next theorem.

Theorem 1 (Time and space complexity). Using SuperDTL, the DTL
Super-reconciliation problem can be solved in polynomial time O(|X |×|Σ|3)
and space O(|X | × |Σ|).

7 Application to CRISPR-Associated (Cas) Gene
Syntenies

7.1 Cas Gene Syntenies

Cas genes are part of CRISPR-Cas systems, one of its members, CRISPR-Cas9,
being well-known as currently one of the most reliable and accurate “molecular
scissor” biotechnology for genome editing. This technology, for which the Nobel
Prize in Chemistry was awarded in 2020 [16], was derived from an adaptive
bacterial immunity system targeting bacteriophages. The study and analysis of
CRISPR-Cas systems over the past two decades has revealed their wide diversity
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and led to their categorization into two classes: Class 1, composed of multisub-
unit effector proteins, and Class 2, composed of a single large effector protein.
Each class is further divided into several types themselves composed of several
subtypes (for more details see Supplementary Table 2 in Makarova et al. [20]).
Although the discovery of new CRISPR-Cas systems is an ongoing process [18],
the classification is generally stable.

As the function of CRISPR-Cas systems highly depends on the syntenic
organization of Cas genes, elucidating the evolution of these systems is crucial.
Many studies have been dedicated to reconstructing the evolutionary histories
of individual Cas gene families such as Cas1 [15], or to inferring the evolution of
Cas gene syntenies to elucidate the syntenic events leading to the diversity inside
the different subtypes [17,20,21]. From these multiple phylogenetic analyses, a
global scenario has been predicted for the evolutionary formation of CRISPR-
Cas systems, with the latest scenario described by Koonin et al. [18]. However,
to the best of our knowledge, none of these studies take into account the species
tree topology. Moreover, several studies point to evidence of HGTs involving
Cas genes between prokaryote species [3,11,15,28], showing the need to take
such events into consideration while inferring scenarios.

From this brief presentation, it appears that the DTL Super-reconciliation
model is suitable for elucidating the evolution and radiation of CRISPR-Cas
systems across prokaryotes.

7.2 Dataset

We used the Cas gene synteny subtypes from Class 1 of CRISPR-Cas systems
described by Makarova et al. [20]. We limited the dataset to the 15 bacteria
species and omitted archaea to avoid bias due to their underrepresentation in
the dataset. Each of those species contains a Cas synteny. Taxonomical infor-
mation of the 15 bacterial species has been recovered from the NCBI Taxonomy
database [25] and the species tree topology is based on the phylogeny inferred
by Coleman et al. [4].

We repurposed the phylogenetic tree given in Figure 1 of Makarova et al. [20]
as our synteny tree. Some alterations of the syntenies were required to fit the
constraints of the model. We considered Cas families Cas1–8 and Cas10–11. Since
a part of Cas3, Cas3”, can work as a standalone HD nuclease, we split Cas3 into
Cas3’ and Cas3”. In [20], Cas10 and Cas8 share the same colour code as they
provide similar functions in CRISPR-Cas complexes. Indeed, it was initially
believed that Cas8 evolved from Cas10 [19]. Nevertheless, their sequence being
extremely divergent, we decided to consider them as not homologous and to
conserve separate Cas8 and Cas10 families. Finally, for syntenies with several
copies of the same family, we conserved only one copy per synteny. The obtained
Cas gene syntenies are illustrated in the left part of Fig. 3.
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Fig. 3. Cas gene syntenies for the 15 considered bacterial species. (Left.) Phylogeny
of Class 1 CRISPR-Cas systems with subtypes names, as presented in [20] with our
preprocessing of syntenies as described in the text. (Right.) The species tree based
on the topology inferred in [4] with representation of the two major groups of bac-
teria, Terrabacteria and Gracilicutes. Lines represent the correspondence between the
Cas genes syntenies and the species they belong to, illustrating the high incongruence
between the topology of the synteny tree and that of the species tree.

8 Results

8.1 DTL Super-Reconciliation Settings

We used SuperDTL to predict optimal DTL Super-reconciliations for the synte-
nies and trees depicted in Fig. 3. Notice that the synteny tree is non-binary and
contains three multifurcations, one at the root and two in the subtree of Type
I CRISPR-Cas systems. As our algorithm can only be applied to binary trees,
we test all possible “binarizations” of the synteny tree and retain the overall
minimal solutions.

We tested different values for the δ = 〈cDup, cHGT, cLoss〉 cost model, in agree-
ment with a classical assumption that HGTs are less frequent than duplications,
which are less frequent than losses. The number of solutions obtained for each
setting is given in Table 1. We observe that the number of solutions decreases as
the HGT cost increases, reaching a minimum for cHGT = 4, and then increases
again. For a given cHGT, the results are largely stable for different cDup values.
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Table 1. Number of solutions obtained by Algorithm SuperDTL for different values of
δ = 〈cDup, cHGT, cLoss〉, with cLoss = 1.

cHGT\cDup 1 1.5 2 2.5 3

1 1376 1376 1376 1376 1376

2 132 132 132 132 132

3 112 60 60 60 60

4 32 32 32 32 48

5 288 288 320 32 32

6 320 288 288 288 288

8.2 An Evolutionary Scenario

We analyzed the 32 solutions generated for cHGT = 4 and cDup ∈ {1, 1.5, 2, 2.5}.
All solutions lead to the same resolution of the three multifurcations in the
synteny tree, and the incongruence observed between the species and synteny
tree topologies is mainly resolved by inferring six HGTs and one duplication.
The 32 solutions only differ from one another by minor variations, such as gene
losses located either before or after a speciation or HGT event, which do not
change the overall inferred evolutionary history for the Cas gene syntenies.

Figure 4 is a representation of one of these solutions. The evolutionary recon-
struction is broadly consistent with the CRISPR-Cas evolution scenario estab-
lished by Koonin et al. [18]. In both their scenario and ours, the CRISPR-Cas
systems emerge from an initial adaptive immune system composed only of Cas
genes involved in the effector complex (Cas 5–8 and Cas 10–11). We see from
Fig. 4 that the CRISPR-Cas emergence is inferred at the root of Terrabacteria.
The scenarios diverge on the fact that, in our scenario, Type IV emerges directly
from this ancestral adaptive immune system before the acquisition of Cas1 and
Cas2 genes, while in Koonin et al., Type IV emerges after the acquisition of Cas1
and Cas2 adaptation module genes and loss of several Cas genes. Aside from this
difference, both scenarios are in agreement for Types I and III in terms of gene
content in ancestral Cas syntenies. As it appears in Fig. 4, Types I and III Cas
syntenies emerge from Cyanobacteria after the acquisition of Cas1 and Cas2 by
an ancestor of Cyanobacteria. Type I emerges from the branch leading to Cyan-
othece sp. PCC 8802 with acquisition of Cas3 and Cas4, while Type III emerges
from the branch leading to Synechocystis sp. 6803 without further gene gains.

Type I was spread to the other bacteria with a HGT to the ancestor of
Proteobacteria. According to Wang et al. [29], the Cyanobacteria ancestor is
estimated between 2,230 and 3,000 Mya, while the last common ancestor (LCA)
of Alpha-, Beta-, and Gammaproteobacteria is estimated between 2,360 and
2,620 Mya. These calibrations make time-plausible the lateral transfer of Type I
CRISPR-Cas from the Cyanothece sp. PCC 8802 branch, close to the Cyanobac-
teria ancestor, to the LCA of Proteobacteria. A second HGT from Geobacter
sulfurreducens brought Type I to the Firmicutes Bacillus halodurans C-125 and
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Fig. 4. Representation of one of the 32 solutions inferred by Algorithm SuperDTL recon-
structing a DTL evolutionary history of the Class 1 Cas gene synteny dataset illustrated
in Fig. 3. Event costs set to cLoss = 1, cHGT = 4 and cDup ∈ {1, 1.5, 2, 2.5} yield equal
solutions. The red, blue, and green parts of the tree reflect the evolution of Cas synteny
types IV, I, and III respectively. Gains of Cas1+Cas2 and Cas3(Cas3’+Cas3”)+Cas4
are illustrated. (Color figure online)

Clostridium kluyveri DSM 555. Type III was spread across bacteria with a suc-
cession of three HGTs, which also seem time-consistent.

The analysis of the synteny evolutionary history across the Proteobacteria
subtree shows an unexpected scenario highlighting a limitation of our model. The
SuperDTL algorithm inferred an ancestral synteny duplication before the LCA
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of S. putrefaciens, V. crassostreae, Y. pseudotuberculosis and E. coli resulting
in a succession of three consecutive full synteny losses along the branch to the
synteny in E. coli which is an unlikely evolutionary scenario. An alternative
evolutionary scenario would consist in a speciation in place of the duplication,
copying the ancestral synteny to an unsampled or extinct species which would
later be transferred back to Escherichia coli. Such a model of HGT events as
combinations of a speciation event outside the species tree (to an unsampled
or dead lineage) followed by a transfer back inside the species tree has been
described in [26]. This alternative scenario would replace one duplication and
three losses with one speciation and one transfer, which yields the same cost
under the cLoss = 1, cHGT = 4 and cDup ∈ {1, 1.5, 2, 2.5} model but would
be less costly for cHGT < 4. Consideration of unsampled and dead lineages in
the DTL Super-reconciliation will therefore be necessary to infer better synteny
evolutionary scenarios.

9 Conclusion

We have developed SuperDTL, the first exact algorithm for inferring most par-
simonious evolutionary histories for a set of syntenies, given a phylogenetic
tree of the syntenies and a phylogenetic tree of the corresponding species, for
an evolutionary model accounting for segmental duplications, gains, losses and
HGT events. We only presented the unordered version of the problem in this
paper, but the algorithm developed in [5] for the ordered version of the DL
Super-reconciliation model can also be extended to the DTL Super-reconciliation
model. However, as rearrangements are not considered in the model, a DT or
DTL Super-reconciliation only exists if extant gene orders are pairwise consis-
tent, which is a strong constraint, not verified, for example, in the case of the
Cas gene syntenies of Fig. 3. Considering a unifying model accounting for both
DTL and rearrangement events remains a challenge. The analysis of the synteny
evolutionary scenario in Proteobacteria emphasized the need in DTL Super-
reconciliation model to infer HGT to and from unsampled or extinct species
to produce more realistic evolutionary scenarios. In addition, in order to avoid
the unjustified constraint of having all genes at the root of the tree, we allowed
for gene gains, which has been essential for the analysis of Cas gene syntenies.
Although we defined the general evolutionary model in a way allowing for seg-
mental gains (i.e. gains of a group of genes), we only considered single gene gains
in our algorithm. An extension is however possible and may be considered for
future work.

The reconstruction of an evolutionary history for Cas gene syntenies using
SuperDTL provides a first attempt to reconcile the evolutionary scenario of Cas
syntenies in the context of the evolution of bacterial species. However, several
improvements could be brought to the considered Cas synteny dataset to better
reconstruct its evolutionary history. First, we excluded archaea from our dataset
while several studies show evidence for an emergence of CRISPR-Cas systems
from archaeal species followed by horizontal transfers to bacteria. This is sup-
ported by the fact that most considered archaea have a complete CRISPR-Cas
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system while only part of bacteria have one. In fact, as of the latest update
from January 21, 2021 of the CRISPRCasdb database1 [24], 70.64% of analyzed
archaeal species versus 36.27% of analyzed bacteria had a complete CRISPR-Cas
system. A phylogenetic dating approach could also be used to produce a dated
phylogeny of prokaryotes and to constrain HGT events. A larger dataset with
species sampling representing the diversity of archaea and bacteria with dated
phylogeny and Cas synteny tree based on synteny content and sequence diver-
gence is required to further elucidate the evolutionary history of the CRISPR-Cas
system in prokaryotes.

A Additional Content for Sect. 4 (“Most Parsimonious
Super-Reconciliations”)

Lemma 2 (Optimal gain point position). Let I = 〈X ,F , T,Σ, S〉. There is
an optimal history H for I such that, in the Super-reconciliation R = 〈T, e, x, s〉
obtained from H, for each Γ ∈ F , lca(Γ, T ) is the gain point for Γ in T .

Proof. Let H = 〈Htree, e, x, s〉. Let v be the node corresponding to lca(Γ, T ) in
Htree. The fact that lca(Γ, T ) is the gain point for Γ in T means that the gene
family Γ is gained on the branch (u, v) where u is the root of Htree or the node
just preceding v in Htree. The result then follows from the fact that: (1) Γ cannot
be gained on a node of the left subtree Htree[vl] of Htree[v] as in that case, Γ
should also have been gained on another node on the right subtree Htree[vr] of
Htree[v] (or conversely); (2) thus Γ can only be gained on a node between the
root r of Htree and v; moving the gain point to an ancestor of v cannot decrease
the number of losses. �
Lemma 7. Let H = 〈Htree, e, x, s〉 be a history, and v 
= w be two nodes of
Htree such that none of the nodes on the path from v to w (excluding v and
w themselves) is a HGT event and such that s(v) and s(w) are not separated.
Then, there are at least Dnode

S (s(v), s(w)) speciation nodes on the path from v
to p(w).

Proof. This follows from the constraints of Definition 1, which states that the
only way to descend in the species tree, excluding HGT events, is through Spe
events. �
Lemma 8. Let H = 〈Htree, e, x, s〉 be a history, and v, wl, wr be three nodes
of Htree such that v is a binary node, wl descends from vl and wr from vr, and
none of the nodes on the paths from v to wl and v to wr (excluding v, wl, and
wr themselves) are Dup or HGT events. Then:

1. If e(v) = Spe, there are at least Dsub(x(v), x(wl)) + Dsub(x(v), x(wr)) loss
events on the path from wl to wr.

1 Available at https://crisprcas.i2bc.paris-saclay.fr/MainDb/StrainList.

https://crisprcas.i2bc.paris-saclay.fr/MainDb/StrainList
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2. If e(v) = Dup, there are at least min{Dsub(x(v), x(wl)),Dsub(x(v), x(wr))}
loss events on the path from wl to wr.

3. If e(v) = HGT, if s(wl) (resp. wr) is not separated from s(w) there is at least
Dsub(x(v), x(wl)) (resp. wr) loss event on the path from w to wl (resp. wr).

Proof. This follows from the constraints of Definition 1, which states that the
only way to loose part of a synteny, excluding Dup and HGT events, is through
Loss events, and that Dup events allow loosing part of their synteny on either
of their children, while HGT events allow loosing part of their synteny on their
conserved child. �
Lemma 3 (Super-reconciliations minimize history cost). Let R =
〈T, e, x, s〉 be a Super-reconciliation for I = 〈X ,F , T,Σ, S〉 and H be the set
of histories leading to R. Then, for any Cδ(R) = minH∈H cδ(H).

Proof. Let H = 〈Htree, e, x, s〉 be a history leading to R. Let us first prove that
cδ(H) ≥ Cδ(R), by structural induction on T . Let v be a node of T and v′

be its corresponding node in Htree. If v is a leaf, then cδ(H, v′) ≥ Cδ(R, v) =
0; otherwise, let v′

l and v′
r be the nodes in Htree corresponding to vl and vr

respectively, and assume cδ(H, v′
l) ≥ Cδ(R, vl) and cδ(H, v′

r) ≥ Cδ(R, vr).

– If e(v) = Spe, by Lemma 7, there are at least Dnode
S (s(v), s(vl))−1 speciation

nodes on the path from (v′)l to v′
l and at least Dnode

S (s(v), s(vr))−1 speciation
nodes on the path from (v′)r to v′

r. Each of those speciation nodes must have
at least a full loss child, for otherwise v′

l or v′
r would not correspond to vl and

vr. By Lemma 8.1, there are at least Dsub(x(v), x(vl))+Dsub(x(v), x(vr)) loss
events on the path from v′

l to v′
r.

– If e(v) = Dup, by Lemma 7, there are at least Dnode
S (s(v), s(vl)) speciation

nodes on the path from (v′)l to v′
l and at least Dnode

S (s(v), s(vr)) speciation
nodes on the path from (v′)r to v′

r, each of which must have a full loss
child as per the same argument as above. By Lemma 8.2, there are at least
min{Dsub(x(v), x(vl)),Dsub(x(v), x(vr))} loss events on the path from v′

l to v′
r.

– If e(v) = HGT, assume w.l.o.g. that vl is the conserved child. By Lemma 7,
there are at least Dnode

S (s(v), s(vl)) speciation nodes on the path from (v′)l

to v′
l, each of which must have a full loss child as per the same argument as

above. By Lemma 8.3, there are at least Dsub(x(v), x(vl) loss events on the
path from v′ to v′

l.

In all three cases, cδ(H, v′) ≥ Cδ(R, v), concluding the first part of the proof.
Additionally, it is easy to see that a history HR can be constructed from R such
that HR ∈ H and cδ(HR) = Cδ(R), by inserting speciation nodes and loss nodes
in the locations described above. �
Lemma 4 (Min-event labeling is optimal). Let R = 〈T, e, x, s〉 and Rmin =
〈T, emin

s , x, s〉 be two DTL Super-reconciliations for I = 〈X ,F , T,Σ, S〉. Then,
Cδ(Rmin) ≤ Cδ(R).
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Proof. Given s, the choice for e is constrained by Definition 1, as evidenced by
Lemma 1. For any internal node v of T , if either s(vl) or s(vr) is separated from
s(v), then it must be that e(v) = HGT. If s(vl) and s(vr) are not separated (i.e.,
either one is an ancestor of the other), then it must be that e(v) = Dup. Finally,
if s(vl) is separated from s(vr), then emin

s (v) = Spe, but it would also be valid
to set e(v) to Dup. However, in that case, replacing Dup back with Spe would
save two full losses at the cost of adding at most one partial loss, which cannot
lead to a more costly Super-reconciliation since speciations have a null cost and
cDup, cLoss ≥ 0. �

B Additional Content for Sect. 6 (“A Dynamic
Programming Algorithm for DTL Super-
Reconciliation”)

Lemma 6 (Termination and correctness). For any v ∈ V(T ) and σ ∈ V(S),
C(v, σ) = C(v, σ) and C�(v, σ) = C�(v, σ) (as computed by Algorithms 1 and 2
respectively).

Proof. First, note that both algorithms terminate even though they are mutually
recursive, since any call to C(v, σ) or C�(v, σ) calls C and C� only on vl and vr.
We proceed by structural induction to prove correctness. Let v be a leaf of T .
Leaves cannot be labeled by any synteny or mapped to any species other than
the ones specified in the problem input, therefore C(v, s(v)) = 0 = C(v, s(v)),
C(v, σ) = ∞ = C(v, σ) for any σ 
= s(v), and C�(v, σ) = ∞ = C�(v, σ) for any
σ ∈ V(S).

Now, let v be an internal node and assume that for any σ ∈ V(S), C�(vl, σ) =
C�(vl, σ), C�(vr, σ) = C�(vr, σ), C(vl, σ) = C(vl, σ), and C(vr, σ) = C(vr, σ). Let
σ be any node of the species tree. Both C�(v, σ) and C(v, σ) explore all possible
pairs σ′, σ′′ ∈ V(S)2 that can be mapped respectively to vl and vr, and return
the minimum cost of all those options.

Consider the computation of C�(v, σ) by Algorithm 2. Since in that case
x(v) � xlca(v), then x(v) 
⊆ xlca(vl). Therefore, setting x(vl) = xlca(vl) (which
costs C(vl, σ

′) = C(vl, σ
′)) would imply that Dsub(x(v), x(vl)) = 1. On the

contrary, setting x(vl) � xlca(vl) (which costs C�(vr, σ
′) = C�(vr, σ

′′)) would
give us the freedom to choose x(vl) such that x(v) ⊆ x(vl), implying that
Dsub(x(v), x(vl)) = 0. The same logic holds for v, vr, and σ′′. Note that each of
the three cases in the innermost loop uses the same cost computation formula
as Definition 5, albeit adapted to test all four options of setting x(vl) and x(vr)
to either xlca or a superset of it. By Lemma 5, those are the only four options
to consider, so C�(v, σ) = C�(v, σ).

Consider the computation of C(v, σ) by Algorithm 1. In that case, x(v) =
xlca(v), therefore setting x(vl) � xlca(vl) is only allowed if xlca(v) 
⊆ xlca(vl), for
otherwise there would be at least one gene family with two or more gain points.
When setting x(vl) = xlca(vl) (which costs C(vl, σ

′) = C(vl, σ
′)), the presence of

a loss depends on the value of Dsub(xlca(v), xlca(vl)). On the other hand, setting



Reconciliation with Segmental Duplication, Transfer, Loss and Gain 143

x(vl) � xlca(vl) (which costs C�(vr, σ
′) = C�(vr, σ

′′)) would give us the freedom
to choose x(vl) such that x(v) ⊆ x(vl), implying that Dsub(x(v), x(vl)) = 0. The
same logic holds for v, vr, and σ′′. Note that this algorithm also follows Defini-
tion 5, handling all four options mentioned previously, and excluding disallowed
cases. So C(v, σ) = C(v, σ). �
Theorem 1 (Time and space complexity). Using SuperDTL, the DTL
Super-reconciliation problem can be solved in polynomial time O(|X |×|Σ|3)
and space O(|X | × |Σ|).
Proof. Both dynamic programming tables have exactly |V(T )| × |V(S)| entries
each. Computing a single entry of one of the tables takes time O(|V(S)|2), pro-
vided all the other required entries are made available in constant time and set
and tree operations are implemented in an efficient way. A single bottom-up
traversal of the synteny tree is enough to fill in both tables using Algorithms 1
and 2, therefore, computing the tables takes time O(|V(T )| × |V(S)|3). To com-
pute the overall minimal cost is to compute the minimum value of the C table
in column r(T ), which can be done in time O(V(S)). To construct an optimal
solution, pointers to optimal σ′, σ′′ pairs and to which of C and C� is used must
be tracked for each table entry, taking up a constant time and space for each
entry. After the tables have been computed, tracing back those pointers allows
constructing a solution by following O(|V(T )|) pointers. The overall time and
space complexities are therefore O(|V(T )|×|V(S)|3) and O(|V(T )|×|V(S)|), or,
equivalently, O(|X | × |Σ|3) and O(|X | × |Σ|). �
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26. Szöllősi, G.J., Tannier, E., Lartillot, N., Daubin, V.: Lateral gene transfer from the
dead. Syst. Biol. 62(3), 386–397 (2013)

27. Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications
and lateral gene transfers. IEEE/ACM Tran. Comput. Biol. Bioinform. 8(2), 517–
535 (2011)

28. Tyson, G.W., Banfield, J.F.: Rapidly evolving CRISPRs implicated in acquired
resistance of microorganisms to viruses. Environ. Microbiol. 10(1), 200–207 (2008)



Reconciliation with Segmental Duplication, Transfer, Loss and Gain 145

29. Wang, S., Meade, A., Lam, H.-M., Luo, H.: Evolutionary timeline and genomic
plasticity underlying the lifestyle diversity in rhizobiales. mSystems 5(4), e00438
(2020)

30. Weiner, S., Bansal, M.S.: Improved duplication-transfer-loss reconciliation with
extinct and unsampled lineages. Algorithms 14(8), 231 (2021)

31. Zhang, L.: On a Mirkin-Muchnik-Smith conjecture for comparing molecular phy-
logenies. J. Comput. Biol. 4(2), 177–187 (1997)

32. Zmasek, C.M., Eddy, S.R.: A simple algorithm to infer gene duplication and spe-
ciation events on a gene tree. Bioinformatics 17, 821–828 (2001)



Quantifying Hierarchical Conflicts
in Homology Statements

Krister M. Swenson1,2(B) , Afif Elghraoui3 , Faramarz Valafar4 ,
Siavash Mirarab5 , and Mathias Weller1,6

1 Centre National de la Recherche Scientifique (CNRS), Paris, France
mathias.weller@cnrs.fr

2 LIRMM, University of Montpellier, Montpellier, France
swenson@lirmm.fr

3 Department of Electrical and Computer Engineering, San Diego State University,
San Diego, CA, USA
aelghraoui@sdsu.edu

4 Department of Electrical and Computer Engineering, University of California,
San Diego, La Jolla, CA, USA

faramarz@sdsu.edu
5 School of Public Health, San Diego State University, San Diego, CA, USA

smirarab@ucsd.edu
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Abstract. A fundamental step in any comparative whole genome anal-
ysis is the annotation of homology relationships between segments of the
genomes. Traditionally, this annotation has been based on coding seg-
ments, where orthologous genes are inferred and then syntenic blocks
are computed by agglomerating sets of homologous genes into homolo-
gous regions. More recently, whole genomes, including intergenic regions,
are being aligned de novo as whole genome alignments (WGA). In this
article we develop a test to measure to what extent sets of homology
relationships given by two different software are hierarchically related
to one another, where matched segments from one software may con-
tain matched segments from the other and vice versa. Such a test should
be used as a sanity check for an agglomerative syntenic block software,
and provides a mapping between the blocks that can be used for fur-
ther downstream analyses. We show that, in practice, it is rare that two
collections of homology relationships are perfectly hierarchically related.
Therefore we present an optimization problem to measure how far they
are from being so. We show that this problem, which is a generaliza-
tion of the assignment problem, is NP-Hard and give a heuristic solution
and implementation. We apply our distance measure to data from the
Alignathon competition, as well as to Mycobacterium tuberculosis, show-
ing that many factors affect how hierarchically related two collections
are, including sensitivities to guide trees and the use or omission of an
outgroup. These findings inform practitioners on the pitfalls of homol-
ogy relationship inference, and can inform development of more robust
inference tools.
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1 Introduction

The increasing ease of whole genome sequencing and assembly has opened a new
era of comparative genomics. With the data available today, not only can the
phylogenetic histories of all the genes between a set of genomes be analyzed, but
also the interaction between these genes, linking gene regulation and function
to the positions of groups of genes. These analyses require a reliable grouping of
homologous genomic segments from the multiple genomes in question.

Thus, the inference of sets of homologous genomic segments is of fundamental
importance. Such a homology statement comes in the form of a set of genomic
segments that contains at least one, but potentially multiple, segments from
several genomes. Each pair of segments from the set shares common ancestry
over some proportion of their intervals, which varies depending on the scale and
level of precision required by the application.

The most basic segment on which statements are made has traditionally
been the gene, detected through either manual or automatic means. The number
of tools designed to infer homology relationships between annotated genes has
grown, provoking the formation of the Quest for Orthologs (QfO) consortium
dedicated to the evaluation and comparison of these tools [12].

General genomic intervals, that can contain both coding and noncoding posi-
tions, have also been used as homology statements. In this case, researchers have
considered bidirectional best hits as evidence for orthology [22,31]. More recently,
“whole genome alignment” methods partition entire genomes into blocks that
can be aligned into multiple sequence alignments (MSAs), de novo, with no spe-
cial input from the user. The Alignathon collaborative competition was devel-
oped to evaluate and compare these methods [9].

Study of the large scale changes between genomes has inspired a more vague
notion of homology between genome segments. Even before the discovery of
the double helix, groups were studying homology of large segments of genomes
from the salivary glands of drosophila [29]. More precise lengths of roughly con-
served chromosomal segments began to be studied using linkage maps [23]. In the
postgenomic era, basic homology segments are agglomerated into syntenic blocks,
possibly separated by micro-rearrangements. GRIMM-synteny was developed for
the study of large scale chromosomal changes, in response to the whole genome
sequencing efforts in human and mouse [27]. Since then, many syntenic block
inference tools have been introduced but, despite twenty years of development,
a unified definition of syntenic block has yet to be found. Indeed, most tools rely
on operational definitions rather than biological or mathematical ones [11,30].

There are several tests used for comparing and evaluating homology state-
ments. For orthology statements between coding sequences, the QfO project
has established tests that: 1) compare trees inferred from orthologous families to
agreed-upon species trees, 2) compare the subsets of orthologs from curated gene
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families, and 3) use consistency in gene ontology annotation [1]. For statements
between syntenic blocks, comparisons of inclusion and exclusion of segments
between methods have been done, and blocks from a single method have been
compared to known gene clusters [19]. Other sources of ground truth, such as
RNA-seq data, have been used to confirm co-regulation between genes occurring
in a proposed block [33].

For general statements (on both coding and noncoding DNA), the Alignathon
competition used three different measures [9]. If homology statements are given
as a set of (potentially gapped) equal-length segments from several genomes,
then each homologous pair of positions between two genomes as given by one
method, can be queried in another method. The number of such shared positions
is a measure of similarity and, when one of the methods is taken as ground truth,
the number of shared positions can be used to measure precision and recall.
The mafComparator tool estimates these values by sampling positions [9]. For
sets of aligned homology statements (i.e. MSAs), probabilistic sampling-based
alignment reliability (PSAR) was used to assess each aligned column [16]. PSAR
fixes all rows of the alignment but one, and samples from the many ways to
align that row within the fixed alignment. After this is repeated for each row, an
alignment reliability score for each pair of positions in a column can be assigned.
When aligned homology statements are augmented with a phylogeny, another
statistical test called StatSigMA can be used [28]. For each edge of the phylogeny,
the rows of the alignment are split into two alignments. The two alignments
are then tested for exhibiting “unrelated behaviour” using Karlin-Altschul log
likelihood scores. If the test for all branches passes, then the homology statement
is validated.

For homology statements that come in the form of syntenic blocks, Ghiur-
cuta and Moret outline some necessary conditions for a valid agglomeration of
homologous units into such blocks [11].

There exists very few methods that compare homology statements in the form
of sets of genomic segments, unmarried to connotations of orthologous genes, and
independent of multiple sequence alignments. To our knowledge, the Jaccard
distance (e.g. as computed by mafComparator) applied to pairwise homology
statements, is the only known comparison that falls into this category.

In this article we introduce a simple definition of homology block (Sect. 2.1)
and formally characterize the conditions under which a set of homology blocks
are valid (Sect. 2.2). We show what it means for collections of blocks to be hier-
archically related and use this to develop a method for measuring disagreement
between two different collections of blocks. In Sect. 2.3 we show a necessary con-
dition for two collections of blocks to be in a hierarchical relationship (in the
form of Lemma 1), based on a graph representing the overlap between the sets.
For different parts of the genomes in question, our test allows for the collections
of blocks to be hierarchically related in both ways; in some parts of the genomes
the first set could be more general than the second, while in other parts of the
genomes the opposite can be true. We introduce an optimization problem, called
Minimum Deletion into Disjoint Stars (MDDS), which gives a lower bound
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on the number of positions that must be ignored so that the two collections of
blocks could be related through a hierarchical relationship. Not only does a solu-
tion to MDDS give a measure as to the degree of hierarchical dissonance between
two collections, but it serves as an unambiguous mapping between the blocks of
the two. This mapping could be used for further downstream comparisons, an
illustration of which is shown in Appendix C.

We show that the MDDS problem is NP-Hard, before presenting a polyno-
mial time heuristic based on an exact algorithm for solving MDDS on a tree.
In Sect. 4 we define the homology discordance ratio and use this measure as a
distance between block collections built on Alignathon data and on a set of 94
Mycobacterium tuberculosis isolates. On the tuberculosis strains we study the
relationship between blocks built using an outgroup or no outgroup, using anno-
tations or no annotations, using maf2synteny to agglomerate or not, as well as
study the effect of the guide tree on Cactus MSA blocks. On the simulated data
from the Alignathon project, we highlight differences between our method and
the Jaccard distance (as computed with mafComparator).

For the entirety of the article we focus on the general case of homology
statements, although most of the discussion also applies to the restricted case of
orthology statements.

2 Methodological Foundations

2.1 Overlapping Homology Statements and the Block Graph

We use gi[k..�] to denote a segment between positions k and � of genome gi

and we let T denote the universe of all segments over all possible genomes and
position-pairs. Define the overlap op(s1, s2) between two segments s1 and s2 as
the number of positions where they overlap in the same genome. For example
op(g1[1..5], g1[3..9]) = 3 but op(g1[1..5], g2[3..9]) = 0.

Definition 1 (homology statement block). A homology statement block
(called a block for short) B is a set of segments B ⊂ T such that all pairs of
segments in B have zero overlap.

The right panel of Fig. 1 depicts two collections of homology state-
ment blocks A = {A1, A2, A3} and B = {B1, B2, B3}. The blocks of
A are A1 = {g1[1..12], g2[13..24]}, A2 = {g1[14..28], g2[26..41]}, A3 =
{g1[53..66], g2[101..113]}, while the blocks of B are B1 = {g1[1..28], g2[13..41]},
B2 = {g1[46..68], g2[94..115]}, and B3 = {g1[34..39], g2[42..46], g2[116..121]}.

Before discussing the semantic interpretation of a homology statement block,
we first introduce a graph that represents the overlap between blocks. The over-
lap op(B1, B2) =

∑
s1,s2∈B1×B2 op(s1, s2) between blocks B1 and B2 is the

total overlap between all pairs of segments in the two. A collection of blocks
B = {B1, B2, . . .} is considered to be clean if the overlap between any pairs of
blocks in B is zero. Both collections depicted in Fig. 1 are clean.

For two collections of blocks A and B, we build a bipartite block graph
BG(A,B) where there is an edge between A and B for any A ∈ A and B ∈ B if
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A1

23

31

27

A1 A1

Fig. 1. To the right, the collections of blocks A = {A1, A2, A3} and B = {B1, B2, B3}
appearing in genomes g1 and g2, along with the graph BG(A, B). Segments are depicted
with brackets and lined up according to their positions on the chromosomes. They are
labeled by their tuple (when space permits) and the block to which they belong. The
configuration of positive and negative witness pairs shows that B generalizes A. Some of
the genome positions are highlighted with boxes, and two such positions are connected
by a solid line if they appear as a positive witness in B, and that line is bold if they are
also in A. The dashed line represents one of the (many) negative homology witnesses
between A1 and A2 that are negative witness pairs for A but not for B. To the left,
the graph BG(A, B) appears with edges labeled by overlap length in gray. All of the
connected components are stars.

and only if blocks A and B overlap (i.e. op(A,B) > 0). Thus, the block graph
BG(A,A) for a clean collection A is a perfect matching. E(G) is the set of
edges of the graph G. We associate to each edge AB ∈ E(G) a weight function
ω : E(G) → N such that ω(AB) = op(A,B). The left side of Fig. 1 shows the
block graph for the collections to the right.

2.2 Homology Witnesses and Block Hierarchies

A homology block can be interpreted as a positive and negative statement of
homology (i.e. statements about common ancestry). On the positive side, the
block {g1[1..5], g2[11..16]} says that positions 1 through 5 in genome g1 are some-
how homologous to positions 11 through 16 in genome g2 (in this case the seg-
ments are not the same length, so we assume that each position from the segment
g1[1..5] is homologous to either a position in g2[11..16] or to none other in g2).
On the negative side, the block could be interpreted as saying that no position
in g1[1..5] is homologous to any other position in g1 or any other position in g2,
outside of g2[11..16].

In this section we suppose that we know the truth about the ancestral rela-
tionships between the base-pair positions of the genomes in question. With this
supposed knowledge, we can categorize pairs of homology witness positions as
positive or negative, depending on their evolutionary relationship. Using these
relationships, we define properties that a valid collection of homology blocks must
respect. These definitions are extended to encompass hierarchical relationships
between collections of blocks.
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Consider any pair of positions gi[x] and gj [y] from genomes gi and gj . This
pair is called a positive homology witness if the two positions descend from the
same ancestral position, otherwise the pair is called a negative homology witness
(positive homology witnesses represent pairs of positions that are typically called
“homologous” positions). Note that the true relationship between positions is
unknown, yet it imposes constraints on what we consider a valid collection of
blocks according to the following definition.

Consider any position-pair (gi[x], gj [y]) such that gi[x] is contained in a seg-
ment from a block B in a collection B. If (gi[x], gj [y]) is a positive homology
witness, then either

1. gj [y] appears in B, and we say that the pair is a positive witness in B, or
2. gj [y] appears in no block of B.

By this definition no position-pair (gi[x], gj [y]) with gi[x] and gj [y] in different
blocks of B, can be a positive homology witness and, since all position-pairs are
either positive or negative homology witnesses, (gi[x], gj [y]) must be a negative
homology witness. Any position-pair (gi[x], gj [y]), where gi[x] and gj [y] are in
different blocks of B or in no block of B, is called a negative witness for B.

Note that, for a clean collection B, no position-pair can be both a positive
and negative witness in/for B. There may also be position-pairs that are nei-
ther positive nor negative witnesses in/for B, such as those pairs that have one
position contained in a block of B and the other outside all blocks of B. Finally,
note that not all position-pairs appearing between segments in a homology block
need necessarily be positive homology witnesses.

Positive witness pairs limit what can exist in two different blocks; a block
containing one position of a positive homology witness imposes the constraint
that the other position must either be in the same block, or in no block. On the
other hand, we will see in the following that negative homology witnesses existing
between two different blocks in a collection enforce constraints on the hierarchical
relationships that this collection can have with another block collection.

Consider the collections of blocks in Fig. 1 and note that whenever a positive
homology witness is a positive witness in A, it must also be a positive witness in
B, whereas not all positive witnesses in B exist in A. Conversely, every negative
witness for B is also a negative witness for A. In this sense, the blocks of B are
“more general” than the blocks of A. This motivates the following definition, for
which we focus on subcollections of blocks A′ ⊆ A and B′ ⊆ B.

Definition 2 (generalization). A clean (sub)collection of blocks B′ generalizes
a clean (sub)collection A′ if and only if every positive witness in A′ is also a
positive witness in B′ and every negative witness for B′ is also a negative witness
for A′.

Note that any clean collection generalizes itself.
While some subcollections of B may generalize subcollections of A, other

subcollections of A may generalize subcollections of B. Partition them A =
A1 ∪ A2 ∪ · · · ∪ Ak and B = B1 ∪ B2 ∪ · · · ∪ Bk according to the connected
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components of BG(A,B) (e.g. A1∪B1 is the set of vertices in the first connected
component).

Definition 3 (hierarchical). We say that A and B have a hierarchical rela-
tionship if and only if Ai generalizes Bi, or Bi generalizes Ai, for 1 ≤ i ≤ k.

The existence of hierarchical relationships between collections of blocks are
interesting to us for at least two reasons. Consider two block inference meth-
ods, MethodA and MethodB, producing different clean collections of blocks A
and B respectively. If MethodB is meant to agglomerate blocks from MethodA,
then we would expect B to generalize A. This is useful for the verification of
agglomeration methods, and as a sanity check for the practitioner. In this case,
if MethodB also trims spurious blocks or segments from MethodA, B may not
generalize A, but A and B would still be hierarchically related. Another reason
for interest in the hierarchical relationship may be that, if B generalizes A, then
we can define a mapping from each block A ∈ A to a block B ∈ B. This mapping
can be used for further comparisons between the collections. The refinement of
orthology assignments, as illustrated in Appendix C is an example of one such
comparison.

2.3 Relating Block Hierarchy to Stars in the Block Graph

While simple hierarchical relationships are easy to detect, real-world data are
not so well behaved, and require a formalism to measure the extent to which
a relationship is hierarchical. The types of connected components in the block
graph give us insight into collections that cannot have a hierarchical relationship.

Lemma 1. Let A and B be clean collections of blocks such that B generalizes A
and BG(A,B) is connected. Then, all vertices of A have degree one in BG(A,B),
that is, BG(A,B) is a star with center in B.
Proof. Let A be a block in A, and assume that it has at least two distinct
neighbors B1, B2 ∈ B in BG(A,B), that is, both B1 and B2 overlap A. Thus,
there are positions gi[x] and gj [y] appearing in A such that gi[x] appears in B1
and gj [y] appears in B2. Since B is clean, we also know that these positions are
distinct. Since (gi[x], gj [y]) appears in different blocks in B, we know that it is
a negative homology witness for B. However, since gi[x] and gj [y] appear in the
same block in A, the pair is not a negative witness for A. Thus, (gi[x], gj [y]) is
a negative witness for B but not for A, contradicting the fact that B generalizes
A. �	

We say that a graph is hierarchical if it is a collection of vertex-disjoint stars,
that is, if no component has two vertices of degree greater than one. It is easy to
check if a graph meets this criterion. Note that the condition of a graph BG(A,B)
being hierarchical is necessary for A and B to have a hierarchical relationship,
but it is not sufficient. Also note that, Lemma 1 outlines a property on each
individual connected component, allowing some parts of A to generalize parts
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A1 A1

A1 A1

A1 A1

Fig. 2. Two subsets of blocks from collections A and B that are not hierarchically
related. The top panel depicts a subset of blocks for part of the genome g1, but not
the other genomes. Positions α and β form a negative homology witness for A, but
not for B, while β and γ form a negative homology witness for B, but not for A. This
contradicts properties of a hierarchy and, therefore, yields the non-star topology to the
left. The bottom panel depicts a subset of blocks for part of the genomes g1 and
g2. These segments contradict properties of a hierarchy in a different way, and yield
the non-star topology to the left. This kind of scenario would arise when orthologs are
matched in one way from MethodA, and in another way for MethodB. Note that even
if the block A5 was not in collection A, the contradiction still holds and the connected
component is not a star.

of B, while allowing other parts of B to generalize parts of A. Thus, a natural
corollary to Lemma 1 is that if A and B are hierarchically related, then BG(A,B)
is hierarchical.

For a graph that is not a collection of stars, one may want to measure to what
degree it deviates from being so. Lemma 1 inspires the search for star packings
on G = BG(A,B).

Input: a bipartite graph G with weight function ω : E(G) → N

Output: E′ ⊆ E(G) such that the subgraph of G formed by the edge set
(E(B) \ E′) is a collection of vertex-disjoint stars

Measure:
∑

e∈E′ ω(e)

Minimum Deletion into Disjoint Stars (MDDS)

A solution to MDDS gives a lower bound on the number of overlapping
positions that must be ignored so that A and B can be hierarchically related.
For example, Fig. 2 shows two connected components that are not stars. Consider
the graph from the upper panel and assume that in the non-depicted genomes
(i.e. gi for i > 1) there is no overlap of the segments of A1 with those of B2, or of
segments of A2 with those of B1. Then, the solution to MDDS on this component
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would result from the removal of the edge between B1 and A2, since this edge
has the minimum-size overlap. In Sect. 4.1 we highlight the differences between
our MDDS method, and the Jaccard similarity index used in the Alignathon.

3 Algorithms

In this section we show that the Minimum Deletion into Disjoint Stars
problem is NP-Hard, and then present a practical heuristic based on solving
MDDS optimally on a tree. For simplicity and without loss of generality, we will
assume that all block graphs are connected.

Other generalizations of the assignment problem, similar to MDDS, have
been studied for decades, the closest of which has most recently been called
the T -star packing problem [4]. This problem asks for a star packing where
the size of the star is limited by an input parameter T . When the measure is
the number (or weight) of edges, Hell and Kirkpatrick show that the T -star
packing is NP-Hard by reduction to the version of the problem that asks for
a decomposition of a given graph into subgraphs isomorphic to the star with
T edges [13]. Since the only difference between MDDS and the edge-weighted
T -star packing problem is the parameter T , it is tempting to adapt the same
series of reductions to MDDS by setting T to the maximum degree over all
vertices in the graph. This approach is not clearly feasible, however, since the
reduction from 3-Dimensional Matching to the decomposition version of the
problem creates vertices of degree higher than T [17].

Babenko and Gusakov give a 9
4

T
T+1 approximation algorithm for the T -star

packing problem based on a reduction to the max-network flow problem [4]. We
could use this elaborate approximation algorithm by fixing T to the maximum
degree of the input graph, but we choose instead to implement the much simpler
heuristic presented in Sect. 3.2.

3.1 NP-Hardness of MDDS

We will show that the decision version of MDDS is NP-hard by reducing the
well-known 3-SAT problem to it. Our construction uses similar techniques as
the NP-hardness proof of the Transitivity Edge Deletion problem [32].

Construction 1 (see Fig. 3). Let ϕ be an instance of 3-SAT with variables
X := {x1, x2, . . . , xn} and clauses C := {C1, C2, . . . , Cm} such that each clause
contains exactly three literals. For each variable xi, let ni denote the number of
clauses that contain xi or ¬xi and let γ0

i , γ1
i , . . . , γni−1

i be any sequence of these
clauses. We construct an edge-weighted graph (G,ω) as follows:

1. For each variable xi create a cycle Qi containing 6ni vertices
v0

i , v1
i , . . . , v6ni−1

i and give all edges weight m.
2. For each clause Ck ∈ C, create a single vertex uk.
3. For each i, j let � be such that γj

i = C� and, if xi occurs non-negated in C�,
then add the edge {v6j

i , u�} with weight 1, otherwise add the edge {v6j+2
i , u�}

with weight 1.
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(x1 ∨ x3 ∨ ¬x8)

v151
v161 v171 v181 v191

v201
v211

x1

v33

v43

v53

v63
v73

v83
v93

x3

v278v288
v298

v308
v318

v328

v338

x8

Fig. 3. Example of Construction 1. The clause C := (x1 ∨ x3 ∨ ¬x8) corresponding
to the center vertex is equal to γ3

1 = γ1
3 = γ5

8 , that is, it is the 4th clause containing
x1, the 2nd clause containing x3 and the 6th clause containing x8. A truth-assignment
setting x1 to TRUE and x3 and x8 to FALSE corresponds to the star cover indicated
by gray highlights. Note that taking the edge between v18

1 and C instead of the edge
between v32

8 and C corresponds to satisfying the clause C by x1 instead of ¬x8.

Note that the image of ω is {1,m}, the total weight of all edges is 18m2 + 3m,
and G is bipartite, since any edge from part 3. of the construction, connecting a
(variable) cycle to a (clause) vertex u�, connects to an even numbered vertex in
the cycle.

Besides NP-hardness, our reduction implies exponential lower bounds assum-
ing widely believed complexity-theoretic hypotheses. The “Exponential-Time
Hypothesis” (combined with results by Impagliazzo et al. [15]) roughly states
that 3SAT on formulas with m clauses cannot be decided in 2o(m) time. This
lower bound transfers since the constructed graph G has only 21m edges.

Theorem 1. Minimum Deletion into Disjoint Stars is NP-hard and can-
not be solved in 2o(|E(G)|) time on graphs G, even if G is restricted to maximum
degree three, assuming the Exponential-Time Hypothesis.

3.2 A Heuristic for MDDS

In light of the hardness result presented in Sect. 3.1, we devised a heuristic that
first computes a maximum-weight spanning tree T on each connected component
of BG. It then transforms each T into a star packing by computing MDDS on T .

We present a dynamic programming algorithm solving MDDS on a tree T . To
this end, we root T at an arbitrary vertex, and compute a dynamic programming
table for vertices in a post-order traversal. Consider a set S of edges that, after
removal from T , yields a collection of disjoint stars. We denote the result of this
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removal as T − S = (V (T ), E(T ) \ S). Each vertex x has one of three states
relative to S:

1. x is the center of a star in T − S (covered by D∗(x) in the DP),
2. x has degree one in T − S and the edge between x and its parent is in T − S

(covered by D+(x) in the DP), and
3. x has degree one in T − S and the edge between x and its parent is not in

T − S (covered by D−(x) in the DP).

Then, D∗(x), D+(x), and D−(x) contain the weight of an optimal solution Sx

for the subtree rooted at x, for each of the three cases respectively. If x is a
leaf of T , then set D∗(x) := D−(x) := D+(x) := 0. Otherwise, let v1, v2, . . . , vm

denote the children of x in T . We visit the children in this order and accumulate
each partial subsolution, starting with D0

∗(x) := D0
+(x) := D0

−(x) := 0 and
proceeding as follows for each 1 ≤ i ≤ m:

Di
∗(x) := Di−1

∗ (x) + min
(
D+(vi), ω(xvi) + min(D∗(vi),D−(vi))

)

That is, if x is the center of a star, then the edge xvi must be in S if either vi

is the center of a star or the edge between vi and its parent x is not in T − S.

Di
+(x) := Di−1

+ (x) + ω(xvi) + min(D∗(vi),D−(vi))

That is, if x is a leaf of a star centered at the parent of x, then the edge xvi

must be in S.

