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Foreword

I highly recommend this most impressive landmark publication on supercontinuum
(SC) in the 17 chapters authored by top leading scientists covering various aspects
of spectral broadening. The SC gives rise to generation of new frequencies from
self-phase modulation, cross-phase modulation, stimulated Raman, modulation
instability, 4 wave conical emission, higher harmonic generation (HHG), and
attosecond pulse generation. The Kerr index n2 and dispersion holds the key for
temporal pulse expansion and compression to the femtosecond, attosecond, and
zeptosecond time scale in order to produce short extreme intense laser pulses in
optical regime to interact with and alter matter.

The supercontinuum is an enabling optical process for many diverse applications
in metrology, chemistry, biology, solid state physics, WDM communications,
microscopy, and extreme laser intensities, and will soon be used in medical
applications to advance optical science to new heights. This book helps to further
advance the direction towards understanding the use of SC as a coherently driven
optical laser electric field to create wide bands of frequencies covering most of E&M
spectrum. Undergraduate and graduate students and scientists will find the material
expounded in the fourth edition very useful in understanding optical science under
extreme laser beam–material interactions.

This book is an excellent up-to-date account of spectral broadening from the
temporal responses of the states of laser field to matter to extreme ultrafast laser
pulses via Kerr effect arising from different molecular motions: ultrafast – electron
cloud; fast – molecular redistribution and plasma formation; and slower – rotation
and vibration motions. It is suggested by Alfano in Chap. 17 that HHG can occur
from n2 by electric field by electronic self-phase modulation (ESPM) from gases,
liquids, and solids.

Each chapter is well written with comprehensive topics on nonlinear optical
process which can be used as a good introduction and advanced research tool to
discuss the methods to generate coherent ultrafast pulses covering enabling tools
of the supercontinuum to probe and understand ultrafast phenomena in different
states of matter in physics, condensed matter, chemistry, biology, and medical
applications. It can be used in wide band communication in EE and optical
computers.

This book is a must read for students, scientists, engineers, and researchers in
optical science. This book is destined to become a classic reference for ultrafast
pulse interaction and generation of the ultimate light source to probe nature.

Nobel Prize in Physics 2018.

University of Waterloo, Waterloo, ON, Canada Donna Strickland
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Preface

The “supercontinuum” (SC) is generated using ultrafast laser pulses propagating in
solids, liquids, gases, and plasmas, and special designs of optical fiber, for example,
single-mode, multi-mode, and microstructured. This book is the fourth edition of the
classic text on the SC topics of ultrafast nonlinear optical processes responsible for
SC from materials. The SC is a most startling and colorful effect. The discovery of
white light generation of supercontinuum was borne 52 years ago by Robert Alfano
and Stanley Shapiro while at GTE labs (Verzion). The SC light source has become
an enabling technology and ultimate source covering an extensive portion of the
electromagnetic spectrum, encompassing the XUV, UV, visible, NIR, IR, and THz
regions. The SC usage has spread worldwide and has been used to advance ultrafast
laser spectroscopy, condensed matter, biology, physics, chemistry, and medicine.
Specific applications include high-precision optical frequency and time metrology,
precision optical clocks, high-capacity encoding and decoding of information in
communications using wavelength division multiplexing, imaging using optical
coherence tomography in medicine, light pulse compression and broadening, and
extreme high-intensity and ultrafast pulse generation for attosecond pulses and high-
harmonic generation (HHG).

The fourth edition is a sequel to The Supercontinuum Laser Source, with the third
edition being published in 2016. The current edition consists of 17 chapters, with 8
new, and 9 revised and updated chapters, from luminaries and experts in the optical
science and nonlinear optics fields. The 17 chapters cover the various underlying
processes creating the SC. The SC generation starts with physical process known as
self-phase modulation (SPM), induced by the intensity-dependent nonlinear refrac-
tive index, referred to as the Kerr effect and represented by n2 or χ3, by propagating
ultrafast light pulses in different states of matter. A number of other nonlinear
processes can simultaneously occur that contribute to broaden the emission spec-
trum to span bandwidths exceeding well over 10,000 cm1. These effects include
four-wave conical mixing, stimulated Raman scattering, cross-phase modulation,
modulation instability, and soliton generation. The effects and their contribution to
the SC generation process are highly influenced by the fundamental properties of the
medium, including their normal and anomalous dispersive properties. It is possible
to cover most of the electromagnetic spectrum, spanning from the XUV to the IR
region, and possibly cover from near-DC to the X-ray region, by extreme intense
femtosecond pulses from ultrafast table-top laser systems, relying on electronic self-
phase modulation (ESPM). The key discussions in the chapters revolve around the
various response times of the nonlinear index. Typical experimental configurations
rely on milli-joule class lasers with sub-100 fsec optical pulses, focused to a spot
size of 10 μm. These parameters are sufficient to alter the envelope and phase of the
electric field of the optical pulse to create the SC and HHG.
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viii Preface

Various mechanisms are responsible for the intensity-dependent, time-varying
index of refraction of matter. The frequency broadening mechanisms are electronic
cloud distortion, molecular distribution, plasma generation, liberation, reorientation,
and vibration. The influence of these mechanisms on SC generation depends
critically on the material’s relaxation time with respect to the temporal duration
of the excitation pulse. The time varying index n(t) mediated through n2 can be
instantaneous to the driving electric field or averaged over many optical cycles. The
salient feature is the relationship of the relaxation time of n2 to the pulse duration,
and the intensity of the optical light pulse. The relevant relaxation time τ e associated
with electronic cloud distortion is about 50 asec, which is ~1/3 of Bohr time of 150
asec. Other key time scales are related to the molecular distribution time, typically
on the order of ~100 fs, and time scales associated with the plasmas time, the rocking
response, and rotational and vibrational times, which are on the psec scale.

The ESPM follows the ultrafast time of the optical cycle and pulse envelope to
create HHG and SC. The ultra supercontinuum (USC), on the other hand, follows
the envelope through the time-averaged index <n(t)> and does not produce HHG,
while HHG and SC follow both the optical cycle of the carrier envelope phase, and
the envelope of the laser pulse.

The following are short overviews of the chapters within this edition. Chapter 1,
by Shen and Yang, describes the underlying theory of self-phase modulation and
spectral broadening. Chapter 2, by Wang Ho and Alfano, describes SC generation
in condensed matter. Chapter 3, by Agrawal, describes the theory of SC in nonlinear
dispersive media. Chapter 4, by Baldeck, Ho, and Alfano, describes cross phase
modulation. Chapter 5, by Travers and Taylor, describes fiber-based SC generation.
Chapter 6, by Alex Heidt et al., describes all normal dispersion fiber SC. Chapter 7,
by Corkum and Rolland, describes SC in gases. Chapter 8, by Zhang, Zhano, and
Chang, describes attosecond extreme SC. Chapter 9, by Smirnov et al., describes
SC in telecommunication applications. Chapter 10, by Mendonca, describes twisted
optical angular momentum (OAM) in SC generation. Chapter 11, by Meyer and
Alfano, gives an overview of conical four-wave mixing from femtosecond laser
pulses. Chapter 12, by Dubietis et al., describes SC in the IR and MIR spectral
regions. Chapter 13, by Hu and Menyuk, describes chalcogenide glass fiber for mid-
IR SC generation. Chapter 14, by Bolorizadeha and Bezgabadi, provides a quantum
mechanical theory of SC. Chapter 15, by Klimczak et al., describes coherent SC
from all solid state crystal fiber. Chapter 16, by Wang, Boppart, and Tu, describes
SC generation in birefringent all normal dispersion fibers. Chapter 17, by Mazhar
and Alfano, describes USC and HHG in various states of matter from intense fs
pulses to response times of media following both slow n2 and fast instanteous n2
response of the optical fs pulse.

Special thanks to Ms. Sonali Shintre for her untiring and super assistance in the
production of the fourth edition and Peter Delfyett for help with the preface.

New York, NY, USA Robert R. Alfano
11/16/2022
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Supercontinuum Generated in Different
Media

Supercontinuum Light Vector Vortex Beams with OAM
(L = 1,2,3) in Air

Photographed by Sandra Mamani

Top Row: Supercontinuum light vector vortex beams (Majorana photons)
generated in air with an optical vortex retarder with a Spectra Physics Solstice Ace
high-energy ultrafast laser with a duration pulse of 90 fs at 800 nm of 4 mJ. The
vortex retarder (liquid crystal polymer device) generates Laguerre-Gaussian vortex
beams with different orbital angular momentum. a) OAM (L) =1, b) OAM (L) =2,
and c) OAM (L) =3. The OAM beam is visible right at the center of the beam (donut
profile), which is generated within 5 mm in diameter. Image size is approximately
22 × 22 cm.

