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Abstract Modelling of several processes and phenomena, which occur in sciences
and engineering, often lead to Nonlinear Partial Differential Equations (NPDEs).
Reaction–diffusion systems are members of NPDEswhich can be described as math-
ematical models with applications in diverse physical phenomena. Obtaining the
solutions of modelling problems is often a big challenge due to several conditions
and parameters which are involved. This study demonstrates how to construct the
solutions of modelling problems. Amodifiedmethod of functional constraints is pro-
posed for constructing exact solutions to nonlinear equations of reaction–diffusion
type with delay and which are associated with variable coefficients. Arbitrary func-
tions are present in the solutions, and they also contain free parameters, which make
them suitable for usage in solving certain modelling problems, testing numerical,
and approximate analytical methods. Specific examples of nonlinear equations of
reaction–diffusion type with delay are given and their exact solutions are presented.
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Abbreviations

NPDEs Nonlinear Partial Differential Equations
ODEs Ordinary Differential Equations
RDEs Reaction–Diffusion Equations

Introduction

The roles which Nonlinear Partial Differential Equations (NPDEs) play are promi-
nent in the description and analysis of the real-life processes and phenomena. There-
fore, it is pivotal to seek the ways of obtaining the exact solutions of NPDEs for a
proper and accurate analysis. Several processes and phenomena which occur in sci-
ences and engineering lead to NPDEs as there are several conditions and parameters
to be considered in the modeling of such systems. Reaction–Diffusion Equations
(RDEs) are members of NPDEs. Reaction–diffusion systems can be described as
mathematical models which find applications in diverse physical phenomena. In its
simplest form in one spatial dimension, RDE has the form

ut = Duxx + H(u), (1)

where u(x, t) denotes the unknown function, H accounts for all local reactions, and
D is a diffusion coefficient (which is a constant) (See e.g., [1]). RDEs are pervad-
ing in the mathematical modeling of the systems which occur in biology, chemistry,
complex physics phenomena, engineering, and mechanics [2]. RDEs delineate the
chemical reactions and diffusion processes. Basically, many real-life processes do
not only depend on the present state but also on past occurrences. Also, the dynam-
ical systems are constituted by the time delay. The study of nonlinear delay RDEs
provides a fundamental tool for the quantitative and qualitative analyses of various
dynamical systems such as infections. For RDEs with delay, the kinetic function
H which denotes the chemical reactions rates is a function of both u = u(x, t) and
w = u(x, t − τ), which represent the sought concentration function and delayed
argument, respectively. Two special cases which can arise are H(u, w) = H(w)

and H(u, w) = H(u). A system with local non-equilibrium media is described by
H(u, w) = H(w). These are systems which possess inertial properties and reac-
tions will always begin after a time τ. H(u, w) = H(u) represents the classical local
equilibrium case [3].

NPDEs are universal in nature and for finding their solutions, several methods
have been employed which include spectral collocation and waveform relaxation
[4–6], adomian decomposition [7, 8], Tan-Cot [9], residual power series [10], and
perturbation [11, 12]. However, there are disadvantages which are commonly associ-
ated with these methods. There are conditions which make the universal application
of these listed methods and others to be impossible. The objects are different in
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their geometric shapes. The reaction kinetics and type of fluid flow are erratic. The
worthlessness in the presence of singular points is indisputable. Obtaining the exact
solutions is imperative for proper analysis of the processes which are under consid-
eration (localization, nonuniqueness, blowup regimes, spatial, etc.).

Subsequently, the term “exact solution” in relating to NPDEs will refer to where
the solution can be expressed in:

(i) terms of elementary functions;
(ii) closed form with definite or/and indefinite integrals;
(iii) terms of solutions to Ordinary Differential Equations (ODEs) or systems of such

equations.

Accepted form for exact solutions also includes the combinations of cases listed
above (See e.g., [3, 13–17]).

Let H(u, w) denote an arbitrary function which takes two arguments u and w.

Consider reaction–diffusion problems of the form

c(x)ut = [a(x)ux ]x + b(x)H(u, w)ux , w = u(x, t − τ), (2)

where a = a(x), b = b(x), c = c(x) are appropriate functions with precise roles in
the equation. Namely, a > 0 casts the diffusion of the second-order divergence form
operator, b models the reaction term, c represents a time weight factor (both b and c
also casting nonlinearities on the unknown), and τ > 0 is the time delay.We construct
the exact solutions of (2) in the form of generalized traveling-wave equations. We
apply our results to obtain the solutions of certain essential modelling problems
which are peculiar to metal forming processes.

