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Abstract The compensation of die surfaces to obtain parts that are dimensionally
accurate after springback involves numerous serious challenges. In this article, we
introduce a nonlinear optimization technique on mesh level that extrapolates a vector
field defined in certain nodes to the whole mesh respecting defined constraints. This
method is especially defined to preserve arc lengths as good as possible within the
extension procedure.We apply this technique to all steps required in a compensation,
the compensation of the blank against a target surface, the smoothmodification of the
tool surfaces, the treatment of undercut, and the application of fixing and symmetry
constraints. Finally, we prove the flexibility of our vector field extension with an
application to the offset problem of low-qualitymeshes. Last but not least, we discuss
practical examples simulated in the commercial code Stampack Xpress.

Introduction and State of the Art in Springback
Compensation

Springback occurs when the press opens and the elastic energy is released. This
deformation results in deviations to the formed parts, that are often out of the allowed
dimensional tolerance range. Usually, this is measured by comparing the final part
after springback with the desired nominal part. Although there are many ways to
reduce the springback effect like increasing blank holder forces, drawbead restraining
forces, or introducing further plasticity in the part by reinforcement beads, springback
cannot be fully eliminated. Thus, a common approach to get parts in dimensional
tolerance is to modify the die surfaces by the amount of springback in opposite
direction to the springback. The assumption of this approach is that the springback
remains the same within this small modification and thus, the part is in tolerance.
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In a ground-breaking work, Gan and Wagoner [2] introduced the so-called
Displacement–Adjustment (DA) method that iterates several comparisons between
target geometry and springback geometry in combination with the corresponding
adjustments in the sheet and in the tool geometry. Several improvements to this
method have been developed. Amongst others, we mention the smooth displacement
adjustment method (SDA) by Petzoldt et al. [4]. This method improves the (DA)
with an approximation method that provides continuous compensation displacement
fields and a smooth extension from the blank area to the tool area. These two prop-
erties of the method are essential for a good compensation and will also play a huge
role in our approach.

All these approaches are based on the following simple iterative idea that is visu-
alized in Fig. 1. Imagine we have the springback geometry Sj after the j-th iteration,
wemeasure the j-th displacement field Dj from target geometry to springback geom-
etry. Then, we adjust the geometry C j before springback by the vector field −D j to
get the compensated geometry C j+1 of the next, the ( j + 1)-th, iteration.

A more recent and remarking approach for springback compensation is the phys-
ical displacement adjustment method by [1]. Their method is not based onmodifying
the blank node by node, but they deform the blank with forces normal to the blank in
an additional elastic finite element simulation until they reach their desired compen-
sated shape. The major advantage of this approach is that it preserves arc lengths
and surface areas within the compensation process. They show that this enhanced
method results in an improved compensation convergence compared to the existing
commercial codes.

Major Challenges in Springback Compensation

Before we show the details of our approach, we first repeat the major challenges of
springback compensation.

(1) Have a robust sheet metal forming process.
(2) Have an excellent springback prediction result.

Fig. 1 Left distance to target after springback S j . Right compensated geometry C j+1
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(3) Compensate the blank against a given target preserving arc lengths.
(4) Mapping the compensation from the blank to the tool surfaces.
(5) Applying constraints, for example, in the blank holder area.
(6) Remove undercut in compensated sidewalls.

Obviously having a solution for the challenges (1) and (2) is critical before coming
to compensation. However, in this article, we focus on a new approach to solve chal-
lenges (3)–(6) with a vector field extensionmethod based on a nonlinear optimization
method that is described in the next section. Later on, we apply this quite general
method step by step to overcome challenges (3)–(6).

Smooth Vector Field Extension by Nonlinear Optimization

We start with a triangular surface mesh S and a vector field V given in a subset of all
nodes in the mesh. We assume that the magnitude of V is small compared to the size
of the triangulated surface. Our method extends this vector field to a smooth vector
field V ∗ defined on the whole surface S (Fig. 2).

The first step is to formulate the minimal conditions we have on our extension
field V ∗.

(1) V = V ∗ on the set of nodes where V is defined.
(2) The extended vector field V ∗ should be defined in a way that the surface with

node coordinates S + V ∗ should be as close as possible to the surface with
node coordinates S, i.e., the difference of mesh triangle sizes l and internal
mesh triangle angles α between S and S + V ∗ should be as small as possible.

(3) Additional linear equality constraints of the form AV ∗ = B or linear inequality
constraints of the form AV ∗ ≤ B for all choices of V ∗, where A is a kxnmatrix
and B is a k-dimensional vector. Here, n is the number of nodes in S and k is
the number of constraint nodes (Fig. 3).

