
Chapter 14
Quantum Mechanical Theory
and Treatment of NLS Equations for
Supercontinuum Generation
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Abstract The supercontinuum light generated in an appropriate dielectric such as a
highly nonlinear dispersive fiber is described quantum mechanically. A Lagrangian
is introduced to describe the propagation of light in an inhomogeneous, dispersive,
and anisotropic dielectric. Proper creation and annihilation operators are introduced
to define the linear part of the Hamiltonian, while the nonlinear term(s) of the
Hamiltonian are defined in terms of these operators. As an example, the devised
quantum theory is applied to the pulse propagation through an optical fiber. A
coupled stochastic nonlinear Schrödinger equation (NLSE) type is obtained via the
coherent positive-P representation in order to describe pulse propagation through
the optical fiber. This approach is finally applied to the pulse propagation along
a photonic crystal fiber when the response function of the medium is taken into
account. The coupled stochastic generalized NLSE provided the quantum treatment
of the supercontinuum light source. In addition to the coupling form of the equations
and the stochastic terms, the main difference between the coupled stochastic
equations and its classical form (i.e., GNLSE) is an additional term which has no
counterpart in classical form. This additional term is brought about by commutation
relations, which holds for creation and annihilation operators. This coupled quantum
stochastic equation predicts squeezing in the region of anomalous dispersion,
and the fluctuation can be reduced in the vicinity of the formed solitons in the
supercontinuum generation process. Also, these equations can be used to study the
soliton self-frequency shift quantum mechanically. Here, the coupled equation is
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simulated in the mean case. The quantum treatment of supercontinuum generation
is essential for the high-intensity short-width pulses which are best described as
photons.

Keywords Supercontinuum generation · Third-order dispersion · Ostrogradsky’s
theorem · Generalized nonlinear Schrödinger equation (GNLSE) · Stochastic
GNLSE · Quantum soliton · Soliton fission · Fluctuation · Stochastic field ·
Stochastic variable

14.1 Introduction

Supercontinuum light sources have influenced the advancement of science and
technology due to their widespread applications (Agrawal, 2012; Alfano, 2016;
Alfano & Shapiro, 1970; Cumberland et al., 2008; Dudley & Genty, 2013; Dudley
& Taylor, 2010; Fujimoto, 2003; Li et al., 2021; Venck et al., 2020, Vengris et al.,
2019). However, a supercontinuum source exhibits unstable spectrum which affects
their common use. The supercontinuum sources exhibit up to 50% fluctuation in
their time-dependent profile depending on the initial photon intensity (Corwin et
al., 2003; Dudley & Genty, 2013; Gonzalo et al., 2018; Wetzel et al., 2012). This
fluctuation is partially dependent on the imperfect structure of fiber or dielectric
media. Nonetheless, the fluctuation in the supercontinuum generation, SCG, has
quantum origin as well (Corwin et al., 2003; Dudley & Genty, 2013; Gonzalo
et al., 2018; Wetzel et al., 2012; Safaei Bezgabadi & Bolorizadeh, 2022). The
quantum fluctuation in supercontinuum was studied semi-classically by Corwin
et al. (2003), who introduced methodologically an additional term to the classical
nonlinear Schrödinger equation. Controlling the supercontinuum source fluctuation
is an important issue, yet. However, many researchers are working on different
aspects of this fluctuation.

The main goal of this chapter is to describe the supercontinuum generation
in a dielectric, such as an optical fiber, quantum mechanically. Here, initially, a
Lagrangian is defined for the nonlinear propagation of light in an inhomogeneous,
dispersive, and anisotropic dielectric, specifically an optical fiber. Then, the propa-
gating fields are quantized by imposing the standard commutation relations. In the
next step, the Hamiltonian is written in terms of creation and annihilation operators.
As an example, the present theory is applied for pulse propagation through a
simple optical fiber. Making use of the obtained Hamiltonian and the positive-P
representation (Drummond & Gardiner, 1980; Drummond et al., 1981), the coupled
stochastic nonlinear Schrödinger equation (NLSE) is obtained to describe the pulse
propagation along the fiber. In addition, the quantum noise present in this process
could be treated by these coupled equations (Drummond & Hillery, 2014). Also, by
using these coupled equations, the equations for noise in the vicinity of the input
soliton are obtained which they describe soliton squeezing. Finally, this approach is
used for pulse propagation along a photonic crystal fiber when the retarded response
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function of the medium is considered, and a coupled stochastic generalized NLSE
is presented for quantum treatment of the SCG process. The obtained results for
the quantum model are simulated in the mean case. The simulation results for
quantum model are compared with the simulation results of the classical model.
As a methodological standpoint in order to verify the presented quantum model, the
simulation results for quantum model are compared with the experimental ones.

14.2 Quantum Theory for Pulse Propagation in a Dielectric

The quantum treatment of field propagation inside a dielectric becomes more impor-
tant when the electromagnetic field should be described as photons, specifically
for quantum photonics technologies (Dechoum et al., 2016; Drummond, 1990;
Drummond & Corney, 2001; Drummond & Hillery, 2014; Drummond & Opanchuk,
2020; Drummond et al., 1993; Carter, 1995; Corona et al., 2011; Grangier et al.,
1998; Sun et al., 2019; Yao, 1997). In this section, a detailed study of quantum
field propagation through a dielectric is presented when dispersion is included up
to the third order. The third-order dispersion coefficient was neglected in earlier
quantum treatments of the pulse propagation through a dielectric in the literature.
Due to the critical role of the third-order dispersion coefficient (Alfano, 2016) on
optical phenomena, especially when the second-order dispersion coefficient is zero
or infinitesimal, it is essential to include the third-order dispersion coefficient.

Firstly, a proper canonical Lagrangian is introduced which results in Maxwell’s
equations and the classical energy. Secondly, a constrained quantization approach
(Faddeev & Jackiw, 1988; Gitman & Tyutin, 1990) is applied by using Ostrograd-
sky’s theorem (Woodard, 2007) for higher-order field derivatives in the Lagrangian.
Finally, a Hamiltonian is derived in terms of properly defined annihilation and
creation operators. The resulted annihilation and creation operators are used to
obtain the quantum fields that describe electromagnetic waves propagation inside a
chosen dielectric in this work. The number operator defines the number of photon-
polariton pairs in the dielectric. Additionally, the creation and annihilation operators
were used to describe the nonlinearity of pulse propagation in a medium by adding
the proper perturbation terms. In the next section, the present quantum theory will
be applied to a simple optical fiber when a light signal is propagating along it. This
theory has the ability to add the higher-order dispersions and higher nonlinear terms
into the governing equations, e.g., to describe supercontinuum generation process.

14.2.1 Classical Energy and the Equation of Motion

It is necessary to define an appropriate canonical Lagrangian to establish a theory for
quantization of the pulse propagation along a dielectric. The resulted Hamiltonian
and the equations of motion should, respectively, be equal to the classical energy and
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Maxwell’s equations for the propagation of light in a dielectric when the dispersion
terms up to the third-order dispersion are included. The usual definitions that have
also been implemented by Drummond and Hillery (Drummond, 1990; Drummond
& Hillery, 2014; Hillery, 2009) are used here. One can write the energy density for
electromagnetic radiation as:

H =
∫ t

−∞

[
E
(
t ′, x

) · ∂D
(
t ′, x

)
∂t ′

+ H
(
t ′, x

) · ∂B
(
t ′, x

)
∂t ′

]
dt ′ = He + Hm

(14.1)

where He and Hm are, respectively, the energy density due to the electric and the
magnetic fields. The Fourier transform of the fields (e.g., electric field):

E (t, x) =
∫ ∞

−∞
eiωtE (ω, x) dω, (14.2)

could be replaced in Eq. (14.1). The conditions:

E (t, x) = E∗ (t, x) , (14.3a)

E (−ω, x) = E∗ (ω, x) (14.3b)

and

ε (−ω, x) = ε∗ (ω, x) (14.3c)

hold as the fields are real. One can rewrite E(t, x) · ∂D(t, x)/∂t in terms of the product
of two Fourier integrals as:

E (t, x) · ∂D (t, x)
∂t

= i

∫ ∞

−∞
dω′
∫ ∞

−∞
dωei(ω−ω′)tωE∗ (ω′, x

) · ε (ω)
...E
(
ω, x

)
.

(14.4)

A similar argument can be applied to the magnetic part of the energy, which results
in:

H (t, x) · ∂B (t, x)
∂t

= i

μ

∫ ∞

−∞
dω′
∫ ∞

−∞
dωei(ω−ω′)tωB∗ (ω′, x

) · B(ω, x).
(14.5)

Note that the difference between the electric filed energy, Eq. (14.4), and the
corresponding relation for the magnetic field, Eq. (14.5), is that the magnetic per-
meability is assumed to be independent of frequency, while the electric permeability
is frequency dependent. The frequency integral of Eq. (14.4) is split into two equal
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terms, and −ω is substituted for ω in one of the terms. Then, Eq. (14.4) and
Eq. (14.5) are substituted into Eq. (14.1). Finally, by integrating the resulting Eq.
(14.1) over time and assuming all the local fields and stored energies are initially
zero at t = − ∞, one finds the energy density as:

H =
∫ ∞

−∞
dω′
∫ ∞

−∞
dωei(ω−ω′)t

{
E∗ (ω′, x

) ·
[
ωε (ω, x)− ω′ε

(
ω′, x

)]
2 (ω − ω′)

...E (ω, x)

+ 1

μ
ωB∗ (ω′, x

) · B (ω, x)
}
.

(14.6)

Assuming a narrowband field at frequency, ω0, there are significant contributions
to the integral, Eq. (14.6), at ω = ω

′ + δω ≈ ± ω0. Note that for small values of
δω, the relation:

[
ωε (ω, x)− ω′ε(ω′, x)

]
(ω − ω′)

≈ ∂

∂ω
(ωε (ω, x))

∣∣∣∣
ω�ω′

(14.7)

holds. If ∂(ωε(ω, x))/∂ω varies slowly over the field bandwidth, the time-averaged
“linear energy” for the monochromatic pulse propagation at frequency ω through a
dielectric is obtained as:

HL =
∫
d3x

[
1

2
E∗ (t, x) ·

(
∂ (ωε (ω, x))

∂ω

)
∼constant

...E
(
t, x
)

+ 1

2μ
|B (t, x)|2

]

(14.8)

which can be written in terms of displacement fields as:

HL =
∫
d3x

[
1

2
D∗(t, x) ·

(
η (ω, x)− ω

∂

∂ω
η (ω, x)

)
∼constant

...D
(
t, x
)+ 1

2μ
|B (t, x)|2

]

(14.9)

for:

η (ω, x) = (ε (ω, x))−1. (14.10)

Detailed derivation of Equation (14.9) from (14.8) is given in the Appendix.
For a charge free media, one can make use of a dual potential function

(Drummond & Hillery, 2014; Drummond, 1990; Hillery, 2009), �, to define the
electric displacement and magnetic fields, respectively, as:

D (t, x) = ∇ × � (t, x) (14.11)
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and:

B (t, x) = μ�̇ (t, x) (14.12)

for:

� (t, x) =
ν=N∑
ν=−N

�ν (t, x) (14.13)

where 2N + 1 narrowband field numbers (mode numbers), ν, are included in the
field. The gauge used, here, is different from the usual Coulomb gauge as the dual
potential, �(t, x) or �ν(t, x), is different from the vector potential. Note that the
condition [�ν(t, x)]∗ = �−ν(t, x) should hold to have real dual function. Expansion
of η(ω, x) up to the third order in the Taylor series near the narrow-field frequency,
ων , leads to:

η (ω, x) ≈ ην (ω
ν, x)+ (ω − ων)η

(1)
ν (ων, x)+ 1

2 (ω − ων)2η
(2)
ν (ων, x)

+ 1
6 (ω − ων)3η

(3)
ν (ων, x)+O

(
(ω − ων)4

)
(14.14)

where:

η(i)ν
(
ων, x

) = di

dωi
ην

(
ω, x

)∣∣∣∣
ω=ων

. (14.15)

Rewriting Eq. (14.14) as:

η (ω, x) ≈ ην (x)+ ωη′
ν (x)+ 1

2
ω2η′′

ν (x)+ 1

6
ω3η′′′

ν (x)+O
((
ω − ων

)4)
(14.16)

where ην(x), η′
ν (x), η′′

ν (x) and η′′′
ν (x) are, respectively, defined as:

ην (x) = ην
(
ων, x

)− ωνη(1)ν
(
ων, x

)+ 1

2

(
ων
)2

η(2)ν
(
ων, x

)− 1

6

(
ων
)3

η(3)ν
(
ων, x

)
,

(14.17a)

η′
ν (x) = η(1)ν

(
ων, x

)− ωνη(2)ν
(
ων, x

)+ 1

2

(
ων
)2

η(3)ν
(
ων, x

)
, (14.17b)

η′′
ν (x) = η(2)ν

(
ων, x

)− ωνη(3)ν
(
ων, x

)
(14.17c)

and:

η′′′
ν (x) = η(3)ν

(
ων, x

)
. (14.17d)
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Note that the quantities ην(x), η′
ν (x), η′′

ν (x), and η′′′
ν (x) are not derivatives of

one another. Substituting η(ω, x) from Eq. (14.16) into Eq. (14.9), the time averaged
“linear energy” takes the form of:

HL =
∫
d3x

{
1

2
D∗ (t, x) ·

(
ην (x)− 1

2
ω2η′′

ν (x)− 1

3
ω3η′′′

ν (x)
) .
.
.D (t, x)+ 1

2μ
|B (t, x)|2

}
.

(14.18)

The higher-order terms of expansion (14.14) are neglected with respect to the
second-order (if nonzero) and the third-order terms in many applications of optical
fibers. Hence, expansion (14.18) is valid for nearly all applications which is free
from term η′

ν (x).
Inserting definitions 14.11, 14.12, and 14.13 into Eq. (14.18), one arrives at:

HL = 1
12

N∑
ν′=−N

N∑
ν=−N

∫
d3x

{(
∇ × �−ν′

(t, x)
)

· (6ην (x)− 3ω2η′′
ν (x)

−2ω3η′′′
ν (x)

) ... (∇ × �ν (t, x)) + 6μ
(
�̇

−ν′
(t, x) · �̇

ν
(t, x)

)}
.

