
Chapter 3
Ultrashort Pulse Propagation in
Nonlinear Dispersive Fibers

Govind P. Agrawal

Abstract This chapter focuses on the evolution of short optical pulses inside optical
fibers. After discussing the role of self-phase modulation and optical solitons,
we discuss supercontinuum generation, occurring when femtosecond pulses are
launched into an optical fiber. The extension of supercontinuum into the mid-
infrared and ultraviolet regions is also covered.
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Ultraviolet radiation

3.1 Introduction

Ultrashort optical pulses are often propagated through optical waveguides for a vari-
ety of applications including telecommunications and supercontinuum generation
(Agrawal, 2019). Typically, the waveguide is in the form of an optical fiber, but it
can also be a planar waveguide. The material used to make the waveguide is often
silica glass, but other materials such as silicon or chalcogenides have also been used
in recent years. What is common to all such materials is they exhibit chromatic
dispersion as well as the Kerr nonlinearity. The former makes the refractive index
frequency-dependent, whereas the latter makes it to depend on the intensity of light
propagating through the medium (Maker et al., 1964). Both of these effects become
more important as optical pulses become shorter and more intense. For pulses not
too short (pulse widths > 1 ns) and not too intense (peak powers < 10 mW),
the waveguide plays a passive role (except for small optical losses) and acts as
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a transporter of optical pulses from one place to another, without significantly
affecting their shape or spectrum. However, as pulses become shorter and more
intense, both the group-velocity dispersion (GVD) and the Kerr nonlinearity start to
affect the shape and spectrum of an optical pulse during its propagation inside the
waveguide. This chapter focuses on silica fibers, but similar results are expected for
other waveguides made of different materials.

Silica fibers have found many interesting applications owing to their nonlinear
dispersive nature. They are often used for pulse compression and pulses with
durations as short as 6 fs were produced by 1987 (Fork et al., 1987). In the
anomalous-GVD regime, fibers support formation of optical solitons, resulting
from a balance between the dispersive and nonlinear effects (Hasegawa & Tappert,
1973; Mollenauer et al. 1980; Mollenauer & Stolen, 1984; Stolen 2008). More
recently, new types of optical fibers have been developed and used for making
a supercontinuum source (Ranka et al. 2000; Dudley et al. 2006; Genty et al.
2007; Dudley & Taylor, 2010). In this case, dispersive effects and several nonlinear
phenomena, such as self-phase modulation (SPM), cross-phase modulation (XPM),
four-wave mixing (FWM), and stimulated Raman scattering (SRS), work together
to produce an extensive spectral broadening of the incident pulse, similar to that
observed by Alfano and Shapiro in several 1970 experiments (Alfano & Shapiro,
1970a, 1970b, 1970c, 1971).

This chapter reviews how the nonlinear and dispersive effects in optical fibers
influence the propagation of ultrashort pulses with widths in the femtosecond to
picosecond range. The basic propagation equation satisfied by the slowly varying
amplitude of the pulse envelope is presented in Sect. 3.2. Section 3.3 introduces the
dispersive and nonlinear length scales and identifies various propagation regimes of
optical pulses. Sections 3.4 and 3.5 then focus separately on the cases of normal-
and anomalous-GVD regimes. The phenomenon of supercontinuum generation is
studied in Sect. 3.6 in both the normal- and anomalous-GVD regimes of the optical
fiber used for this purpose. Extension of the supercontinuum into the ultraviolet
(UV) and mid-infrared (mid-IR) regions is covered in Sect. 3.7, as such sources are
useful for many practical applications. Section 3.8 provides a summary of the main
results and conclusions.

3.2 Basic Propagation Equation

As is the case for all electromagnetic phenomena, we need to solve Maxwell’s equa-
tions inside a dispersive nonlinear medium. Since details are available elsewhere
(Agrawal, 2019), only the main steps are summarized here. Consider the simplest
situation in which a single input pulse, polarized linearly at the carrier frequency
ω0, is launched such that it excites a single mode of the fiber. If we assume that the
pulse maintains its linear polarization along the x axis during its propagation along
fiber’s length (the z axis), the electric field can be written in the form
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E(r, t) = 1

2π

∫ ∞

−∞
x̂F (x, y, ω)ã(0, ω)ei[β(ω)z−ωt]dω, (3.1)

where x̂ is a unit vector along the x axis and F(x, y, ω) represents the spatial
distribution of the fiber mode. The physical meaning of this equation is clear. Each
spectral component of the input field with the amplitude ã(0, ω) acquires a slightly
different phase shift because of the frequency dependence of the propagation
constant β(ω) associated with that fiber mode.

As an exact functional form of β(ω) is rarely known, it is useful to expand it in a
Taylor series around the carrier frequency ω0 as

β(ω) = β0 + (ω − ω0)β1 + 1
2 (ω − ω0)

2β2 + · · · , (3.2)

where various dispersion parameters are defined as βm = (dmβ/dωm)ω=ω0 .
Depending on the pulse bandwidth, one can stop after the group-velocity dispersion
(GVD) term containing β2 or may need to include the third- and higher-order disper-
sion terms. Another common approximation replaces the mode profile F(x, y, ω)

with its shape at the carrier frequency ω0. It is also useful to remove the rapidly
varying part of the optical field at this frequency and introduce a slowly varying
pulse envelope A(z, t) by writing Eq. (3.1) in the form

E(r, t) = x̂ F (x, y, ω0)A(z, t)ei(β0z−ω0t). (3.3)

Maxwell’s equations are then used to derive an equation for A(z, t), representing
the slowly varying amplitude of the pulse envelope at distance z.

As outlined in the book by Agrawal (2019), if we include both the Kerr
and Raman contributions to the nonlinear susceptibility, the slowly varying pulse
envelope A(z, t) satisfies the following time-domain propagation equation:

∂A

∂z
+ α

2
A = i

∞∑
m=1

imβm

m!
∂mA

∂tm
+ iγ

(
1 + i

ω0

∂

∂t

)

×
(∫ ∞

0
R(t ′)|A(z, t − t ′)|2dt ′

)
A(z, t), (3.4)

where α accounts for fiber losses and the nonlinear parameter γ is defined as

γ = ω0n2(ω0)

cAeff
, Aeff = [∫∫ |F(x, y, ω0)|2dxdy]2∫∫ |F(x, y, ω0)|4dxdy

. (3.5)

Aeff is known as the effective mode area of the fiber. In the case of supercontinuum
generation, it may become necessary to account for the frequency dependence of
both n2(ω) and F(x, y, ω).
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The nonlinear response function R(t) in Eq. (3.4) includes both the electronic
and nuclear (Raman) contributions and can be written as

R(t) = (1 − fR)δ(t) + fRhR(t). (3.6)

Both the Raman response function hR(t) and its fractional contribution (fR ≈ 0.18)
are known for silica (Stolen et al., 1989). Because of the amorphous nature of
silica glasses, the Raman gain spectrum gR(ω) of optical fibers, shown in Fig. 3.1a,
extends over a frequency range exceeding 50 THz. Since gR(ω) is related to the
imaginary part of the Fourier transform of hR(t), it can be used to deduce the real
part through the Kramers–Kronig relation. The inverse Fourier transform of h̃R(ω)

then provides the Raman response function hR(t) shown in Fig. 3.1b.
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Fig. 3.1 (a) Measured Raman gain spectrum of silica fibers (Stolen et al., 1989); (b) temporal
form of the Raman response function deduced from the gain data
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3.3 Different Propagation Regimes

Although Eq. (3.4) must be solved for ultrashort optical pulses, it can be simplified
considerably for picosecond pulses, a common situation in many applications. To
understand why that is so, we note from Fig. 3.1 that hR(t) has an appreciable
magnitude only for t < 1 ps. For pulses wider than 3–4 ps, hR(t) can be replaced
with a delta function δ(t) with a reasonably good approximation. The derivative
term containing ω0 is also negligible for such pulses. At the same time, all dispersive
effects higher than the third order can be ignored for such pulses. Using these three
approximations, Eq. (3.4) is reduced to the following simpler equation:

∂A

∂z
+ α

2
A + β1

∂A

∂t
+ iβ2

2

∂2A

∂t2
− β3

6

∂2A

∂t2
= iγ |A|2A. (3.7)

When α = 0 and β3 = 0, Eq. (3.7) is reduced to the nonlinear Schrödinger (NLS)
equation that is well known in the filed of nonlinear optics (Agrawal, 2019). One
can justify neglecting the loss term for fibers shorter than 1 km, especially in the
wavelength region near 1550 nm where losses are the smallest. However, losses
must be included for longer fibers.

Considerable insight can be gained by introducing normalized variables. For this
purpose, we note that any input pulse launched into the fiber has its amplitude in
the form A(0, t) = √

P0 S(t/T0), where S(t) is the shape function, P0 is the peak
power, and T0 is a measure of the pulse width. For a fiber of length L, it is useful to
define the normalized variables as

Z = z/L, τ = (t − β1z)/T0, A = √
P0e

−αz/2U, (3.8)

where τ is defined in a frame of reference moving with the pulse at the group
velocity vg = 1/β1 (the so-called retarded frame). Note that the exponential decay
of the amplitude has been included in the definition of the normalized amplitude U .
The use of Eq. (3.8) in Eq. (3.7) leads to an equation in the form

∂U

∂Z
+ isL

2LD

∂2U

∂τ 2
− β3L

6T 3
0

∂3U

∂τ 3
= iL

LNL
e−αz|U |2U, (3.9)

where s = sgn(β2) = ±1, and the dispersion and nonlinear lengths are defined as

LD = T 2
0

|β2| , LNL = 1

γP0
. (3.10)

They provide two length scales over which the dispersive and nonlinear effects
become important for the pulse evolution.

