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Abstract Nowadays, clinching is a widely used joining technique, where sheets
are joined by pure deformation to create an interlock without the need for auxil-
iary parts. This leads to advantages such as reduced joining time and manufacturing
costs. On the other hand, the joint strength solely relies on directed material defor-
mation, which renders an accurate material modelling essential to reliably predict
the joint forming. The formation of the joint locally involves large plastic strains and
possibly complex non-proportional loading paths, as typical of many metal forming
applications. Consequently, a finite plasticity formulation is utilised incorporating
a Chaboche–Rousselier kinematic hardening law to capture the Bauschinger effect.
Material parameters are identified from tension–compression tests onminiature spec-
imens for the dual-phase steel HCT590X. The resulting material model is imple-
mented in LS-Dyna to study the locally diverse loading paths and give a quantitative
statement on the importance of kinematic hardening for clinching. It turns out that
the Bauschinger effect mainly affects the springback of the sheets and has a smaller
effect on the joint forming itself.
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Introduction

Clinching can be used to join sheet metal by pure deformation and eliminate the need
for auxiliary joining parts, such as rivets or bolts. Consequently, the joint takes its
strength purely from controlled local deformations leading to an interlock of both
sheets. The formation of this interlock is relevant to predict the joint strength [1]
and is related to severe plastic strains requiring reliable finite strain material models
for finite element analyses. These constitutive models need to incorporate plastic
hardening, where a distinction between isotropic and kinematic hardening is only
important if non-proportional loading paths are present during the forming. Such
loading paths can occur due to changing material flow directions as experienced by
the successively oriented material flow during clinch joining. To quantitatively study
the influence of kinematic hardening on clinch joining, we subsequently investigate
two decisive factors as research questions (RQ): the material (RQ1) and the loading
paths during the clinching process (RQ2).

Exemplarily, a dual-phase steel HCT590X is considered, which is often used
in the automotive industry. It is well known that especially dual-phase steel can
exhibit an early re-plastification and pronounced transition region at load reversal
named Bauschinger effect [2, 3]. Due to the higher strength of dual-phase steel, it
shows a stronger tendency for springback, which together with the microstructure
combining soft and hard phases leads to larger Bauschinger effects compared to
conventional steel [4, 5]. This has for instance been shown in [6] for the congeneric
DP600 and similarly in [3, 5, 7]. By a sensitivity analysis for dual-phase steel [8],
the most influential aspects of the Bauschinger effect have been identified as the
transient hardening and yield stress at load reversal. Material modelling can capture
theBauschinger effect by kinematic hardening,which causes the yield surface to shift
rather than increase in size as for isotropic hardening. To quantify the Bauschinger
effect, cyclic tests can be conducted. This can be realised for instance by cyclic
shearing [3], cyclic bending [7], or by tension–compression tests [7, 9]. Especially
usually thin sheet metal is susceptible to buckling under compressive loading [7,
9]. Therefore, either special anti-buckling devices must be used [10] or miniature
specimen are utilised as presented in [9] for tension–compression tests. Herein, the
experiments are conducted at lower strains motivated by the observed stagnation
of the Bauschinger effect towards larger strains [5]. Studies at various strain levels
and pre-strain have been examined in [5, 6]. Herein, miniature tension–compression
tests for sheet metal are conducted to investigate whether the steel HCT590X shows
a Bauschinger effect (RQ1).

It has already been shown for several metal forming processes that kinematic
hardening can have a significant influence on the final product. In deep drawing, for
instance, the sheet is drawn over the intake radii causing an alternating plastifica-
tion [2, 9], which is relevant for an accurate prediction of the springback. In addition
to the springback at unloading, kinematic hardeningmight also affect the formation of
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the interlock during the clinch joining process. This leads to the second research ques-
tion to be addressed:Does clinch joining contain such non-proportional loading paths
in the plastic region and is consequently influenced by kinematic hardening? (RQ2).

Material Modelling

The continuum mechanics framework is briefly presented in the following. It is
important to note that the kinematics and the in LS-Dyna underlying balance equa-
tions are formulated in the geometrically nonlinear (finite strain) setup, whereas the
herein used logarithmic strain space enables the material model to be formulated
similarly as in the geometrically linear case.