(14.19)

Then, taking Fourier transform of Eq. (14.19) and assuming a narrow pulse of
frequencies ων, one has:

HL = 1
12

N∑
ν′=−N

N∑
ν=−N

∫
d3x

∫
dων

′ ∫
dων

{[
6
(
∇ × �−ν′) · ην (x)

.

.

.
(∇ × �ν

)

−3
(
∇ × �−ν′) · (ων)2η′′

ν (x)
.
.
.
(∇ × �ν

)− 2
(
∇ × �−ν′) · (ων)3η′′′

ν (x)
.
.
.
(∇ × �ν

)]

+6μ

(
�̇

−ν′ · �̇
ν
)}

e
i
(
ων−ων′

)
t

(14.20)

where the frequency and the position vector dependence of the dual potential
function are omitted to shorten Eq. (14.20). Applying the superposition principle
and the slowly varying envelope approximation (Drummond, 1990; Drummond &
Hillery, 2014; Hillery, 2009) over narrowband field numbers -N to N, the average
linear energy for a wideband field could be expressed in terms of the local fields and
their time derivatives at the frequency ων . Substituting ±i�̇±ν

for ων�±ν , keeping
the symmetry in terms of the field vector derivatives and orthogonality of modes,
the inverse Fourier transform of Eq. (14.20) will result in:

HL = 1
12

N∑
ν=−N

∫
d3x

⎧⎨
⎩
⎡
⎣6
(∇ × �−ν) · ην

(
x
)..
.
(∇ × �ν

)− 3
(∇ × �̇

−ν) · η′′
ν

(
x
)..
.
(∇ × �̇

ν)

+ i
(∇ × �̇

−ν) · η′′′
ν

(
x
)..
.
(∇ × �̈

ν)− i
(∇ × �̈

−ν) · η′′′
ν

(
x
)..
.
(∇ × �̇

ν)
⎤
⎦+ 6μ

(
�̇

−ν · �̇
ν)
⎫⎬
⎭ .

(14.21)
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The nonlinear features of pulse propagation in dielectrics are included in the
nonlinear part of the energy as perturbations (Drummond, 1990; Drummond &
Hillery, 2014). In practice, the medium’s response functions are frequency depen-
dent (Alfano, 2016; Boyd, 2008). However, when the response time is relatively fast,
the frequency dependence of the medium’s nonlinear response function is neglected.
In the supercontinuum generation process, the medium’s response function is
retarded (Agrawal, 2012; Dudley & Taylor, 2010).

Here, Maxwell’s equations are the equations of motion for the pulse propagation
through a dielectric. ∇ · D = 0 and ∇ × H = ∂D/∂t are satisfied by definitions
(14.11) and (14.12), respectively. Also, it is understood that the dual potential must
be a transverse field as ∇ · B = 0. So the main equation of motion is:

∇ × E (t, x) = −∂B (t, x) /∂t, (14.22a)

where E could be generally given by (Alfano, 2016; Boyd, 2008; Drummond &
Hillery, 2014):

E (t, x) =
∑
n>0

[∫ ∞
0

ηn (τ1, . . . , τn, x)
.
.
.
(
D (t − τ1, x)⊗ · · · ⊗ D

(
t − τn, x

))
dτ1 · · · dτn

]

(14.22b)

and ηn is the nth-order nonlinear response of the medium. It should be noted that η

in Eq. (14.14) is the linear response of the medium, and, therefore, it is equal to η1.
However, the quantities ηn are assumed to be independent of frequency when n > 1.

By implementing Hillery’s method (2009) and using the nonlinear polarization
term in Maxwell’s equations (Alfano, 2016; Boyd, 2008), the nonlinear part of
energy is obtained as:

HNL =
∑
n>1

1

n+ 1

∫
D (t, x) · ηn (x)

...D (t, x)⊗ · · · ⊗ D (t, x) d3x, (14.23)

where in terms of the dual functions, it is written as:

HNL =
∑
n>1

N∑
ν=−N

∑
ν1,··· ,νn

1

n+ 1

∫
∇ × �−ν (t, x) · ηn (x)

.

.

.
(∇ × �ν1 (t, x)

)⊗ · · · ⊗ (∇ × �νn (t, x)
)
d3x.

(14.24)

Finally, the total energy can be written as:

H = HL +HNL. (14.25)
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The equation of motion (14.22a) for the present system is written in terms of dual
potential for a mode number, ν, as:

−μ�̈
ν
(t, x) = ∇ ×

{
ην (x)

...
[∇ × �ν (t, x)

]+ iη′
ν (x)

...
[
∇ × �̇

ν
(t, x)

]

− 1
2η′′

ν (x)
...
[
∇ × �̈

ν
(t, x)

]
− i

6η′′′
ν (x)

...
[
∇ ×

...
�
ν
(t, x)

]

+ ∑
n>1

∑
ν;ν1,··· ,νn

ηn (x)
...
[
(∇ × �ν1 (t, x))⊗ · · · ⊗ (∇ × �νn (t, x))

]}

(14.26)

by applying the slowly varying envelope approximation which is demonstrated
in the Appendix. Here, the slowly varying envelope approximation requires that
e−iωντ�ν (t − τ, x) is treated as a slowly varying envelope function of τ , and it
can be expanded in a Taylor series near τ = 0. Generally, a term proportional to
η′
ν (x) does not appear in the linear dispersive energy, i.e., Eq. (14.18). However, a

term proportional to η′
ν (x) appears in the wave equation as a result of changes in

phase velocity due to dispersion. Note that when the terms proportional to η′′′
ν (x) are

neglected, Eqs. (14.18, 14.19, 14.20, 14.21, 14.22a, 14.22b, 14.23, 14.24, 14.25, and
14.26) are similar to the corresponding equations in reference (Drummond, 1990).

14.2.2 Canonical Lagrangian and Hamiltonian Functions

To establish a quantum theory for the pulse propagation through a nonlinear
dispersive dielectric in the presence of third-order dispersion (Drummond, 1990;
Drummond & Hillery, 2014), a canonical Lagrangian leading to the equation
of motion (14.26) and the classical energy (14.25) should be defined based on
Ostrogradsky’s theorem (Woodard, 2007). Due to the presence of third-order
dispersion, the defined Lagrangian contains higher-order time derivatives. For the
pulse propagation through a dielectric when the third-order dispersion is included,
the Euler-Lagrange equation for the jth component of the dual potential, �ν , is
written as:

∂L
∂�ν

j

− ∂t

(
∂L
∂�̇ν

j

)
− ∂k

⎛
⎝ ∂L
∂
(
∂k�

ν
j

)
⎞
⎠+ ∂t ∂k

⎛
⎝ ∂L
∂
(
∂k�̇

ν
j

)
⎞
⎠− ∂t ∂t ∂k

⎛
⎝ ∂L
∂
(
∂k�̈

ν
j

)
⎞
⎠ = 0 (14.27)

where L is Lagrangian density and k represents the space coordinates x, y, or z.
Note that the summation rule is applied to k. For the present system, a proper form
for the linear and nonlinear parts of the Lagrangian density will be:
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LL = 1
2

ν=N∑
ν=−N

⎡
⎣− (∇ × �−ν) · ην (x)

.

.

. (∇ × �ν )− 1
2

(
∇ × �̇

−ν) · η′′
ν (x)

.

.

.
(
∇ × �̇

ν
)

− i
2

⎛
⎝(∇ × �−ν) · η′

ν (x)
.
.
.
(
∇ × �̇

ν
)

− (∇ × �ν ) · η′
ν (x)

.

.

.
(
∇ × �̇

−ν)
⎞
⎠

+ i
6

⎛
⎝(∇ × �̈

−ν) · η′′′
ν (x)

.

.

.
(
∇ × �̇

ν
)

−
(
∇ × �̈

ν
)

· η′′′
ν (x)

.

.

.
(
∇ × �̇

−ν)
⎞
⎠+ μ

(
�̇

−ν · �̇
ν
)⎤⎦

(14.28)

and:

LNL = −
∑
n>1

∑
ν;ν1,··· ,νn

1

n+ 1

(∇ × �−ν (t, x)
) · ηn (x)

.

.

.
[(∇ × �ν1 (t, x)

)⊗ · · · ⊗ (∇ × �νn (t, x)
)]

(14.29)

where the total Lagrangian can be written as:

L =
∫ (

LL +LNL

)
d3x. (14.30)

Detailed derivation of the resulted equation of motion and the Hamiltonian,
which are, respectively, equal to Equation (14.26) and Equation (14.25), are
described in the Appendix. The linear part of the Lagrangian density, Eq. (14.28),
is implemented to quantize the propagation of electromagnetic field through a
nonlinear dispersive dielectric. As the Lagrangian density (14.28) is a function of
higher-order time derivatives of the field, one should implement Ostrogradsky’s
theorem (Woodard, 2007) for higher-order scalar fields. Here, according to Ostro-
gradsky’s theorem, there are two canonical coordinates qν and Qν corresponding to
�ν and �̇

ν
. These canonical coordinates and their canonical momenta construct a

canonical space. The canonical momenta:

�ν = 1

2

[
∇ ×

(
− i

2

(∇ × �−ν) · η′
ν (x)− 1

2

(∇ × �̇
−ν) · η′′

ν (x)+ i

6

(∇ × �̈
−ν) · η′′′

ν (x)
)

+ μ�̇
−ν
]

(14.31)

and:

�ν = − i

12
∇ ×

((
∇ × �̈

−ν) · η′′′
ν (x)

)
(14.32)

correspond respectively to canonical coordinates qν and Qν or �ν and �̇
ν
. By

neglecting the third-order dispersion term, η′′′
ν (x), the linear Lagrangian agrees with

Eq. (3.117) in reference (Drummond & Hillery, 2014).
In summary, the results obtained by implementing the total Lagrangian agree in

both dynamics and energy with the results obtained from Maxwell’s equations and
Poynting’s theorem for slowly varying envelope functions. So, the total Lagrangian,
describing the field propagation through a medium with a combination of dispersion,
nonlinearity, and inhomogeneity, is unique as one can derive the correct equation of
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motion and the Hamiltonian. Additionally, the linear Lagrangian density (14.28)
describes the system in the framework of a local field theory of a linear dispersive
medium. The first and the last terms of the linear Lagrangian density and the
linear Hamiltonian resemble a massless boson, while the remaining terms indicate
dispersive correction.

14.2.3 Field Quantization

For the present system, Dirac’s commutation relations for the components of vector
operators �νand �ν are:

[
�ν
j (t, x) ,�

ν
j ′
(
t, x′)] = i�δj,j ′δ⊥

(
x − x′) . (14.33)

Similar commutation relations hold between �̇
ν

and �ν . Since the dual potentials
and their canonical momenta are transverse, the commutation relations (14.33) are
transverse. Equation (14.33) expresses that the present system is a constrained
system (Faddeev & Jackiw, 1988; Gitman & Tyutin, 1990) because no standard
commutation relation holds. To extend the common approach of quantization to this
constrained quantization, it is necessary to construct the appropriate form of the
Dirac commutation relations for new coordinates. Thus, the dual potential functions
are expanded in terms of spatial modes as:

�ν (t, x) = 1√
V

∑
k,α

λνk,α(t) êk,α e
ik·x (14.34)

to rephrase the constraint, where the expansion coefficients are the new coordinates,
λνk,α . By inserting expansion (14.34) into Eq. (14.28), the linear part of Lagrangian
is obtained as:

LL = 1
2

ν=N∑
ν=−N

∑
k′,α′

∑
k,α

{
−
(
λνk′,α′

)∗
M

(1)ν
(k′,α′)(k,α)λ

ν
k,α − i

[(
λνk′,α′

)∗
M

(2)ν
(k′,α′)(k,α)λ̇

ν
k,α

−
(
λ̇νk′,α′

)∗
M

(2)ν
(k′,α′)(k,α)λ

ν
k,α

]
+
(
λ̇νk′,α′

)∗
M

(3)ν
(k′,α′)(k,α)λ̇

ν
k,α

+i
[(
λ̈νk′,α′

)∗
M

(4)ν
(k′,α′)(k,α)λ̇

ν
k,α −

(
λ̇νk′,α′

)∗
M

(4)ν
(k′,α′)(k,α)λ̈

ν
k,α

]}
(14.35)

where:

M
(1)ν
(k′,α′)(k,α) = 1

V

∫
d3x

(
k′ × ê∗

k′,α′
)

· ην (x)
...
(
k × êk,α

)
ei(k−k′)·x, (14.36a)

M
(2)ν
(k′,α′)(k,α) = 1

2V

∫
d3x

(
k′ × ê∗

k′,α′
)

· η′
ν (x)

...
(
k × êk,α

)
ei(k−k′)·x, (14.36b)
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M
(3)ν
(k′,α′)(k,α) =

⎡
⎣μê∗

k′,α′ · êk,αδk′,k − 1

2V

∫
d3x

(
k′ × ê∗

k′,α′
)

· η′′
ν (x)

.

.

.
(
k × êk,α

)
ei(k−k′)·x

⎤
⎦

(14.36c)

and:

M
(4)ν
(k′,α′)(k,α) = 1

6V

∫
d3x

(
k′ × ê∗

k′,α′
)

· η′′′
ν (x)

...
(
k × êk,α

)
ei(k−k′)·x.

(14.36d)

See the detailed derivation of Equation (14.35) and the coming results, Equation
14.37, in the Appendix. It is important to note that when the medium exhibits losses
due to scattering or absorption, they appear as complex values in elements of ην(x).
In turn, these losses appear in matrices M. The M matrices will be diagonal when the
response tensor of the medium is isotropic and homogeneous. The linear Lagrangian
(14.35) is re-written as:

LL =
ν=N∑
ν=0

{
−(λν)†M(1)νλν − i

[
(λν)†M(2)ν λ̇ν − (λ̇ν)†M(2)νλν

]

+(λ̇ν)†M(3)ν λ̇ν + i
[(
λ̈ν
)†
M(4)ν λ̇ν − (λ̇ν)†M(4)ν λ̈ν

]} (14.37)

by omitting the summations over (k, α, k’, α’) and the corresponding indices for
simplicity. In order to rephrase the constraint and obtain standard commutation
relations, the new canonical momenta corresponding to the new set of coordinates
are derived as:

πν = ∂LL

∂λ̇ν
− ∂LL

∂λ̈ν
=
[
−i(λν)†M(2)ν + (λ̇ν)†M(3)ν + 2i

(
λ̈ν
)†
M(4)ν

]
,

(14.38a)

(
πν
)† = iM(2)νλν +M(3)ν λ̇ν − 2iM(4)ν λ̈ν, (14.38b)

σν = ∂LL

∂λ̈ν
= −i(λ̇ν)†M(4)ν (14.38c)

and:

(
σν
)† = σν† = iM(4)ν λ̇ν . (14.38d)

Here, Ostrogradsky’s theorem is applied again in order to obtain canonical
momenta (14.38) from the Lagrangian density (14.28) where the Ostrogradsky
choices for canonical coordinates are λν ≡ qν and λ̇ν ≡ Qν . One must impose the
standard commutation relations between the canonical coordinates and momenta,
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to quantize the fields for the current problem. These relations no longer have
transversality restrictions as compared with the operators �ν and �ν (or �̇

ν
and

�ν). The commutation relations between coordinates and momenta can be simply
written as:

[
qνk,α, π

ν
k′,α′

]
= i�δk,k′δα,α′ (14.39a)

and:
[
Qν

k,α, σ
ν
k′,α′

]
= i�δk,k′δα,α′ . (14.39b)

It is straightforward to find the linear part of the Hamiltonian in terms of the new
canonical coordinates and momenta as:

HL =
N∑
ν=0

(
qν†M(1)νqν + πνQν +Qν†πν† −Qν†M(3)νQν + iqν†M(2)νQν − iQν†M(2)νqν

)
.