Di
−(x) := min

(
Di−1

− (x) + ω(xvi) + min(D∗(vi),D−(vi)),
Di−1

+ (x) + D∗(vi)

)

The case of Di
−(x) is a bit more subtle. Since x is not the center of a star, all

but at most one edge between x and its children are in S, so if xvi is not in S
then Di−1

+ (x) forces all xvj to be in S, for 1 ≤ j < i. Finally, the subsolutions
rooted at x are, then, given by:

D+(x) := Dm
+ (x) D−(x) := Dm

− (x) D∗(x) := Dm
∗ (x)

4 Quantifying Hierarchical Conficts

We applied our MDDS heuristic to homology statements on a set of prokary-
otes, and on a set of eukaryotes. The solution to MDDS provides an estimate
of the minimum number of positions that must be ignored so that the neces-
sary conditions for a hierarchy, highlighted by Lemma 1, are achieved. Before
applying the heuristic of Sect. 3.2 we cleaned the syntenic blocks according to
Appendix B, and preprocessed the graphs for segmental duplications according
to Appendix C.
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4.1 Discordance Ratio and Distinction from Jaccard Index

Define coverage(B ) of a collection of blocks B as the total number of positions
covered by all segments in blocks of B. We report the hierarchical discordance
ratio between collections A and B as d(A,B) = w/(coverage(A)+coverage(B)),
where w is the weight of the MDDS on BG(A,B). A discordance ratio of 0.1
means that we have to ignore at least 10% of the total coverage of the blocks (in
both methods) in order to have a hierarchical relationship between them.

Alignathon used mafComparator to compute the straightforward Jaccard
similarity index between collections of blocks. In this case, the elements of the
sets in question are the pairwise alignments of positions implied by the blocks.
So if a pair of positions are aligned in one class of blocks but not the other, this
will contribute one to the denominator.

Consider collections A and B such that A only contains blocks with segments
from {gi[200x+1..200x+100] | 0 ≤ x < 
 �(gi)

200 �}, and B only contains blocks with
segments from {gi[200x + 101..200x + 200] | 0 ≤ x < 
 �(gi)

200 �}, for all genomes gi

with length �(gi). In other words, the collections can only have blocks of length
100 that do not overlap with each other. In this case the Jaccard similarity mea-
sure will be zero no matter the length of the genomes, indicating the most severe
dissimilarity, whereas the two collections are hierarchically related, showing no
conflicts, and the block graph is composed only of degree zero vertices. In that
sense, our comparison method is tolerant to collections that conservatively make
no assertion about a region.

We consider the two measures complementary in that they capture differ-
ent qualities of the overlap properties of block collections. We see in Sect. 4.3
instances from the Alignathon data where the Jaccard similarity is low, yet the
two collections are hierarchically related, and vice versa.

4.2 Mycobacterium Tuberculosis Clinical Isolates

For the prokaryotes, we used a set of 94 Mycobacterium tuberculosis strains [5,21]
with homology statements given by the methods listed in Table 1. These sets of
blocks are those produced in [10], where the methods were compared to assess
their impact on inferring rearrangement phylogenies. Note that all Cactus blocks
used in this subsection had segments with fewer than 50 positions filtered out.

The collections of blocks for four of the methods, along with their
maf2synteny counterparts are compared in Fig. 4. As expected, each collection
of blocks had a very low discordance ratio with its counterpart agglomerated by
maf2synteny. Further, the agglomerated blocks always have lower discordance
to all the other methods, when compared to their unagglomerated counterparts.
Of the unagglomerated methods, SibeliaZ is the least discordant.

There were a couple of surprises. The first is that the most discordant pairs
are between the gene-based annotation method and the de novo inference meth-
ods Cactus and SibeliaZ. Contrary to the other methods, the agglomerated
annotation blocks show a small improvement against Cactus, and a surprising
degradation (going up from 4% to 5%) in the discordance ratio for SibeliaZ.
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Table 1. Homology statement determination methods applied to the M. tuberculosis
genomes

Method Description

Cactus(SNP) Cactus [3] alignment guided by a ML tree based on

Concatenated substitutions with respect to reference

strain H37Rv (NCBI accession NC 000962.3)

Cactus(SibeliaZ) Cactus alignment guided by a MLWD [14] adjacency tree

Computed from SibeliaZ+M2S synteny blocks

Cactus(Mash) Cactus alignment guided by a B(I)ONJ tree based on the

genomes’ Mash [25] distance matrix

SibeliaZ Locally collinear blocks produced in the first step of the

SibeliaZ pipeline [20]

Annotation Simultaneous annotation and orthology assignment by

95% amino acid sequence identity and 95%

Alignment coverage

Modifiers Description

+out Synteny blocks computed while including the outgroup

Strain M. canettii (NCBI accession NC 019951.1)

+M2S Agglomerated with maf2synteny [18]

This implies that either 1) many blocks from the Cactus method bridge between
coding regions, or 2) many duplicate regions are assigned in discordant ways.
The second surprise is that the unagglomerated Cactus methods, with different
guide trees, are more discordant from each other than they are with SibeliaZ. It
has been reported that Cactus’s sensitivity to guide trees also has implications
on the downstream phylogenetic analyses [10].

In Fig. 5, the checkered pattern shows that the inclusion of an outgroup affects
Cactus blocks more than the choice of a guide tree. The inclusion of the outgroup
strain also decreases the discordance between the Cactus blocks on different
guide trees. For example, Cactus(Mash) has discordance ratios of 0.044 and 0.061
against Cactus(SNP) and Cactus(SibeliaZ), but for Cactus(Mash)+out these
values are 0.022 and 0.026. Table 2 shows the discordance between a method and
its version with the outgroup. Cactus is most highly affected by the inclusion
of the outgroup. While SibeliaZ is somewhat affected, Annotation is barely
affected. Agglomerating the blocks with maf2synteny diminishes the discordance
in all cases but Annotation.

4.3 Alignathon

The Alignathon competition was created to compare “whole genome alignment”
methods [9]. Authors of WGA software were invited to submit the collections
of blocks computed by their program, which were compared using the measures
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Fig. 4. The discordance ratio between each pair of block collections. Each of meth-
ods Cactus(SNP), Cactus(SibeliaZ), SibeliaZ, and Annotation along with their
maf2synteny counterpart.

Fig. 5. The inclusion of an outgroup affects Cactus blocks more than the choice of a
guide tree.

described in the introduction. The project fabricated two synthetic datasets that
were used to evaluate the block collections, one that mimicked the properties of
set of Primates, and another that mimicked the properties of a set of Mammals.

We applied our MDDS heuristic to each pair of block collections. Note that
we were limited to the collections available on the Alignathon downloads page,
so were unable to compare to some methods, such as Mercator/Pecan [26].
The results for the Primate dataset are depicted in Fig. 6 while results for the
mammal dataset are depicted in Fig. 7. Being evolutionarily closely related, the
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Table 2. Comparison of discordance ratios between blocks computed by the same
method, with and without an outgroup in the input genome set. maf2synteny usually
reduces the high discordance (shown as a percentage) between the blocks. For example,
Cactus(SNP) applied to the TB sets with and without the outgroup shows a very high
divergence ratio, yet a much lower one after maf2synteny has been applied to the two
block collections.

maf2synteny? Cactus(SNP) SibeliaZ Annotation

No 10.09% 3.57% 0.00263%

Yes 1.57% 2.37% 0.0547%

Fig. 6. Discordance ratios for simulated Primates.

Primates dataset mostly shows discordance ratios below 2%. While this trend
is consistent with the Alignathon findings, including GenomeMatch2 (SoftBerry,
Mount Kisco, NY) being relatively more discordant, there were differences with
the Jaccard index reported by Alignathon. VISTA-LAGAN [8], for instance, stands
out as generally more discordant than the others, being rather dissimilar to
PSAR-Align [16], AutoMz, and Multiz [6]. EBI-MP stands out as having both the
best, and the worse discordance ratios of the dataset; despite having a ratio of
over 12% against progressiveMauve [7], it also is the only method in the set
to be hierarchically related to another one (Robusta [24]). Cactus has very low
discordance with all methods except GenomeMatch2.

The simulated mammal dataset contained genomes that were separated by a
larger evolutionary distance, and this was reflected in surprisingly large discor-
dance ratios. We observe several discrepancies with the Jaccard distances reported
by Alignathon ([9] – Fig. 8B). GenomeMatch3 was extremely dissimilar to all
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Fig. 7. Discordance ratios for simulated Mammals.

methods but Mugsy [2], yet we observe high hierarchical discordance ratios
only against Robusta and Multiz. Cactus has low hierarchical discordance
against all other methods, whereas it had high Jaccard distances against Mugsy,
GenomeMatch3, and EBI-EPO. On the other hand, Robusta seemed to have poor
comparisons for both the Jaccard and hierarchical measures.

5 Discussion and Conclusions

In this article we addressed the question of how to relate two collections of
homology statement blocks to each other. We established a relationship between
collections where we allowed overlapping parts of those collections to be hierar-
chically related. In the absence of these conditions, we developed a method that
gives a lower bound on the number of positions that must be ignored in order
for the two to be hierarchically related.

The notion of being hierarchically related depends on semantics that we
imposed on the blocks, which speak to the pairwise homology relationships
between the constituent genomic positions appearing in the blocks. As Ghiurcuta
and Moret [11] used “homology statements” to define their “syntenic blocks”, we
used “positive homology witness” pairs to limit which segments can be contained
within a homology statement block; while they required every homology state-
ment within a segment to occur in all other segments of the block, we allowed
positions that do not appear in a positive witness pair in the block, as long
as they do not occur in another block. We went further by associating semantic
meaning to the fact that two positions appear in different blocks. This allowed us
to define what it means for some (sub)collection of blocks to generalize another
(sub)collection.

On the algorithmic side, we showed the Minimum Deletion into Disjoint
Stars problem to be NP-Complete. Our heuristic for MDDS is based on a
dynamic program that solves MDDS exactly on a tree. Future improvements
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will include the exploration of other algorithms with provable guarantees to
the quality of their solutions. The solution to the MDDS problem gives the
number of nucleotides that must be ignored so as to make the components of
the block graph stars. This is a necessary condition for the two collections to
be hierarchically related, but not sufficient, and thus is a lower bound on the
number of nucleotides that must be ignored so as to make the two collections
hierarchically related. Future work will explore ways to tighten this bound.

We studied block collections on a set of 94 Mycobacterium tuberculosis
strains, built by annotation and non-annotation based means. We showed on
this data that the agglomeration of blocks using maf2synteny almost always
yielded collections that were less discordant. We showed surprising discordance
between the gene-based annotation method and the de novo block inference
methods Cactus and SibeliaZ. Cactus showed great heterogeneity, dependent
on the guide tree that was used to construct the blocks.

When performing a phylogenetic analysis on the blocks, one is tempted to
incorporate an outgroup for the sake of rooting the tree. We showed the inclusion
of that outgroup had drastic effects on blocks, producing blocks that were less
sensitive to the Cactus guide tree. This was concordant with our results from a
phylogenetic study [10].

We studied block collections from the Alignathon project. The simulated
Primates dataset showed that EBI-MP had both the best discordance ratio, and
the worst, among all pairwise comparisons, being hierarchically related to the
Robusta blocks while having ratio over 0.13 with progressiveMauve. For the less
closely related simulated mammalian genomes, we showed several discrepancies
between the Jaccard index reported by Alignathon and our discordance ratio,
the most notable one being that while Cactus had a poor Jaccard index against
a few methods, it had very low hierarchical discordance with all other methods
(except GenomeMatch2).

While WGA tools and syntenic block agglomeration methods have continued
to be developed, the methods to compare and analyze them has lagged behind,
and the definitions of syntenic blocks are usually procedural or based on co-
linearity. In this article we outlined constraints on homology blocks based on
the homology relationships between pairs of positions in the genome. These
constraints put as much importance on the ends of the blocks as it does their
contents; if two genomic segments are put into different blocks, we interpret this
as a statement that should only be contradicted in a generalization of the blocks.
Our new measure should inform future block inference tool development, and
serve as a sanity check for the practitioner studying large scale structure of sets
of genomes.
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A NP-Hardness of MDDS

Note that the notion of star and induced star coincide on bipartite graphs since,
for any bipartite G, the vertices of any star-subgraph of G also form an induced
star in G. Further, no collection of node-disjoint stars can contain the triangle C3

or the path on 4 vertices P4 as a subgraph and it can be seen that this condition
is also sufficient.

Observation 1. A bipartite graph G is a collection of stars if and only if G
does not contain a P4 subgraph.

For the correctness proof, we will make two assumptions on the structure of
the input formula ϕ, without loss of generality. First, we assume that no variable
occurs in all clauses. If a variable x does occur in all clauses, then we simply add
a new variable y and the singleton clause on y. Second, we assume that each
clause in ϕ has exactly three literals. If a clause C has at most two literals, we
can simply double the occurrence of any literal in C.

Lemma 2. Let ϕ be an instance of 3SAT and let (G = (V,E), ω) be the result
of applying Construction 1 to ϕ. Then, ϕ is satisfiable if and only if (G,ω) has
a star packing of weight at least 12m2 + m.

Proof. For each variable xi of ϕ, let us define the edge sets

Ti :=
⋃

0≤j<2ni

{v3j
i v3j+1

i , v3j+2
i v3j⊕3

i } and Fi :=
⋃

0≤j<2ni

{v3j+1
i v3j+2

i , v3j+2
i v3j⊕3

i }

where 3j ⊕ 3 := (3j + 3) mod 6ni. Note that any vj
i has degree two in subgraph

(V, Ti) if and only if j ≡ 0 mod 3 and any vj
i has degree two in (V, Fi) if and only

if j ≡ 2 mod 3. Further, ω(Ti) = ω(Fi) = 4mni. We prove the two directions of
the lemma separately.

⇒: Let ϕ be satisfiable, that is, there is a set L of literals over variables in
ϕ such that each clause Ck intersects L in at least one literal �k and L contains
exactly one of xi and ¬xi for all i. If �k is the literal xi in clause Ck = γj

i , then
let ek := ukv6j

i and, if �k is the literal ¬xi, then let ek := ukv6j+2
i . Note that all

ek are distinct, ek ∈ E(G) for all k. Let Sclause contain ek for all clauses Ck of ϕ
and note that ω(Sclause) = m. Further, for all variables xi of ϕ, let Svar

i := Ti if
xi ∈ L and Svar

i := Fi, otherwise (that is, ¬xi ∈ L). Finally, let the selected edges
be S := Sclause∪⋃

i Svar
i (see gray edges in Fig. 3), noting that ω(S) = 12m2+m.

It remains to show that (V, S) does not contain a P4 as a subgraph. Towards a
contradiction, assume that (V, S) contains a P4 p := (a, b, c, d). By construction,
neither

⋃
i Svar

i nor Sclause contains a P4, and p must contain edges from both of
these sets. Thus, p contains uk for some clause Ck. Since any uk has degree one

https://bitbucket.org/thekswenson/homology-evaluation
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in (V, S), we can assume without loss of generality that ab = ek. By definition of
ek, there are i and j such that either b = v6j

i and xi ∈ L ∩ Ck or b = v6j+2
i and

¬xi ∈ L ∩ Ck. Since 6j ≡ 0 mod 3 and 6j + 2 ≡ 2 mod 3 we know that in both
cases b has degree two in (V, Svar

i ), and both of its neighbors have degree one in
(V, Svar

i ) and, thus, in (V, S). This contradicts (a, b, c, d) being a path in (V, S).
⇐: Let S be a maximum-weight subset of E such that ω(S) ≥ 12m2 + m

and (V, S) does not contain a P4 as a subgraph. First, let Sclause denote the
set of edges of S incident with a clause node uk. Second, for each xi, let Svar

i

denote the set of edges of S on the variable cycle corresponding to xi and note
that, for each P3 (a, b, c) in (V, Svar

i ), both a and c have degree one in (V, Svar
i )

since, otherwise, (V, S) contains a P4. For each i, the connected components of
(V, Svar

i ) are paths of lengths 1, 2, or 3 and we denote the number of P1s, P2s,
and P3s in (V, Svar

i ) by ri, si and ti, respectively. By construction, each P2 is
adjacent to at most one clause vertex uk in (V, S), and since (V, S) does not
contain P4, each P3 is also adjacent to at most one clause vertex uk in (V, S).

Claim.
∑

i ti = 6m.

Proof. By decomposing the 18m vertices of the variable cycles into P3 subgraphs
separated by single edges, the upper bound of 6m is attained. It suffices to show∑

i ti ≥ 6m so, towards a contradiction, assume that
∑

i ti < 6m. Then, there is
a variable xi such that ti < 2ni implying |Svar

i | ≤ 4ni −1 by construction. Let S′

result from S by removing all edges incident with vertices of the variable cycle
corresponding to xi and adding the edges in Ti. Since xi does not occur in all
clauses, we removed edges of total weight strictly less than m+(4ni−1)m = 4mni

and we added edges of total weight m|Ti| = 4mni. Since neither (V, S) nor (V, Ti)
contains a P4, neither does (V, S′), thus contradicting optimality of S. �

Corollary 1. Each subgraph (V, Svar
i ) decomposes into disjoint copies of P3.

Corollary 2. Let vj
i and vj′

i be nodes of degree two in some subgraph (V, Svar
i ).

Then, |j − j′| ≡ 0 mod 3.

Corollary 3. Let ukvj
i be an edge in Sclause. Then, vj

i has degree two in
(V, Svar

i ).

Note that each P3 in (V,
⋃

i Svar
i ) has weight exactly 2m, so S contains exactly m

edges of Sclause. Further, by Corollary 3, all clause vertices uk have degree at
most one since they are not adjacent to degree-one vertices. Together, this means
that all clause vertices uk are incident to exactly one edge in S.

We now construct an assignment β and show that it satisfies ϕ. To this end,
let β(xi) = TRUE if and only if S contains the edge ukv6j

i for some j, k ∈ N.
Note that, if S contains the edge ukv6j

i for any j, k ∈ N then, by Corollary 1,
v6j

i has degree two in (V, Svar
i ). Then, by Corollary 2, S cannot contain the edge

uk′v6j+2
i for any j′, k′ ∈ N. Thus, β is well-defined. It remains to show that β

satisfies ϕ. To this end, let Ck be any clause in ϕ, let ukz be the unique edge
incident with uk in S and let xi be the variable whose variable cycle contains z.
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If xi occurs non-negated in Ck, then z = v6j
i for some j ∈ N by construction.

But then, β(xi) = TRUE and xi satisfies Ck. If xi occurs negated in Ck, then
z = v6j+2

i for some j ∈ N by construction. But then, β(xi) = FALSE and xi

satisfies Ck. In both cases, Ck is satisfied. �	

B Collections of Block that are not Clean

Many of the software we studied produced blocks that were not clean, containing
blocks with overlapping segments. We removed overlapping segments by visiting
pairs of blocks in an arbitrary order, removing the overlap between their over-
lapping segments. Although the order in which overlaps are removed can effect
the final set of blocks, we made the process deterministic by visiting the pairs
in a fixed order.

C Segmental Duplications

If some method makes orthology predictions that may contain multiple segments
from the same genome (e.g. clusters of orthologous groups that contain paralogs
from a single genome), the block graph may provide insight into how to refine
the orthology groups using blocks from another method. This section outlines
such a case.

When a block A ∈ A contains multiple segments from multiple genomes,
blocks from another set B1, B2 ∈ B could overlap in ways that create non-star
graph topologies. Figure 8 shows one such example.

A1

A1 A1

A1

Fig. 8. The block A1 ∈ A has two (duplicated) segments in genomes g1 and g2. The
blocks B1, B2 ∈ B each overlap with one of the two copies. This configuration creates
the non-star topology depicted in the middle. The block A1 can easily be split into two
so that the graph becomes only stars. This results in a refinement of the blocks of A,
based on the blocks of B.

Blocks B1 and B2 each overlap one of the two duplicate copies of A1 in
genomes g1 and g2. The block A1 can be split into two blocks A1′ and A1′′ such
that the collections {A1′, A1′′, A2, A3} and B are hierarchically related. The two
connected components of BG({A1′, A1′′, A2, A3},B) are both stars with vertices
{A2, B2, A1′} and {A1′′, B1, A3}. This transformation can be generalized to
vertices of higher degree, as long as the overlapping segments can be split in this
way.
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Abstract. Horizontal transfer of genetic material between different
organisms is one of the most important evolutionary processes in micro-
bial evolution. Such horizontal transfer events can result in the transfer
of genomic fragments containing multiple complete genes, complete sin-
gle genes, or partial genes. However, partial gene transfer (PGT) remains
poorly understood and generally underappreciated. Indeed, existing phy-
logenetic approaches for studying microbial evolution and horizontal gene
transfer largely ignore PGT, leading to potential biases and errors in
downstream inferences.

In this work, we (i) perform a systematic study of the impact of PGT
on the ability to correctly reconstruct the evolutionary histories of gene
families (i.e., gene trees) and (ii) propose a simple, yet effective app-
roach, called trippd, to detect if a given gene family has been affected by
PGT. Our analysis, using simulated and real biological datasets, reveals
many interesting insights related to when and how PGT affects gene
tree reconstruction, demonstrates the utility of trippd, and sheds light
on the importance of detecting and accounting for PGT when studying
microbial evolution.

1 Introduction

Horizontal gene transfer (HGT) is known to play an important role in microbial
evolution and many different computational techniques have been developed
to infer HGTs; see, e.g., [28] for a review. While most methods for inferring
and studying HGT view single genes as the “unit” of HGT, it is well known
that multiple genes can be transferred in a single transfer event [5,9,13,23] and
that many transfers result in the transfer of only partial genes (i.e., fraction
of a gene) [3,6,7,33,35]. Partial gene transfer (PGT), in particular, remains
poorly understood and existing phylogenetic approaches for studying microbial
evolution and horizontal gene transfer largely ignore PGT. Such PGTs can occur
not only when the transferred genomic fragments themselves are small but also
when boundaries of larger genomic fragments containing one or more complete
genes overlap flanking genes. Moreover, integration of new genetic material into a
genome often occurs through homologous recombination in flanking regions [24].
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While many approaches have been developed for studying recombination in
genomes, e.g., [10,18–20,34], such methods have been observed to have high
false-positive rates for breakpoint detection [2], decreasing their utility for PGT
detection. To our knowledge, the two approaches most directly applicable to the
problem of detecting PGTs within gene families are T-REX [3] and PhyML-
Multi [4]. T-REX [3] uses a sliding window technique and infers PGT by con-
structing window trees and comparing them to a known species tree to infer pos-
sible transfer events. However, T-REX assumes all discordance is due to replacing
transfer (or homologous recombination) and cannot be directly applied to gene
families with a history of gene duplication or additive transfer. PhyML-Multi [4]
uses a more sophisticated HMM based approach and can partition the given
gene family alignment into a user-specified number of partitions with distinct
evolutionary histories. Notably, PhyML-Multi does not rely on a known species
tree or on inference of actual transfer events, both of which are known to be
error-prone [1,11,17], and can therefore be directly applied to any gene fam-
ily alignment to detect possible PGT. However, the utility of PhyML-Multi for
PGT detection has not been sufficiently explored and its effectiveness for this
problem has not been previously studied. Furthermore, the impact of PGT on
gene tree reconstruction itself remains poorly understood and generally under-
appreciated. Previously, Posada and Crandall [25] systematically evaluated the
impact of recombination on phylogeny inference. However, that work did not
focus directly on PGTs and used small, 8-taxon trees with only a single recom-
bination event per tree.

In this work, we advance the study of PGT and gene family evolution by (i)
performing a systematic assessment of the impact of PGT on gene tree recon-
struction, (ii) evaluating the ability of PhyML-Multi to accurately detect PGTs,
and (iii) proposing a conceptually simple and easy-to-use approach, called trippd,
based on alignment tri-partitioning, to identify gene families affected by non-
negligible PGT. Among many interesting findings, we demonstrate that PGTs
can significantly impact gene tree reconstruction and identify the scenarios under
which PGTs may or may not significantly affect gene tree reconstruction accu-
racy; despite considerable conceptual and methodological differences, some of
these findings are also consistent with previous results from [25]. Our evaluation
of PhyML-Multi as the basis for PGT detection reveals that such an approach
has a very high false-positive rate of PGT detection. At the same time, our
experimental analysis shows how our new approach, trippd, can help address
this limitation of PhyML-Multi, achieving a false-negative rate comparable to
that of the PhyML-Multi based approach while having a negligible false-positive
rate. An application of trippd to two biological datasets demonstrates the preva-
lence of PGT in real gene families.

Overall, this work sheds fresh light on the importance of detecting PGTs
and accounting for them in microbial evolutionary analyses, reveals new insights
into when and how gene tree reconstruction is impacted by PGT, and proposes a
simple approach that can help end-users easily identify gene families affected by
sufficient PGT to impact gene tree reconstruction. Scripts implementing trippd,
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along with all simulated datasets, are freely available from https://github.com/
suz11001/Tripartition.

2 Materials and Methods

We use an extensive simulation study to assess the impact of PGT on gene tree
reconstruction accuracy and to evaluate the effectiveness of the PhyML-Multi
based approach and of our proposed PGT detection approach trippd.

2.1 Simulated Datasets

We used the phylogenetic simulation framework SaGePhy [16] to generate a large
collection of simulated datasets consisting of gene families affected by PGT. Each
gene family is represented by a gene family alignment, where the alignment is
composed of a genic-region, consisting of sequences evolved down a gene tree,
and a PGT-region consisting of sequences evolved down the same gene tree but
with a certain rate of replacing transfer (homologous recombination). In other
words, each gene family alignment represents two or more distinct evolutionary
histories, appended together, with one representing the evolution of the gene
tree and the other(s) representing the evolutionary history of a gene sequence
region (or locus) affected by PGT. The resulting gene family datasets represent
a wide range of evolutionary conditions, with varying gene lengths, PGT-region
to genic-region ratios (i.e., fraction of gene sequence affected by PGTs), rates
of PGT, sequence evolution rate, etc. We divide these datasets into three broad
categories: baseline datasets, multi-PGT datasets, and PGT-location datasets.
We describe the construction of these datasets below:

Baseline Datasets. Our baseline collection consists of 14 distinct datasets,
each representing a distinct combination of evolutionary parameter settings and
consisting of 100 gene families generated under the corresponding parameter
settings. To generate each dataset, we first simulated 100 species trees with 100
leaves each using a birth-death process and then simulated a gene tree inside each
species tree using specific rates of gene duplication, replacing HGT, additive
HGT, and gene loss. (The exact parameter values used for simulating species
trees and gene trees, along with all simulated data, are freely available from the
GitHub page linked above.) This yields 100 gene trees per dataset, and this same
set of 100 gene trees was used for simulating the 100 gene families in each dataset.
These gene trees had between between 20 and 236 leaves, with an average of 98.2,
and each gene tree was of height 1. To simulate PGTs within each gene tree,
we used SagePhy to simulate 3 different “subgene” trees, each with a different
rate of PGT, within each of the 100 gene trees. Each subgene tree represents
a history of PGT via homologous recombination within the corresponding gene
tree. Specifically, each subgene tree was evolved down the gene tree under a
certain rate of replacing subgene transfer and no other events. We used replacing
transfer rates of 0.2, 0.4, and 0.6 (per unit branch length) to simulate low,
medium, and high rates of partial gene transfer, resulting in 3 subgene trees per

https://github.com/suz11001/Tripartition
https://github.com/suz11001/Tripartition
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gene tree, each with the same height and number of leaves as the corresponding
gene tree. These three resulting sets of subgene trees correspond to, on average,
2.03, 3.87, and 5.55 PGTs per gene family, respectively.

The resulting set of 100 gene trees and 300 subgene trees was then used
to simulate sequences under different evolutionary scenarios, resulting in the
14 baseline simulated gene family datasets. For these datasets, only one PGT-
region is included in each gene family alignment and this PGT-region is always
appended at the end of the genic-region. To generate the 14 baseline datasets,
we considered the three PGT evolution rates (0.2, 0.4, and 0.6) as discussed
above and, in addition, varied the following sequence-related parameters: (i)
total sequence length (500, 1000, and 2000nt; for reference, the average prokary-
otic gene length is roughly 1000nt [14]), (ii) substitution rates (0.1, 0.5, 1, 2,
and 5 substitutions per site per unit branch length, capturing a wide range of
evolutionary distances from closely related to distantly related), and (iii) frac-
tion of sequence length represented by PGT-region (10%, 20%, 30%, 40%, 50%
and 60%). We created one dataset with default parameter values of 0.4 for PGT
evolution rate, 1000nt for sequence length, 0.5 for substitution rate, and 40% for
fraction of sequence length represented by PGT-region. To study the impact of
different parameters on gene tree reconstruction and PGT detection, we gener-
ated additional datasets by varying one parameter value at a time and keeping
other parameters at their default values. This resulted in 2 + 2 + 4 + 5 = 13
additional datasets, yielding a total of 14 baseline datasets. All sequences were
generated using Seq-Gen [26] under the GTR model with gamma distributed
rates and default settings for other Seq-Gen parameters.

Multi-PGT Datasets. To assess how gene tree reconstruction is impacted by
the presence of multiple PGT-regions within the same gene family, we created 4
additional datasets, each containing 2 PGT-regions. Specifically, we used default
values for PGT evolution rate, total sequence length, and substitution rates, but
varied the fraction of sequence length represented by PGT-regions as well as the
specific fractions corresponding to each of the two PGT-regions. The 5 Multi-
PGT datasets correspond to the following splits of PGT-region length between
the two PGT-regions: {20%, 20%}, {30%, 10%}, {40%, 20%}, {60%, 10%}.

PGT-Location Datasets. To further assess the impact of PGT-region location
within gene family alignments, we created 3 additional datasets corresponding
to offsets of 34 base pairs (bps), 84 base pairs, and 134 base pairs from the end of
the sequence alignment. These datasets otherwise use default parameter settings
for all parameters. This small number of PGT-location datasets is sufficient to
assess the impact of PGT-region location (Sect. 4.2).

2.2 Biological Datasets

To assess the prevalence of PGTs in real microbial gene families, we used sam-
ples from two large published biological datasets: a dataset consisting of over
4700 gene families from 100 broadly sampled species (11 eukaryotic, 12 archaeal,
and 67 bacterial) [8], and a dataset of 8,277 gene families from 103 Aeromonas
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strains [13,27]. The first dataset represents a scenario where, due to the great
evolutionary divergence between included taxa, we do not expect to see much
PGT. In contrast, the second dataset represents a scenario where the taxa under
consideration are closely related and so a high prevalence of PGT is expected
due to the ease of homologous recombination.

For each dataset, we first filtered the collection of gene families present in each
original dataset by removing all gene families that had fewer than 40 genes or
alignments shorter than 150 amino acids or 450nt. After applying this filtering
we were left with 823 gene families for the 100-taxon dataset and 3,357 gene
families for the 103-taxon Aeromonas dataset. Since the Aeromonas dataset is
quite large, we randomly sampled 500 gene families from the remaining 3,357.
During subsequent analysis of the resulting datasets, we found that some gene
families had very large gaps (greater than one-third of the total alignment length)
in the alignment of one or more sequences. We therefore removed all gene families
with such large gaps, leaving us with 784 and 466 gene families for the 100-taxon
dataset and 103-taxon Aeromonas dataset, respectively.

2.3 Gene Tree Construction and Comparison

To study the impact of PGTs on gene tree reconstruction accuracy, we com-
pared the topologies of the three main tree types for each gene family in each
dataset: The true gene tree for that gene family (as simulated using SaGePhy),
the pre-PGT gene tree reconstructed using the genic-region of the correspond-
ing sequence alignment, and the post-PGT gene tree reconstructed using the full
sequence alignment (appended genic- and PGT-regions). A pre-PGT gene tree
represents the best tree we could reasonably reconstruct given only the sequence
alignment and knowledge of the presence of PGTs in that gene family. A post-
PGT gene tree represents the tree we would reconstruct if we were unaware of
the presence of PGTs in that gene family.

All pre-PGT and post-PGT gene trees were reconstructed using RAxML
v8.2.11 [31] (with 100 rapid bootstrap samples (-f a -N 100) and under the
GTRCAT model). Divergence between any pair of (unrooted) gene tree topolo-
gies was measured using Robinson-Fould’s distance [29]. Specifically, we count
the number of splits present in only one of the two trees being compared. We
refer to the resulting number as the RF-score and use RF (T1, T2) to denote the
RF-score between trees T1 and T2. Note that the RF-score counts unique splits
of both trees (i.e., we do not divide the computed score by 2).

2.4 Using PhyML-Multi to Detect PGTs

PhyML-Multi [4] is an existing state-of-the-art approach designed to identify
plausible recombination breakpoints within a given sequence alignment and
to reconstruct phylogenetic trees for each identified recombination-free region.
Next, we briefly describe how PhyML-Multi can be used to detect PGTs. Our
new approach, trippd, is introduced later in Sect. 3.
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For our analysis, we used the more rigorous HMM-based implementation of
PhyML-Multi and used suitable parameter settings expected to maximize infer-
ence accuracy. Specifically, we specified the number of expected partitions/trees
to be 2 (which is the correct expected number for all baseline datasets), used
the TN93 model of evolution (the closest one to GTR, since GTR is not avail-
able within PhyML-Multi), used 4 rate categories, allowed PhyML-Multi to esti-
mate the transition/transversion ratio, proportion of invariable sites, and gamma
shape parameter, and used BIONJ to build starting trees (instead of providing
user-specified starting trees).

The output from PhyML-Multi includes breakpoints for the number of speci-
fied partitions along with the PhyML maximum likelihood (ML) tree correspond-
ing to each partition. For a fair comparison with trippd, we ignored the output
PhyML trees and instead used the breakpoints/partitions identified by PhyML-
Multi to generate the corresponding RAxML tree for each partition using the
same RAxML parameter settings as described above.

Note that PhyML-Multi will always find the specified number of partitions
(and trees) for the given sequence alignment, even if no homologous recombi-
nation has occurred. Thus, PhyML-Multi cannot be directly used to determine
if PGT has occurred. We therefore use a simple histogram intersection test to
determine if any phylogenetic differences for the sequence partitions identified
by PhyML-Multi may, in fact, be due to PGT. We describe this test below. A
similar test is also used as part of trippd.

Histogram Intersection Test for PGT Presence and Absence. Given the
two partitions of a gene family alignment output by PhyML-Multi, we employ a
simple classification procedure to determine if any inferred phylogenetic differ-
ences between the two partitions are likely to have been caused by PGT. As part
of this test, we compute 100 bootstrap replicates for each of the two partitions
using RAxML (under GTRCAT, as above). Let A and B denote the two parti-
tions and {A1, ..., A100} and {B1, ..., B100} denote the corresponding bootstrap
replicate trees, respectively. We also compute a maximum likelihood tree (using
RAxML) for the full, unpartitioned sequence alignment for that gene family. Let
R denote this maximum likelihood tree.

We then compute the RF-scores between each bootstrap replicate Ai and R,
and between each bootstrap replicate Bi and R, for each i ∈ {1, . . . , 100}. This
generates two discrete distributions of 100 RF-scores for the two partitions. The
classification is based on the histogram intersection of these two distributions: If
the intersection is less than a certain threshold, fixed at 50% in our experiments,
then the phylogenetic difference between partitions A and B is assumed to be
due to PGT, and otherwise assumed to be due to inference uncertainty or other
random effects. The key idea is that if both partitions are a result of the same
evolutionary process, i.e., no PGT, then the differences between the bootstrap
trees for each partition and the overall ML tree should be similar for the two
partitions. An illustration appears in Fig. 1A.
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3 Trippd: Tri-Partition Based PGT Detection

In our experiments, we found that PhyML-Multi showed a high false positive rate
for identifying gene families affected by PGT (Sect. 4.2). We therefore devised a
simple, proof-of-concept approach that, in our experiments, nearly matches the
accuracy of PhyML-Multi in correctly detecting PGT (i.e., has low false negative
rate) while also achieving a very low false positive rate. Our new approach, called
trippd (short for tri-partition based PGT detection, and pronounced “tripped”)
has three key features: (i) unlike PhyML-Multi, it does not rely on breakpoint
detection and is therefore robust to errors in detecting the breakpoints/partitions
correctly, (ii) it does not require any advance knowledge of the number of par-
titions or PGT-regions, and (iii) it leverages insights from our experimental
evaluation of the impact of PGTs on gene tree reconstruction and is especially
designed to classify gene family alignments as those having sufficient or insuf-
ficient PGT to impact gene tree reconstruction. trippd is illustrated in Fig. 1B,
and a step-by-step description of trippd follows:

Alignment tri-partitioning. The given gene family alignment is partitioned
into three equal (or roughly equal) parts, each consisting of one-third of the
sites in the alignment. We refer to these partitions as window-1, window-2,
and window-3.

ML window tree reconstruction. Use RAxML to compute a maximum like-
lihood tree for each of the three windows.

Identifying most similar and most dissimilar pairs of windows. Compute
the RF-score between each pair of ML window trees. Identify the pairs with
smallest RF-score, denoted wwmin, and largest RF-score, denoted wwmax.
Note that if wwmin = wwmax then subsequent steps need not be executed
and PGT is assumed to be absent.

Bootstrap replicates for each window. Compute several (100 in our exper-
iments) bootstrap replicates for each of the three windows using RAxML.
Denote these as {wi

1, ..., w
i
b} for window-i, where 1 ≤ i ≤ 3 and b denotes the

number of bootstrap replicates per window.
Computing distributions of RF-scores. Given the bootstrap replicates for

any two windows i and j, define D(i, j), to be the distribution of RF-scores
RF (wi

k, w
j
k), where k ∈ {1, . . . , b}. Compute D(wwmin) and D(wwmax).

Histogram intersection test. Apply a simple test (similar to the one for
PhyML-Multi described in Sect. 2.4) to determine if differences between
D(wwmin) and D(wwmax) are likely due to PGT or not. Specifically, com-
pute the histogram intersection of D(wwmin) and D(wwmax) and check if the
intersection is no more than a certain threshold, fixed at 50% in our exper-
iments. An intersection smaller than or equal to the threshold percentage
indicates presence of PGT. Intersection greater than the threshold indicates
lack of significant PGT.

Our choice of using only three static windows in trippd is based on several
observations and considerations: For example, we find in our experiments (see
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Results) that a PGT-region that spans less than a third of the total sequence
does not have measureable impact on gene tree reconstruction. At the same
time, any PGT-region longer than a third of the total sequence length would
overlap significantly with at least one of the three static windows, impacting at
least one of the window trees. Having three windows, rather than just two, also
allows for multiple pairwise window comparisons. The three-window approach is
also relatively robust to the size of the PGT-region, allowing for the PGT-region
to dominate and the genic-region to be relatively short, as long as the genic-
region still makes up a majority of at least one of the three windows. Finally,
this approach is also relatively robust to the presence of multiple PGT-regions,
as long as there are at least two windows in which either the genic-region or one
of the PGT-regions constitutes the majority of the sequence.

Selecting Histogram Intersection Test Threshold. We used a simple simulation
study to determine a reasonable (not optimized) threshold for the histogram
intersection test. Specifically, we used the baseline dataset with default param-
eter values to measure false-positive and false-negative inference at thresholds
of 0% (i.e., complete separation between the two distributions), 25% and 50%.
At the very strict threshold of 0%, we observed a very high false negative rate
of about 0.5 and no false positives. At 25% the false negative rate improved
only slightly. At 50% we observed a large reduction in the false negative rate,
while still observing no false positives. We therefore fixed the threshold at 50%.
We did not further optimize this threshold to maintain robustness to varying
evolutionary conditions. An evaluation of its robustness appears in Sect. 4.

4 Results

4.1 Impact of PGT on Gene Tree Reconstruction Accuracy

We first assessed the impact of PGT on gene tree reconstruction using the base-
line and multi-PGT simulated datasets described earlier. Recall that the 14 base-
line datasets encompass a wide range of evolutionary scenarios, allowing for an
assessment of the impact of PGT rate, total sequence length, sequence evolution
(substitution) rate, and ratio of PGT-to genic-region length. In addition, the 4
multi-PGT datasets make it possible to assess the impact of multiple distinct
PGT-regions within the same gene family alignment.

For each gene family within each dataset, we reconstruct two gene trees
by applying RAxML to the simulated sequence data: A pre-PGT gene tree
reconstructed using only the geneic-region of the sequence, and a post-PGT gene
tree reconstructed using the entire sequence alignment (consisting of both the
genic- and PGT-regions). Thus, a pre-PGT gene tree represents the best tree
we can reasonably reconstruct if all PGTs were correct detected and accounted
for, while a post-PGT gene tree represents the gene tree we would normally
reconstruct if we do not account for possible PGT. The results of our analysis
are shown in Fig. 2, where we plot the average RF-scores between each pre-PGT
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Fig. 1. Overview of PhyML-Multi and trippd for PGT detection. Both
approaches start with a given multiple sequence alignment for the gene family. (A) The
PhyML-Multi based approach works by using PhyML-Multi to partition the alignment
into two regions, using RAxML to compute multiple bootstrap replicates for the two
regions, comparing the resulting trees to the maximum likelihood (ML) tree for the
entire sequence alignment, and using a simple histogram intersection test to determine
if the resulting distributions of RF-scores suggest different evolutionary histories for
the two regions. (B) tripped executes the step-by-step approach described in Sect. 3.
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Fig. 2. Impact of PGT on gene tree reconstruction accuracy. The plots show
the impact of various evolutionary parameters on the reconstruction error of pre-PGT
(blue) and post-PGT (orange) gene trees. (A) shows the impact of PGT region length
(as percentage of total gene length), (B) of total gene length, (C) of PGT rate, (D) of the
rate of sequence evolution, and (E) of having multiple PGT regions of different lengths
within a single gene family. Plots (A)–(D) are based on baseline datasets and plot (E)
is based on multi-PGT datasets. For Plot (E), the first and last columns (40% and
60%) show results for the corresponding baseline (single-PGT) datasets for reference.
Reconstruction error is measured in terms of RF-score by comparing reconstructed
pre- and post-PGT gene trees against corresponding true gene trees. All results are
averaged over the 100 gene families in the corresponding dataset. (Color figure online)
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gene tree and true (simulated) gene tree and between each post-PGT gene tree
and the true gene tree, for each dataset. We describe these results below.

Impact of PGT-Region to Genic-Region Ratio. As expected, PGT-region to genic-
region ratio has a direct and drastic impact on gene tree reconstruction. How-
ever, to our surprise, we found that gene tree reconstruction was only impacted
once the length of the PGT-region exceeds 30% of total sequence length. This is
shown in Fig. 2(A), where a difference between pre-PGT and post-PGT gene tree
accuracy is observed only when the PGT-region represents at least 40% of total
sequence length. The figure also shows how post-PGT reconstruction accuracy
rapidly degrades as the relative length of the PGT region increases. We note that
this observation remains robust to changes in other parameter values, showing no
or minimal impact at 30% length and a clear impact at 40% length consistently
across all baseline datasets (results not shown). This finding is consistent with
previous results of Posada and Crandall [25] who found that phylogenetic recon-
struction was not affected if the recombining region was small compared to the
length of the non-recombining region. We also point out the slight upward trend
in pre-PGT error rate; this occurs because genic-region length decreases as PGT-
region length increases, reducing the amount of information available for pre-PGT
gene tree reconstruction.

Impact of Total Gene Length. As Fig. 2(B) shows, increasing the total gene
length, while keeping other parameters at their default values, reduces both
pre-PGT and post-PGT error rates. The post-PGT gene tree also remains con-
siderable less accurate compared to the pre-PGT gene tree, except at the smallest
gene length setting where both trees show high error-rate.

Impact of PGT Rate. As Fig. 2(C) shows, increasing the PGT rate (i.e., more
transfer events in the subgene tree) leads to increased inference error in the
post-PGT gene tree. As expected, the accuracy of pre-PGT gene trees remains
unaffected (except for small random fluctuations). Interestingly, we found that
the post-PGT gene tree was more accurate than the pre-PGT gene tree for the
smallest setting of PGT rate (which corresponds to 2.03 PGTs per gene family,
on average). This is because, when PGT events are rare, the benefit of using the
full (longer) sequence alignment may outweigh the benefit of discarding PGT
regions and using the resulting shorter sequence alignment.

Impact of Sequence Evolution Rate. The impact of sequence evolution rate is
similar to that of total gene length, affecting both pre-PGT and post-PGT gene
trees similarly. This is shown in Fig. 2(D) where both pre- and post-PGT gene
trees are either simultaneously worsened or simultaneously improved as substi-
tution rate changes. Somewhat surprisingly, we found that the error rates of
both pre-PGT and post-PGT gene trees were nearly identical for the smallest
setting of substitution rate. This is likely because at low evolutionary rates there
may not be sufficient information in the sequence alignment to confidently recon-
struct either type of gene tree. As the figure shows, and as expected, error rates
also start to increase at higher substitution rates.
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Impact of Multiple PGT-Regions. Figure 2(E) shows pre-PGT and post-PGT
gene tree reconstruction accuracies for the four multi-PGT datasets. Unsurpris-
ingly, the accuracy of pre-PGT gene trees increases with increasing length of the
genic-region. However, careful analysis of post-PGT gene tree error rates reveals
an important, unexpected insight: We find that the error-rate of the post-PGT
gene trees is impacted not by the total length of PGT-regions, but rather by the
length of the single longest PGT-region. For instance, as the figure shows, post-
PGT error rates for the {20%, 20%} and {30%, 10%} multi-PGT datasets are
the same as their pre-PGT error rates, and much lower than the corresponding
baseline dataset post-PGT error rate for PGT-region length 40%, despite the
total PGT-region length being 40% in both these multi-PGT datasets. Likewise,
the post-PGT error-rate for the {40%, 20%} multi-PGT dataset is much lower
than for the corresponding baseline dataset with PGT-region length 60%.

A key insight from the above results is that when PGT regions are small (say
less than a third of the total sequence length) or when PGTs occur very rarely,
and even if multiple such PGT-regions appear within the same gene family, it
may be beneficial to use the full gene family sequence alignment for gene tree
reconstruction. At the same time, these results clearly demonstrate the signifi-
cant adverse impact of longer and frequent PGTs on gene tree reconstruction.

We note that the results above show results averaged across all 100 gene
families in the corresponding baseline dataset, even though not all 100 gene
families in each dataset may have PGTs. Given the randomness inherent in any
simulation framework, we found that, in datasets with the default PGT-rate of
0.4, 75 out of the 100 gene families had at least one PGT. These numbers were 71
and 88, out of 100, for datasets with PGT rates of 0.2 and 0.6, respectively. The
results shown in Fig. 2 are only minimally impacted even when limited only to
gene families with at least one PGT (detailed results not shown). We also point
out that post-PGT gene tree reconstruction accuracy does not depend on the
“location” of the PGT-region within the sequence alignment since the gene tree
reconstruction methods assume each site evolves independently. We therefore
did not separately evaluate reconstruction accuracy on PGT-location datasets.

4.2 PGT Detection Accuracy

We used the baseline dataset with default parameter values (i.e., with 0.4 PGT
evolution rate, 1000nt total sequence length, 0.5 substitution rate, and 40% PGT-
region to genic-region ratio) to assess the ability of the PhyML-Mutli based app-
roach and trippd to correctly detect the presence or absence PGTs. Since baseline
datasets have the PGT-region appended at the end of the alignment, we also used
the PGT-location datasets to further assesss the impact (if any) of PGT location
within the sequence alignment. We also simulated additional datasets without any
PGTs to further assess the false-positive rate of PGT detection for these methods.

Detecting PGTs Using the PhyML-Multi Approach. Recall that the
default baseline dataset consists of 75 gene families with at least one PGT and 25
gene famlies without any PGT. We found that the PhyML-Multi based approach,



180 S. Zaman and M. S. Bansal

using a histogram intersection test threshold of 50%, was correctly able to classify
63 of the 75 gene families as having PGT. However, PhyML-Multi also incorrectly
classified 11 of the 25 gene families without any PGTs as having PGT. For
additional false positive testing, we ran PhyML-Multi on an additional dataset of
100 gene families with no PGTs and found that the method incorrectly detected
PGTs in 65 out of the 100 gene families. Thus, the PhyML-Multi based approach
shows a false negative rate of 0.16 (12/75) and a false positive rate of about 0.5
(more precisely, 0.44 (11/25) for the baseline dataset and 0.65 for the additional
simulated dataset). Importantly, we found that these results are robust to the
specific histogram intersection test threshold used and Table 1 shows the clear
tradeoff between false-positive and false-negative rates of this approach as the
threshold is decreased or increased.