Kinematics

Abody in the reference (undeformed) configuration is described by itsmaterial points
with coordinates X . The spatial (deformed) configuration contains the deformedbody
and its spatial coordinates x. Deformations of the body are captured by the nonlinear
deformation map y as x = y(X, t) and its gradient F = ∇X y.

Logarithmic Strain Space

The logarithmic strain space [11] is a hyperelastic-based approach that easily extends
material models to the geometrically nonlinear setting. It has been successfully
applied in various field, such as thermo-elastic–plastic solids [12] or additive manu-
facturing [13]. It is based on a modular geometric pre- and post-processing utilising
the logarithmic Hencky strain.

The logarithmicHencky strain H is part of Seth–Hill’s family of generalised strain
measures and can be computed from the right Cauchy–Green tensor C = FT · F as

H = 1

2
ln(C) =

3∑

a=1

ln
(√

ηa
)
na ⊗ na (1)

and the three eigenvalues ηa and eigenvectors na of C [11].
Due to the properties of the tensor logarithm ln(�), the Hencky strain is inter-

pretable as a geometrically linear strain that can be handled as a small strain measure
and applied as such. This enables material models to subsist inside the logarithmic
strain space and be encompassed by the pre-processing of the strains in Eq. (1) and
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a post-processing of the resulting logarithmic stress T and tangent(s) C back into
the “real world”. The latter concerns the (spatial) Cauchy stress σ and the Eulerian
tangent E as

σ = T : PE; E = [PE
]T : C : PE + T : LE, (2)

derivable from the strain energy density with the Eulerian projection tensors PE and
LE as stated for instance in [11]. The Fortran source code for the geometric pre- and
post-processing is available online [14]. A Fortran tensor toolbox [15] is utilised for
the implementation of the logarithmic strain space and the material model.

The benefits of the logarithmic strain space include its easy usability and wide
applicability, whereas some limitations have recently been summarised [16].

Additive Plasticity with Combined Isotropic-Kinematic
Hardening

The plastic material behaviour of the sheet metal is modelled by combined isotropic
and kinematic hardening. This is described by an isotropic von Mises yield surface
with classical isotropic hardening and a Chaboche–Rousselier type kinematic hard-
ening [17]. Due to the use of the logarithmic strain space, the following material
model is formulated similarly as a geometrically linear model.

The logarithmic stress T for additive plasticity can directly be computed from the
total Hencky strain H with the bulk modulus κ , shear modulus μ, and symmetric
plastic strain tensor Hp. The superscript dev denotes the deviatoric part of the tensor.

T (H) = κtrace(H)I + 2μ[Hdev − Hp] (3)

Isotropic von Mises (J2-) plasticity with isotropic and kinematic hardening is
assumed by the following yield condition and described by the scalar flow stress σflow

and the second-order back stress tensor B, respectively.

�p = ‖T dev + B‖ − √
2/3σflow

(
H p

acc

) ≤ 0 (4)

The additive framework can directly be extended to anisotropic plasticity, see for
instance [11].

Isotropic hardening is introduced in the flow stress σflow
(
H p

acc
)
either by a tabular

true stress–strain curve or by an analytical hardening law as stated in Eq. (8).
The effect of kinematic hardening is incorporated into the yield function by the

total back stress tensor B. Herein a Chaboche–Rousselier type kinematic hardening
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model with multiple back stresses is chosen, which is expected to be well suited to
describe the dual-phase steel [3, 6].

Starting from the yield function, the evolution equations for the internal variables,
namely, the second-order plastic strain tensor Hp, the accumulated plastic strain H p

acc,
and the back stress tensors Bi are stated as

Ḣ
p = γ̇ N; Ḣ p

acc = √
2/3‖Ḣp‖ = √

2/3γ̇ ; Ḃi = k1,i γ̇ N − k2,i γ̇ Bn,i (5)

with the Lagrange multiplier γ̇ and the evolution direction N = [T dev + B]/‖T dev +
B‖. The evolution equations are integrated by an implicit Euler-Backward scheme

Hp
n+1 = Hp

n + γn+1N; H p
accn+1 = H p

accn + √
2/3γn+1 (6)

and solved by a cutting-plane algorithm from [18]. The latter is chosen for
simplicity and was found to fit well to the default BFGS solver in LS-Dyna. With
the concept shown in [19] an arbitrary number of back stresses nB can easily be
introduced by summations resulting in the discrete incremental equation for the total
back stress

Bn+1 =
nB∑

i=1

Bn+1,i =
nB∑

i=1

[
1 + k2,iγn+1

]−1
Bn,i + γn+1N

nB∑

i=1

k1,i[
1 + k2,iγn+1

] (7)

Experiments and Parameter Identification

To study the Bauschinger effect and describe the combined isotropic-kinematic hard-
ening behaviour, tension–compression tests are conducted. Together with uniaxial
stress–strain curves, the material parameters are inversely identified.