(14.40)

New canonical coordinate:

q̃ν = Aν · qν + Bν ·Qν + Cν · πν† +Dν · σν†, (14.41a)

and momentum:

p̃ν = qν† · Eν +Qν† · Fν + πν ·Gν + σν ·Kν, (14.41b)

are defined to write the Hamiltonian (14.40) in a simpler form, where Aν to Kν (i.e.;
Aν, Bν, Cν, Dν, Eν, Fν, Gν and Kν) are arbitrary invertible complex matrices. The
coordinate and momentum, (14.41), obey the standard commutation relation. Thus,
the conditions:

Aν · Cν† + Bν ·Dν† = Cν · Aν† +Dν · Bν†, (14.42a)

Eν† ·Gν + Fν† ·Kν = Gν† · Eν +Kν† · Fν (14.42b)

and:

Aν ·Gν + Bν ·Kν − Cν · Eν −Dν · Fν = 1 (14.42c)

hold for the coefficients defined by Eqs. (14.41). Nonetheless, the Hamiltonian
(14.40) is written in terms of the defined coordinate and momentum operators as:
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HL =
N∑
ν=0

(
q̃ν† ·ν · q̃ν + p̃ν · ϒν · p̃ν† + i q̃ν† ·�ν · p̃ν† − ip̃ν · (�ν

)† · q̃ν
)
,

(14.43)

where ν , ϒν , and �ν are the frequency matrices. Equating the two forms of the
Hamiltonian, (14.40) and (14.43), six equations in addition to equations (14.42)
relating the frequency matrices and the arbitrary invertible complex matrices Aν to
Kν are derived. Therefore, the unknown matrices (the frequency matrices and the
matrices Aν to Kν) can be determined. The reader is referred to Appendix for the
details of derivation of relations for the matrices Aν to Kν.

Using boson creation and annihilation operators, the linear part of the Hamilto-
nian is re-expanded. The operators aν and bν are defined as annihilation operators,
while (aν)† and (bν)† are creation operators. These operators are defined as column
vectors:

aν = 1√
2�

{
Wν · q̃ν + i

[(
Wν
)†]−1 · (p̃ν)†

}
(14.44)

and:

(
bν
)† = 1√

2�

{
Wν · q̃ν − i

[(
Wν
)†]−1 · (p̃ν)†

}
(14.45)

where the transformation matrix Wν is an invertible complex matrix to be defined.
Commutation relations for elements of these operators are:

[
aνi ,
(
aνj
)†
]

=
[
bνi ,
(
bνj
)†
]

= δij (14.46)

and:
[
aνi , a

ν
j

]
=
[
bνi ,b

ν
j

]
=
[
aνi ,
(
bνj
)†
]

=
[(
aνi
)†
,bνj
]

= 0. (14.47)

Now, the Hamiltonian (14.43) is written in terms of the creation and the
annihilation operators as:

HL = �

N∑
ν=0

(
aν
)† ·�ν · aν + �

N∑
ν=1

(
bν
)† ·�−ν · bν (14.48)

where �±ν is defined as frequency matrices and the relations:

1

2

(
Wν
)−1 · (�+ν +�−ν) ·

((
Wν
)†)−1 = ϒν, (14.49a)

1

2

(
Wν
)† · (�+ν −�−ν) ·

((
Wν
)†)−1 = �ν (14.49b)
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and:

1

2

(
Wν
)† · (�+ν +�−ν) ·Wν = ν (14.49c)

hold by equating the two forms of the Hamiltonians (14.43) and (14.48) while
neglecting zero-point energy. The relation:

ν = (Wν
)† · (Wν

) · ϒν · (Wν
)† · (Wν

)
(14.50)

holds for the matrices Wν by eliminating �±ν in Eqs. (14.49). It could be shown
that Eq. (14.48) holds when Wν is the solution to the matrix Eq. (14.50). The
corresponding frequency matrices are found as:

�±ν =
[
Wν · ϒν ±

((
Wν
)†)−1 ·�ν

]
· (Wν

)†
. (14.51)

In general, the resultant Hamiltonian is not diagonal as the M(1)ν to M(4)ν matrices
are not diagonal. The matrices �±ν are diagonalized to obtain the frequency bands
as:

[
Uν ·�±ν · (Uν

)−1
]
nm

= ω±ν
n δnm. (14.52)

The final form of the Hamiltonian is:

HL = �

N∑
ν=0

∑
n=0

ω+ν
n

(
ãνn
)† · ãνn + �

N∑
ν=1

∑
n=0

ω−ν
n

(
b̃νn
)† · b̃νn, (14.53)

where:

ãνn = Uν · aνn (14.54)

and:

b̃νn = Uν · bνn. (14.55)

The Hamiltonian (14.53) is diagonal operator leading to normal and anomalous
modes corresponding to operators ãν and b̃ν . The operators in Eq. (14.53) indicate
the number of photon-polariton pairs of the system. Note that the quantities M(1)ν

to M(3)ν, defined by Eqs. (14.36), change when the third-order dispersion is absent
and M(4)ν is zero.
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The nonlinear term in the total Hamiltonian is:

HNL = 1

4

∫
D (t, x) · η3 (x)

...D (t, x)D (t, x)D (t, x) d3x (14.56)

when only the third-order nonlinear term of Eq. (14.24) is taken into account. This
nonlinear part of the Hamiltonian is found in terms of annihilation and creation
operators where displacement field is written in terms of these two operators. The
theory developed here could properly quantize the electromagnetic radiation in a
three-dimensional dielectric, where the third-order nonlinear term is effective. When
an optical soliton propagates along a dielectric waveguide, there are fluctuations in
the vicinity of the soliton (Drummond & Hillery, 2014; Safaei Bezgabadi et al.,
2019, 2020a and 2020b) depending on the intensity of the soliton.

The present quantization scheme is a fundamental basis for squeezing the soliton
fluctuations. Drummond applied a model to squeeze the fluctuations for soliton
propagation along an optical fiber when the dispersion is expanded up to the second
order. In a more realistic view, the third-order dispersion has a vital role for pulse
propagation along optical fibers. Therefore, this section provides a basic theory for
pulse propagation when the third-order dispersion is included. The method devised
here is capable of being extended to higher-order dispersions and also enables one
to study quantum aspects of noise in dielectrics, especially fibers (Drummond &
Hillery; 2014; Safaei Bezgabadi et al., 2018, 2020a). Generally, quantum treatment
of pulse propagation through dielectric waveguides is essential for light propagation
along photonic chips used in quantum simulations, quantum sensing, and quantum
communications experiments.

14.3 Application of the Present Quantum Theory
to an Optical Fiber

In this section, the field propagation along an optical fiber, i.e., a cylindrical optical
waveguide, is presented making use of the theory established in the previous section.
This field is assumed to be a polarized single-frequency plane wave, i.e. a single
transverse mode ν, while the longitudinal mode components have discrete wave
numbers k ranging from –kmin to kmax. For an optical fiber, it is assumed a cylindrical
waveguide whose axis lies along the z-axis. Making use of the dual potential as
described by Eq. (14.13) and the Maxwell’s equation (14.22a) for the usual case of
η(ω, x) ≡ η(ω), one could derive the wave equation. The wave equation for the dual
potential is:

∇2�ν (ω, x)+ με̃ω2�ν (ω, x) = 0 (14.57)

where ε̃ is the permittivity of the medium and the relation:
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με̃ω2 ≡ μ

⎛
⎝ ε1 0 0

0 ε2 0
0 0 ε3

⎞
⎠ω2 = κ21, (14.58)

holds. It is also assumed that the three εs are equal. The polarized dual potential is
defined as:

�ν (t, x) = �ν⊥einϕ�ν (t, z) (14.59)

where:

�ν⊥ = ρ̂gν (ρ)+ ϕ̂f ν (ρ) . (14.60)

One can show that the functions fν(ρ) and gν(ρ) are Bessel functions satisfying the
differential equation:

1

ρ

d

dρ

(
ρ
dF
(
kρρ
)

dρ

)
+
(
k2
ρ − n2

ρ2

)
F
(
kρρ
) = 0 (14.61)

where κ2 = k2
ρ + k2. The boundary conditions lead to the quantized values for kρ ,

k
(m)
ρ . Each transverse mode, ν, stands for n and m, and mode -ν corresponds to -n

and m.
The displacement vector and the magnetic fields, respectively, are:

Dν (t, x) = einϕ∂z�
ν (t, z)�ν⊥ × ẑ + ανeinϕ�ν (t, z) ẑ = einϕ

(
∂z�

ν (t, z) gν (ρ) ϕ̂

−∂z�ν
(
t, z
)
f ν (ρ) ρ̂ + αν (ρ)�ν

(
t, z
)
ẑ
)
. (14.62)

and:

Bν (t, x) = μ�̇
ν
(t, x) = μ

(
ρ̂gν (ρ)+ ϕ̂f ν (ρ)

)
einϕ�̇ν (t, z) . (14.63)

where:

αν (ρ) = 1

ρ

[
∂ρρf

ν (ρ)− ingν (ρ)
]
. (14.64)

One could assume the solution to gν(ρ) to be:

(14.65)

where is a normalization factor.
The gauge condition, ∇ · �(t, x) = 0, for the dual potential, leads to:

ρ
dgν (ρ)

dρ
+ gν (ρ)+ inf ν (ρ) = 0 (14.66)
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where the final form for fν(ρ) is:

f v i in
k

n
n n

m

n

1
1r rr kmrr

v v
(14.67)

In order to find , the condition:

∫ ∞

0
dρ

∫ 2π

0
dϕρ

(
f−ν (ρ) f ν (ρ)+ g−ν (ρ) gν (ρ)

) = 1. (14.68)

should be satisfied.
It is assumed that the response tensor for the medium is homogeneous and

isotropic (ην(x) = ην) and that the first nonzero nonlinear term corresponds to η3
(centro-symmetric media). The linear part of the Lagrangian density (Eq. (14.28))
and the Hamiltonian (Eq. (14.21)) can be, respectively, simplified to:

LL = 1
2

ν=N∑
ν=−N

∫ {[−ην [∂z�−ν (t, z)∂z�ν
(
t, z
)+ Yν�−ν (t, z)�ν

(
t, z
)]

− i
2 η

′
ν

[
∂z�

−ν (t, z)∂z�̇ν
(
t, z
)+ Yν�−ν (t, z)�̇ν

(
t, z
)− ∂z�

ν
(
t, z
)
∂z�̇

−ν (t, z)− Yν�ν
(
t, z
)
�̇−ν (t, z)]

+ i
6 η

′′′
ν

[
∂z�̈

−ν (t, z)∂z�̇ν
(
t, z
)+ Yν�̈−ν (t, z)�̇ν

(
t, z
)− ∂z�̈

ν
(
t, z
)
∂z�̇

−ν (t, z)− Yν�̈ν
(
t, z
)
�̇−ν (t, z)]

− 1
2 η

′′
ν

[
∂z�̇

−ν (t, z)∂z�̇ν
(
t, z
)+ Yν�̇−ν (t, z)�̇ν

(
t, z
)]]+ μ

(
�̇−ν (t, z)�̇ν

(
t, z
))}

dz

(14.69)

and:

HL = 1
2

ν=N∑
ν=−N

∫ {[
ην
(
∂z�

−ν (t, z)∂z�ν
(
t, z
)+ Yν�−ν (t, z)�ν

(
t, z
))

+ i
6 η

′′′
ν

[
∂z�̈

−ν (t, z)∂z�̇ν
(
t, z
)+ Yν�̈−ν (t, z)�̇ν

(
t, z
)− ∂z�̈

ν
(
t, z
)
∂z�̇

−ν (t, z)− Yν�̈ν
(
t, z
)
�̇−ν (t, z)]

− 1
2 η

′′
ν

[
∂z�̇

−ν (t, z)∂z�̇ν
(
t, z
)+ Yν�̇−ν (t, z)�̇ν

(
t, z
)]]+ μ

(
�̇−ν (t, z)�̇ν

(
t, z
))}

dz

(14.70)

where:

Yν = 2π
∫ ∞

0

[
1

ρ

((
dρf ν/dρ

)(
dρf−ν/dρ)+ n2gνg−ν + ing−ν (dρf ν/dρ)− ingν

(
dρf−ν/dρ))

]
dρ.

(14.71)

Similar to the definition (14.34), the scalar field �ν(t, z) is defined in terms of the
canonical coordinates λνk(t) as:

�ν (t, z) =
(

1/
√
L
)∑

k
λνk(t)e

ikz. (14.72)

where L is the length of the optical fiber. Therefore, the linear part of the Lagrangian
for the field propagation along the optical fiber can be written as:

(14.73a)
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where and , making use of Equation (14.28). The
Lagrangian (14.73a) will be:

(14.73b)

where λ−ν
−k ≡ (

λνk

)†, λ̇−ν
−k ≡ (

λ̇νk

)†
and λ̈−ν

−k ≡ (
λ̈νk

)†
. It is assumed earlier that

a single transverse mode ν for mode numbers n and m are considered, so the
summation over ν in Eq. (14.73b) is dropped for the rest of this section.