Observe that the accuracy of his PhyML-Multi-based approach depends on
PhyML-Multi’s ability to correctly identify PGT boundaries/breakpoint(s). We
found that, out of the 75 baseline dataset gene families with PGTs, PhyML-
Multi was able to correctly detect the breakpoint to within 5 basepairs for 54
gene families. Thus, the breakpoint could not be accurately detected for 28% of
the gene families.

Table 1. PGT detection accuracy using the PhyML-Multi based approach
and trippd. False-positive and false-negative rates for both methods are shown when
applied to the default baseline dataset and to the additional simulated dataset of 100
gene families with no PGTs. Results are shown for three different histogram intersection
test thresholds, where the default threshold is 50%.

PhyML-Multi Based Approach

Baseline dataset Threshold = 40% Threshold = 50% Threshold = 60%

False Positive Rate 0.36 (9/25) 0.44 (11/25) 0.52 (13/25)

False Negative Rate 0.24 (18/75) 0.16 (12/75) 0.13 (10/75)

No PGT dataset Threshold = 40% Threshold = 50% Threshold = 60%

False Positive Rate 0.57 0.65 0.70

False Negative Rate N/A N/A N/A

trippd

Baseline dataset Threshold = 40% Threshold = 50% Threshold = 60%

False Positive Rate 0 (0/25) 0 (0/25) 0.16 (4/25)

False Negative Rate 0.27 (20/75) 0.2 (15/75) 0.11 (8/75)

No PGT dataset Threshold = 40% Threshold = 50% Threshold = 60%

False Positive Rate 0 0.02 0.09

False Negative Rate N/A N/A N/A

Detecting PGTs Using Trippd. As the lower half of Table 1 shows, an appli-
cation of trippd to the same datasets shows much better PGT detection accuracy.
In particular, we find that tripped has a drastically lower false positive rate and
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a comparable false negative rate as compared to PhyML-Multi. For instance,
at the 50% histogram intersection test threshold, we found that tripped had a
false positive rate of 0 on the baseline dataset and just 0.02 on the additional
simulated dataset with no PGTs, compared to 0.44 and 0.65, respectively, for
the PhyML-Multi approach. The false negative rate was also a relatively low 0.2,
which is roughly comparable to the 0.16 false negative rate for the PhyML-Multi
approach. In fact, at a threshold of 60% both false positive and false negative
rates of tripped are lower than those for PhyML-Multi.

To assess the impact of PGT-region length (default 40%) on the detection accu-
racy of trippd, we applied it to the baseline datasets with PGT lengths of 20%,
30%, 50% and 60% of the total gene length. We found that tripped was able to
correctly classify 56, 58, 48, and 59 gene families, respectively, out of 75, as having
PGTs. This corresponds to false-negative rates of 0.25, 0.22, 0.36, and 0.21, respec-
tively; only slightly higher than for the default baseline dataset. Importantly, false-
positive rates remained extremely low at 0.04, 0.07, 0, and 0, respectively.

We also assessed the impact of substitution (sequence evolution) rate (default
0.5) on trippd. Since sequences that are more similar are expected to undergo
homologous recombination more easily, we applied trippd to the baseline dataset
with a much smaller substitution rate of 0.1 and observed false-negative and
false-positive rates of 0.29 and 0.16, respectively. Crucially, the increased false-
positive rate is still much lower than the false-positive rate for PhyML-Multi. We
also applied trippd to the baseline dataset with a very high substitution of 5. As
expected, performance degrades substantially and the false-negative rate increases
to 0.63. This is not surprising since the error-rates of the trees constructed for each
of the three window are likely to be very high under this setting. Notably, the false-
positive rate still remains very low, at 0, for this setting.

Interestingly, we observed that there were 11 gene families with PGT (out of
the 75) that were consistently incorrectly classified as not having PGT, regardless
of PGT-region length. We discovered that these 11 gene families had only a single
PGT event. Thus, most of the gene families for which trippd fails to detect the
presence of PGT are those in which only a very small amount of PGT has occurred.
Furthermore, we found that among these 11 gene families, 8 had a lower post-PGT
RF-score than pre-PGT RF-score. This indicates that for many of the gene families
where tripped fails to correctly detect the presence of PGTs, it may, in fact, be
beneficial to use the entire gene sequence alignment for gene tree reconstruction.

Impact of Multiple PGT Regions. We also assessed the impact of the presence of
multiple PGT regions on the detection accuracy of trippd. Since trippd relies on
phylogenetic discordance between pairs of windows, we chose the most challenging
of all multi-PGT datasets, {40%, 20%}, for our evaluation. This specific dataset is
particularly challenging for trippd since it has the property that each of the three
windows largely represent three different evolutionary histories; window 1 consists
entirely of the genic sequence, window 2 consists almost entirely of the first PGT
region, and window 3 consists mostly of the second PGT region. On this dataset,
14 of the 100 gene families did not have any PGTs. Using our default histogram
intersection test threshold of 50%, we found that 49 of the 86 gene families with
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PGT were correctly classified as having PGTs and only one of the 14 gene families
without PGT was classified as having PGT. This corresponds to a false positive
rate of 0.07 and a false negative rate of 0.43. Thus, as expected, the PGT detection
accuracy of trippd suffers when multiple PGTs occur in such a way that all three
windows largely represent different evolutionary histories. However, such instances
are expected to be relatively rare in practice.

Impact of PGT Location. Finally, we used the three PGT-location datasets to
assess the impact of PGT location on trippd. These results are shown in Fig. 3.
We find that as the evolutionary histories of window 2 and window 3 become
more similar, the false negative rate of trippd increases. Specifically, from the
baseline false negative rate of 0.2 (on the default baseline dataset using a thresh-
old of 50%), the rate increases to 0.24 for the dataset with 34 bps offset, 0.35 for
the dataset with 84 bps offset, and 0.35 for the 134 bps offset. The false-positive
rate is also affected but remains relative low for all settings, with a high of 0.07
for the 84 bps offset dataset. Note that, since the three windows are treated
identically by trippd, just these three PGT-location datasets cover all relevant
cases. These results show that the PGT detection accuracy of trippd can be
affected, though not drastically, if the PGT-region does not appear towards the
beginning or end of a gene. However, since horizontal gene transfer often occurs
through homologous recombination in flanking regions [24], PGTs may be more
likely to occur at the beginnings or ends of genes.

Fig. 3. Impact of PGT location on trippd. The PGT detection accuracy of
tripped, in terms of false positve and false negative rates, is reported for various
locations of the PGT region within the gene sequence alignment. The first scenario
describes our default baseline case where the PGT region is 40% of the gene length
and occurs at the end of the gene. For this baseline case, the PGT region (orange) falls
into two windows, 334 bps of the PGT-region is in the last window and the remaining
66 bps is in the middle window. The remaining three scenarios correspond to the three
PGT-location datasets with offsets of 34, 84, and 134 bps, respectively.
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4.3 Application to Biological Datasets

To assess the impact of trippd in practice, we applied it to the two biological
datasets previously described. For the 784 gene families of the 100-taxon broadly
sampled dataset, we observed that 62 (7.5%) were identified as having PGT. It
is not surprising to see only a small number of gene families with detectable
PGTs for this dataset since its species are broadly sampled from the entire tree
of life and are therefore very distantly related to each other.

On the 466 gene family Aeromonas dataset, trippd identified 151 (32.4%)
of the gene families as having PGT. This much higher percentage, compared
with the 100-taxon broadly sampled dataset, is expected since the taxa in the
Aeromonas dataset are much more closely related; thus, homologous recombina-
tion is expected to be both abundant and more easily detectable (due to relative
recency) in this dataset.

Recall that trippd shows a very low false-positive rate of PGT detection.
Thus, our results on these biological datasets indicate that PGTs, particularly
those that are capable of affecting gene tree reconstruction, occur frequently in
real biological datasets. trippd can easily help identify such cases for further
analysis or filtering. Note, however, that these results about PGT prevalence are
preliminary and should therefore be interpreted with caution.

5 Discussion and Conclusion

In this work, we used a simulation study to assess the impact of partial gene
transfer on gene tree reconstruction and presented a simple computational app-
roach, trippd, based on alignment tri-partitioning to detect the presence of PGTs
in gene family alignments. Our study of the impact of PGT reveals several impor-
tant insights: We find that there can be significant adverse impacts of PGT on
gene tree reconstruction accuracy. In such cases, it can be helpful to identify
and remove the PGT region(s) from the alignment and reconstruct the gene tree
on the reduced alignment. However, our results also show that if PGT regions
are small (no more than a third of the total sequence length), or if only a very
small number of PGTs have occurred, then gene tree reconstruction is unlikely
to be impacted and it is likely beneficial to use the full gene family sequence
alignment for gene tree reconstruction. We also find that multiple small PGTs
do not significantly impact gene tree reconstruction accuracy and that adverse
impacts depend on the length of the longest PGT-region. Our experiments with
using PhyML-Multi to detect PGTs show that such an approach is effective at
detecting PGTs, showing low false negative rate, but that it also has a very high
false positive rate. Furthermore, we find a clear tradeoff between false positive
rate and false negative rate for such an approach. The new approach, tripped,
attempts to address this limitation and we demonstrate how tripped matches the
false-negative rate of the PhyML-Multi based approach while having a negligible
false-positive rate. Having a low false-positive rate is important for any effective
PGT detection method since incorrect detection of PGTs can inflate or overes-
timate the impact of PGT in a dataset and lead to corrective measures (such
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as using only an identified “non-PGT” region of the alignment) that ultimately
lower the accuracy of reconstructed gene trees.

We view trippd as a preliminary, proof-of-concept approach, and it has sev-
eral important limitations worth addressing. Most importantly, trippd can only
detect the presence of PGT and not identify actual PGT regions. It may be possi-
ble to combine the strengths of recombination/breakpoint detection approaches
such as PhyML-Multi and of tripped to both detect and identify PGT regions
with high accuracy. Furthermore, it would be helpful to not only identify the
different regions of an alignment but also to identify which region represents
the underlying genic region and which represent PGT regions. The accuracy of
trippd is also somewhat sensitive to PGT length, PGT location, and substitution
rates, and methodological refinements could help address this limitation.

Several aspects of our simulation study can also be improved. In particular,
our current study assumes that the same region of the underlying gene sequence
undergoes repeated homologous recombination. A more reasonable model would
be to allow each homologous recombination event to independently affect any
region of the recipient gene. Likewise, it may help to appropriately model when
homologous recombination between two gene sequences can occur (e.g., based
on sequence similarity).

It is also possible that species-tree-aware approaches for gene tree reconstruc-
tion [1,8,12,15,21,22,30,32] are more robust to the presence of PGTs and the
impact of PGT on such approaches is worth investigating further. Finally, while
our preliminary experimental analysis indicates that methods used to study
genomic recombination, such as those implemented in RDP4 [20], have high
false-positive rates of PGT detection (results not shown), it may be useful to
evaluate the utility of such methods for PGT detection and identification more
systematically.

Funding Information. This work was supported in part by NSF award IIS 1553421
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Abstract. Sorting by Genome Rearrangements is a classic problem in
Computational Biology. Several models have been considered so far,
each of them defines how a genome is modeled (for example, permu-
tations when assuming no duplicated genes, strings if duplicated genes
are allowed, and/or use of signs on each element when gene orientation
is known), and which rearrangements are allowed. Recently, a new prob-
lem, called Sorting by Multi-Cut Rearrangements, was proposed. It uses
the k-Cut rearrangement which cuts a permutation (or a string) at k ≥ 2
places and rearranges the generated blocks to obtain a new permutation
(or string) of same size. This new rearrangement may model chromoan-
agenesis, a phenomenon consisting of massive simultaneous rearrange-
ments. Similarly as the Double-Cut-and-Join, this new rearrangement
also generalizes several genome rearrangements such as reversals, trans-
positions, revrevs, transreversals, and block-interchanges. In this paper,
we extend a previous work based on unsigned permutations and strings to
signed permutations. We show the complexity of this problem for differ-
ent values of k, that the approximation algorithm proposed for unsigned
permutations with any value of k can be adapted to signed permutations,
and a 1.5-approximation algorithm for the specific case k = 4.

Keywords: Genome rearrangements · Sorting permutations ·
Approximation algorithms · Algorithmic complexity

1 Introduction

Genome rearrangements are widely studied in the field of Comparative
Genomics. They refer to large scale mutations that affect the position and
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orientation of genes in a genome. When comparing two genomes G1 and G2, one
goal is to compute the minimum number of rearrangements that transform G1 into
G2, which is called the rearrangement distance between genomes G1 and G2.

When a genome has no duplicated genes, we model it using a permutation,
where each element represents a gene. When gene orientation information is
available, we use a ‘+’ or ‘−’ sign on each element to represent its orientation,
and the permutation is said to be signed. Otherwise, we use unsigned permuta-
tions. Since the target genome can be represented as the identity permutation
ιn = (1 2 . . . n), the problem of transforming one genome into another can be
considered as the one of sorting a permutation using rearrangements.

The most common rearrangement events in the literature are the reversal
and the transposition [4,10,11]. The reversal acts on a segment of the genome,
inverting this segment and changing the orientation of the genes in it. The trans-
position acts on two adjacent segments, exchanging the position of these two
segments. Among more particular rearrangement events are revrevs, which act
on two adjacent segments inverting both segments but not exchanging them, and
transrevs, which act like transpositions with an inversion in of one of the two
segments. More general rearrangements were also proposed, such as the block-
interchange and the Double-Cut-and-Join (DCJ) [8,15]. The block-interchange
generalizes a transposition: it exchanges two segments that are not necessarily
adjacent; the DCJ generalizes operations on multichromosomal genomes, includ-
ing reversals.

For the reversals and transpositions, when computing the rearrangement dis-
tance, we assume that events happen sequentially. However, in a (chaotic) process
called chromoanagenesis, a large number of rearrangements can occur in a single
event [12,14], that is, in a single event the genome is cut in many blocks that
are rearranged. These events were mainly observed in tumors and congenital
diseases [12].

Alekseyev and Pevzner [2] introduced the multi-break rearrangement in cir-
cular genomes. A k-break is a rearrangement that breaks k adjacencies of the
genome, creating 2k open ends, and then combines these 2k open ends, creating
k new adjacencies. For instance, a DCJ is a 2-break. Alekseyev and Pevzner [2]
presented an algorithm to solve the k-break rearrangement distance that takes
polynomial time considering the size of the genome but takes exponential time
considering the value of k. Alekseyev [1] extended the investigation of multi-break
rearrangements with linear genomes and showed lower bounds for computing the
distance between genomes and an analysis of the breakpoint reuse rate for linear
genomes.

Recently, Bulteau et al. [6] introduced the multi-cut (k-cut) rearrangement,
which models the most common genome rearrangements [10] and chromoana-
genesis. In the k-cut rearrangement, the genome is cut in k positions, forming
k + 1 blocks, which are then rearranged in any way except for the first and
last blocks (which can be empty) that must remain in the same positions. How-
ever, the relative position and orientation of the genes inside blocks remain the
same. Note that using this definition, we are restricted to genomes without gene
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orientation information, since there are no block inversions. In general, the k-cut
distance problem is NP-Hard [6]. Considering specific values for k, we have that
the 3-cut distance is NP-Hard [7], which is equivalent to the transposition dis-
tance, while the 4-cut distance (equivalent to the block-interchange distance [8])
can be solvable in polynomial time.

In this work, we extend the k-cut rearrangement definition to permit block
reversals, which allows us to compare genomes considering both genome order
and gene orientation. We show that this problem is NP-Hard for k ≥ 5, and we
adapt the results from Bulteau et al. [6] to show an �-approximation algorithm
for k ≥ 5, where � = 2k

k−1 if k is odd, and � = 2k
k−2 if k is even. Besides, we present

a 1.5-approximation algorithm for signed permutations when k = 4 using the
cycle graph structure.

2 Basic Definitions

In this work we use permutations to represent the genomes, where each element
represents a particular gene or a contiguous sequence of genes. Each element
has a sign, ‘+’ or ‘−’, indicating its orientation. Given two genomes with no
repeated genes and sharing the same set of genes, we represent one of them as
the identity permutation ιn = (+1 +2 . . . +n), and we map the other according
to ιn as the permutation π = (π1 . . . πn). In the following, we assume two
positional and fixed elements on any signed permutation π: π0 = +0 (right
before π1) and πn+1 = +(n+1) (right after πn). We also denote the set of all
signed permutations of size n by S±

n .
A k-cut, denoted by ρ

(i1,i2,...,ik)
σ , 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n+1 and σ =

(σ1 . . . σk−1) ∈ S±
k−1, cuts a signed permutation π into (k + 1) blocks: q0 =

[π0 . . . πi1−1], q1 = [πi1 . . . πi2−1], q2 = [πi2 . . . πi3−1], . . ., qk = [πik
. . . πn+1], such

that π can be reconstructed by concatenating these (k + 1) blocks in the same
relative order, and rearranges these blocks to obtain a new permutation π′ ∈ S±

n .
Given a block qi, we denote by q−i the reversal of qi, which consists in reversing
the order of the elements in qi and flipping the sign of every element inside it.

Formally, a k-cut ρ
(i1,...,ik)
σ applied to a permutation π, denoted by π · ρ,

results in a permutation π′ starting with q0, followed by the (k−1) middle blocks
qσ1 , . . ., qσk−1 , followed by block qk (blocks q0 and qk are fixed and cannot be
reversed). We say that a k-cut ρ is valid if π · ρ �= π.

The Sorting by k-Cuts with Block Reversals problem (SKCBR) seeks for the
minimum number of k-cuts needed to transform a signed permutation π into ιn;
we denote this number as dk(π).

3 Breakpoints and Strips

Given a signed permutation π ∈ S±
n with n elements, a pair of adjacent elements

(πi, πi+1), 0 ≤ i ≤ n, is called a breakpoint if πi+1 − πi �= 1. The number of
breakpoints in a permutation π is denoted by b(π).
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A strip is a maximal sequence of elements from π (including the two extra
elements +0 and +(n + 1)) without breakpoints. The number of strips in a
permutation is denoted by s(π). Every permutation π with b(π) breakpoints
satisfies s(π) = b(π) + 1. A strip is called positive if each of its elements has
positive sign, and negative otherwise. Note that the leftmost strip in π, starting
with element +0, and the rightmost strip in π, ending with element +(n + 1),
always are positive strips.

Note that, for fixed n, ιn is the permutation satisfying b(ιn) = 0 and s(ιn) =
1, so to transform a permutation π ∈ S±

n into ιn, we need to decrease the number
of breakpoints from b(π) to 0 and the number of strips from s(π) to 1.

Given a permutation π with s(π) > 1, we say that a pair of strips (u, v),
where u = 〈u1, . . . , ui〉 and v = 〈v1, . . . , vj〉, is contiguous if one of the following
is true: u and v are both positive or both negative strips, and either v1 = ui+1 or
u1 = vj +1; or u is positive, v is negative, and either ui = |vj |−1 or u1 = |v1|+1.

Given a permutation π and a k-cut ρ, let Δb(π, ρ) = b(π) − b(π · ρ) denote
the difference in the number of breakpoints after ρ is applied to π.

Lemma 1. For any signed permutation π and any k-cut ρ, Δb(π, ρ) = b(π) −
b(π · ρ) ≤ k.

Proof. Note that a k-cut ρ cuts exactly k adjacent elements from π. In the best
case, each of these k adjacent elements is distinct and is a breakpoint in π,
while in π′ = π · ρ the k new pairs of adjacent elements are not breakpoints, so
b(π · ρ) = b(π) − k. If any of the adjacent elements affected by ρ is not unique,
or is not a breakpoint, or remains a breakpoint in π′, then b(π · ρ) < b(π) − k. �	

Lemma 1 results in the following lower bound for SKCBR.

Lemma 2. For any signed permutation π, dk(π) ≥ b(π)
k .

3.1 SKCBR is NP-Hard for k ≥ 5

The Sorting by k-Cuts problem (SbkC), originally called Sorting by Multi-Cut
Rearrangements in Permutations [6], is NP-Hard for any value of k ≥ 5. Since
there are no block reversals allowed in this model, the permutations must be
unsigned. We also extend an unsigned permutation π by fixing the elements
π0 = 0 and πn+1 = n + 1. The definition of a breakpoint is analogous for this
problem, that is, a pair of elements (πi, πi+1) is a breakpoint if πi+1 − πi �= 1.

More than showing that SbkC is NP-Hard, Bulteau et al. [6, Proposition 1
and Lemma 7] showed that deciding if a permutation π can be sorted using
exactly b(π)

k k-cuts is NP-Hard for k ≥ 5.
To prove that the Sorting by k-Cuts with Block Reversals problem is NP-

Hard for k ≥ 5, we use a reduction from the Sorting by k-Cuts problem (SbkC).
Next, we define the decision version of both problems.

Problem 1 (SKCBR). Given a value k, a signed permutation π and an integer z,
decide whether is possible to sort π using up to z k-cuts allowing block reversals.
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Problem 2 (SbkC). Given a value k and an unsigned permutation π, decide
whether is possible to sort π using exactly b(π)

k k-cuts without allowing block
reversals.

Theorem 1. The SKCBR problem is NP-Hard for k ≥ 5.

Proof. Given an instance (k, π) for the SbkC problem, we create an instance
(k, π′, z) for the SKCBR problem, where z = b(π)

k and π′ is a signed permutation
such that π′

i = +πi, for 0 ≤ i ≤ n+1. Note that since the definition of breakpoint
for both problems is analogous, we have that b(π) = b(π′).

Now, we show that the answer to the instance (k, π) for the SbkC problem is
yes if, and only if, the answer to the instance (k, π′, z) for the SKCBR problem
is also yes.

(⇒) Suppose that the instance (k, π) for the SbkC problem can be sorted
using b(π)

k k-cuts without allowing block reversals, then we can also sort (k, π′, z)
using the same operations, since all elements have + sign and no reversals are
applied.

(⇐) Now, suppose that the instance (k, π′, z) for the SKCBR problem can
be sorted using z = b(π)

k = b(π′)
k k-cuts.

We show that all these k-cuts do not have block reversals and, consequently,
the same operations can be used to sort the instance (k, π) for SbkC.

Let S = (ρ1, ρ2, . . . , ρm), where m = b(π′)
k , be a sequence of k-cuts that sorts

π′. Since the number of operations in S is exactly the lower bound for π′ (by
Lemma 2), every k-cut in S must remove exactly k breakpoints. Suppose by
contraction that there is a k-cut that has block reversals. Let ρi be such k-cut
with minimum i. Note that until ρi is applied all elements of the permutation
have a positive sign, because no block reversal has previously been applied. Let
πi be the permutation after applying (ρ1, ρ2, . . . , ρi). Let (πi

x, . . . , πi
y) be a block

that was reversed by ρi, such that x is minimum. All elements in (πi
x, . . . , πi

y)
have negative sign. Since the operations cannot alter the fixed element πi

0, we
know that x > 0 and the element πi

x−1 has positive sign. This means that there is
a breakpoint (πi

x−1, π
i
x) between an adjacency affected by ρi, which contradicts

the fact ρi removed the maximum number of breakpoints possible by a k-cut.
Therefore, S = (ρ1, ρ2, . . . , ρm) has only k-cuts without block reversals, and the
same sequence can be used to sort (k, π) for the SbkC problem. �	

4 An Approximation Algorithm for SKCBR

In this section, we adapt the results from Bulteau et al. [6] on unsigned permu-
tations to show an approximation algorithm for SKCBR. In the following, we
explain the algorithm and we show its approximation factor for k ≥ 5 on signed
permutations. Furthermore, we present results for 2 ≤ k ≤ 4.

Our approximation algorithm follows the same idea of the 2-approximation
algorithm from Bulteau et al. [6, Theorem 10], but is designed for signed permu-
tations. Given a signed permutation π and a parameter k, we use a parameter
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z = �k−1
2 , that denotes how many strips will be affected on each step. The

following process is repeated until π becomes ι: let m = min (z, s(π) − 1), and
ρ be a k-cut that cuts (k − 2m) times after the first strip u = 〈0, . . .〉 and
at the extremities of m other strips v1, . . . , vm such that any pair of strips in
{(u, v1)} ∪ {(vi−1, vi) : 2 ≤ i ≤ m} is contiguous. This k-cut will rearrange the
k − 1 blocks in such a way that blocks with strips v1, . . . , vm are placed in the
left (after the block q0 that is the strip u), in the same order as their indices, and
blocks with a negative strip must be reversed, which guarantees that at least m
breakpoints are removed at each step (if m �= z then all breakpoints are removed
and π = ι).

For example, given the permutation π = (+1 −4 −5 +3 −2 +6) and k = 5,
we have that π has 5 breakpoints and 6 strips: 〈0,+1〉, 〈−4〉, 〈−5〉, 〈+3〉, 〈−2〉,
and 〈+6,+7〉, so z = � 5−1

2  = 2 and m = min (2, 5) = 2. The first 5-cut will join
the first strip with strips 〈+3〉 and 〈−2〉, so it cuts once (k − 2m = 5 − 4 = 1)
right after the first strip and before and after these two other strips, which results
in ρ

(2,4,5,5,6)
(−4 +2 +1 +3) (note that one of the blocks is empty). Now let π′ = π · ρ =

(+1 +2 +3 −4 −5 +6), that has 3 breakpoints 4 strips: 〈0,+1,+2,+3〉, 〈−4〉,
〈−5〉, and 〈+6,+7〉. In this step we have m = min (2, 3) = 2, and the 5-cut will
join the first strip with strips 〈−4〉 and 〈−5〉, which results in ρ

(4,4,5,5,6)
(−2 −4 +1 +3).

Now π′ · ρ = ι, with no breakpoints and one strip, and the algorithm stops.
Note that the first 5-cut removed two breakpoints from π and the second 5-cut
removed three breakpoints from π′.

The following lemma gives the approximation factor of our algorithm when
k ≥ 5.

Lemma 3. When k ≥ 5, the algorithm has an approximation factor of 2k
k−1 ≤

2.5 if k is odd, and 2k
k−2 ≤ 3 otherwise.

Proof. The approximation factor follows from the lower bound from Lemma 2.
If k ≥ 5 is odd, then each k-cut applied removes k−1

2 breakpoints, which
results in 2b(π)

k−1 k-cuts needed to transform π into ιn, so the approximation factor

is 2b(π)
k−1 × k

b(π) = 2k
k−1 ≤ 2.5.

When k ≥ 6 is even, then each k-cut applied removes k−2
2 breakpoints, which

results in 2b(π)
k−2 k-cuts needed to transform π into ιn, so the approximation factor

is 2b(π)
k−2 × k

b(π) = 2k
k−2 ≤ 3. �	

We note that when k = 2, any valid k-cut is a reversal. Sorting by Reversals
has a polynomial algorithm on signed permutations [11].

When k = 3, any valid k-cut ρ
(i1,i2,i3)
σ , i1 �= i2 �= i3, is either a revrev, if

σ = (−1 −2), a transreversal if either σ = (−2 +1) or σ = (+2 −1), a transpo-
sition if σ = (+2 +1), and a reversal otherwise; any valid k-cut ρ

(i1,i2,i3)
σ , where

either i1 = i2 or i2 = i3 is also a reversal. Sorting by Reversals, Transpositions,
Transreversals and RevRevs is NP-hard [3], and with an argument similar to
the one used in Lemma 3, we prove that the algorithm described in this section
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has an approximation factor of 3 (when k = 3). However, we note that there
is a 1.75-approximation algorithm based on the cycle graph structure for this
problem [13].

We present a 1.5-approximation algorithm for k = 4 in Sect. 7, also based on
the cycle graph structure (described in the next section). Note that when k = 4,
the complexity of SKCBR is unknown.

5 Cycle Graph and Complement Cycle Graph

Our next approximation algorithm will use the cycle graph, a well-known graph
structure that is used to represent a permutation in sorting problems [4]. Given
a signed permutation π, we construct its cycle graph G(π) as follows. The vertex
set is formed by vertices +0 and −(n+1), plus vertices −πi and +πi for 1 ≤ i ≤ n.
The edge set is formed by two colored edge subsets: black and gray edges. The
gray edge set is formed by {(+(i−1),−i) : 1 ≤ i ≤ n + 1} and the black edge set
is formed by {(−πi,+πi−1) : 1 ≤ i ≤ n + 1}.

We draw the cycle graph of a permutation π by placing its vertices on a
horizontal line, starting (from left to right) with +0, ending with −(n + 1),
and the remaining vertices between them in the same order as they appear
in π, where vertex −πi is always drawn to the left of +πi. Black edges are
drawn as straight edges and gray edges are drawn as curved edges. Since π is a
signed permutation, each vertex has one gray edge and one black edge, so there
is a unique decomposition of G(π) into alternating cycles, i.e. into cycles that
alternate between black and gray edges. The number of cycles in G(π) is denoted
by c(G(π)).

Given a cycle graph G(π), we assign the label i to the black edge that links
−πi to +πi−1. A cycle C in G(π) is represented in a unique fashion by the ordered
list of its black edge labels, starting with the label with highest value, say c1
(which means that c1 is the rightmost element in the horizontal displacement of
vertices), followed by the labels that are encountered while visiting C, knowing
that c1 is traversed from right to left. Hence, we also use signs together with
black edge labels, just to indicate the traversed orientation of black edges: when
a black edge is traversed from right to left we add a ‘+’ sign to its label; otherwise,
we add a ‘−’ sign to its label. By the unique representation we adopted, c1 will
thus always have a ‘+’ sign.

Given a signed permutation π and its cycle graph G(π), we refer to the size
of a cycle C ∈ G(π) as the number of black edges inside it; a cycle of size � is
called trivial if � = 1, short if � ∈ {2, 3}, and long otherwise. We also refer to
short and long cycles as non-trivial cycles. Besides, a cycle of size � is called odd
if � is odd and it is called even otherwise.

Another graph structure we use is the complement cycle graph [9], that is
similar to the cycle graph. Given a signed permutation π, we construct its com-
plement cycle graph Ḡ(π) as follows. The vertex set is the same as in G(π).
The edge set is formed by two colored edge sets: white and gray edges. The
gray edge set is the same as in G(π), and the white edge set is formed by
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Fig. 1. An example of a 4-cut affecting a permutation π and its cycle graph. (a) the

4-cut ρ
(2,3,4,6)

(−2 −3 +1) applied to π = (+1 +5 −2 −4 −3 +6 −7), that results in π =

(+1 +2 +3 +4 +5 +6 −7). (b) how this 4-cut ρ affects G(π) (top) resulting in G(π ·ρ)
(bottom): it removes four black edges (those with dashed lines), rearranges the vertices
according to π · ρ, and creates four new black edges (also with dashed lines). Note
that c(G(π)) = 5 and two cycles from G(π) are affected by ρ: C1 = (+4, −2) and
C2 = (+6, +3), so the other three cycles C3 = (+1), C4 = (+5) and C6 = (+8, −7) are
not affected and remain unchanged in G(π · ρ), except for their black edge labels that
may change. After the 4-cut is applied, c(G(π · ρ)) = 7, so after ρ is applied to π two
new cycles are created.

{(+0,−(n+1))} ∪ {(−πi,+πi) : 1 ≤ i ≤ n}. Note that any complement cycle
graph Ḡ(π) of a permutation π has a Hamiltonian cycle following its gray and
white edges [9, Observation 23]. This can be seen by the construction of these
two edges: gray edges link +i to −(i+1), for 0 ≤ i ≤ 0, and white edges link
−i to +i, for 1 ≤ i ≤ n, with an extra white edges that links +0 to −(n+1).
This means that if we start at vertex +0, and following its gray edge, we can
construct a Hamiltonian path P = [+0,−1,+1,−2, . . . ,−n,+n,−(n+1)], where
each two consecutive vertices (x, y) in P is a white edge, if x < 0, or it is a gray
edge otherwise. Since (−(n+1),+0) is also a white edge, and these two vertices
are the endpoints of P , it follows that Ḡ(π) has a Hamiltonian cycle.

Given a permutation π, a k-cut ρ
(i1,...,ik)
σ applied to π affects G(π) as follows.

Up to k black edges will be removed (namely, those with labels i1, . . . , ik); the
(k−1) blocks of vertices (between q0 and qk+1) will be rearranged according to σ;
another k black edges will be created according to π · σ. Note that this means
that the set of gray edges from G(π) is never affected by a k-cut, and any cycle
whose black edges are not affected by ρ remains with the same set of black and
gray edges. See Fig. 1 for an example.

A gray edge g in a non-trivial cycle C ∈ G(π) is called convergent if it links
the leftmost vertex of one black edge with the rightmost vertex of another black
edge; g is called divergent otherwise. When traversing a cycle, a divergent gray
edge makes its adjacent black edges be traversed in opposite orientations, as
shown in Fig. 2. A cycle C is called fully divergent if every gray edge in C is
divergent.



Sorting by k-Cuts on Signed Permutations 197

Fig. 2. (a) the two types of convergent gray edges and (b) the two types of divergent
gray edges that can appear in a cycle graph. Arrows above the dashed line indicate
the traversed orientation if we go from black edge of label i to j, and arrows under
the dashed line from black edge of label j to i. Note that with convergent gray edges
all black edges have the same traversed orientation, while the orientations are opposite
with divergent gray edges.

Given a vertex vi in G(π), let p(vi) denote the position (from left to right) of vi

in the cycle graph representation. For instance, p(0) = 1 and p(−(n+1)) = 2n+2.
Given two gray edges g1 = (va, vb) and g2 = (vc, vd), such that p(va) < p(vb) and
p(vc) < p(vd), we say that they are crossing if either p(va) < p(vc) < p(vb) <
p(vd) or p(vc) < p(va) < p(vd) < p(vb).

Lemma 4. For any permutation π, and any 4-cut ρ, Δc(π, ρ) = c(G(π · ρ)) −
c(G(π)) ≤ 3.

Proof. Recall that a 4-cut ρ is applied to up to four black edges, and assume
that ρ is applied to a permutation π such that c(G(π)) = x. After the cuts take
place, we observe that each cycle that is not affected by ρ has the same set of
black and gray edges, and each cycle C affected by the t ≤ 4 cuts can be seen
as a set of t paths (each path starts and ends with a gray edge), so it follows
that there are up to four paths and up to (x−1) cycles left. In the best scenario,
after the blocks are rearranged each new black edge links two grays edges of a
same path, resulting in four new cycles. Since the 4-cut is applied to at least one
cycle, it follows that Δc(π, ρ) = c(G(π · ρ)) − c(G(π)) ≤ 4 + x − 1 − x = 3. �	
Lemma 5. Given a permutation π and a 4-cut ρ, if Δc(π, ρ) = 3 then ρ is
applied to four distinct black edges of a same (long) cycle; Δc(π, ρ) ≤ 2 otherwise.

Proof. These observations follow from Lemma 4: Let π be a permutation and let
ρ be a 4-cut applied to π. After the four cuts in black edges from y > 1 cycles
we have up to c(G(π)) − 2 cycles left, and even if we transform the z ≤ 4 paths
into z cycles it follows that Δc(π, ρ) ≤ (4+ c(G(π))− 2)− c(G(π)) = 2. Besides,
if we apply a 4-cut to black edges of y ≥ 1 cycles such that x > 1 cuts affect the
same black edge we have x − 1 empty blocks, and consequently z ≤ 4 − x + 1
paths, so Δc(π, ρ) ≤ (3 + c(G(π)) − 1) − c(G(π)) = 2. �	

The following lemma defines a lower bound for SKCBR.

Lemma 6. For any signed permutation π ∈ S±
n , if G(π) has no short cycles and

there is a 4-cut ρ such that Δc(π, ρ) = 3, then d4(π) ≥ (n+1)−c(G(π))
3 ; otherwise,

d4(π) ≥ (n+2)−c(G(π))
3 .
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Proof. To transform a permutation π with n elements into ιn, we need to go from
c(G(π)) to n + 1 cycles, and by Lemma 4, we have that d4(π) ≥ (n+1)−c(G(π))

3 .
However, if there is no 4-cut that increases the number of cycles in G(π) by
three, then at least the first 4-cut will increase the number of cycles by up to
two. Besides, if G(π) has a short cycle, we know by Lemma 5 that at least one
4-cut will increase the number of cycles by up to two. In both cases it follows
that d4(π) ≥ 1 + (n+1)−c(G(π))−2

3 = (n+2)−c(G(π))
3 . �	

6 Increasing the Number of Cycles in G(π) with 4-Cuts

In following lemmas, we explain how 4-cuts can be used to increase the number
of cycles by two or three each, depending on the number of cycles and types of
gray edges.

We first show that any convergent gray edge admits a 4-cut that increases the
number of cycles by at least two. Before that, we show a property of convergent
and divergent gray edges, that can also be seen in the overlap graph [5].

Lemma 7. Any convergent or divergent gray edge in G(π) crosses with another
gray edge.

Proof. Note that given two black edges sharing a divergent gray edge d, there is
a path between the other two end points of those black edges to form a cycle F ,
so at least one gray edge from F crosses with d.

For convergent gray edges, we first recall that any complement cycle graph
Ḡ(π) of a signed permutation π has a Hamiltonian cycle following its gray and
white edges. Now assume that a cycle graph G(π) has a cycle C with a convergent
gray edge g = (g1, g2) that does not cross with any other gray edge. Note that
only a gray edge from a trivial cycle has no vertices between the extremities of
that gray edge. Since g is convergent, it follows that C is a non-trivial cycle, and
there are at least two vertices between g1 and g2. But since g is not crossing with
another gray edge, any vertex vi between g1 and g2 (in G(π) or Ḡ(π)) must have
a gray edge with another vertex vj also between g1 and g2, so Ḡ(π) cannot have
a Hamiltonian cycle, which is a contradiction with the construction of Ḡ(π). �	
Lemma 8. For any signed permutation π ∈ S±

n \{ιn}, if G(π) has a convergent
gray edge, then there is a 4-cut that increases the number of cycles by at least
two.

Proof. Let G(π) be a cycle graph and let g1 be a convergent gray edge of a
cycle C that shares vertices with two distinct black edges of labels i and j, with
i < j. Recall that, by Lemma 7, there is a gray edge, say g2, that shares vertices
with two distinct black edges of labels x and y, x < y, crossing with g1.

We note that if (i, j) and (x, y) are equal, then C is a convergent cycle of
size two, which contradicts the fact that g1 and g2 intersect, so it follows that
there are at least three distinct black edge labels among i, j, x, and y. It can be
easily seen that we can always apply a 4-cut to these (three or four) black edges
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Fig. 3. Examples of a convergent gray edge g1 (g1 = (m, r) in (a) and (c); g1 = (n, q)
in (b) and (d)) crossing with another gray edge g2 that is convergent in (a-b) (namely
g2 = (p, s) in (a) and g2 = (o, t) in (b)) and divergent in (c-d) (namely g2 = (p, t) in (c)
and g2 = (o, s) in (d)); dashed and dash-dotted curves indicate either a gray edge or an
alternating path of black and gray edges between the two vertices in their extremities.
In this case there is a 4-cut that increases the number of cycles by two.

in such a way that the two crossing gray edges g1 and g2 are transformed into
two trivial cycles (thus increasing the number of cycles by two) if g1 and g2 are
not in the same cycle, and increasing the number of cycles by two or three. �	

There are multiple cases where a cycle graph G(π) has a 4-cut according to
Lemma 8, depending on the relative order among black edge labels and whether
g2 is convergent or divergent, and we show four examples in Fig. 3.

Lemma 9. If a cycle C is fully divergent, then (i) C is even and (ii) any two
consecutive black edges are traversed in opposite directions.

Proof. To prove that C is even, one can observe that a divergent gray edge links
the same side (left or right) of two distinct black edges, so if C has only divergent
gray edges the number of gray edges (and consequently black edges) must be even
to cover both sides of every black edge. The second statement follows from the
fact that any divergent gray edge makes its adjacent black edges to be traversed
in opposite orientations, and since every gray edge is divergent, this follows for
any pair of consecutive black edges. �	

Note that any cycle of size � that is fully divergent is written C = (+c1,
−c2,+c3, . . . ,−c�). Now we show how to increase the number of cycles with a
4-cut if every non-trivial cycle of G(π), π �= ιn, is fully divergent. We split into
two cases: when G(π) has a long cycle or when G(π) has only short cycles.
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Fig. 4. (a–f) the six possible cases in a fully divergent cycle C = (+i, −j, +x, −y, . . .),
with z ≥ 4 black edges, depending on the relative order of the first four black edge
labels (following its unique representation); the dashed curve indicates either a gray
edge, if x = 4, or an alternating path of black and gray edges between the two vertices
in their extremities. For each of them there is a 4-cut that increases the number of
cycles by at least two.

Lemma 10. Let π �= ιn be a signed permutation from S±
n , and let G(π) be its

cycle graph. If every non-trivial cycle in G(π) is fully divergent, and if there is
a long cycle C in G(π), then there exists a 4-cut that increases the number of
cycles by at least two.

Proof. Suppose that every gray edge in non-trivial cycles of G(π) is divergent. By
Lemma 9, it follows that any non-trivial cycle in G(π) is an even fully divergent
cycle. Now assume that G(π) has a long cycle C with z ≥ 4 black edges. We
show in Fig. 4 the six possible cases depending on the relative order of black edge
labels among the first four black edges of C following its unique representation.
In four of these six cases, there is a 4-cut that transforms C into three trivial
cycles and one cycle of size (z−3), thus increasing the number of cycles by three
(Fig. 4(b-e)); in the other two cases, there is a 4-cut that transforms C into two
trivial cycles and one cycle of size (z−2), thus increasing the number of cycles
by two (Fig. 4(a) and (f)). �	

From now on, we assume that G(π) has no long cycles, i.e. all non-trivial
cycles have size two, and that every non-trivial cycle is fully divergent. Before
showing how to increase the number of cycles with a 4-cut in this case, we state
the following lemma.

Lemma 11. Let π ∈ S±
n \{ιn} be a signed permutation such that (i) G(π) has

no long cycles and (ii) every gray edge in non-trivial cycles is divergent. If there
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are at least two non-trivial cycles in G(π), then there exists a pair of cycles, say
C and D, such that gray edges of C do not cross with gray edges of D.

Proof. The proof follows the same idea as proof of Lemma 7, where Ḡ(π) must
have a Hamiltonian cycle. Note that in this case, any non-trivial cycle C ∈ G(π)
has two black edges, so in the following we will denote the leftmost and rightmost
black edge labels of C as cL and cR, so it follows that cL < cR and C =
(+cR,−cL). By contradiction, let us assume that given any pair of non-trivial
cycles D = (+dR,−dL) and E = (+eR,−eL) in G(π), either dL < eL < dR < eR

or eL < dL < eR < dR.
Now assume that G(π) has w ≥ 2 non-trivial cycles, and let us denote the

cycle with the i-th lowest label for its rightmost black edge as Ci = (+ci
R,−ci

L).
Using the same argument as above, we have that c1L < c2L < . . . < cw

L < c1R <
c2R < . . . < cw

R. Now we recall that G(π) cannot have non-trivial cycles (i.e.,
fully divergent cycles) before c1L, after cw

R, and between cw
L and c1R, otherwise it

is possible to have a pair of divergent gray edges not crossing, so in these three
regions either there is no cycle, or there is a collection of trivial cycles. But in
this case Ḡ(π) is not connected, which is a contradiction with the fact that Ḡ(π)
has an Hamiltonian cycle. �	

The following lemma shows how we increase the number of cycles using a
4-cut if every cycle of G(π) is either trivial or a fully divergent cycle of size two.

Lemma 12. Let π ∈ S±
n \{ιn} be a signed permutation, and let G(π) be its cycle

graph. If there are no long cycles in G(π), and if every gray edge of non-trivial
cycles is divergent, then a 4-cut increases the number of cycles: (i) by two if
there are at least two non-trivial cycles, or (ii) by one otherwise (i.e., if G(π)
has only one non-trivial cycle).

Proof. If G(π) has only one non-trivial cycle of size two, whose gray edges are
both divergent, we can apply a 4-cut to this cycle, which increases the number
of cycles by one, as shown in Fig. 5(c).

Now consider that there are at least two short cycles in G(π). By Lemma 11,
we know that there is at least one pair of short cycles C1 = (x, y) and C2 = (i, j)
such that gray edges of C1 do not cross with gray edges of C2. In this scenario,
either these cycles are “side by side” (i.e., {x, y} �⊂ [j..i], as shown in Fig. 5(a)),
or one cycle is “nested” within the black edges of the other (i.e., {x, y} ⊂ [j..i],
as shown in Fig. 5(b)). In both cases, there is a 4-cut that transforms these two
cycles into four trivial cycles, which increases the number of cycles by 2 (see
Fig. 5(a-b) for an illustration). �	

7 A 1.5-Approximation Algorithm for SKCBR When
k = 4

In this section, we present our 1.5-approximation algorithm for Sorting Signed
Permutations by 4-Cuts with Block Reversals using the lemmas presented at
Sect. 6. Algorithm 1 shows the steps of our approximation algorithm.
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Fig. 5. (a-b) the two possible configurations of two fully divergent cycles C1 = (+i, −j)
and C2 = (+x, −y) such that gray edges from C1 do not intersect with gray edges of
C2. In both cases, there is a 4-cut that increases the number of cycles by two. (c) if
the only non-trivial cycle of G(π) is a fully divergent cycle of size two, then we apply
a 4-cut to its two black edges, which increases the number of cycles by one.

Let us argue that Algorithm 1 stops and transforms a signed permutation π
into ιn. The algorithm starts with an empty sorting sequence S and may apply
one 4-cut to π at line 4, increasing the number of cycles of G(π) by three. After
that, the algorithm enters in the while loop at lines 8–20, and iterates while its
condition is satisfied. At each iteration at least one of the three if statements
will always be satisfied, and a 4-cut will be applied increasing the number of
cycles by two or three. After no more than n

2 iterations, the algorithm will leave
the while loop. At this point either c(G(π)) = n + 1, which means that π = ιn,
or c(G(π)) = n, and one extra 4-cut will be applied inside the if statement at
line 21, resulting in c(G(π)) = n + 1, so π = ιn. The following lemma shows the
approximation factor of Algorithm 1.

The time complexity of Algorithm 1 is O(n4): finding four distinct black edges
to apply the first 4-cut at line 3 using brute force takes O(n4) time; finding a
4-cut inside the while loop on line 8 takes up to O(n2) time, and the loop iterates
up to O(n) times, resulting in O(n3); and finding the only non-trivial cycle in
G(π) to apply a 4-cut in the last if statement in the algorithm takes O(n) time.

Lemma 13. Algorithm 1 has an approximation factor of 1.5.

Proof. By Lemma 6 we have that either d4(π) ≥ (n+1)−c(G(π))
3 , if G(π) has no

short cycles and admits a 4-cut that increases the number of cycles by three, or
d4(π) ≥ (n+2)−c(G(π))

3 otherwise. Now let us consider two cases, depending on
whether line 4 of Algorithm 1 is applied.

First, if a 4-cut is applied at line 4, then this 4-cut increases the number
of cycles by three, and we have that d4(π) ≥ (n+1)−c(G(π))

3 . If the algorithm
enters the if statement at line 21 after the while loop, the 4-cut applied in line
23 increases the number of cycles by one, so together with the first 4-cut from
S, they increased the number of cycles by two each on average. Any other 4-cut
from S was applied inside the while loop at lines 8–20, so they also increased
the number of cycles by at least 2 each. It follows that |S| ≤ (n+1)−c(G(π))

2 , so

Algorithm 1 has an approximation factor of
(n+1)−c(G(π))

2
(n+1)−c(G(π))

3

= 3
2 = 1.5.
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Algorithm 1: A 1.5-Approximation Algorithm for Sorting by 4-Cuts with
Block Reversals.