When fiber length L is such that L � LNL and L � LD , neither the dispersive
nor the nonlinear effects play a significant role during pulse propagation. The fiber
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plays a passive role in this regime and acts as a mere transporter of optical pulses
(except for reducing the pulse energy because of fiber losses). At a wavelength near
1.5 µm, β2 ≈ −20 ps2/km, and γ ≈ 2 W−1km−1 for standard telecommunication
fibers. The use of these values in Eq. (3.10) shows that the dispersive and nonlinear
effects are negligible forL < 100 km if T0 > 100 ps and P0 < 1 mW. However, LD

and LNL become smaller as pulses become shorter and more intense. For example,
LD and LNL are ∼0.1 km for T0 ∼ 1 ps and P0 ∼ 1 W. For such optical
pulses, both the dispersive and nonlinear effects need to be included if fiber length
exceeds 100 m. Depending on three relative magnitudes of these length scales, the
propagation behavior can be classified in the following three regimes.

3.3.1 Dispersion-Dominant Regime

When the fiber length is such thatL � LNL butL > LD , the last term in Eq. (3.9) is
negligible compared to the other two. The dispersion-dominant regime is applicable
whenever the fiber and pulse parameters are such that

N2 = LD

LNL
= γP0T

2
0

|β2| � 1. (3.11)

As a rough estimate, P0 should be less than 10 mW for 10-ps pulses. The parameter
N is later found to be related to the soliton order.

In the dispersion-dominant regime, the evolution of an optical pulse is governed
by the GVD alone, and the nonlinear effects play a negligible role. The resulting
linear equation,

∂U

∂z
+ is

2LD

∂2U

∂τ 2
− β3

6T 3
0

∂3U

∂τ 3
= 0, (3.12)

can be solved with the Fourier transform method. Let Ũ (z, ω) be the Fourier
transform of U(z, τ ) defined as

Ũ (z, ω) =
∫ ∞

−∞
U(z, τ )eiωτ dτ. (3.13)

In the Fourier domain, Eq. (3.12) becomes an ordinary differential equation and
can be solved easily. Converting the result back to the time domain, we obtain the
solution

U(z, τ ) = 1

2π

∫ ∞

−∞
Ũ (0, ω) exp

( isω2z

2LD

+ iβ3ω
3z

6T 3
0

− iωτ
)

dω, (3.14)
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where Ũ (0, ω) is the Fourier transform of the incident field at z = 0 and is obtained
by setting z = 0 in Eq. (3.13). Equation (3.14) can be used for input pulses of
arbitrary shapes. However, the integral can be evaluated in a closed form only for
a few specific pulse shapes. In general, both the width and the phase of an optical
pulse are expected to change as it propagates down the fiber. It should be stressed,
however, that the GVD affects only the spectral phase and not the spectral intensity,
i.e., the spectrum of any pulse remains unaltered during its propagation inside a
linear dispersive medium.

As a simple example, consider the case of a Gaussian pulse, for which the
incident field is of the form U(0, τ ) = exp(−τ 2/2), and neglect the contribution
of the β3 term. The integration can be carried out analytically, and the final result is
given by

U(z, τ ) = (
1 − isξ

)−1/2 exp

[
− τ 2

2(1 − isξ)

]
, (3.15)

where ξ = z/LD is the distance normalized to the dispersion length. This expression
shows that a Gaussian pulse maintains its shape on propagation, but its width T1
increases with the distance z as

T1(ξ) = T0(1 + ξ2)1/2. (3.16)

At the same time, the pulse develops a time-dependent phase such that

φ(ξ, τ ) = − sξτ 2/2

1 + ξ2
+ 1

2
tan−1(sξ). (3.17)

A time-dependent phase implies that the frequency of the electric-field oscilla-
tions changes with time, a feature referred to as the frequency chirp. This frequency
change is related to the phase as

δω = ω − ω0 = −∂φ

∂t
= sξτ

(1 + ξ2)T0
. (3.18)

This relation shows that the frequency changes linearly across the pulse and its value
depends on the sign of β2. In the normal-GVD regime (s = 1), δω is negative near
the leading edge and increases linearly across the pulse. The opposite occurs in
the anomalous-GVD regime (s = −1). As an example, Fig. 3.2 shows dispersion-
induced broadening and chirping for a Gaussian pulse at ξ = 2 and 4 in the case
of anomalous GVD (s = −1). As seen there, chirp imposed by GVD is perfectly
linear for Gaussian pulses.

One may wonder what happens if the input pulse itself is chirped. In the case
of linearly chirped Gaussian pulses, the incident field is of the form U(0, τ ) =
exp[−(1 + iC)τ 2/2], where C is a chirp parameter. It is common to refer to the
chirp as being positive or negative, depending on whether C is positive or negative.
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Fig. 3.2 Dispersion-induced broadening (a) and chirping (b) of a Gaussian pulse at distances of
2LD and 4LD in the case of anomalous GVD (s = −1). Dashed lines show the situation at z = 0

We can obtain Ũ (0, ω) from Eq. (3.13) and use it in Eq. (3.14) to find U(z, τ ). The
integral can again be done analytically to obtain

U(z, τ ) = 1√
Q

exp

[
− (1 + iC)τ 2

2Q(z)

]
, (3.19)

where Q = 1 − isξ(1 + iC). Even a chirped Gaussian pulse maintains its shape on
propagation, but its width and chirp change as

T1(ξ) =
[
(1 + sCξ2)2 + ξ2)

]1/2
T0, C1(z) = C + (1 + C2)sξ. (3.20)

Figure 3.3 shows the broadening factor T1/T0 and the chirp parameter C1 as a
function of ξ in the case of anomalous GVD (s = −1). An unchirped pulse (C = 0)
broadens monotonically by a factor of (1 + ξ2)1/2 and develops a negative chirp
such that C1 = −ξ (the dotted curves). Chirped pulses, on the other hand, may
broaden or compress depending on whether β2 and C have the same or opposite
signs. When sC > 0, a chirped Gaussian pulse broadens monotonically at a rate
faster than that of the unchirped pulse (the dashed curves). The situation changes
dramatically for sC < 0. In this case, the contribution of the dispersion-induced
chirp is of a kind opposite to that of the input chirp. As seen from Eq. (3.20), C1
becomes zero at a distance ξ = |C|/(1 + C2), and the pulse becomes unchirped.
This is the reason why the pulse width initially decreases in Fig. 3.3 and becomes
minimum at a specific distance. The minimum value of the pulse width depends on
the input chirp parameter as Tmin

1 = T0/
√
1 + C2.
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Fig. 3.3 Broadening factor (a) and chirp parameter (b) for chirped Gaussian input pulses
propagating in the anomalous-GVD region of a fiber. Dashed curves show the case of an unchirped
Gaussian pulse. The same curves are obtained for normal GVD if the sign of C is reversed

Fig. 3.4 Temporal evolution of an unchirped Gaussian input pulse propagating in the normal-
GVD region of a fiber with non-negligible third-order dispersion (β3/(6T 3

0 ) = 0.2)

We briefly consider the impact of third-order dispersion, which becomes impor-
tant for short pulses propagating near the zero-dispersion wavelength (ZDWL) of the
fiber. For a Gaussian input pulse, the integral can be done in a closed form in terms
of an Airy function (Agrawal, 2019) but must be performed numerically for other
pulse shapes. Figure 3.4 shows the evolution of a Gaussian pulse in the normal-
GVD region (s = 1) over five dispersion lengths using β3LD/(6T 3

0 ) = 0.2. The
pulse develops an asymmetric shape with an oscillating structure in its trailing edge.
A mirror image around τ = 0 occurs for negative values of β3 with an oscillating
structure developing on the leading edge of the pulse. It will be seen later that the
third-order dispersion plays an important role in the formation of a supercontinuum.



136 G. P. Agrawal

3.3.2 Nonlinearity-Dominant Regime

When the fiber length L is such that L � LD but L > LNL, the dispersion terms in
Eq. (3.9) are negligible compared to the nonlinear term. In that case, pulse evolution
in the fiber is governed by the SPM alone, which produces changes in the pulse
spectrum but leaves the pulse shape intact. The nonlinearity-dominant regime is
applicable only when N � 1. If we neglect the dispersion terms in Eq. (3.9), it can
be solved analytically to obtain the general solution

U(L, τ) = U(0, τ ) exp[iφNL(L, τ)], (3.21)

where φNL(L, τ) = |U(0, τ )|2(Leff/LNL). The effective length Leff for a fiber of
length L is defined as Leff = [1 − exp(−αL)]/α. It is smaller than L because of
fiber losses. In the absence of fiber losses, Leff = L. Equation (3.21) shows that
SPM gives rise to an intensity-dependent phase shift, but the pulse shape remains
unaffected. The maximum phase shift φmax occurs at the pulse center located at
τ = 0. With U normalized such that |U(0, 0)| = 1, it is given by

φmax = Leff/LNL = γP0Leff. (3.22)

If we use γ = 2W−1/km andLeff = 20 km, φmax = 40 at a power level P0 = 1W.
Spectral changes induced by SPM are a direct consequence of the time depen-

dence of φNL. Recalling that a temporally varying phase implies that the pulse
becomes chirped such that

δω(τ) = −∂φNL

∂t
= −

(
Leff
LNL

)
1

T0

∂

∂τ
|U(0, τ )|2. (3.23)

The chirp induced by SPM increases in magnitude with the propagated distance.
In other words, new frequency components are generated continuously as the pulse
propagates down the fiber. These SPM-generated frequency components broaden
the spectrum compared to its initial width at z = 0. The spectrum is obtained
by taking the Fourier transform of Eq. (3.21). Figure 3.5 shows the spectrum
|Ũ (L, ω)|2 calculated for an unchirped Gaussian pulse using φmax = 40. In this
situation, the number of internal peaks increases linearly with the fiber length, and
the dominant peaks occur near the spectral boundaries. These SPM-induced spectral
features were first observed in optical fibers in a 1978 experiment (Stolen & Lin,
1978) and were used to estimate the nonlinear parameter n2.