Experimental Setup

Layer compression tests are conducted to determine the uniaxial stress–strain curve
as outlined in [20, 21]. To distinguish between isotropic and kinematic hardening,
tension–compression tests are utilised. For that purpose, miniature specimens are
advantageous for sheet metal to avoid buckling under the compressive loading and
thus eliminate the need for special anti-buckling devices [9]. Theminiature specimen
shown in Fig. 1a is clamped in a universal testing machine in Fig. 1b and loaded in
a tension–compression-tension cycle (measured strain path in Fig. 2). At each load
path change, the influence of the Bauschinger effect can be observed and used to
distinguish between isotropic and kinematic hardening. The resulting force on the
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Fig. 1 Experimental setup of the tension–compression test. a specimen geometry and dimensions
with sheet thickness of 1.5 mm. b experimental setup. c 2 × 2 mm measuring range (based on [9])

Fig. 2 Tension–
compression-tension loading
cycle. Optically measured
true strain versus time
response

specimen is recorded by a load cell, whereas the deformation and the resulting strains
in the measuring range (Fig. 1c) are determined optically.
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Parameter Identification

For the steel HCT590X Young’s modulus E = 205800MPa and Poisson’s ratio ν =
0.3 are chosen. In the following, the isotropic and kinematic hardening parameters
are identified from layer compression tests and tension–compression tests.

Layer Compression Test

The flow curve of the considered steel HCT590X has already been identified from
layer compression tests in [20], where this test method has been shown to be well
suited for the subsequent application to clinching. The experimental results are
plotted as true stress–strain data in Fig. 3 (red). This uniaxial flow curve is sufficient
to either fit pure isotropic (IH) or pure kinematic hardening (KH).

For the description of isotropic hardening, particular points of the flow curve in
Fig. 3 (red) could directly be used to describe the flow stress σflow in Eq. (4) by
means of tabulated values. However, to be able to compare a pure isotropic and pure
kinematic hardening model with the exact same uniaxial flow curve, the behaviour
is described by an analytical ansatz

σ = σy +
nQ∑

i=1

Qi
[
1 − exp

(−bi · H p
acc

)]
(8)

which can exactly be matched by a Chaboche–Rousselier model with nQ back
stresses in Eq. (9) under monotonic uniaxial loading. By minimising the difference

Fig. 3 Uniaxial flow stress.
Experimental results (red)
determined from layer
compression tests [20].
Isotropic (dashed),
kinematic (dotted) and
combined
isotropic-kinematic (solid)
are fitted to match the
experimental results (red).
Isotropic and kinematic
hardening models are
designed to exactly coincide
under uniaxial loading
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Table. 1 Plastic material parameters for isotropic and kinematic hardening

Behaviour Symbol Pure
isotropic
hardening
(IH)

Pure kinematic
hardening (KH)

Combined
isotropic-kinematic
hardening (IKH)

Unit

Yield stress σy 371.32 371.32 337.91 MPa

Isotropic
hardening

Q1 257.42 – 260.55 MPa

b1 1.9030 – 1.9569 –

Q2 230.27 – – MPa

b2 12.020 – – –

Q3 111.22 – – MPa

b3 123.59 – – –

Kinematic
hardening

k1,1 – 326.58 33,333 MPa

k2,1 – 1.5538 1144.9 –

k1,2 – 1845.3 10,894 MPa

k2,2 – 9.8143 104.82 –

k1,3 – 9164.3 1490.3 MPa

k2,3 – 100.91 8.8490 –

between the experimental and numerical results, the material parameters are identi-
fied as stated in Table 1 considering an extrapolation to higher strains as suggested
in [20]. As shown in Fig. 3, three summands (nQ = 3) in Eq. (8) are sufficient to
match the experimental flow curve (red).