Condition (1) describes the need to extend the vector field from a predefined
base. Condition (2) leads to a nonlinear minimization problem. We use it to define a
nonlinear functional ϑ of the form

Fig. 2 Left vector field V in few nodes (black). Right extended vector field V ∗(red)
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Fig. 3 Angles and lengths,
to be changed as little as
possible
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with a given error functionϑ1,T andϑ2,T on each triangle T in S. These error functions
depend on the displacement field V ∗ or more precisely on the triangle size changes
and triangle angle changes in each triangle of the surface when we compare the
surfaces with node coordinates S with the surface with node coordinates S + V ∗.
Condition (3) is not physically motivated. It is chosen as the maximum a state-of-
the-art optimization solver allows. We will use this flexibility in our application to
solve real-world problems. We solve this optimization problem with a constrained
trust region solver with an initial guess given by a smoothed version of V ∗ = V ,
where V is defined and V ∗ = 0 in the other nodes.

The upside of this procedure is that due toCondition (2) it provides by construction
a result displacement field V ∗ that provides a result surface S + V ∗ that is smooth
from triangle to triangle. Moreover, Condition (2) allows just minimal arc length
deviations, a fact we need in our application to come closer to the great benefit of
the physical compensation method, the length-of-line preservation, by Birkert et al.
[1] than the traditional methods.

The application shows that our method is also stable in case of non-smooth input
meshes S. However, due to convergence issues, this method is not applicable when
the basic vector field V deforms the initial surface mesh too much. Hence, this
approach is not applicable to general mesh morphing. Nevertheless, it turns out that
it is sufficient for the springback compensation challenges and for offsetting die
surface meshes by a sheet thickness. Before we show how to apply our extension
method, we show an example where the arc length preservation is well illustrated.
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Fig. 4 Left vector field V on the surface S. Right comparison of the arc lengths between S and
S + V ∗.

Example: Windshield Cover

We take a 1 m large sheet metal part; a windshield cover; as surface S and we choose
V in a simple way. V is defined in two nodes, one in the centre of the part and one
in the centre of the arc highlighted in Fig. 4. We set V = 0 in the centre of the part
and V is a deformation in −z direction by length 20 mm in the centre of the arc.
Our extension procedure yields a deformation vector field V ∗ defined on the whole
surface and we compare the arc lengths of the surface S and the surface S + V ∗.
The arc length changes in this deformation process from 218.07 mm on the initial
surface to 218.12 mm on the result surface.

Application of Vector Field Extension to Springback
Compensation

Nomatter howdifficult springback is in practical applications, itsmagnitude is always
small compared to the part size and the springback deformation is always smooth.
Thus, it turns out that even for huge springback magnitudes occurring ,for example,
in large automotive parts, the method provides excellent results. The key is to define
the constraints in an appropriate way depending on what we want to achieve. Hence,
we treat challenges (3)–(6) one by onewith a different choice of the predefined vector
field V , the area where V is defined and the constraints we impose.

Compensate the Blank Against a Target

It is well known [3] that springback can be compensated very well when the spring-
back direction is normal to sheet, whereas it has limitations when the springback
direction is more tangential to the sheet. Our approach is to choose V in the area
where the springback is perpendicular to the sheet up to a tolerance (Area A). In this
area, we set V as the inverted distance vector field from blank to target. The rest of
the nodes are unconstrained (Area B). Our optimization scheme yields an extended
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Fig. 5 Left springback perpendicular to blank in area A. Right compensation field V in area A

vector field V ∗ and we take S + V ∗ as the compensated blank surface. In simple
terms, we use the conventional displacement–adjustment method described in Fig. 1
in the areas where springback is almost perpendicular to the blank and treat the other
areas with the optimization scheme (Fig. 5).

Extend the Compensation from the Blank to the Die Surfaces

In this step, the challenge is that typically the die surfaces are larger than the blank.
Once we know how to compensate the blank, we map the compensation field from
the blank to the area on the die that is in contact with the blank. Afterwards, we call
our optimization algorithm with given displacement V in the area close to the blank
and without constraint in the rest of the die. As a result, we get a smooth extension
V ∗ of the compensation field to the whole die surface (Fig. 6).

Application of Constraints

Fixed areas, in real-world cases typically the blank holder area, can be obtained by
defining V = 0 on the area to be fixed and to set an unconstrained smoothing zone
around the fixed area as in Fig. 7. Outside the fixed area and the smoothing zone, V
is defined as in Sect. “Compensate the Blank Against a Target”. The optimization
scheme then lets the fixed area fixed and provides a smooth extension to the rest of
the part.

More sophisticated constraints, like a symmetry constraint in a certain area, can
be achieved by using Condition (3) of our optimization scheme. Here, we enforce a
symmetry in a predefined area and leave an unconstraint smoothing zone around the
area with a symmetry condition.
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Fig. 6 Grey die before compensation, V is given by blue vector field, red zone is where V is not
defined. Yellow die after compensation

Remove Undercut in Sidewalls

The linear inequality constraints are applied to remove the undercut, which is a
constraint in our optimization scheme especially designed for sidewall areas. With
this approach, we can treat areas that do not have undercut before the compensation

Fig. 7 Symmetric part fixed in the middle. Red zone is where V is not defined
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and fall into undercut during the compensation procedure. To detect areas that fall
into undercut, we take the following simple but useful criterion. We check in each
node the normal vector n at node, and we say that a node has undercut if and only if
the condition nz > 0 before compensation and nz < 0 after compensation holds true.
This description can be used to define a constraint as in condition (3) together with
an unconstraint smoothing area around the undercut zone. The optimization scheme
forbids vector fields V ∗ leading to a surface S + V ∗ with undercut. To get a smooth
result, it is necessary to give an unconstraint smoothing area around the undercut
area (Fig. 8).