Bottom Row: OAM lobes pattern formed due to interference when using a linear
polarizer as analyzer after the generation of supercontinuum (SC). The intensity
pattern follows the pure multipoles in a spherical symmetry. This process is done
to characterize the value of the OAM of SC. The value of the OAM is calculated
by dividing the number of petals by two. The pattern observed is generated right
at the center where the donut profile is (violet portion of the supercontinuum),
which is the section generated within 5 mm in diameter. Image size is approximately
5.5 × 5.5 cm. ix



x Supercontinuum Generated in Different Media

Conical Emission and Self-Phase Modulation Light
from Vector Vortex Beam with OAM (L = 2) in BK7 Glass

Photographed by Sandra Mamani

Conical emission and supercontinuum light vector vortex beam generated in BK7
glass (2 mm thickness) using an optical vortex retarder to generate orbital angular
momentum (OAM) of L = 2 with a Solstice Ace high-energy ultrafast laser with a
duration pulse of 90 fs at 800 nm, 4 mJ. This non-linear effect is produced angularly
with respect to the wavelength (θ vs. λ). In the image it is observed the order of the
colors going from white to violet, red, yellow, green, blue, and violet. The order of
colors can be explained by SPM (the first violet/blue about the white center arises
from the beam divergence caused by the scattering of the SPM light) followed by
four-wave mixing colored rings. See Chap. 11 by Henry Meyer and Robert R Alfano
for details.

Image size is approximately 22 x 22cm.
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Supercontinuum Generated in Different Media xi

Supercontinuum Light from Calcite

Photographed by Henry J. Meyer

Rings of conical emission surrounding a supercontinuum. The white core arises
from self-phase modulation and the outer color arises from four-wave mixing. The
first blue and the violet rings about the white center arise from the beam divergence
caused by the scattering of the SPM light. The outer rings (red orange, yellow, green,
blue, and violet) are produced by the Four-Wave Mixing of Coherent Inc., Monaco
+ opera-F of 50 fs, 2uJ, at 800 nm laser beam in a 3.5 cm long calcite sample. For
more on conical emission, see Chap. 11 by Henry J Meyer and Robert R Alfano.

http://doi.org/10.1007/978-3-031-06197-4_11


xii Supercontinuum Generated in Different Media

Supercontinuum Light Generated from Methanol Liquid

Photographed by Shah Faisal Mazhar

SC generation from Solstice laser 90 fs, 4mj, 800 nm laser pulses propagating
through 10 cm long glass cell filled with methanol liquid.



Supercontinuum Generated in Different Media xiii

Supercontinuum Light Generated from Plasma Ablation
in Air from Copper Foil

Photographed by Shah Faisal Mazhar

SC generated Solstice laser from 90 fs, 800 nm, 4mj pulses from plasma
produced by ablation of thin copper foil in air.
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Chapter 1
Theory of Self-Phase Modulation
and Spectral Broadening

Y. R. Shen and Guo-Zhen Yang

Abstract The chapter focuses on self-phase modulation (SPM) arising from Kerr
nonlinear index n2 which leads to spectral broadening from various physical mech-
anisms depending on temporal responses: ultrafast(electronic), fast (ionization,
molecular redistribution), and slow (rotational/vibrational) for n2.

Keywords Self-phase modulation (SPM) · Cross Phase modulation (XPM) ·
Self-focusing · Transient self-focusing · Kerr index n2 · Frequency broadening ·
ps laser pulses · fs laser pulses · White light continuum · Self-steepening ·
Ionizations · n2 response times from electronics clouds · Molecular
redistribution · Rotational and vibrational response times

1.1 Introduction

Self-phase modulation refers to the phenomenon in which a laser beam propagating
in a medium interacts with the medium and imposes a phase modulation on itself.
It is one of those very fascinating effects discovered in the early days of nonlinear
optics (Bloembergen & Lallemand, 1966; Brewer, 1967; Cheung et al., 1968; Jones
& Stoicheff, 1964; Lallemand, 1996; Shimizu, 1967; Stoicheff, 1963). The physical
origin of the phenomenon lies in the fact that the strong field of a laser beam
is capable of inducing an appreciable intensity-dependent refractive index change
in the medium. The medium then reacts back and inflicts a phase change on the
incoming wave, resulting in self-phase modulation (SPM). Since a laser beam has a
finite cross section, and hence a transverse intensity profile, SPM on the beam should
have a transverse spatial dependence, equivalent to a distortion of the wave front.
Consequently, the beam will appear to have self-diffracted. Such a self-diffraction
action, resulting from SPM in space, is responsible for the well-known nonlinear

Y. R. Shen (�) · G.-Z. Yang
Department of Physics, University of California, Berkeley, CA, USA
e-mail: yrshen@berkeley.edu
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2 Y. R. Shen and G.-Z. Yang

optical phenomena of self-focusing and self-defocusing (Marburger, 1975; Shen,
1975). It can give rise to a multiple ring structure in the diffracted beam if the SPM
is sufficiently strong (Durbin et al., 1981; Santamato & Shen, 1984). In the case of
a pulsed laser input, the temporal variation of the laser intensity leads to an SPM in
time. Since the time derivative of the phase of a wave is simply the angular frequency
of the wave, SPM also appears as a frequency modulation. Thus, the output beam
appears with a self-induced spectral broadening (Cheung et al., 1968; Gustafson et
al., 1969; Shimizu, 1967).

In this chapter, we are concerned mainly with SPM that leads to spectral
broadening (Bloembergen & Lallemand, 1966; Brewer, 1967; Cheung et al., 1968;
Jones & Stoicheff, 1964; Lallemand, 1996; Shimizu, 1967; Stoicheff, 1963). For
large spectral broadening, we need a strong SPM in time (i.e., a large time
derivative in the phase change). This obviously favors the use of short laser pulses.
Consider, for example, a phase change of 6π occurring in 10−12 s. Such a phase
modulation would yield a spectral broadening of ∼100 cm−1. In practice, with
sufficiently intense femtosecond laser pulses, a spectral broadening of 20,000 cm−1

is readily achievable by SPM in a condensed medium, which is essentially a
white continuum (Alfano & Shapiro, 1970). The pulse duration of any frequency
component (uncertainty limited) in the continuum is not very different from that of
the input pulse (Topp & Rentzepis, 1971). This spectrally superbroadened output
from SPM therefore provides a much needed light source in ultrafast spectroscopic
studies—tunable femtosecond light pulses (Alfano & Shapiro, 1971; Busch et al.,
1973). If the SPM and hence the frequency sweep in time on a laser pulse are known,
then it is possible to send the pulse through a properly designed dispersive delay
system to compensate the phase modulation and generate a compressed pulse with
little phase modulation (Treacy, 1968; Treacy, 1969a, b). Such a scheme has been
employed to produce the shortest light pulses ever known (Fork et al., 1987; Ippen
& Shank, 1975; Nakatsuka et al., 1981; Nakatsuka & Grischkowsky, 1981; Nikolaus
& Grischkowsky, 1983a, b).

Self-phase modulation was first proposed by Shimizu (1967) to explain the
observed spectrally broadened output from self-focusing of a Q-switched laser pulse
in liquids with large optical Kerr constants (Bloembergen & Lallemand, 1966;
Brewer, 1967; Cheung et al., 1968; Jones & Stoicheff, 1964; Lallemand, 1996;
Shimizu, 1967; Stoicheff, 1963). In this case, the spectral broadening is generally
of the order of a hundred reciprocal centimeters. Alfano and Shapiro (1970) showed
that with picosecond laser pulses, it is possible to generate by SPM a spectrally
broadened output extending over 10,000 cm−1 in almost any transparent condensed
medium. Self-focusing is believed to have played an important role in the SPM
process in the latter case. In order to study the pure SPM process, one would like
to keep the beam cross section constant over the entire propagation distance in the
medium. This can be achieved in an optical fiber since the beam cross section of
a guided wave should be constant and the self-focusing effect is often negligible.
Stolen and Lin (1978) found that indeed the observed spectral broadening of a
laser pulse propagating through a long fiber can be well explained by the simple
SPM theory. Utilizing a well-defined SPM from an optical fiber, Grischkowsky
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and coworkers were then able to design a pulse compression system that could
compress a laser pulse to a few hundredths of its original width (Nakatsuka et
al., 1981; Nakatsuka & Grischkowsky, 1981; Nikolaus & Grischkowsky, 1983a, b).
With femtosecond laser pulses, a strong SPM on the pulses could be generated by
simply passing the pulses through a thin film. In this case, the beam cross section
is practically unchanged throughout the film, and one could again expect a pure
SPM process. Fork et al. (1983) observed the generation of a white continuum by
focusing an 80-fs pulse to an intensity of ∼1014 W/cm2 on a 500-μm ethylene
glycol film. Their results can be understood by SPM along with the self-steepening
effect (Manassah et al., 1985, 1986; Yang & Shen, 1984).