Solutions of Generalized RDEs with Delay

The exact solutions of (2) will be constructed in the form

u = U (y), y = t +
∫

h(x)dx, (3)

which is the generalized traveling-wave equations. Substitute (3) into (2) to obtain

a(x)h2U ′′
yy + (

[a(x)h]′x − c(x)
)
U ′

y + b(x)hH (U,W )U ′
y = 0, (4)

where W = U (y − τ) and h = h(x). The coefficients of the equation are chosen
such that they conform to the relations

b(x) = a(x)h(x), (5)

[a(x)h]′x = −ka(x)h2(x) + c(x), , (6)
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where k is a constant. The relations reduce (4) to

U ′′
yy + [H (U,W ) − k]U ′

y = 0, W = U (y − τ), (7)

which is a delay ODE. Equation (6) can be written in standard form as

a(x)h′
x + ka(x)h2 + a′(x)h − c(x) = 0. (8)

Constructing Exact Solutions When the Function h(x) Is not
Given

The relation (8) forms a Riccati ODE for h = h(x)when the functions a(x) and c(x)
are given. Degenerate and nondegenerate cases will be considered for the Riccati
ODE (8).
Degenerate case. For k = 0, the general solution for the degenerate form of Riccati
equation (8) has the solution which is given by

h(x) =
∫
a(x)c(x)dx + q

a(x)
, (9)

where q signifies an arbitrary constant.

Example 1 Let 0 < x < π, consider the case where a(x) = cos(x) and c(x) = 1.
By (8), h(x) = tan(x), where it has been taken that q = 0. Equation (5) is applied
to obtain that b(x) = sin(x). Thus, for arbitrary functions H(u, w), the nonlinear
RDE

ut = [cos(x)ux ]x + sin(x)H (u, w) ux , w = u(x, t − τ),

admits the generalized traveling-wave equations

u = U (y), y = t + tan(x),

as its exact solution, where U (y) is determined by

U ′′
yy + H (U,W )U ′

y = 0, W = U (y − τ). (10)

Nondegenerate case. When k �= 0, let

h = 1

k

ϕ′
x

ϕ
. (11)

Substitution (11) into (9) gives
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a(x)

k

(
ϕ′′
xx

ϕ
−

(
ϕ′
x

ϕ

)2
)

+ ka(x)

(
1

k

ϕ′
x

ϕ

)2

+ a′(x)
k

ϕ′
x

ϕ
− c(x) = 0. (12)

Simplified form of (12) is

a(x)ϕ′′
xx + a′(x)ϕ′

x − kc(x)ϕ = 0, (13)

which is a linear second-order ODE. For the exact solutions of (13) with various
functions a(x) and q(x), interested readers are referred to [18, 19].

Example 2 Taking a = c = 1 in (13) gives its general solution as

ϕ =
{
A1 cosh(φx) + A2 sinh(φx), if k = φ2 > 0,

A1 cos(φx) + A2 sin(φx), if k = −φ2 < 0,
(14)

where the arbitrary constants are A1 and A2. By using (11), it can be obtained from
(14) when A1 = 1, A2 = 0, and k = φ2 (> 0) that

h(x) = coth(φx). (15)

Substitute (15) into (5) to obtain

b(x) = coth(φx).

Thus, for arbitrary H(u, w),

ut = uxx + coth(φx)G (u, w) ux ,

admits the generalized traveling-wave equations

u = U (y), y = t + ln |sinh(φx)| ,

as its exact solution, where U (y) is determined by the delay ODE

U ′′
yy + [

H (U,W ) − φ2
]
U ′

y = 0, W = U (y − τ).

Constructing Exact Solutions When the Function h(x) Is
Given

Given h = h(x) in (8), the derived generalized traveling-wave equations (3) solves
certain RDEs with delay of the form (2) provided (5) and (3) are satisfied. Such
derived generalized traveling-wave equations are said to be the exact solutions of
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the corresponding RDEs. Solving the Riccati ODE (8) is not required as h has been
given. An algebraic equation is required to be solved if h in (8) is already given.

Example 3 Degenerate and nondegenerate cases will be considered for arbitrary
given functions a(x) and h = h(x).

(I) Degenerate case k = 0. Apply (5) to obtain

b(x) = a(x)h,

and by (8)
c(x) = a(x)h′

x + a′(x)h.

Thus, for arbitrary function H(u, w),

[
a(x)h′

x + a′(x)h
]
ut = [a(x)ux ]x + a(x)hH (u, w) ux ,

admits the generalized traveling-wave equations

u = U (y), y = t +
∫

hdx, (16)

as its exact solution, where U (y) is determined by (10).
(II) Nondegenerate case k �= 0. By (8),

c(x) = a(x)h′
x + ka(x)h2 + a′(x)h.