The canonical momenta associated with λk ≡ λνk , λ†
k ≡ (

λνk

)†, λ̇k ≡ λ̇νk and

λ̇
†
k ≡ (λ̇νk

)†
are:

(14.74)

(14.75)

(14.76)

and:
(14.77)

respectively, when Ostrogradsky’s theorem (Woodard, 2007) is implemented. The
canonical coordinates are qk, q

†
k , Qk, and Q†

k which are equal to λk, λ
†
k , λ̇k , and λ̇†

k ,
respectively. Similarly, the linear part of the Hamiltonian, HL, for field propagation
along optical fibers is written as Eq. (14.40). Here, the M matrices defined by
Equations (14.36) are diagonal, and they are obtained as:

(14.78a)

(14.78b)

(14.78c)

and:

(14.78d)
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Note should be added that a careful comparison between the dual potential defined
by Eq. (14.34) and the dual potential of a system with discrete modes, similar to our
example, is needed to find the correct M matrices.

In order to use the Hamiltonian (14.43), the frequency matrices (ν , ϒν , and
�ν) and the arbitrary invertible complex matrices Aν to Kν must be determined. For
the present simple example, these matrices are reduced to complex numbers. By
using the six obtained relations and conditions (14.42), these complex numbers can
be obtained.
Similar to operators given by Eqs. (14.41), new canonical coordinates, q̃νk , and
momenta, p̃νk , are defined as:

q̃νk = Aν
k · qνk + Bν

k ·Qν
k + Cν

k · πνk † +Dν
k · σνk † (14.79)

and:

p̃νk = qνk
† · Eν

k +Qν
k

† · Fν
k + πνk ·Gν

k + σνk ·Kν
k . (14.80)

In this one-dimensional example, the field is quantized when operators q̃νk and p̃νk
obey the commutation relation:

[
q̃νk , p̃

ν
k′
] = i�δk,k′ . (14.81)

Operators defined by Eqs. (14.44) and (14.45) are, respectively, given as:

aνk = 1√
2�

{
Wν
k · q̃νk + i

[(
Wν
k

)∗]−1 · (p̃νk )†
}

(14.82)

and:

(
bνk
)† = 1√

2�

{
Wν
k · q̃νk − i

[(
Wν
k

)∗]−1 · (p̃νk )†
}

(14.83)

where Wν
k is generally a complex number. The creation operator

(
aνk

)† and
the annihilation operator bνk are likewise defined. Therefore, the linear part of
Hamiltonian is:

HL = �

∑
k

ω+ν(k)
(
aνk
)†
aνk + �

∑
k

ω−ν(k)
(
bνk
)†
bνk (14.84)

while ω(k) is the solution to equations:

ω±ν(k) = ∣∣Wν
k

∣∣2ϒν ±�ν (14.85)

where Wν
k is given as:

∣∣Wν
k

∣∣4 = ν

ϒν
. (14.86)
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In order to calculate the nonlinear parts of the Hamiltonian, Eq. (14.56), it is
essential to obtain �ν

k (or equivalently λνk ). It is straightforward to find the equation
of motion as:

ϑνk λ̇
ν
k + υνk λ

ν
k =

√
�

2
ςνk a

ν
k (t)+

√
�

2
ξνk
(
bνk (t)

)† (14.87)

where:

ςνk =
[(
Gν
k

)∗(
Wν
k

)−1 + iCν
k

(
Wν
k

)∗]
, (14.88)

ξνk =
[(
Gν
k

)∗(
Wν
k

)−1 − iCν
k

(
Wν
k

)∗]
, (14.89)

υνk = Aν
k

(
Gν
k

)∗ − Cν
k

(
Eν
k

)∗ (14.90)

and:

ϑνk =
[
Bν
k

(
Gν
k

)∗ + iDν
k

(
Gν
k

)∗
M(4)ν − Cν

k

(
Fν
k

)∗ − iCν
k

(
Kν
k

)∗
M(4)ν

]
. (14.91)

Note that the Ostrogradsky’s choices for canonical coordinates are qν ≡ λν and
Qν ≡ λ̇ν .

According to the Heisenberg equation of motion, the operators aνk (t) and
(
bνk (t)

)†
evolve as aνk (t) = aνk (0)e

−i ω+ν (k)t and
(
bνk (t)

)† = (
bνk (0)

)†
ei ω

−ν (k)t , respectively.
The solution to Eq. (14.87) can be straightforwardly given as:

λνk(t) = (λνk(0)− C2 − C3
)
e−C1 t + C2e

−i ω+ν (k)t + C3e
i ω−ν (k)t (14.92)

where:

C1 = υνk

ϑνk
, (14.93)

C2 =
√
�/2ςνk[

υνk − i ω+ν(k)ϑνk
]aνk (0) (14.94)

and:

C3 =
√
�/2ξνk[

υνk + i ω−ν(k)ϑνk
] (bνk (0))†. (14.95)

In most optical waveguides, especially those used for SCG, C1 is a relatively
large positive number as C1 ∝ ∣∣η′′

ν/η
′′′
ν

∣∣, so that the first term in the right side of
Eq. (14.92) can be neglected compared with other terms. In addition, the third term
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should be dropped as it corresponds to the anomalous modes (non-physical modes)
defined by the operators bνk and

(
bνk

)†. The reader is referred to (Drummond, 1990)
for detailed discussion on the anomalous modes. Therefore, Eq. (14.92) will be:

λνk(t) ≈
√
�/2ςνk[

υνk − i ω+ν(k)ϑνk
]aνk (0)e−i ω+ν (k)t . (14.96)

Making use of the scalar field, �ν(t, z), defined by Eq. (14.72), one can rewrite it
for the mode ν in terms of the annihilation operator aνk :

(14.97a)

where:

(14.97b)

It is assumed a single transverse mode ν; thus, the displacement vector is:

D (x, t) = Dν (x, t)+ D−ν (x, t) . (14.98)

Making use of Eqs. (14.97a) and (14.62), one has:

(14.99)

where:
Zνk = ik

[
-ρ̂f ν (ρ)+ gν (ρ) ϕ̂

]+ αν (ρ) ẑ. (14.100)

The formalism introduced in this section can describe the propagation of quan-
tum fields in nonlinear dispersive optical fibers. Assuming the field wavenumber and
frequency to be near k0 and ω = ω(k0), respectively, the slowly varying quantum
photon-polariton field is defined as (Drummond & Hillery, 2014; Safaei et al.,
2018):

ψ (z, t) = 1√
L

∑
k

ei(k−k0)zak(t) (14.101)

to describe the field propagation along an optical fiber with nonlinearity η3.
Ignoring the smearing effect for all practical purposes, the commutation relation

for these fields can be expressed as:

[
ψ (z, t) , ψ† (z′, t ′)] = δ

(
z − z′

)
δ
(
t − t ′

)
, (14.102)
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which is applicable for temporally ultrashort fields. Inverting the relation between
ak and ψ(z, t) yields:

ak(t) = 1√
L

∫
ψ (z, t) e−i(k−k0)zdz. (14.103)

One can insert Eq. (14.103) into Eq. (14.84) to express the Hamiltonian in terms of
ψ(z, t). Here, the first term of Eq. (14.84), i.e., normal solution, is taken into account.
Thus, the linear part of Hamiltonian can be written as:

HL = �

∑
k

ω(k)a†
k
ak = �

L

∫
dz

∫
dz′
⎛
⎝∑

k

ω(k)ei(k−k0)
(
z−z′)

⎞
⎠ψ† (z, t) ψ

(
z′, t

)
. (14.104)

Expanding ω(k) near k0 as:

ω(k) = ω (k0)+ (k − k0) ω
′ + 1

2
(k − k0)

2ω′′ + 1

6
(k − k0)

3ω′′′ + . . . ,

(14.105)

where ω′ (= dω/dk|k=k0

)
, ω′′ (= d2ω/dk2|k=k0

)
, and ω′′′ (= d3ω/dk3|k=k0

)
are

the group velocity and the first and second derivatives of group velocity, respec-
tively. The expression in the parenthesis in Eq. (14.104) becomes:

1

L

∑
k

ω(k)ei(k−k0)(z−z′) ∼= 1

L

∑
k

[
ω (k0)+ ω′ (k − k0)+ 1

2
ω′′(k − k0)

2

+1

6
ω′′′(k − k0)

3
]
ei(k−k0)(z−z′)

(14.106)
where the operator form is written as:

1
L

∑
k

ω(k)ei(k−k0)(z−z′) ∼= 1
L

∑
k

[
ω (k0)+ i

2ω
′ (∂z′ − ∂z

)+ 1
2ω

′′∂z∂z′ + i
12ω

′′′
(
∂z
(
∂z′
)2 − (∂z)

2∂z′
)]

ei(k−k0)(z−z′)

∼=
[
ω (k0)+ i

2ω
′ (∂z′ − ∂z

)+ 1
2ω

′′∂z∂z′ + i
12ω

′′′
(
∂z
(
∂z′
)2 − (∂z)

2∂z′
)]

δ
(
z − z′

)
.

(14.107)

The linear part of Hamiltonian is, therefore, given by:

HL = �

∫ [
ω (k0) ψ

†ψ + i

2
ω′
(
ψ† ∂ψ

∂z
− ψ̂

∂ψ†

∂z

)
+ 1

2
ω′′ ∂ψ†

∂z

∂ψ

∂z

+ i

12
ω′′′
(
∂ψ†

∂z

(
∂2ψ

∂z2

)
−
(
∂2ψ†

∂z2

)
∂ψ

∂z

)]
dz,

(14.108)

where the argument of the photon-polariton field has been eliminated for simplicity.
The nonlinear part of the Hamiltonian is given by:
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HNL = 1

4

∫
d3x η3 · (D (t, x))4, (14.109)

for:

(14.110)

Therefore, the nonlinear part of the Hamiltonian can be approximated as:

(14.111)

Hence, keeping the slowly varying terms, one obtains:

(14.112)

where:

θν =
∫ r0

0

∫ 2π

0

[
1

3

(
αναν − k2

0�ν⊥ · �ν⊥
) (

α−να−ν − k2
0�−ν

⊥ · �−ν
⊥
)

+ 2

3

(
k2

0�ν⊥ · �−ν
⊥ + ανα−ν)2

]
ρdρdϕ.

(14.113)

There are terms proportional to ψ†ψ , ψ†, and/or ψ in the nonlinear part of the
Hamiltonian (Eq. (14.112)), which is usually called simple terms as they could be
interpreted similar to the term of the linear Hamiltonian (Eq. (14.108)). Therefore,
they do not show any nonlinear effect.

The total Hamiltonian and field operator is expressed in the interaction picture
as:

HI = e−iht/�Heiht/� (14.114)

and:

ψI = e−iht/�ψeiht/� (14.115)

where h is defined as:

h = �

∫
dz ω (k0) ψ

†ψ. (14.116)

A new frame is defined that moves at the group velocity (Z = z − ω
′
t).

One obtains the following equation of motion in this frame from the interaction
Hamiltonian:

i
∂ψI

∂t
= −ω′′

2

∂2ψI

∂Z2 − i
ω′′′

6

∂3ψI

∂Z3 + gψ
†
I ψ

2
I , (14.117)
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where
4

2 4 2
3 kg (3 k 4h q)( ) 1 ( )v v . Equation (14.117) is an operator form of the

nonlinear Schrödinger equation taking the third-order dispersion term into account.
There is another operator equation, the equation of motion for ψ†

I , which is coupled

to Eq. (14.117) by transforming ψI → ψ
†
I and i → − i.

Depending on the optical fiber characteristics, the signs of g (nonlinear param-
eter) and ω′′ (group velocity dispersion) can be positive or negative. Taking into
account their signs, one can form the quantum solitons and study their interactions
in the presence of the third-order dispersion term. Note that the terms proportional
to (ψ†)2ψ2 in Eq. (14.111) lead to the last term in Eq. (14.117). The terms of the
orderψ†ψ in Eq. (14.111), which have been omitted, would lead to a linear term and
have no nonlinear effect on the operator form of the nonlinear Schrödinger equation,
Eq. (14.117) or equivalently Eq. (14.118). These terms just change ω(k0) in the first
term of Eq. (14.108), so the nonlinear term of Equations (14.117) and (14.118) is
not affected by them.

To solve the coupled operator equation, Eq. (14.117) is written as common
partial differential equations. The positive-P representation method is followed
here (Drummond & Gardiner, 1980; Drummond & Hillery, 2014). The Glauber-
Sudarshan P representation (Glauber, 1963; Sudarshan, 1963) is not used here, as it
leads to a Fokker-Planck equation with non-positive definite diffusion coefficients.
By using the positive-P representation in the master equation, one can arrive
at the coupled stochastic partial differential equation (Carter, 1995; Drummond
& Gardiner, 1980; Drummond & Hillery, 2014; Drummond & Corney, 2001;
Drummond & Carter, 1987):

∂

∂z
�I (T , z) =

(
− iω′′

2ω′3
∂2

∂T 2
+ ω′′′

6ω′4
∂3

∂T 3

)
�I (T , z)− i

(
g/ω′) �I+ (T , z) �I

2 (T , z)

+ (ig/ω′)1/2
ζ (T , z)�I (T , z) (14.118a)

and:

∂

∂z
�I

+ (T , z) =
(
iω′′
2ω′3

∂2

∂T 2
+ ω′′′

6ω′4
∂3

∂T 3

)
�I

+ (T , z)+ i
(
g/ω′) �I (T , z) �I+2

(T , z)

+ (−ig/ω′)1/2
ζ+ (T , z)�I

+ (T , z) (14.118b)

for the functions �I(T, z) and �I
+(T, z), respectively, which are related to the

creation and annihilation operators. The fields ζ (T, z) and ζ+(T, z) are Gaussian
stochastic fields with correlation relations:

〈
ζ (T1, z1) ζ

(
T2, z2

)〉
= δ (z1 − z2) δ (T1 − T2) , (14.119)

〈
ζ+ (T1, z1) ζ

+(T2, z2

)〉
= δ (z1 − z2) δ (T1 − T2) , (14.120)
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and:
〈
ζ (T1, z1) ζ

+(T2, z2

)〉
= 0. (14.121)

The origin of stochastic partial differential equations (14.118) for the functions
�I(T, z) and �+

I (T , z) comes from the positive-P representation. Making use of the
positive-P representation, the Fokker-Planck equation with positive semi-definite
diffusion coefficients amounts to an equivalent Ito stochastic differential equation,
Equations (14.118) (Carter, 1995; Drummond & Corney, 2001; Drummond &
Carter, 1987, Koleden & Platen, 1992; Sauer, 2013). �I(T, z) and �+

I (T , z) are
not complex conjugates of one another except in the mean case (Koleden & Platen,
1992; Sauer, 2013).