Among other experiments, Corkum et al. (1985) demonstrated that SPM and
spectral broadening can also occur in a medium with infrared laser pulses. More
recently, Corkum et al. (1986) and Glownia et al. (1986) have independently shown
that with femtosecond pulses it is even possible to generate a white continuum in
gas media.

The phase modulation induced by one laser pulse can also be transferred to
another pulse at a different wavelength via the induced refractive index change
in a medium. A number of such experiments have been carried out by Alfano
et al. (1986, 1987). Quantitative experiments on spectral superbroadening are
generally difficult. Self-focusing often complicates the observation. Even without
self-focusing, quantitative measurements of a spectrum that is generated via a
nonlinear effect by a high-power laser pulse and extends from infrared to ultraviolet
are not easy. Laser fluctuations could lead to large variations in the output.

The simple theory of SPM considering only the lower-order effect is quite
straightforward (Gustafson et al., 1969; Shimizu, 1967). Even the more rigorous
theory including the higher-order contribution is not difficult to grasp as long as
the dispersive effect can be neglected (Manassah et al., 1985, 1986; Yang & Shen,
1984). Dispersion in the material response, however, could be important in SPM,
and resonances in the medium would introduce pronounced resonant structure in the
broadened spectrum. The SPM theory with dispersion is generally very complex;
one often needs to resort to a numerical solution (Fisher et al., 1983; Fisher &
Bischel, 1975). It is possible to describe the spectral broadening phenomenon as
resulting from a parametric wave mixing process (in the pump depletion limit)
(Bloembergen & Lallemand, 1966; Lallemand, 1996; Penzkofer, 1974; Penzkofer
et al., 1973, 1975). In fact, in the studies of spectral broadening with femtosecond
pulses, four-wave parametric generation of new frequency components in the phase-
matched directions away from the main beam can be observed together with the
spectrally broadened main beam. Unfortunately, a quantitative estimate of spectral
broadening due to the parametric process is not easy. In the presence of self-
focusing, more complication arises. Intermixing of SPM in space and SPM in time
makes even numerical solution very difficult to manage, especially since a complete
quantitative description of self-focusing is not yet available. No such attempt has
ever been reported. Therefore, at present, we can only be satisfied with a qualitative,
or at most a semiquantitative, description of the phenomenon (Marburger, 1975;
Shen, 1975).
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This chapter reviews the theory of SPM and associated spectral broadening.
In the following section, we first discuss briefly the various physical mechanisms
that can give rise to laser-induced refractive index changes responsible for SPM.
Then in Sect. 1.3, we present the simple physical picture and theory of SPM
and the associated spectral broadening. SPM in space is considered only briefly.
Section 1.4 deals with a more rigorous theory of SPM that takes into account
the higher-order effects of the induced refractive index change. Finally, in Sect.
1.5, a qualitative picture of how self-focusing can influence and enhance SPM,
and spectral broadening is presented. Some semiquantitative estimates of the
spectral broadening are given and compared with experiments, including the recent
observations of supercontinuum generation in gases.

1.2 Optical-Field-Induced Refractive Indices

The material response to an applied laser field is often nonlinear. An explicit
expression for the response is not readily available in general. Unless specified
otherwise, we consider here only the case where the perturbative expansion in terms
of the applied field is valid and the nonlocal response can be neglected. We can then
express the induced polarization in a medium as (Shen, 1984)

P(t) = P(1)(t)+ P(2)(t)+ P(3)(t)+ · · · ,
P(1)(t) = ∫ χ(1) (t − t ′

) · E (t ′) dt ′
= ∫ χ(1) (ω) · E (ω) dω,

P(n)(t) = ∫ χ(n) (t − t1, . . . , t − tn) : E (t1) . . .E (tn) dt1 . . . dtn
= ∫ χ(n) (ω = ω1 + ω2 + · · · + ω) : E (ω1) . . .E (ωn) dω1 . . . dωn,

(1.1)

where the applied field is

E(t) =
∫

E (ω) dω with E (ω) ∝ exp (−iωt) (1.2)

and the nth-order susceptibility is

χ(n) (t − t1, . . . , t − tn) = ∫ χ(n) (ω = ω1 + · · · + ωn) exp
[
iω1 (t − t1)

+ · · · + iωn (t − tn)
]
dω1 . . . dωn.

(1.3)

We note that, strictly speaking, only for a set of monochromatic applied fields
can we write
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P(n) = χ(n) (ω = ω1 + · · · + ωn) : E (ω1) . . . E (ωn) . (1.4)

In the case of instantaneous response (corresponding to a dispersionless
medium), we have

P(n) = χ(n) : [E(t)]n. (1.5)

Here, we are interested in the third-order nonlinearity that gives rise to the
induced refractive index change. We consider only the self-induced refractive index
change; extension to the cross-field-induced change should be straightforward.
Thus, we assume a pulsed quasi-monochromatic field Ew(t) = E (t) exp (−iωt).
The third-order nonlinear polarization in a medium, in general, takes the form

P(3)ω (t) =
∫
�χ

(
t − t ′

) · Eω
(
t ′
)
dt ′ (1.6)

with �χ
(
t − t ′

) = ∫
χ(3)

(
t − t ′, t − t ′′, t − t ′′′

) : Eω
(
t ′′
)
E∗
ω

(
t ′′′
)
dt ′′dt ′′′. If the

optical field is sufficiently far from resonances that the transverse excitations are all
virtual and can be considered as instantaneous, we can write

P(3)ω (t) = �χ(t) · Eω(t),
�χ(t) = ∫ χ(3) (t − t ′

) : ∣∣Eω
(
t ′
)∣∣2dt ′.

(1.7)

In the dispersionless limit, the latter becomes

�χ(t) = χ(3) : |Eω(t)|2. (1.8)

Equation (1.8) is a good approximation when the dispersion of �χ is negligible
within the bandwidth of the field. The optical-field-induced refractive index can be
defined as

�n = (2π/n0)�χ, (1.9)

where n0 is the average linear refractive index of the medium. With �n ≡ n2|Eω |2,
we have n2 = (2π /n0)χ (3).

A number of physical mechanisms can give rise to�χ or�n (Shen, 1966). They
have very different response times and different degrees of importance in different
media. We discuss them separately in the following.
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1.2.1 Electronic Mechanism

Classically, one can imagine that an applied optical field can distort the electronic
distribution in a medium and hence induce a refractive index change. Quantum
mechanically, the field can mix the electronic wave functions, shift the energy levels,
and redistribute the population; all of these can contribute to the induced refractive
index change. For a typical transparent liquid or solid, n2 falls in the range between
10−13 and 10−15 esu. For gases at 1 atm pressure, n2 ∼ 10−16 to 10−18 esu far away
from resonances. The response time is of the order of the inverse bandwidth of
the major absorption band (∼10−14 to 10−15 s in condensed media) except for the
population redistribution part. As the optical frequency approaches an absorption
band, n2 is resonantly enhanced. In particular, when the population redistribution
due to resonant excitation is significant, the enhancement of n2 can be very large,
but the time response will then be dominated by the relaxation of the population
redistribution. In a strong laser field, saturation in population redistribution and
multiphoton resonant excitations can become important. The perturbative expansion
in Eq. (1.1) may then cease to be valid. For our discussion of SPM in this chapter,
we shall assume that the laser beam is deep in the transparent region, and therefore,
all these electronic resonance effects on the induced refractive index are negligible.

1.2.2 Vibrational Contribution

The optical field can also mix the vibrational wave functions, shift the vibrational
levels, and redistribute the populations in the vibrational levels. The corresponding
induced refractive index change �n is, however, many orders (∼5) of magnitude
smaller than that from the electronic contribution because of the much weaker
vibrational transitions. Therefore, the vibrational contribution to �n is important
only for infrared laser beams close to vibrational resonances. For our discussion of
SPM, we shall not consider such cases.