On the other hand, the stress in loading direction for a pure kinematic hard-
ening (KH) Chaboche–Rousselier model can be computed as

σ = σy +
√
3

2

nB∑

i=1

k1,i
k2,i

[
1 − exp

(
−

√
3

2
k2,i · H p

acc

)]
(9)

From the comparison of Eq. (8) and (9), the parameters for KH, namely k1,i and
k2,i , can be determined from IH as

k1,i = 2/3 · Qi · bi ; k2,i = √
2/3bi (10)

if the same stress–strain curve is to be modelled with either pure isotropic or pure
kinematic hardening.This ensures that all differences visible in the results between IH
and KH can solely be attributed to load path changes and the fundamental difference
between both hardening types.
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Fig. 4 True stress–strain results from tension–compression tests (red circles). Isotropic hard-
ening (dashed) overestimates the yield stress at both load reversals. Pure kinematic hard-
ening (dotted) underestimates the stress. Combined isotropic-kinematic hardening (solid) canmodel
the response well

Tension–Compression Test

The tension–compression tests need to be considered to distinguish between isotropic
and kinematic hardening. True stress–strain results from the former are depicted in
Fig. 4. At each load reversal a distinctly earlier yielding and a transient area is visible
that cannot be described by classical isotropic hardening (IH). On the other hand,
pure kinematic hardening (KH) slightly underestimates the yield stress after each
load reversal. Interestingly, even the KH model is not able to capture the extremely
early re-yielding after the load reversal. This could, for instance, indicate an initial
back stress from the previous manufacturing of the sheet metal included in [22].

Because of the (almost) uniaxial stress state in the tension–compression test, a 1D
analytical model can be used to identify the parameters of the combined isotropic-
kinematic hardening model (IKH) from the cyclic loading as listed in Table 1.

To sum up, Fig. 4 shows that the present HCT590X exhibits a pronounced
Bauschinger effect (RQ1) and that the material model represents the experimental
results for the layer compression test and tension–compression test sufficiently well.

Numerical Analysis of Clinch Joining

To analyse the influence of the Bauschinger effect on clinching, we firstly study the
loading paths during the joining process. Only if non-proportional loading is present,
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Fig. 5 Overview of the clinch joining process simulation in LS-Dyna (based on [23])

the different hardening types will be influential. Secondly, the results of clinching
simulations with the hardening models from Table 1 are compared.

The clinch joining process is simulated in LS-Dyna (Solver: SMP, double preci-
sion, R9.2) as depicted in Fig. 5 with an implicit time integration. Rotational
symmetry of the joint is utilised to reduce the model to 2D (axial symmetry, LS-
Dyna element formulation Shell 15). The sheets are remeshed at predefined time
intervals during the forming to avoid strong mesh distortion.

Loading Paths During Clinching

We propose to analyse the evolution of the Lode angle as a simple criterion to study
the existence of non-proportional loading paths. The Lode angle parameter is defined
in LS-Dyna as the normalised third deviatoric stress invariant [24]

ξ = 27

2

det(dev(σ ))

σ 3
= (−1 . . . 1) with σvM =

√
3

2
‖σ dev‖ (11)

Proportional loading requires a constant Lode angle parameter ξ . However, a
constant ξ does not guarantee a proportional loading, compare Fig. 6 where for
instance up to 6 points on the initial yield surface (red circle) can possess the same ξ .
But without erratic changes in the principal stress direction, the Lode angle parameter
can be used to detect changes in the direction of the loading path. The latter can help
to quantify the need for kinematic hardening during the process.

Figure 7 shows the evolution of the Lode angle parameter for three points in the
sheets (pointsmarked inFig. 7d, at each remeshing the element that contains the tracer
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Fig. 6 Principal stress space viewed in the deviatoric plane. Along the positive principal directions
(solid black lines) tension occurs (ξ = 1) and in negative direction compression (dashed black,
ξ = −1). Pure shear (ξ = 0) is present along the bisectrices (dotted black). The principal deviatoric
stress evolution for point C from Fig. 7c is exemplarily added (cyan)

point is selected). A finer discretisation with more remeshing steps than in Fig. 5
has been chosen for the stress analysis to improve the accuracy. Point A between the
punch and the bottom of the die shows an almost constant evolution of the Lode angle
parameter indicating a proportional loading at ξ = −1 (compression). In such areas,
no differences between isotropic and kinematic hardening would be observed during
loading. Points B and C detect changes in the Lode angle parameter indicating non-
proportional loading paths. This is also visible for point C in Fig. 6 (cyan), where the
stress state evolves radially due to the plastic hardening but also significantly shifts
in tangential direction.