Since the nonlinear phase φNL depends on the pulse intensity, its derivative
needed in Eq. (3.23) is quite sensitive to the shape of the pulse. This feature
makes the SPM-broadened spectrum to depend on the pulse shape. We can see
this dependence by considering super-Gaussian pulses whose intensity varies with
time as |U(0, τ )|2 = exp(−τ 2m), where m > 1 for super-Gaussian pulses. The
pulse becomes nearly rectangular for m > 5. Figure 3.6 compares the evolution of
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Fig. 3.5 SPM-induced spectral broadening of a Gaussian pulse for φmax = 40. The dashed curve
shows the input spectrum

Fig. 3.6 Evolution of SPM-broadened spectra for fiber lengths in the range 0 to 50LNL for
unchirped super-Gaussian pulses with m = 1, 3, and 5. A color bar shows the 50-dB range used
for plotting the spectral density

pulse spectra for the Gaussian (m = 1) and super-Gaussian (m = 3 and 5) pulses
over 50LNL using Eq. (3.22) in Eq. (3.21) and performing the Fourier transform
numerically. In all cases, input pulses are assumed to be unchirped (C = 0), and
fiber losses are ignored (α = 0). The qualitative differences between the three
spectra are quite noticeable. Even though all spectra in Fig. 3.6 exhibit multiple
peaks, most of the energy remains in the central peak for a super-Gaussian pulse.
This is so because the chirp is nearly zero over the central region for such a
pulse, a consequence of the nearly uniform intensity of super-Gaussian pulses for
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Fig. 3.7 Evolution of SPM-broadened spectra for fiber lengths in the range 0 to 50LNL for chirped
Gaussian pulses with C = −10, 0, and 10. A color bar shows the 50-dB range used for plotting
the spectral density

|t | < T0. In contrast, most of the energy appears in the outermost spectral peaks
for a Gaussian pulse. The spectral range becomes larger for super-Gaussian pulses
because the maximum chirp becomes larger as m increases. A triangular shape of
the spectral evolution in Fig. 3.6 indicates that the SPM-induced spectral broadening
increases linearly with distance.

An initial frequency chirp on the input pulse can also lead to drastic changes in
the SPM-broadened pulse spectrum. This is illustrated in Fig. 3.7, which compares
the spectral evolution of a Gaussian pulse for C = −10, 0, and 10 under conditions
identical to those used in Fig. 3.6. It is evident that the sign of the chirp parameter
C plays a critical role. For C > 0, spectral broadening increases, and the oscillatory
structure becomes less pronounced. However, a negatively chirped pulse undergoes
a spectral narrowing phase before its spectrum begins to broaden and exhibit
multiple peaks. This behavior can be understood from Eq. (3.23) by noting that the
SPM-induced chirp is linear and positive (frequency increases with increasing time)
over the central portion of a Gaussian pulse. Thus, it adds to the initial chirp for C >

0, resulting in a broader spectrum. In the case of C < 0, the two chirp contributions
are of opposite signs (except near the pulse edges), and the pulse becomes less
chirped. If we employ the approximation that φNL(t) ≈ φmax(1 − t2/T 2

0 ) near
the pulse center for Gaussian pulses, the SPM-induced chirp is nearly canceled for
C = −2φmax. This relation provides a rough estimate of the distance at which
which narrowest spectrum occurs for a given value of C.
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3.3.3 Dispersive Nonlinear Regime

When the fiber length L is longer or comparable to both LD and LNL, dispersion
and nonlinearity act together as the pulse propagates along the fiber. The interplay
of the GVD and SPM effects can lead to a qualitatively different behavior compared
with that expected from GVD or SPM alone. In the anomalous-GVD regime (β2 <

0), the fiber can support solitons. Equation (3.9) is helpful in understanding pulse
evolution in optical fibers when both the dispersive and nonlinear effects should
be taken into account. It is a fundamental equation of nonlinear science and has
been studied extensively in many different contexts. The β3 term is often negligible
in practice. The parameter β2 can be positive or negative with values in the range
0.1–20 ps2/km, depending on how close the pulse wavelength is to the ZDWL of
the fiber. The nonlinear parameter γ is positive and has a value in the range of 1–10
W−1/km for most silica fibers; its values can be increased to beyond 100W−1/km in
narrow-core photonic crystal fibers; even values >1000 W−1/km have been realized
using non-silica glasses.

It is useful to normalize the distance as ξ = z/LD and write Eq. (3.9) in the form
(assuming that the β3 term is negligible)

∂U

∂ξ
+ is

2

∂2U

∂τ 2
= N2e−αz|U |2U. (3.24)

In the lossless case (α = 0), Eq. (3.24) becomes the standard NLS equation. Its
solutions depend on the nature of dispersion through s = ±1 and on the peak power
of the input pulse through the parameter N . They also depend on the pulse shape.
As an example, Fig. 3.8 shows the temporal and spectral evolution of an initially
unchirped Gaussian-shape pulse launched in the anomalous-GVD regime (s = −1)
with a peak power such that N = 1. The pulse broadens slightly, and its spectrum
narrows a bit, but neither the temporal nor the spectral width of the pulse changes
much after a dispersion length. The pulse also appears to lose some energy in the
form of dispersive waves that form a low-intensity pedestal around the pulse.

This behavior can be understood by noting that the NLS equations have exact
solutions in the form of solitons in the case of anomalous GVD. For an initial
pulse shape U(0, τ ) = sech(τ ) and integer values of the parameter N , the solitons
follow a periodic evolution pattern with the period ξ0 = π/2. The fundamental
soliton corresponds to N = 1 and propagates without change in its shape. The only
reason that the pulse shape and spectrum change in Fig. 3.8 is that the initial pulse
shape is Gaussian and does not correspond to a soliton. Indeed, if we repeat the
calculation with a “sech” pulse shape, we find that both the shape and spectrum
do not change with z. From Eq. (3.11), the peak power necessary to excite the
fundamental soliton is given by P1 = |β2|/γ T 2

0 . For a hyperbolic secant pulse,
the pulse width is related to T0 by Tp ≈ 1.76T0. This relation should be used for
comparison with experiments. As a rough estimate, for 1.55µm solitons to form in
silica fibers, P1 ∼ 1 W when Tp = 1 ps. In the next two sections, we consider the
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Fig. 3.8 Temporal and spectral evolution of an initially Gaussian-shape pulse launched in the
anomalous-GVD region with a peak power such that N = 1. The color bar shows 50-dB range
used for plotting the intensity

pulse propagation in the normal and anomalous GVD regimes by solving Eq. (3.24)
numerically with the split-step Fourier method (Agrawal, 2019).

3.4 Normal Dispersion

In the normal-GVD region, the GVD parameter β2 > 0 and s = 1 in Eq. (3.24).
We set α = 0 assuming that the fiber is short enough that losses are negligible.
The parameter N can vary over a wide range depending on the widths and peak
powers of input pulses. As an example, Fig. 3.9 shows the evolution of pulse shape
and spectrum over one dispersion length for a sech-shape pulse launched with
N = 5. Initially, the spectrum broadens because of SPM-induced chirping, while
pulse shape remains almost unchanged. However, spectral broadening saturates at a
distance of about ξ = 0.3, and beyond that the chirped pulse starts to broaden, and
its shape changes drastically with a nearly flat central region.

An interesting phenomenon occurs for larger values of N . Figure 3.10 shows
the evolution of an initially sech-shape pulse launched such that N = 30. As the
pulse propagates, it broadens and develops a nearly rectangular profile with sharp
leading and trailing edges. The combination of rapidly varying intensity and SPM in
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Fig. 3.9 Evolution of (a) pulse shape and (b) spectrum over one dispersion length in the normal-
GVD region when a sech-shape pulse is launched with N = 5

these steep-slope regions broadens the pulse spectrum. Because the new frequency
components are mainly generated near the edges, the pulse develops a nearly linear
frequency chirp across its entire width. This linear chirp can be used to compress
the pulse by passing it subsequently through a dispersive delay line such as a grating
pair (Agrawal, 2020).