If the laser pulse is very short (10 f. corresponding to a bandwidth of 500 cm−1),
the vibrational contribution to�n can also come in via Raman excitations of modes
in the few hundred cm−1 range. The Raman transitions are also much weaker than
the two-photon electronic transitions, so their contributions to the self-induced �n
are usually not important for the discussion of SPM unless femtosecond pulses are
used.

1.2.3 Rotation, Libration, and Reorientation of Molecules

Raman excitations of molecular rotations can, however, contribute effectively to�n.
This is because the rotational frequencies of molecules are usually in the few cm−1
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region except for the smaller molecules. Thus, even with a monochromatic field, one
can visualize a Raman process (in which absorption and emission are at the same
frequency ω) that is nearly resonant. (The difference frequency of absorption and
emission is zero, but it is only a few cm−1 away from the rotational frequencies.) In
condensed media, the rotational motion of molecules is, however, strongly impeded
by the presence of neighboring molecules. Instead of simple rotations, the molecules
may now librate in a potential well set up by the neighboring molecules. The
librational frequencies determined by the potential well are often in the range of
a few tens of cm−1. The modes are usually heavily damped. Like the rotational
modes, they can also contribute effectively to �n via the Raman process.

Molecules can also be reoriented by an optical field against rotational diffusion.
This can be treated as an overdamped librational motion driven by the optical field.
More explicitly, molecular reorientation arises because the field induces a dipole
on each molecule and the molecules must then reorient themselves to minimize the
energy of the system in the new environment.

All the above mechanisms involving rotations of molecules can contribute
appreciably to �n if the molecules are highly anisotropic. Typically, in liquids,
n 2 from such mechanisms falls in the range between 10−13 and 10−11 esu, with a
response time around 10−11 s for molecular reorientation and ∼10−13 s for libration.
In liquid crystals, because of the correlated molecular motion, n2 can be much larger,
approaching 0.1 to 1, but the response time is much longer, of the order of 1 s. The
rotational motion is usually frozen in solids, and therefore, its contribution to �n in
solids can be neglected.

1.2.4 Electrostriction, Molecular Redistribution,
and Molecular Collisions

It is well known that the application of a dc or optical field to a local region in a
medium will increase the density of the medium in that region. This is because the
molecules in the medium must squeeze closer together to minimize the free energy
of the system in the new environment. The effect is known as electrostriction. The
induced density variation �ρ obeys the driven acoustic wave equation, and from
�n = (∂n/∂ρ)�ρ, the induced refractive index change can be deduced. For liquids,
we normally have n2 ∼ 10−11 esu with a response time of the order of 100 ns across
a transverse beam dimension of ∼1 mm.

Molecules will also locally rearrange themselves in a field to minimize the
energy of induced dipole–induced dipole interaction between molecules in the
system. Whereas electrostriction yields an isotropic �n, this molecular redis-
tribution mechanism will lead to an anisotropic �n. Molecular correlation and
collisions could also affect molecular redistribution. A rigorous theory of molecular
redistribution is therefore extremely difficult (Hellwarth, 1970). Experimentally,
molecular redistribution is responsible for the anisotropic �n observed in liquids
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composed of nearly spherical molecules or atoms in cases where the electronic,
electrostrictive, and rotational contributions should all be negligible. It yields an
n2 of the order of 10−13 esu with a response time in the subpicosecond range. In
solids, the molecular motion is more or less frozen, so the contribution of molecular
redistribution to �n is not significant.

1.2.5 Other Mechanisms

A number of other possible mechanisms can contribute to�n. We have, for instance,
laser heating, which increases the temperature of a medium and hence its refractive
index; photorefraction, which comes from excitation and redistribution of charged
carriers in a medium; and induced concentration variation in a mixture.

We conclude this section by noting that there is an intimate connection between
third-order nonlinearities and light scattering (Hellwarth, 1977): Each physical
mechanism that contributes to �n (except the electronic mechanism) is also
responsible for a certain type of light scattering. The third-order susceptibility from
a given mechanism is directly proportional to the scattering cross section related to
the same mechanism, and the response time is inversely proportional to the linewidth
of the scattering mode. Thus from the low-frequency light scattering spectrum,
one can predict the value of n2 for the induced refractive index. For example,
in most liquids, light scattering shows a Rayleigh wing spectrum with a broad
background extending to a few tens of cm−1. This broad background is believed
to arise from molecular libration, redistribution, and collisions (Fabellinski, 1967),
but the details have not yet been resolved. For our semiquantitative prediction of
n2 and the response time, however, we do not really need to know the details if the
Rayleigh wing spectrum of the medium is available. A broad and strong Rayleigh
wing spectrum is expected to yield a large n2 with a fast response.

In Table 1.1, we summarize the results of our discussion of the various physical
mechanisms contributing to �n. It is seen that in nonabsorbing liquid, where all
the mechanisms could operate, electrostriction and molecular reorientation may
dominate if the laser pulses are longer than 100 ns; molecular reorientation,
redistribution, and libration may dominate for pulses shorter than 100 ns and longer
than 1 ps; molecular redistribution and libration and electronic contribution may
dominate for femtosecond pulses. In transparent solids, usually only electrostriction
and electronic contribution are important. Then for short pulses, the latter is the only
mechanism contributing to �n.
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Table 1.1 Mechanisms for Kerr n2 and response times

Physical mechanism
Magnitude of third-order
nonlinearity n2 (esu) Response time τ (s)

Electronic contribution 10−15–10−13 10−14–10−15

Molecular reorientation 10−13–10−11 ∼10−11

Molecular libration and redistribution ∼10−13 ∼10−13

Electrostriction ∼10−11 ∼10–16

1.3 Simple Theory of Self-Phase Modulation and Spectral
Broadening

For our discussion of SPM of light, let us first consider the case where the
propagation of a laser pulse in an isotropic medium can be described by the wave
equation of a plane wave:

(
∂2

∂z2 − n2
0

c2

∂2

∂t2

)

E = 4π

c2

∂2

∂t2
P (3), (1.10)

where

E = E (z, t) exp (ik0z− iω0t) ,

P (3) = χ(3)|E|2E,

and n0 is the linear refractive index of the medium. In the simple theory of SPM
(Cheung et al., 1968; Gustafson et al., 1969; Shimizu, 1967), we use the usual
slowly varying amplitude approximation by neglecting the ∂2E /∂t2 term on the left
and keeping only the (4π /c2)χ (3)|E |2E term on the right of Eq. (1.10), which then
becomes

(
∂

∂z
+ n0

c

∂

∂t

)

E = − 4πω2
0

i2k0c2χ
(3)|E |2E . (1.11)

The approximation here also assumes an instantaneous response of χ (3). Letting
z′ ≡ z + ct/n0 and E = |E | exp (iφ), we obtain from the above equation

∂|E |
∂z′ = 0,

∂φ
∂z′ = 2πω2

0
c2k0

χ(3)|E |2. (1.12)

They yield immediately the solution

|E | = |E(t)| , (1.13a)
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φ (z, t) = φ0 + 2πω2
0

c2k0
χ(3)|E(t)|2z. (1.13b)

Equation (1.13a) implies that the laser pulse propagates in the medium without any
distortion of the pulse shape, while Eq. (1.13b) shows that the induced phase change
�φ(t) = φ(z, t) − φ0 is simply the additional phase shift experienced by the wave
in its propagation from 0 to z due to the presence of the induced refractive index
Δn = (2π /n0)χ (3)|E |2, namely �φ = (ω/c)

∫ z
0�n dz. Since the frequency of

the wave is ω = ω0(∂�φ/∂t), the phase modulation �φ(t) leads to a frequency
modulation

�ω(t) = −∂ (�φ) /∂t
= − 2πω2

0
c2k0

χ(3)
∂|E |2
∂t
z.

(1.14)

The spectrum of the self-phase-modulated field is, therefore, expected to be
broadened. It can be calculated from the Fourier transformation

|E (ω)|2 =
∣
∣
∣
∣

1

2π

∫ ∞

−∞
E(t)e−iω0t+iωt dt

∣
∣
∣
∣

2

. (1.15)

An example is shown in Fig. 1.1. We assume here a 4.5-ps full width at half-
maximum (FWHM) Gaussian laser pulse propagating in a nonlinear medium that
yields an SPM output with a maximum phase modulation of �φmax � 72π rad.
The spectrum of the output shows a broadening of several hundred cm−1 with
a quasiperiodic oscillation. It is symmetric with respect to the incoming laser
frequency because the SPM pulse is symmetric. The leading half of the �φ pulse
is responsible for the Stokes broadening and the lagging half for the anti-Stokes
broadening. The structure of the spectrum can be understood roughly as follows.
As shown in Fig. 1.1, the �φ curve following the laser pulse takes on a bell
shape. For each point on such a curve, one can always find another point with the
same slope, except, of course, the inflection points. Since ∂φ/∂t = −ω, these two
points describe radiated waves of the same frequency but different phases. These
two waves will interfere with each other. They interfere constructively if the phase
difference �φ12 is an integer of 2π and destructively if �φ12 is an odd integer of
π . Such interference then gives rise to the peaks and valleys in the spectrum. The
inflection points that have the largest slope on the curve naturally lead to the two
outermost peaks with |ωmax| ∼ |∂φ/∂t|max. To find how many peaks we should
expect in the spectrum, we need only to know φmax, as the number of pairs of
constructive and destructive interferences is simply N ∼ φmax/2π on each side of
the spectrum. The broadened spectrum has Stokes–anti-Stokes symmetry because
�φ(t) is directly proportional to |E(t)|2 and is a symmetric pulse.