Equations (14.118) govern the quantum treatment of pulse propagation in an
optical fiber in the presence of the third-order dispersion term (β3 = ω′′′/ω′4).
To increase the bit rate in optical communication systems, a light source (a
laser) is usually employed close to the zero dispersion wavelength (ZDW) of

optical fibers,

(
β2 = ω′′/ω′3

∣∣∣
ω0

= 0 i.e. ω′′ = 0

)
, where β3 plays an important

role (Agrawal, 2012). Thus, Equations (14.118) provide the quantum treatment of
pulse propagation in this situation.

The quantum noise near the propagating solitons is simulated using the linearized
fluctuation equation (Drummond & Carter, 1987) for the propagating soliton as:

∂

∂z
δ� (T , z) =

(
− iω′′

2ω′3
∂2

∂T 2
+ ω′′′

6ω′4
∂3

∂T 3
+ 4igψ2

0 (T )

)
δ� (T , z)

+ 2igψ2
0 (T )δ�

+ (T , z)+ (ig)1/2ψ0(T )ζ (T , z) (14.122)

where �(T, z) = ψ0(T, z) + δ�(T, z) and ψ0(T, z) = 〈�(T, z)〉. Recall that Eq.
(14.122) together with the equation obtained by using the transformation � → �+,
i → − i, and ζ → ζ+ forms a set of coupled equations.

Here, ψ0 is the classical solution to the generalized first-order approxima-
tion of the nonlinear Schrödinger equation. The function ψ0 corresponds to a
classical coherent input state at z = 0, which has a form of ψ0 (T , z = 0) =√
P0 sech (T /T0), where P0 and T0 are, respectively, the peak power and width of

the input pulse launched into an optical fiber.
To find the solutions to Eqs. 14.118 and 14.122, numerical algorithms can be

applied to solve these stochastic partial differential equations (Sauer, 2013; Dennis
et al., 2013). One could assume that the input solitonic pulse ψ0(T, 0) is launched
into an optical fiber in which the dispersion length

(
LD = T 2

0 / |β2|
)
, third-order

dispersion length ( L′
D = T 3

0 / |β3|), and nonlinear length (LNL = ω
′
/gP0) are

approximately equal, LD ≈ L′
D ≈ LNL. Figure 14.1 shows the evolution of the

intensity of the travelling solitonic pulse along the optical fiber. The soliton intensity
evolution and the soliton amplitude fluctuations at the center are shown in Figs.
14.2 and 14.3, respectively. The central intensity evolution of the propagated soliton
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Fig. 14.1 The normalized intensity of the propagated soliton along the optical fiber (Noted that
normalized time, τ, is τ = T/T0)

Fig. 14.2 The intensity evolution of the propagated soliton at center (τ = 0) versus the length of
the optical fiber

has been obtained from Eq. 14.118, while the soliton’s amplitude fluctuation at its
central peak is deduced from Eq. 14.122. Due to the present simulation results, it
is understood that the propagated soliton suffers from quantum noise, and there are
fluctuations in the vicinity of the soliton. These fluctuations should be taken into
consideration in the future quantum technologies (Vinh et al., 2021).
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Fig. 14.3 Soliton amplitude noise at the center (τ = 0) as a function of the optical fiber’s length

14.4 Quantum Model for Supercontinuum Generation
Process

In Sect. 14.2, the propagation of electromagnetic field was quantized when the third-
order dispersion term was present. The method discussed in Sect. 14.2 was applied
to an optical fiber, when the electromagnetic field was travelling along it in Sect.
14.3. The method introduced could be applied to higher dispersive terms if needed.
The process by which a high-intensity light pulse is launched into a dispersive
dielectric; the extreme frequency broadening is observed due to dispersive and
nonlinear effects, known as supercontinuum generation. Both experimental and
theoretical studies performed by several groups indicate the formation of the
supercontinuum light in a dielectric, e.g., optical fiber. A comprehensive study of
this process was published by Dudley et al. (2006) based on classical models. In
this section, the quantum treatment of SCG by pulse propagation in the presence of
the higher-order dispersion terms, retarded response of the medium, and the third-
order susceptibility is focused (Safaei Bezgabadi & Bolorizadeh, 2022).

Generation of noise in a dielectric used to generate supercontinuum light source
is the main cause of instability in it and, therefore, reducing its applicability in indus-
try. Depending on the parameters of the input pulse, the generated supercontinuum
noise could cause up to 50% fluctuation in the temporal intensity profile of output
pulse (Corwin et al., 2003; Dudley & Genty, 2013; Gonzalo et al., 2018; Wetzel et
al., 2012). The fundamental part of this noise has its root in quantum noise, which is
inherent in the nonlinear process leading to the generated continuum light. Corwin
and coworkers measured the noise and provided a model describing it (Corwin et
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al., 2003). Their model, which is called a semi-classical model, adds a noise term
into the generalized nonlinear Schrödinger equation (GNLSE). The term added to
GNLSE, by Corwin and coworkers (2003), is a quantum noise, which has been
phenomenologically a sound term to be added to the classical GNLSE. Real-time
measurements of optical noise showed long-tailed statistics in the spectral intensity
of a generated supercontinuum light (Wetzel et al., 2012; Närhi et al., 2016).
Gonzalo and coworkers (2018) were able to reduce noise fluctuation in all-normal
dispersion supercontinuum sources. However, the instability of the supercontinuum
light due to the noise is still an open question.

It is intended to devise a quantum mechanical model to treat the SCG in a dielec-
tric using the positive-P representation (Safaei Bezgabadi & Bolorizadeh, 2022).
This model describes the soliton self-frequency shift, nonetheless, and the noise
associated with solitons in a dielectric. The quantum treatment of supercontinuum
is essential for the development of quantum communication, quantum computers,
and spectroscopy. The higher-order solitons split into lower order and fundamental
ones due to the soliton interactions, the third order dispersion effect, the Raman
effect, and the self-steepening phenomenon. A powerful quantum theory is needed
to explain all these effects.

The usual model for a centrosymmetric fiber (photonic crystal fiber (PCF)) is
chosen where the first nonlinear term to be included is the third-order nonlinear
susceptibility, which is not instantaneous in all practical applications (for details, see
Ref. (Alfano, 2016; Agrawal, 2012)). The proper canonical Lagrangian leading to
the correct Hamiltonian and to the Maxwell’s equations as the Hamilton’s equation
of motion was devised earlier. The Hamiltonian is:

H =
∑
k

�ω(k)a†
kak − η3

4

∫ (
D2 (t, x)

∫ t

−∞
R
(
t ′
)
D2 (t − t ′, x

)
dt ′
)
d3x

(14.123)

where R(t), ak, D, and η3 are, respectively, the response function of the medium, the
mode operators, the electric displacement operator, and the third-order nonlinear
response of the medium. The first term in Eq. (14.123) was derived earlier, by
the approach presented in the previous sections, which included the higher-order
dispersion terms. The interaction picture is assumed, Eq. (14.114), and the spatial
dependence is discretized making use of the expansion (14.105) near k0.

Due to the discrete nature of the longitudinal mode spacing (�k = 2π /L) in an
optical fiber of length L, the local operators are defined as (Drummond & Carter,
1987):

α� �
(
2N ′ + 1

)−1/2∑n=N ′
n=−N ′an exp

(
2πni�/

(
2N ′ + 1

))
, (14.124)

where spatial z-dependence, (z≡ ��z), is discrete and the steps of�z= L/(2N’ + 1)
are arranged along the optical fiber from � = − N’ to +N’. The local operators
satisfy the harmonic oscillator commutation relations (Drummond & Carter, 1987).
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As discussed earlier, the quantum mechanical treatment of the SCG process is
done making use of the positive-P representation, the method developed by Drum-
mond (Drummond & Hillery, 2014; Drummond & Carter, 1987). The definition
(Drummond & Hillery, 2014; Drummond & Carter, 1987):

|θ(t)〉 〈θ(t)| =
∫
P
(
t;α,α+) |α〉 〈(α+)∗∣∣〈(

α+)∗|α〉 d2αd2α† (14.125)

is the starting point where |α〉 and α� are the coherent state of total field and
the eigenvalue for the local operator α�, respectively. In addition, �θ (t)〉 is the
total wave function for the interaction Hamiltonian, while P(t; α, α+) develops in
time according to a Fokker-Planck equation with positive semi-definite diffusion
coefficient. The Fokker-Planck equation amounts to an equivalent equation of
motion for appropriate stochastic variables α(t) and α+(t):

∂α�
∂t

= i

(
χαα�

[∫ t
−∞R

(
t ′
)
α�

+ (t − t ′
)
α�
(
t − t ′

)
dt ′
]

+χαα�+α�
[∫ t

−∞R
(
t ′
)
α�
(
t − t ′

)
dt ′
]

−∑
�′
ω��′α�′

)
+ (2iχα)1/2α� ξ�(t)

(14.126a)

and:

∂α�
+

∂t
= −i

(
χαα�

+ [∫ t−∞R
(
t ′
)
α�

+ (t − t ′
)
α�
(
t − t ′

)
dt ′
]

+χαα�+α�
[∫ t

−∞R
(
t ′
)
α�

+ (t − t ′
)
dt ′
]

−∑
�′
ω��′α�′+

)
+ (−2iχα)1/2α�

+ ξ�
+(t)

(14.126b)

where:

ω��′ =�ωδ��′ +
∑
n

(
2N ′ + 1

)−1
[
(n�k)ω′ + 1

2
(n�k)2ω′′ + 1

6
(n�k)3ω′′′

]

× exp

[
2πni

2N ′ + 1

(
�− �′

)]
(14.127)

and:

χα = 3ε0�
(
ω′k0

)2
8ε2�V

χ(3). (14.128)

Here, ξ�(t) and ξ+
� (t) are real Gaussian stochastic functions. The correlation rela-

tions
〈
ξ� (t1) ξ

+
�′ (t2)

〉 = 0 and 〈ξ� (t1) ξ�′ (t2)〉 = 〈
ξ+
� (t1) ξ

+
�′ (t2)

〉 = δ��′δ (t1 − t2)

are valid for the functions ξ�(t) and ξ+
� (t). Note, firstly that the rotating wave



14 Quantum Mechanical Theory and Treatment of NLS Equations for. . . 543

approximation is used to calculate the integral term of the Hamiltonian (14.123)
and secondly α� and α+

� are not exactly complex conjugate to each other as the
positive-P representation is used. The stochastic field, !, is defined as (Drummond
& Carter, 1987):

!(z) ∼= lim
�z→0

(α�)

(
ω′

�z

)1/2

(14.129)

in the limit�z→ 0, at the location z= ��z. As the continuum representation is now
used, the discrete stochastic terms are replaced by Gaussian stochastic fields ξ (T, z)
and ξ+(T, z), with correlation relations similar to Eq. (14.119) to Eq. (14.121).

In addition to the quantum noise, one may include additional fluctuations due to
variations in the refractive index, which would result in a set of correlation relation
different from those of Eq. (14.119) to Eq. (14.121). However, these fluctuations are
ignored for the ideal photonic system or the photonic crystal fibers. Making use of
the transformation (T = t − z/ω

′
), the problem is solved in a new frame moving

at a velocity equal to the group velocity. Now, a wavenumber dependent nonlinear
parameter, χ!, is defined which is similar to χα . For all practical cases, it can be
expanded as:

χ! = χ! (k0)+ (k − k0) χ
′
! + · · · , (14.130)

where χ ′
! = dχ!/dk|k=k0

.
Finally, the full stochastic equation governing the SCG for the field !(T,z) is

obtained as:

∂

∂z
! (T , z) =

(
− iω′′

2ω′3
∂2

∂T 2
+ ω′′′

6ω′4
∂3

∂T 3
+ · · ·

)
!(T , z)+ i

(
χ! + iχ ′

!

∂

∂T

)
� (T , z)

+ (iχ!)
1/2ξ (T , z)! (T , z) , (14.131)

where:

� (T , z) =!(T , z)

[∫ T

−∞
R
(
T ′) !+(T − T ′, z

)
!
(
T − T ′, z

)
dT ′

]

+!+ (T , z)! (T , z)

[∫ T

−∞
R
(
T ′) !(T − T ′, z

)
dT ′

]
. (14.132)

There is also a coupled equation to Eq. (14.131) by transforming ! → !+,
i → − i and ξ → ξ

+
, which in the mean case it is the complex conjugate of Eq.

(14.131). Equation (14.131) can be regarded as the fundamental result of the present
work. Equation (14.131) and its coupled equation for !+(T, z) form a set of coupled
generalized nonlinear Schrödinger equations for the quantum treatment of the SCG
in fibers (e.g., PCF). Here, the stochastic terms introduce fluctuations originated
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from quantum noise. In addition to the coupling form of the two equations, the
main difference between the coupled quantum-stochastic equations and its classical
form is the term proportional to

∫ T
−∞R

(
T ′)! (T − T ′, z

)
dT ′ in Eq. (14.131)

which has no counterpart in classical form. This additional term is brought about
by commutation relations, which holds for creation and annihilation operators.
Indeed, this term appears when one obtains the Fokker-Planck equation (from
master equation) by using Hamiltonian (14.123). Also, note that the quantity χ!
introduced here for the quantum case is half its value for the classical form.

In the instantaneous medium response limit, R(T) is replaced by delta function
where the quantity defined by Eq. (14.132) takes the form:

� (T , z) = 2!+ (T , z) !2 (T , z) . (14.133)

Therefore, the coupled quantum-stochastic equation leads to the well-known
coupled stochastic nonlinear Schrödinger equation (Drummond & Hillery, 2014;
Drummond & Carter, 1987) which resulted from the Fokker-Planck equation
(Drummond & Hillery, 2014) or the results of the previous section (Eq. 14.118).
Hence, Eq. (14.131) gives a rigorous basis for earlier results (Drummond & Carter,
1987) for instantaneous medium response. Also, if one does not apply the nature
of the commutation relation, the resulted equation of motion (master equation)
from Hamiltonian (14.123) leads to the classical generalized nonlinear Schrödinger
equation (Alfano, 2016; Dudley et al., 2006; Dudley & Taylor, 2010). There are
self-phase modulation and cross-phase modulation, which are the side effect of Kerr
effect and four wave mixing due to nonzero value for the χ!. Also, the stimulated
Raman scattering and self-steepening are discussed assuming the retarded response
function, R(T), and the dispersive nature ofχ!.