Input: A signed permutation π ∈ S±
n and its cycle graph G(π)

Output: A sequence of 4-cuts S that transforms π into ιn

1 Let S = ∅
2 if G(π) has only long cycles then
3 if there exists a 4-cut ρ, applied to four distinct black edges of a same (long) cycle

C ∈ G(π), such that Δc(π, ρ) = 3 then
4 π = π · ρ
5 Update S with ρ

6 while c(G(π)) < n do
7 if G(π) has a convergent gray edge then
8 Let ρ be a 4-cut such that Δc(π, ρ) ≥ 2, as described in Lemma 8.
9 else if G(π) has a long fully divergent cycle C then

10 Let ρ be a 4-cut to black edges of C such that Δc(π, ρ) ≥ 2, as described in
Lemma 10.

11 else // G(π) has at least two fully divergent cycles C
12 Let ρ be a 4-cut to black edges of C such that Δc(π, ρ) = 2, as described in

Lemma 12.
13 π = π · ρ
14 Update S with ρ

15 if c(G(π)) = n then
// In this case it follows that there is only one non-trivial cycle C ∈ G(π) that

is short, even, and fully divergent.
16 Let ρ be a 4-cut applied to both black edges of C such that Δc(π, ρ) = 1, as described

in Lemma 12.
17 π = π · ρ = ιn

18 Update S with ρ

19 return S

Otherwise, no 4-cut is applied before the while loop in lines 8-20, so it follows
that d4(π) ≥ (n+2)−c(G(π))

3 . In this case, S has z 4-cuts such that the first (z−1)
were applied inside the while loop at line 8, so each of them increased the number
of cycles by at least two, and the last 4-cut from S was applied either in the while
loop, or in the if statement at line 21 (in this last case, it increased the number
of cycles by one only). It follows that |S| ≤ 1 + (n+1)−c(G(π))−1

2 = (n+2)−c(G(π))
2 ,

so Algorithm 1 has an approximation factor of
(n+2)−c(G(π))

2
(n+2)−c(G(π))

3

= 3
2 = 1.5. �	

8 Conclusion

In this work we investigated for the first time the use of k-cuts, a genome rear-
rangement proposed recently, on signed permutations. For k ≥ 5, we showed
that it is possible to adapt the algorithm for unsigned permutations ensuring an
approximation factor of 2k

k−1 for odd values of k, and 2k
k−2 for even values of k.

We also presented an improved 1.5-approximation algorithm for k = 4 using
the well-known graph structure called cycle graph. Some questions remain open,
such as the complexity of the Sorting by k-cuts with Block Reversals when k = 4,
and the use of k-cuts on signed strings (rather than permutations), i.e. in the
case where genomes contain repeated genes.
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Abstract. Genome rearrangement events are widely used to estimate a
minimum-size sequence of mutations capable of transforming a genome
into another. The length of this sequence is called distance, and deter-
mining it is the main goal in genome rearrangement distance problems.
Problems in the genome rearrangement field differ regarding the set of
rearrangement events allowed and the genome representation. In this
work, we consider the scenario where the genomes share the same set
of genes, gene orientation is known, and intergenic regions (structures
between a pair of genes and at the extremities of the genome) are taken
into account. We use two models, the first model allows only conserva-
tive events (reversals and moves), and the second model includes non-
conservative events (insertions and deletions) in the intergenic regions.
We show that both models result in NP-hard problems and we present
algorithms with an approximation factor of 2.

Keywords: Genome rearrangements · Complexity analysis ·
Approximation algorithms

1 Introduction

The reversal event is one of the most investigated rearrangement events in the
literature [2,8,15]. This event inverts the order of the genes in a segment and flips
their orientations. When we assume that the compared genomes share the same
set of genes and do not have duplicated genes, the genomes are usually mapped
into permutations where each element represents a gene. Each element of the
permutation receives a plus or minus sign to indicate the gene orientation. Thus,
the permutation is called a signed permutation. If the orientation is unknown
we omit the sign. Considering the reversal event and the representation using a
permutation, we have the Sorting Permutations by Reversals and Sorting Signed
Permutations by Reversals problems. The former problem is NP-hard [7], and the
best-known algorithm has an approximation factor of 1.375 [2], while the latter
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has an exact polynomial-time algorithm [15]. When we consider the reversal
event and we assume that the genomes may have duplicated genes, the problem
is NP-hard whether or not the orientation is known [11,18].

Several advances have been made in the genome rearrangement models over
time. For instance, improvement in practical and theoretical results, inclusion of
novel events, or consideration of new features from the genomes. In particular,
studies have pointed out the importance of structures called intergenic regions
and the potential improvement in incorporating them into the models [3,4]. The
intergenic regions occur between a pair of genes and at the extremities of a linear
genome. Besides, they contain some nucleotides inside them, and the number
of nucleotides in an intergenic region defines its size. Several works have been
presented considering the case where genomes are mapped into permutations
and intergenic region sizes are later incorporated. The problem of finding the
distance between two genomes taking into account gene order and the size of
the intergenic regions in a model that exclusively allows the reversal operation is
NP-hard whether the orientation of the genes is known or not [5,16]. The signed
case has a 2-approximation algorithm [16], while the unsigned case has a 4-
approximation algorithm [5]. When including insertion and deletion affecting the
intergenic regions, the problems have algorithms with the same approximation
factor as the model with the exclusive use of the reversal event. The unsigned
case is NP-hard, while the complexity of the signed case remains unknown [5,16].

When we allow only the transposition operation, which swaps the position of
two consecutive segments of the genome, finding the distance is also a NP-hard
problem and has a 3.5-approximation algorithm [17]. Another important event is
the Double Cut and Join (DCJ) [9], which cuts the genome into two points and
reassembles the stretches following a specific criterion. For the DCJ operation, the
distance problem after incorporating the intergenic region sizes is NP-hard [12].
However, it is solvable in polynomial-time if insertion and deletion are allowed to
affect the intergenic regions [6]. Oliveira et al. showed a 3-approximation algorithm
considering a scenario where gene orientation is known and the model allows rever-
sal and transposition operations [17]. Besides, the authors introduced the inter-
genic move event, which is similar to the transposition event, but differs from it
because one of the affected segments is an intergenic region. This event becomes
relevant in models that take into account intergenic regions. Considering a scenario
where gene orientation is known and using a model that allows reversal, intergenic
move, and transposition operations, the distance problem is NP-hard [17] and it
has a 2.5-approximation algorithm. Allowing intergenic move and transposition
operations in a scenario where the orientation of the genes is unknown, the prob-
lem is also NP-hard and has a 2.5-approximation algorithm [17].

Nowadays, we have a significant amount of data on real genomes. With
the enhancement of sequencing techniques, it is possible to obtain information
regarding the orientation of each gene. Thus, we investigate the genome rear-
rangement distance problem of two models where gene orientation is known.
The first model allows the reversal and intergenic move events, while the second
includes the insertion and deletion events affecting only intergenic regions, which
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we simply call indel. For both models, we show that they belong to the NP-hard
class and present a 2-approximation algorithm.

The manuscript is organized as follows. Section 2 shows concepts and defi-
nitions used to derive the results. Section 3 presents the theoretical results for
both problems. Lastly, Sect. 4 concludes the manuscript.

2 Background

In this section, we introduce concepts and definitions. Furthermore, we formally
describe the problems investigated in this work.

Given a genome G = (R1,G1,R2,G2 . . . ,Rn,Gn,Rn+1) with n genes {G1, G2,
. . . , Gn} and n+1 intergenic regions {R1, R2, . . . , Rn+1}, we use these features
to represent the genome. Intergenic regions are placed between each pair of genes
and at the extremities of the genome containing a specific number of nucleotides.
Thus, we denote the size of an intergenic region by the number of nucleotides in
it. We use a representation with a permutation π = (π1 π2 . . . πn), such that
πi, with 1 ≤ i ≤ n, is an integer number that represents the gene Gi and a list of
integers π̆ = (π̆1, π̆2, . . . , π̆n+1), such that π̆i, with 1 ≤ i ≤ n + 1, represents the
size of the intergenic region Ri. Each element πi of the permutation π receives a
“+” or “−” sign indicating gene orientation in the genome G. Now let us define
the genome rearrangement events of intergenic reversal, intergenic move, and
intergenic indel.

Definition 1. Given a genome G = (π, π̆), an intergenic reversal ρ
(i,j)
(x,y), with

1 ≤ i ≤ j ≤ n, 0 ≤ x ≤ π̆i, and 0 ≤ y ≤ π̆j+1, is an event that inverts the
order and orientation of the genes from a segment of the genome. The intergenic
regions π̆i and π̆j+1 are split, respectively, into (x, x′) and (y, y′), such that x′ =
π̆i − x and y′ = π̆j+1 − y. The segment (x′, πi, π̆i+1, . . . , π̆j , πj , y) is inverted
and the signs of the elements from πi to πj are flipped. Lastly, the segments are
reassembled and the intergenic reversal ρ

(i,j)
(x,y) applied on genome (π, π̆), denoted

by (π, π̆) · ρ
(i,j)
(x,y), results in a new genome G′ = (π′, π̆′), such that:

π′ = (π1 π2 . . . πi−1 −πj −πj−1 . . . −πi+1 −πi πj+1 πj+2 . . . πn),

π̆′ = (π̆1, π̆2, . . . , π̆i−1, π̆
′
i, π̆j , . . . , π̆i+1, π̆

′
j+1, π̆j+2, . . . , π̆n+1),

with π̆′
i = x + y and π̆′

j+1 = x′ + y′.

Definition 2. Given a genome G = (π, π̆), an intergenic move μ
(i,j)
(x) , with 1 ≤

i, j ≤ n + 1, i �= j, and x ∈ [0..π̆i], moves x nucleotides from π̆i to π̆j.

Definition 3. Given a genome G = (π, π̆), an intergenic indel δ
(i)
(x), with 1 ≤

i ≤ n + 1 and x ≥ −π̆i, either deletes x nucleotides from the intergenic region
π̆i if x is negative, or inserts x nucleotides into π̆i, otherwise.
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From now on, we will refer to intergenic reversal, intergenic move, and inter-
genic indel simply as a reversal, move, and indel, respectively.

Given a source genome S and a target genome T , sharing the same set of
genes and with no duplicate genes, we map the permutation of the target genome
as ι = (+1 +2 . . . +n), which is called the identity permutation. The labels of the
permutation π, from the source genome S, are mapped according to the mapping
of the target genome. Thus, the source genome S is mapped into (π, π̆) and the
target genome T is mapped into (ι, ῐ). Note that finding a pair of genomes with
the same set of genes and no duplicates, especially in complex organisms, is
quite rare. However, this does not negate the use of this approach to deal with
genomes with replicated genes. One way to deal with replicated genes is by using
ortholog assignment [10,19], and, after this process, we can represent the gene
order of the genomes as permutations. Next, we formally describe the problems
addressed in this work.

Sorting by Intergenic Reversals and Intergenic Moves (SbIRM)
Input: A source and a target genome (S = (π, π̆), T = (ι, ῐ)).
Task: Determine a minimum length sequence of genome rearrangement

events (among reversals and moves) capable of transforming (π, π̆)
into (ι, ῐ).

Sorting by Intergenic Reversals, Intergenic Moves, and Intergenic
Indels (SbIRMI)

Input: A source and a target genome (S = (π, π̆), T = (ι, ῐ)).
Task: Determine a minimum length sequence of genome rearrangement

events (among reversals, moves, and indels) capable of transforming
(π, π̆) into (ι, ῐ).

Given an instance I = ((π, π̆), (ι, ῐ)) of the SbIRM or SbIRMI problem, we
extend both permutations by adding the elements 0 and n + 1 at the beginning
(π0 and ι0) and at the end (πn+1 and ιn+1) of the permutations. We say that
an instance I = ((π, π̆), (ι, ῐ)) is balanced if

∑n+1
i=1 (π̆i − ῐi) = 0, and unbalanced

otherwise. Note that the reversal and move operations are conservative events,
which means that they do not change the amount of genetic material. How-
ever, the indel operation is non-conservative. For this reason, we assume that an
instance I for the SbIRM problem is balanced. Nevertheless, when we deal with
an instance I for the SbIRMI problem, I can be either balanced or unbalanced.

The main goal of the SbIRM and SbIRMI problems is to find a sequence
of genome rearrangement events of minimum length capable of transforming a
source genome into a target genome. The size of such sequence is called distance,
denoted by dρμ((π, π̆), (ι, ῐ)) and dρμδ((π, π̆), (ι, ῐ)) for the SbIRM and SbIRMI
problems, respectively.



Reversal Distance with Indels and Moves in Intergenic Regions 209

2.1 Weighted Breakpoint Graph

This section introduces the weighted breakpoint graph used for the development
of algorithms in the context of genome rearrangement problems. The weighted
breakpoint graph is an adaptation of the breakpoint graph [1,14] and handles
the information regarding the genes and size of the intergenic regions [16,17].

Given an instance I = ((π, π̆), (ι, ῐ)) of the SbIRM or SbIRMI problem,
G(I) = (V,E,w) is a graph composed by the set of vertices V = {+π0,−π1,+π1,
. . . ,−πn,+πn,−πn+1} and the set of edges E = Eb ∪ Eg, which is divided in
black edges (Eb) and gray edges (Eg). The weighted function w : E → N0

relates the size of the intergenic regions from the source and target genome with
weights of the edges in E. There is a black edge ei = (−πi,+πi−1) in Eb, with
w(ei) = π̆i, for 1 ≤ i ≤ n + 1; for simplicity, each black edge ei is labeled as
i. There is a gray edge (+(j − 1),−j) in Eg, with w((+(j−1),−j)) = ῐj , for
1 ≤ j ≤ n + 1. The black and gray edges represent the genes adjacencies from
the source and target genomes, respectively. Note that each vertex in G(I) has
degree two by the incidence of one black edge and one gray edge. Thus, there is
a unique decomposition of G(I) in cycles with alternating edge colors.

There are different ways to place the vertices and edges of the weighted
breakpoint graph when drawing it. For simplicity and to keep a unique cycle
identification, we use the standard representation where vertices are placed hor-
izontally from +π0 up to −πn+1. The black edges connect the vertices in a
horizontal line, while the gray edges are drawn as arcs above them. The cycle
representation uses a list of its black edges labels (c1, c2, . . . , ck), k ≥ 1, following
the traversing order where the first edge is the rightmost black edge and it is
always traversed from right to left. Besides, a “−” sign before a black edge label
i indicates that i is traversed from left to right. In the following we refer to a
gray edge between two black edges of labels ci and ci (mod k)+1 as e′

ci .
A cycle C = (c1, c2, . . . , ck) with k black edges is called a k-cycle. A cycle

C = (c1) that has only one black edge is called trivial, and it is called non-
trivial otherwise. A cycle C = (c1, c2, . . . , ck) that has a pair of black edges
traversed in opposite directions (left to right and right to left) is called divergent,
and it is called convergent otherwise. Considering the weights associated with
the edges in G(I), the cycles are classified as balanced or unbalanced. A cycle
C = (c1, c2, . . . , ck) is balanced if

∑k
i=1[w(e′

ci) − w(eci)] = 0, and unbalanced
otherwise. In other words, balanced cycles have the same amount of total weight
in black and gray edges, while unbalanced cycles do not. An unbalanced cycle
C = (c1, c2, . . . , ck) is positive if

∑k
i=1[w(e′

ci) − w(eci)] > 0, and it is negative
otherwise. Note that negative cycles have a total weight in their black edges
greater than the total weight in their gray edges. On the other hand, a positive
cycle needs to increase the weight in its black edges to become balanced. Note
that the weight of the gray edges is conserved, while the weight from the black
edges may be affected by the rearrangement events.

We denote by c(G(I)) and cb(G(I)) the number of cycles and balanced
cycles in G(I), respectively. Given a sequence S of operations, we denote by
Δc(G(I), S) = c(G(I ·S))−c(G(I)) and Δcb(G(I), S) = cb(G(I ·S))−cb(G(I))
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Fig. 1. An example of the weighted breakpoint graph, the black and gray edges are
represented by solid and dashed lines, respectively. The number above each edge rep-
resents the weight established by the weighted function w. The number below black
edge represents their labels.

the variation in the number of cycles and balanced cycles, respectively, generated
by applying S to (π, π̆) from I (denoted by I · S).

Remark 1. The only instance I = ((π, π̆), (ι, ῐ)) of the SbIRM or SbIRMI prob-
lems that has c(G(I)) = n+1 and cb(G(I)) = n+1 is the instance ((ι, ῐ), (ι, ῐ)).

Figure 1 shows an example of the weighted breakpoint graph generated
from the instance I = ((π = (+4 −1 +3 −2 +5), π̆ = (0, 3, 2, 2, 5, 7)),
(ι = (+1 +2 +3 +4 +5), ῐ = (3, 7, 2, 2, 1, 4))). The graph G(I) has three cycles:
C1 = (4, 1,−3), C2 = (5, 2), and C3 = (6), so c(G(I)) = 3. The cycle C3 is trivial
while cycles C1 and C2 are non-trivial. Note that C2 is a balanced cycle while
C1 and C3 are unbalanced cycles, so cb(G(I)) = 1. Besides, C1 is a positive cycle
and C3 is a negative cycle.

3 Results

In this section, we show that the decision version of SbIRM and SbIRMI prob-
lems are NP-hard. After that, we show lower bounds and propose approximation
algorithms for the two problems.

3.1 Complexity Analysis

In this section, we use a reduction from the NP-hard 3-Partition problem (3-
PART) [13] to prove that the decision version of SbIRM and SbIRMI problems
are NP-hard. In the following, we present a formal definition of the decision
versions of these two problems.

SbIRM (Decision Version)

Input: A natural number k, a source genome S = (π, π̆), and a target
genome T = (ι, ῐ).

Question: Is it possible to transform (π, π̆) into (ι, ῐ) using at most k oper-
ations of reversal or move?



Reversal Distance with Indels and Moves in Intergenic Regions 211

SbIRMI (Decision Version)

Input: A natural number k, a source genome S = (π, π̆), and a target
genome T = (ι, ῐ).

Question: Is it possible to transform (π, π̆) into (ι, ῐ) using at most k oper-
ations of reversal, move, or indel?

The decision version of the 3-PART problem consists in determining if it is pos-
sible to create a partition of a set of positive integers A = {a1, a2, . . . , a3n}, such
that

∑3n
i=1 ai = Bn for some B ∈ Z

+ and B
4 < ai < B

2 for 1 ≤ i ≤ 3n, into n triples
A1, A2, . . . , An, such that

∑
ai∈Aj

ai = B for each triple Aj , with 1 ≤ j ≤ n.

Theorem 1. The SbIRM and SbIRMI problems are NP-hard.

Proof. Given an instance A = {a1, a2, . . . , a3n} of the 3-PART problem, we
create an instance I = ((π, π̆), (ι, ῐ)) of the SbIRM or SbIRMI problem as
follows:

i) π = ι = (+1 +2 . . . +(4n − 1)).
ii) Assign the value π̆i = ai for 1 ≤ i ≤ 3n and the value π̆j = 0 for 3n + 1 ≤

j ≤ 4n.
iii) Assign the value ῐi = 0 for 1 ≤ i ≤ 3n and the value ῐj = B for 3n + 1 ≤

j ≤ 4n.

Example 1 illustrates the process to create an instance of the SbIRM or
SbIRMI problem based on the instance of the 3-PART problem. Now, we show
that the instance A of the 3-PART is satisfied ⇐⇒ dρμ(I) ≤ 3n or dρμδ(I) ≤ 3n.

Example 1.

A = {a1, a2, . . . , a3n}

(π, π̆) = ((+1 +2 . . . +(4n − 1)), (a1, a2, . . . , a3n, 0, 0, . . . , 0))
(ι, ῐ) = ((+1 +2 . . . +(4n − 1)), ( 0, 0, . . . , 0, B,B, . . . , B))
I = ((π, π̆), (ι, ῐ))

G(I)

3n negative trivial cycles n positive trivial cycles

+0 −1 +1 −2 . . . . . .
a1

1

a2

2

a3n

3n

0

3n+1

0

3n+2

0

4n

0 0 0 B B B

(⇒) Suppose that it is possible to partition the instance A = {a1, a2, . . . , a3n}
of the 3-PART problem into n triples, such that

∑
ai∈Aj

ai = B for each triple
Aj , with 1 ≤ j ≤ n. Then, it is possible to turn the source genome (π, π̆) into
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the target genome (ι, ῐ) using 3n move operations. For each triple Aj , with 1 ≤
j ≤ n, apply the following move operations μ

(i,3n+j)
(ai)

, for ai ∈ Aj . Repeating this
procedure in all n triples produces a sequence of 3n moves operations that results
in c(G(I)) = 4n and cb(G(I)) = 4n. Thus, dρμ(I) ≤ 3n and dρμδ(I) ≤ 3n.

(⇐) Now suppose that dρμ(I) ≤ 3n or dρμδ(I) ≤ 3n. Note that, to reach
the desired target genome, the trivial cycles from the black edges 0 to 3n form
trivial cycles with zero weight in their black edges.

Note that G(I) has 4n trivial cycles, where: the first 3n trivial cycles (from
the left to the right using the standard representation of G(I)) have positive
weight in their black edges; and the last n trivial cycles have zero weight in their
black edges.

We say that a cycle C = (c1) is alpha if C is trivial and it has weight zero in
its black and gray edges. We denote by cα(G(I)) the number of alpha cycles in
G(I). Note that any sequence of genome rearrangement operations that turns
the source genome into the target genome must necessarily affect the first 3n
trivial cycles to change the weight in its black edges to zero. Consequently, for
the target genome we have that cα(G(I)) = 3n.

Given a sequence S of operations, we denote by

Δcα(G(I), S) =
cα(G(I · S)) − cα(G(I))

|S|

the average variation in the number of alpha cycles generated by applying S to
(π, π̆) from I.

A move μ
(i,j)
(x) acts on at most two cycles. If the move μ acts on two black

edges of the same cycle, then the weight of that cycle remains unchanged
(Δcα(G(I), {μ}) = 0). When it acts on two cycles, we have the following cases:

– If none of the cycles are trivial, then Δcα(G(I), {μ}) = 0. Note that the move
operation does not change the size of the cycles.

– If at least one of the cycles is trivial, then the move can transfer the weight
in its black edge to another cycle and, in the best case, Δcα(G(I), {μ}) ≤ 1.

– If both cycles are alpha, then Δcα(G(I), {μ}) = 0. Note that in this case,
the black edges of both cycles have a weight of zero. Consequently, the black
edge weight of the cycles remains unchanged.

A reversal ρ
(i,j)
(x,y) can create at most two alpha cycles (Δcα(G(I), {ρ}) ≤ 2).

However, this occurs only in the particular case where a reversal splits a 2-cycle
where both black edges have weight zero. Given that a move operation does not
change the size of the cycles, to obtain a 2-cycle with such characteristic, we have
that a reversal ρ that merges cycles must be previously applied. Note that any
reversal that merges cycles does not create alpha cycles (Δcα(G(I), {ρ}) ≤ 0),
since this operation results in a non-trivial cycle. To obtain a 2-cycle where both
black edges have weight zero, we have three possibilities:

– The first case consists of a reversal ρ1 that merges two alpha cycles (decreas-
ing the number of alpha cycles by two units) followed by a reversal ρ2 that
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splits that 2-cycle generating two alpha cycles again. Note that in this case
the reversal ρ2 undoes what ρ1 created, so Δcα(G(I), {ρ1, ρ2}) = 0 since
Δcα(G(I), {ρ1}) = −2 and Δcα(G(I), {ρ2}) = 2.

– In the second case, we have a reversal ρ1 that merges two trivial cycles where
both black edges have weight greater than zero. By the construction of the
2-cycle, we have that at least one of its black edges has a weight greater
than zero. To remove the weight in the black edges of the 2-cycle, at least
one move μ1 must be applied (a reversal to perform this task must split or
merge the cycle first). Note that the move μ1 does not create alpha cycles
(Δcα(G(I), {μ1}) ≤ 0) since it transfers the weight from a black edge of a
2-cycle to another cycle. Finally, a reversal ρ2 that splits the 2-cycles gener-
ating two alpha cycles is applied. Note that Δcα(G(I), {ρ1, μ1, ρ2}) ≤ 2

3 since
Δcα(G(I), {ρ1}) = 0, Δcα(G(I), {μ1}) ≤ 0, and Δcα(G(I), {ρ2}) = 2.

– The last possibility is when a reversal ρ1 merges a trivial cycle whose black
edge has weight greater than zero with an alpha cycle, decreasing the num-
ber of alpha cycles by one unit. Similar to the previous case, at least one
of the black edges in the 2-cycle has a weight greater than zero, and at
least one move operation μ1 must be applied. In the end, a reversal ρ2 is
applied to that 2-cycle generating two alpha cycles. This case results in
Δcα(G(I), {ρ1, μ1, ρ2}) ≤ 1

3 since Δcα(G(I), {ρ1}) = −1, Δcα(G(I), {μ1}) ≤
0, and Δcα(G(I), {ρ2}) = 2.

Considering the scenario where a reversal creates only one alpha cycle, we
also have the fact that a reversal that merges cycles must be previously applied.
Thus, we have that Δcα(G(I), {ρ1, ρ2}) ≤ 1

2 . This implies that if any reversal is
used in a sorting sequence S then |S| > 3n.

For indels, we note that after a deletion takes place to a black edge, it can
increase the number of alpha cycles by one unit, however, after any deletion
at least one insertion is required to balance the instance again, and since an
insertion cannot increase the number of alpha cycles it results in more than 3n
operations in the sorting sequence. It follows that a sorting sequence of size 3n
has only move operations in both SbIRM and SbIRMI problems.

The 3n move operations will transfer all the positive weight of the 3n black
edges of labels [1..3n] to the black edges of labels [(3n + 1)..4n], creating one
alpha cycle each. The black edges from labels [(3n + 1)..4n] must receive a total
weight that corresponds to the sum of weights in exactly three black edges of
labels [1..3n], since b

2 > w(bi) > b
4 . At the end of the sorting process, we just

need to trace the weight that was transferred to create each alpha cycle. 
�

3.2 Lower Bounds

In this section, we present lower bounds for the SbIRM and SbIRMI problems
based on the number of cycles and balanced cycles on the weighted breakpoint
graph.

Given an instance I = ((π, π̆), (ι, ῐ)) for the SbIRM or SbIRMI problem, we
have that Δc(G(I), ρ) ∈ {1, 0,−1} and Δcb(G(I), ρ) ∈ {1, 0,−1} for any reversal
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ρ. Similarly, we have that Δc(G(I), μ) = 0 and Δcb(G(I), μ) ∈ {2, 1, 0,−1,−2}
for any move μ and Δc(G(I), δ) = 0 and Δcb(G(I), δ) ∈ {1, 0,−1} for any indel
δ. That said, we derive the following lower bounds.

Lemma 1. Given an instance I = ((π, π̆), (ι, ῐ)) for the SbIRM problem, then
dρμ(I) ≥ n + 1 − c(G(I))+cb(G(I))

2 .

Proof. Note that to reach the target genome it is necessary to increase both the
number of cycles and balanced cycles to n + 1. We already argued that both
reversals and moves can increase c(G(I)) + cb(G(I)) by at most two units, so
the lemma follows. 
�

Lemma 2. Given an instance I = ((π, π̆), (ι, ῐ)) for the SbIRMI problem, then
dρμδ(I) ≥ n + 1 − c(G(I))+cb(G(I))

2 .

Proof. The proof is similar to the described in Lemma 1. 
�

3.3 Reversal and Move Operations

In the following, we present lemmas that will be used to construct an algorithm
that transforms the source genome into the target genome using reversal and
move operations. Note that reversal and move operations are conservative events.
For this reason, we assume that we are dealing with a balanced instance.

Lemma 3. Given an instance I = ((π, π̆), (ι, ῐ)), such that there is at least one
negative trivial cycle C = (c1), then it is possible to increase the number of
balanced cycles by at least one unit after applying one move operation.

Proof. Since G(I) is a balanced graph, at least one positive cycle D in G(I)
must exist. In this case, we apply one move operation that transfers the extra
weight from the black edge c1 to a black edge of D. Thus, C becomes balanced
and the lemma follows. 
�

Lemma 4. Given an instance I = ((π, π̆), (ι, ῐ)), such that there is at least one
negative or balanced divergent cycle C, then it is possible to increase the number
of cycles by one unit and the number of balanced cycles by one unit after applying
one reversal operation.

Proof. Straightforward from Lemma 5 by Oliveira et al. [16]. 
�

Lemma 5. Given an instance I = ((π, π̆), (ι, ῐ)) such that all the non-trivial
cycles that are either negative or balanced are convergent, there is a sequence of
two reversals that increases the number of cycles by one unit and the number of
balanced cycles by one unit.

Proof. Straightforward from Lemma 6 by Oliveira et al. [16]. 
�
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Algorithm 1. The input is an instance I = ((π, π̆), (ι, ῐ)) and the output is a
sequence S of reversal and move operations such that (π, π̆) · S = (ι, ῐ).

S ← [ ]
while (π, π̆) �= (ι, ῐ) do

if there is a trivial negative cycle in G(I) then
S ← S + [μ1] � Lemma 3.

else if there is a negative or balanced divergent cycle in G(I) then
S ← S + [ρ1] � Lemma 4.

else
S ← S + [ρ1, ρ2] � Lemma 5.

end if
end while
return S

Now consider the Algorithm 1 and note that it has three steps: (i) move
operations applied to trivial negative cycles (Lemma 3); (ii) reversals applied to
negative or balanced divergent cycles (Lemma 4); (iii) two consecutive reversals
applied to negative or balanced convergent cycles (Lemma 5). Thus, we have the
following lemma.

Lemma 6. Given an instance I = ((π, π̆), (ι, ῐ)), Algorithm 1 turns (π, π̆) into
(ι, ῐ) using reversal and move operations.

Proof. Note that the algorithm ensures that every negative trivial cycle are
turned into balanced by Lemma 3. If no negative trivial cycle exists, any neg-
ative or balanced divergent cycles is split by Lemma 4. If none of the these
two situations apply, G(I) may have positive or balanced trivial cycles, positive
divergent cycles, and convergent cycles (positive, negative, or balanced). Thus,
all the negative and balanced cycles in G(I) are convergent and Lemma 5 can
be applied. Observe that Algorithm 1, in each iteration, always performs one of
the steps i, ii, or iii. Besides, each step increases in at least one unit the num-
ber of cycles or in at least one unit the number of cycles and balanced cycles.
This process repeats until we reach (n + 1) cycles and (n + 1) balanced cycles,
which consequently transforms (π, π̆) into (ι, ῐ) (Remark 1). Thus, the lemma
follows. 
�

Table 1 shows the number of cycles, balanced cycles, and average per opera-
tion achieved by each step of Algorithm 1 in the worst scenario.
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Table 1. Summary of number of cycles and balanced cycles increased, in the worst
case, by each step of Algorithm 1.

Step S Δc(G(I), S) Δcb(G(I), S) Δc(G(I),S)+Δcb(G(I),S)
|S|

i μ 0 1 1

ii ρ 1 1 2

iii ρ, ρ 1 1 1

Given an instance I = ((π, π̆), (ι, ῐ)), such that the size of the permutations
π and ι is n, and G(I) = (V,E,w), we have that 2(n + 1) = |V | = |E|. In the
worst scenario, it is possible to note that step i from Algorithm 1 takes linear
time to identify the existence of a trivial negative cycle in G(I) and to apply a
move operation. Similarly, step ii also takes linear time to determine if G(I) has
a negative or balanced divergent cycle and to apply a reversal operation. Step iii
requires linear time to determine that all the non-trivial cycles in G(I) that are
either negative or balanced are convergent. However, to define the parameters
i, j, x, and y of the two consecutive reversals takes quadratic time, since it will
depend on the interleaving cycle of the convergent cycle selected. The steps i,
ii, or iii will be required at most k ≤ n times to sort the permutation. Thus,
Algorithm 1 runs in O(n3).

Lemma 7. Given an instance I = ((π, π̆), (ι, ῐ)), Algorithm 1 turns (π, π̆) into
(ι, ῐ) using at most 2(n+1)−(c(G(I))+cb(G(I))) reversal and move operations.

Proof. By Lemma 6, Algorithm 1 turns (π, π̆) into (ι, ῐ) using reversal and move
operations. By Remark 1, to reach the target genome (ι, ῐ) it is necessary to
achieve c(G(I)) + cb(G(I)) = 2(n + 1). Considering the worst scenario for each
step of Algorithm 1, showed in Table 1, we observe that steps i and iii increase
at least by one unit, on average, per operation the value of c(G(I)) + cb(G(I)).
Step ii increases the value of c(G(I))+ cb(G(I)) in two units. Thus, in the worst
scenario, Algorithm 1 turns (π, π̆) into (ι, ῐ) using at most 2(n+1)− (c(G(I))+
cb(G(I))) reversal and move operations, and the lemma follows. 
�

Theorem 2. Algorithm 1 is a 2-approximation for the SbIRM problem.

Proof. Considering an instance I = ((π, π̆), (ι, ῐ)) of the SbIRM problem and
the lower bound defined by Lemma 1, we have the following value: n + 1 −
c(G(I))+cb(G(I))

2 . By Lemma 7, Algorithm 1 turns (π, π̆) into (ι, ῐ) using at most
2(n + 1) − (c(G(I)) + cb(G(I))) reversal and move operations, and the theorem
follows. 
�

3.4 Reversal, Move, and Indel Operations

In the following, we present lemmas that will be used to construct an algorithm
that transforms the source genome into the target genome using reversal, move,
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and indel operations. Since the indel operation is a non-conservative rearrange-
ment event, we assume that the instances of the problem may be either balanced
or unbalanced.

Lemma 8. Given an instance I = ((π, π̆), (ι, ῐ)) such that there is at least one
positive cycle C = (c1, . . . , ck), it is possible to increase the number of balanced
cycles by one unit after applying one indel operation.

Proof. Note that C = (c1, . . . ) needs to receive weight on its black edges in
n =

∑k
i=1[w(e′

ci) − w(eci)] units to become balanced. In this case, we apply an
indel δ to the black edge c1 increasing its weight by n units, and the lemma
follows. 
�

Lemma 9. Given an instance I = ((π, π̆), (ι, ῐ)) such that there is at least one
negative trivial cycle C = (c1), it is possible to increase the number of balanced
cycles by one unit after applying one indel operation.

Proof. Note that C is a negative trivial cycle. We can apply an indel δ to black
edge c1 decreasing its weight by n = |

∑k
i=1[w(e′

ci) − w(eci)]| units, and the
lemma follows. 
�

Now consider the Algorithm 2. Note that it also runs in O(n3) using a similar
analysis described in Algorithm 1, but considering that it takes a linear time to
determine the steps where the indel operation is necessary.

Algorithm 2. The input is an instance I = ((π, π̆), (ι, ῐ)) and the output is a
sequence S of reversals, moves, and indels such that (π, π̆) · S = (ι, ῐ).

S ← [ ]
while (π, π̆) �= (ι, ῐ) do

if there is a negative trivial cycle in G(I) then
if there is a positive cycle in G(I) then

S ← S + [μ1] � Lemma 3.
else

S ← S + [δ1] � Lemma 9.
end if

else if there is a negative or balanced divergent cycle in G(I) then
S ← S + [ρ1] � Lemma 4.

else if there is a negative or balanced convergent cycle in G(I) then
S ← S + [ρ1, ρ2] � Lemma 5.

else
S ← S + [δ1] � Lemma 8.

end if
end while
return S
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Lemma 10. Given an instance I = ((π, π̆), (ι, ῐ)), Algorithm 2 turns (π, π̆) into
(ι, ῐ) using reversal, move, and indel operations.

Proof. Note that initially the trivial negative cycles are turned into balanced by
Lemma 3 or Lemma 9. Then, negative or balanced non-trivial cycles are treated
by lemmas 4 and 5. Lastly, if Algorithm 2 reaches the last step, it means that
G(I) may have balanced trivial cycles and, at least, one positive cycle. In this
case, Lemma 8 is applied. Note that, in all the cases, at least one new balanced
cycle is generated. Thus, the algorithm will eventually reach the target genome
since the maximum number of balanced cycles in G(I) is n + 1 (Remark 1) and
the lemma follows. 
�

Lemma 11. Given an instance I = ((π, π̆), (ι, ῐ)), Algorithm 2 turns (π, π̆) into
(ι, ῐ) using at most 2(n + 1) − (c(G(I)) + cb(G(I))) reversal, move, and indel
operations.

Proof. By Lemma 10, Algorithm 2 turns (π, π̆) into (ι, ῐ) using reversal, move,
and indel operations. By Remark 1, to reach the target genome (ι, ῐ), it is neces-
sary to achieve c(G(I))+cb(G(I)) = 2(n+1). In all cases of Algorithm 2 we have
that Δc(G(I),S)+Δcb(G(I),S)

|S| ≥ 1, where S is the sequence of operations applied by
the step of Algorithm 2. Then, in the worst case, 2(n+1)− (c(G(I))+cb(G(I)))
reversal, move, and indel operations will be needed to turn the source genome
into the target genome, and the lemma follows. 
�

Theorem 3. Algorithm 2 is a 2-approximation for the SbIRMI problem.

Proof. Considering an instance I = ((π, π̆), (ι, ῐ)) of the SbIRMI problem and
the lower bound defined by Lemma 2, we have the following value: n + 1 −
c(G(I))+cb(G(I))

2 . By Lemma 11, Algorithm 2 turns (π, π̆) into (ι, ῐ) using at most
2(n + 1) − (c(G(I)) + cb(G(I))) reversal, move, and indel operations, and the
theorem follows. 
�

4 Conclusion

In this work, we investigated two genome rearrangement problems considering
the scenario where the genomes share the same set of genes, and the orientation
of the genes is known. The first model allows the conservative events of reversal
and move, while the second also includes the non-conservative event of indel. For
both cases, we showed that they belong to the NP-hard class, and we presented
a 2-approximation algorithm for each problem. The results bring an advance
regarding the complexity analysis considering the three studied events. It is
worth mentioning that the problem considering only reversal and indel events
remains with unknown complexity.

As future works, investigations focused on the complexity of the problem
regarding the reversal and indel events are relevant since closing the complexity
gap of those problem variants brings fundamental knowledge for the comparative
genomic field.
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Abstract. Chromothripsis is a mutational phenomenon representing a
unique type of tremendously complex genomic structural alteration. It
was initially described and was broadly observed in cancer with lower
frequencies in other genetic disorders. Chromothripsis manifests massive
genomic structural alterations during a single catastrophic event in the
cell. It is considered to be characterized by the simultaneous shattering
of chromosomes followed by random reassembly of the DNA fragments,
ultimately resulting in newly formed, mosaic derivative chromosomes and
with a potential for a drastic oncogenic transformation. Here, we con-
sider a question of whether the genomic locations involved in chromoth-
ripsis rearrangements’ are randomly distributed in 3D genomic packing
space or have some spatial organization’s predispositions. To that end,
we investigated the structural variations (SVs) observed in previously
sequenced cancer genomes via juxtaposition of involved breakpoints onto
the Hi-C contact genome map of normal tissue. We found that the aver-
age Hi-C contact score for SVs breakpoints appearing at the same chro-
mosome (cis-SVs) in an individual patient is significantly higher than
the average Hi-C matrix signal, which indicates that SVs tend to involve
spatially proximal regions of the chromosome. Furthermore, we overlaid
the chromothripsis annotation of groups of SVs’ breakpoints and demon-
strated that the Hi-C signals for both chromothripsis breakpoint regions
as well as regular SVs breakpoints are statistically significantly higher
than random control, suggesting that chromothripsis cis-SVs have the
same tendency to rearrange the proximal sites in 3D-genome space. Last
but not least, our analysis revealed a statistically higher Hi-C score for
all pairwise combinations of breakpoints involved in chromothripsis event
when compared to both background Hi-C signal as well as to combina-
tion of non-chromothripsis breakpoint pairs. This observation indicates
that breakpoints could be assumed to describe a given chromothripsis
3D-cluster as a proximal bundle in genome space. These results provide
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valuable new insights into the spatial relationships of the SVs loci for
both chromothripsis and regular genomic alterations, laying the founda-
tion for the development of a more precise method for chromothripsis
identification and annotation.

Keywords: Chromothripsis · Hi-C · Genome instability · Complex
rearrangements · 3D-genome organization · Contact frequency ·
Oncogenesis

1 Introduction

During oncogenesis, cells acquire numerous genetic changes that confer tumor-
specific properties, including immortality, escape of apoptosis and antimitotic
signaling, neovascularization, invasiveness, and metastatic potential. In most
cases, these oncogenic changes are considered to occur gradually, having a cumu-
lative nature [26]. However, recent advances in sequencing and bioinformat-
ics analysis of cancer genomes have challenged the established paradigm, as
a radically new, unique mechanism of simultaneous oncogenic cell transforma-
tion - chromothripsis - has been identified, causing complex intra- and inter-
chromosomal rearrangements in a short time. At the present moment, the mech-
anisms and the causes of chromothripsis remain unclear: it is believed that a
single catastrophic event in the cell leads to simultaneous shattering of a chro-
mosome(s), followed by random, chaotic reassembly of genomic fragments into
mosaic derivative(s), along with a partial loss of genetic material [11,24]. Sev-
eral nonexclusive mechanistic models have been proposed to explain the cause
and high complexity of a chromothripsis event, [13,15,17,25] but the molecular
mechanism of such a cellular catastrophe remains unclear and poorly understood,
especially from the point of its prediction, or even accurate detection.

The phenomenon of chromothripsis was discovered relatively recently when
massive genomic rearrangements were detected in patients with chronic lym-
phocytic leukemia [24]. Initially, the prevalence of chromothripsis was shown to
be around 2–3% in all human cancer cases where the frequency of occurrence
depends on the tissue origin [1,7]. For a more detailed study and analysis of
the chromothripsis phenomenon, some characteristic features were proposed to
distinguish it from other complex genomic rearrangements, such as: significant
1D-clustering of DNA breakpoints; copy number (CN) change not exceeding 2
or 3; chromothripsis fragments being reassembled in a chaotic way in all possible
orientations [8]. Despite the high prevalence in different types of cancer along
with enormous consequences and significant role in carcinogenesis, the mecha-
nism of chromothripsis and its molecular biological pathway are still not fully
understood, not to mention the preconditions for its occurrence. Some mod-
els of the chromothripsis initiation have been proposed, which reflect only a
mechanistic understanding of this phenomenon [17]. Recently, the key role of
chromothripsis as the main mechanism that accelerates the rearrangement and
amplification of the genomic DNA, contributing to the rapid evolution of cancer
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cells, has been demonstrated [20]. In addition, a genome-wide analysis of cancer
patients showed a significantly higher prevalence of chromothripsis compared to
the initial estimates - up to 49% of all studied cases of different types of cancer
had chromothripsis [30].

Recent genome-wide studies of 2,568 patients within the framework of the
international PCAWG consortium proved the wide prevalence of chromothripsis
among cancer patients, alongside the ambiguity of the rearrangements detection
and the complexity of their interpretation [4]. To date, two algorithms for the
chromothripsis detection were proposed - ShatterSeek [4] and ShatterProof [6] -
both based on the statistical method for structural rearrangements assessment
and the criteria being related to the chromothripsis event described by Korbel
and Campbell (2013) [8]. It is worth noting that the developers of ShatterSeek
themselves point to discrepancies in the assessment of chromothripsis events
when comparing their results with the results obtained with the similar Shatter-
Proof method - in their case, the discrepancies depend on the initial threshold
of statistical sensitivity chosen in the study [4].

Since the discovery of chromothripsis as a phenomenon and its proposed
distinctive properties, chromosome conformation capture (3C, 3C-derived) tech-
nology has revolutionized the analysis of sequencing data and our understand-
ing of the 3D-genome organization: recent studies have highlighted the critical
importance of genomic spatial architecture for maintaining all molecular mech-
anisms, gene regulation and genome stability [12,19,28]. In particular, several
studies showed the influence of 3D-genome architecture on SVs occurrence [2],
also its role in translocations formation has been shown [5,18,33]. We also note
that the role of spatial genomic organization has been considered in comparative
genomics studies, in which cross-species rearrangements are being identified and
analyzed, with results showing that 3D genomic proximity correlates with the
evolutionary breakpoint sites [27,29]. In this regard, it is important to investigate
of the chromothripsis phenomenon and rearrangements formation in a view of
the 3D-genome organization, and to identify signatures of chromothripsis in the
context of genome conformation, as well as review the strictly “chaotic” nature
of the rearrangements reassembly. Recently, the attempt was made to study the
relationship between genome organization before and after SVs occurrence in the
same population of cells [21]: the model system of human cells treated by doxoru-
bicin (Topoisomerase II (TOP2) trapping) was used to induce chromothripsis-
like rearrangements. The key criterion of SVs that occurred was the randomness
of breakpoint formation [8] which was studied by juxtaposition of fragments in
the Hi-C-based reconstructed derivative chromosomes of rearranged cells. It was
shown that the majority of SVs (induced and spontaneous) occurred in con-
served compartments whereas TOP2-linked SVs were more likely to occur in
A-compartments (“active”, open chromatin) and fewer within B-compartments,
the spontaneous SVs distributed more uniformly with no statistical difference
compared to the random background set. The similar association was found for
cumulative SVs identified in cancer genomes [21]. There have also been efforts
focused on methodological development for both detection and grouping of com-
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plex SVs, including those possibly originating from chromothripsis as part of the
somatic evolutionary process in cancer progression [22,31].

The aim of the present study is to analyze the predispositions in the 3D-
genome space for chromothripsis complex rearrangements (i.e., religated pairs
and other pairwise combinations of involved breakpoints) occurring in cancer.
We propose a hypothesis that chromothripsis rearrangements occur not only
simultaneously and present as a clustered 1D-segment on the chromosome, but
also are mutually co-localized in 3D-space in the form of a proximal bundle.
We investigated the SVs determined as chromothripsis via the juxtaposition
of the breakpoints on the contact genome map of normal tissue and checked
the pairwise distances between all breakpoints. We hypothesize that it is the
spatial co-localization of chromothripsis breakpoints in 3D-space occurring in
each individual patient that could be a new parameter to include in the algorithm
for more accurate chromothripsis detection.

2 Materials and Methods

2.1 Hi-C Data

Public Hi-C data (GEO accession GSE118629) was used to serve a reference of
average long-range genomic interactions in the RWPE1 normal prostate ATCC
CRL11609 cell line [16]. Each matrix cell Hij is a contact frequency between the
genome loci corresponding to the i-th and j-th bins. The initial 40Kbp resolution,
Hi-C normalized matrix GSE118629 was considered. Normalized Hi-C matrix
40 Kbp [16] and hg19 annotated bins were converted into .cool format. In this
study, we considered the Hi-C matrix with 400 Kbp resolution as this resolution
is not as noisy as 40 Kbp Hi-C matrix but it still refined enough to detect
the signal between pairs of breakpoints involved in genome rearrangements. We
further note that we consider only cis-chromosomal intra-arm submatrices of the
original Hi-C matrix as the contact signal for inter-chromosomal/arm regions is
drastically lower and noisier, most likely requiring a separate analytical approach
for processing and analysis.

In order to clean up the alignment bias from the Hi-C data, we normalized
the values in each column and each row as described in [10]. In order to find the
relative spatial proximity between two loci at the genomic space, we normalized
the initial Hi-C signal by the mean value at this genomic distance. Namely, the
transformation of the Hi-C matrix into the so called Observed/Expected matrix
was made by standard method [10] in the following way:

hij := Hij/Mk,

where Hij is the score between two loci i and j, Mk – the mean Hi-C score taken
over the set of bin pairs

Dk := {(i, j) : |i− j| = k}.
This allows us to take into account relative spatial proximity instead of absolute
one. In particular this would put the Hi-C scores of short-range breakpoint pairs
into the same scale as long-range ones.
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2.2 SVs Data

Recent large-scale study of 2,658 cancer patients with 38 different cancer types
was performed under the PanCancer project (PCAWG Consortium) [4]. WGS
data was used to obtain rearrangements in patients. SVs coordinates including
chromothripsis SVs data used in the present study was obtained at https://
dcc.icgc.org/releases/PCAWG. Prostate adenocarcinoma was chosen for present
analysis as this type of cancer is characterized by various frequently occurring
complex structural variation events.

We thus considered SVs for 175 patients with prostate adenocarcinoma. SVs’
genomic coordinates were annotated with GRCh37 assembly. Initially, 14,498
SVs were collected, but we removed inter-chromosomal and inter-chromosomal-
arm SVs, ultimately retaining 8,154 intra-arm cis-SVs. We further narrowed
the considered SVs set by removing rearrangements with size: |position1 −
position2| < 60 Kbp in order to exclude microinversions and other smaller vari-
ations from the analysis, as the involved breakpoints most likely do not have
spatial relationship that is decoupled from their close proximity in 1D-space.
Overall, we considered 5,085 cis-SVs in the present study.