With the above qualitative picture in mind, we can now generalize our discussion
of SPM somewhat. The response of the medium to the laser pulse is generally not
instantaneous. One therefore expects
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Fig. 1.1 Theoretical power spectrum obtained by assuming an instantaneous response of �n to
the intensity variation |E(t)|2, so that the phase modulation�φ(t) is proportional to |E(t)|2. (a)�φ
versus t and (b) power spectrum of the phase-modulated pulse

�φ (z, t) = (ω/c)
∫ z

0�n (z, t) dz,

�n (z, t) = ∫ z−∞n2
(
z, t − t ′

) ∣∣E
(
z, t ′
)∣∣2dt ′.

(1.16)

Then, even if |E(t)|2 is symmetric, �φ(t) is asymmetric and is no longer
proportional to |E(t)|2. The consequence is a Stokes–anti-Stokes asymmetry. An
example is given in Fig. 1.2. Because of the finite response time of the medium,
the leading part of the �φ(t) curve always sees a larger portion of the intensity
pulse |E(t)|2, and therefore, the Stokes side of the spectrum is always stronger.
This Stokes–anti-Stokes asymmetry can be drastic if the response time becomes
comparable to or smaller than the laser pulse width.

In the more rigorous theory, one should also expect a distortion of the pulse shape
as the pulse propagates on in the nonlinear medium. Self-steepening of the pulse,
for example, is possible and may also affect the spectral broadening (DeMartini
et al., 1967; Gustafson et al., 1969; see Chap. 6). However, the above qualitative
discussion still applies since the�φ(t) curve should still take on an asymmetric bell
shape in general.

The experimental situation is usually not as ideal as the simple theory describes.
The laser beam has a finite cross section and will diffract. The transverse intensity
variation also leads to a �n(r) that varies in the transverse directions. This causes
self-focusing of the beam and complicates the simultaneously occurring SPM of the
beam (Marburger, 1975; Shen, 1975). Moreover, stimulated light scattering could
also occur simultaneously in the medium, in most cases initiated by self-focusing
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Fig. 1.2 Theoretical power spectrum obtained by assuming a transient response of �n to the
intensity variation |E(t)|2 so that�φ(t) is no longer proportional to |E(t)|2. (a)�φ versus t and (b)
power spectrum of the phase-modulated pulse

(Marburger, 1975; Shen, 1975). All these make the analysis of SPM extremely
difficult.

One experimental case is, however, close to ideal, namely SPM of a laser
pulse in an optical fiber. The transverse beam profile of a guided wave remains
unchanged along the fiber. As long as the laser intensity is not too strong, self-
focusing and stimulated scattering of light in the fiber can be neglected. For a
sufficiently short pulse, the nonlinearity of the fiber is dominated by the electronic
contribution and therefore has a nearly instantaneous response. Then if the pulse
is not too short and the spectral broadening is not excessive, the slowly varying
amplitude approximation is valid and ∂2 P(3)/∂t2 in the wave equation can be well
approximated by −ω2

0P
(3). The only modification of the simple theory of SPM

we have discussed is to take into account the fact that we now have a wave in a
waveguide with a confined transverse dimension instead of an infinite plane wave
in an open space. Thus, the quantitative analysis can easily be worked out. Indeed,
Stolen and Lin (1978) found excellent agreement between theory and experiment.

The above discussion of SPM in time can also be used to describe SPM in space.
As we already mentioned, the transverse intensity variation of a laser beam can
induce a spatial variation of�n in the transverse directions. Let us consider here, for
simplicity, a continuous-wave (cw) laser beam with a Gaussian transverse profile.
The phase increment �φ(r, z) varying with the transverse coordinate r is given by

�φ (r, z) = (ω/c)�n(r)z. (1.17)
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Fig. 1.3 Diffraction ring
pattern arising from spatial
self-phase modulation of a
CW Ar+ laser beam passing
through a 300-μm nematic
liquid crystal film. (After
Durbin et al., 1981;
Santamato & Shen, 1984)

This leads to a distortion of the wave front. Since the beam energy should propagate
along the ray path perpendicular to the wave front, this distortion of the wave
front would cause the beam to self-focus. If the propagation length is sufficiently
long, the beam will actually self-focus and drastically modify the beam cross
section. However, if the length of the medium is much shorter than the self-focusing
distance, then the self-focusing effect in the medium can be neglected, and we are
left with only the SPM effect on the beam. The results of Fig. 1.1 can describe the
spatial SPM equally well if we simply replace t by r and ω by k⊥, where k⊥ is the
transverse component of the wave vector of the beam. We realize that k⊥ defines
the deflection angle θ of a beam by the relation k⊥ = (ωn0/c)sin θ . Therefore, the
quasiperiodic spectrum in the k⊥ space actually corresponds to a diffraction pattern
with multiple bright and dark rings. This has indeed been observed experimentally
(Durbin et al., 1981; Santamato & Shen, 1984). An example is shown in Fig. 1.3.
Self-focusing or diffraction in the medium can modify the spatial SPM through its
modification of the beam profile. This is analogous to the self-steepening effect on
the temporal SPM through its modification of the pulse shape.

We now return to the discussion of temporal SPM and spectral broadening. In the
next section, we consider the case where the incoming laser pulse is very short and
spectral broadening is very extensive so that the approximations used in the simple
theory of SPM need improvement.
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1.4 More Rigorous Theory of Self-Phase Modulation
and Spectral Superbroadening

Another experimental case of SPM that could avoid complications arising from
self-focusing, stimulated scattering, or other nonlinear optical effects involves the
propagation of an ultrashort laser pulse through a thin nonlinear medium. In this
case, the medium is thin enough so that the self-focusing effect on SPM in the
medium can be ignored. The pulse is short enough so that the transient stimulated
light-scattering processes are effectively suppressed. Yet, the pulse intensity can
still be so high as to induce a very strong SPM, but not high enough to result
in appreciable multiphoton absorption or optical breakdown. This is the case first
studied by Fork et al. (1987). Using an 80-fs pulse at 627 nm focused to an intensity
of 1013–1014 W/cm on a 500-μm film of ethylene glycol, they observed in the
output a huge spectral broadening that appears as a white continuum. Unlike the
spectral broadening discussed in the previous section, the present case shows a
Stokes–anti-Stokes asymmetry that emphasizes the anti-Stokes side instead. Such
a spectral superbroadening was observed earlier by Alfano and Shapiro (1970) in
much longer media with picosecond pulses, but SPM in those cases was definitely
affected by self-focusing. Obviously, the results of Fork et al. cannot be explained
by the simple theory of SPM. We must resort to a more rigorous analysis.

We first notice that the self-steepening effect on the pulse is not included in the
simple theory. This means that the approximations neglecting the ∂2E /∂t2 term and
the terms involving the time derivatives of |P(3)| in the wave equation are not quite
appropriate. They become worse for shorter pulses. In the more rigorous analysis
of SPM, we must improve on these approximations. Let us now go back to Eq.
(1.10). Without any approximation, we can transform it into an equation for the
field amplitude (Yang & Shen, 1984):

(
∂
∂z

+ n0
c
∂
∂t

)
E + 1

i2k0

(
∂2

∂z2 − n2
0
c2

∂2

∂t2

)

E

= − 4πω2
0

i2k0c
2χ

(3)|E |2E + 2π
ik0c

2

(
−i2ω0

∂
∂t

+ ∂2

∂t2

)
χ(3)|E |2E

. (1.18)

The last term on both sides of the equation has been neglected in the simple
theory of SPM. By defining the differential operators D± ≡ (∂/∂z) ± (n0/c)(∂/∂t),
Eq. (1.18) can be written as

D+E + 1
i2k0

D−D+E = 1
i2k0

�,

� = − 4πω2
0

c2

[

1 + 2i
ω0

∂
∂t

− 1
ω2

0

∂2

∂t2

]

χ(3)|E |2E . (1.19)
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Since D− = −(2n0/c)(∂/∂t) + D+, we have from Eq. (1.19)

D+E = 1
i2k0

[(
− 2n0

c
∂
∂t

+D+
)
D+E +�

]

= 1
i2k0

∞∑
m=0

[(
− 2n0

c
∂
∂t

+D+
)
/i2k0

]m
�.