The coupled quantum-stochastic equations will have soliton solutions, called
quantum solitons. There are many works in the literature to study quantum solitons
(Drummond & Hillery, 2014; Drummond et al., 1993; Yao, 1997; Vinh et al.,
2021), but these solitons have not studied in SCG process, and in these works,
the higher-order dispersion coefficients were not included. If these solitons are
not a fundamental one, they split into the lower order and fundamental ones after
propagating inside the optical fiber, which is known as soliton fission. In some
applications of the supercontinuum generation (e.g., quantitative experiments), it
is necessary to squeeze the quantum noise in the vicinity of these solitons. The
linearized fluctuation equation to study quantum noise will be:

∂
∂z
δ! (T , z) =

(
− iω"

2ω′3
∂2

∂T 2 + ω"′

6ω′4
∂3

∂T 3

)
δ! (T , z)+ iχ!

(∫ T
−∞R

(
T ′)φ2

0

(
T − T ′) dT ′

)
δ! (T , z)

+ iχ!φ0(T )
(∫ T

−∞R
(
T ′)φ0

(
T − T ′) dT ′

)
δ! (T , z)+ iχ!φ

2
0 (T )

∫ T
−∞R

(
T ′) δ! (T − T ′, z

)
dT ′

+ iχ!φ0(T )
∫ T

−∞R
(
T ′)φ0

(
T − T ′) δ! (T − T ′, z

)
dT ′ + iχ!φ0(T )δ!

+ (T , z)
∫ T

−∞R
(
T ′)

φ0
(
T − T ′) dT ′ + iχ!φ0(T )

∫ T
−∞R

(
T ′)φ0

(
T − T ′) δ!+ (T − T ′, z

)
dT ′ + (iχ!)

1/2φ0(T )ξ (T , z) .

(14.134)
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where φ0(T, z) = 〈!(T, z)〉 and !(T, z) = φ0(T, z) + δ!(T, z). Equation (14.134)
together with the equation obtained by transforming ! → !+, i → − i, and ξ →
ξ

+
forms a new set of coupled equations to be called the coupled quantum-stochastic

noise equations.
Here, φ0 can be considered as a mean case solution to the coupled gener-

alized nonlinear Schrödinger equations for the quantum treatment of SCG (Eq.
14.131). The function φ0 at z = 0 corresponds to a classical coherent input state,
which, in resemblance to the classical case, can be treated as φ0 (T , z = 0) =√
P0 sech (T /T0), where P0 and T0 are, respectively, peak power and width of the

input pulse which is launched into the photonic crystal fiber.
In summary, a quantum description of SCG of highly nonlinear pulse propagation

in an optical fiber is established. This theory leads to a coupled quantum-stochastic
generalized nonlinear Schrödinger equation. In addition to the coupling term, the
second term in Eq. (14.132) is not present in the classical generalized nonlinear
Schrödinger equation for the description of SCG. The reason behind this difference
is the commutation relation that holds for the stochastic fields of the master equation,
leading to the Fokker-Planck equation.

Making use of a stochastic field, the quantum noise source was included in
the governing equation. Subsequently, the coupled linearized fluctuation equation
is obtained by implementing the proper definition for squeezed quantum solitons
(Drummond & Carter, 1987). One argues that the resultant squeezing for the
normal dispersion regime is different from the resultant squeezing for the anomalous
dispersion regime. In order to arrive at this prediction, it is necessary to solve the
coupled linearized fluctuation equation numerically. The equations, obtained here,
could be used to study non-optical systems involving the retarded response, when
the Hamiltonian (14.123) holds.

Applying the fourth-order Runge-Kutta algorithm and employing the quantum
formalism, Eq. (14.131), the supercontinuum generation in photonic crystal fibers
under the mean case can be studied where ! and !+ are complex conjugates to
each other. Note that the expectation value of the last term in Eq. (14.131) is zero
under mean case (Drummond & Hillery, 2014; Drummond & Carter, 1987). A PCF
and incoming light parameters assumed by Dudley et al. (2006) were used in the
experimental results of Corwin and coworkers (2003) which is compared with the
results of the present quantum mechanical model as shown in Fig. 14.4. A pulse
of a 0.9 nJ energy at ultrashort width was used to measure the supercontinuum
spectrum between 400 and 1400 nm as shown in Fig. 14.4 (Corwin et al., 2003).
The present quantum model for the generation of SCG is plotted in Fig. 14.4 for
comparison with the experimental results, where the two agree. The peak of solitons
in the experimental results agrees with the quantum mechanical model. The results
of the quantum and classical models for the retarded nonlinear response condition
are shown in Fig. 14.5. The input pulse of 10 kW peak power and 28.4 fs width at
835 nm was chosen in this work. Due to the additional term in Eq. (14.131), which
is absent in the classical GNLSE, there are differences between the two results for
the SCG. Note that the higher dispersion terms and retarded response of the medium
were not included in the work reported in 2016 (Safaei Bezgabadi & Bolorizadeh,
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Fig. 14.4 A comparison between the present simulation of SCG (the blue line) in the fiber and the
experimental results of Corwin et al. (2003) (the red line)

Fig. 14.5 Simulation results for the quantum mechanical (a and b) and classical treatment (c and
d) of SCG along the first 15 cm of a PCF fiber. Photons generated at wavelengths from 400 nm
(a) to 1450 nm in a quantum treatment and (c) to 1350 nm in a classical treatment of SCG. Time
development of the input pulse is shown in (b) and (d) with respect to the delayed pulse in a
quantum and classical models, respectively

2016), and therefore the results do not show the soliton self-frequency shift and
soliton fission present in this work as shown in Fig. 14.5. The resulting simulation
of the SCG is shown by Fig. 14.5a, b for the quantum model, while similar data
is provided in Fig. 14.5c, d for the classical model. The difference between the two
results, classical and quantum treatments, arises due to the presence of the additional
term. One can compare the spectral broadening of a pulse inside the optical fiber
by the two methods as shown in Fig. 14.6. Comparing the results of the classical
treatment of the SCG in a specific PCF shown by Figs. 14.5c, d and 14.6b and the
quantum results presented in Figs. 14.5a, b and 14.6a show that not only the spectral
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Fig. 14.6 The generated wavelengths at the output of a 15 cm PCF in (a) quantum mechanical
and (b) classical calculations for the input pulse of 10 kW power and 28.4 fs pulse width at 835nm

broadening increases in the quantum treatment but also that the generated frequency
combs are closer and richer. In Fig. 14.5b, the quantum mechanical model predicts
longer delay for the formed soliton as compared with the classical result of Fig.
14.5d. However, the two models predict the soliton fission to occur at about the
same travel distance of the pulse along the optical fiber. Figure 14.6a indicates that
the peak intensity of soliton pulse calculated by the present quantum model is at
1300 nm which fits well with the experimental results of Corwin and coworkers
(2003) shown in Fig. 14.4, while the classical result, Fig. 14.6b, shows that the
peak of soliton pulse is at 1220 nm. As shown in Fig. 14.6b, the simulation of the
supercontinuum spectrum in the classical model reaches the background level at
wavelengths 1400 nm, while both experimental data and quantum results extend
beyond this wavelength.

As described earlier, the additional term in Eq. (14.132) originated from the
non-commutative nature of the creation and the annihilation operators defined in
obtaining the Fokker-Planck equation. This term changes the evolution of the optical
pulse inside an optical fiber, which causes the difference in the simulation results
between the two treatments. In reality, this term alters how the nonlinear part would
affect the broadening of the pulse and generation of new frequencies. As an example,
the soliton evolves according to the interplay between the third-order dispersion
term, the Raman scattering term, and the self-steepening term. Thus, the evolution
of solitons is predicted differently in the quantum treatment as compared with the
classical model.

In an experimental work, the resolution of the spectrometer should be less than
1 nm, in order to be able to show deeper details of the SCG. We therefore suggest
a more detailed and precise experimental work needed in this field to be able
to understand the deeper physics behind the nonlinear effects in dielectrics and,
especially, fibers. This is essential in order to understand and to reduce the noise
and, most important, the quantum noise.

In the following, the quantum mechanical treatment results are compared with
the classical ones for different peak powers and pulse widths. Figure 14.7 indicates
that when the peak power is low, such as 1 kW, and the pulse width is large, 10
ps, the two models lead, approximately, to similar results. Note that the quantum
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Fig. 14.7 The propagation of light pulses at 1 kW, low power, and large width of 1 ps and 10 ps are
compared for both classical and quantum mechanical models. Inset shows details of the spectrum
in a region of the spectrum

mechanical description of wave and particles is the same and leads to the wave
packet descriptions of both. When the width of a light pulse is small, it represents
a small particle which makes the quantum treatment essential. It is interesting
that the two results, classical and quantum models, deviate as the width of input
pulse changes from 10 ps to 1 ps. The classical results are closer to the quantum
mechanical model at the pulse width of 10 ps as compared with the 1 ps ones.
This study shows how important is the quantum nature of pulse for short width. In
practice, the nonlinear terms do not have significant contributions on the generation
of pulses of new wavelengths at such peak powers and pulse widths. However, the
quantum mechanical treatment of the pulse propagation along dielectrics or optical
fibers is still indispensable, because this approach is applicable to study quantum
solitons and to reduce the fluctuations in the vicinity of these solitons. From a
quantum mechanical point of view, a soliton is considered as a collection of particles
traveling together in a medium.

14.5 Conclusion

In summary, a higher-order Lagrangian has been introduced for the field propagation
in an inhomogeneous, dispersive, and anisotropic dielectric in Sect. 14.2, specifi-
cally an optical fiber. By establishing a quantum theory, the propagating fields are
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quantized by imposing the Dirac commutation relations. The Hamiltonian is then
written in terms of proper creation and annihilation operators. In Sect. 14.3, the
quantum theory is applied to study pulse propagation inside a conventional optical
fiber where the coupled stochastic NLSE is resulted as the governing equation. By
using this coupled stochastic NLSE, propagation of quantum soliton in the presence
of higher-order dispersion can be described, and the quantum noise in the vicinity
of the soliton can be reduced.

As it is essential to study SCG quantum mechanically, this approach is applied
for ultrashort pulse propagation along a nonlinear media when the retarded response
function of the medium should be taken into account. Here, the quantum theory for
the SCG process is presented, and it has included the terms with the significant
contributions involved in the supercontinuum generation a nonlinear media, specif-
ically the PCFs. Besides the obtained coupled stochastic equation for the quantum
treatment of the SCG, the source of significant difference is the additional term
which has no classical resemblance and roots in the non-commutative nature of
the creation and the annihilation operators defined in obtaining the Fokker-Planck
equation. The result of the quantum treatment, as compared with the experimental
results, indicates conformity between theory and experiment (Corwin et al., 2003).
The generated supercontinuum spectrums for the quantum mechanical and the
classical treatments are studied for different peak powers and widths of the input
pulse. It is concluded that the pulses of fs width behave as particles and described
best by quantum models. In conclusion, the quantum theoretical treatments of light
pulses passing through a nonlinear media describes the supercontinuum generation
process closer to the experimental data as compared with classical models.

There are different types of noise involved in supercontinuum light, or generally
in the propagation of electromagnetic waves in a nonlinear media, which are related
to absorption, gain, Raman effects, and the quantum mechanical noise that could be
described by stochastic equations. The noise involved in Raman effects has quantum
origin, and it is present in a vacuum state (Corwin et al., 2003) due to spontaneous
Raman effects. A semi-classical model of noise, due to the propagation of light
pulses in fibers devised by Corwin and coworkers (2003), is based on adding this
kind of noise to the GNLSE. However, the second-order nonlinear term was not
included which is the source of the Raman noise. Nonetheless, this noise exists and
should be included in the quantum theory of the field propagation in dielectric media
(Corwin et al., 2003). In the present work, in order to reduce the fluctuations near
solitons, one has to make use of Eq. (14.134) instead of Eq. (14.131), a process that
is referred to as linearization (Safaei et al., 2018). However, it should be noted that
the linearization is handled for squeezed photons, and, therefore, Eq. (14.134) is
not valid for long-distance travel of light pulses even for an instantaneous nonlinear
response. It is important to add the quantum noise involved in Raman effects to
Eq. (14.131), to correctly reduce the quantum noises in the vicinity of the solitons,
which were formed during the SCG process. New experimental work based on real-
time measurement, similar to those of Närhi and coworkers (2016) and Wetzel and
coworkers (2012) at 1550 nm pulses, is needed to study the SCG and all noises
involved. Detailed understanding of the physics of ultrashort light pulses needs more
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experimental works and their comparison with the present quantum theory of pulse
propagation, specifically in fiber applications. Nonetheless, the medium response
function and/or the parameters involved in it (such as Raman parameters and Raman
delayed factor) could be different when a light pulse should be modeled quantum
mechanically.

Appendix

Derivation of Eqs. (14.9) from (14.8) in this Chapter
Starting with the definition of displacement vector and its relation with the electric
field as:

D (t, x) = ε (ω, x)
...E (t, x) , (A.1)

one can rewrite it as:

E (t, x) = η (ω, x)
...D (t, x) , (A.2)

where η−1(ω, x) = ε(ω, x). Therefore, Eq. (14.8) is rewritten as:

HL =
∫
d3x

[
1

2
D∗ (t, x)

.

.

.η (ω, x) ·
(
∂
(
ωη−1 (ω, x)

)
∂ω

)

∼constant

· η (ω, x)
.
.
.D (t, x)+ 1

2μ
|B (t, x)|2

]
.

(A.3)

One can simplify the frequency dependent factor of the first term in the integrand of
equation (A.3) as:

η (ω, x) ·
(
∂
(
ωη−1 (ω, x)

)
∂ω

)

∼constant

· η (ω, x) = η (ω, x)− ω
∂

∂ω
η (ω, x) ,

(A.4)

which results in Eq. (14.9) in the chapter.

Derivation of Eq. 14.26, Starting from Maxwell’s Equations
Let’s start with the Maxwell equation (14.22a) from the manuscript. Substituting
the dual potential for magnetic field from Equation (14.12), one arrives at:

−μ�̈ (t, x) = ∇ × E (t, x) . (A.5)

Rewriting Equation (14.22b) for the electric field as:
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E (t, x) =
∫ ∞

0
η1 (τ, x)

...D (t − τ, x) dτ

+
∑
n>1

[∫ ∞
0

ηn (τ1, . . . , τn, x)
...D (t − τ1, x)⊗ · · · ⊗ D (t − τn, x) dτ1 . . . dτn

]
.