2.3 Chromothripsis Rearrangements Data

We annotated each SV as “belonging” to a chromothripsis event if both of its posi-
tions (i.e., breakpoints) were located within chromothripsis region(s) identified by
ShatterSeek [8]. ShatterSeek method represents a statistical approach which con-
sideres the following key features for chromothripsis identification: 1) “clusters of
breakpoint should be interleaved and have equal distributions of SVs types”; 2)
“rearrangements fragments joins should follow a roughly even distribution”; 3)
“oscillating CN patterns should not exceed 2 or 3 states”; 4) “interspersed loss of
heterozygosity at heterozygous single-nucleotide polymorphisms”. Based on these
criteria, all SVs were classified into 5 groups by ShatterSeek: high-confidence and
linked-to-high, low-confidence, and linked-to-low as well as no chromothripsis SVs
[4]. The high-confidence annotation refers to regions which are characterized by
at least 6 interleaved intrachromosomal SVs or at least 3 interleaved intrachro-
mosomal SVs and 4 or more interchromosomal SVs, 7 adjacent segments oscillat-
ing between 2 CN states. We used the high-confidence chromothripsis group to
markup SVs as belonging to chromothripsis cluster.

2.4 Breakpoints Pairwise Distances Analysis

In this paper, we study mutual configuration of the SVs breakpoints in 3D-
space. To do this, we consider all possible pairwise combinations of breakpoints
from the same chromosomal arm (see Fig. 1). We consider the cases when both
breakpoints came from the same patient (we label such combinations as comb s)
or when the first breakpoint came from one patient and the second came from
another patient (we label such combinations as comb d). It is worth noting that
for the intra-patient pairwise combinations comb s, we do not include pairs of

https://dcc.icgc.org/releases/PCAWG
https://dcc.icgc.org/releases/PCAWG
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Fig. 1. Three genome rearrangements, 8 out of 12 pairwise combinations of SV1, SV2,
and SV3 breakpoints are marked orange (4 pairwise combinations are omitted for better
readability) (Color figure online).

breakpoints that define true SVs (i.e., a novel adjacency formed between said
breakpoints) and analyze them separately. Where it is relevant, we take into
account the chromothripsis labeling of involved breakpoints (as described above).

2.5 Statistical Analysis

In order to compare the H-C scores across different groups of genome loci pairs, we
perform the standard Student’s t-test for independent pairs. We can do so since all
the compared groups Hi-C scores distributions (while not normal) belong to the
domain of normal attraction by the central limit theorem. Since the performed
several comparisons, we report the Bonferroni corrected p-values of the t-test.

3 Results and Discussion

We note that previous research highlighted that the breakpoints of regular
translocations and cis-SVs have higher Hi-C contact frequencies in cancer cells
[5,33]. Since chromothripsis can be represented as a collection of rearrangements
occurring simultaneously, we hypothesize that breakpoints involved in all SVs
from a given chromothripsis have a tendency to co-locate in 3D-space. To see if
such co-localization evidence is present in the Hi-C signal, we first consider all
of the pairwise combinations of breakpoints (see Fig. 1).

For these combinations, we compare the Hi-C scores between the true SVs,
comb s, and comb d groups without any chromothripsis annotations (see Fig. 2).
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Fig. 2. The Hi-C scores for the pairwise breakpoint combinations determined by mea-
sured SVs (blue), comb s (orange), and comb d (green), and control set of random
pairs of genome loci (red) (Color figure online).

As we expected, the Hi-C scores for the pairs of breakpoints representing
actual SVs have the highest mean of 1.13. Quite surprisingly, the Hi-C scores for
the both types of combinations are also higher (the mean values are 1.09 and
1.02, respectively) than one would expect to see when considering combinations
of random pairs of locations with pairwise distances similar to those defined by
SVs (Bonferroni corrected t-test p-values are less than 2.2e−16).

We confirmed that the signal for true rearrangements was higher than the
mean Hi-C matrix score, meaning that these genomic loci have more Hi-C con-
tact frequencies. This fact suggests that studied SVs occur at non-random pairs
of loci in the genome, as they are relatively more proximal. This is consistent
with previous report that showed pre-existing spatial proximity of loci involved
in double-stand breaks (DSBs) [33]. Since Hi-C represents contact frequencies
rather than physical nuclear distances, such an approach ensures a straightfor-
ward check-up for the “contact-first” model of rearrangements’ formation [32].

We demonstrated both true cis-SVs and other pairwise combinations of SV-
defined breakpoints originating in the same patient have higher contact frequen-
cies than combinations of breakpoints from different patients. Therefore, we sug-
gest that all breakpoints of each individual patient occur at some preferable loci
spatially more proximal along a chromosome, and they form a mutually close
bundle. However, combinations from breakpoints of different patients have higher
Hi-C score than the mean matrix signal. This observation could be explained
by SVs’ tendency to occur in the same specific chromosome compartments, for
example, in “active”, open chromatin, as it was indicated in the recent study
[21]. Thus, we could expect the commensurate contact frequencies for break-
points combinations, even originated from different patients. However, we found
that comb s showed a significantly higher Hi-C score than comb d (Bonferroni
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corrected p-value is less than 2.2e−16). This suggests that cross-patient elevated
signal might represent a mixture of non-breakpoint chromatin features and spa-
tial proximity of breakpoint-involved loci, where the intra-patient signal realizes
the breakpoint-induced spatial relations.

In order to perform the precise assessment of SVs in each patient and to
understand the behavior of chromothripsis rearrangements in 3D-genome space,
we expanded our analysis by taking into account the classification of chro-
mothripsis events from ShatterSeek method [4]. We considered breakpoint pairs
involved in chromothripsis-grouped SVs and observed that they have the same
high contact frequencies as the values observed for regular SVs (the mean value
is 1.12). In order to confirm the significance and relevance of the Hi-C score for
breakpoints involved in regular rearrangements and, consequently, to determine
the relative proximal location of chromothripsis breakpoints, additional analysis
of Hi-C score of all possible pairwise combinations of chromothripsis and non-
chromothripsis breakpoints was performed. We found no statistical difference
between the mean signal for pairs of breakpoints involved in true chromothripsis
SVs and all other combinations of chromothriptic breakpoints in the same patient
(the means are 1.12 and 1.1, respectively, the t-test p-value is 0.11). On the other
hand, we observed that the Hi-C score for combinations of within-chromothripsis
breakpoint pairs from the same patient was significantly higher than the signal
across pairwise combinations of breakpoints pairs from non-chromothripsis SVs
(the mean values are 1.1 and 1.09 respectively, the Bonferroni-corrected p-value
is 0.026). This means that for any pair of breakpoints of the same chromotripsis
event it is as likely, from the proximal perspective, for them to form observed
SVs’ connections as to re-ligate in some different way, forming a distinct set
of SVs on the same set of chromotriptic breakpoints. However, we observe a
significant difference in average signal values when comparing regular SVs and
different pairwise combinations of their breakpoints (the Bonferroni corrected t-
test p-values is 0.00236). Overall, this additionally confirms non-randomness of
chromothriptic breakpoints grouping and relative inter-proximity between break-
points that comprise a given chromothripsis cluster.

Thus, chromothripsis may be promoted by the intrinsic spatial organization
of the given chromosomes such that DSBs within them are rather probable to be
re-ligated to another DSB on the same chromosome. Indeed, such mechanistic
relevance has sense in a view of the mechanism of chromothripsis DSBs repair.
Non-homologous end joining (NHEJ) is considered to be the major mechanism
for chromothripsis fragments repair which ligates the DSBs in an error-prone
manner [24]. Further, the detailed analysis of the breakpoints junction showed
few base-pair microhomologies, if any, short deletions/duplications, and short
templated or non-templated insertions. This indicates that NHEJ [9] and/or
microhomology-mediated end joining (MMEJ), also known as alternative non-
homologous end-joining (Alt-NHEJ) [14] are the most likely DNA repair mech-
anisms underlying the gluing process of the generated chromothripsis fragments
in most cases. Analysis of chromothripsis junctions in the PanCancer study
showed the results in accordance with these repair mechanisms [4]. Addition-
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ally, NHEJ is the predominant repair pathway in human cells and traditionally
serves as a guardian of the genome, preventing genomic instability through the
fast, highly efficient repair of DSBs [23]. Compared to other repair mechanisms,
NHEJ surveillance machinery is consistently active and does not depend on the
cell cycle phase, and involves the straightforward, though usually error-prone,
ligation of DSBs by simple joining them pairwise as soon as they occur to be close
to each other in space: NHEJ requires physical juxtaposition of the DSBs ends
(their “synapsis”) that includes complex protein machinery [34] which mecha-
nism is still under active research. Thus, the critical requirement of sufficient
NHEJ is to overcome the entropy of dissociated chromosome ends, therefore,
taking into account non-specificity of NHEJ that ligate all DSBs within proxim-
ity, the 3D-genome organization is considered to be a driving force to promote
joining of DSBs providing mechanical factors to facilitate NHEJ repair. There-
fore, we can assume that the contact frequency between two genomic loci may
correlate with the frequency of their repair, the result of which can be seen in
chromothripsis rearrangements with corresponding spatial predisposition of the
breakpoints.

4 Conclusions

In the present study, we analyzed chromothripsis complex rearrangements in a
view of spatial organization of the genome and observed whether there are some
predispositions in 3D-genome structure to form these specific structural varia-
tions. SVs in prostate cancer and corresponding large chromothripsis clusters
were analyzed and mapped on the Hi-C contact matrix of normal tissue. Result-
ing Hi-C score for both regular and chromothripsis SVs was found to be higher
than average Hi-C matrix signal, confirming previous reports that regular cis-
SVs have a strong influence from spatial proximity to the preferred DSBs joying
[33]. Obtained findings are consistent with recent work of chromothripsis-like pro-
cess where indirect approach (network nodes analysis) revealed genome catastro-
phe joining to be non-random, showing preferential DSBs repair to local sites or
inter-exchange between specific loci [3]. Moreover, our analysis revealed a statis-
tically higher Hi-C score for all possible combinations of intra-patient chromoth-
riptic breakpoint pairs compared to the non-chromotriptic pairwise breakpoint
combinations, confirming relative inter-proximity between breakpoints that com-
prise a given chromothripsis 3D-cluster. In conclusion, results obtained in the
present study confirm the hypothesis that 3D-genome organization plays a cru-
cial role in complex cellular processes as well as spatial proximity promotes SVs
pairing of breakage positions that has mechanistic relevance in terms of the major
mechanism of chromothripsis DSBs repair (NHEJ) requiring physical juxtaposi-
tion of the DSBs ends (their “synapsis”). The obtained results present a future
research perspective for a refinement of chromothripsis identification methods
with a proposed additional consideration of breakpoints clustering based on their
relative proximity rather than only on statistical 1D-criteria.
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Abstract. The microbiome is an interconnected network of microorganisms,
which exist and influence a wide array of natural and synthetic environments.
Genetic information is constantly spread across themembers of themicrobial com-
munity in a process called horizontal gene transfer, causing exposure of genetic
alterations and modifications to all members of the community.

In order to accurately and effectively engineermicrobiomes, geneticmodifica-
tions must be introduced to certain species, as selectivity is a key factor in creating
and fixing functional abilities withinmicrobial environments.Moreover, introduc-
tion of genes into unwanted hosts may cause unprecedented ecological impacts,
posing a major biosafety issue. Technologies in the field are usually experimen-
tally developed for a specific host or environment, and the lack of automization
and generalization limit them to a specific microbiome. Additionally, they only
deal with the transformation process itself at best and do not modulate the dif-
ferent elements of the genetic material, neglecting considerations related to the
interactions between the new genetic material and the population.

This work presents a set of computational models that automatically design
a microbiome-specific plasmid that is selectively expressed in certain parts of the
bacterial population. The underlying algorithm fine-tunes genetic information to
be optimally expressed in the wanted hosts of the plasmid, while simultaneously
impairing expression in unwanted hosts. We take into account and selectively
optimize the main elements linked to gene expression and heredity. In addition,
we have provided both in-silico and in-vitro analysis supporting our claim. This
studywas part of the TAU IGEM2021 project (https://2021.igem.org/Team:TAU_
Israel).

Keywords: Population genomics · Microbiome engineering · Gene expression ·
Horizontal gene transfer · Evolutionary systems biology · Synthetic biology

1 Introduction

The term “microbiome” is defined as the community of different microorganisms that
coexist in an environment. Nearly every system, from natural to synthetic, is populated
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by a unique and diverse community of organisms, which continuously interact among
themselves and with their environment. Early studies of the field have shown that the
animal’s microbiome has a noticeable effect on key features including their host’s fitness
and lifespan [1]. Research regarding the human and animal microbiome in the past years
has led to truly impactful results that provide new understanding of the mechanisms of
host-microbiome interactions and their key influence of various physiological [2] and
even psychological [3] factors. Additionally, analysis of other natural environments has
yielded intriguing results as well [4]. Overall, different studies were able to demonstrate
that themicrobial composition is reactive to environmental changes, boosting the interest
in methods for active modulation and engineering of microbiomes, causing development
of various techniques.

Some techniques such as microbiome directed evolution, genomic engineering, and
others that require transplant of new or otherwise altered bacteria into the environment,
have succeeded in some conditions [5–8] usually for shorter time frames. The main
reason for that is that the transplanted bacteria are less adapted to the new environment
and therefore are disadvantaged compared to the native bacteria in the competition over
the environmental niche. Other methods aim to engineer the bacterial microbes that are
already present in the environment, and havemainly focused on the transformation vector
itself [9]. Most of these systems have been developed specifically for a certain environ-
ment and cannot be easily applied in others, however the more crucial problem arises
once the new genetic information is introduced to the environment. Bacteria constantly
share genetic information through various methods of horizontal gene transfer [10], and
in most cases, in order for the engineering process to be effective and accurate, it should
be introduced precisely to the wanted hosts. Moreover, due to the innate variations and
unpredictability of biological systems, introduction of new genetic information to an
uncontrolled environment may cause unprecedented ecological impacts.

In this work, we propose a novel method that offers a different view of the biological
process, in which each genetic element that is linked to gene expression is examined
and synthetically altered, instead of working with genetic building blocks as given.
This method is generic and computational, aiming to fit selected genetic information
to a given microbiome, by modulating expression in wanted and unwanted hosts of the
modification. For instance, in the case of the human gut microbiome, some bacteria are
symbiotic- and others are pathogenic [11]. An effective community engineering process
would likely target a subgroup of the pathogenic bacterial species which can be viewed
as the wanted hosts of the modification in this case (that can include for example a
gene the decrease their growth rate); however, it should probably avoid expression in the
symbiotic bacteria as much as possible, which can be defined as the unwanted hosts.

This approach is designed by considering the effects of horizontal gene transfer
(HGT) on the genetic construct and interactions it facilitates. Additionally, this method
takes into account the various degrees of characterizations that can exist for a cer-
tain microbiome, and can function even with very minimal metagenomic information
(our current implementation uses annotated genomes, and can potentially be used with
metagenomically assembled genomes correspondingly). Lastly, this form is designed
to modify the microbiome for longer time periods. It is relatively resistant to the envi-
ronmental damage of the genetic information, as each genetic element is examined and
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treated individually. The design process considers the fitness effect of the modification
on its proposed hosts, and modulates the burden it poses accordingly.

2 Methods

The underlying concept of this method is to tailor the different genetic components influ-
encing the expression process using suitable models for the biophysical data regarding
preferences of cellular machinery. Along evolution, small and random changes have
accumulated, causing the phylogenetic differentiation which is also reflected in the
changes of the innate preferences of cellular machinery between species. These pref-
erence variations between different machinery related to gene expression in different
species include transcription factors (TFs), restriction enzymes, translation machinery,
and many more. The combined effect of these variations causes a certain sequence to
have different expression levels in different hosts (see Fig. 1).

The codon usage bias (CUB) variations can be leveraged to achieve the stated
goal. The main limitation for this approach is the relatively low degree of character-
ization for most microbiomes, and the noisiness of metagenomic data. The described
approaches are fit to predict biophysical information regarding the described variations
frommetagenomic sequencing and supporting databases, to ensure the generality of this
method. However, additional characterization of the microbial species in the context of
the environment can be used to optimize the accuracy of the engineering process.

The optimization issue could be defined as following: once a gene is selected to
be used in the microbiome, two important sub-populations of any possible size are
characterized- the first are the wanted hosts, which are the species that should be able to
optimally express the selected gene. The second sub-population is the group of unwanted
hosts, which should not be able to express the selected gene, or express it sub-optimally.
The following algorithms will then distinctively deal with the main genetic elements
(described in Fig. 1) related to the process of gene expression and optimize their per-
formance in the wanted hosts while simultaneously deoptimizing it in the unwanted
hosts. Therefore, the tailored elements are meant to act different in one group of hosts
compared to the other, thus allowing selective expression despite the process of HGT.

An additional consideration for the engineering process, is the tradeoff between
optimization of expression of the modification in wanted hosts, compared to prevention
of the expression in the unwanted hosts. In many situations, there is a clear preference
between these two goals, which is taken into consideration in the designing process
through a predefined tuning parameter. The final goal of this method is to engineer an
entire environment specific plasmid,which has improved expression for the desired hosts
and impaired expression for unwanted hosts, altering the expression-related elements to
be as selective as possible.

2.1 Translation Efficiency Modeling

The open reading frame (ORF), is the genetic element that codes for amino acids. Due to
the redundancy of the genetic code, cellular machinery has adapted to translate certain
codons more optimally than others, a bias quantified in calculated CUB scores [12].
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Fig. 1. Illustration of the main genetic components engineered to modulate expression of the
designed plasmid in a target microbiome.

The posed cellular effect is that ribosomes are a limited resource in living organisms,
and so-called “synonymous” changes in the ORF may influence the ribosomal flow,
translation efficiency and fitness and can also affect other gene expression steps [13].
Optimization according to CUB, also referred to as codon harmonization, is traditionally
meant to optimize expression for a single organism [14–16]. This algorithm describes the
synonymous re-coding of theORFnot for a single organism, but for an entire consortium.
During this process, the expression and fitness is optimized for the wanted hosts and
deoptimized for the unwanted hosts.

ExtractionofCUBData: Codonusagebias preferences canbe calculated under various
assumptions and quantified by different indexes, according to the available data for the
microbiome. In this work, we used the Codon Adaptation Index (CAI) which estimates
that tendency of an ORF to include optimal/frequent codons and tRNA Adaptation
Index (tAI) which measures that adaptation of a coding region to the tRNA pool for
characterizing hosts’ CUB scores. Their standard deviation (σ) and mean (μ) values are
calculated for each gene of every organism (Fig. 2B), it is important to note that both
options are available to fit the tailoring method to the available information about the
species in the microbiome.

CAI Calculation: The codon adaptation index uses a reference set of genes from a
specific species to assess the relative frequency of each codon with respect to its syn-
onymous codons [12]. Each codon is given a weight based on the reference set, using
RSCU (reference set codon usage) according to the following formula:

(1)

where xi is the i-th codon of amino acid x.
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The weight of the i-th codon of amino acid x is equal to the number of appearances
of codon i (xi) divided by the number of appearances of the most common codon out
of the synonymous codons of amino acid x. For our model, we used a reference set of
highly expressed genes from each organism. Due to the high need of the cell for such
genes, those genes are under stronger evolutionary pressure to adapt to the intracellular
machinery, thus expected to have more optimal codons.

The geometric mean of the codons’ weights can then be used to calculate a total CAI
score for a gene:

(2)

where L is the gene length in codons count.

tAI Calculation: The tRNA Adaptation Index is a measure of translational efficiency
which considers the intracellular concentration of tRNA molecules and the affinity of
each codon-anticodon pairing based on a reference set of genes. The first step in cal-
culating tAI is obtaining the tRNA pool distribution. Ideally, tRNA levels should be
measured directly, but since the measurement is highly inaccurate and complicated to
conduct the distribution is usually calculated based on tRNA gene copy number. Due to
their critical role, tRNA genes appear more than once in the genome. As a high number
of occurrences in the genome likely indicates high levels of the tRNA it encodes for
[17], these two values are comparable. Using the tRNA pool distribution, each codon is
given a weight expressing its translational efficiency:

(3)

where Wi is the weight of the i-th codon, ni is the number of tRNA types that pair with
the i-th codon, tGCNij is the tRNAj gene copy number and sij is a value in the range [0,1]
representing the affinity of the pairing between the i-th codon and the j-th tRNA.

Codon weights are normalized by division by the maximum weight among all 61
codons and zero values are replaced with the geometric mean of the other weights, in
order to avoid zeroing of the tAI gene index. The tAI gene score is calculated by the
geometric mean of all the normalized codon weights, given by:

tAIseq =
(∏L

i=1
wi

) 1
L = exp

(
1

L

∑l

i=1
ln(wi)

)
(4)

where L is the gene length in codons count.
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Optimizations for In-Vitro Evaluation
Optimization is based on choosing the “most optimal” codon between the synonymous
codons (which encode the same amino acid). The following CUB measurements were
calculated for E. coli and B. subtilis:

CAI (codon adaptation index): as previously explained in this appendix, in this
optimization, the ORF contains optimal codons that were calculated by their relative
abundance in a reference set of highly expressed genes of the chosen organism.

tAI (tRNA adaptation index): as previously explained in this appendix, in this opti-
mization, codons with higher translational efficiency are included in the ORF. It was
calculated by considering the intracellular concentration of tRNA molecules and the
affinity of each codon-anticodon pairing. This index was calculated based on a reference
set of highly expressed genes of the chosen organism.

TDR (typical decoding rate): this optimization is based on ribosome profiling data
(Ribo-Seq), which provides a snapshot of a mid-translation ribosomal position on the
mRNA molecules in a cell during certain conditions.

The optimal codon is defined as the codon with the minimal loss score, which is
described by the loss functions:

Ratio loss (R):
losscodon = α ·

∑
optimized organisms

∑
features

(
1 − scorecodon

max(scores)

)

+ (1 − α) ·
∑

deoptimized organisms

∑
features

scorecodon
max(scores)

(5)

Difference loss:
diff losscodon = α ·

∑
optimized organisms

∑
features

1 − (scorecodon − max(scores))

+ (1 − α) ·
∑

deoptimized organisms

∑
features

scorecodon − max(scores) (6)

The minimum of the first sum is achieved when the score of the codon in optimized
organisms is close to the maximum value possible. The minimum of the second sum is
achieved when the score of the same codon is distant from the maximal value (close to
the minimum). So, minimization of the loss function brings an optimal solution from
both points of view.

The optimization abbreviation consists of the CUB (tAI, CAI, TDR) type followed
by the optimization type (R or D), i.e. tAI-D. Additionally, the reason why CAI is written
without the optimization type is due to the fact that by chance, the CAI-R and CAI- D
sequences are identical.

Multi-organism Optimization: The suggested model takes a holistic approach that
integrates both the host preference for a certain synonymous codon based on the CUB
index chosen and the significance of modifying the codon at the proteome level for every
host, whether wanted or unwanted.
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Fig. 2. One iteration of the translation (CUB) optimization algorithm.

The algorithm is based on hill climbing and consists of the following steps in each
iteration: let X be the modified sequence in the current iteration. In the first iteration, X
is chosen as the original input sequence. Iterate over all possible codons of all the amino
acids (61 options in total), and for each:

1. Create a new sequence X ′ by replacing all synonymous codons of the selected codon
in the current iteration in X to the selected codon.

2. Iterate over all the organisms (wanted and unwanted) and for each calculate the
number of standard deviations by which the CUB score of X ′ of the organism is
distant from the mean score of the proteome by the following formula:

dist(a) =
(
CUBa

(
X

′) − μa

)
σa

(7)

where σ and μ are standard deviation and mean of CUB scores of the organism’s
proteome, respectively.

3. Calculate the value of the target optimization function for X ′, defined as:

f
(
X ′) = α · meana∈A(dist(a)) − (1 − α) · meanb∈B(dist(b)) =

α ·
∑

a∈A
(CUBa(X ′)−μa)

σa

|A| − (1 − α) ·
∑

b∈B
(CUBb(X ′)−μb)

σb

|B| (8)
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where A is the set of wanted hosts, B is the set of unwanted hosts and α is a tuning
parameter for calibrating the ratio of modification in wanted hosts and unwanted
hosts (Fig. 2C).

4. Choose sequence X ′ producing the highest f (x′) score for the next iteration.

The hill climbing process is terminated if a localmaximum is reached (a new iteration
produces the same sequence as the previous one) or when the maximal number of
iterations were performed.

FinalEvaluation: In order to evaluate the change in the codonusagebias of themodified
sequence with respect to each host in the community, we offer two evaluation scores:
“Weakest Link Score” and the general “Optimization Index”.

Weakest Link Score: This score focuses on the margins of the groups of wanted and
unwanted hosts. For each host a, the number of standard deviations by which the original
sequence’s CUB score is distant from the modified sequence’s CUB score is calculated,
according to the following formula:

dist(a) = (CUBa(X ′) − CUBa(X ))

σa
(9)

where X is the original input sequence, X’ is the modified sequence returned as output
by the model and σ is the standard deviation of the CUB scores of the host’s proteome.
The weakest link score is defined as the weighted difference between the distance of the
host that was least optimized from the group of wanted hosts and the host that was least
de-optimized from the unwanted hosts group, and is calculated as:

weakest link = α · mina∈A(dist(a)) − (1 − α) · maxb∈B(dist(b)) (10)

where A is the set of wanted hosts, B is the set of unwanted hosts and A is the tuning
parameter. Any positive score indicates that the margins of the two groups are separated,
meaning that the organism that was least optimized is still superior to all of the de-
optimized organisms.

Optimization Index: This score describes the average “optimization distance” between
the wanted and unwanted hosts groups. The average distance score is defined as the
weighted difference of the mean optimization distances, between the group of hosts in
which gene expression is optimized and the group in which it is de-optimized

average distance score = α · meana∈A(dist(a)) − (1 − α) · meanb∈B(dist(b))

= α ·
∑

a∈A
(CUBa(X ’) − CUBa(X ))

σa

|A| −

(1 − α) ·
∑

b∈B
(CUBb(X ’) − CUBb(X ))

σb

|B| (11)
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A is the set of wanted hosts, B is the set of unwanted hosts and A is a tuning parameter
for calibrating the ratio of modification in wanted hosts and unwanted hosts. A positive
score canmean higher CUBvalues with respect to optimized organisms in comparison to
the original values, lower CUB values with respect to deoptimized organisms compared
to the original value, or both. The higher the index, themore selective is the optimization.

2.2 Transcription Optimization

During transcription of genes in prokaryotes, cellular machinery recognizes promoters,
which are found upstream to a gene, and recruit supporting TFs in order to allow RNA
polymerase to start transcription. The “core promoters” are defined as the exact area
that the sigma factor, a component of the bacterial RNA-polymerase [18] binds to, and
they are quite universal among bacteria. However, the regions which are more upstream
contain additional sites recognized by TFs. In this work, we have chosen to define
the promoters’ sequences as the first 200 base pairs upstream to the ORF. Different
organisms utilize different TFs in order to promote the transcription initiation, as each
of these factors recognizes different sets of genomic sequences described as “motifs”.

Motifs can have variable sites, where nucleotides can be one of several options,
therefore are usually represented by a Position-Specific Scoring Matrix (PSSM) – a
matrix of size 4 × L (where L is the motif’s length), containing the probability of each
nucleotide to appear in each position in the motif. The calculation of a PSSM assumes
independence of the motif’s sites from one another, and prohibits insertions or deletions.

Motif Discovery: The STREME (Sensitive, Thorough, Rapid, Enriched Motif Elici-
tation) software tool uses a hidden Markov model (HMM) of a specified order (in this
case, third order) to scan the query sequences for enriched motifs when compared to a
set of control sequences, up to a certain significance threshold (P − value 0.05 in this
case) [19]. The relevant motifs for this purpose are motifs that are related to transcrip-
tion, and are uniquely present in the promoters of the wanted hosts compared to the
unwanted hosts (Fig. 3B). In order to satisfy these two requirements, two sets of motifs
were searched (both defined to be 6–20 bp long):

Transcription Enhancing Motifs: To ensure that the motif is related to transcription
activation, motifs were searched for each wanted host with the promoter set as the
primary input (i.e. the sequence set where motifs should be enriched) and the intergenic
sequences, defined as all sequences on the same strand that neither belong to the ORF
nor to the promoters’ sequences, as the control (background). The discovered motifs are
common in sequences associated with gene expression, which likely indicates that the
motifs themselves might have a desirable regulatory role.

Selective Expression Motifs: Represents signals present in the wanted hosts, compared
to the unwanted hosts, used to find which of the transcription enhancing motifs will not
promote transcription in unwanted hosts. To achieve this goal, motifs are searched from
the third most highly expressed (inferred from expression data or CUB measurements)
promoters of each wanted host compared to the promoter of each one of the unwanted
hosts. For an input of n wanted hosts and m unwanted hosts, m + 1 sets of motifs are
created for each optimized organism, resulting in n(m + 1) motif sets overall.
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Fig. 3. Illustration of the promoters’ optimization algorithm.

Construction of a Single Motif Set: In a simplified model, with only two hosts- one
wanted and one unwanted, the solution is relatively instinctive: a new set of motifs that
were discovered in both runs and appear in both motif sets is constructed considering
the “tuning parameter” (Sect. 2). The measurement used to quantitate motif similarity is
spearman correlation, which is calculated between a pair of PSSMs, and the final set is
composed of selectivemotifs that were proven to be correlated to transcription enhancing
properties, represented by their corresponding motif set. This reasoning is used in order
to translate the simplified dual host algorithm into a set of analogous heuristics for a
complete microbiome:

Let A be the set of wanted hosts, and B the set of unwanted hosts, Sxy the set of
selective motifs that are enriched in organism x compared to organism y, Sx the set of
transcription enhancing motifs for bacteria x, tp is the tuning parameter.

Calculate Two Thresholds: Three considered thresholds (th1, th2, th3) are used. th1
controls the basic amount of similarity between motifs to consider, th2 the stringency of
the transcription enhancing motifs, and th3 the stringency of the selective motifs (results
appear to be more accurate for th1~0.05, th2,3~0.3).

D1 = th1 + tp ∗ th2, D2 = th1 + (1 − tp) ∗ th3 (12)
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Define a set C: union of all transcriptional motifs for the wanted hosts, C = ⋃
x∈A Sx

Initialize set F: an empty set, used as the final motif set, F = ∅

Assign to set F: In each Sx set where x is inA, there exists a motif m′ such that its
Spearman correlation score with m is higher than D1:

∀x ∈ A, ∃m′ ∈ Sxs.t.Spearman(m,m′) ≥ D1 (13)

In each Sxy set where x is in A and y is in B, there exists a motif m′ such that its
Spearman correlation score with m is higher than D2:

(14)

If both of the above statements are true, add m to F .

Promoter Selection and Tailoring: MAST (Motif Alignment and Search Tool) [20],
is used to align the final motif set, F, to a group of promoters estimated to be the top
quartile in terms of gene expression in the wanted hosts (using gene expression data,
or estimations based on CUB scores of the following genes). The promoters are then
ranked based on the Expect Value (E-value) of those alignments, considering the initial
significance of the motif and the quality of the alignment (Fig. 3D). After identifying
the best promoter candidates, which contain motifs that help transcription initiation
exclusively in the wanted hosts, mismatches between a mapped motif and the promoter
are then individually fixed, further tailoring and designing the promoter to fit the desired
requirements (Fig. 3E).

2.3 Editing Restriction Site Presence

Restriction enzymes are part of the natural immune system of bacteria, they digest
foreign DNA by cleaving specific areas determined by the nucleotide sequence. The
restriction enzyme footprint of different bacteria is unique; therefore, different bacterial
organisms contain distinct sets of restriction enzymes. The goal of this component is to
avoid digestion of the sequence in the wanted hosts, and try to induce digestion in the
unwanted hosts.

Once a sequence is digested, the flanking regions of the sequence may also rejoin in
specified bacterial chromosomal repair mechanisms [21], therefore the region in which
the sites are introduced has an impact on the probability of the digestion removing the
unwantedmodification. The other consideration to take into account is the usual tradeoff:
the topological complexion and scale of effect of the genetic element, reflecting on the
ability to predict and design changes in the corresponding expression process. As result,
this work focuses on themodulation of restriction sites in the ORF, which has a relatively
simple topology and therefore the best ability to accurately predict the effect ofmutations
and changes in the sequence.

Detection of Relevant Restriction Sites: The REbase version 110 [22] was utilized
to find all relevant restriction sites for the wanted and unwanted hosts that can exist
(allowing synonymous changes) in the ORF itself.
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Fig. 4. Restriction sites algorithm. The restriction enzymes (triangles) are extracted from the
wanted and unwanted hosts respectively; the recognition sites of the enzymes are illustrated by
circles.

Insertion of Sites Originating from Unwanted Hosts: Insertion of sites that overlap
can and usually does disrupt them. The main goal is to maximize the amount of sites
present in the ORF, while considering the unwanted host they will be recognized by,
aiming to increase the overall probability of digestion in the largest number of unwanted
hosts. Therefore, the following method is used:

First, the location of potential restriction sites along the ORF is mapped, and sites
that do not cause conflicts (non-overlapping) are inserted. For overlapping sites: in
each overlapping position, greedily insert the site that increases the number of different
organisms in the group of unwanted hosts that have a site in the sequence. If there are a
couple of options, pick the site originating from the organism with the smallest amount
of restriction sites (Figs. 4, 5).

Avoidance of Sites Originating fromWanted Hosts: In order to avoid sites present in
thewanted hosts (again, allowing only synonymous changes), we used the corresponding
module in the DnaChisel [23] software tool. It is important to note that the order of the
second and third steps matters, as a possible byproduct of insertion of a site is the
creation of a new restriction site that might be present in the wanted hosts, which might
accidentally increase digestion in them, and should therefore be avoided.
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Fig. 5. Illustration of restriction site insertion.

2.4 Data Curation for In-Silico Analysis

The selected microbiome for model analysis is a sample of the A. thaliana soil micro-
biome [24], which contained taxonomic lineages and 16S rRNA sequences. The anno-
tated genomes were selected by running the 16S sequence against the BLAST rRNA
software [25] (lower threshold for percent identity of the 16S rRNA sequence is 98.5%).
As previously mentioned, these algorithms are designed to work with metagenomically
assembled genomes in general.

Additionally, the gene used as a target for optimization is the ZorA gene, which
serves as a phage resistance gene as part of the Zorya defense system, inferred to be
involved with membrane polarization and infected cell death [26]. This gene can be
used in a wide array of sub-populations for various different purposes, showcasing the
flexibility of this framework.

2.5 In-vitro Methods

Materials and Plasmids: PCR master mix, DpnI, Gibson Assembly kit, PCR cleaning
kit, competentE. coli and plasmidminiprep kitwere purchased fromNEB.E. coli k-12, B.
subtilis PY79 and AEC804-ECE59-P43-synthRBS-mCherry plasmid were kindly pro-
vided by Prof. Avigdor Eldar (Tel-Aviv University, IL). Agarose for DNA electrophore-
sis, Chloramphenicol, M9minimal media and 96-well black plates were purchased from
Sigma. LB and agar were purchased from BD Difco, and Ethidium Bromide solution
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was purchased from hylabs. Modified versions of gene of interest (GOI) and primers
were synthesized by IDT.

Solutions: Bacillus transformation (BT) solution: 80.5 mM dipotassium dihydrate,
38.5mMpotassium dihydrogen phosphate, 3mM trisodium citrate, 45μMferric ammo-
niumcitrate, 2%glucose, 0.1%casein hydrolysate, 0.2%potassiumglutamate and10mM
magnesium sulfate in DDW.

Trace Elements Solution (x 100): 123 mM magnesium chloride hexahydrate, 10 mM
calcium chloride, 10 mM iron chloride hexahydrate, 1 mMmanganese chloride tetrahy-
drate, 2,4 mM zinc chloride, 0.5 mM copper chloride dihydrate, 0.5 mM cobalt chloride
hexahydrate and 0.5 mM sodium molybdate.

Minimal Medium: 1X M9 solution, 1X trace elements solution, 0.1 mM calcium
chloride, 1 mM magnesium sulfate, 0.5% glucose, and chloramphenicol (5 μg/mL).

Plasmid Construction: Software-designed mCherry genes were synthesized by IDT
and cloned into AEC804-ECE59-P43-synthRBS-mCherry plasmid, to replace the orig-
inal mCherry gene via Gibson assembly method. Briefly, the original mCherry gene
was excluded from the vector by PCR, with primers containing complementary tails to
each of the software-designed mCherry genes. PCR products were treated with DpnI
to degrade the remains of the original vector, and cleaned with PCR cleaning kit. Next,
each software-designed mCherry gene was cloned into the vector by Gibson assembly
with 1:2 molar ratio (vector: insert), and transformed into competent E. coli. Positive
colonies were confirmed by colony PCR and sequencing, and the new plasmids were
extracted with miniprep kit.

Bacterial Transformation: All plasmids harboring the modified mCherry genes were
separately transformed into competent E. coli k-12 following the standard protocol, and
into B. subtilis PY79. For the latter, one bacterial colony was suspended in BT solution
(see solutions) and grew at 37 °C for 3.5 h. Then, the plasmid was added to the bacterial
solution (1 ng/1 uL), and following 3 h incubation, bacteria was spread over pre-warmed
agar plates.

Fluorescence Measurement Assay: For each tested mCherry gene, a single colony
containing the modified plasmid was grown overnight in LB medium. Then, bacterial
suspension was centrifuged and resuspended in PBSx1 twice. Following the second
wash, the bacterial suspension was centrifuged again, and the pellet was resuspended in
minimal medium (see solutions). The bacterial suspension was allowed to grow for 4 h.
Then, bacteria were diluted with minimal medium to obtain an OD600 nm of 0.2, loaded
into a 96-well plate and grew for 17 h at 37 °C with continuous shaking. Fluorescence
(ex/em: 587/610 nm) and bacterial turbidity (at OD600 nm)weremeasured every 20min.
Each sample was tested in triplicates at three independent experiments.

Computational Log-Phase Detection: Growth curves (OD600nm) were plotted over
time, and linearity that represents this phase was detected by sequential removal of the
last point in the linear phase. Then, a linear trendline was fitted to the curve, and if the
removal of the point increased the slope of the curve, that point was considered not part
of the log phase. These iterations were conducted continuously until ⅛of the graph is
left or if two iterations did not change the calculated slope.
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Statistical Analysis: We calculated P-values with a permutation test. Briefly, for every
optimization, the three experiments from the same organism were averaged and a dif-
ference between E. coli and B. subtilis was calculated. Then, splitting, averaging, and
distance calculations were performed, to assess if the separation between E. coli and
B. subtilis is significant. The P-value is defined as the percent of splits in which the
difference between the two is larger than the difference between the original split.

3 Results

The effect of the engineering process on the modulated genetic information was exam-
ined in two different scales. Firstly, the theoretical scale up of these models was ques-
tioned, understanding the applicability of the models in microbiomes of different sizes
and degrees of diversity. This analysis was executed using the curated example of A.
thaliana soil microbiome (discussed in Sect. 2.4). Secondly, the in-vivo effect of the
alterations was quantified for a test case of two model bacteria as hosts.

3.1 Editing Restriction Site Presence

In order to look at generic effects and applications, the analyzed data included all the
bacterial species documented in the REbase, creating synthetic sub-microbiomes of dif-
ferent sizes, optimizing the selected gene according to their composition, and analyzing
the site presence in the final sequence (Fig. 6):

Fig. 6. Presence of different restriction sites and their origin. Random samples of different sizes
(between 10 and 150), were randomly split into two equally sized groups of wanted and unwanted
hosts. Afterwards, the restriction site editing algorithm (described in Sect. 2.3) was applied, and
the final amount of restriction sites related to the unwanted group and the wanted group (y-axis)
were tested. This process was completed 10 times for random microbiomes of each size, and the
final result is the average measure of those runs.
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The first, and most trivial finding is that the amount of sites present in the engineered
sequence increases linearly (Pearson correlation of 0.97) with the size of themicrobiome
(whether if they originate from the wanted or unwanted hosts).

It is important to note that some of the sites recognized by the wanted hosts are
present in the final sequence due to inability to satisfy all requirements. If a restriction
enzyme is relatively promiscuous, there are many sites to avoid, the amino acid sequence
has less synonymous degrees of freedom (synonymity), not all the requirements can be
fulfilled and the correct translation is prioritized. Moreover, in all cases the algorithm
was able to produce a sequence that has more sites originating from the unwanted hosts
compared to the wanted hosts, and the gap between the number of sites from each
origin increases with the microbiome size. That important discovery is the ability of
this algorithm to function efficiently even (and maybe specifically) for larger and more
complex microbiomes.

3.2 Translation Efficiency Modeling

The performed testing aims to test connections between the size and diversity of the
curated microbiome (as described in Sect. 2.4) to the final optimization index.

Fig. 7. Figures A–C show results from a single run of the translation (CUB) optimization algo-
rithm. Figure A exhibits the innate CUB scores of the organisms in the microbiome, for all codons.
Figures B, C exhibit the CUB scores of the selected sequence, before (B) and after (C) optimization
correspondingly, as the upper half of the organisms were defined as the optimized organisms and
the lower half as the deoptimized organisms.

As seen in Fig. 7A, the general CUB of the microbial species is relatively diverse,
exhibiting the availability of this degree of freedom in the coding of the open reading
frame. The initial comparison of the CUB scores of the sequence before (Fig. 7B) and
after (Fig. 7C) optimization shows that in this case, there has been an overall global
optimization of the scores. However, the improvement was much more substantial for
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the upper group of wanted hosts compared to the unwanted hosts, thus exhibiting the
initial aim of the algorithm.

Fig. 8. A (left) tests the application of the algorithm on different sub-microbiome sizes (10 differ-
ent, random splits of each size), and figure B (right) shows the correlation between phylogenetic
distance (defined as the number of different characters in the 16S rRNAsequence) and optimization
results.

The next interesting factor was the effect of different sub-microbiome sizes on the
optimization capabilities of the ORF tailoring algorithm (Fig. 8A). In general, the opti-
mization score remains high and relatively similar for all microbiome sizes, and the
decline in the optimization score is not drastic. The standard deviation (std) becomes
smaller as the microbiome has more and more species, an effect caused by two posed
conditions as expected.

Comparison of the dependence of the optimization score on phylogenetic distance
yielded fairly interesting results (Fig. 8B). In order to perform this analysis, every
species was compared to every other species in the microbiome, when one is defined
as the wanted host and the other as the unwanted host and vice versa, creating “sub-
microbiome couples”. On one hand, there is clear correlation between the evolutionary
distance (determined by differences in the 16S rRA sequence) and the performance of
the algorithm (0.737 spearman correlation). However, even for the 10% closest couples
have an average optimization score of 1.215, with a std of 0.8, which is a relatively sig-
nificant optimization of over 20% considering the high degree of evolutionary closeness.
Overall, the analysis results indicate that the optimization process is likely significant
for realistic microbial diversities and complexities.

3.3 Transcription Optimization

In order to test the significance of the transcription enhancing motifs and selective-
expression motifs found by the motif discovery process, we have compared the results
of a MAST run for each set of motifs.

In order to avoid bias of match results towards longer sequences, intergenic regions
longer than 200 bp were normalized to 200 bp long sequences using a sliding window
with a window size of 200 bp and steps of 1 bp. This modification accounts for the
differences in the counts of intergenic sequences compared to promoter sequences.

As can be seen from Fig. 9A and Fig. 9B, motifs generated by both intergenic
and selective runs have better match scores (indicated by lower E-value score) to the
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Fig. 9. E-value histogram from a singleMAST run of transcription enhancingmotif set and selec-
tive expression motif set. Figure A contains E-value scores of promoter sequences and sequences
of intergenic regions of Arthrobacter pascens when using transcription enhancing motifs gener-
ated by a MAST run with promoter sequences defined as primary set and intergenic sequences as
control set. Figure B contains E-value scores of promoter sequences of a wanted host Arthrobacter
pascens and promoter sequences of an unwanted host Arthrobacter tumbae when using selective
expression motifs generated by a MAST run with wanted host’s promoter sequences defined as
primary set and unwanted host’s promoter sequences as control set. In both A and B, the mean
and median E-values of the sequences in the primary set are lower than the mean and median of
the control set, with a P-value of 3.17e-32 and 4.628e-23, respectively.

sequences in the primary set compared to the control set. This evidence supports the
approach implemented in our transcription module, that motifs can indeed be used to
find adequate promoter sequences that will promote transcription in wanted hosts, while
eliminating their effect on gene expression in unwanted hosts.

3.4 In-vitro Results

In the fluorescence measurement assay, we investigated the validity of our software in
altering gene expression by modifying the ORF of the mCherry gene. Several versions
of ORF were designed by our software to be optimally expressed in B. subtilis and
deoptimized for expression in E. coli, cloned into a plasmid, transformed into both
bacteria, which were grown separately. The expression level as well as bacterial growth
of each version were measured for 17 h and compared to the unmodified mCherry.

Altering gene of interest’s ORF hinders the growth of deoptimized bacteria: at first,
we tested the impact of software-designed GOIs (of mCherry gene) on bacterial growth,
whenGOIwas optimized or de-optimized for expression inB. subtilis andE. coli respec-
tively. Both bacteria that expressed five versions of the GOI were grown (as described
in Sect. 2.5) and growth curves for each bacterium-expressing GOI version were plotted
against time (Fig. 10A). Detection of the logarithmic phase was performed as mentioned
(described in Sect. 2.1), and growth rates depicted by the slopes of linear trendline were
calculated. While growth rates and maximal turbidity of B. subtilis, to which ORFs were
optimized, were comparable to the original ORF (Fig. 10B and C), in E. coli, to which
ORFs were deoptimized, both parameters were significantly reduced in ORF versions
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of tAI-D and TDR-D (Fig. 10B and C). In particular, tAI-D version largely restricted E.
coli’s growth rate by approximately 7-fold, possibly due to ribosomal traffic jams [27].
In this case, ribosomes are stalled during mRNA translation while waiting for the bind-
ing of low abundance tRNA anticodon. As a result, endogenous protein synthesis is
diminished, which in turn restricts cellular growth. To assess the degree of optimization
in B. subtilis relative to the deoptimization in E. coli, growth rate folds of B. subtiliswere
divided by those of E. coli. Higher values indicate successful optimization in B. subtilis
and deoptimization in E. coli. As the graph clearly shows, tAI-D is by far optimized
for B. subtilis and deoptimized for E. coli in terms of growth rates (Fig. 10D).
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Fig. 10. ORF modification alters the growth of deoptimized bacteria (according to optimizations
in appendix 1). A. Representative growth curves for B. subtilis (left) and in E. coli (right). Control
(black dashed curve) stands for bacteria containing the same plasmid backbone that lacks the
mCherry gene. mCherry (red dashed curve) is the original (unmodified) version of the gene, and
CAI, tAI-D, tAI-R, TDR-D, and TDR-R are modified versions of mCherry gene. B. Fold change
in bacterial growth rates of each ORF version relative to the growth rates in mCherry. C. Same as
in B but calculated for the average maximal density. D. Fold of growth rates in B. subtilis relative
to E. coli.

Correlation Between Expression Level and Model Performance: Next, we evalu-
ated whether GOI expression levels coincided with our software predictions. The flu-
orescence intensity of the selected GOI mCherry, which reflects its expression levels,
increased or decreased substantially in accordance to the optimized/deoptimized direc-
tion, as observed inB. subtilis andE. coli respectively (Fig. 11A). InB. subtilis, the tAI-D
version exhibited the highest average maximal fluorescence intensity compared to the
original version, while in E. coli, the TDR-R version exhibited the lowest (Fig. 11B).

In order to account for the alterations in fluorescence intensity to the software-
designed modification in ORF sequence code and not to differences in bacterial density,
it was normalized by the ratio of fluorescence intensity per bacterial density (OD600
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Fig. 11. A. Representative fluorescence intensity plots of all ORF variants in B. subtilis (left) and
in E. coli (right)Note that the control lackedmCherry gene, and thuswasn’t exhibited fluorescence,
and served for background subtraction. B. Fold change in average maximal fluorescence intensity
of each ORF version relative to mCherry. C. the same as in B but calculated for the average
normalized fluorescence. D. Fold of average normalized fluorescence in B. subtilis relative to E.
coli.

nm values). Then, the average of normalized fluorescence intensity was determined.
Higher values of this ratio represent greater GOI expression per bacteria and vice versa.
When normalized, tAI-D was still ranked highest as expressive-optimized version in B.
subtilis. However, inE. coli, CAI was ranked as the most deoptimized version, just ahead
of tAI-R (Fig. 11C). Finally, to assess the degree of optimization in B. subtilis relative
to the deoptimization in E. coli, fold of the averaged normalized fluorescence of B.
subtiliswere divided by those of E. coli (Fig. 11D). In that way, we determined that GOI
versions of CAI and tAI-R were the promising codon usage bias scores.