An interesting feature of Fig. 3.10 is the presence of rapid oscillations in the
wings of the pulse. These can be more clearly in Fig. 3.11 where the pulse and
spectrum are plotted at ξ = 0.1. In a 1985 paper, Tomlinson et al. (1985) interpreted
such oscillations in terms of optical wave breaking, resulting from a mixing of the
SPM-induced frequency-shifted components with the unshifted light in the wings.
This phenomenon can also be understood as a FWMprocess. Indeed, one can clearly
see two side bands in the pulse spectrum, as expected for a FWM process. The
central structure in the spectrum is due to SPM (see Fig. 3.5). The results shown in
Figs. 3.10 and 3.11 are for an initially unchirped pulse. If input pulses are chirped,
they may follow a different evolution pattern than that shown in Fig. 3.10.
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Fig. 3.10 Same as Fig. 3.9 except that the pulse is launched with N = 30. The color schemes are
also identical in two figures

3.5 Anomalous Dispersion

In the anomalous-GVD regime, the GVD parameter β2 < 0 and s = −1 in
Eq. (3.24). For silica fibers, this is typically the situation in the spectral region
near 1.55 µm that is of considerable interest for telecommunications. As mentioned
earlier, a simple sign change leads to the formation of optical solitons. In particular,
a sech-shape input pulse launched with N = 1 forms a fundamental soliton
and propagates without any change in its shape. In the absence of fiber losses,
the fundamental solitons can propagate undistorted for arbitrarily long distances
(Hasegawa & Tappert, 1973). The soliton formation capacity of optical fibers has
led to the development of the soliton laser (Mollenauer & Stolen, 1984). A piece of
single-mode fiber inside the cavity was used to shape the intra-activity pulses, and
the width of output pulses was controlled by adjusting the fiber length. Pulses as
short as 50 fs have been generated directly from a soliton laser.

All higher-order solitons (N > 1) follow a periodic evolution pattern along the
fiber with a period z0 = (π/2)LD . Figure 3.12 shows, as an example, the evolution
pattern of the N = 3 soliton over one period, obtained by solving Eq. (3.24) with
U(0, τ ) = sech(t). The pulse initially narrows, develops a two-peak structure, and
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Fig. 3.11 (a) Pulse shape and (b) spectrum at ξ = 0.1 for N = 30. Two sidebands in the spectrum
and temporal oscillations near the pulse edges are due to optical wave breaking

then reverses its propagation behavior beyond z/LD = π/4 such that the original
pulse is restored at z/LD = π/2. Initial narrowing of the higher-order soliton can
used to compress an optical pulse by suitably selecting its peak power and the fiber
length (Agrawal, 2020).

3.5.1 Fission of High-Order Solitons

Equation (3.24) has proved to be very useful in understanding the propagation
behavior in the anomalous-GVD regime of optical fibers. However, as discussed in
Sect. 3.2, the NLS equation is not adequate for ultrashort pulses (T0 < 1 ps), and its
generalized version, Eq. (3.4), should be used in its place. It turns out that even the
inclusion of third-order dispersion (TOD) affects the soliton dynamics considerably.
As an example, Fig. 3.13 shows the evolution under conditions identical to those of
Fig. 3.12 except that the TOD is included using δ3 = β3LD/6T 3

0 = 0.02. The
propagation distance was increased to 3LD to identify all new features clearly. The
TOD breaks up the third-order soliton into three fundamental solitons of different
widths and peak powers, a phenomenon called soliton fission (Wai et al., 1986). A
clear evidence of soliton fission is seen in the spectral evolution, where we see a
sudden emergence of a new spectral peak at a distance of about z = 0.4LD on the
high-frequency (blue) side of the pulse spectrum. This peak represents a dispersive
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Fig. 3.12 Evolution of a third-order soliton from ξ = 0 to π/2; (a) pulse shape and (b) spectrum.
The color bar is identical to that in Fig. 3.9

wave created after the fission through a Cherenkov-like phase-matching process
(Akhmediev & Karlsson, 1995).

To understand the physics behind soliton fission, we need to realize that a high-
order soliton, say of the order N , actually consists of N fundamental solitons that
evolve, in the absence of TOD, as one entity in a periodic fashion because they move
at the same speed inside the fiber. However, their speeds become slightly different
when the TOD is not negligible. This feature destroys their periodic evolution, and
individual fundamental solitons separate from each other as they travel inside the
fiber. The inverse scattering method shows that the widths and peak powers of the
individual fundamental solitons are related to the width T0 and peak power P0 of
the input pulse as (Kodama & Hasegawa, 1987)

Tk = T0

2N + 1 − 2k
, Pk = (2N + 1 − 2k)2

N2 P0, (3.25)

where k varies from 1 to N .
The TOD affects the dynamics of each fundamental soliton after the soliton

fission because solitons can propagate unperturbed only in its absence. The TOD-
induced perturbation forces each soliton to shed some energy in the form of a
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Fig. 3.13 Fission of a third-order soliton induced by TOD (δ3 = 0.02); (a) pulse shape (red tilted
cone) and (b) spectrum (vertical blue line) show the signature of a blue-shifted dispersive wave.
The color scheme is identical to that in Fig. 3.9

dispersive wave. Generation of dispersive waves through TOD attracted consider-
able attraction soon after this phenomenon was identified numerically (Wai et al.,
1990; Gordon, 1992; Roy, 2009). Such radiation is also known as the Cherenkov
radiation (Akhmediev & Karlsson, 1995). It is emitted at a frequency at which
phase velocity of the dispersive wave matches that of the soliton. The frequency
shift between the soliton and the dispersive wave is the temporal analog of the angle
at which the Cherenkov radiation is emitted by charged particles in a bulk medium.

The frequency of the dispersive wave that grows because of radiation emitted
by the perturbed soliton can be obtained by a simple phase-matching argument
requiring that the dispersive wave at frequency ω propagates with the same phase
velocity as that of the soliton at the frequency ωs . The frequency shift Ω = ω − ωs

is found by the roots of a third-order polynomial (Akhmediev & Karlsson, 1995)

β2Ω
2 + β3

3
Ω3 − γPs = 0, (3.26)
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where Ps is the peak power of the fundamental soliton formed after the fission
process (and not that of the input pulse). Similarly, the dispersion parameters
appearing in Eq. (3.26) are at the soliton central frequency ωs . The only real solution
of this polynomial is approximately given by

Ω ≈ −3β2

β3
+ γPsβ3

3β2
2

. (3.27)

For solitons propagating in the anomalous-GVD region such that β2 < 0 and β3 >

0, the frequency shift of the dispersive wave is positive. As a result, the dispersive
wave is emitted at a higher frequency (a blue shift) than that of the soliton. This was
the case for the numerical results shown in Fig. 3.13. Indeed, the dispersive-wave
frequency seen in this figure agrees well with the prediction of Eq. (3.27).

3.5.2 Intrapulse Raman Scattering

The Raman term appearing in Eq. (3.4) affects the fission process considerably
through a phenomenon known as the soliton self-frequency shift. First observed in
1986, it manifests as a red shift of short optical pulses propagating as fundamental
solitons (Mitschke &Mollenauer, 1986). Physically, the low-frequency components
of the pulse are amplified from the Raman gain by the high-frequency components
of the same pulse (Gordon, 1986). Since such an amplification is not restricted
to solitons, the term Raman-induced frequency shift (RIFS) or intrapulse Raman
scattering is also employed (Santhanam&Agrawal, 2003). Large values of the RIFS
(>50 THz) were observed after 2000 with the advent of microstructured fibers (Liu
et al., 2001).

In a 1987 experiment, 30-fs input pulses of different peak powers (resulting
in different values of N ) were launched into a 1-km-long fiber, and their spectra
observed at its output end (Beaud et al., 1987). The fission process occurred at
different distances within the fiber for different N values, but in all cases the
spectrum of each fundamental soliton shifted toward longer wavelengths because
of intrapulse Raman scattering, the shortest pulse exhibiting the largest shift. At
the highest peak power of 530 W, three distinct spectral peaks appeared that
corresponded to three fundamental solitons. The shortest soliton had a RIFS of
nearly 200 nm.

For the sake of comparison, Fig. 3.14 shows the evolution of a third-order soliton
under conditions identical to those of Fig. 3.13 except that, in addition to the TOD,
intrapulse Raman scattering is also included by solving Eq. (3.4) numerically. In
addition to the blue-shifted dispersive wave (appearing as a red cone on the left), one
can see a considerable red shift of the shortest soliton that increases continuously
with distance. In the time domain, this red shift leads to bending of the soliton
trajectory because of a continuous slowing down of the red-shifted soliton owing
to changes in its group velocity. It should be clear by now that the generalized
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Fig. 3.14 Fission of a third-order soliton in the presence of TOD (δ3 = 0.02) and intrapulse
Raman scattering. In addition to a blue-shifted dispersive wave, the shortest soliton slows down
(light blue curve on the left). The color scheme is identical to that in Fig. 3.9

NLS equation, Eq. (3.4), should be used for a realistic description of the underlying
physics when ultrashort pulses are propagated through optical fibers.

3.6 Supercontinuum Generation

As we saw in Sect. 3.5, when an optical pulse propagates through a nonlinear
dispersive fiber, its temporal as well as spectral evolution is affected not only by
a multitude of nonlinear effects but also by the dispersive properties of that fiber.
It turns out that, for sufficiently intense pulses, the pulse spectrum becomes so
broad that it often extends over a frequency range exceeding 50 THz. Such extreme
spectral broadening is referred to as supercontinuum generation, a phenomenon
first observed around 1970 in a glassy bulk nonlinear medium (Alfano & Shapiro,
1970a). In the context of optical fibers, a supercontinuum was first observed in
1976 using 10-ns pulses from a dye laser (Lin & Stolen, 1976). Although this topic
attracted some attention during the decades of 1980s and 1990s, it was only after
2000, with the emergence of microstructured and photonic crystal fibers (PCFs), that
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the use of optical fibers for supercontinuum generation became common (Dudley
et al. 2006; Genty et al. 2007; Dudley & Taylor, 2010).