(1.20)

It is then simply a question of how many terms in the power series expansion we
need to include to better describe the SPM.

The zeroth-order approximation corresponds to neglecting all derivatives of
χ (3)|E |2E any yields

D+E = −
(

2πω2
0/ic

2k0

)
χ(3)|E |2E, (1.21)

which is identical to Eq. (1.11) used as the basis for the simple theory of SPM. We
recognize that under this lowest-order approximation,

D+
(
χ(3)|E |2E) ∝ (χ(3)|E |2)2E


 χ(3)|E |2E if χ(3)|E |2 
 1.
(1.22)

Therefore, we can use D+ as an expansion parameter in the higher-order calcula-
tions. For the first-order approximation, we neglect terms involvingDm+

(
χ(3)|E |2E)

with m ≥ 1 in Eq. (1.20) and obtain

D+E = 1
i2k0

∞∑
m=0

[(
1
iω0

∂
∂t

)m
�
]

=
(

1 + i
ω0

∂
∂t

) [

− 2πω2
0

ik0c
χ(3)|E |2E

]

.

(1.23)

The calculation here has in a sense used χ (3)|E |2 as the expansion parameter.
In the above first-order approximation, we have kept the (χ (3)|E |2)nE terms with
n ≤ 1 including all their time derivatives. In ordinary cases, this is a very good
approximation because usually χ (3)|E |2 
 1, and therefore, the higher-order terms
involving (χ (3)|E |2)nE with n ≥ 2 are not very significant. For example, in the
ultrashort pulse case, we have χ (3) ∼ 10−14 esu (or n2 ∼ 10−13 esu) for a
condensed medium; even if the laser pulse intensity is I ∼ 1014 W/cm2, we find
χ (3)|E |2~4 × 103 
 1. For larger χ (3)|E |2, one may need to include higher-order
terms in the calculations. The next-order correction includes the D+(χ (3)|E |2E )
term and all its time derivatives. They yield additional terms proportional to
(χ (3)|E |2)2E in the wave equation. If χ (3)|E |2 � 1, then the approach with series
expansion will not be useful, and we have to go back to the original nonlinear wave
Eq. (1.19).

In the following discussion, we consider only cases with χ (3)|E |2 
 1. We are
therefore interested in the solution of Eq. (1.23), which, with n2 = (2πω0/k0 c)χ (3),
takes the form
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∂E
∂z

+ 1

c

∂

∂t

(
n0E + n2|E |2

)
= i

n2ω0

c
|E |2E . (1.24)

For simplicity, we now neglect the dispersion of the response of the medium.
This, as we mentioned earlier, is equivalent to assuming an instantaneous response.
Insertion of E = |E | exp (iφ) into Eq. (1.24) yields two separate equations for the
amplitude and phase:

[
∂

∂z
+ n0

c

(

1 + 3n2

n0
|E |2
)
∂

∂t

]

|E | = 0, (1.25a)

[
∂

∂z
+ n0

c

(

1 + n2

n0
|E |2
)
∂

∂t

]

φ = n2ω0

c
|E |2. (1.25b)

In comparison with Eq. (1.12) for the simple theory of SPM, the only difference
is the addition of the n2|E |2(=Δn) terms on the left-hand sides of Eq. (1.25). Its
effect is obvious in causing a pulse shape deformation during the pulse propagation.
With �n > 0, we expect a pulse steepening in the lagging edge. This is because the
peak of the pulse then propagates at a lower velocity than either the leading or the
lagging part of the pulse (DeMartini et al., 1967).

Let us first neglect the self-steepening effect on the amplitude pulse. Clearly, self-
steepening in the lagging part of the φ pulse should lead to a spectral broadening
with Stokes–anti-Stokes asymmetry emphasizing the anti-Stokes side, because it
is the lagging part of the phase modulation that gives rise to the broadening on
the anti-Stokes side. To be more quantitative, we assume an input laser pulse with
|E (0, t)|2 = A2/ cosh (t/τ ), whose shape remains unchanged in propagating through
the medium so that |E (z, t)|2 = A2/ cosh [(t − n0/c)/τ ]. The solution of Eq. (1.25b)
can then be found analytically as

φ = ω0τ
{
x − sinh−1

[
sinh x − (n2/cτ)A

2z
]}

(1.26)

with x = [t − (n0/c)z]/τ . The corresponding frequency modulation is given by

�ω/ω0 =
[
1 +

(
Q2 − 2Q sinh x

)
/ cosh x

]−1/2 − 1. (1.27)

Here, we have defined

Q = n2A
2z/cτ (1.28)

as a characteristic parameter for spectral broadening. For Q 
 1, we have

�ω/ω0 � −Q sinh x/cosh2x, (1.29)
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Fig. 1.4 Maximum Stokes (�ω− < 0) and anti-Stokes (�ω+ > 0) shifts calculated with different
models: simple theory of self-phase modulation (− − –); more rigorous theory without the self-
steepening effect on the intensity pulse (−·–); more rigorous theory with the self-steepening effect
(—). (After Yang & Shen, 1984)

which is identical to the result one would find from the simple theory of SPM. For
Q � 1, we expect spectral superbroadening with appreciable Stokes–anti-Stokes
asymmetry and a maximum anti-Stokes shift �ω+ � ω0. The maximum Stokes
and anti-Stokes shifts, �ω− and �ω+, respectively, can be directly obtained from
Eq. (1.27):

�ω±/ω0 = 1

2

[(
Q2 + 4

)1/2 ± |Q|
]

− 1. (1.30)

This is plotted in Fig. 1.4 in comparison with the result calculated from the simple
theory of SPM. For |Q| 
 1, we have �ω± � ±(1/2)ω0|Q|, and for |Q|  1, we
have �ω+ � ω0|Q| and �ω− � ω0(1/|Q| − 1). It is seen that Stokes broadening is
always limited by |�ω−| < ω0, as it should be.
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Fig. 1.5 Self-steepening
effect on the intensity pulse
during its propagation in a
nonlinear medium at various
values of Q = n2A2zc/τ , with
x = (t − n0z/c)/τ . (After Yang
& Shen, 1984)
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We now include the effect of self-steepening on the amplitude pulse. It can be
shown that with |E (0, t)|2 = A2/ cosh (t/τ ), the solution of Eq. (1.25a) must satisfy
the implicit algebraic equation

|E (z, t)|2 = A2/ cosh
[
x −Q|E (z, t)|2/A2

]
. (1.31)

A simple numerical calculation then allows us to find |E |2 as a function of x for
a given Q. The results are shown in Fig. 1.5. For |Q| � 1, the self-steepening effect
is apparent. Knowing |E (z, t)|2, we can again solve for φ(z, t) from Eq. (1.25b) and
find�ω(z, t) and�ω±. This can be done numerically; the results are also presented
in Fig. 1.4. It is seen that for Q > 1, self-steepening of the pulse amplitude has
increased the spectral broadening on the anti-Stokes side quite significantly. The
additional spectral broadening comes in because the steepening of the amplitude
pulse enhances the steepening of the φ pulse.

The spectral broadening actually results from frequency chirping since
∂φ(t)/∂t = −ω(t). This is shown in Fig. 1.6 for the numerical example discussed
above. As expected, the Stokes and anti-Stokes shifts appear, respectively, in the
leading and lagging parts of the self-steepened pulse. The �ω = 0 point appears at
larger x for larger values of Q because self-steepening shifts the peak of the pulse
to larger x (see Fig. 1.5).
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Fig. 1.6 Frequency shift due
to phase modulation as a
function of x = (t − n0z/c)/τ
at various value of
Q = n2A2zc/τ
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We can compare the calculation with the experiment of Fork et al. In their exper-
iment, the relevant parameters are n2 � 10−13 esu, z = 0.05 cm, I ∼ 1014 W/cm2,
and τ (pulse width) � 8 × 10−14 s. The corresponding value of Q is about 2.3.
They observed a Stokes broadening�ω−/ω0 � −0.6 and an anti-Stokes broadening
�ω+/ω0 � 2.3. Our calculation gives �ω−/ω0 � −0.54 and �ω+/ω0 � 3.5.
Considering the uncertainty in the experimental parameters, we can regard the
agreement between theory and experiment as reasonable.