(A.6)

and substituting into (A.5), one concludes:

−μ�̈ (t, x) =∇ ×
[∫ ∞

0
η1 (τ, x)

.

.

.D (t − τ, x) dτ

]

+ ∇ ×
⎡
⎣∑
n>1

∫ ∞
0

ηn (τ1, . . . , τn, x)
.
.
.D (t − τ1, x)⊗ · · · ⊗ D (t − τn, x) dτ1 . . . dτn

⎤
⎦

(A.7)

for the equation of motion. Making use of the dual potential for displacement vector,
Eq. (14.12) in the chapter, Eq. (A.7) could be written as:

−μ�̈ (t, x) =∇ ×
∫ ∞

0
η1 (τ, x)

...∇ × � (t − τ, x) dτ

+
∑
n>1

∇ ×
∫ ∞

0
ηn (x)

...∇ × � (t, x)⊗ · · · ⊗ ∇ × � (t, x) dτ1 . . . dτn,

(A.8)

where it is assumed that ηn(x) for n > 1 to be independent of frequency. Substituting
expansion (14.13) for the dual potential into Eq. (A.8), one arrives at:

−μ
ν=N∑
ν=−N

�̈
ν
(t, x) =

ν=N∑
ν=−N

∇ × ∫∞
0 η1 (τ1, x)

...∇ × �ν (t − τ1, x) dτ1

+ ∑
n>1

∑
ν;ν1,··· ,νn

∇ ×
(

ηn (x)
...∇ × �ν1 (t, x)⊗ · · · ⊗ ∇ × �νn (t, x)

)

(A.9a)

where the equation of motion for mode ν is:

−μ�̈
ν
(t, x) = ∇ × ∫∞

0 η1 (τ, x)
...∇ × �ν (t − τ, x) dτ

+ ∑
n>1

∑
ν;ν1,ν2,··· ,νn

∇ ×
(

ηn (x)
...∇ × �ν1 (t, x )⊗ · · · ⊗ ∇ × �νn( t, x)

)
.

(A.9b)
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Note the parameters of summation
∑

ν;ν1,ν2,··· ,νn
stands for summation over all

frequency modes other than mode ν. Additionally, the quantity η1(τ , x) will be
written as ην(τ , x). Inserting eiω

ντ e−iωντ = 1 into the integrand of Eq. (A.9b),
one has:

−μ�̈
ν
(t, x) =∇ ×

{∫ ∞

0
ην (τ, x) e

iωντ
...
[
∇ × e−iωντ�ν (x, t − τ)

]
dτ

+
∑
n>1

∑
ν1,··· ,νn(ν)

ηn (x)
...∇ × �ν1

(
t, x
)⊗ · · · ⊗ ∇ × �νn

(
t, x
)
⎫⎬
⎭ .

(A.10)

The quantity e−iωντ�ν (x, t − τ) is expanded into a Taylor series in terms of τ up
to the third order as:

e−iωντ�ν (x, t − τ) ≈ �ν (x, t)− τ
[
�̇
ν
(x, t)+ iων�ν

(
x, t
)]

+ 1
2τ

2
[
�̈
ν
(x, t)+ 2iων�̇

ν
(
x, t
)
−(ων)2�ν

(
x, t
)]

+ 1
6τ

3 [· · · ] ,

(A.11)

where slowly varying envelope approximation is applied. Equation (A.11) is
rewritten as:

e−iωντ�ν (x, t − τ) ≈ �ν (x, t)
[
1 − iωντ − 1

2τ
2(ων)2 + · · ·

]

+ �̇
ν
(x, t)

[−τ + iτ 2ων + · · · ]+ �̈
ν
(x, t)

[
1
2τ

2 + · · ·
]

+
...
�
ν
(x, t) [· · · ] .

(A.12)

Now, Eq. (A.12) is replaced into the first term in the relation (A.10), and integrated
over τ, the result will be:

∇ ×
{∫ ∞

0
dτ

[
1 − iωντ − 1

2
τ2(ων)2 + · · ·

]
eiω

ντην (x, τ )
.
.
.
[∇ × �ν(t)

]}

= ∇ ×
[
ην (x)

.

.

.
(∇ × �ν (x, t)

)]
. (A.13a)

Similar arguments could be used for other terms of Eq. (A.11b), where one gets:

∇ ×
{∫ ∞

0
dτ
[
−τ − iτ2ων + · · ·

]
eiω

ντην (x, τ )
.
.
.
[
∇ × �̇

ν
(t)
]}

= ∇ ×
[
iη′
ν (x)

.

.

.
[
∇ × �̈

ν
(x, t)

]]

(A.13b)
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and:

∇ ×
{∫ ∞

0
dτ

[
1

2
τ2 + · · ·

]
eiω

ντην (x, τ )
.
.
.
[
∇ × �̇

ν
(t)
]}

= ∇ ×
[
− 1

2
η′′
ν (x)

.

.

.
[
∇ × �̇

ν
(x, t)

]]
.

(A.13c)

Therefore, by substituting results (A.13) into Eq. (A.10), the equation of motion will
be:

-μ�̈
ν
(t, x) = ∇ ×

⎧⎨
⎩ην (x)

.

.

.
[∇ × �ν (x, t)

]+ iη′
ν (x)

.

.

.
[
∇ × �̇

ν
(x, t)

]
− 1

2 η′′
ν (x)

.

.

.
[
∇ × �̈

ν
(x, t)

]

− i
6 η′′′

ν (x)
.
.
.
[
∇ ×

...
�
ν
(x, t)

]
+ ∑

n>1

∑
ν;ν1,··· ,νn

ηn (x)
.
.
. (∇ × �ν1 (x, t))⊗ · · · ⊗ (∇ × �νn (x, t))

⎫⎬
⎭ .

(A.14)

Lagrangian Method to Derive Eqs. 14.25 and 14.26
Here, the equation of motion and the Hamiltonian will be derived making use of the
Lagrangian density (14.28), which will, respectively, be equal to Equation (14.26)
and Equation (14.25). When the Lagrangian density L is a function of �ν , �̇

ν
, and

�̈
ν
, the Euler-Lagrange equation is:

∂L
∂�ν

j

− ∂t

(
∂L
∂�̇ν

j

)
− ∂k

⎛
⎝ ∂L
∂
(
∂k�

ν
j

)
⎞
⎠+ ∂t∂k

⎛
⎝ ∂L
∂
(
∂k�̇

ν
j

)
⎞
⎠

− ∂t∂t ∂k

⎛
⎝ ∂L
∂
(
∂k�̈

ν
j

)
⎞
⎠ = 0 (A.15)

where k represents the space coordinates x, y, and z and double k means summation
over it. For an arbitrary vector w, the transverse derivatives with respect to the
components of vector � have the property:

∂k
∂

∂∂k�x

(∇ × �) · w = −(∇ × w)x. (A.16)

It is assumed that in Eq. (A.16), the vector � stands for either �ν or �−ν or their
time derivative. For the present system, a general form of the Lagrangian density is
defined as:
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L = 1
2

ν=N∑
ν=−N

⎡
⎣a (∇ × �−ν (t, x)

) · ην (x)
.
.
. (∇ × �ν (t, x)) + b

(∇ × �−ν (t, x)
) · η′

ν (x)
.
.
.
(
∇ × �̇

ν
(t, x)

)

+ c
(
∇ × �̇

−ν
(t, x)

)
· η′

ν (x)
.
.
. (∇ × �ν (t, x))+ d

(
∇ × �̇

−ν
(t, x)

)
· η′′

ν (x)
.
.
.
(
∇ × �̇

ν
(t, x)

)

+ e
(
∇ × �̈

−ν
(t, x)

)
· η′′′

ν (x)
.
.
.
(
∇ × �̇

ν
(t, x)

)
+ f

(
∇ × �̇

−ν
(t, x)

)
· η′′′

ν (x)
.
.
.
(
∇ × �̈

ν
(t, x)

)

+ μ
(
�̇

−ν
(t, x) · �̇

ν
(
t, x
))

+ 2g
∑
n>1

∑
ν1,...,νn

1
n+1

(∇ × �−ν (t, x)
) · ηn (x)

.

.

.
[
(∇ × �ν1 (x, t)) · · · (∇ × �νn (x, t))

]
(A.17)

where coefficients a to g are to be determined by comparing the equation of
motion and the Hamiltonian resulting from the Lagrangian density, Equation (A.17),
with Equations 14.26 and 14.25 forming the chapter, respectively. Making use of
Equation (A.16), the terms in Equation (A.15) are written as:

∂L
∂�−ν

j

= 0, (A.18)

−
(

∂L
∂�̇−ν

j

)
= −1

2
μ�̇

ν

j (t, x) , (A.19)

−∂k
(

∂L
∂
(
∂k�

−ν
j

)
)

= 1
2 a

{
∇ ×

[
ην (x)

.

.

. (∇ × �ν (t, x))

]}

j

+ 1
2 b

{
∇ ×

[
η′
ν (x)

.

.

.
(
∇ × �̇

ν
(t, x)

)]}

j

+
{
g
∑
n>1

∑
ν;ν1,··· ,νn

∇ ×
[
ηn (x)

.

.

. (∇ × �ν1 (x, t)) . . . (∇ × �νn (x, t))

]}

j

,

(A.20)

∂k

(
∂L

∂
(
∂k�̇

−ν
j

)
)

= − 1
2 c

⎧⎨
⎩∇ ×

⎡
⎣η′

ν (x)
.
.
. (∇ × �ν (t, x))

⎤
⎦
⎫⎬
⎭
j

− 1
2 d

⎧⎨
⎩∇ ×

⎡
⎣η′′

ν (x)
.
.
.
(
∇ × �̇

ν
(t, x)

)⎤⎦
⎫⎬
⎭
j

− 1
2f

⎧⎨
⎩∇ ×

⎡
⎣η′′′

ν (x)
.
.
.
(
∇ × �̈

ν
(t, x)

)⎤⎦
⎫⎬
⎭
j

(A.21)

and:

−∂k
⎛
⎝ ∂L
∂
(
∂k�̈

−ν
j

)
⎞
⎠ = 1

2
e

{
∇ ×

[
η′′′
ν (x)

...
(
∇ × �̇

ν
(t, x)

)]}
j

. (A.22)

Substituting the results (A.18, A.19, A.20, A.21, and A.22) into Euler-Lagrange
equation, Eq. (A.15), each component of the equation of motion will be:
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−μ�̈
ν
j (t, x) = (c − b)

{
∇ ×

[
η′
ν (x)

.

.

.
(
∇ × �̇

ν
(t, x)

)]}

j

− a

{
∇ ×

[
ην (x)

.

.

.
(∇ × �ν (t, x)

)]}

j

+ d

{
∇ ×

[
η′′
ν (x)

.

.

.
(
∇ × �̈

ν
(t, x)

)]}

j

+ (e − f )

{
∇ ×

[
η′′′
ν (x)

.

.

.
(
∇ ×

...
�
ν
(t, x)

)]}

j

−
{
g
∑
n>1

∑
ν;ν1,··· ,νn

∇ ×
[
ηn (x)

.

.

.
(∇ × �ν1 (x, t)

)
. . .
(∇ × �νn (x, t)

)]}

j

(A.23)

where the equation of motion will be:

−μ�̈
ν
(t, x) = ∇ ×

⎧⎨
⎩−aην (x)

.

.

.
[∇ × �ν (t, x)

]+ (c − b)η′
ν (x)

.

.

.
[
∇ × �̇

ν
(t, x)

]
+ dη′′

ν (x)
.
.
.
[
∇ × �̈

ν
(t, x)

]

+ (e − f )η′′′
ν (x)

.

.

.
[
∇ ×

...
�
ν
(t, x)

]
− g

∑
n>1

∑
ν;ν1,··· ,νn

ηn (x)
.
.
.
[(∇ × �ν1 (t, x)

)⊗ · · · ⊗ (∇ × �νn (t, x)
)]
⎫⎬
⎭ .

(A.24)

Comparing (A.24) with Eq. (14.26) in the chapter, the relations:

a = −1, e − f = − i

6
, c − b = i, d = −1

2
and g = −1 (A.25)

are found for the parameters a to g in Eq. (A.17).
According to Ostrogradsky’s theorem, when the Lagrangian density is a function

of �ν , �̇
ν
, �̈

ν
, �−ν , �̇

−ν
, and �̈

−ν
, there are four canonical coordinates and

momenta. Therefore, the canonical momenta are obtained by the definitions:

�−ν
j =

(
∂L
∂�̇−ν

j

)
− ∂k

⎛
⎝ ∂L
∂
(
∂k�̇

−ν
j

)
⎞
⎠+ ∂t∂k

⎛
⎝ ∂L
∂
(
∂k�̈

−ν
j

)
⎞
⎠ (A.26)

and:

#−ν
j = −∂k

⎛
⎝ ∂L
∂
(
∂k�̈

−ν
j

)
⎞
⎠ . (A.27)

Substituting relations (A.19), (A.21), and (A.22) into definitions (A.26) and (A.27),
the components of canonical momenta for the canonical coordinates �−ν and �̇

−ν

are found as:

�−ν
j

= 1
2μ�̇

ν
j (t, x)+ 1

2 c

{
∇ ×

[
η′
ν (x)

.

.

.
(∇ × �ν (t, x)

)]}

j

+ 1
2d

{
∇ ×

[
η′′
ν (x)

.

.

.
(
∇ × �̇

ν
(t, x)

)]}

j

+ 1
2 (f − e)

{
∇ ×

[
η′′′
ν (x)

.

.