In a 2000 experiment, 100-fs pulses with 7-kW peak power at 790 nm were
launched in the anomalous-GVD region of a microstructured fiber that was only
75 cm long (Ranka et al., 2000). Even for such a short fiber, the supercontinuum
extended from 400 to 1600 nm; it was also relatively flat over the entire bandwidth
(on a logarithmic power scale). Since then, similar features have been observed
in many experiments using different types of fibers. In this section, we review the
physical mechanisms behind the supercontinuum generation using optical fibers and
discuss the progress realized since the year 2000.

3.6.1 Supercontinuum Generation Through Soliton Fission

The important question is what physical processes within an optical fiber are
responsible for generating such a wide supercontinuum. The answer turned out to
be the soliton fission in the case of femtosecond pulses. One can see a hint of this in
Fig. 3.14 showing the evolution of a third-order soliton over three dispersion lengths.
The pulse spectrum at z = 3LD has broadened considerably compared to its input
shape and consists of multiple peaks. In addition to the central SPM-broadened
structure and the leftmost dominant peak that corresponds to the shortest soliton
created after the soliton fission, there is blue-shifted peak on the right belonging to
a dispersive wave. Moreover, several other peaks have begun to appear as a result of
XPM and FWM. The spectrum in Fig. 3.14 cannot yet be called a supercontinuum,
but it is not difficult to imagine that a supercontinuum may form for solitons of
much higher orders.

As an example, Fig. 3.15 shows the evolution of an eighth-order soliton (N =
8) over one dispersion length, obtained by solving Eq. (3.4) numerically in its
following dimensionless form:

i
∂U

∂ξ
− s

2

∂2U

∂τ 2
− iδ3

∂3U

∂τ 3
+ δ4

∂4U

∂τ 4

= N2
(
1 + ifs

∂

∂τ

) (
U(ξ, τ )

∫ ∞

0
R(τ ′)|U(ξ, τ − τ ′)|2dτ ′

)
, (3.28)

where s = ±1 and fs = (ω0T0)
−1 is the self-steepening parameter. We have

retained dispersion up to fourth order through

δ3 = β3LD/(6T 3
0 ), δ4 = β4LD/(24T 4

0 ). (3.29)

In obtaining Fig. 3.15, we used U(0, t) = sech(t/T0) with T0 = 50 fs, neglected
the self-steepening term by setting fs = 0, and used the form of hR(t) suggested
by Lin and Agrawal in a 2006 paper (Lin & Agrawal, 2006). The two dispersion
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Fig. 3.15 Evolution of an N = 8 soliton from ξ = 0 to 1 using the parameter values given in
the text; (a) pulse shape and (b) spectrum. The supercontinuum nature of the spectrum becomes
apparent for such large values of N . The color scheme is identical to Fig. 3.9

parameters were chosen to be δ3 = 0.02 and δ4 = 1 × 10−4. It is clear from
Fig. 3.15 that the pulse evolution becomes quite complex for an N = 8 soliton.
In particular, the pulse spectrum begins to look like a supercontinuum that extends
over a bandwidth that is more than 20 times larger compared to that of the input
pulse.

To understand the role of self-steepening, Fig. 3.16 shows the pulse evolution
under conditions identical to those used for Fig. 3.15 except that self-steepening is
included assuming an input wavelength of 1550 nm; fs = 0.0163 at this wavelength.
Clearly, self-steepening affects both the temporal and spectral features. Although it
reduces the total width of the supercontinuum, it also makes the supercontinuum
more uniform compared to the one in Fig. 3.15. Figure 3.17 compares the input and
output pulse spectra for the N = 8 soliton after one dispersion length.

Figure 3.16 shows how the pulse spectrum begins to broaden after the fission of
an N = 8 soliton and how the pulse spreads rapidly in the time domain. However,
it does not reveal which parts of the spectrum belong to which parts of the pulse.
The mathematical tool for revealing this information is known as the short-time or
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Fig. 3.16 Evolution of an N = 8 soliton from ξ = 0 to 1 under conditions identical to those used
for Fig. 3.15 except that self-steepening is also included. The color scheme is identical to Fig. 3.9

Fig. 3.17 Supercontinuum generated by launching an N = 8 soliton into a fiber of length L =
LD . The input spectrum is shown for comparison by a dashed green line
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Fig. 3.18 Spectrogram generated numerically at a distance L = LD by launching an N = 8
soliton in a fiber with L = LD . The input spectrum is also shown for comparison by a dashed line

windowed Fourier transform (WFT). In contrast with the optical spectrum, shown
in Fig. 3.17 and obtained by taking the Fourier transform of U(L, τ) over the entire
range of τ , the WFT employs a window function that selects U(L, τ) over a limited
range of τ centered at a specific location T . Mathematically, the WFT is given by

S(T , ω) =
∣∣∣∣
∫ ∞

−∞
U(L, τ)W(τ − T ) exp(iωτ) dτ

∣∣∣∣
2

, (3.30)

where W(τ − T ) is the window function centered at τ = T . A Gaussian form is
often used for the window function by choosing

W(τ − T ) = 1√
2πσ

exp
[

− (τ − T )2

2σ 2

]
, (3.31)

where σ controls the window size. The WFT depends on both time and frequency
and reveals which parts of the pulse contain which spectral contents. It is also called
the spectrogram, a term borrowed from acoustics.

Figure 3.18 shows the spectrogram corresponding to the spectrum shown in
Fig. 3.17 by choosing σ = 1. It shows the output at a distance of one dispersion
length when an N = 8 soliton is launched into a fiber. The spectral features near
T = 0 represent SPM-induced spectral broadening of the pulse before it undergoes
soliton fission. Two bright spots near T = 12 and 28 represent two shortest solitons
created after the fission. Their spectra are shifted toward the red side because of
intrapulse Raman scattering, the shortest soliton undergoing the most red shift.
The two blue-shifted cigar-like features extending over T = 30–75 belong to the
dispersive waves created by these solitons. Depending on the dispersive properties
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of the fiber, such dispersive waves are sometimes trapped by the red-shifted solitons
through XPM if they happen to overlap in time.

Spectrograms can be constructed experimentally (Nishizawa & Goto, 2001)
using an extension of the frequency resolved optical gating (FROG), a technique
used commonly for measuring the width of ultrashort optical pulses (Trebino, 2002).
It is referred to as the X-FROG technique, and it consists of performing cross-
correlation of the output pulse with a narrow reference pulse whose peak can be
shifted using an adjustable delay line. The two pulses overlap inside a nonlinear
crystal that creates a signal through sum-frequency generation. Spectrogram is
produced by recording a series of optical spectra at the crystal output with different
delays between the two pulses.

3.6.2 Supercontinuum Generation Through Modulation
Instability

The use of ultrashort optical pulses is not essential for supercontinuum generation.
In a 2003 experiment, 42-ns pulses from a Q-switched Nd:YAG laser were launched
into a 2-m-long microstructured fiber (with a random hole pattern) to produce a
relatively wide supercontinuum at 10-kW peak-power levels (Town et al., 2003).
Somewhat surprisingly, it turned out that even continuous-wave (CW) lasers can
produce a supercontinuum at sufficiently high power levels. Indeed, CW lasers were
used for this purpose as early as 2003, and, by now, such supercontinuum sources
are being used for a variety of applications (Avdokhin et al., 2003; Nicholson et al.,
2003; Abeeluck et al., 2004; Travers, 2010).

It should come as no surprise that the phenomenon of modulation instability is
behind the CW or quasi-CW supercontinuum generation (Travers, 2010). It is well
known that when a CW beam propagates in the anomalous-GVD region of an optical
fiber, the phenomenon of modulation instability can create amplitude modulations
that manifest spectrally as two sidebands at specific frequencies ω0 ±Ωmax, where
ω0 is the frequency of the CW beam (Agrawal, 2019). The frequency shift Ωmax
depends on the input power P0 and fiber’s dispersion and nonlinear parameters as

Ωmax =
√
2γP0

|β2| . (3.32)

In the case of spontaneous modulation instability, the growth of these sidebands
is initiated by intensity fluctuations within the CW beam. Their amplitudes grow
initially with distance z exponentially. This growth manifests in the time domain as
sinusoidal oscillations with the period Tm = 2π/Ωmax. The exponential growth
continues as long as the fraction of the power in the two sidebands remains a small
fraction of the total power (the so-called linear regime).
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Fig. 3.19 Temporal and spectral evolutions of a noisy CW beam in the anomalous-GVD region
of a fiber using parameter values given in the text

Once the modulation-instability process enters the nonlinear regime, evolution of
the optical field can only be studied by solving the NLS equation (3.7) numerically
with noise added to the input CW beam. Figure 3.19 shows, as an example, the
temporal and spectral evolutions of a noisy CW beam assuming α = 0, β2 = −20
ps2/km, and LNL = 10 m. The TOD is included using β3 = 0.2 ps3/km, but
intrapulse Raman scattering is not included in these simulations. The input spectrum
is quite narrow in this case and nothing much happens until the onset of modulation
instability begins to create spectral sidebands at a frequency predicted by Eq. (3.32),
together with the corresponding temporal modulations on the CW beam. Both of
these features are clearly apparent in Fig. 3.19 at a distance of about 150 m. With
further propagation, temporal modulations become sharper and take the form of
a train of short optical pulses of different widths and peak powers that propagate
as fundamental solitons in the anomalous-GVD regime of the fiber. The reason
why solitons have different widths is related to the noisy nature of spontaneous
modulation instability. Indeed, when modulation instability is induced by launching
a weak signal at the sideband frequency, all solitons within the pulse train are
expected to have nearly the same width.