Consequently, we can summarise that the clinch joining process contains non-
proportional loading paths (RQ2).

Influence of Kinematic Hardening

The three material parameter sets IH, KH and IKH listed in Table 1 are applied to the
clinch joining simulation outlined previously. Figure 8 depicts the final geometry of
the clinched joint for each model.

At first, Fig. 8 shows only larger differences in the springback of the two sheets on
the right end. This is measured by the displacement of the upper-right corner (point
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Fig. 8 Final geometry of the clinched joint for the different hardening models. Main differences
are visible in the springback of the sheets on the right end and in the interlock region, as marked by
the two rectangles and magnified in Fig. 11

Fig. 9 Comparing the displacement of point D marked in Fig. 8a that can be used as a measure for
the springback. With pure kinematic hardening the springback is reduced by about 18%

D marked in Fig. 8a) and compared in Fig. 9. By using a pure kinematic hardening
model (KH), the final vertical deformation of point D is 18% lower than for the
reference model with pure isotropic hardening (IH).

Secondly, changes in the interlock, as compared in Fig. 10, and neck shape are
visible as depicted in Fig. 11. The interlock (defined in Fig. 11) is of high relevance
for the joint strength [1] and appears to be also influenced by the hardening law.
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Fig. 10 Comparing the interlock for different hardening models. Kinematic hardening appears to
reduce the formation of the interlock

Fig. 11 Comparing the deformation of the clinched joint with isotropic (black, IH) and kinematic
hardening (blue, KH). The right end of the sheet clearly shows a lower springback of the KHmodel.
The zoom also reveals detectable differences in the formation of the neck and interlock

For both geometric quantities, the combined isotropic-kinematic hardening model
settles in between IH and KH with differences of (6…8)%.

Lastly, the process force, measured as the force on the punch, is compared for
the three models in Fig. 12. Up to around t = 1s, the process forces between the
three models are comparable. Once the die-sided sheet comes into contact with
the bottom of the die to initiate the radial material flow that forms the interlock,
differences in the process forces between the models become visible. In the end,
isotropic hardening requires the highest punch force, whereas the pure kinematic
hardening model remains approximately 6% lower. Exemplary experimental results
for the punch force are added in grey in Fig. 12. Between t = (0.4 . . . 1)s the force is
underestimated for each hardening model possibly due to deviations in the yielding
or frictional behaviour, which is apparently not influenced by the hardening type.
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Fig. 12 Comparing the punch force during the joint forming. The three different hardening
models (line styles) show mainly differences during the secondary phase, namely the forming
of the interlock, where kinematic hardening leads to lower process forces

Summary and Outlook

Wehave studied the plastification of dual-phase steelHCT590Xsheetmetal byminia-
ture tension–compression tests. The resulting tension–compression-tension cycle
enabled a distinction between isotropic and kinematic hardening completing the
material model initially only defined by uniaxial flow curves from layer compression
tests. Results indicate a pronounced Bauschinger effect (RQ1) as expected for the
dual-phase steel. A Chaboche–Rousselier kinematic hardening model with multiple
back stresses was implemented in LS-Dyna and equipped with the identified hard-
ening parameters. Moreover, the loading paths during the clinch joining have been
analysed. The evolution of the Lode angle parameter reveals that locally distinct
non-proportional loading occurs (RQ2). Finally, the different hardening models have
been applied to clinching simulations and their results compared. Kinematic hard-
ening appears to primarily affect the final springback and only secondarily the joint
forming and process force (RQ2). Future work could quantify the effect of kine-
matic hardening on the joint strength, for instance, by pull-out and shear tests. Even
though the current material model was sufficient to study the fundamental influence
of the Bauschinger effect on clinching, also more advanced kinematic hardening
models could be utilised. The latter might be able to capture the observed early
re-plastification that cannot be reproduced by a Chaboche–Rousselier model [2].
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