.
(
∇ × �̈

ν
(t, x)

)]}

j

(A.28)
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and:

#−ν
j = 1

2
e

{
∇ ×

[
η′′′
ν (x)

...
(
∇ × �̇

ν
(t, x)

)]}
j

. (A.29)

Therefore, the canonical momenta associated with the canonical coordinates�−ν ,
�̇

−ν
, �ν , and �̇

ν
are:

�−ν =∑
j

�−ν
j êj = 1

2μ�̇
ν
(t, x)+ 1

2c∇ ×
[

η′
ν (x)

... (∇ × �ν (t, x))

+ 1
2d η′′

ν (x)
...
(
∇ × �̇

ν
(t, x)

)
+ 1

2 (f − e) η′′′
ν (x)

...
(
∇ × �̈

ν
(t, x)

)]
,

(A.30)

�−ν =
∑
j

#−ν
j êj = 1

2
∇ ×

[
eη′′′

ν (x)
...
(
∇ × �̇

ν
(t, x)

)]
, (A.31)

�ν =∑
j

�ν
j êj = 1

2μ�̇
−ν

(t, x)+ 1
2∇ × [b (∇ × �−ν (t, x)

) · η′
ν (x)

+ d
(
∇ × �̇

−ν
(t, x)

)
· η′′

ν (x)+ (e − f )
(
∇ × �̈

−ν
(t, x)

)
· η′′′

ν (x)
]

(A.32)

and:

�ν =
∑
j

#ν
j êj = 1

2
∇ ×

[
f
(
∇ × �̇

−ν
(t, x)

)
· η′′′

ν (x)
]
, (A.33)

respectively.
Making use of the definition for Hamiltonian as:

H =
[

ν=N∑
ν=−N

∫
d3x

(
�ν · �̇

ν + �−ν · �̇
−ν + �ν · �̈

ν + �−ν · �̈
−ν)]−

∫
d3xL

(A.34)

in the Euler-Lagrange formalism, integrating some of the terms by parts as:
∫
d3x V1 · (∇ × V2) =

∫
d3x V2 · (∇ × V1) (A.35)

with the fact that the fields vanish at infinity, one finds the Hamiltonian to be:
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H = 1
2

ν=N∑
ν=−N

∫
⎧⎨
⎩
⎡
⎣−a (∇ × �−ν (t, x)) · ην (x)

.

.

.
(∇ × �ν (t, x)

)+ d
(
∇ × �̇

−ν
(t, x)

)
· η′′

ν (x)
.
.
.
(
∇ × �̇

ν
(t, x)

)

+ (e − f )
(
∇ × �̈

−ν
(t, x)

)
· η′′′

ν (x)
.
.
.
(
∇ × �̇

ν
(t, x)

)
+ (f − e)

(
∇ × �̇

−ν
(t, x)

)
· η′′′

ν (x)
.
.
.
(
∇ × �̈

ν
(t, x)

)⎤⎦

+μ
(
�̇

−ν
(t, x) · �̇ν

(
t, x
))

− 2g
∑
n>1

∑
ν1,...,νn

1
n+1

(∇ × �ν (t, x)
) · ηn (x)

.

.

.
[(∇ × �ν1 (x, t)

) · · · (∇ × �νn (x, t)
)]
⎫⎬
⎭ d3x.

.

(A.36)

Again, comparing the parameters in (A.36) with the Hamiltonian (14.25) in the
chapter which are similar to the parameters (A.25) and assuming the symmetry in
the Lagrangian density, the final parameters will be:

a = −1, b = − i

2
, c = i

2
, d = −1

2
, e = − i

12
, f = i

12
, and g = −1.

(A.37)

In summary, the results obtained implementing the Lagrangian density A.17
agree both in dynamics and energy with the results obtained from Maxwell
equations and Poynting’s theorem for slowly varying envelope functions. Thus, the
Lagrangian density (A.17) describes the system in the framework of a local field
theory of a nonlinear dispersive medium. By using the scaler coefficients, A.37,
and separating the Lagrangian density A.17 into the linear and nonlinear parts, Eqs.
14.28 and 14.29 of the chapter are yielded. In addition, Eqs. 14.25, 14.26, 14.31,
and 14.32 are also obtained by implementing the coefficients A.37 into A.36, A.24,
A.32, and A.33, respectively.

Derivation of Eqs. 14.35, 14.36, and 14.37
Starting with Equation 14.34 from the manuscript and the fact that (�ν(t, x))∗

= �−ν(t, x), it is concluded that:

(
λνk,α(t)

)∗ê∗
k,α = λ−ν

-k,α(t)ê-k,α. (A.38a)

Thus:

(
λνk,α(t)

)∗ = −(−1)αλ−ν
-k,α(t) (A.38b)

and:

ê∗
k,α = −(−1)α ê-k,α. (A.39)
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By simple algebra, it can be shown that:

∇ × �ν (t, x) = i√
V

∑
k,α

λνk,α(t)e
ik·xk × êk,α (A.40)

and:

∇ × �−ν (t, x) = −i√
V

∑
k,α

(
λνk,α(t)

)∗
e−ik·xk × ê∗

k,α. (A.41)

Substituting (A.40) and (A.41) into the linear part of Lagrangian density (14.28)
in the chapter, one arrives at the linear part of the Lagrangian as:

LL = 1
2V

ν=N∑
ν=−N

∑
k′,α′

∑
k,α

∫
d3x

{[
−
(
λνk′,α′ (t)

)∗ (
k′ × ê∗

k′,α′
)

· ην (x)
.
.
.
(
k × êk,α

)
λνk,α(t)+ i

2

(
λ̇νk′,α′ (t)

)∗

(
k × êk,α

) · η′
ν (x)

.

.

.
(
k′ × ê∗

k′,α′
)
λνk,α(t)− i

2

(
λνk′,α′ (t)

)∗ (
k′ × ê∗

k′,α′
)

· η′
ν (x)

.

.

.
(
k × êk,α

)
λ̇νk,α(t)

+ i
6

(
λ̈νk′,α′ (t)

)∗ (
k′ × ê∗

k′,α′
)

· η′′′
ν (x)

.

.

.
(
k × êk,α

)
λ̇νk,α(t)− i

6

(
λ̇νk′,α′ (t)

)∗ (
k × êk,α

) · η′′′
ν (x)

.

.

.(
k′ × ê∗

k′,α′
)
λ̈νk,α(t)+ μ

(
λ̇νk′,α′ (t)

)∗
ê∗
k′,α′ · êk,α λ̇νk,α(t)− 1

2

(
λ̇νk′,α′ (t)

)∗ (
k′ × ê∗

k′,α′
)

·η′′
ν (x)

.

.

.
(
k × êk,α

)
λ̇νk,α(t)

]
ei(k−k′)·x

}
.

(A.42)

Defining the quantities:

M
(1)ν
(k′,α′)(k,α) = 1

V

∫
d3x

(
k′ × ê∗

k′,α′
)

· ην (x)
...
(
k × êk,α

)
ei(k−k′)·x, (A.43)

M
(2)ν
(k′,α′)(k,α) = 1

2V

∫
d3x

(
k′ × ê∗

k′,α′
)

· η′
ν (x)

...
(
k × êk,α

)
ei(k−k′)·x, (A.44)

M
(2′)ν
(k,α)(k′,α′) = 1

2V

∫
d3x

(
k × êk,α

) · η′
ν (x)

...
(
k′ × ê∗

k′,α′
)
ei(k−k′)·x = M

(2)ν∗
(k,α)(k′,α′),

(A.45)

M
(3)ν
(k′,α′)(k,α) = 1

V

∫
d3x

{
μê∗

k′,α′ · êk,α − 1
2

(
k′ × ê∗

k′,α′
)

· η′′
ν (x) · (k × êk,α

)}
ei(k−k′)·x

=
[
μê∗

k′,α′ · êk,αδk′,k − 1
2V

∫
d3x

(
k′ × ê∗

k′,α′
)

· η′′
ν (x)

.

.

.
(
k × êk,α

)
ei(k−k′)·x

]
,

(A.46)

M
(4)ν
(k′,α′)(k,α) = 1

6V

∫
d3x

(
k′ × ê∗

k′,α′
)

· η′′′
ν (x)

...
(
k × êk,α

)
ei(k−k′)·x (A.47)
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and:

M
(4′)ν
(k,α)(k′,α′) = 1

6V

∫
d3x

(
k × êk,α

) · η′′′
ν (x)

...
(
k′ × ê∗

k′,α′
)
ei(k−k′)·x = M

(4)ν∗
(k′,α′)(k,α),

(A.48)

the Lagrangian (A.42) will be simplified as:

LL = 1
2

ν=N∑
ν=−N

∑
k′,α′

∑
k,α

[
−
(
λνk′,α′ (t)

)∗
M

(1)ν
(k′,α′)(k,α) λ

ν
k,α(t)− i

(
λνk′,α′ (t)

)∗
M

(2)ν
(k′,α′)(k,α)λ̇

ν
k,α(t)

+ i
(
λ̇νk′,α′ (t)

)∗
M
(2′)ν
(k,α)(k′,α′)λ

ν
k,α(t)+

(
λ̇νk′,α′ (t)

)∗
M

(3)ν
(k′,α′)(k,α)λ̇

ν
k,α(t)

+ i
(
λ̈νk′,α′ (t)

)∗
M

(4)ν
(k′,α′)(k,α)λ̇

ν
k,α(t) −i

(
λ̇νk′,α′ (t)

)∗
M
(4′)ν
(k,α)(k′,α′)λ̈

ν
k,α(t)

]
.

(A.49)

It is necessary to discuss the quantities M, specifically for definitions (A.47) and
(A.48). Starting with Eq. (A.48), one arrives at:

M
(4′)ν
(k,α)(k′,α′) → 1

6V

∫
d3x

(−k × ê-k,α
) · η′′′

ν (x)
...
(
−k′ × ê∗

-k′,α′
)
e−i(k−k′)·x

= 1
6V

∫
d3x

(
k × ê-k,α

) · η′′′
ν (x)

...
(
k′ × ê∗

-k′,α′
)
e−i(k−k′)·x.

(A.50)

where k and k’ are changed into −k and −k’, respectively. Now making use of the
relation (A.39), one concludes that:

M
(4′)ν
(k,α)(k′,α′) → 1

6V

∫
d3x

(
k × ê∗

k,α

) · η′′′
ν (x)

...
(
k′ × êk′,α′

)
e−i(k−k′)·x.

(A.51)

Another change into Eq. (A.51), i.e., interchanging k with k’, leads to:

M
(4′)ν
(k,α)(k′,α′)

(k,α)↔(k′,α′)→ 1

6V

∫
d3x

(
k′ × ê∗

k′,α′
)

· η′′′
ν (x)

.

.

.
(
k × êk,α

)
ei(k−k′)·x = M

(4)ν
(k′,α′)(k,α).

(A.52)

A similar argument holds for definition (A.44), which results in:

M
(2′)ν
(k,α)(k′,α′) → M

(2)ν
(k′,α′)(k,α). (A.53)
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Therefore, the Lagrangian will be simplified as:

LL = 1
2

ν=N∑
ν=−N

∑
k′,α′

∑
k,α

{
−
(
λνk′,α′

)∗
M

(1)ν
(k′,α′)(k,α)λ

ν
k,α−i

[(
λνk′,α′

)∗
M

(2)ν
(k′,α′)(k,α)λ̇

ν
k,α

−
(
λ̇νk′,α′

)∗
M

(2)ν
(k′,α′)(k,α)λ

ν
k,α

]
+
(
λ̇νk′,α′

)∗
M

(3)ν
(k′,α′)(k,α)λ̇

ν
k,α

+i
[(
λ̈νk′,α′

)∗
M

(4)ν
(k′,α′)(k,α)λ̇

ν
k,α −

(
λ̇νk′,α′

)∗
M

(4)ν
(k′,α′)(k,α)λ̈

ν
k,α

]}

which is the same as Eq. 14.35 in the chapter. Eq. 14.37 in the chapter is resulted
by removing the indices k, k’, α, and α’ for simplicity. Additionally, the limits of
ν have changed from –N to N to 0 to N. It should be noted that the negative values
of ν are taken into account by removing the factor ½ into 1/(1 + δν, 0). However,
the factor 1/(1 + δν, 0) has been neglected for the simplicity of the equations as it
affects only the first term.

Derivation of Relations Between the Parameters in Equations (14.41)
In order to find the Hamiltonian (14.40) for the optical fiber, new set of canonical
coordinates and momenta are defined by Equations (14.41) in the chapter. In order
to quantize the system, standard Dirac’s commutation relations:

[
q̃ν , q̃ν

′†
]

= 0, (A.54)

[
p̃ν†, p̃ν

′] = 0 (A.55)

and:
[
q̃ν , p̃ν

′] = i�1δν,ν′ . (A.56)

should hold between the new canonical coordinates q̃ν and p̃ν to arrive at the
relations (14.42a), (14.42b), and (14.42c), respectively. Note that the commutation
relations for quantities X and Y are related to the Poisson’s bracket as:

[X, Y ] = i�
∑
i=1

{
∂X

∂qi

∂Y

∂pi
− ∂X

∂pi

∂Y

∂qi

}
(A.57)

where qi and pi are also coordinates qν , Qν , qν†, and Qν† and their corresponding
momenta.

Substituting Equations (14.41) for the canonical coordinates and momenta
in Equation 14.43 and comparing it with the Hamiltonian 14.40, following six
equations:

Aν† ·ν · Aν + Eν · ϒν · Eν† + iAν† ·�ν · Eν† − iEν ·�ν† · Aν = M(1)ν

(A.58)



14 Quantum Mechanical Theory and Treatment of NLS Equations for. . . 561

[
Aν† ·ν − iEν ·�ν†

]
·
[
Bν + iDν ·M(4)ν

]

+
[
Eν · ϒν + iAν† ·�ν

]
·
[
Fν† + iKν† ·M(4)ν

]
= iM(2)ν,

(A.59)

Aν† ·ν · Cν + Eν · ϒν ·Gν† + iAν† ·�ν ·Gν† − iEν ·�ν† · Cν = 0,
(A.60)

[
Bν† − iM(4)ν ·Dν†

] · [ν · Bν + iν ·Dν ·M(4)ν + i�ν · Fν† −�ν ·Kν† ·M(4)ν
]+[

Fν − iM(4)ν ·Kν
] · [ϒν · Fν† + iϒν ·Kν† ·M(4)ν − i�ν† · Bν +�ν† ·Dν ·M(4)ν

] = −M(3)ν

(A.61)

[
Bν† − iM(4)ν ·Dν†

]
·
[
ν · Cν + i�ν ·Gν†

]
+
[
Fν − iM(4)ν ·Kν

]
·
[
ϒν ·Gν† − i�ν† · Cν

]
= 1

(A.62)

and:

Cν† ·ν · Cν +Gν · ϒν ·Gν† + iCν† ·�ν ·Gν† − iGν ·�ν† · Cν = 0.
(A.63)

will be resulted. These six relations in addition to the relations (14.42) are used to
find the frequency matrices and the matrix parameters Aν to Kν, which are needed
to define coordinates q̃ν and p̃ν .
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