Even without the Raman effects, one can see supercontinuum formation as more
and more spectral sidebands are created through FWM. In the presence of intrapulse
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Fig. 3.20 X-FROG spectrogram calculated numerically when a CW beam with 44 W power is
launched inside a 20-m-long PCF at a wavelength of 10570 nm. The output pulse train and
spectrum are shown on the top and the right side, respectively (After Cumberland et al. (2008);
©2008 OSA.)

Raman scattering, the formation of a supercontinuum proceeds as follows. First,
modulation instability converts the CW beam into a train of pulses of different
widths and peak powers that propagate as fundamental solitons. Since the RIFS
depends on the pulse width, different solitons shift their spectra by different amounts
toward longer wavelengths. At the same time, blue-shifted radiation is generated in
the form of dispersive waves because of perturbations of these solitons by third-
order dispersion. As a soliton shifts its spectrum, it also slows down as long as it
experiences anomalous GVD. As a result, solitons collide (overlap temporally) with
neighboring solitons and dispersive waves and interact with them though XPM and
FWM. It turns out that such a collision can transfer energy to the slowing soliton,
which reduces its width further (to maintain the condition N = 1) and slows
down even more, and its spectrum shifts even further toward longer wavelengths.
Multiple soliton collisions eventually produce a supercontinuum that is extended
mostly toward the red side of the input wavelength.

Figure 3.20 shows the numerically computed WFT spectrogram of a super-
continuum with parameters corresponding to a 2008 experiment in which a CW
beam with 44 W power was launched inside a 20-m-long PCF (γ = 43 W−1/km)
at a wavelength of 1057 nm (Cumberland et al., 2008). The PCF exhibited two
ZDWLs located near 810 and 1730 nm. As a result, dispersion was relatively
large (65 ps/km/nm) at the pump wavelength of 1070 nm, but it decreased for
longer wavelengths. One sees clearly the formation of solitons (round objects)
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through modulation instability, together with their different spectral shifts and
different speeds (leading to different delays). Collisions among these solitons are
also apparent from their temporal overlap. Eventually, the spectrum of a short soliton
approaches the ZDWL near 1730 nm, where it stops shifting because of the radiation
pressure induced by the corresponding dispersive waves (cigar-like objects) emitted
at wavelengths longer than 1730 nm. The interaction (collision) of solitons with
these dispersive waves generates new spectral components through FWM in the
wavelength region near 1900 nm. The spectrogram in Fig. 3.20 shows both the
calculated spectrum and noisy pulse train in the time domain.

It is clear from the preceding description that the noisy nature of the input CW
beam plays a critical role since it seeds the process of modulation instability. Even
a CW laser beam is only partially coherent because of its finite spectral width
resulting from intrinsic phase fluctuations. Any numerical modeling must include
such fluctuations. The nonlinear propagation of a partially coherent CW beam inside
single-mode optical fibers was investigated in several studies, revealing the physics
behind CW supercontinuum generation (Mussot et al. 2004; Vanholsbeeck et al.
2005; Kobtsev & Smirnov, 2005; Cumberland et al. 2008).

The two most important ingredients for generating a CW supercontinuum are a
high-power laser and a highly nonlinear fiber so that the product γP0L exceeds 30,
where P0 is the CW power launched into a fiber of length L. This condition can be
satisfied for a 100-m-long fiber with γ = 100 W−1/km at a pump–power level of
a few watts. Such power levels are readily available from modern, high-power, Yb-
doped fiber lasers. In the original 2003 experiment, a 100-m-long holey fiber was
employed, and a Yb-fiber laser was used for CW pumping at 1065 nm (Avdokhin
et al., 2003). The resulting supercontinuum extended from 1050 to 1380 nm when
8.7 W of CW power was coupled into the fiber. In a 2004 experiment, highly
nonlinear fibers of lengths ∼ 1 km were used for supercontinuum generation by
launching a CW beam at 1486 nm (Abeeluck et al., 2004). The ZDWL of the fibers
was below 1480 nm, resulting in the anomalous GVD at the pump wavelength.
Output spectra extended from 1200 to >1800 nm when pump power was close
to 4 W. The spectrum was highly asymmetric with much more power on the
long-wavelength side. This asymmetry was due to intrapulse Raman scattering
that selectively extended the spectrum toward the long-wavelength side. The PCF
used in a 2008 experiment exhibited two ZDWLs located near 810 and 1730 nm
(Cumberland et al., 2008). When 44 W of CW power was launched into this fiber,
the supercontinuum extended from 1050 to 1680 nm. More importantly, the output
power was close to 29 W, and the spectral power density exceeded 50 mW/nm up
to 1400 nm. These features are useful for applications of such a supercontinuum
source for biomedical imaging.

The formation of CW supercontinuum in the visible region has also attracted
attention (Cumberland et al., 2008a; Kudlinski et al., 2009, 2010). This is not easy
to do because the most practical source of CW radiation is a high-power Yb-fiber
laser emitting light near 1060 nm. When such a laser is used with a suitable PCF
having its ZDWL near 1000 nm, the observed supercontinuum rarely extends below
900 nm. In a 2006 experiment, a tapered PCF whose core diameter decreased
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along its length was employed for this purpose together with a quasi-CW source
(a Nd:YAG microchip laser) emitting nanosecond pulse (Kudlinski et al., 2006).
The observed supercontinuum extended from 350 to 1750 nm with a high spectral
density when the taper length exceeded 5 m. The extension of the supercontinuum
into the visible region was possible because of a monotonically decreasing |β2(z)|
that allowed the FWM phase-matching condition to be satisfied for progressively
shorter idler wavelengths.

In a 2009 experiment, the use of a PCF whose core was both tapered and doped
with GeO2 created a CW supercontinuum that extended toward wavelengths as short
as 450 nm (Kudlinski et al., 2009). In the case of a uniform-core PCF pumped at
1075 nm with 70 W of CW power, the supercontinuum extended on the visible
side only up to 550 nm and contained no light in the blue region. However, when a
uniform-core section of 50 m was followed with a 130-m-long PCF section whose
outer diameter decreased from 135 to 85 µm, the supercontinuum extended from
470 to >1750 nm when pumped with 40 W of CW power and thus covered the
entire visible region. These results clearly show that an ultrabroad supercontinuum
covering both the visible and near-infrared regions can be produced with 1060-nm
pumping provided the PCF is suitably designed.

3.6.3 Supercontinuum Pumping in the Normal-GVD Region

From a practical perspective, coherence properties of a supercontinuum are impor-
tant when it is employed as a broadband source of light for medical, metrological,
or other applications. When optical pulses propagate inside a single-mode fiber
with a fixed spatial profile, the output is clearly spatially coherent. However, its
temporal coherence is affected by fluctuations in the energy, width, and arrival
time of individual input pulses. As a result, spectral phase is also likely to
fluctuate from pulse to pulse across the bandwidth of the supercontinuum (Dudley
et al., 2006). Indeed, coherence measurements show that the spectral coherence
of a supercontinuum is limited in practice when the process of soliton fission or
modulation instability initiates its buildup (Kobtsev & Smirnov, 2006; Türke et al.
2007; Genty et al. 2010).

The origin of coherence degradation in both cases is related to a noisy process
that is very sensitive to small variations in the widths and peak powers associated
with the input pulses. It follows that the supercontinuum coherence should improve
dramatically if input pulses are launched in the normal-GVD regime of a fiber where
solitons cannot form. Indeed, this feature was predicted as early as 2005 in a PCF
exhibiting two ZDWLs that was tapered along its length to ensure that optical pulses
always experienced normal dispersion (Falk et al., 2005). However, the resulting
supercontinuumwas not very broad, and its bandwidth was limited to below 400 nm.
The problemwas solved by 2011, and broadband supercontinua were generated with
normal-GVD pumping by using PCFs whose dispersion was suitably tailored (Heidt
et al., 2011a; Hooper et al., 2011a; Heidt et al., 2011b).
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Fig. 3.21 Evolution of (a) pulse shape and (b) spectrum from ξ = 0 to 0.1 in the normal-GVD
region when a sech-shape pulse is launched with N = 30

As an example, Fig. 3.21 shows the temporal and spectral evolutions of an intense
sech-shape pulse launched in the normal-GVD region of a fiber with N = 30. The
generalized NLS equation (3.4) was solved numerically with s = 1, δ3 = 0, and
δ4 = 0.001 to ensure that the minimum dispersion occurs at the input wavelength
of the pulse. It should be compared with Fig. 3.10, obtained for the same input
pulse without including the higher-order nonlinear and dispersive effects. In both
cases, the spectrum broadens mainly through the SPM but becomes asymmetric
in the general case because of self-steepening and intrapulse Raman scattering.
Two spectral sidebands are still generated because of optical wave breaking but
their amplitudes are quite different. The supercontinuum formed at z = 0.1LD is
relatively uniform over its entire bandwidth. Since soliton fission does not occur, it
is also expected to be relatively coherent.