Thus, for arbitrary function H(u, w),

[
a(x)h′

x + ka(x)h2 + a′(x)hh
]
ut = [a(x)ux ]x + a(x)hH (u, w) ux ,

admits the generalized traveling-wave equations (16) as its exact solution, where
U (y) is determined by (7).

Application to Metal Forming Processes

The metal forming processes are broad. The results which have been obtained will
be applied to an essential metal forming process which is the heating of a uniform
metal rod of length L and thermal diffusivity K0.
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Derivation of Heat and Wave Equations in 3D

The derivation of heat and wave equations in 3D is presented in this section to make
this study a complete paper. For a full account of the derivation steps, the readers are
referred to consult [20, 21]. Let V be an arbitrary 3D subregion of R3 (i.e. V ⊂ R

3)
and temperature u = u(x, t) be defined for all points x = (x, y, z) ∈ V . The heat
energy in the subregion V is given by

heat energy =
∫ ∫

V

αρu dV,

where ρ is the density of the rod, α is the specific heat, which is the energy required to
raise a unit mass of the substance by 1 unit in temperature. In this study, we shall use
these basic units: M mass, L length, T time, U temperature, and [α] = L2T−2U−1.

Let S denote the boundary of V and n̂ be the outward unit normal at the boundary
S. We seek the heat flux through S which is the normal component of the heat flux
vector φ, φ.n̂. Notice that φ.n̂ < 0 if φ is directed inward and the outward flow of
heat is negative. The sum φ.n̂ is taking over the entire closed surface S to get the
total heat energy flowing across S. The total heat energy flowing across is denoted
by

∫ ∫
S dS. It can be recalled from the conservation of energy principle that

rate of change = heat energy into V from + heat energy generated
of heat energy boundaries per unit time in solid per unit time

Applying the conservation of energy principle gives

d

dt

∫ ∫ ∫

V

αρu dV = −
∫ ∫

S

φ.n̂dS +
∫ ∫ ∫

V

QdV . (17)

According to divergence theorem (also known as Gauss’s Theorem), for any volume
V with closed smooth surface S,

∫ ∫ ∫

V

∇.AdV = −
∫ ∫

S

A.n̂dS, (18)

where A is any function that is smooth (i.e. continuously differentiable) for x ∈ V
and

∇ =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
.

Applying divergence theorem to (17) leads to

∫ ∫ ∫

V

(
αρ

∂u

∂t
+ ∇.φ − Q

)
dV = 0. (19)
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It is clear that the integrandmust be everywhere zero since V ⊂ R
3 and the integrand

is assumed continuous. Thus,

αρ
∂u

∂t
+ ∇.φ − Q = 0. (20)

By Fourier’s law of heat conduction (for 3D),

φ = −K0∇u, (21)

where K0 is called the thermal diffusivity. Substitute (21) into (20) to obtain 3DHeat
Equation

∂u

∂t
= a∇2u + Q

αρ
, (22)

where a = K0/(αρ) and

∇2 =
(

∂2

∂x2
,

∂2

∂y2
,

∂2

∂z2

)
.

Normalizing with

x̃ = x
l
, t̃ = a

l2
t,

to obtain a non-dimensional Heat Equation

∂u

∂t
= ∇2u + H, (23)

where H = l2Q/K0.

Construction of Solution of Heat and Wave Equations

We seek for the exact solution of (23) in the form of the generalized traveling-wave
equations (3). Substitute (3) into (23) to obtain

h2U ′′
yy −U ′

y + H = 0, (24)

where H = H(U ) and h ≡ 1.Consequently, it can be deduced that (23) (for 1DHeat
Equation) admits the generalized traveling-wave equations

u = U (y), y = t + x, (25)

as its exact solution, where U (y) is determined by

U ′′
yy −U ′

y + H = 0.
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Conclusion: Recently, exact solutions of RDEs and reaction–diffusion systems have
attracted great attention. In this paper, exact solutions are presented for RDEs with
delay and variable coefficients. The presence of arbitrary functions and free parame-
ters in the solutions vouches for their feasible application in solving certain modeling
problems such as diffusion of pollutants and population models, where the popula-
tion is spatially distributed. It also makes the obtained solutions to be suitable for
usage in testing the numerical and approximate analytical methods. The obtained
results also find applications in finding the exact solutions of other forms of partial
differential equations which aremore complex. Our results are specifically applied as
an illustration to obtain the solutions of certain essential modelling problems which
are peculiar to metal forming processes.
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