Manassah et al. (1985, 1986) used the method of multiple scales to solve Eq.
(1.18) (neglecting dispersion). They also took n2|E |2/n0 as the expansion parameter
in their series expansion and therefore necessarily obtained the same results as we
discussed above.1

We have neglected in the above calculation the dispersion of the medium
response. Normal dispersion may also reshape the pulse (Fisher et al., 1983; Fisher
& Bischel, 1975), but in the present case, the length of the medium is so short that
this effect is not likely to be important. Anomalous dispersion with resonances in
χ (3) or n2 could, however, give rise to resonant structure in the broadened spectrum.
The calculation including the dispersion of χ (3) is much more complicated and, in
general, must resort to numerical solution (Fisher et al., 1983; Fisher & Bischel,
1975). In obtaining the time-dependent solution of the wave equation with the third-
order nonlinearity, we have already taken all the four-wave mixing contributions
into account. By adding a noise term with a blackbody spectrum in the nonlinear
wave equation, the four-wave parametric generation process proposed by Penzkofer
et al. (1973, 1975) could also be included in the calculation.

1 A factor of 3 in front of n2 is mistakenly left out in Eq. (1.3a) of Yang and Shen (1984).
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1.5 Self-Focusing and Self-Phase Modulation

For pulsed laser beam propagation in a nonlinear medium, SPM in time and SPM
in space necessarily appear together. SPM in time causes self-steepening of the
pulse, which in turn enhances SPM in time. Similarly, SPM in the transverse beam
profile causes self-focusing of the beam, which in turn enhances the transverse SPM.
If the propagation distance in the medium is sufficiently long, these effects can
build up to a catastrophic stage, namely self-steepening to a shock front and self-
focusing to a spot limited in dimensions only by higher-order nonlinear processes
and diffraction. SPM in time and SPM in space are then tightly coupled and strongly
influenced by each other. In many experiments, the observed strong temporal SPM
and extensive spectral broadening are actually initiated by self-focusing. In such
cases, the input laser pulse is so weak that without self-focusing in the nonlinear
medium, SPM would not be very significant. Self-focusing to a limiting diameter
greatly enhances the beam intensity, and hence SPM can appear several orders of
magnitude stronger. A quantitative description of such cases is unfortunately very
difficult, mainly because the quantitative theory for self-focusing is not yet available.
We must therefore restrict ourselves to a more qualitative discussion of the problem.

1.5.1 Self-Phase Modulation with Quasisteady-State
Self-Focusing

In the early experiments on self-focusing of single-mode nanosecond laser pulses,
it was found that the output of the self-focused light had a spectral broadening of
several hundred cm−1 (Marburger, 1975; Shen, 1975). This was rather surprising
because from the simple theory of SPM, picosecond pulses would be needed to
create such a spectral broadening (Cheung et al., 1968; Gustafson et al., 1969;
Shimizu, 1967). Later, the observation was explained by SPM of light trailing
behind a moving focus (Shen & Loy, 1971; Wong & Shen, 1972). We briefly review
the picture here and then use it to interpret the recently observed SPM and spectral
superbroadening of ultrashort pulses in gases (Corkum et al., 1986; Glownia et al.,
1986).

Figure 1.7 depicts the quasisteady-state self-focusing of a laser pulse leading to a
moving focus along the axis (ẑ) with a U-shaped trajectory described by the equation
(Marburger, 1975; Shen, 1975)

zf (t) = K√
P (tR)− √

P0
, (1.32)

where P0 is the critical power for self-focusing,
√
P (tR) is the laser power at the

retarded time tR = t − zf n0/c, and K is a constant that can be determined from
experiment. This equation assumes instantaneous response of �n to the applied
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Fig. 1.7 Self-focusing for an
input laser pulse in (a)
leading to the trajectory of a
moving focus in the form of
U curve in (b). The dashed
lines in (b), with slope equal
to the light velocity, depict
how light propagates in the
medium along the z axis at
various times. The shaded
region around the U curve has
appreciably larger �n. Light
traversing the medium along
the dashed lines through the
shaded region should acquire
a phase increment �φ that
varies with time

field, which is a good approximation as long as the response time τ is much shorter
than the laser pulse width. Here, we are interested only in the upper branch of the U
curve, along which the focus has a forward velocity faster than light. Because of the
high laser intensity in the focal spot, the locally induced �n should be appreciable
and should last for a duration not shorter than the relaxation time τ . Thus one can
imagine that the moving focus creates in the medium a channel of �n at least τ
dzf /dt long trailing after the focus. Consider now the defocused light from a local
focal spot. Since it lags behind the moving focus (which travels faster than light),
it experiences the �n dielectric channel created by the focus over a certain distance
and will diffract only weakly. In other words, the defocused light from the focus is
partially trapped in the �n channel. This partial trapping of light in turn helps to
maintain the �n channel and make it last longer. The emission from the focal spot
at the end of the medium then takes the form of an asymmetric pulse (with a pulse
width of the order of a few τ ) with a longer trailing edge.

The above picture is also illustrated in Fig. 1.7. We use the shaded area around
the U curve to denote the region with appreciable �n. The laser input at tA focuses
at A, but defocuses more gradually because of the existing�n channel in front of it.
The partially trapped light then propagates along the axis from A to the end of the
medium at A′, crossing the shaded region with appreciable�n. It therefore acquires
a significant phase increment�φ. From the figure, one may visualize that�φ can be
strongly phase modulated in time, varying from nearly zero to a maximum and back
to zero in a few relaxation times. This could yield appreciable spectral broadening
in the output of the self-focused light.

To be more quantitative, we realize that the light pulse emitted from a focus in the
medium must be asymmetric and must have a pulse width of several τ . The shaded
area in Fig. 1.7 has a somewhat larger width since �n is induced by the focused
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light. Knowing the trajectory of the moving focus, the beam intensity in the focal
region, and how �n responds to the intensity, we can calculate �φ(t) and hence
�ω(t) and the broadened spectrum (Shen & Loy, 1971; Wong & Shen, 1972). As an
example, consider the case of a 1.2-ns laser pulse propagating into a 22.5-cm CS2
cell. The trajectory of the moving focus (focal diameter � 5 μm) is described by
Eq. (1.32) with K = 5.7(kW)1/2-cm and P0 = 8 kW. In this case, �n is dominated
by molecular reorientation; it obeys the dynamic equation

(
∂

∂t
+ 1

τ

)

�n = n2

τ
|E (z, t)|2. (1.33)

For CS2, τ = 2 ps and n2 = 10−11 esu. The phase increment experienced by light
waves traversing the cell along the axis is given by

�φ =
∫ l

0
(ω/c)�n

[
z, t ′ = t − (l − z) n0/c

]
dz, (1.34)

where l is the cell length. (For this illustrative example, we have neglected the
diffraction effect on �φ.) We now simply assume that |E(z, t)|2 in the focal region
resulting from self-focusing has a pulse width of ∼ 3τ and a pulse shape as shown
in Fig. 1.8a. Equations (1.33) and (1.34) then allow us to find �n(z, t) and �φ(t).
Knowing�φ(t) and E(l, t), we can then calculate the spectrum of the output from the
focal spot at the end of the cell, as shown in Fig. 1.8c. The experimentally observed
spectrum has in fact the predicted spectral broadening (Shen & Loy, 1971; Wong
& Shen, 1972), but it often has a strong central peak (Fig. 1.9). This is presumably
because in the calculation we have neglected a significant portion of the beam that
self-focuses from the periphery and experiences little phase modulation. For shorter
input pulses of longer cells, self-focusing of the beam toward the end of the cell is
more gradual; accordingly, the weakly phase-modulated part is less and the central
peak in the spectrum is reduced. We also note that in Figs. 1.8 and 1.9 the anti-
Stokes broadening is much weaker. This is because the negatively phase-modulated
part of the pulse has little intensity, as seen in Fig. 1.8.