Experiments support the preceding numerical scenario. In a 2011 experiment, the
PCF employed was designed such that it exhibited normal GVD over a wavelength
region that extended from 400 to beyond 1500 nm (Heidt et al., 2011a). Figure 3.22a
shows the broadband spectra observed at the output of a 50-cm-long PCF (fabricated
with a 2.3µm-diameter core) when it was pumped at 1050 nm with 50-fs pulses of
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Fig. 3.22 (a) Optical spectra observed at the output of a 50-cm-long PCF when it was pumped
at a wavelength of 1050 nm with 50-fs pulses of energies ranging from 0.25 to 7.8 nJ. (b) Output
spectra when the same PCF was pumped at 790 nm (After Heidt et al. (2011a); ©2011 OSA.)

energies ranging from 0.25 to 7.8 nJ. Figure 3.22b shows the output spectra when
the same PCF was pumped at 790 nm. In both cases, the supercontinua extend over
an 800-nm bandwidth at the highest pulse energy and are relatively flat and smooth
compared to those formed in the anomalous-GVD region.

A similar PCF design was used in another 2011 study (Hooper et al., 2011a).
It exhibited normal dispersion over a wide wavelength region with a minimum
occurring near 1064 nm, the wavelength at which 400-fs input pulses were launched.
The output spectrum at the end of a 4-cm-long piece of such a fiber exhibited a shape
that is typical of SPM (see Fig. 3.23). When fiber was 1 m long, the supercontinuum
extended over 800 nm, and its shape was relatively flat and smooth. Moreover,
the output was compressible to a duration of 26 fs and exhibited a high degree
of coherence between its spectral components. The width of the compressed pulse
was only 5 fs in another experiment (Heidt et al., 2011b) in which octave-spanning
spectra were generated by launching 15-fs pulses with 1.7 nJ energy into a fiber that
was only 1.7 mm long. Such a coherent supercontinuum is useful for a variety of
applications including biomedical imaging. Chapter 6 by Heidt et al. describes in
detail supercontinuum generation in the normal-GVD region of an optical fiber.
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3.7 Mid-Infrared and Ultraviolet Regions

The experimental results seen in Fig. 3.22 clearly show that the nonlinear effects
inside optical fibers can provide a coherent, wideband source of radiation covering
the visible and near-infrared regions. An important question is whether a supercon-
tinuum can be extended into the ultraviolet (UV) and mid-infrared (mid-IR) regions
because such sources are useful for many practical applications. In this section, we
focus first on the mid-IR region and then consider generation of UV radiation.

3.7.1 Supercontinuum in the Mid-Infrared Region

As early as 2000, experiments showed that the supercontinuum extended into the
near-IR region up to 1600 nm when a PCF was pumped with short optical pulses
at a wavelength near 800 nm (Ranka et al., 2000). Wavelengths beyond 1600 nm
could be produced by pumping silica fibers at a wavelength near 1550 nm, but high
losses of such fibers in the mid-IR region limited the use of such fibers. A fiber
made with lead-silicate glass was used in a 2006 experiment, and it was found that
the supercontinuum extended beyond 3 µm, even for a fiber that was only 6 mm
long (Omenetto et al., 2006).

As coherent sources in the mid-IR region (wavelength range 3–10 µm) have
many applications, the use of nonlinear fibers for producing such radiation became
an important area of research after the year 2005. In a 2006 experiment, the
supercontinuum was extended to 4500 nm by combining a silica fiber (length
∼1 m) with a few-meter-long fluoride fiber (Xia et al., 2006). Longer wavelengths
could not be produced in this experiment because of strong absorption exhibited by
fluoride fibers at wavelengths beyond 4500 nm. An ultrabroad supercontinuum was
realized in 2009 when a 2-cm-long fluoride fiber was pumped with 180-fs pulses at
a wavelength of 1450 nm (Qin et al., 2009). Figure 3.23a shows the output spectrum
observed for pulses with 50 MW peak power; its 10 dB bandwidth extends from 565
to 5240 nm. The spectra in the mid-IR region are compared in part (b) for two fibers
of different lengths. As seen there, almost the same bandwidth is obtained for the
shorter 0.9-cm-long fiber. The drop in power at wavelengths beyond 5 µm is due to
high losses of fluoride fibers. In a 2020 experiment (Li et al., 2020), a 60-cm-long
fluorotellurite fiber generated a supercontinuum extending from 0.93 to 3.95 µm
with a total power of 22.7 W and a high conversion efficiency of 57%.

Starting in 2010, chalcogenide fibers were used to extend the supercontinuum
into the mid-IR region (Hudson et al., 2011; Rudy et al., 2013; Yu et al., 2015; Cheng
et al., 2016; Karim et al., 2015, 2018; Lemière et al., 2019; Jiao et al., 2019; Yuan
et al., 2020). Such fibers have low losses for wavelengths beyond 10 µm and can be
made to provide large values of the nonlinear parameter γ . In a 2011 experiment,
an As2S3 fiber was tapered such that its effective mode area was < 1 µm2, resulting
in γ = 12, 400 W−1/km at the pump wavelength of 1.55 µm. When 250-fs pulses
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Fig. 3.23 (a) Supercontinuum observed at the output of a 2-cm-long fluoride fiber by pumping
with 100-fs pulses with a peak power about 50 MW. Dashed line shows the 10-dB bandwidth. (b)
Comparison of the mid-IR spectra for two fibers of different lengths (After Qin et al. (2009) ©2009
American Institute of Physics.)

were launched into such a 5-cm-long fiber, the supercontinuum extended from 0.97
to near 2 µm (Hudson et al., 2011). A later experiment employed a Tm-doped
fiber laser operating at 2.04µm to pump a 2.1-mm-long As2S3 fiber (Rudy et al.,
2013). The resulting supercontinuum extended from 1 to 3.7 µm, clearly showing
the potential of chalcogenide fibers for mid-IR generation.

This potential was realized in a 2015 experiment that pumped a 11-cm-long fiber
with 330-fs pulses at a wavelength of 4.0 µm (Yu et al., 2015). The spectrum
extended from 1.8 to 10 µm at the 40-mW average power, and this range was
limited by fiber’s losses. In a 2016 experiment, losses were reduced enough that
the observed supercontinuum extended from 2 to 15 µm, when a 3-cm-long fiber
was pumped with 170-fs pulses at a wavelength of 9.8 µm (Cheng et al., 2016).
Figure 3.24 shows the measured and stimulated spectra for input pulses with
2.9 MW peak powers. A similar spectral range was realized by using chalcogenide
fibers that avoided the use of toxic materials such as arsenic and antimony (Lemière
et al., 2019). By 2020, a 16-cm-long microstructured chalcogenide fiber generated
a coherent supercontinuum that extended from 2 to 13 µm, when pumped in the
normal-GVD region of the fiber with 150-fs pulses at a wavelength of 5 µm (Yuan
et al., 2020).

Dispersion engineering plays an important role for chalcogenide fibers used
for mid-IR generation. In a 2015 study, three fibers with microstrucured air holes
were analyzed for optimizing the fiber’s design (Karim et al., 2015). Among these,
equiangular spiral microstrucured fiber was found to be the most promising can-
didate for generating an ultrawide supercontinuum in the mid-IR region. In a later
study, a triangular-core fiber was designed such that the predicted supercontinuum
extended from 2.3 to 17 µm, when pumped with 100-fs pulses of 3-kW peak power
at a wavelength of 4 µm (Karim et al., 2018).
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Fig. 3.24 Experimental (top) and simulated (bottom) supercontinuum at the output of a 3-cm-long
chalcogenide fiber, pumped at 9.8 µm using 170-fs pulses with 2.9 MW peak power (After Cheng
et al. (2016) ©2016 OSA.)

3.7.2 Sources of Ultraviolet Radiation

An important application of the supercontinuum process is to use it as a source of
UV radiation. Extending supercontinuum into the UV region is not easy because
optical fibers not only become lossy in this region, but their dispersive properties
also become unsuitable. The ZDWL of standard silica fibers occurs at a wavelength
near 1300 nm such that they provide anomalous GVD at longer wavelengths. The
ZDWL can be moved closer to 800 nm by reducing the fiber’s core diameter. In
fact, the microstructured fiber used for the 2000 supercontinuum experiment (Ranka
et al., 2000) had a core diameter close to 2 µm for this reason. For extension into
the UV region, the ZDWL must be shifted below 400 nm.

In one approach, the core size of fibers is reduced to below 1 µm, resulting in
the so-called nanofibers. As early as 2006, fibers with core diameters ranging from
0.2 to 1.2 µm were made (Gattass et al., 2006). They were used for extending the
supercontinuum into the UV region by pumping the tapered fibers with femtosecond
pulses at 800 nm. However, the UV radiation near 400 nm was observed only for
the fiber with the 1.2-µm core diameter.

In a 2010 experiment, a 5-cm-long tapered PCF, having a core diameter of only
600 nm and exhibiting two ZDWLs at 509 and 640 nm, was employed for extending
the supercontinuum into the UV region (Stark et al., 2010). The fiber was pumped
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using femtosecond pulses (width <50 fs) whose peak powers could be as high as
4 kW. Input wavelength of 640 nm was near the second ZDWL of the fiber in this
experiment. The soliton orderN exceeded 200 at peak powers>3 kW. The observed
supercontinuum covered the entire visible region and extended into the UV region.
It should be noted that the fiber’s GVDwas anomalous only from 509 to 640 nm, the
region between the two ZDWLs. The UV band was formed owing to the dispersive
waves emitted by solitons, and it extended as far as 350 nm when the peak power
of pulses was close to 4 kW. When the fiber was pumped at 523 nm, the UV band
extended from 300 to 470 nm and was intense enough to be useful for practical
applications.