4 Discussion

In this work, we have introduced a novel approach to microbiome engineering, and
exhibited its possibilities both computationally and experimentally. By appropriately
designing the different elements related to gene expression, we were able to create
a comprehensive, automatic and generic approach that can easily be applied for any
given consortium of bacteria. By investing in the adjustment of each genetic element
which influences gene expression, we were able to provide a comprehensive view that
considers effects caused by interactions between the new genetic information and the
existing population in an environment, and the new inter-microbiome interactions along
with their corresponding fitness effect.

The current design approach deals with the three main processes related to gene
expression: entry into the cell, transcription, and translation. First, entry into the bacterial
cell is modulated by editing the presence of restriction sites, increasing chances of
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digestion upon entry of the plasmid into an unwanted host compared to a wanted host.
Next, the transcription process is optimized by discovery of genetic motifs which are
likely linked to TFs which are present explicitly in the wanted hosts and are related to
transcription initiation. Lastly, the translation process includes re-coding of the ORF
based on translation efficiency modulation by exploitation of the degree of freedom
posed by the redundancy of the genetic code.

In order to test ourmodels, we performed both in-silico and in-vitro tests. The in-vitro
tests have shown the effect of the optimization process on the expression rate of a selected
protein (Sect. 2.5), which was both higher for the wanted host (B. subtilis) and lower for
the unwanted host (E. coli) simultaneously. Moreover, the attached fitness effect is just
as important- while the modified sequence does not pose a significant burden compared
to the initial sequence in the wanted host, this cannot be said for the presence of the
plasmid in the unwanted hosts. These results can be further strengthened and examined
by conducting a co-culture experiment, in order to observe the population-dynamics as
well.

The clear fitness decrease in the unwanted hosts caused by the optimization pro-
cess might not have that much of a significant effect in lab conditions, however the
meaning of this change is that when dealing with an actual microbiome, there will be a
stronger evolutionary pressure against existence of the plasmid in the unwanted hosts,
thus further propagating the designed expression differentiation in the microbiome. The
in-silico analysis supplied complementary views on each one of the computational meth-
ods individually, with the scale up process (from two organisms to an entire microbiome)
defining the relevance of the different tests.

4.1 Future Plans

The purpose of this work is to showcase this novel approach, suggesting to individually
adjust expression-related genetic elements in order to perform microbiome engineering.
In order to increase the inclusivity of this approach, the following components should
be added to the arsenal of existing models:

Origin of Replication (ORI): The origin of replication is the genetic element that
promotes replication of the genetic material, thus it has the largest effect on the long-
term interactions between the plasmid and the microbiome. The ability to fit the ORI
to only some of the organisms in the microbiome should significantly improve our tool.
The main challenge for this model will be understanding the innate topology of this
sequence in different organisms, which is highly complex and variable.

ClusteredRegulatory InterspacedRepeats (CRISPR)Memory: Another potentially
very efficient approach to differentiate between organisms is based on CRISPRmemory.
Such an approach can be based on sequencing the regions where CRISPR is encoded
in all the organisms in the community. At the next step, the target plasmid is designed
such that it will include target sub-sequences of the CRISPR systems of the unwanted
organisms butwill not include target sub-sequences of theCRISPR systems of thewanted
organisms.
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miRNA and Other mRNA Binding RNA Genes: These types of genes bind to the
mRNA and cause the down regulation of protein production rate. By estimating the
levels of such RNA genes in the different organisms in the community and modeling the
patterns in the mRNA that these RNA genes recognize, we can develop an additional
relevant tool for differentiation. In this case, we will introduce to the target plasmid only
sequences that are recognized by RNA genes that appear in the unwanted organisms and
we will delete from it sub-sequences that are recognized by organisms from the wanted
organisms.

Translation Initiation: The process of binding the ribosome to the ribosome binding
site (RBS) on the mRNA and initiating translation requires a separate model, with con-
sideration related to the distance between the RBS and the translation start site (TSS),
and the local folding of the mRNA near it.

Multiple Optimizations: The next step to this strategy would be to generate not only
one optimized sequence but an array of optional solutions, each designed to have subop-
timal expression in all unwanted hosts, while simultaneously having higher expression
in the wanted hosts. This addition might be a key element to enable optimal design of a
plasmid meant to fit a diverse array of hosts.

Validations: In order to gain more confidence in the models and approach in general,
we hope to test the functionality and effect over time in a real (or at least synthetic)
microbiome. One challenge that rises as a result, is the lack of appropriate measurement
to quantify the success in expression differentiation.

The OIL-PCR method by Peter J. Diebold et al. [28] allows us to assess the abun-
dance of bacteria that contain the plasmid-encoded gene of interest (GOI) in a microbial
community, which potentially reveals if our approach is able to restrict GOI abundance
governed by HGT events. In the future, we intend to clean the fused product (GOI-16S
rRNA) and amplify it with a specific set of forward primers targeting the fusion regions
and species-specific reverse primer, targeting a variable region of the 16s rRNA gene
via qPCR to identify the bacterial species. Additionally, we are planning to expand this
method to combine GOI abundance and its expression by applying the same principles
of GOI-abundance method but based on fusion-PCR of mRNA products of GOI and
16s rRNA genes. For this purpose, the fusion-PCR step will include primers targeting
GOI’s mRNA, with a reverse primer having a tail complementary to the mRNA of 16s
rRNA and reverse transcriptase to establish the fused product. Potentially, this method
can detect both the host identity and its GOI expression levels.

4.2 Applications

Some of the main advantages of this technology are driven by its ability to function
generically and automatically for a given microbiome and selected gene. As result, it
may be applicable in many different settings and environments, which have been divided
into the following three categories:
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Bio-sensing: Microbiomes constantly react to changes in the environment,meaning that
they both “know” how to sense it and how to respond [29]. Utilization of these innate
mechanisms can only be done by integrating new and targeted genetic information that
has an easily readable output. More specifically, the sensing process could be targeted
towards a specific bacterial species or a metabolite, as long as the gene circuit itself is
designed correctly. The advantage of such selective optimization process is that expres-
sion of a biomarker in certain species could emit a readable signal for their presence, or
the sensing of biomolecules could be performed by the correct species to increase signal
to noise ratio (SNR) that could arise from sensing of incorrect signals by other species
[30–34].

Bio Production/Bio Degradation: In addition to sensing, the functional influence of
themicrobiome, the functional effect of themicrobiome on the environment is facilitated
throughout collective synthesis and degradation of biomolecules. This additional, innate
capability could be utilized in various settings including oil bioremediation, appropriate
food tech scenarios, metabolic engineering, and more [35–41].

Microbiome Specific Therapy and Enhancement: The highest complexity level fore-
seen for the approach suggested here includes adding a missing capability to the system
through the microbiome, creating “microbiome specific therapy”. The advantage of
selectivity and fitting here is more than clear- both in terms of functionally and in terms
of safety. The main examples include human microbiome therapy [9, 42, 43], and soil
microbiome therapy [44–46].
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Abstract. Metagenomics sequencing enables the direct study of micro-
bial communities revealing important information such as taxonomy and
relative abundance of species. Metagenomics binning facilitates the sep-
aration of these genetic materials into different taxonomic groups. Mov-
ing from second-generation sequencing to third-generation sequencing
techniques enables the binning of reads before assembly thanks to the
increased read lengths. The limited number of long-read binning tools
that exist, still suffer from unreliable coverage estimation for individ-
ual long reads and face challenges in recovering low-abundance species.
In this paper, we present a novel binning approach to bin long reads
using the read-overlap graph. The read-overlap graph (1) enables a fast
and reliable estimation of the coverage of individual long reads; (2)
allows to incorporate the overlapping information between reads into the
binning process; (3) facilitates a more uniform sampling of long reads
across species of varying abundances. Experimental results show that
our new binning approach produces better binning results of long reads
and results in better assemblies especially for recovering low abundant
species. The source code and a functional Google Colab Notebook are
available at https://www.github.com/anuradhawick/oblr.

Keywords: Metagenomics binning · Long reads · Read-overlap graph

1 Introduction

Recent advancements in sequencing technologies have accelerated microbiome
research significantly. Broadly, metagenomics analysis supports the direct study
of microbial genetic material from the host environments [3,32]. One fundamen-
tal problem that dominates across a wide range of research is the identifica-
tion and characterization of microbial genetic material. Metagenomics binning
specifically determines the species present in a given sample and further sup-
ports the downstream functional analysis of identified microorganisms. There
exist two main paradigms for metagenomics binning; (1) reference-based bin-
ning (e.g. Kraken2 [36], Centrifuge [11], MeganLR [7], Kaiju [20], etc.) and (2)
reference-free binning (e.g. MaxBin 2 [37], MetaBAT 2 [10], VAMB [25], etc.).
Reference-free approaches are preferred when unknown species are present or
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the reference databases are incomplete. Typically, short reads from the second-
generation sequencing technologies (e.g. Illumina, etc.) are assembled into much
longer contigs to be binned as longer contigs usually carry more pronounced
genomic signals, e.g., the coverage and composition information of contigs. The
coverage of an assembled contig is estimated by the aligned reads on this contig
whereas the composition information is computed from the normalized ologonu-
cleotide frequencies.

Long-read technologies from the third-generation sequencing is continuously
gaining popularity [17], especially with the recent introduction of PacBio HiFi
and Nanopore Q20+ technologies. As long reads are getting similar to contigs
(assembled from short reads) in terms of length and accuracy, it is worth inves-
tigating whether long reads themselves can be binned directly before assembly.
Note that the contigs binning tools cannot be directly applied to bin accurate
long reads due to the absence of a coverage value for each read. MetaBCC-LR [35]
and LRBinner [34] are two recent attempts to bin long reads in a reference-free
manner. MetaBCC-LR and LRBinner both use k-mer coverage histograms for
coverage and trinucleotide frequency vectors for composition. While MetaBCC-
LR uses coverage and composition features in two subsequent steps, LRBinner
combine coverage and composition features via an auto-encoder. Although these
two k-mer based approaches show some promising results in binning long reads,
they are highly likely to suffer from unreliable coverage estimation for individ-
ual long reads and poor sensitivity for low-abundance species due to imbalance
clusters (refer to Fig. 3).

In this paper, we propose a novel binning approach (OBLR) to bin long
reads using the read-overlap graph. In contrast with MetaBCC-LR and LRBin-
ner, we adopt a novel coverage estimation strategy and a sampling strategy to
form uniform clusters assisted by the read-overlap graph. We show that read-
overlap graph assists in better estimation of read coverage and enables us to
sample reads more uniformly across species with varying coverages. Moreover,
the connectivity information in the read-overlap graph facilitates more accurate
binning via inductive learning. Experimental results show that our new bin-
ning approach produces better binning results of long reads while reducing the
extensive resources otherwise required for the assembly process.

2 Methods

Our pipeline consists of 5 steps performing the tasks, (1) building the read-
overlap graph, (2) obtaining read features, (3) performing probabilistic sam-
pling, (4) detecting clusters for sampled reads and (5) binning remaining reads
by inductive learning. Figure 1 illustrates the overall pipeline of OBLR. The
following sections explain each step in detail.

2.1 Step 1: Constructing Read-Overlap Graph

As the first step of the pipeline, we construct the read-overlap graph. The read-
overlap graph is introduced to utilize the overlapping information between raw
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Fig. 1. An overview of the workflow of the proposed pipeline OBLR.

reads. Earlier works have demonstrated that the topology of read-overlap graph
can help binning short reads [2] as well as distinguishing between genomes at the
strain level [1]. As for long reads, two reads are overlapping (connected by an
edge in the read-overlap graph) if and only if their overlapping length is at least
Loverlap and the overhang length is at most Loverhang (computed according to
[13]). Note that overhang refers to the region on the sequence that lies along with
the aligned sequence, however, does not have matching bases to meet overlap
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criteria. In our pipeline, we use k-mer bin map (kbm2) program to compute the
approximate overlaps between reads. We use the empirically determined values,
Loverlap = 2560 and Loverhang = 512 as overlap selection criteria in default
setting. Note that kbm2 is a sub-routine of the recent assembler wtdbg2 and is
extremely fast to detect overlapping reads using k-mer bins without performing
pairwise alignment [28]. In the read-overlap graph, each node Ri represents a
read while each edge (Ri, Rj) indicates that Ri and Rj are overlapping. We also
define D(Ri) as the degree of Ri in this read-overlap graph.

2.2 Step 2: Obtaining Read Features

In our pipeline, we intend to derive read features that incorporate both compo-
sition and coverage information of long reads.

The composition information of long reads can be computed as their oligonu-
cleotide frequencies which are shown to be conserved within a given species while
being reasonably distinct between species [30,37]. More specifically, we compute
a tetra-nucleotide frequency vector for each long read Ri, i.e., X(Ri) ∈ R

136

as there are 136 distinct tetra-mers when combining reverse complements. This
vector is used as the composition feature in our pipeline.

The coverage information of long reads usually refers to the coverage of under-
lying genomes from which the long reads are drawn. This is also important in
metagenomics binning as long reads from the same species tend to have simi-
lar coverages [25,35]. While such coverage information is usually available for
contigs assembled from short reads (as a byproduct of assembly), long reads do
not come with their coverage information. However, a read from a high-coverage
genome is likely to have more overlaps compared to that from a low-coverage
genome. Therefore, it is a natural choice to use the node degree in the read-
overlap graph to estimate the coverage of the corresponding read. This choice is
supported by Fig. 2 which shows a clear correlation between the node degree in
the read-overlap graph and the coverage information of the corresponding read.

In summary, we combine both tetra-nucleotide frequency vector X(Ri) (for
composition) and the node-degree information D(Ri) (for coverage) to derive
the read feature vector as XD(Ri) = X(Ri) × max(1, lg(D(Ri))) for each long
read Ri. Note that the max( ) and lg( ) are introduced to dampen rigorous fluc-
tuations in coverage, especially for low-coverage genomes. Henceforth, XD(Ri)
refers to the read features using degree and composition for read Ri.

2.3 Step 3: Performing Probabilistic Sampling

Clustering entire dataset at once can lead to the well-known class-imbalance
problem [9] because metagenomics samples consist of species with varying cov-
erages, i.e., imbalance clusters. However, probabilistic down sampling can effec-
tively address this problem [16]. In order to perform such under sampling, we
recall the degree information of nodes and use the Eq. 1 to compute the relative
probability of sampling Ri. Note that D(Ri) = 0 when Ri is an isolated node and
helps OBLR to discard chimeric reads. The effect of down sampling is illustrated
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(a) Sim-8 (b) Sim-20

Fig. 2. The correlation between the node degree in read-overlap graph and the coverage
information of the corresponding read for Sim-8 and Sim-20 datasets.

Fig. 3. Comparison of (a) uniform sampling and (2) probabilistic sampling of long
reads in Sim-8 dataset. Different colors corresponds to reads that belong to a unique
species.

in Fig. 3. It is evident that clusters after down sampling are of similar sizes and
with less isolated points.

P (Ri) =

{
1

D(Ri)
if D(Ri) �= 0

0 if D(Ri) = 0
(1)

2.4 Step 4: Detecting Clusters for Sampled Reads

We use UMAP [19] to project the sampled reads into lower dimensions and
HDBSCAN [18] then is applied to detect clusters for sampled reads. Note than
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UMAP is a dimensionality reduction technique that is fast and scalable. HDB-
SCAN is a variant of DBSCAN, however it is capable of determining clusters
without fixed parameters. Thus, HDBSCAN is more robust in scenarios where
the cluster densities can vary significantly. To accommodate long-read datasets
with different sizes, 25,000, 50,000, 100,000, 200,000 and 400,000 are used as the
sampled number of reads to detect clusters. For each instance, the Silhouette
score [27] is computed. We use the sample size with the highest Silhouette score
as the chosen sample size for the dataset. This enables us to determine the size
to sample from a given dataset in an unsupervised manner. At the end of this
step; we have a sample of reads with their bin labels i.e., cluster labels.

2.5 Step 5: Binning Remaining Reads by Inductive Learning

As the read-overlap graphs may contain millions of nodes, the classic label prop-
agation approaches face scalability issues to bin the remaining reads [15]. There-
fore, OBLR employs GraphSAGE [6] to bin the remaining reads into the iden-
tified clusters in the previous step. GraphSAGE is a Graph Neural Network
(GNN) architecture and has been designed to perform inductive learning using
large-scale graphs [6]. GraphSAGE can be represented as a layer in a GNN that
aggregates the neighborhood features to represent the features of a node itself.
Formally, the l-th layer can be formulated according to Eqs. 2 and 3 [38].

a
(l)
i = Mean(h(l−1)

j : j ∈ N (Ri)) (2)

h(l)
v = Concatenation(h(l−1)

v , a(l)v ) (3)

where h
(l)
i is the feature vector of node Ri at layer l. Note that h

(0)
v =XD(Ri)

and N (Ri) represent neighbors of node Ri. While GraphSAGE supports arbi-
trary aggregate functions, we choose the Mean( ) as the aggregation operator
to be tolerant towards noise and false connections in the read-overlap graph
due to repeats. Furthermore, we use Concatenation( ) as the layer-wise fea-
ture combination strategy to retain features from both the node itself and its
neighborhood.

We use two GraphSAGE layers followed by a fully-connected layer with K
outputs, where K is the number of bins estimated in Step 4. Two GraphSAGE
layers use LeakyRELU activation while the final layer uses log softmax activation
resulting in the output probabilities for K bins. We train the GNN using 200
epochs using sampled reads binned in Step 4 and use negative log-likelihood
(cross-entropy) as the loss function. During the training phase, we use a neighbor
sampler that samples up to 20 neighbours in GraphSAGE layers. We use Adam
optimizer for gradient descent. The trained GNN on sampled reads provides
assignment probabilities for remaining reads to the bins derived in Step 4. The
remaining reads are thus assigned to the bins with the highest probabilities.
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3 Experimental Setup

We evaluate our pipeline using two simulated and three publicly available real
datasets. Note that, all the experiments are conducted and evaluated using the
same set of parameters. Detailed information about the datasets are available in
Appendix A.

3.1 Simulated Datasets

We simulate four PacBio datasets using SimLoRD [29] containing 8, 20, 50 and
100 [35] species with average read length 5,000 bp and the default PacBio error
profiles in SimLoRD (insertion = 0.11, deletion = 0.04 and substitution = 0.01).
These two datasets are named as Sim-8, Sim-20, Sim-50 and Sim-100 respec-
tively.

3.2 Real Datasets

Three real datasets with known reference genomes are also used to evaluate
read-level binning performance. Long reads from these datasets were aligned to
references using Minimap2 [14] to obtain the ground truth.

– ZymoEVEN: Oxford Nanopore reads sequenced from GridION device from
NCBI Accession Number ERR3152364 [24]. The dataset consists of 10 species
with average read length 4,119.

– SRR9202034: PacBio CCS reads of the ATCC MSA-1003 Mock Microbial
Community from NCBI BioProject number PRJNA546278 Accession Num-
ber SRR9202034. The dataset contains 15 species with more than 0.1% rela-
tive abundance and average read length 8,263.

– SRX9569057: PacBio-HiFi reads of the NCBI BioSample SAMN16885726
Accession Number SRX9569057. This dataset contains 13 species (18 strains)
with more than 0.1% relative abundance and average read length 9,093.

Table 1 summarizes the information about the datasets including the number
of species, dataset sizes and the number of nodes (reads) and edges of the read-
overlap graphs.

3.3 Baselines and Evaluation Criteria

We benchmark our approach against two recent long-read binners, MetaBCC-
LR [35] and LRBiner [34]. For a binning result of K bins against the ground
truth of S species, we populate a matrix a of size K × S, where aks denotes
the number of reads assigned to bin k from the species s of the sample. The
binning results are evaluated using precision Eq. 4, recall Eq. 5 and F1-score
Eq. 6 [37]. We used AMBER [21] to compute completeness and purity, genome
fractions using MetaQUAST [22], assembly CPU-time and memory usage to
evaluate performance.
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Table 1. Summary of the datasets

Dataset No. of species Dataset size (GB) No. of nodes No. of edges

Sim-8 8 3.5 432,333 47,984,545

Sim-20 20 5.3 666,735 42,642,457

Sim-50 50 9.5 1,119,439 86,245,400

Sim-100 100 24.6 2,991,815 1,198,753,181

ZymoEVEN 10 8.2 1,688,672 611,447,694

SRR9202034 15 19.5 2,358,257 2,105,962,083

SRX9569057 13 18.0 1,978,852 1,421,138,836

precision =
∑

k maxs{aks}∑
k

∑
s aks

(4)

recall =
∑

s maxk{aks}∑
k

∑
s aks

(5)

F1 − score = 2 × Precision × Recall

Precision + Recall
(6)

4 Results and Discussion

We evaluate binning results at the read-level using precision, recall, F1 score,
the number of bins produced. We further evaluate each bin using per-bin F1-
scores using AMBER [21]. Moreover, we conducted a quantitative evaluation of
assemblies using MetaQuast [22] before and after binning.

4.1 Binning Results

We benchmark OBLR against MetaBCC-LR [35] and LRBiner [34] which are
two recent long-read binning tools as presented in Table 2. We observed that
OBLR results in the highest F1-scores across all the datasets with the overall
best performance. OBLR also produces more accurate estimates of the number
of bins in most datasets.

These observations are further supported by the AMBER [21] evaluation
summarized in Fig. 4 and 5 where OBLR produces the best per bin F1-scores
among all three long-read binners. Per bin F1-score evaluates each bin separately
using their purity and completeness while penalizing false bin splits and merged
bins. Note that MetaBCC-LR and LRBinner suffer from fragmented binning
results (i.e., overestimated number of bins) because bins with low completeness
are significantly penalized by AMBER. This observation is explained further in
Appendix B.
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Table 2. Comparison of binning results of MetaBCC-LR, LRBinner and OBLR.

Dataset No. of bins Criteria MetaBCC-LR LRBinner OBLR

Sim-8 8 Precision 90.78% 99.14% 99.33%

Recall 96.18% 99.14% 99.33%

F1 score 93.40% 99.14% 99.33%

Bins detected 13 8 8

Sim-20 20 Precision 82.97% 90.53% 97.88%

Recall 81.95% 88.23% 97.88%

F1 score 82.46% 89.36% 97.88%

Bins detected 29 18 20

Sim-50 50 Precision 82.23% 91.92% 92.94%

Recall 70.56% 77.03% 97.81%

F1 score 75.95% 83.82% 95.32%

Bins detected 32 31 45

Sim-100 100 Precision 90.50% 82.60% 87.61%

Recall 84.54% 92.78% 95.00%

F1 score 88.54% 87.39% 91.16%

Bins detected 89 63 74

ZymoEVEN 10 Precision 93.09% 72.41% 75.44%

Recall 73.84% 92.97% 95.33%

F1 score 82.36% 81.41% 84.23%

Bins detected 8 9 8

SRR9202034 15† Precision 91.30% 93.16% 98.48%

Recall 69.59% 91.94% 98.52%

F1 score 78.98% 92.55% 98.50%

Bins detected 11 10 15

SRX9569057 13† Precision 80.94% 80.47% 95.03%

Recall 85.82% 90.68% 97.70%

F1 score 83.31% 85.27% 96.35%

Bins detected 23 16 14

† Species with at least 0.1% abundance.

4.2 Assembly Results

We perform assembly using the long-read metagenomic assembler metaFlye [12].
Table 3 demonstrates the genome fraction and resource usage for assembling raw
reads (termed Raw) and assembling reads binned by OBLR (termed Binned),
respectively. Gains in genome fraction are relatively higher for simulated datasets
with more species (e.g., Sim-50 and Sim-100) while the most significant ben-
efit being the drastic reduction of the resources consumed. Binning long reads
from real datasets before assembly in general maintains the genome fraction
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Fig. 4. Per bin F1-score comparison between MetaBCC-LR, LRBinner and OBLR
computed by AMBER [21] for simulated datasets.

Fig. 5. Per bin F1-score comparison between MetaBCC-LR, LRBinner and OBLR
computed by AMBER [21] for real datasets.

(94.13% to 94.27% in SRX9569057, 86.51% to 86.67% in ZymoEVEN and
90.30% to 90.39% in SRR9202034) while significantly saving on the resources.
The saving on peak memory varies from 40% to 80%. However, CPU hours con-
sumed remains comparable due to re-indexing of reads and the near-linear time
complexity of the assembly process.

5 Implementation

We use multiple optimizations in the OBLR pipeline. In Step 1, we chunk the
reads in to blocks of 250,000 reads, and each block of reads is mapped with
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Table 3. Comparison of genome fraction, memory usage and CPU time consumed for
assemblies conducted using metaFlye [12] before and after binning reads.

Dataset Genome fraction Genone fraction Peak memory CPU time

raw OBLR (GB) (Hours)

Raw Binned Raw Binned

Sim-8 99.90% 99.90% 44.12 9.14 7.98 7.76

Sim-20 99.80% 99.85% 71.70 8.52 14.75 12.84

Sim-50 99.25% 99.32% 58.12 14.36 22.95 20.09

Sim-100 97.70% 97.77% 51.95 25.91 76.62 43.78

ZymoEVEN 86.51% 86.67% 31.67 14.82 15.17 13.22

SRR9202034† 90.30% 90.39% 52.80 28.48 173.20 140.60

SRX9569057† 94.13% 94.27% 49.43 25.84 112.32 98.82
† Genome fraction computed from species with at least 0.1% abundance.

Table 4. Resource usage of each step in the OBLR pipeline.

Dataset OBLR step Peak memory CPU time Peak GPU

(GB) (H) memory (GB)

Sim-8 Read-overlap graph 7.15 0.93 –

Clustering 5.39 0.06 18.70

Binning 6.38 0.01

Sim-20 Read-overlap graph 7.26 1.27 –

Clustering 5.94 0.05 11.56

Binning 7.15 0.06

Sim-50 Read-overlap graph 7.36 2.68 –

Clustering 7.08 0.06 18.75

Binning 8.80 0.16

Sim-100 Read-overlap graph 19.23 26.62 –

Clustering 14.43 0.13 18.73

Binning 19.03 0.65

ZymoEVEN Read-overlap graph 4.78 4.8 –

Clustering 22.4 0.22 11.57

Binning 28.98 0.11

SRR9202034 Read-overlap graph 36.54 118.73 –

Clustering 15.09 0.15 18.89

Binning 18.48 0.08

SRX9569057 Read-overlap graph 4.97 82.81 –

Clustering 30.20 0.29 18.96

Binning 38.75 0.15
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entire dataset resulting in several mapping files. Finally, the mapping files are
merged into a single file containing edges between reads and degree. For Step 2
we use seq2vec [33] to compute the composition vectors. In Steps 3 and 4 we use
Rapids.AI [31] GPU libraries [26] (on NVIDIA RTX 3090 with 24 GB VRAM)
for UMAP and HDBSCAN. Finally, we use PyTorch Geometric [5] in Step 5 for
GraphSAGE. We conducted our experiments on an Ubuntu 20.04.3 LTS system
running on AMD Ryzen 9 5950X with 16-core Processor with 32 threads and
128 GB of RAM.

Table 4 tabulates the resource usage of each step in OBLR pipeline. In addi-
tion we also present the resource utilization of kbm2 [28]. Note that the GPU
memory utilization is fixed as we perform clustering and silhouette scores only
upto 400,000 data points. However, resource usage for other steps vary depend-
ing on the read size distribution on each read block and the number of data
points.

6 Conclusion

We presented a novel long-read binner, OBLR, which utilizes the read-overlap
graph to bin long reads in metagenomic samples. Recent advances such as the
k-mer bins mapping (kbm2) [28] enables extremely fast detection of overlap-
ping reads and construction of the read-overlap graph before assembly. OBLR
thus makes use of the read-overlap graph to improve the state-of-the-art long-
read binning approaches. The read-overlap graph not only helps to estimate the
coverage of single long read, but also allow us to sample the long-reads more
uniformly across species of varying abundances. The connectivity information in
the read-overlap graph further incorporates the overlapping information between
reads into the binning process as overlapped reads are more likely to be in the
same species. As a result, OBLR demonstrated promising results in produc-
ing more accurate bins for long-read datasets and has the potential to improve
on metagenomics assemblies in terms of computing resources and genome frac-
tion, especially for low-abundance species. In the future, we plan to investigate
how OBLR can be adapted to take the advantage of the high-accuracy long
reads including PacBio HiFi and Nanopore Q20+, how to incorporate the bin-
ning process into long-read metagenomics assemblies [4,12], and how to connect
metagenomics binning to comparative genomics and phylogenetic studies [8,23].

A Dataset Information

Tables 5 and 7 demonstrate the simulated and real dataset information respec-
tively. Note that Table 5 and 6 tabulate the coverages used for simulation using
SimLoRD [29] while Table 7 indicate abundances from the dataset sources.
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Table 5. Information of simulated datasets.

Dataset Number of reads Total size Species Coverage

Sim-8 432,333 3.5 GB Acetobacter pasteurianus 25

Bacillus cereus 50

Chlamydophila psittaci 80

Escherichia coli 125

Haemophilus parainfluenzae 350

Lactobacillus casei 200

Thermococcus sibiricus 150

Streptomyces scabiei 100

Sim-20 666,735 5.3 GB Amycolatopsis mediterranei 25

Arthrobacter arilaitensis 65

Brachyspira intermedia 20

Corynebacterium ulcerans 40

Erysipelothrix rhusiopathiae 55

Enterococcus faecium 50

Mycobacterium bovis 80

Photobacterium profundum 85

Streptococcus pyogenes 100

Xanthobacter autotrophicus 150

Rhizobium leguminosarum 100

Francisella novicida 150

Candidatus Pelagibacter ubique 67

Halobacterium sp 65

Lactobacillus delbrueckii 60

Paenibacillus mucilaginosus 90

Rickettsia prowazekii 100

Thermoanaerobacter brockii 110

Yersinia pestis 105

Nitrosococcus watsonii 95
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Table 6. Information of simulated dataset containing 50 species.

Dataset Number of reads Total size Species Coverage

Sim-50 1,119,439 9.5 GB Azorhizobium caulinodans 25

Bacillus cereus 35

Bdellovibrio bacteriovorus 21

Bifidobacterium adolescentis 44

Bifidobacterium animalis 31

Campylobacter jejuni 11

Clostridium tetani 36

Clostridium thermocellum 31

Corynebacterium diphtheriae 42

Corynebacterium ulcerans 33

Ehrlichia ruminantium 26

Enterococcus faecium 24

Erysipelothrix rhusiopathiae 44

Escherichia coli 20

Fervidicoccus fontis 49

Francisella novicida 42

Francisella tularensis 49

Fusobacterium nucleatum 39

Haemophilus influenzae 12

Haemophilus parainfluenzae 11

Haemophilus somnus 44

Helicobacter pylori 47

Hyphomicrobium sp 44

Lawsonia intracellularis 46

Metallosphaera cuprina 33

Methanosarcina barkeri 44

Micrococcus luteus 46

Mycobacterium bovis 42

Mycoplasma gallisepticum 29

Neisseria meningitidis 38

Nitrosococcus watsonii 42

Paenibacillus mucilaginosus 14

Paenibacillus sp 31

Photobacterium profundum 45

Pseudogulbenkiania sp 25

Pseudomonas putida 10

Rhizobium leguminosarum 20

Rickettsia prowazekii 38

(continued)
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Table 6. (continued)

Dataset Number of reads Total size Species Coverage

Rickettsia rickettsii 100

Ruegeria sp 200

Shewanella sp 90

Sodalis glossinidius 120

Staphylococcus aureus 220

Streptococcus pyogenes 110

Streptococcus suis 100

Streptomyces scabiei 110

Symbiobacterium thermophilum 250

Thermoanaerobacter sp 220

Thermococcus sibiricus 210

Variovorax paradoxus 100

Table 7. Information of real datasets.

Dataset Number of reads Total size Species Abundance

ZymoEVEN 1,688,672 8.2 GB P. aeruginosa 9.7%

Escherichia coli 9.9%

Salmonella enterica 10.0%

Lactobacillus fermentum 9.3%

Enterococcus faecalis 12.2%

Staphylococcus aureus 11.2%

Listeria monocytogenes 14.5%

Bacillus subtilis 19.3%

Saccharomyces cerevisiae 2.1%

Cryptococcus neoformans 1.8%

SRR9202034 2,358,257 19.5 GB Acinetobacter baumannii 0.18%

Bacillus pacificus 1.80%

Bacteroides vulgatus 0.02%

Bifidobacterium adolescentis 0.02%

Clostridium beijerinckii 1.80%

Cutibacterium acnes 0.18%

Deinococcus radiodurans 0.02%

Enterococcus faecalis 0.02%

Escherichia coli 18.0%

Helicobacter pylori 0.18%

Lactobacillus gasseri 0.18%

(continued)
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Table 7. (continued)

Dataset Number of reads Total size Species Abundance

Neisseria meningitidis 0.18%

Porphyromonas gingivalis 18.0%

Pseudomonas aeruginosa 1.80%

Rhodobacter sphaeroides 18.0%

Schaalia odontolytica 0.02%

Staphylococcus aureus 1.80%

Staphylococcus epidermidis 18.0%

Streptococcus agalactiae 1.80%

Streptococcus mutans 18.0%

SRX9569057 1,978,852 18 GB Faecalibacterium prausnitzii 14.82%

Veillonella rogosae 20.01%

Roseburia hominis 12.47%

Bacteroides fragilis 8.36%

Prevotella corporis 6.28%

Bifidobacterium adolescentis 8.86%

Fusobacterium nucleatum 7.56%

Lactobacillus fermentum 9.71%

Clostridioides difficile 1.10%

Akkermansia muciniphila 1.62%

Methanobrevibacter smithii 0.17%

Salmonella enterica 0.0065%

Enterococcus faecalis 0.0011%

Clostridium perfringens 0.00009%

Escherichia coli (JM109) 1.83%

Escherichia coli (B-3008) 1.82%

Escherichia coli (B-2207) 1.65%

Escherichia coli (B-766) 1.66%

Escherichia coli (B-1109) 1.77%

Candida albicans 0.16%

Saccharomyces cerevisiae 0.16%

B Interpretation of AMBER Per-bin F1-Score

The binning evaluations are presented using Precision, Recall and F1 score. Fur-
thermore, stricter evaluations are presented using AMBER [21] for MetaBCC-
LR, LRBinner and OBLR. This section explains the evaluation metrics in detail
and discuss as to why AMBER evaluations are poor in some cases where num-
ber of bins predicted is further away from the actual number of species in the
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dataset. Note that the bin assignment matrix a can be presented as M × N ,
illustrated in Table 8. Note that N = 5 and M = 7.

Table 8. Binning matrix

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 5 Bin 7

Species 1 a11 = 99 a12 = 0 a13 = 0 a14 = 0 a15 = 0 a16 = 1 a17 = 0

Species 2 a21 = 0 a22 = 100 a23 = 0 a24 = 0 a25 = 0 a26 = 0 a27 = 0

Species 3 a31 = 0 a32 = 20 a33 = 0 a34 = 0 a35 = 0 a36 = 0 a37 = 0

Species 4 a41 = 0 a42 = 0 a43 = 1000 a44 = 50 a45 = 0 a46 = 0 a47 = 0

Species 5 a51 = 0 a52 = 0 a53 = 0 a54 = 0 a55 = 200 a56 = 0 a57 = 300

Recall is computed for each species, by taking the largest assignment to a
bin. Precision is computed per bin taking the largest assignment of the bin to
a given species. In contrast, AMBER uses purity and completeness to compute
the per-bin F1 score using the following equations, for each bin b.

The true positives are computed using the majority species in a given bin.
Because of this, if a bin appears as a result of a false bin split (1% reads), the
Completeness of the bin will be very low as the majority of it (approximately 1%)
according to AMBER evaluation. In comparison, the recall of the species using
Eq. 5 will report 99% since 99% of the reads are in a single bin despite having the
false bin split. Similarly, the false split of the bin will report a greater precision
as long as the bin has no other species mixed according to Eq. 4. Consider the
following running example.

Example 1. Suppose Species 1 has a11 = 99 and a16 = 1 with rest of the row
having no reads and Bin 1 and 6 has no reads from another species. Purity in
this case will be 100% for both bins 1 and 6 while completeness will be 99% and
1% respectively. F1-score will be 99.5% and 1.98% with average being very low
at 50.7%. Recall will be 99% for Species 1 with 100% precision on both bins 1
and 6 since there are no impurities in each bin, thus, F1-score is 99.5% for each
bin.

Example 2. Suppose Bin 2 has a22 = 100 and a32 = 20, with two species 2
and 3, with no other contaminants and species 2 and 3 are fully contained in the
bin. Now, the purity of the bin is 83.33% and completeness is 83.33%, hence,
F1-score is 83.33%. Recall for species 2 and 3 will be 100% since it is not broken
into multiple bins. However, the precision for Bin 2 will be 83.33%, hence a F1
score of 90.91%.

This means, AMBER penalize whenever a species is broken into pieces across
bins while not significantly penalizing bin mergers between large bins and smaller
bins. This is because, dominant species in the bin will determine the purity and
completeness.
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29. Stöcker, B.K., Köster, J., Rahmann, S.: Simlord: simulation of long read data.
Bioinformatics 32(17), 2704–2706 (2016)

30. Strous, M., Kraft, B., Bisdorf, R., Tegetmeyer, H.: The binning of metagenomic
contigs for microbial physiology of mixed cultures. Front. Microbiol. 3, 410 (2012)

31. Team, R.D.: RAPIDS: Collection of Libraries for End to End GPU Data Science
(2018). https://rapids.ai

32. Tyson, G.W., et al.: Community structure and metabolism through reconstruction
of microbial genomes from the environment. Nature 428(6978), 37–43 (2004)

33. Wickramarachchi, A.: anuradhawick/seq2vec: release v1.0 (2021). https://doi.org/
10.5281/zenodo.5515743, https://doi.org/10.5281/zenodo.5515743

34. Wickramarachchi, A., Lin, Y.: Lrbinner: binning long reads in metagenomics
datasets. In: 21st International Workshop on Algorithms in Bioinformatics (WABI
2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

35. Wickramarachchi, A., Mallawaarachchi, V., Rajan, V., Lin, Y.: Metabcc-LR: meta
genomics binning by coverage and composition for long reads. Bioinformatics
36(Supplement 1), i3–i11 (2020)

36. Wood, D.E., Lu, J., Langmead, B.: Improved metagenomic analysis with kraken
2. Genome Biol. 20(1), 1–13 (2019)

37. Wu, Y.W., Simmons, B.A., Singer, S.W.: Maxbin 2.0: an automated binning algo-
rithm to recover genomes from multiple metagenomic datasets. Bioinformatics
32(4), 605–607 (2016)

38. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
arXiv:1810.00826 (2018)

https://rapids.ai
https://doi.org/10.5281/zenodo.5515743
https://doi.org/10.5281/zenodo.5515743
https://doi.org/10.5281/zenodo.5515743
http://arxiv.org/abs/1810.00826


A Mixed Integer Linear Programming
Algorithm for Plasmid Binning

Aniket Mane(B), Mahsa Faizrahnemoon, and Cedric Chauve

Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
{amane,mfaizrah,cedric.chauve}@sfu.ca

Abstract. The problem of analysing bacterial isolates in order to
detect plasmids has been widely studied. With the development of
Whole Genome Sequencing (WGS) technologies, several approaches have
been proposed to bin contigs into putative plasmids. Reference-based
approaches aim to bin contigs by mapping or comparing their sequences
against databases of previously identified plasmids or plasmid genes. On
the other hand, de novo approaches use contig features such as read cov-
erage and length for plasmid binning. Hybrid approaches that combine
both strategies have also been proposed recently.

We present PlasBin a mixed integer linear programming based hybrid
approach for plasmid binning. We evaluate the performance of several
binning methods on a real data set of bacterial samples.

1 Introduction

Antimicrobial resistance (AMR) has recently emerged as a major public health
concern. AMR is developed in bacteria through the acquisition of antimicro-
bial genes. This is often facilitated by mobile genetic elements (MGEs). Mobile
genetic elements enabling antimicrobial resistance can be exchanged between
bacteria via, among other mechanisms, evolutionary events known as horizon-
tal gene transfer (HGT) [8]. The family of plasmids falls under the umbrella of
MGEs. Plasmids are circular, double-stranded segments of DNA that are sepa-
rate from chromosomes and are known to carry AMR genes. Thus, the identifi-
cation and detection of plasmids from whole-genome sequencing (WGS) data is
important for understanding the propagation of AMR genes.

With the advent of DNA sequencing technologies, it is now possible to obtain
WGS data at a relatively low cost. For bacterial genomes, reads sequenced using
WGS technologies are generally processed by a genome assembler, such as Unicy-
cler [19] or SPAdes [4], to produce an assembly, often in the form of contigs; recent
assemblers such as SPAdes and Unicycler also generate an assembly graph. The
problem of detecting plasmids from the output of an assembler can be studied
at three different levels: classification, binning and assembly.

At the classification level, the aim is to classify whether a contig originates
from a plasmid or a chromosome. Erstwhile tools such PlasmidFinder [9] map
query contigs against a reference database of plasmid markers. Several approaches
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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based on machine learning have also been utilized for contig classification. These
approaches attempt to learn the genomic signal, often in the form of k-mer compo-
sition, from a training data set of known plasmid sequences. Current state-of-the-
art tools include mlplasmids [3], PlasClass [16], PlasFlow [11] and RFPlasmid [6].

At the binning level, the aim is to group contigs into bins, with the expec-
tation that the contigs in a bin likely originate from the same plasmid. Various
approaches have been proposed for plasmid binning. MOB-recon – part of the
recently developed MOB-suite [17] – is a reference-based method that maps con-
tigs against a database of known plasmid sequences and a database of plasmid
marker sequences known as replicons and relaxases. Plasmids from the refer-
ence database are clustered according to their sequence similarity. Contigs are
then binned together if they match with plasmids belonging to the same refer-
ence cluster. Putative plasmid bins thus constructed are then filtered using the
presence/absence of known replicons or relaxases. The reliance on a reference
database can potentially hinder the ability of reference-based methods to iden-
tify novel plasmids. De-novo approaches do not depend on reference sequences.
Instead, they use contig features as well as, for some methods, additional infor-
mation from the assembly graph. Plasmids often occur in the genome in several
copies. Thus, the coverage of plasmids is expected to be significantly different
than that of chromosomes. Recycler [18] peels off cycles from the assembly graph
assuming uniform coverage of sequenced plasmids and using length thresholds.
PlasmidSPAdes [1] also relies on coverage features: it estimates the chromoso-
mal coverage from the assembly graph, removes contigs with similar coverage
as that of the chromosome and then computes putative plasmid bins from the
connected components of the remaining graph. However, this strategy may fail
to identify plasmids that have a low copy number. Lastly some plasmid binning
methods employ a hybrid strategy by combining ideas from both of the above
approaches. Such methods first use a reference databases to assign weights to the
contigs. They then use contig features such as coverage and topography of the
assembly graph to separate contigs into putative plasmid bins. Gplas [2] uses the
signal from known plasmidic sequences to assign a probability that the contig is
plasmidic in origin; gplas uses mlplasmids [3] to compute this probability. Con-
tigs classified as chromosomal are removed from the assembly and the remaining
contigs are then separated into plasmid bins, using a graph-theoretical method.
HyAsP [14] is another hybrid plasmid binning tool. It first computes the plasmid
genes density of each contig by mapping the contigs against a database of known
plasmid genes. It then uses a greedy heuristic to extract cycles or paths from
the WGS assembly graph as putative plasmid bins, with the goal to maximize
the plasmid gene density over the selected contigs while maintaining a uniform
read coverage.

Finally, at the assembly level, contigs that are in the same plasmid bin are
linearly or circularly ordered. Note that plasmid assembly methods by default
are also useful for contig classification and plasmid binning. From the plasmid
binning approaches mentioned above, Recycler and HyAsP have actually been
designed as assembly methods.
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In the present work, we focus on the plasmid binning problem, motivated by
the fact that, for downstream analysis, the most useful information is in the form
of groups of genes that belong to a given plasmid, more than in the order of these
genes along the plasmid sequence; for example, plasmid typing can be done from
the gene content and does not consider gene order [10,12]. Hence, although our
method does perform plasmid assembly, we focus on plasmid binning and eval-
uate the results accordingly. We propose a hybrid approach that uses a mixed
integer linear programming (MILP) formulation for plasmid binning. We com-
pare our method, PlasBin, against HyAsP, plasmidSPAdes, MOB-suite and gplas
on a data set of 133 bacterial samples and evaluate their performance using preci-
sion, recall and F1 statistics. Our experiments indicate that the hybrid methods
generally perform better than other approaches, and that our method PlasBin
obtains the best average F1 score, slightly outperforming HyAsP.

2 Hybrid Approach for Plasmid Binning Using Mixed
Integer Linear Programming

We present PlasBin, an optimization based hybrid approach for the plasmid bin-
ning problem. PlasBin is based on the same principles as HyAsP, which utilizes
a greedy approach to extract paths or cycles from an assembly graph. The eval-
uation of HyAsP demonstrated that, at the time of its design, it outperformed
existing methods. The rationale of PlasBin is that by relying on a global opti-
mization approach, using an objective function based on the HyAsP greedy path
extension score, it will be able to avoid the pitfall of locally optimal solutions,
while improving some of HyAsP limitations.

2.1 Input: Contigs and the Assembly Graph

The two main input for PlasBin are the contigs and the assembly graph, obtained
using Unicycler [19]1. Every contig has two extremeties, a head and a tail,
denoted by ch and ct for a contig c. Pairs of contigs that are potentially adjacent
in the genome sequence are connected to each other via edges of the assembly
graph. Although, we do not consider the order of contigs for the purpose of
plasmid binning, the edges help in ensuring that the contigs chosen to belong
to a plasmid bin form a path or a cycle in the graph. We represent the edges of
the assembly graph as pairs of contig extremeties: an edge between ch and dh is
represented as (ch, dh). PlasBin also takes as input a database of genes known
to occur in plasmids, called as the reference database from now.

Contig Features. PlasBin considers several features associated to a contig, namely
its %GC content, sequencing coverage, length and plasmid gene density.

1 We rely on Unicycler as it is a widely used bacterial genome assembler, but any
assembler providing an assembly graph can be used.
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– The %GC content of a sequence is the proportion of the sequence consisting
of either G or C bases. It is a useful feature as the %GC content of plasmids
is generally expected to be lower than that of chromosomes [15]. For contig
c, we denote by gcc its %GC content.

– Plasmids might occur in multiple copies in a cell, as opposed to the chro-
mosome, which is single-copy. Thus, plasmidic contigs are likely to exhibit
higher sequencing coverage, while contigs originating from the same plasmid
are expected to have similar coverage. We define the coverage of a contig as
the normalized coverage computed by Unicycler, i.e. the average base cov-
erage of the contig normalized by the median coverage of the contigs in the
assembly graph; thus chromosomal contigs are expected to have a normalized
coverage close to 1. The coverage of contig c is denoted by rcc.

– We denote by �c the length of contig c.
– Taking a cue from HyAsP, we associate each contig with its plasmid gene
density, which is the proportion of the sequence matching with a set of genes
known to occur in plasmids. We compute the plasmid gene density of a contig
by mapping genes from the reference database to contigs using blastn (version
2.6.0) [7], considering matches that show an identity of at least 95% and cover
at least 95% of the gene. The plasmid gene density of contig c is denoted by
gdc.

Seed Contigs. Based on the features described above, some contigs are more
likely to be part of a plasmid than others. We refer to these contigs as seeds,
a notion introduced in HyAsP. Seeds are contigs that pass certain thresholds
on the features length, coverage and gene density. The parameters defining seed
contigs can be modified by the user, but the default values are taken from HyAsP.
The seed eligibility of contig c, a boolean feature, is denoted by sc.