Example: Springback Compensation of B-Pillar

We apply our method to compensate the springback of a B-Pillar. In this part, two
iteration loops are sufficient to match the given tolerance ±0.7mm. We see that the
distance to the target is not monotonously decreasing, but that the part that is initially
above the target is then below. However, the absolute distance values are decreasing
in a satisfactory way (Fig. 9).

Example: Flatness Tolerance in a Rear Wall Panel

The following example is a joint work with Pengfei GmbH Deutschland, a
subsidiary of China-based Pengfei Group (www.pengfei-mold.com) withmore than
2300 employees producing about 1000 tools per year for a worldwide customer base.

Fig. 8 Left vector field that avoids nz < 0, Red zone is unrestricted smoothing zone.Right Result
after undercut removal

http://www.pengfei-mold.com
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Fig. 9 Displayed is the distance to the target in each iteration loop

It is 345 mm large and 1.2 mm rear wall panel made of HX420LA. The challenge in
this part is a flatness tolerance ±0.25 mm in the outer area, which is more than ten
times smaller than the amount of springback. To compensate this springback from
a simulation point of view demands a high accuracy of the forming simulation, an
extremely precise prediction of springback and a good compensation algorithm. We
choose Stampack’s solid element technology with three elements across the thick-
ness. The iterative application of our compensation algorithm converges in a base
simulation and three correction loops to the desired accuracy (Fig. 10).

Example: Remove Undercut

The following example is an application of the undercut removal introduced in
Chapter 3.4. It is a bracket made of the AHSS high-strength steel CP1400 with
springback of 2.51mm in the base simulation. Themain difficulty is the vertical wall,
that would fall into undercut in a naive compensation (Figs. 11 and 12). However,
for production, it is mandatory to have tools without undercut and we have to apply
our undercut removal. The convergence is again not monotone, the first correction
is an overcompensation where just the absolute values are reduced. After the second
correction loop, the part is in the required tolerance of ±0.5mm and, after another
loop, we end up with a part that is after springback just 0.18mm away from the target.

Fig. 10 Displayed is the distance to target each compensation loop
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Fig. 11 Displayed is the distance to target each compensation loop

Fig. 12 Left: blank without
undercut removal. Right:
blank with undercut removal

Application of Vector Field Extension to Offsetting
to Low-Quality Meshes

Another application of our extrapolation technique is the offset of low-quality trian-
gular surface meshes by a small length. In applications, the offset length is typically
the thickness of the sheet. Basically, offsetting a surface means to move each node
in normal direction by the offset length L . Especially, when working with non-
smooth tessellations, we face a huge problem. These meshes contain triangles with
side lengths less than 0.002 mm, whereas we need an offset of 1–2 mm. A simple
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offset in normal direction would result in huge element distortions in these triangles
(Figs. 13 and 14).

We approach this difficulty by covering the whole surface with patches. In each
patch, we choose one nodewith a well-defined normal. Next, we set V = normal∗L
in these nodes. Then, we extend V to a smooth vector field V ∗ in the whole surface
and obtain the offset surface S + V ∗.

It turns out that the limitation of our approach is the offset of sharp edges andmore
severely, the offset of a radius R by L > R in contractive direction. In these cases,

Fig. 13 Low-quality mesh

Fig. 14 V Defined in one
node per patch
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Fig. 15 Green: Offset by offset-length R/2. Orange: Offset by offset-length R with sharp edge

our approach fails due to triangle distortions in the offset surface. The borderline
case L = R gives in theory a sharp edge (see Fig. 15). In practical examples, we
see that our approach is only stable when we have L < 0.9 ∗ R. However, in typical
sheet metal applications of automotive panels, this limitation is not that severe, since
in these parts, we typically have radii much larger than the sheet thickness.

Conclusion and Future Work

We introduced a new approach to springback compensation. In the classical methods
like the displacement–adjustment method, it was necessary to define for every node
the appropriate compensation vector. In contrast, our method defines the compensa-
tion vectors just in those areas where springback is normal to the sheet and lets the
optimization scheme finalize the job. We highlighted that this optimization method
has the flexibility to extend the compensation from the blank to the larger die, to
constrain defined areas and to remove undercuts in vertical walls. Finally, we apply
the optimization scheme to the offset problem of non-smooth meshes. The limitation
of our method is that a surface mesh cannot be deformed too much compared to
the topology of the initial mesh. However, both springback compensation and offset
of about 1–2 mm in automotive sheet metal parts do not require a general mesh
morphing.

Themethodwe propose is implemented in the commercial code StampackXpress.
Still open is a detailed comparison between our approach and the other commercial
and non-commercial methods to distinguish the strength and weaknesses of each
method. However, we are confident that our springback compensation by nonlinear
optimization opens a new way of thinking about springback compensation.
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