It is clear that pumping a fiber at shorter wavelengths will help in producing the
UV radiation. An extreme example of this approach was provided in an experiment
in which a supercontinuum extending from 350 to 470 nm was produced by
pumping a PCF with Q-switched pulses at 355 nm (Sylvestre et al., 2012). The
PCF exhibited large normal GVD (β2 nearly 2000 ps2/km) and strong absorption
in the UV region. It also supported several modes at the pump wavelength (core
diameter close to 4 µm). Physical mechanisms behind supercontinuum generation
were found to be cascaded SRS and intermodal FWM.

In another study, numerical simulations were used to show that nanofibers with
core diameters < 1 µm can extend a supercontinuum into the UV region with
pumping in the visible region (Hartung et al., 2012). The fibers were assumed to
exhibit normal GVD in both the UV and visible regions. As discussed in Chap. 6,
a coherent supercontinuum can be produced under such conditions, without making
use of soliton fission or modulation instability. Indeed, the predicted spectra, for a
fiber with 450-nm core diameter and pumped at 400 nm with 50-fs pulses, extended
into the UV region near 220 nm at a peak power of 80 kW. A similar behavior
occurs for suspended-core fibers.

In a different approach, hollow-core fibers are filled with a suitable gas before
launching femtosecond pulses into them. In a 2013 study, a 10-cm-long, hollow-
core, PCF was filled with different gases and pumped with 38-fs pulses at a
wavelength of 805 nm (Mak et al., 2013). The output spectra depended consid-
erably on pulse energy and gas pressure and extended into the UV region near
200 nm because of dispersive waves generated by the perturbed solitons. The same
technique was used in a 2020 experiment where an anti-resonant hollow-core fiber
was filled with argon gas and pumped with 30-fs pulses obtained from a fiber
laser operating at 1030 nm. Figure 3.25 shows how the spectra of dispersive waves
emitted in the UV region could be shifted over a range from 220 to 400 nm by
varying the pressure of argon gas and the energy of pump pulses (Smith et al., 2020).

It has proved difficult to generate UV wavelengths shorter than 180 nm using
gas-filled fibers. In a 2018 study, it was found numerically that wavelengths as short
as 90 nm can be realized using a tapered, Ne-filled fiber (Habib et al., 2018). The
fiber had a 12-cm-long uniform section that was followed by a 25-cm-long tapered
section. It was pumped with 30-fs pulses at 800 nm with peak powers such that
each pulse propagated as a fifth-order soliton (N = 5) inside the fiber. The higher-
order soliton went through a compression phase in the uniform section (down to
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Fig. 3.25 Spectra of dispersive waves in the 220–400 nm range at different pressures of argon gas
and energies of 30-fs pump pulses (at 1030 nm) from an argon-filled PCF (After Smith et al. (2020)
©2020 CC BY.)

< 2 fs), which broadened its spectrum and increased its peak power so much that
the neon gas was partially ionized. Fission of the compressed fifth-order soliton
created multiple dispersive waves whose wavelengths were in the deep UV region.
These results indicate that suitably designed, gas-filled fibers provide a practical
route for generating the UV radiation.

One may wonder whether it is possible to extend the bandwidth of a supercon-
tinuum so much that it extends from UV to IR regions. Considerable work has been
done in recent years to realize such ultrawide spectra. In a 2015 experiment, a 15-
cm-long, hollow-core PCF was filled with hydrogen gas. Figure 3.26 shows the
ultrawide spectrum obtained when such a fiber was pumped at 805 nm using 30-fs
pulses with 2.5-µJ energy (Belli et al., 2015). As seen there, the supercontinuum
extended from 120 nm to >1000 nm with a relatively strong peak at 182 nm that
could be attributed to a dispersive wave. Such a supercontinuum, extending over
multiple octaves, is useful for a variety of applications.

It is possible to realize spectra that are even wider than the one in Fig. 3.26. The
main issue is related to fiber’s losses as it is hard to find a fiber exhibiting low losses
over a very wide spectral range. In a 2015 study, a 4-cm-long, zirconium fluoride
fiber (known as the ZBLAN fiber) was used because this glass exhibits relatively low



164 G. P. Agrawal

Fig. 3.26 Supercontinuum at the output of a 15-cm-long, H2-filled, PCF pumped at 805 nm
with 30-fs pulses of 2.5-µJ energy. Dashed curves show the low-energy spectrum for comparison
(After Belli et al. (2015) ©2015 OSA.)

losses over a wavelength region extending from 0.2 to 6 µm (Jiang et al., 2015). The
fiber was in the form of a PCFwith a slightly elliptical core (average diameter 3µm),
and its ZDWL was near 1µm. When it was pumped at a wavelength of 1.04µm in
the anomalous-GVD region with pulse energies of up to 1 nJ, the output spectrum
extended from 0.2 to 2.5µm. In a 2017 experiment, a gas-filled, hollow-core fiber
was used containing a single ring of air holes in its cladding (Cassataro et al., 2017).
This fiber structure was found to have relatively low losses (<5 dB/m) over a wide
spectral range over which its GVD was also relatively flat. The 5-cm-long fiber was
filled with the krypton gas at a pressure of 18 bar and pumped with 30-fs pulses of
10 µJ energy at a wavelength of 1.7 µm. Such a pulse formed a 13th-order soliton
and produced a supercontinuum that extended from 270 nm to 3100 nm.

Even a wider supercontinuum was obtained in a 2019 experiment using a 30-
cm-long, argon-filled, anti-resonant, hollow-core fiber (Adamu et al., 2019). It
was realized by pumping the fiber at a wavelength near 2460 nm, where the
fiber exhibited an anti-resonant transmission window. When 100-fs pulses with
8-µJ energies were launched into the fiber, the output was in the form of a
supercontinuum that extended from 200 nm to 4000 nm. Moreover, the output was
spectrally coherent over this entire range. Figure 3.27 shows both the measured
ultrawide spectrum (top) and the degree of coherence (bottom). The numerically
simulated spectrum is also shown for comparison. The physical mechanism behind
the extreme spectral broadening is related to the soliton–plasma nonlinear dynamics
that leads to efficient generation of dispersive wave (DW) in the deep UV region.
This experiment clearly indicates that the nonlinear effects in suitably designed
fibers can produce ultrabroad supercontinua, extending from deep UV to mid-IR
regions, with a proper choice of the pump wavelength.
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Fig. 3.27 Ultrawide supercontinuum extending from 200 to 4000 nm (top) from an argon-filled,
hollow-core fiber pumped at 2460 nm with 100-fs pulses of 8-µJ energy. Simulated spectrum is
also shown for comparison. The bottom curve shows measured degree of coherence (After Adamu
et al. (2019) ©2019 CC BY.)

3.8 Summary

This chapter has reviewed the propagation characteristics of ultrashort optical pulses
in single-mode fibers influenced by various dispersive and nonlinear effects. When
pulse widths exceed a few picoseconds and only second-order dispersive effects
dominate, the propagation behavior is modeled quite well by the NLS equation. New
qualitative features arise depending on whether the propagation occurs in the normal
or the anomalous dispersion regime. It is useful to introduce two length scales,
LD and LNL, referred to as the dispersion and nonlinear lengths, respectively. A
dimensionless parameter defined as N2 = LD/LNL plays a particularly important
role. The nonlinear effects become important when N is close to or exceeds 1.

In the case of normal GVD, pulses broaden as they propagate and their shape
becomes more rectangular. For N > 10, the pulse begins to exhibit optical wave
breaking and develops a linear chirp across its entire width, a feature that is useful
for compressing such pulses. In the case of anomalous GVD, the fiber supports
optical solitons that are of fundamental interest and have also found important
applications. In this case, the pulse preserves its shape and spectrum throughout its
propagation when N = 1 and is referred to as the fundamental soliton. In contrast,
the pulse evolves in a periodic fashion for other integer values of N .
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Much more interesting effects occur for femtosecond pulses, for which one
must include both the TOD of the fiber and the phenomenon of intrapulse Raman
scattering. Mathematically, one must use a generalized version of the NLS equation.
It shows that higher-order solitons undergo a fission process in which an N th-order
soliton is broken into N fundamental solitons of different widths and peak powers.
At the same time, dispersive waves are generated through a Cherenkov-like process.
For sufficiently large values of N , the onset of dispersive waves in combination
with intrapulse Raman scattering, XPM, and FWM leads to the formation of a
supercontinuum, whose spectral bandwidth can exceed 1000 nm under suitable
conditions. Depending on the input wavelength of the optical pulses and the material
used to make the fiber, a supercontinuum can be produced to cover the visible, near-
IR, or the mid-IR spectral regions. With a proper choice of the pump wavelength,
hollow-core fibers filled with gases can be used to obtain ultrawide supercontinua
that extend from deep UV to mid-IR regions and are spectrally coherent over the
entire wavelength range.

The use of optical fibers for supercontinuum generation has found a variety
of applications, especially in the area of biomedical imaging. Indeed, fiber-based
supercontinuum sources have been available commercially for more than a decade
by now. Clearly, optical fibers provide an extremely versatile optical medium for
studying nonlinear phenomena and for creating novel optical sources in different
spectral regions. Such sources are already used and will continue to be used for a
variety of applications in diverse areas of optics and photonics.
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