Preprocessing: Duplicating High-Coverage Contigs. PlasBin assumes that a plas-
mid has been sequenced with near-uniform coverage; thus all contigs from a given
plasmids, provided they are not repeated elsewhere in the genome. In order to
handle the possibility of a contig to be repeated within a plasmid bin, or in
different plasmid bins, we duplicate contigs based on their coverage as follows: if
a contig c has normalized coverage k we create �k� nodes c1, c2, ..., c�k� and any
edge incident to c in the original graph is duplicated into edges incident to every
ci in the modified graph. The other attributes (gene density, GC content, seed
eligibility and length) remain the same as for the original contig c. As a result
of this preprocessing, every node of the modified assembly graph has normal-
ized coverage 1; this is a major difference between PlasBin and HyAsP, where
the Unicycler normalized coverage was used as is in the greedy path extension
heuristic.

2.2 PlasBin Workflow

PlasBin works iteratively. During each iteration an MILP computes a path in
the preprocessed assembly graph that optimizes an objective function defined
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in terms of contig features; by the way we preprocessed the original assembly
graph, this path can be a walk in the original assembly graph, thus allowing
for repeated contigs. Contigs on this path represent a plasmid bin. At the end
of each iteration, we obtain as output both the list of contigs belonging to a
plasmid bin and a list of edges defining in the corresponding path. The MILP
also enforces that at least one seed belongs to the path.

Once a plasmid bin is generated by the MILP, we update the assembly graph
by removing contigs from the bin as well as the edges incident to these contigs.
PlasBin then moves on to the next iteration with the updated assembly graph
as input. This process continues until no seed contig is present.

Next, similarly to HyAsP, we classify every plasmid bin as putative or ques-
tionable based on certain thresholds on the overall plasmid gene density and the
cumulative length of the contigs in the bin.

2.3 MILP Formulation

We now describe the MILP used in every iteration to compute a path in the
provided assembly graph. This is the central part of PlasBin, aimed at replacing
the greedy heuristic of HyAsP.

Decision Variables: To each contig, contig extremity and edge in the assembly
graph, we associate a decision binary variables to indicate if it is part of the
computed optimal path. For each contig, we also associate decision variables
pertaining to %GC content, gene density and seed eligibility. These variables
take the value of the respective feature if and only if the contig in question is
part of the solution (xc = 1), otherwise they take value 0. Finally, we introduce
a continuous variable MGC that records the mean %GC content of contigs in
the computed path. For a graph AG = (V,E), the total number of variables is
O(|E|). Table 1 below describes the decision variables. We discuss later in this
section how we handle variables whose formulation is a priori non-linear.

Table 1. Decision variables used in the MILP; p refers to the computed path.

Variable Type Description

xc Binary xc = 1 if node c ∈ p

xc,ext Binary xc,ext = 1 if extremity ext of contig c ∈ p

ye Binary ye = 1 if edge e ∈ p

GCc Continuous GCc = gcc if c ∈ p, 0 otherwise

Sc Boolean Sc = sc if c ∈ p, False otherwise

Lc Integer Lc = �c if c ∈ p, 0 otherwise

Lp Integer Lp =
∑

c∈p �c

MGC Continuous
∑

c∈p(gcc ∗ �c)/Lp
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Objective Function: We formulate the MILP as a minimization problem, that
aims to find a path in the assembly graph that minimizes a linear combination
of the (negated) plasmid gene density and of a term measuring the deviation of
%GC content across the contigs forming the path.

– Gene density: The aim is to maximize the plasmid gene density over the
whole path. The gene density of a contig is a number between 0 and 1 so, to
account for the high variability of contigs length, we weight the gene density
of selected contigs by their lengths and integrate the term −∑

c(gdc)*Lc in
the objective function (the sum is over all contigs).

– %GC content deviation: We aim to minimize the sum of the deviations
between the %GC content of selected contigs and the mean %GC content of
the whole path. This feature was shown in HyAsP to contribute greatly to the
method accuracy. Similarly to the gene density, we weight the %GC of each
contig in the path by its length and incorporate the term

∑
c(|MGC−gcc|)*Lc

in the objective function. Here, MGC is the mean %GC content of the path
introduced in Table 1.

The objective function is thus, a linear combination of the two terms above,
with each term being weighted equally. Note that the optimality criteria for
HyAsP also contains a term pertaining to coverage uniformity. However, we
circumvent the need for computing the deviation in contig coverage through the
modifications made to the assembly graph as described in Sect. 2.1.

An important remark is that, if we were to exclude the %GC content term
from the objective function, the problem to address would be a shortest path
problem, with the additional constraint that the optimal path should contain a
seed. This would be amenable to efficient shortest paths algorithms. However,
as mentioned above, the %GC content term is important toward selecting paths
that are more likely to originate from plasmids, which makes the optimization
problem we address more complicated.

Constraints: We provide now an overview of the constraints required to solve
the problem of finding a path in the assembly graph that is optimal with regard
to the objective function.

1. Constraint to ensure the presence of a seed in the path: This is done by
requiring that the sum of the binary decision variable xc over all seed contigs
is at least 1.

2. Constraints to handle variables in the denominator: In order to minimize
%GC content deviation, we also need to compute the mean %GC content of
the path, MGC. The mean %GC content of a plasmid is given by:
MGC =

∑
c gcc∗�c∗xc

Lp

This is not a linear constraint as Lp is a variable in the denominator. However,
it is possible to obtain a linear relaxation for the above constraint through
the use of McCormick envelopes [13]. This is possible since xc is a binary
variable and thus, has definite upper and lower bounds.
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3. Constraints to handle absolute values: The objective function contains the
absolute value of the difference between the mean %GC of the path (MGC)
and individual %GC (GCc). This in itself is not linear. So, we introduce a
difference variable dc which is the absolute value of the difference between
the mean %GC and contig c %GC for a specific path. For each contig we add
the following constraints: dc >= MGC − GCc, dc >= GCc − MGC.

4. Constraints to define a path: In every iteration, we want the MILP to output a
path. This is the most challenging aspect of our formulation, as it is notorious
that modelling the search of an arbitrary path in a graph through a polyno-
mial number of linear constraints is not possible. To handle this issue, we start
from degree constraints that enforce that every contig extremity belongs to
at most one selected edge. However, this leads to the possibility that the
generated solution consists of disjoint components, all but one of which are
cycles. Thus, we would like to add constraints to eliminate potential cycles.
To address this issue, we use the delayed constraint generation method [5]:
whenever the solution found by the MILP contains cycles, we add constraints
explicitly forbidding these cycles and repeat. This results into an iterative
process that goes on until we obtain a singular component defining a path as
our solution. A possible scenario in this approach is an exponential number
of iterations. To avoid this, we bound the number of iterations.

The number of constraints, excluding cycles-forbidding constraints added in the
delayed constraint generation step, is in O(|E|).

Implementation. The PlasBin MILP is solved using Gurobi solver (version 9.1.2).
The code was written in python, using the Gurobi API. Each individual iteration
of the MILP was allowed to run for a maximum of 4 h until the optimality
gap threshold of 5% is reached. If the time threshold was reached before the
optimality gap threshold, the MILP output the feasible solution at the time of
stopping. Any solution thus obtained would consist of a path and possibly some
cycles. Constraints to prevent these cycles were then added for the next iteration.
The code is available from https://github.com/cchauve/PlasBin.

3 Experimental Results

We evaluated the results of the PlasBin on a dataset of 133 bacterial genomes
and 377 plasmids from a collection of real plasmids compiled in [17]. This fol-
lows the experimental evaluation of HyAsP. Some of the methods such as HyAsP,
MOB-suite and PlasBin are partly or entirely reference-based. To simulate the
use of a realistic reference database, we split our data into a reference set and
a test set. Samples released before 19 December 2015 were used to build the
reference database and those released after that date formed the test set. The
test set consisted of 66 samples, with a total of 147 plasmids, for which Illu-
mina sequencing data was re-assembled using Unicycler to provide contigs and
assembly graphs (we refer to [17]). We evaluated the following methods: PlasBin,
HyAsP, MOB-recon, plasmidSPAdes and gplas.

https://github.com/cchauve/PlasBin
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3.1 Performance Comparison of Plasmid Binning Tools

The results of PlasBin were evaluated using precision, recall and F1-score.
Putative plasmid bins (PlasBin, HyAsP) or plasmid contigs (MOB-suite, plas-
midSPAdes, gplas) were mapped against the reference plasmids database using
BLAST+ [7]. The precision (resp. recall) was defined as the proportion of pre-
dicted plasmid lengths matched with the reference plasmids (resp. the proportion
of reference plasmid lengths covered by alignments to the predicted plasmids).
Although PlasBin provides questionable plasmid bins in its output, they are not
to be considered as part of the predicted bins. Hence, we focus on the statistics
for putative plasmid bins.

Gplas requires the use of mlplasmids to compute the probability of contigs
to originate from a plasmid. Since mlplasmids currently supports only 4 species
(Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae and Acinetobac-
ter baumannii), gplas was evaluated only over the subset of samples belonging
to these species.

The performance of PlasBin was first compared against HyAsP, MOB-suite
and plasmidSPAdes for all the 66 test samples. The mean statistics for all the
tools are given in Table 2, while full statistics are shown in Fig 1.

Table 2. Mean statistics for various plasmid assembly tools

Tool Precision Recall F1

PlasBin 0.859 0.884 0.860

HyAsP 0.873 0.855 0.849

plasmidSPAdes 0.743 0.821 0.723

MOB-suite 0.869 0.644 0.686

We observe that the hybrid methods HyAsP and PlasBin have compara-
ble performances. HyAsP and MOB-suite show the best precision, attaining a
precision of over 0.9 for many samples, while PlasBin consistently yields a preci-
sion close to 0.8. On the other hand, plasmidSPAdes yields lower precision than
the other methods. In terms of recall, we observe that plasmidSPAdes, PlasBin
and HyAsP can account for most of the plasmid contigs with a recall of 0.8 or
more. PlasBin performed the best, consistently identifying 80% of true plasmid
contigs, with HyAsP and plasmidSPADes only slightly lagging behind PlasBin.
MOB-suite on the other hand showed weaker recall than all the other tools.

Overall, considering the F1-score, we observe that PlasBin and HyAsP gen-
erally perform better than the other tools, with a slight advantage for PlasBin.
Both methods consistently have an F1 score over 0.8. The performances of plas-
midSPAdes and MOB-suite varied across the samples. MOB-suite sometimes
outperformed PlasBin in terms of precision but not in terms of recall. On the
other hand, plasmidSPAdes showed slightly poorer precision and recall than the
hybrid methods. This suggests that the two-pronged strategy of using reference-
based information as well as known plasmid characteristics tends to yield better
results.
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Fig. 1. Precision, recall and F1-score statistics for all tools (except gplas)

We then used gplas on the subset of samples belonging to Escherichia coli,
Enterococcus faecium or Klebsiella pneumoniae2 (Table 3 and Fig. 2).

Fig. 2. Precision, recall and F1-score statistics for all tools for three species supported
by gplas

2 Our data set did not contain any samples from Acinetobacter baumannii.
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Table 3. Mean statistics for species supported by gplas

Tool Precision Recall F1

PlasBin 0.788 0.843 0.804

HyAsP 0.820 0.817 0.807

plasmidSPAdes 0.623 0.784 0.632

MOB-suite 0.835 0.491 0.576

gplas 0.935 0.714 0.791

We observe that gplas tends to avoid false positives and has the best precision,
which is expected given it relies on species-specific training datasets. For the
three species supported by gplas, PlasBin had median precision over 0.8, Overall,
in terms of F1-score, PlasBin and HyAsP performed better than the other three
methods, with gplas slightly behind. An interesting comment is the fact that the
hybrid methods HyAsP and PlasBin compared well to gplas despite this tool
using species-specific training data.

Fig. 3. Precision, recall and F1-score for PlasBin and HyAsP. Each point in the scatter-
plot represents a sample. Points have been assigned a color according to the cumulative
length of true plasmids in the sample.
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3.2 Comparison of PlasBin and HyAsP

Motivated by the fact that we expected PlasBin, by design, to outperform
HyAsP, which we did not observe to a significant point, we compared the results
of PlasBin and HyAsP for each sample, with a special focus on the total length
of the true and predicted plasmids. The scatterplots of the precision, recall and
F1-score per sample of both tools are shown alongside in Fig 3.

The precision and recall were computed while accounting for the length of
the plasmids in the set of predicted and reference plasmids respectively. From
Fig 4, it can be seen that in most cases, the sum of the lengths of incorrectly
predicted contigs is small, often less than 5000 bp and consistently less than
20000 bp. However, considering the size of plasmids in the data set, a relatively
small absolute error often translates to a large relative error thereby resulting in
low precision.

Fig. 4. Cumulative length of correctly predicted contigs (red) and of all the contigs in
bins predicted by PlasBin (blue), for each sample (Color figure online)

3.3 Computational Footprint

PlasBin relies on an MILP, that can require large computing resources (time and
memory), while HyAsP, being a greedy heuristic, induces a low computational
footprint. We ran our experiments on a standard laptop computer, with a quad-
core processor and 16 GB of memory. On average, over all considered samples,
PlasBin required a little more than an hour of computation to complete (max-
imum of 8 h), with a memory footprint close to 6 GB (maximum 10 GB). So,
while being more costly than HyAsP, PlasBin has a reasonable computational
footprint. The details have provided in Table 4.
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Table 4. Runtime statistics for various tools (in minutes)

Tool Min Max Median Mean

PlasBin 5 473 22 117

HyAsP 1 19 3 4

plasmidSPAdes 4 363 16 43

MOB-suite 3 15 5 8

gplas 2 12 3 4

4 Discussion

In this paper, we presented a hybrid method for plasmid binning using, based
on replacing the greedy heuristic of HyAsP by an exact MILP approach. The
performance of PlasBin was compared against other state-of-the-art plasmid bin-
ning methods, namely, HyAsP, MOB-suite, plasmidSPAdes and gplas. In some
instances, gplas and MOB-suite showed better precision, however, PlasBin as
well as HyAsP consistently showed better recall and a better F1-score, with a
slight advantage to PlasBin in terms of the F1-score. As a result, these two
methods had the best overall performance of all the five methods used, lending
support to the hybrid approach.

Despite having an objective function similar to the extension criteria used
in HyAsP, the two methods function in a different manner. At any point in
the HyAsP algorithm, there are a limited number of alternatives to extend the
plasmid chain being assembled. As a result, HyAsP can only search locally.
PlasBin on the other hand uses a branch-and-bound algorithm and performs
the search for the optimal solution globally. In many instances, particularly with
regards to precision, the greedy heuristic performs better than PlasBin. For
recall, however, PlasBin consistently performs better than the other approaches.
These observations suggests that the MILP might be lenient in its choice of
plasmid contigs. The presence of chromosomal contigs in plasmids predicted by
PlasBin may be explained by the following: the MILP tries to maximize the
gene density within a plasmid bin, which may result in a plasmid prediction
with two contigs with high plasmid gene density joined by a chain of low gene
density contigs. If contigs from this intermediate chain indeed originate from
chromosomes, it might result in poor precision.

The objective function of PlasBin is a linear combination of two terms, one
each pertaining to the gene density and the %GC content deviation of selected
contigs. Currently, we consider each term to be equally important. However, it
may be worthwhile to explore different linear combinations of the two terms.

Gplas consistently showed a high level of precision. This can likely be credited
to the the novel strategy of identifying the plasmid contigs before binning. Once
the plasmid contigs are identified using mlplasmids, gplas only considers those
contigs in the next step of separating contigs into plasmid bins. This allows gplas
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to avoid false positives and also significantly reduces the size of the graph needed
to be traversed.

Our MILP formulation, especially its objective function, is amenable to incor-
porate other features of the contigs. The comparison with gplas suggests that
incorporating the probability of a contig to originate from a plasmid could be
beneficial, without the need to reduce drastically the assembly graph to the
subgraph of likely plasmidic contigs as is done by gplas. While gplas is a species-
specific tool for contigs classification, that requires a species-specific training
datasets, there are other plasmid contig classification tools such as PlasClass [16]
that are more general. Integrating contigs classification results and lenient graph
pruning is a promising research avenue.
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Abstract. Single Cell RNA Sequencing (scRNA-seq) technology has
enabled the biological research community to explore gene expression
at a single-cell resolution. By studying differences in gene expression, it
is possible to differentiate cell clusters and types within tissues. One of
the major challenges in a scRNA-seq study is feature selection in high
dimensional data. Several statistical and machine learning algorithms
are available to solve this problem, but their performances across data
sets lack systematic comparison. In this research, we benchmark dif-
ferent penalized regression methods, which are suitable for scRNA-seq
data. Results from four different scRNA-seq data sets show that Sparse
Group Lasso (SGL) implemented by the SGL package in R performs
better than other methods in terms of area under the receiver operat-
ing curve (AUC). The computation time for different algorithms varies
between data sets with SGL having the least average computation time.
Based on our findings, we propose a new method that applies SGL on a
smaller pre-selected subset of genes to select the differentially expressed
genes in scRNA-seq data. The reduction in the number of genes before
SGL reduce the computation hardware requirement from 32 GB RAM
to 8 GB RAM. The proposed method also demonstrates a consistent
improvement in AUC over SGL.

Keywords: Single cell RNA sequencing · Machine learning · LASSO ·
Feature selection · High dimensional data · R

1 Introduction

Single cell RNA sequencing (scRNA-seq) technology is gaining popularity in
current biological research. With scRNA-seq technology, researchers can simul-
taneously explore thousands of cells in a tissue and their average gene expression
levels, as well as the gene expression profile of each individual cell in that tis-
sue [1]. One of the many applications of scRNA-seq technology is differentiating
tumor cells from normal healthy cells by comparing their molecular signatures.
However, the scRNA-seq data itself is not without its challenges [2]. One could
say it is the very definition of the curse of dimensionality (p >> n, where p is the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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number of variables and n is the number of observations) problem in machine
learning (ML). For scRNA-seq data, the number of genes (variables) far exceeds
the number of cells (observations). One way to solve the p >> n problem is to
employ feature selection.

Feature selection is the method of selecting variables that are more useful for
predicting the target variable. Random forests, Recursive Feature Elimination
(RFE), and penalized regression are some of the commonly used feature selection
methods in machine learning. Multiple studies have been published on the appli-
cation of random forests for scRNA-seq data [3,4]. For very high dimensional
data such as scRNA-seq, using RFE alone tends to be computationally expen-
sive [5]. Furthermore, some of the penalized regression algorithms are developed
specifically for scRNA-seq data showed varied success.

Penalized regression in machine learning has several versions such as ridge
regression, least absolute shrinkage and selection operator (LASSO) regression
[6] and a combination of ridge and lasso known as elastic net regression [7].
Each of these is useful for a different problem when dealing with scRNA-seq
data. For instance, ridge regression is useful for bringing some of the coefficients
of the model features closer to 0. To reduce the dimensions, the features close
to zero are then forced to be excluded while others are retained in the model.
This notion is also known as hard thresholding. This issue is better solved by
lasso regression proposed by [6], which can make coefficients equal to absolute
zero (soft thresholding). There are many variants of lasso such as Drop lasso
[8], Group lasso [9], Sparse Group lasso [10], and Big lasso [11]. One of our
objectives is to see which of these algorithms are better suited for different kinds
of scRNA-seq data.

There exist several other variants of lasso such as fused lasso [12], adaptive
lasso [13], and prior lasso [14]. Fused lasso was proposed for time series or image-
based data; adaptive lasso was proposed for proportional hazards regression; and
prior lasso was proposed for biological data which requires prior information to
be incorporated [14]. Since these algorithms are not suitable for scRNA-seq data,
they are not included in this study.

Currently, there are some studies on penalized regression methods for high-
dimensional data [15,16]. However, to our knowledge, there is no comprehensive
study of how the 7 methods selected for our research perform in comparison with
each other, specifically when dealing with scRNA-seq data. Our research aims to
fill this knowledge gap and thereby provide a comprehensive guideline as to the
performance of these methods. In addition, a new algorithm is proposed which
uses less number of genes while improving the AUC of the top algorithm.

The rest of this article is organized as follows. Section 2 explains the different
algorithms and metrics used; Sect. 3 introduces the scRNA-seq data sets and the
design of this research. Sections 4 and 5 present the results, discuss the findings
and biological interpretations, and propose future directions for this research.
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2 Methods

The penalized regression algorithms and the performance metrics in this study
are described below.

2.1 Penalized Regression

Penalized regression allows feature selection for high dimensional data such as
scRNA-seq data by producing sparse solutions which are predictive models based
on the expression of a limited number of genes. Penalized regression has two
parts, a loss function and a penalty. Let the regression equation be,

Y = Xβ + ε, (1)

where Y is a n × 1 vector for response variable, X is n × p matrix for predictor
variables, β is p × 1 vector of coefficients and ε ∼ N(0, σ2I) is the error term.
We consider that both X and Y are centered and scaled in Eq. 2. The estimated
penalized regression coefficients is given by,

β̂ = argmin
β

(
1
n

||Y − Xβ||2 + λ||β||), (2)

where λ ≥ 0 is the tuning parameter to be estimated using cross-validation and
||β|| is the norm of coefficient vector β. The first term 1

n ||Y − Xβ||2 is the loss
function and the second term λ||β|| is the penalty. The main difference between
different penalized regressions algorithms is how they apply the penalty. L1 norm
and L2 norm are popular choices for penalty [8], which are defined as,

L1 norm = ||β||1 =
p∑

i=1

|βi|, (3)

L2 norm = ||β||22 =
p∑

i=1

β2
i . (4)

Ridge Regression is a penalized regression where penalty term is the sum
of squared coefficients (Eq. 4). It is especially useful when predictor variables are
highly correlated.

The Least Absolute Shrinkage and Selection Operator (LASSO)
[6] minimizes the residual sum of squares subject to the sum of the absolute
coefficients being less than the tuning parameter. LASSO uses L1 norm (Eq. 3)
as penalty. Compared to the ridge regression, which can only shrink coefficients
towards 0, lasso can make some coefficients exactly equal to zero thereby pro-
ducing a more interpretable model.

Elastic net regression proposed by [7] is a combination of L1 and L2 penal-
ties. Therefore, the elastic net regression enjoys the properties of both ridge and
lasso regression. The L1 norm part of the penalty produces a sparse model and
the L2 norm part of the penalty shrinks very large coefficients [17].



298 B. S. Puliparambil et al.

Group LASSO: Yuan and Lin [9] proposed Group LASSO for selecting
subsets of important variables. Compared to the lasso which selects variables,
group lasso selects groups of variables. This notion is particularly useful in pro-
cessing scRNA-Seq data because we would like to include or exclude the group of
genes that lie in a pathway related to the outcome rather than individual genes.
Assume that there are j = 1, 2, · · · , J groups of variables and n observations.
For each group, let Xj be n× pj submatrix of X with columns corresponding to
predictor variables in group j and βj be the corresponding coefficient vector of
length pj . Then the regression equation for group lasso can be written as,

Y =
J∑

j=1

Xjβj + ε. (5)

Note that for β = (β′
1,β

′
2, · · · ,β′

j)
′, X = (X1,X2, · · · .Xj), and X′

jXj = Ipj
,

the above regression equation simplifies to Eq. (1). For a symmetric and positive
definite kernel matrix Kj = pjIpj

, the group lasso estimate is

β̂ = argmin
β

(
1
n

||Y −
J∑

j=1

Xjβj ||2 + λ

J∑

j=1

||β′
jKjβj ||

1
2 ), (6)

where λ ≥ 0 is the tuning parameter.
Sparse Group LASSO: The shortcoming of group lasso is that while it

gives a sparse set of groups, all the coefficients in a selected group will be nonzero.
But sometimes both sparsity of groups and variables within each group are
desired. In scRNA-seq data, identifying important genes within the biological
pathways is often of interest. Simon et al. [10] proposed sparse group lasso as a
solution to this specific problem.

Drop LASSO: scRNA-seq data often become intricated by noise features
that need to be dropped out. Dropout noise occurs when scRNA-seq fails to
detect some genes even though they are expressed in the cell [8]. Consequently,
those genes will cause zeros in the data set. Khalfaoui and Vert [8] proposed Drop
Lasso as a better-adapted solution to data complication by dropout noise. It is a
combination of the dropout regularisation technique proposed by [18] and lasso
proposed by [6]. It creates a sparse linear model robust to the noise by artificially
augmenting the training set with new examples corrupted by dropout.

Big LASSO: Zeng and Breheny [11] proposed big lasso algorithm in R for
handling ultra-high dimensional and large scale data. Their approach handles
out-of-core computation seamlessly by loading data into memory only when
necessary. This is done with the help of memory-mapped files which store massive
data on the disk. The big lasso algorithm also possesses efficient feature screening
rules which can accelerate the computation. The major differences between Big
lasso and lasso are in out-of-core computation and parallel processing.
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2.2 Clustering

Clustering is the process of grouping data into clusters so that objects of the
same cluster are similar to each other [19]. Two popular clustering methods are
hierarchical clustering and K-Means clustering which are described below.

In hierarchical clustering, objects are grouped into clusters by partitioning
data hierarchically [19]. These clusters are then graphically represented as a tree-
like diagram known as a dendrogram. The dendrogram is very useful in deciding
the optimal number of clusters. In this study, we use hierarchical clustering to
group genes into clusters prior to applying into group lasso and SGL.

K-Means clustering algorithm starts by randomly placing k centroids in p
data points scattered in the n-dimensional space [20]. Clusters are formed by
assigning data points to the nearest centroid. The algorithm progress iteratively
by moving the centroids at each step such that the clustering error is minimized.
K-Means clustering when applied in conjunction with Lasso improved prediction
accuracy [21]. K-means clustering is employed to cluster cells at the final step of
the algorithm proposed in this research.

2.3 K-Fold Cross-validation

Cross-validation is a data partitioning method used to estimate the prediction
error of models and to tune model parameters [22]. We will use K-Fold Cross-
Validation for tuning the hyper parameters for all the algorithms in this study.
In K-Fold Cross-Validation, the data are first divided into k subsets of cells.
One of the k subsets is used as the test set and the remaining k − 1 subsets
are used as the training set. Then prediction error is calculated for k repeats
by selecting a different test set each time. The average error for k repeats is
used as the prediction performance of the model. In this study, we use 10-fold
cross-validation for measuring performance.

2.4 ROC AUC

A receiver operating characteristic curve (ROC) is a graph that plots the true
positive rate (TPR) on the y-axis and the false positive rate (FPR) on the x-
axis [23]. ROC is used to evaluate the prediction ability of a binary classification
model. The area under the ROC curve is known as ROC AUC. The AUC value
reflects the overall prediction performance of a classifier. The AUC is theoreti-
cally and empirically better than the accuracy metric for evaluating the classifier
performance and discriminating an optimal solution especially for unbalanced
classification. However, the computational cost of AUC is higher than accuracy
and misclassification error [24].

3 Research Design and Data

3.1 Experimental Data

In this study, 4 scRNA-seq data from 3 different species (Human, mouse, and
plant) are used. The first two data sets (GSE60749 and GSE71585) are selected
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from a collection of 40 curated scRNA-seq data from conquer website (http://
imlspenticton.uzh.ch:3838/conquer/) created by [25]. Conquer website is a col-
lection of consistently processed, analysis-ready, and well-documented publicly
available scRNA-seq data. There are currently 40 data sets on conquer website,
each having count and transcripts per million (TPM) estimates for genes, as
well as quality control and exploratory analysis reports. The other two data sets
(GSE81861 and GSE123818) are downloaded from Gene Expression Omnibus
(GEO). Table 1 shows the data sets with GEO accession numbers, number of
genes, number of cells in each class, species, technology used for scRNA-seq and
the source from where data were accessed. The cell groups are selected as per
the label from the original experiment. No additional batch effect correction is
performed during preprocessing in this research.

Table 1. Experimental data sets

Data set Genes Cells Organism Technology Source

GSE60749 224444 183:84 Mus Musculus Illumina HiSeq conquer

GSE71585 24058 79:57 Mus Musculus Fluidigm BioMark conquer

GSE81861 57241 272:160 Homo Sapiens Fluidigm based
single cell RNA-seq
protocol

GEO

GSE123818 27629 1099:1099 Arabidopsis
Thaliana

Illumina NextSeq GEO

The first data set GSE60749 is of species Mus musculus. This data set was
generated in the study of gene expression variability in pluripotent stem cells
(PSCs) by single-cell expression profiling of PSCs under different chemical and
genetic perturbations conducted by [26]. Gene expression levels are quantified as
transcripts per million reads (TPM). For our research, we selected 183 individual
v6.5 mouse embryonic stem cells (mESCs) and 84 Dgcr8 -/- mESCs that lack
mature miRNAs (knockout of a miRNA processing factor). The 183 individual
mESCs are assigned to class 1 and 84 Dgcr8 -/- mESCs are assigned to class
0. The data included 22443 genes initially which was reduced to 15508 after
preprocessing in which all the genes with no variance in expression across all the
cells were removed.

The second data set GSE71585 is also of the species Mus musculus. Our
research included mouse species data set because numerous clinical trials are
conducted on mice prior to human trials. GSE71585 data set was generated
by scRNA-Seq of adult mouse primary visual cortex in a study [27] conducted
to understand cell type diversity in the nervous system. There are 1809 cells
and 24057 genes in this data set. Gene expression levels are quantified as tran-
scripts per million reads (TPM). Out of all the cells, 79 Ntsr1 tdTpositive cell
are assigned to class 0 and 57 Ntsr1 tdTnegative cell are assigned to class 1.

http://imlspenticton.uzh.ch:3838/conquer/
http://imlspenticton.uzh.ch:3838/conquer/
http://imlspenticton.uzh.ch:3838/conquer/
http://imlspenticton.uzh.ch:3838/conquer/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81861
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123818
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After removing the genes which did not vary in expression across all cells, there
are 17870 genes in total.

The third data set GSE81861 is of species homo sapiens and is from the
analysis of transcriptional heterogeneity in colorectal tumors [28]. Intratumoral
heterogeneity is a major obstacle to cancer treatment and a significant con-
founding factor in bulk-tumor profiling. Therefore [28] conducted an analysis of
transcriptional heterogeneity in colorectal tumors and their microenvironments
using scRNA-seq. There are 272 primary colorectal tumor cells and 160 matched
normal mucosa cells. Gene expression levels are quantified as fragments per kilo-
base per million reads (FPKM). A binary classification problem was created by
assigning 272 primary colorectal tumor cells to class 1 and 160 matched normal
mucosa cells to class 0. The data was then transposed to form a matrix of 432
rows (cells) and 57242 columns (genes). Standardization and normalization were
not carried out for this data set because it negatively affected the performance of
Lasso algorithms in preliminary analysis. All the genes which were not expressed
(0 values) or equally expressed among all cells were removed, thereby reducing
the number of genes to 38090.

Our last data set GSE123818 belong to the plant species Arabidopsis
Thaliana and it contains thousands of cells. This data is obtained from the study
of Spatiotemporal Developmental Trajectories in the Arabidopsis Root [29].
The study generated mRNA profiles of 6-day-old wild-type (wt) and shortroot-
knockout (shr) Arabidopsis thaliana roots by deep sequencing of single cell and
bulk RNA libraries (wild type only), in duplicate (bulk & wild-type single cell)
and singlicate (shr-3), using Illumina NextSeq. There are 4727 wt cells and 1099
shr cells in this dataset. All 1099 shr cells are selected for our research. To have
balanced classes, 1099 samples are selected at random from 4727 wt cells. Class 0
was assigned to wt cells and class 1 was assigned to shr cells to create the binary
classification problem. There are 27629 genes in the data set which are reduced
to 24075 after removing the genes which do not vary in expression (same value)
across all cells.

3.2 Research Design

As the first step, each data set is pre-processed to be compatible for use in differ-
ent R packages. Two cell groups, as labeled by the individual experiment in which
the data set was created, are assigned 0 or 1 for the binary classification problem.
Note that in the future we may expand the study to include more cell groups
and verify algorithms for the multi-classification problem. With the processed
data, we verify how each algorithm performs in terms of AUC and computa-
tion time when dealing with scRNA-seq data from different species. We use the
same performance measures (AUC, and computation time) and cross-validation
for all data sets to ensure a fair comparison. In this step, a 10-fold Stratified
Cross-Validation is conducted to fine-tune the hyperparameters for each algo-
rithm, and then the performance metrics for all the algorithms are calculated.
We used hierarchical clustering for grouping variables prior to Group Lasso and
Sparse Group Lasso. After comparing the performance metrics, best-performing
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algorithms are selected and combined to form a new algorithm. Finally, the
performance metrics of the new algorithm is compared with that of the top-
performing algorithm. Figure 1 illustrates the proposed algorithm. The compu-
tation has been done using Ubuntu 20.04.4 LTS (GNU/Linux 5.4.0-100-generic
x86 64) with 32 GB RAM hosted by Compute Canada. R version 4.1.2 was used
for software programming.

Fig. 1. Schematic diagram of the proposed algorithm. In this algorithm, there is a
significant reduction in the number of genes prior to the execution SGL. Once the final
set of genes are selected, they are used to cluster cell groups in the data set.

4 Results

Our first objective is to compare the performance of the methods. The resulting
average cross-validated AUC (CV-AUC) and computation time are shown in
Table 2 and Table 3, respectively. Figure 2 shows the average CV-AUC across
all 4 data sets for each algorithm. From Table 2 and Fig. 2 we observe that the
top 5 algorithms are SGL, grplasso, droplasso, biglasso, and lasso. Notice that
SGL and grplasso outperform all other methods in terms of average CV-AUC,
whereas ridge regression algorithm in glmnet package has the least average CV-
AUC. This could be because grplasso and SGL incorporate grouping of genes
information into model, whereas ridge regression treats all the genes equally.
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Algorithm 1. Steps to implement the proposed algorithm
1. Load data set into R and assign classes 1 and 0 to the two selected group of cells

to form a binary classification problem.
2. Shuffle cells within each class to randomize data points.
3. Remove genes with no variability in expression across all cells from the data set.
4. Split the data set into training (90%) and testing data (10%) for 10-fold cross

validation.
5. Repeat the steps for a 10-fold CV

(a) Fit ridge, lasso, elastic net and drop lasso.
(b) Select the top genes from each algorithm. The top genes are the genes which

have coefficients above a cut off (mean of absolute value of coefficients).
(c) Form a gene pool by taking union of only the top genes from all 4 models.
(d) Fit SGL with the new gene pool pre-grouped by hierarchical clustering.
(e) Save the coefficients of SGL.

6. Find the average of coefficients for each gene across 10 folds and then sort the
genes.

7. Visualize the gene Vs coefficients plot and select the final set of genes which are
above the elbow of the curve.

Across data sets, the average computation time is the least for SGL and
biglasso, while the most time-consuming algorithm is ridge. Ridge regression
uses all genes making computation complex. On the other hand, SGL can make
an entire group of genes, as well as some of the genes within selected groups,
zero resulting in a sparse matrix and lesser computation. It is notable that
computation time for GSE81861 data set is higher compared to that of GSE60749
for most of the algorithms due to more number of non-zero coefficients for the
former data set.

The second objective of this study is to combine lasso algorithms in order
to improve AUC and gene selection. From the discussion of the results of the
first objective, we see that SGL and grplasso are good candidates for forming a
new algorithm. In terms of gene selection, SGL performs better than grplasso.
SGL is therefore chosen over grplasso for the new computational algorithm. SGL
achieves better AUC than biglasso in comparable time for data sets of size 20
MB to 250 MB when tested on a computer with a 32 GB processor. Therefore
biglasso is not included in the new algorithm.

For the new algorithm, we select the ridge, lasso, elastic net, and droplasso
to form a filter which creates a gene pool with the number of genes being sig-
nificantly reduced. The gene pool is formed by taking a union of top genes from
4 algorithms because we observed that different methods might give different
set of top genes. A union of top genes is, therefore, more likely to capture the
important differentially expressed genes. The gene pool is used as input to SGL
to calculate the AUC.

In the new algorithm, hierarchical clustering and SGL are executed with a
gene pool that has significantly less number of genes. This reduction in number
of genes enables us to do the computation with an 8 GB processor for two data
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sets (GSEGSE60749, GSE71585) and get the same AUC as obtained with the
32 GB processor. This new computational algorithm can be used for other high
dimensional data sets as well for feature selection. We note that the AUC of the
proposed algorithm shown in Table 4 is equal to or better than that of SGL. The
final selection of genes is found using a genes Vs coefficients plot of the SGL
fit. In the last step, we use K-Means clustering for cell clustering with the final
selection of genes for each data set. The clustering results are shown in Fig. 3.

Fig. 2. Average Cross-validation AUC across all 4 data sets. Even though group lasso
has better AUC than SGL, SGL is better in terms of gene selection. Selecting the
differentially expressed genes is of more importance for a scRNA-seq data set compared
to prediction AUC.

5 Discussion

In this section, we discuss the final subset of genes selected with the new algo-
rithm, and the cell clustering for each data set.

As shown in Fig. 3, the data set GSE60749 clustered with two classes is well
separated. The top genes of this data set identified by the new algorithm are
44441, 44260, 44454, 44446, 44450, 44440, Pbld, Lifr, Hist2h4, and AK203176.
One interesting finding is that 44441, 44260, 44454, and 44440 genes are non-
coding RNAs called piRNA. This indicates a possibility of an association between
the knockout of miRNA processing factor and piRNAs which has not been stud-
ied so far. piRNAs are found in humans and rats. Although their function must
still be resolved, the abundance of piRNAs in germline cells and the male sterility
of Miwi mutants suggest a role in gametogenesis [30].

The new algorithm can cluster primary visual cortex cell groups in GSE71585
well. The top 2 differentially expressed genes in Ntsr1 (neurotensin receptor 1)
tdT (tdTomato - an exceptionally bright red fluorescent protein) positive cells
and Ntsr1 tdT negative cells are Calm2 and Snap25. Calm2 is active in the
pathways of Alzheimer’s disease and Glycogen Metabolism [31]. Snap25 gene
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Table 2. Algorithm performance comparison (Metric = Average CV-AUC).

Algorithm R Package GSE60749 GSE71585 GSE81861 GSE123818

Sparse Group Lasso SGL 1 0.98 0.92 0.83

Group Lasso grplasso 1 0.98 0.87 0.99

Drop Lasso droplasso 0.99 0.94 0.87 0.97

Big Lasso biglasso 1 1 0.80 0.95

Lasso glmnet 1 0.96 0.85 0.94

Elastic net glmnet 1 0.63 0.86 0.93

Ridge glmnet 0.99 0.84 0.71 0.90

Table 3. Algorithm performance comparison (Metric = Average computation time in
seconds).

Algorithm R Package GSE60749 GSE71585 GSE81861 GSE123818

Sparse Group Lasso SGL 6.53 1.73 2.97 5.66

Group Lasso grplasso 1.12 2.51 29.66 3.78

Drop Lasso droplasso 13.57 7.18 59.33 3.36

Big Lasso biglasso 3.11 4.77 7.23 20.30

Lasso glmnet 3.18 2.76 13.39 48.54

Elastic net glmnet 3.57 2.66 13.59 51.51

Ridge glmnet 58.07 26.71 3.77 17.58

enables syntaxin-1 binding activity. It is present in 10 different biological path-
ways. NCBI records [32] show that it is used to study attention deficit hyperac-
tivity disorder, obesity, schizophrenia, and type 2 diabetes mellitus. The human
ortholog of this gene is implicated in Down syndrome and congenital myasthenic
syndrome 18. The strong association between the lack of tdT protein in Ntsr1
cells and these genes identified by our method shows merit for further study.

For GSE81861, cell groups are clustered with some overlap in classes. The
top genes are FABP1, SAT1, PHGR1, LGALS4, FRYL, MT1E, HSP90AA1,
and HNRNPH1. FABP1 gene enables long-chain fatty acids binding activity.
It is involved in 13 biological pathways including metabolism, and Peroxi-
some proliferator-activated receptor (PPAR) signaling pathway [33]. The sec-
ond gene SAT1 is also involved in 13 biological pathways including metabolism.
Defects in this gene are associated with keratosis follicularis spinulosa decalvans
(KFSD) [34]. LGALS4 gene is underexpressed in colorectal cancer [35]. Similarly,
HSP90AA1 gene is also an important gene found in 115 pathways such as sig-
naling by EGFR, EGFRvIII, and ERBB2 in Cancer [36]. HNRNPH1 gene found
in 12 pathways may be associated with hereditary lymphedema type I. Knock-
down of heterogeneous nuclear ribonucleoprotein H1 (HNRNPH1) by siRNA
inhibits the early stages of HIV-1 replication in 293T cells infected with VSV-G
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Table 4. Comparison of performance (AUC) between SGL with all genes and SGL
using new algorithm which reduces number of genes by union of top genes from ridge,
lasso, elastic net and droplasso. The new algorithm is consistently improving over SGL.

Data set All genes Gene pool SGL New algorithm

GSE60749 224444 5965 1 1

GSE71585 24058 5448 0.98 1

GSE81861 57241 5823 0.92 0.94

GSE123818 27629 10857 0.83 0.85

Fig. 3. Cell clustering (K-Means) with final selection of genes for all 4 data sets. The
top gene (piRNA 44441) alone can perfectly differentiate two cell groups in GSE60479
data set. There is some overlap of cell clusters within the other 3 data sets.

pseudotyped HIV-1 [37]. 4 genes (SAT1, MT1E, HSP90AA1, and HNRNPH1)
out of 8 top genes from a colorectal tumor have strong interaction with HIV-1
proteins. The association between cancer and HIV-1 has been widely studied
[38–41] by medical researchers. Evidently, the new algorithm can select a highly
relevant subset of genes from the given samples of human colorectal cancer cells.

GSE123818 data set have more overlap between cell clusters compared to
that of the other data sets. The top genes of this data set as found with the new
algorithm are AT2G43610, AT4G05320, AT2G07698, and AT3G51750. One of
five polyubiquitin genes in A. thaliana, AT2G43610 gene is found in growth and
developmental stages such as root development [42]. AT4G05320 gene encodes
the highly conserved 76-amino acid protein ubiquitin which is attached to pro-
teins targeting degradation [43]. AT2G07698 gene is expressed during seed devel-
opment stage [44]. AT3G51750 codes a hypothetical protein which is involved in
root and seed development [45]. All of the selected genes are related to the growth
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and developmental stages in Arabidopsis thaliana. We recommend further study
of these genes in relation to root development and degradation.

6 Conclusion and Future Work

As evident from the results and detailed discussion above, the sparse group
lasso algorithm with a reduced set of genes can select a highly relevant subset of
genes that are strongly associated with the cell clusters in scRNA-seq samples.
Here we recognize that lasso algorithms have many hyperparameters which can
be customized to arrive at different results. The output of grplasso and SGL
packages can also change depending on the number of groups in the input data
and the type of grouping used. The new algorithm proposed in this research
is a combination of lasso algorithms that showed consistently better AUC than
the top-performing lasso algorithm (SGL). The proposed algorithm does not
require deep knowledge in the grouping of genes in scRNA-seq data and yet
identified a highly relevant set of differentially expressed genes. A 32 GB RAM
Linux remote server was used to execute SGL on the whole scRNA-seq data
set, whereas, the proposed algorithm can be executed on a small computer of 8
GB RAM because it uses a small subset of genes to run SGL instead of all of
the genes. This research can expand in the future to include more algorithms
and related R packages, such as nuisance penalized regression [46] or Seagull
[47] which also implement lasso, group lasso, and sparse group lasso algorithms.
scRNA-seq data sets may have more than one cell group. Therefore, another
direction worth exploring is verifying the R packages such as msgl [48] which
can implement multinomial classification.
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Katia Aviña-Padilla1 , José Antonio Ramı́rez-Rafael1 ,
Octavio Zambada-Moreno1 , Gabriel Emilio Herrera-Oropeza2 ,

Guillermo Romero3 , Ishaan Gupta4 , and Maribel Hernández-Rosales1(B)

1 CINVESTAV-Irapuato, Libramiento Norte Carretera Irapuato León Kilómetro 9.6,
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therapy. Cancer is a complex disease that relies on progressive uncon-
trolled cell division linked with multiple dysfunctional biological pro-
cesses. Tumor heterogeneity remains the most challenging feature in can-
cer diagnosis and treatment. Given the clinical relevance of IGs, we aim
to identify their unique expression profiles and interactome, that may
act as functional signatures across eight different cancers. We identi-
fied 940 protein-coding IGs in the human genome, of which about 35%
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ically, 78% of differentially expressed IGs were undergoing transcrip-
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1 Introduction

Most eukaryotic gene structures contain exons interrupted by non-coding introns
that are removed by RNA splicing to generate the mature mRNA. Although the
most prevalent class of genes in the human genome contain Multiple Exon Genes
(MEGs), about 5% of the genes are Intronless (IGs) or Single-Exon (SEGs) that
lack introns. Due to the absence of introns and associated post-transcriptional
splicing, IGs may be subject to lower post-transcriptional gene expression vari-
ability suggesting a potential role as clinical biomarkers and drug targets that
deserve careful consideration in diseases such as cancer [13,24,27]. Several previ-
ous studies have identified the role of IGs in cancer [2,5,13,17,36]. For example
the RPRM gene increased cell proliferation and tumor suppression activity in
gastric cancer [2]; CLDN8 gene is associated with colorectal carcinoma and renal
cell tumors [5] while ARLTS1 is upregulated in melanoma; PURA & TAL2 are
upregulated in leukemia [13] and protein kinase CK2α gene is up-regulated in
all human cancers [17].

A remarkable instance of IGs acting in a clinical role is SOX11, a member
of SOXC (SRY-related HMG-box) gene family of transcription factors involved
in embryonic development and tissue remodeling by participating in cell fate
determination [4]. SOX11 has been associated with tumorigenesis, with aber-
rant nuclear protein expression in Mantle Cell Lymphoma (MCL) patients
[8,30,35,37]. This TF is not expressed in normal lymphoid cells or other mature
B cell lymphomas (except Burkitt lymphoma), but it is highly expressed in
conventional MCL, including the cyclin D1-MCL subtype [36]. Hence, SOX11
represents a widely used marker in the differential diagnosis of MCL and other
types of small B-cell neoplasias in the clinical hemato-oncology practice [18,31].

However, to date, a comparative analysis integrating transcriptomic and
interactomics profiles of IGs across diverse types of cancer is missing. Hence,
this work aims to identify and characterize their expression, functional role and
interactomics profiles across different selected cancers.

2 Results

In this study we use RNA-sequencing data from 3880 tumor samples belonging
to 8 cancer types from the cancer genome atlas or TCGA (Appendix Table 1).
We selected the four most prevalent cancers, namely Breast Invasive Carcinoma
(BRCA), Colon Adenocarcinoma (COAD), Lung Adenocarcinoma (LUAD) and
Prostate Adenocarcinoma (PRAD), along with the four most aggressive cancers
with high intrinsic heterogeneity, namely Bladder Urothelial Carcinoma (BLCA),
Esophageal Carcinoma (ESCA), Glioblastoma Multiforme (GBM) and Kidney
Renal Clear Cell Carcinoma (KIRC). We found that 338 out of the 940 genes
identified as IG-encoded proteins are undergoing differential regulation in tumors
compared to the normal tissue. GBM had the most number of differentially
expressed (DE)-IGs at 168, followed by KIRC at 130, and both PRAD and
COAD at 116. While in BRCA 104, LUAD 87, BLCA 97 and ESCA 86 were
determined.
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2.1 Functional Assignment and Gene Expression of IGs in Normal
Tissue

First, we performed a functional assignment analysis to characterize the bio-
logical role and the expression profiles of IG-encoded proteins in normal tissue.
Our results determined that 940 proteins in the human genome are classified as
IGs. Secondly, when performing a functional enrichment analysis, it stands out
their relevance in chromosome and genetic material organization as well as their
response to sensory stimulus in biological processes (Fig. 1).

Furthermore, we examined their constitutive expression on healthy tissue
samples corresponding to those of the analyzed tumors. This analysis based on
the GTex database, is depicted in Fig. 2. We observe that the identified tis-
sue samples have more similar transcriptional profiles when belonging to the
same tissue. There is a clear separation of clusters belonging to the brain, with
very different profiles in comparison to the rest of tissues. Kidney cortex, lung,
prostate and breast, esophagus mucosa, colon transverse clusters are very well
distinguished from the rest; while all the gastrointestinal tissues are clustered
in the same expression area. In contrast, bladder samples do not seem to have
a tissue-specific expression profile. Hence, IGs have tissue-specific expression in
most of the tissues corresponding to the cancer diseases/tumors studied here.

2.2 IGs Tend to Have a More Induced Gene Expression Pattern
When Compared to MEGs

In order to characterize the distinct biological behavior of IGs, we studied the
overall gene expression patterns of IGs compared to those of MEGs in all the
tumors. Notably, a greater percentage of upregulated genes are found among
DE-IGs than DE-MEGs in all the different types of cancers analyzed.

For instance, when comparing both populations of genes, we identified sta-
tistical significance for an over-representation of the up-regulated IGs over the
MEGs group among DEGs in PRAD (p-value = 2.8108 e−07), ESCA (p-value =
7.0858 e−05), LUAD (p-value = 0.0015) and BRCA (p-value = 0.0276) cancers.
Moreover, we aimed to compare if the upregulation levels are higher in IGs than
in MEGs transcripts. Our analysis revealed that in BRCA, BLCA, ESCA and
GBM IGs tend to express in higher levels than MEGs, as shown in Appendix
Fig. 8.

2.3 Upregulated IGs Across Cancer Types Encode for Highly
Conserved HDAC Deacetylate Histones Involved in Negative
Gene Regulation

To dig insight into the role of the prevalent upregulation mechanism identified
for the DE-IGs, we aimed to characterize the groups of induced IGs across the
analyzed cancer types. 338 out of 940 (35%) IG encoded proteins in the human
genome are deregulated in at least one of the eight analyzed tumor types, where
106 (30%) are found to be up-regulated in one cancer type and down-regulated
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Fig. 1. Functional enrichment of IG-encoded proteins in the human genome.
Genes are depicted by a dot, the size of the dot represents the number of genes. FDR is
calculated based on a nominal p-value from the hypergeometric test. Fold Enrichment
is defined as the percentage of intronless genes belonging to a pathway, divided by the
corresponding percentage in the background. FDR reports how likely the enrichment
is by chance, higher values are colored on a scale of red to blue. In the x-axis, Fold
Enrichment indicates how drastically genes of a certain pathway are overrepresented.

in another type. In a higher number of them, 222 (65%), upregulation is con-
served in two or more cancers, which suggests they are undergoing transcrip-
tional reprogramming with higher rates of upregulated levels of their mRNAs as
an outcome. Moreover, this upregulation mechanism is highly shared among the
different cancers (Fig. 3), for instance, most of the genes upregulated in BLCA
and ESCA are shared with the other tumors, while tumors with a significant but
less shared upregulation are GBM, PRAD and KIRC, which could be expected
given their remarkable heterogeneity (Fig. 3).

To delve insights into the conservation of the activation of this negative gene
expression mechanism in the cancer genomes, we identified the most conserved
upregulated histones in all the diseases. We identified a group of 13 histone-
related genes whose expression is highly conserved among the cancers (Appendix
Fig. 10 and Appendix Fig. 11). Moreover, this group of upregulated genes is
statistically enriched in a proximal region (26.1968-27.8927 position in Mbps) in
chromosome 6 in the human genome (Appendix Fig. 12).

HASPIN was found to be the only DE-IG shared among all the tumor
genomes, highlighting its relevance in tumorigenesis. This protein kinase is
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Fig. 2. IG expression profile across healthy tissues. t-SNE algorithm summarises the
expression pattern of different samples in a given tissue. Each sample is represented
as a dot; color indicates the tissue. Dots distance represents transcriptional profile
similarity: the closer they are in the plane, the more similar is their transcriptional
profile.

known to be required for histone H3 phosphorylation, necessary for chromo-
somal passenger complex accumulation at centromeres of mitotic cells [10,34].
In addition to its chromosomal association, it is associated with centrosomes and
spindles during mitosis. The overexpression of this gene is related to a delayed
progression through early mitosis [10].

Functional enrichment analysis was carried out for the deregulated IGs in all
the studied diseases (Appendix Table 2). GBM is the disease with the most DE-
IGs and with the most diverse functional roles for the induced genes. The GBM-
specific enriched terms are pathways of neurodegeneration, cell-cell adhesion, and
gland development. The cancer-specific enriched terms chaperone-mediated pro-
tein folding and regulation of neuron apoptotic processes were found for esoph-
agus and colon cancers, respectively. Further, the Reactome pathways R-HSA-
321481 deacetylases histones (HDACs) and R-HSA-3214858 RMTs methylate
histone arginines were also enriched in IGs while the GO:0006335 term DNA
replication-dependent chromatin assembly was also enriched suggesting an essen-
tial role in cancer biology.



316 K. Aviña-Padilla et al.

BLCA

BRCA

C
O

AD

ESCA

GBM
KIRK

LU
AD

PRAD

Fig. 3. Upregulated IGs across the analyzed cancer genomes. The Circos plot
depicts how upregulated genes for each cancer overlap. On the outside shell, each arc
represents a cancer genome: BLCA in red, BRCA in blue, COAD in green, ESCA in
purple, GBM in orange, KIRC in yellow, LUAD in brown, and PRAD in pink. On the
inside shell, the dark orange color represents the proportion of upregulated genes shared
with other cancers, while the light orange color represents the proportion of genes that
are uniquely upregulated in a cancer. Purple arcs represent shared upregulated genes,
the greater the number of arcs and the longer the dark orange area imply a greater
overlap among the upregulated IGs across cancers. (Color figure online)

2.4 IG Downregulation Is Conserved in Breast and Colon Cancers
and Is Involved in Signaling and Cell-Specific Functions

When comparing the downregulated IGs and their enriched functional terms
among the diseases, it was pointed out that the breast and colon cancers share
all the repressed IGs with their functional pattern. Downregulated genes in those
cancers are involved in the regulation of cellular localization, sensory organ devel-



Intronless Genes Across Cancers 317

opment, regulation of membrane potential, adipogenesis, epithelial to mesenchy-
mal transition in colorectal cancer, growth, actin filament base process, positive
regulation of cell death, class A/1 (rhodopsin-like receptors) and the regula-
tion of secretion by cell biological processes (Appendix Table 2). Notably, the
most shared downregulated pathway among cancer genomes is the regulation
of anatomical structural size, shared among BRCA, PRAD, GBM, LUAD and
BLCA tumors. Additionally, unique roles are found in lung and prostate cancers.
They have downregulated genes involved in the vitamin D receptor pathway and
the wounding response, respectively.

2.5 Cancer-Specific Differentially Expressed IGs

To study the specificity in the regulation of human IGs, we quantified the number
of cancer-specific DE-IGs (Fig. 4). We also built a bipartite network to identify
cancer-specific and shared deregulated IGs, where upper nodes represent DE-
IGs and bottom nodes represent cancer types. We link an IG to a cancer if it
was found to be deregulated in that cancer (Appendix Fig. 9). Among the 338
DE-IGs, we identified that 35% were specific for a cancer type (Appendix Table
3). GBM followed by KIRC and PRAD with 35, 18, and 16 DE-IGs, respectively,
displayed the highest specificity for IG expression.

GBM. Among the specific DE-IGs found in GBM, an evident functional
enriched first group includes mainly cellular proliferation and cytoskeleton-
related genes. An enrichment of microtubule-based movement, transport
along the microtubule, cytoskeleton-dependent intracellular transport and
microtubule-based transport is identified (FDR = 0.0132). Moreover, the sec-
ond group of specific deregulated genes is enriched in functions related to tumor
suppression, a negative regulatory mechanism of cell growth control, which usu-
ally inhibits tumor development. We identified GBM-specific deregulated genes
with crucial involvement in the p53 pathway, such as KLLN, INSM2 and SFN.

KIRC. The cancer-specific deregulated IGs in KIRC include the tissue-specific
KAAG1 gene (kidney-associated antigen 1) along with the transcription factors
POU5, TAL and bHLH. Moreover, transmembrane proteins such as the proto-
cadherin beta 10 (PCDH10 ), related to the Wnt signaling, were also upregulated.
PCDH10 has been classified as a tumor suppressor in multiple cancers. It induces
cell cycle retardation and increases apoptosis by regulating the p53/p21/Rb axis
and Bcl-2 expression [19].
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Fig. 4. Shared and unique differentially expressed IGs across cancers. Circa
plot depicts the number of shared DE-IGs across the 8 types of tumors under study.
In the left hemisphere, the total number of DE-IGs in each cancer is represented by an
arc: BLCA (red), BRCA (orange), COAD (yellow), ESCA (light green), GBM (green),
KIRC (turquoise), LUAD (light blue), and PRAD (dark blue). The unique (fuchsia) and
shared (purple) groups are depicted in the right hemisphere. The inner arcs represent
the distribution of the DE-IGs in each cancer, while the outside arcs represent the
intersection of both hemispheres on a scale of 0–100%. Data was obtained from the
TCGA database. (Color figure online)

PRAD. IGs specifically downregulated in PRAD include RAB6D (member
RAS oncogene) and MARS2 (methionyl-TRNA Synthetase 2) related to amino
acid metabolism, while PBOV1, a 135 amino acid protein with a transmem-
brane domain was highly upregulated (logFC = 3.1699). This gene was mapped
to 6q23-q24, a region associated with loss of androgen dependence in prostate
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tumors [3]. Other upregulated IGs include transcription factors such as FOXB2
(Forkhead Box B2) and ATOH1 a bHLH, which is associated with goblet cell
carcinoid and Merkel cell carcinoma diseases [33]. Moreover, FRAT2, an essential
positive regulator of the Wnt signaling and LENG9, a member of the conserved
cluster of receptors of the leukocyte-receptor complex (LRC ) were also upregu-
lated [26].

BRCA. Few cancer-specific differentially expressed IGs that code for TFs were
identified for BRCA, while specific gene expression is more abundant for trans-
membrane proteins in this cancer, as is the case of a group of glycoproteins and
transmembrane receptors involved in signal transduction. For instance, upreg-
ulation of PIGM (phosphatidylinositol glycan anchor biosynthesis class M),
GP5 (glycoprotein V platelet), CALML5 (calmodulin-like 5), coiled-coil domain-
containing proteins CCDC96 and CCDC87 were identified specifically for this
cancer.

LUAD. Regarding the specific differential expression found for lung tumors,
the following TFs are significantly upregulated: TAF1L, a transcription factor
that is related to chronic inflammatory diseases by regulating apoptotic path-
ways including regulation of TP53 activity, and FOXE1, a forkhead TF previ-
ously related to thyroid cancer [11]. Interestingly, specific transmembrane sig-
naling receptors are upregulated. MAP10 is a microtubule-associated protein
and THBD, a thrombomodulin endothelial-specific type I membrane receptor
that binds thrombin. Among THBD related pathways are collagen- and fibrin
clot formation as well as calcium ion binding and cell surface interactions at the
vascular wall.

BLCA. In BLCA, only ZXDB (Zinc Finger X-Linked Duplicated B) TF is iden-
tified as specifically deregulated. Transcripts for signal transduction proteins are
specifically upregulated for OR52E8 (Signaling by GPCR), LRRC10B (Leucine-
Rich Repeat Containing 10B) and MAS1L, a proto-oncogene which is a peptide
ligand-binding receptor linked to sensor neurons for pain stimuli detection.

ESCA and COAD. No specific TFs are specifically differentially expressed
for colon and esophageal cancer. Gastrointestinal adenocarcinomas of the tubu-
lar gastrointestinal tract, including esophagus, stomach, colon, and rectum,
share a spectrum of genomic features, including TF-guided genetic regulation
[28]. In agreement with this, we found that transmembrane proteins related to
GPCR signaling pathways are specifically undergoing differential expression for
both cancers; for instance, in colon, GPR25 (G protein-coupled receptor 25),
CCDC85B (coiled-coil domain containing 85B), CCDC184 (coiled-coil domain
containing 184), SPRR1A (small proline-rich protein 1A), PROB1 (proline-rich
essential protein 1). Meanwhile, for esophagus tumors, OR51B4 related to sig-
naling by GPCRs and LDHAL6B involved in glucose metabolism and respiratory
electron transport were identified.
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Remarkably, when comparing IGs deregulation across the eight cancer types,
we identified that ESCA and LUAD shared 93% of the DE-IGs, while BRCA,
BLCA, COAD, PRAD and KIRC shared more than 86% at least with another
cancer. Finally, and presumably given its “multiforme” nature, GBM is the
cancer type identified with a significant but lesser percentage of shared DE-
IGs (79%). Notwithstanding, our results show that GBM represents the tumor
where the IGs have more differential expression, specificity and concerted func-
tional roles. This could be explained due to their gene expression tissue-specific
relevance in the brain.

2.6 Proteins Encoded by Cancer-Specific Deregulated IGs Interact
with Distinct Groups of Proteins in PPI Networks

Gene expression is a phenomenon where coupled biochemical interactions take
place to transcribe mRNA for protein production. There is a high regulation in
the balance of this event. Hence differences in protein composition, production
or abundance are a consequence of disruptions in cell phenotypes. The differen-
tial expression pattern of the mRNA is key in determining a cell state at the
molecular and physiological level [1]. It has been shown that genes involved in
“similar diseases” share protein-protein interactions (PPI) and higher expression
profiling similarity [12].

To determine if the DE-IGs play a crucial role in inhibiting or exacerbating
biological reactions at a physical level, we obtained the Protein-Protein Inter-
actions (PPIs) with highest confidence (according to STRING database) where
DE-IGs for each cancer are involved. Our results show that a considerable pro-
portion of proteins encoded by DE-IGs in each cancer interacts with specific
groups of proteins, due to the low percentage of PPIs that are shared between
two or more cancers (Fig. 6). In this analysis, we will consider that an interaction
is shared between cancers if a DE-IG in one cancer is also deregulated in another
cancer, and the interaction of the IG-encoded protein with another protein is
reported by STRING, otherwise, we classify that interaction as cancer-specific.

For instance, 100% of the interactions found in LUAD are cancer-specific,
followed by the high specificity of interactions found in ESCA (99.3865%) with
only a unique shared PPI of centromere complex with BLCA (HIST1H2BJ,
CENPA). GBM has a similar pattern with 95.8333% of unique interactions and
only 19 shared ones. In BLCA, 59.16% of the analyzed PPI are specific to this
cancer type. PRAD is a condition that possesses 53.1339% cancer-specific inter-
actions and COAD has 42.1455%. For BRCA, 30.62% of its interactions are only
found in this cancer, the lowest fraction of unique interactions. KIRC has the
second-lowest with only 31.55% of unique interactions.

If two cancers share PPIs related to the cancer-specific DE-IGs, there could
be an underlying affected process characteristic for such diseases. To determine
those specific processes, protein complexes involved in shared interactions were
examined, finding that most of the identified proteins belong to families of core
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histones. Overall, the analyzed PPIs indicate a very distinct pattern of interac-
tomics for each cancer. The tumors that share the greatest proportion of PPIs are
breast and colon, exhibiting 145 common interactions which represents 44.61%
of all interactions identified for such diseases. The second higher similarity found
is for prostate and kidney tumors, sharing 227 interactions (28.64% of all). The
rest of the tumors share at most 21.32% interactions (Appendix Fig. 13 and
Appendix Table 4).

These cancer-specific interactions were analyzed deeper to delve into their
functional role in each cancer (Appendix Fig. 14). As it could be expected due
to their high specificity at the PPI level, this network approach shows specific
and defined clusters for glioblastoma (Fig. 5b) and lung (Fig. 5d). In less-defined
clusters, esophageal and bladder cancer can be observed in panels e) and f). In
contrast, in the case of prostate, bladder and kidney tumors, the interactions are
linked by common DE-IGs in a cluster. On the other hand, we identified that
the communities in the network are defined primarily by the type of proteins.
Functional enrichment shows specific biological processes intrinsic to the phys-
ical interactions implied for the genes in each cancer (Appendix Fig. 14). For
instance, proteins involved in BLCA-specific PPIs are conducting mainly chro-
matin organization and DNA repair reactions, while in colon tumors, proteins
play a concerted role in the regulation of transcriptional processes. In keeping
with this, in esophageal tissue, the interactors are involved in the regulation
of different classes of non-coding RNAs. Meanwhile, in glioblastoma and lung
tumors, proteins are specifically interacting for splicing activity and transcrip-
tion initiation processes, respectively. Kidney and prostate tumors show specific
protein-protein interactions for DNA-replication and protein-protein complex
formation, and DNA organization and packaging. In contrast, proteins with spe-
cific interactions in breast tumors, have an important activity linked to cellular
growth and apoptotic processes.

Intrinsic of the PPI networks is the topological information capable of char-
acterizing cancer proteins [16]. Surprisingly, our comparison of IGs with their
physical interactors at a protein-protein level shows a tendency to lower between-
ness centrality, lower degree and a few interactions with other IGs. Therefore,
even though IGs are not hubs in the network of interactions where they par-
ticipate, changes in their regulatory role can cause a cascade of disruptions in
interactions that might lead to malignancy.

Altogether, these results indicate opposite patterns to those reported for
cancer genes, which suggest that the behavior tendency of IG proteins is to
interact with oncogenic genes [16].

For a closer approach, the nearest fifty interactors of the DE-IG encoded pro-
teins in each cancer were analyzed. In Fig. 6 we can observe that cancer-specific
DE-IG encoded proteins interact with specific groups of proteins in distinct can-
cers, suggesting that DE-IGs affect particular post-transcriptional processes.

The most important protein complexes for each type of cancer were deter-
mined for cancer-specific deregulated IGs and their interactors (Appendix Table
5). In total, we detected 27 protein complexes where cancer-specific DE-IGs and



322 K. Aviña-Padilla et al.

Fig. 5. Protein-protein interaction network of DE-IGs and their 50 closest
interactors across cancers. a) Unique and shared PPI across cancer are shown,
each cancer has a specific color for its interactions. Close-ups of the biggest and more
isolated clusters in the network are presented: b) GBM, c) PRAD, d) LUAD, e) ESCA,
and f) BLCA. PPI data was retrieved from the String database.

their interactors are found. Colon cancer is the disease containing more DE-IGs
in the same complex: 9 out of 13 corresponding to the disassembly of the beta-
catenin Wnt signaling pathway. Bladder DE-IGs are interacting mainly with the
proteins of the CD40 signaling pathway and are involved in multi-multicellular
organism processes. Likewise colon, breast cancer-specific IGs are related to Wnt
signaling pathway, but also to follicle-stimulating hormone signaling.

Glioblastoma-specific proteins have a major participation in splicing and
vesicle transport. Kidney’s are more related to regulation of feeding behavior.
Esophageal’s IGs are involved in protein folding, and tRNA and ncRNA pro-
cessing. Lung cancer proteins participate in transcription preinitiation complex
assembly, as well as in the BMP signaling pathway. Prostate cancer DE-IGs are
found mainly related to chromatid sister cohesion and translation and postrans-
lation processes. The protein complex related to Wnt signaling pathway is asso-
ciated with a large group of deregulated genes among Bladder, Breast, Colon,
Kidney and Glioblastoma, being a total of 17 IGs with disrupted expression.

2.7 DE-IGs Participate in the Genetic “rewiring” of Cancer Cells

Cancer cells undergo significant genetic “rewiring” as they acquire metastatic
traits and adapt to survival in multiple environments with varying nutrient avail-
ability, oxygen concentrations and extracellular signals. Therefore, to effectively
treat metastatic cancer, it is important to understand the strategies that can-
cer cells adopt during the metastatic process. Finally, we focus on studying the
“rewiring” between healthy and tumor samples using BRCA as a model (Fig. 7).
We used breast cancer since it is the only dataset that fits the criteria for a mutual



Intronless Genes Across Cancers 323

Fig. 6. Multilayer networks of IG-encoded proteins and their cancer-specific
interactors. Protein-protein interactions were found for deregulated IGs in each can-
cer. The cancer-specific deregulated IGs that encode for proteins interact with exclusive
groups of proteins in each cancer. Upper layer shows deregulated IGs across cancer,
highlighting the cancer-specific upregulated (in red) and downregulated IGs (in blue).
Links to the bottom layer connect IG-encoded proteins to proteins found in PPIs by
STRING. Yellow links highlight interactions that can be affected by deregulation of
IGs in a specific type of cancer. (Color figure online)

information analysis (at least 100 samples for each condition are required).
A network of DE-IGs and their co-expressed genes was built and analyzed for
each condition. Our results show that the tumor co-expression network is com-
posed of a total of 62,462 interactions among 15,347 genes, while the healthy net-
work has 13,037 genes with 45,941 interactions. There are only 9,615 interactions
shared between the two network topologies. All the differences between these two
networks are potential rewiring-caused co-expression interactions that may be
part of the mechanism that BRCA cells follow to achieve the characteristics of
their phenotype. For instance, as seen in Fig. 7, IGs like RRS1, FNDC10, EPOP
and NND are highly affected by this “rewiring” behavior in cancer. According
to differential expression and network analysis, we observe that histones play
a key role in rewiring the co-expression mechanism from healthy to cancer tis-
sue. Examples of this are H2AW and H2BC8, which are core histones that have
only few healthy tissue-specific interactions that are almost lost during cancer
development, which creates many new interactions with other genes.



324 K. Aviña-Padilla et al.

Fig. 7. Co-expression network of healthy and tumoral breast tissue. In this
network, the co-expression of DE-IGs found in BRCA in healthy tissue (depicted by
brown links) and breast tumor tissue (purple links) is shown. Shared co-expression
relations are depicted with green links. Pie charts for IG nodes of a higher degree are
shown. Each of them indicates the percentage of each type of interaction: in purple
tumor-specific interaction, in brown healthy-specific interaction, in green conserved
interaction. We can see the effect of rewiring by observing that a high percentage of
interactions that are present in healthy tissue is not observed in tumor tissue. Moreover,
many more new interactions emerge in the tumor tissue. (Color figure online)

3 Discussion

Here, we present a comprehensive analysis of differentially expressed Intronless
genes (IGs) across eight cancers using a standardized bioinformatics pipeline. We
uncover signature changes in gene expression patterns of IGs such as enhanced
expression changes when compared to multi-exon genes, unique and shared
transcriptional signatures among different cancer types, and association with
specific protein-protein interactions that might have potential effects in post-
transcriptional processes.
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Our results show that IGs tend to have tissue-specific transcriptional profiles
in normal tissues. In the case of cancers, the upregulated IGs were related to
negative regulation of gene silencing and negative regulation of cell differenti-
ation. Furthermore, we found a core set of chromatin-modifying genes such as
HASPIN and Histone deacetylases (HDACs), located on chromosome 6, that
were upregulated across all the analyzed cancers. We can observe in Fig. 4 that
the expression of these genes in cancer differentiate from that of normal tissue
in most of the cases, indicating deregulation in the diseased phenotype. On the
other hand, the distinct expression among healthy tissues is evident, this may
suggest that these histone-related genes present tissue-specific expression levels.

Although the pattern of DE-IGs was found to be not specifically shared
across the different tumor types, highlighting their specificity modulating cancer
signaling and proliferative pathways. For example, beta-catenin Wnt signaling
was regulated in kidney and prostate tumors while GPCR signaling critical to
inflammation [6,22,23] was regulated in gastrointestinal esophageal and colon
adenocarcinomas, and p53 pathways.

This biological behavior could be due to the tumor’s cellular origin and
heterogeneity [15], and tissue-specific expression [4,13]. Due to their remark-
able heterogeneity, glioblastoma, prostate, and kidney tumors were found with a
less representative shared behavior in the upregulation of IGs. Notably, glioma
tumors are the malignant microenvironment where IGs showed the most char-
acteristic gene expression regulation profile with 35 unique DE-IGs, more than
50% greater than other cancers. Notwithstanding, our results show that GBM
represents the tumor where the IGs have more differential expression, specificity
and concerted functional roles. This could be explained due to the “multiforme”
nature of GBM that is driven by brain-specific gene expression as is further
evidenced by least shared DE-IGs (79%) with other cancers [15].

In conclusion, IGs drive massive transcriptional rewiring, as observed in co-
expression analysis, that may drive tumorigenesis and may represent novel ther-
apeutic targets for gene therapy and in-silico drug design such as the popu-
lar GPCRs or emerging HDAC inhibitors [9]. Although we focus on 8 cancers
based on their heterogeneity and aggressivity, we expect that using our anal-
ysis paradigm, IGs may also display characteristic expression profiles in other
cancers.

4 Materials and Methods

4.1 Data Extraction and Curation for IG, and MEG Datasets

Data was extracted using Python scripts (https://github.com/GEmilioHO/
intronless genes), and the Application Programming Interface (API). Homo sapi-
ens genome was assembled at a chromosome level and was accessed at the
Ensembl REST API platform (http://rest.ensembl.org/ accessed using Python

https://github.com/GEmilioHO/intronless_genes
https://github.com/GEmilioHO/intronless_genes
http://rest.ensembl.org/
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with the ensembl rest package). The pipeline process was as follows: protein-
coding genes with CDS identifiers for transcripts for all chromosomes were
retrieved and classified into two datasets named “single-exon genes” (SEGs),
and “multiple exon genes” (MEGs) depending on exon and transcript count.
The SEG dataset was submitted to the Intron DB comparison (http://www.
nextgenbioinformatics.org/IntronDB) to separate those with UTR introns and
referred to as uiSEGs. The output of the pipeline was a third dataset containing
only intronless genes (IGs). After data extraction, a manual curation step in the
IG and uiSEG datasets was followed to discard incomplete annotated protein
sequences and mitochondrial encoded proteins. The final IG dataset contained
940 protein-coding genes with only one exon and one transcript.

4.2 Gene Expression Profiles in Healthy Tissue Tissue

The 424 collected samples of IGs expression (see Sect. 4.4) were scattered in
a plane (Fig. 2) by using t-SNE algorithm, which takes samples in a high
dimensional space (defined as the expression level of the IGs) and returns a
two-dimensional representation where two samples are close if their expression
patterns are similar. This process was performed using the Scikit-learn python
package [29].

4.3 Bipartite Network and Quantification of Shared and Unique
DE-IGs

The bipartite network was constructed with upper nodes representing IGs and
bottom nodes representing cancer types. We place links connecting each IG
to the cancer types where such a gene is differentially expressed (DE). Nodes
corresponding to genes in the bipartite network were sorted by degree aimed to
visually identify intronless genes cancer-specific deregulated, and those whose
expression is disrupted in most of the diseases.

Quantification of shared and cancer-specific deregulated IGs is computed by
identifying the number of deregulated IGs in every pair of cancers, and dividing
such quantity by the total of the disrupted genes in any of the compared diseases,
this metric is known as the Jaccard similarity coefficient. The results are reported
as a heatmap.

4.4 Data Source and Differential Expression Analysis Across
Cancer

Currently, the (The Cancer Genome Atlas) TCGA possesses data for the study
of 37 different tumor types. We selected 8 types of cancer primary malignant
tumors and their respectives adjacent tissues for the present study. Gene expres-
sion data from patients for BRCA, BLCA, COAD, ESCA, GBM, KIRC, LUAD

http://www.nextgenbioinformatics.org/IntronDB
http://www.nextgenbioinformatics.org/IntronDB
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and PRAD cancers was downloaded from the NIH website (https://portal.gdc.
cancer.gov/) using the TCGAbiolinks R package [7] with the following restriction
criteria: samples types primary tumor and solid tissue normal (control); results of
RNAseq experimental strategy; and workflow type HTSeq-counts format. Dif-
ferential expression analysis was carried out using the TCGAutilis R package
[25], indicating which of the obtained samples correspond to tumors and which
to control, and establishing a filtering threshold of FDR = 0.05 and logFC =
1 (absolute value) to consider a gene significantly differentially expressed. For
comparative analysis, normal healthy tissue data was obtained from the dataset
gtex v8 of the GTEx Portal in June 2020 by using the GTEx API. We found
gene expression data for 424 IGs in 13 different tissues: bladder (21 samples),
brain cerebellum (241), brain cortex (255), brain hippocampus (197), breast
mammary tissue (459), colon sigmoid (373), colon transverse (406), esophagus
gastroesophageal junction (375), esophagus mucosa (555), esophagus muscularis
(515), kidney cortex (85), lung (578), and prostate (245).

4.5 Upregulation Significant Differences of IGs and MEGs Among
Cancers

We obtained a dataset of all significantly upregulated IGs and MEGs for each
type of cancer studied, in these datasets we compared IGs and MEGs gene
expression employing Python scripts using a hypergeometric test. In order to find
significant differences in upregulation between IGs and MEGs, the Wilcoxon test
was carried out for each type of tumor. Additionally, to confirm that the datasets
fulfilled all assumptions a Levene’s test was performed for each individual cancer
data set.

4.6 Functional Enrichment Analysis of Differentially Expressed IGs

The functional enrichment was conducted using the over-representation analy-
sis of the functional assignment (ORA). Genes with differential expression up
to one log2-fold change values were considered as up-regulated with a p- and
q-value set at 0.05 and 0.10, respectively. First, the functional enrichment of the
338 differentially expressed human IG proteins (up-regulated and downregulated
separately) was performed using all human IGs proteins as a background “uni-
verse” (selecting input as species: Homo sapiens, universe 940 human IGs). The
comparative functional enrichment analyses were performed using Metascape
(https://metascape.org/) for the biological process category, including KEGG
and Reactome pathways. To delve insight into the role of specific IGs in the
affected biological processes ORA was assessed to determine category barplots.
The Circos software [20] was employed for data analysis and visualization.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://metascape.org/
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4.7 DE-IGs PPI Network Construction and Protein Complex
Identification

Network analysis and visualization were performed using python scripts (See
repository https://gitlab.com/jarr.tecn/de-igs-cancers/-/tree/master) and the
Gephi software. STRINGDB platform [32] was used to download physical and
functional interactions data. The highest confidence scores (0.9) were filtered
for this study, keeping the most probable interactions. Then, interactions were
requested for the set of unique DE-IG of each cancer type, downloading rela-
tions between those genes, and also their interactors in the first shell (up to 50
interactors). All this data is assembled into a single network. Network metrics
such as degree distribution, closeness, and betweenness centralities were com-
puted using Python networkx library [14]. For protein complex detection, we
assumed that highly clustered nodes in the PPI network correspond to protein
complexes. Therefore, 27 protein complexes were predicted using the Louvain
method to find communities implemented in Gephi.

4.8 BRCA Network Deconvolution

Co-expression networks were inferred using ARACNe-AP [21], a mutual
information-based tool for gene regulatory network deconvolution. In this anal-
ysis, we used separated submatrices for healthy and tumor tissue and the list
of every DE-IG in the BRCA dataset. For this study, a p-value of 1× 10-8 was
set up and 100 bootstraps were carried out. Then, they were consolidated into
a single network, getting an inferred co-expression network for each condition.
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Fig. 8. Upregulated gene expression levels among cancers. A violin plot is
shown for each cancer type, separated by gene type (IGs or MEGs); expression levels
are shown on the y-axis using log2fold change values. The p-value for the Wilcoxon
test is shown in order to indicate the statistical difference between both populations.
Cancer types with asterisk represent those datasets that meet all the assumptions of
the Wilcoxon test for this comparison. Levene’s test was performed to measure shape
similarity between IG and MEG groups. Only up-regulated genes log fold change equal
or greater than 1 are selected.

Fig. 9. IG-cancer type bipartite network. Intronless genes are shown in the upper
group of nodes, while cancers are located in the bottom group. A link joining an IG
and a cancer type indicates that the expression level of the IG is found disrupted
in the linked cancer type. Upper nodes are color-sorted by their cancer specificity:
genes deregulated in a single cancer are shown at the left in blue, followed by genes
deregulated in two cancers, three cancers, and so on. At the right of the upper nodes,
there is a single gene (HASPIN ) whose expression is disrupted in all tissues. In general,
all histones are deregulated in almost all cancers. (Color figure online)
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Fig. 10. A high conserved group of up-regulated histones across tumors.
Circa plot depicts the conservation of the deregulation of a group of histones across
cancers. In the upper hemisphere, the total number of histone-related DE-IGs in each
cancer is represented by an arc: GBM (yellow), ESCA (mustard), COAD (orange),
BRCA (dark orange), BLCA (red), PRAD (pink), LUAD (violet), and KIRC (purple).
Histone encoded IGs are depicted in the lower hemisphere. The inner arcs represent the
distribution of the histones in each cancer (0–13 genes), while the outside arcs represent
the tumors that have that particular gene upregulated (on a scale of 0–100%). Data
was obtained from the TCGA database. (Color figure online)
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Fig. 11. Expression of histones among tumors and normal tissues. Heatmap
depicting a comparison of the expression of the 13 histone-related genes identified with
upregulated conserved expression among the studied cancers. The expression of each
gene is shown for each type of tumor (T), as well as its expression in normal tissue from
GTEx data (N). The color key from darker to light indicates low to high transcript per
million (TPM) values.

Fig. 12. Comparison of genome location of highly conserved DE-IGs. a)
Genome location of IGs in the human genome. b) Genome location of highly conserved
DE-IGs IGs encoded proteins are represented by red dots. The purple lines indicate
regions where these genes are statistically enriched, compared to the density of genes
in the background. The hypergeometric test is used to determine if the presence of the
genes is significant. Essentially, the genes in each region define a gene set/pathway. The
chromosomes may be only partly shown as the last gene’s location to draw the line is
used. Data was obtained from the ENSEMBL database.
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Fig. 13. Shared PPI heatmap. Color intensity indicates a higher percentage of
shared PPI related to DE IGs of the compared diseases. LUAD does not share any DE
IG interaction with other cancer types, and ESCA only one with BCLA. GMB shares
almost no interaction with any other cancer (a maximum of 1.64% with BLCA). COAD
and BRCA are the two cancers where more DE IGs are shared, therefore having more
interactions in common.

Fig. 14. PPI networks ontologies. FDR is calculated based on nominal p-value
from the hypergeometric test. Fold Enrichment is defined as the percentage of genes
in each cancer belonging to a pathway, divided by the corresponding percentage in the
background. FDR indicats how likely the enrichment is by chance. In x-axis the Fold
Enrichment indicates how drastically genes of a certain pathway are overrepresented.
FDR values are depicted red (high) to blue (low). (Color figure online)
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Table 1. Available expression data for each type of cancer

Cancer type Primary solid
tissue samples

Solid tissue
normal samples

BLCA 414 19

BRCA 1102 113

COAD 478 41

ESCA 161 11

GBM 156 5

KIRC 538 72

LUAD 533 59

PRAD 498 52

Table 2. Gene Ontology (GO) enrichment of deregulated IGs for each cancer

Upregulated IGs

GO Description Log10P
BLCA BRCA COAD ESCA GBM KIRC LUAD PRAD

GO:0061077 Chaperone-mediated protein
folding

0.00 0.00 0.00 −3.54 0.00 0.00 0.00 0.00

GO:0043523 Regulation of neuron
apoptotic process

0.00 0.00 −3.41 0.00 0.00 0.00 0.00 0.00

GO:0000280 Nuclear division 0.00 0.00 0.00 0.00 0.00 0.00 −3.40 0.00

GO:0000904 Cell morphogenesis involved
in differentiation

0.00 0.00 0.00 0.00 0.00 0.00 −3.68 0.00

GO:0030900 Forebrain development 0.00 0.00 0.00 0.00 0.00 0.00 −2.19 0.00

GO:0002009 Morphogenesis of an
epithelium

0.00 0.00 0.00 0.00 0.00 −2.73 −3.17 0.00

R-HSA-
420499

Class C/3 (Metabotropic
glutamate/pheromone
receptors)

0.00 0.00 0.00 0.00 0.00 −3.50 0.00 0.00

GO:0008285 Negative regulation of cell
population proliferation

0.00 0.00 0.00 −2.68 −4.14 0.00 −2.46 0.00

GO:0007423 Sensory organ development −2.60 0.00 0.00 0.00 −5.21 0.00 −2.38 0.00

hsa05022 Pathways of
neurodegeneration - multiple
diseases

0.00 0.00 0.00 0.00 −3.00 0.00 0.00 0.00

GO:0045669 Positive regulation of
osteoblast differentiation

0.00 0.00 0.00 0.00 −3.79 0.00 0.00 0.00

GO:0098609 Cell-cell adhesion 0.00 0.00 0.00 0.00 −2.57 0.00 0.00 0.00

GO:0048732 Gland development 0.00 0.00 0.00 0.00 −4.33 0.00 0.00 0.00

GO:1903706 Regulation of hemopoiesis 0.00 −2.54 0.00 −2.08 −3.87 −2.13 0.00 0.00

GO:0045596 Negative regulation of cell
differentiation

0.00 −2.02 −2.12 −2.33 −2.34 −2.23 0.00 0.00

GO:0016570 Histone modification −2.34 −2.14 0.00 −2.37 −3.26 0.00 −2.19 −3.94

GO:0007517 Muscle organ development −3.88 0.00 0.00 −2.74 −2.82 −2.20 −2.56 0.00

R-HSA-
3214815

HDACs deacetylate histones −10.77 −12.90 0.00 −9.84 −5.83 −9.04 −3.25 −15.15

R-HSA-
3214858

RMTs methylate histone
arginines

−5.62 −7.73 0.00 −7.63 −4.60 −8.42 −2.90 −8.98

GO:0006335 DNA replication-dependent
chromatin assembly

−2.26 −4.69 0.00 −3.15 −2.65 −5.06 0.00 −4.32

Downregulated IGs

GO Description Log10P
BLCA BRCA COAD ESCA GBM KIRC LUAD PRAD

GO:0060341 Regulation of cellular
localization

0.00 −3.03 −3.03 0.00 0.00 0.00 0.00 0.00

GO:0007423 Sensory organ development 0.00 −2.85 −2.85 0.00 0.00 0.00 0.00 0.00

GO:0042391 Regulation of membrane
potential

0.00 −4.93 −4.93 0.00 0.00 0.00 0.00 0.00

WP236 Adipogenesis 0.00 −4.11 −4.11 0.00 0.00 0.00 0.00 0.00

WP4239 Epithelial to mesenchymal
transition in colorectal cancer

0.00 −3.87 −3.87 0.00 0.00 −3.26 0.00 0.00

GO:0040007 Growth 0.00 −5.90 −5.90 0.00 0.00 −2.70 0.00 −3.01

GO:0030029 Actin filament-based process −2.04 −2.08 −2.08 0.00 0.00 0.00 0.00 −4.23
(continued)
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Table 2. (continued)

Upregulated IGs

GO Description Log10P
BLCA BRCA COAD ESCA GBM KIRC LUAD PRAD

GO:0010942 Positive regulation of cell
death

−2.04 −2.08 −2.08 0.00 0.00 0.00 0.00 −3.01

GO:0090066 Regulation of anatomical
structure size

−2.70 −8.04 −8.04 0.00 −3.49 0.00 −2.44 −2.57

R-HSA-
373076

Class A/1 (Rhodopsin-like
receptors)

0.00 −2.36 −2.36 0.00 −3.90 0.00 −4.62 −2.16

GO:0042752 Regulation of circadian
rhythm

0.00 0.00 0.00 0.00 −2.77 0.00 0.00 0.00

GO:0009725 Response to hormone 0.00 0.00 0.00 0.00 −3.11 −2.70 0.00 0.00

GO:0043269 Regulation of ion transport −2.70 0.00 0.00 0.00 −3.49 0.00 0.00 0.00

GO:0007193 Adenylate cyclase-inhibiting
G protein-coupled receptor
signaling pathway

−2.66 0.00 0.00 0.00 −3.01 0.00 −3.41 0.00

GO:1903530 Regulation of secretion by
cell

−2.58 −2.62 −2.62 0.00 −3.30 0.00 0.00 0.00

GO:0008285 Negative regulation of cell
population proliferation

0.00 0.00 0.00 0.00 0.00 −2.16 0.00 0.00

GO:2000027 Regulation of animal organ
morphogenesis

0.00 0.00 0.00 0.00 0.00 −2.84 0.00 0.00

GO:0030162 Regulation of proteolysis 0.00 0.00 0.00 0.00 0.00 −3.98 0.00 0.00

GO:0009611 Response to wounding 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nan

WP2877 Vitamin D receptor pathway 0.00 0.00 0.00 0.00 0.00 0.00 −3.04 0.00

Table 3. Cancer-specific deregulated genes

Cancer Cancer-specific deregulated genes Number
of genes

BLCA ZXDB, TRIL, ZXDA, FTHL17, OR52E8, LRRC10B,
KRTAP2-3, ERVV-1, MAS1L, OXER1, HDGFL1

11

BRCA CALML5, CCDC87, CAPZA3, GP5, ASCL4, MOCS3,
PKDREJ, H4C12, MTRNR2L8, CCDC96, PIGM

11

COAD CCDC85B, KRTAP3-3, PROB1, HNRNPA1L2, CCDC184,
MAGEH1, GPR25, P2RY4, SPRR1A, KCNA10, DUSP21,
KRTAP1-1, RTL8B

13

ESCA LDHAL6B, IFNE, OR51B4, H2AC14, RNF225, CTAGE15 6

GBM PPIAL4A, RAP2B, SOX3, ANKRD63, SPPL2C,
ANKRD34C, ATOH7, CSNK1A1L, TTC30A, H3C14,
OR14I1, IRS4, SF3B5, PPP1R2B, FFAR1, F8A3, KLLN,
MTRNR2L10, PGAM4, KLHL34, USP27X, MTRNR2L6,
SSTR4, EXOC8, H2AC19, ATP5MGL, GPR52, BLOC1S4,
INSM2, C6orf226, TTC30B, CENPB, SFN, SRY, MC4R

35

KIRC OR2A4, NPAP1, KRTAP5-8, TAS2R13, TSPYL6,
PCDHB10, DDI1, CTAGE9, POU5F2, TAL2, ELOA2,
TAS2R3, KLHDC7A, TAS2R30, RXFP4, KAAG1,
MAGEF1, EBLN2

18

LUAD GALNT4, FOXE1, THBD, TAF1L, PPP4R3C, MAP10 6

PRAD PBOV1, KRTAP13-2, KBTBD13, RAB6D, KDM4E,
H3C1, FRAT2, LENG9, CCDC54, CTAGE8, ATOH1,
IER5, FOXB2, MARS2, SUMO4, H1-6

16



Intronless Genes Across Cancers 335

Table 4. Shared PPIs. The first column contains pairs of cancers, followed by the
number of PPI related to unique DE IG of the compared diseases, finally, in the third
column is shown the percentage of shared interactions. Note that two cancer may share
more genes than other couples of genes but have a smaller percentage, this is due to a
difference in the total number of interactions associated with the compared tumors, for
example, PRAD and KIRK share 227 PPIs, representing a percentage of 28.64, while
COAD and BRCA have less common interactions (145) but a bigger percentage: 44.61.

Cancers Percentage of total interactions
in compared cancers

Interactions
shared

COAD, BRCA 44.62 145

KIRC, PRAD 28.65 277

KIRC, BRCA 21.32 132

KIRC, COAD 20.75 138

BLCA, KIRC 14.17 118

BRCA, PRAD 11.64 95

COAD, PRAD 10.94 95

BLCA, PRAD 9.35 95

BLCA, BRCA 7.48 43

BLCA, COAD 6.86 43

BLCA, GBM 1.65 14

PRAD, GBM 1.31 15

KIRC, GBM 0.91 9

BRCA, GBM 0.30 2

COAD, GBM 0.28 2

BLCA, ESCA 0.18 1

Table 5. Identified PPI complexes

Protein complex Enriched functions Cancers FDR

CD40 signaling
pathway

Regulation of protein monoubiquitination; Regulation of
CD40 signaling pathway

BLCA 1.80E−02

Multi-multicellular
organism process

Response to corticosterone;Multi-multicellular organism
process; Myeloid leukocyte differentiation; Positive
regulation of transcription by RNA polymerase II

BLCA 1.40E−05

Electron transport
chain

Mitochondrial electron transport, ubiquinol to cytochrome
c; Pons development; Pyramidal neuron development

BLCA 6.70E−03

Chromatid sister
cohesion

Positive regulation of maintenance of sister chromatid
cohesion; Positive regulation of maintenance of mitotic
sister chromatid cohesion; Regulation of maintenance of
sister chromatid cohesion

BLCA, PRAD 5.10E−05

Dendrite morphogenesis Positive regulation of dendrite morphogenesis; Regulation
of dendrite morphogenesis; Regulation of mitotic nuclear
division

BRCA 5.70E−04

tRNA modifications Protein urmylation; TRNA thio-modification; TRNA
wobble position uridine thiolation

BRCA 1.50E−10

Protein localization to
nucleolus

Ribosomal large subunit export from nucleus; Protein
localization to nucleolus

BRCA 5.50E−03

(continued)
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Table 5. (continued)

Protein complex Enriched functions Cancers FDR

Wnt signaling
pathways

Canonical Wnt signaling pathway; Wnt signaling
pathway; Cell-cell signaling by wnt

KIRC, COAD,
BRCA, BLCA,
GBM

3.90E−19

Follicle-stimulating
hormone signaling

Desensitization of G protein-coupled receptor signaling
pathway by arrestin;
Norepinephrine-epinephrine-mediated vasodilation
involved in regulation of systemic arterial blood pressure;
Follicle-stimulating hormone signaling pathway; Negative
regulation of multicellular organism growth

BRCA 6.50E−05

GPI anchor Preassembly of GPI anchor in ER membrane; GPI anchor
biosynthetic process; GPI anchor metabolic process

BRCA 3.40E−08

Hormone-mediated
apoptosis

Hormone-mediated apoptotic signaling pathway;
Somatostatin receptor signaling pathway; Somatostatin
signaling pathway; Positive regulation of T cell anergy

COAD 2.20E−02

Light stimulus Wnt signaling pathway, calcium modulating pathway;
Detection of light stimulus; Phototransduction

ESCA 1.10E−03

Vasodilatation Glutamate catabolic process to 2-oxoglutarate; Response
to transition metal nanoparticle; Negative regulation of
collagen biosynthetic process; Regulation of angiotensin
levels in blood; Angiotensin maturation

ESCA 2.10E−02

Protein folding Regulation of cellular response to heat; Chaperone
cofactor-dependent protein refolding; Inclusion body
assembly; de novo protein folding

ESCA 4.10E−08

Heart morphogenesis Coronary vein morphogenesis; Negative regulation of cell
proliferation involved in heart valve morphogenesis; Mitral
valve formation; Cardiac right atrium morphogenesis; Cell
proliferation involved in heart valve morphogenesis

ESCA 9.90E−03

tRNA and NcRNA
processing

TRNA 5 -leader removal; TRNA 5 -end processing;
NcRNA 5 -end processing; Endonucleolytic cleavage
involved in tRNA processing

ESCA 6.90E−03

Splicing U2-type pre-spliceosome assembly; MRNA 3 -splice site
recognition; Histone mRNA metabolic process;
Spliceosomal snRNP assembly

GBM 9.40E−07

Habituation Habituation; Nonassociative learning; Regulation of
glycogen (starch) synthase activity

GBM 1.20E−02

Vesicle transport Golgi to plasma membrane transport; Vesicle docking
involved in exocytosis; Vesicle docking; Exocytic process

GBM 8.50E−07

Intraciliary transport Intraciliary anterograde transport; Negative regulation of
myotube differentiation; Intraciliary transport

GBM 1.90E−02

Regulation of feeding
behavior

Positive regulation of feeding behavior; Regulation of
feeding behavior; Positive regulation of behavior;
Negative regulation of myotube differentiation

KIRC 5.00E−04

Transcription
preinitiation complex
assembly

RNA polymerase II preinitiation complex assembly;
Transcription preinitiation complex assembly

BLCA,
LUAD, GBM

2.90E−15

BMP signaling
pathway

Pharyngeal system development; Endocardial cushion
development; Positive regulation of bone mineralization;
Negative regulation of BMP signaling pathway

LUAD 8.80E−12

Innate immune
response

Innate immune response activating cell surface receptor
signaling pathway; Innate immune response-activating
signal transduction; Activation of innate immune response

LUAD 8.90E−13

Blood coagulation
system

Positive regulation of blood coagulation; Positive
regulation of hemostasis; Positive regulation of
coagulation

LUAD 6.30E+00

Translation and
postranslation
processes

Translation; Peptide biosynthetic process; Amide
biosynthetic process

PRAD 1.30E−03

Beta-catenin
destruction complex

Negative regulation of type B pancreatic cell
development; Superior temporal gyrus development;
Beta-catenin destruction complex assembly; Regulation of
type B pancreatic cell development; Beta-catenin
destruction complex disassembly

PRAD 4.10E−02
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