Using the picture sketched in Fig. 1.7, we can actually predict the Stokes
broadening with the correct order of magnitude by the following rough estimate.
We approximate the upper branch of the U curve toward the end of the medium by
a straight line with a slope equal to the end velocity of the moving focus. If �n is
the induced refractive index in the shaded area, then the phase modulation of the
emitted light is given by

�φ(t) �
(ω0

c

)(n0

c
− 1

v

)−1∫ t

t0

n
(
l, t ′
)
dt ′, (1.35)

where l is the length of the medium and t0 is the time when�n(l, t) starts to become
appreciable. The extent of Stokes broadening is readily obtained from
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Fig. 1.8 Theoretical power spectrum of a light pulse emitted from the focal region of a moving
focus at the end of a CS2 cell. (a) The intensity pulse; (b)�φ versus t; (c) the power spectrum (see
text for details). (After Shen & Loy, 1971; Wong & Shen, 1972)

�ω− = (∂ �φ/∂t)max � ω0Q (1.36)

with Q = �nmax leff/cT where T ∼ 2τ and leff = T/[(n0/c) − (1/ν)]. For the above
example with CS2, we have �nmax ∼ 10−3, T ∼ 4 ps, leff ∼ 1 cm, and Q ∼ 0.01.
The resultant Stokes broadening should be �ω− ∼ 150 cm−1. The experimentally
observed broadening is about 120 cm−1.

1.5.2 Spectral Superbroadening of Ultrashort Pulses in Gases

The above discussion can be used to explain qualitatively the recently observed
spectral superbroadening of ultrashort pulses in gas media (Corkum et al., 1986;
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Fig. 1.9 (a) Experimentally observed power spectrum of light emitted from the focal region at the
end of a 10-cm CS2 cell; the input pulse has a pulse width of 1.2 ns and a peak power of 27 kW.
(b) Theoretical power spectrum using the moving focus model (After Shen & Loy, 1971; Wong &
Shen, 1972)

Glownia et al., 1986). In those experiments, picosecond or femtosecond laser
pulses with energies of several hundred microjoules were weakly focused into
a high-pressure gas cell. Spectral superbroadening with �ω ∼ 104 cm−1 was
observed. A few examples are shown in Fig. 1.10. Self-focusing was apparently
present in the experiment. We therefore use the above simple model for SPM with
quasisteady-state self-focusing to estimate the spectral broadening (Loy & Shen,
1973), assuming that �n from the electronic contribution in the medium has a
response time τ ∼ 10 fs. In this case, the position of the moving focus is given
by (Marburger, 1975; Shen, 1975)

(
z−1
f (t)− f−1

)−1 = K√
P (tR)− √

P0
(1.37)
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Fig. 1.10 Continuum spectra of self-phase-modulated light from 70-fs pulses in 30-atm xenon
(crosses), 2-ps pulses in 15-atm xenon (circles), and 2-ps pulses in 40-atm nitrogen (squares). The
cell length is 90 cm. (After Corkum et al., 1986)

instead of Eq. (1.32), where f is the focal length of the external focusing lens.
Let us consider, for example, external focusing of a 250-μJ, 100-fs pulse to a
nominally 100-μm focal spot in a 3-atm, 100-cm Xe cell. Self-focusing yields a
smaller focus, assumed to be 50 μm. We then use the values n2 ∼ 10−16 esu,
I ∼ 1014 W/cm2, �nmax ∼ 4 × 10−5, leff ∼ 10 cm, and T ∼ 2τ ∼ 20 fs; we find
Q ∼ 1 and hence �ω− ∼ 104 cm−1. The above estimate is admittedly very crude
because of uncertainties in the experimental parameters, but it does give a spectral
superbroadening in order-of-magnitude agreement with the experiments.

Appreciable anti-Stokes broadening was also observed in the superbroadened
spectrum of the SPM light from a gas medium. This seems to be characteristically
different from what we have concluded from the discussion in the previous
subsection. However, we realize that in the present case the moving focus terminates
at z = f instead of the end of the cell, and the total transmitted light is detected
and spectrally analyzed. Thus, the detected output pulse has essentially the same
intensity envelope as the input pulse if we neglect the self-steepening effect, and the
negatively phase-modulated part (the trailing edge) of the �φ(t) pulse will overlap
with the major part of the intensity pulse. Consequently, the spectral intensity of the
anti-Stokes side should be nearly as strong as that of the Stokes side. The extent of
the anti-Stokes broadening is expected to be somewhat less than that of the Stokes
broadening because of the longer trailing edge of the �φ pulse, unless the self-
steepening effect becomes important.

Self-focusing in a gas medium should be more gradual than in a liquid cell. With
weak external focusing, the focal dimensions resulting from combined external and
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self-focusing may not be very different from those resulting from external focusing
alone. Thus, even with self-focusing, the SPM output from the gas medium may
not have a much larger diffraction angle than the linearly transmitted output, as was
observed in the experiments.

1.5.3 Self-Phase Modulation with Transient Self-Focusing

We have used the picture of a moving focus with a trailing dielectric channel to
describe SPM initiated by quasisteady-state self-focusing. For shorter input pulses,
the velocity of the forward moving focal spot is closer to the light velocity, and
consequently more light is expected to be trapped in the dielectric channel for a
longer distance. In fact, when the pulse width is comparable to or shorter than the
relaxation time τ , the entire self-focusing process becomes transient, and the input
pulse will evolve into a dynamic trapping state (Loy & Shen, 1973).

The dynamic trapping model for transient self-focusing is an extension of the
moving focus model for quasisteady-state self-focusing. Consider the case where
�n is governed by Eq. (1.33) or, more explicitly,

�n (z, ξ) = 1

τ

∫ ξ

−∞
n2
∣
∣E
(
z, ξ ′)∣∣2 exp

[− (ξ − ξ ′) /τ
]
dξ ′, (1.38)

where ξ = t − zn0/c. Because of this transient response of �n, the later part of
the pulse propagating in the medium may see a larger �n than the earlier part.
As a result, different parts of the pulse will propagate in the medium differently,
as sketched in Figure 1.11 (Loy & Shen, 1973). The transient �n makes the very
leading edge of the pulse diffract, the middle part self-focus weakly, and the lagging
part self-focus to a limiting diameter. The result is that in propagating through
the medium, the pulse is first deformed into a horn-shaped pulse and then the
horn-shaped pulse propagates on with only a slight change of the pulse shape
due to diffraction of the front edge. In a long medium, the front-edge diffraction
finally could blow up the deformed pulse. Note that this picture comes in because
in transient self-focusing, both focusing and diffraction are much more gradual,
leading to a long longitudinal focal dimension and hence the rather stable horn-
shaped propagating pulse. Such a stable form of self-focused pulse propagation is
known as dynamic trapping.

Since the various parts of the light pulse see different �n’s along their paths, the
phase increments �φ they acquire are also different. This means phase modulation
and hence spectral broadening. As an approximation, we can assume that the overall
phase modulation is dominated by that of a stable horn-shaped pulse propagating in
the nonlinear medium over a finite length leff. For illustration, let us take an example
in which the horn-shaped pulse can be described by
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Fig. 1.11 Sketch showing self-focusing of an ultrashort pulse in a medium with a transient
response of �n. Different parts (a, b, c, etc.) of the pulse focus and defocus along different ray
paths. The pulse is first deformed into a horn shape and then propagates on without much further
change (After Loy & Shen, 1973)

|E (r, ξ)|2 = A2
0 exp

[
−ξ2t2p − 2r2/r2

0 (ξ)
]

(1.39)

with

r0 (ξ) /a = 1 if ξ ≤ ξ1

= (1 −�) e−(ξ−ξ1)/τ1 +� if ξ1 ≤ ξ ≤ ξ2

= (1 −�) e−(ξ2−ξ1)/τ1 +� if ξ ≥ ξ2,

where ξ = t − zn0/c. We have picosecond pulse propagation in Kerr liquids in mind
and therefore choose tp = 1.25τ , ξ1 = 2.5τ , ξ2 = 2τ , τ 1 = τ ,�= 0.05, and τ = 2 ps
(for CS2). We also choose the pulse intensity as A2

0 = 80 (n2/n0) k
2a2, where k is

the wave vector and the effective pulse propagation distance leff = 0.15 ka 2. From
the three-dimensional wave equation, it can be shown that the phase modulation
obeys the equation

∂ (�φ) /∂z = k (�n/n0)− 2/kr2
0 (ξ) . (1.40)

The second term on the right of the equation is the diffractive contribution to�φ,
which can be appreciable when r0 is small. Knowing |E(r, ξ )|2, we can find �n(z,
ξ ) from Eq. (1.38), and hence �φ(z, ξ ) from Eq. (1.40), and finally the broadened
spectrum from |E(r, ξ )|2, and �φ(z, ξ ) for z = leff, as shown in Figure 1.12.

The main qualitative result of the above calculation is that the spectrum has
the quasiperiodic structure with nearly equal Stokes and anti-Stokes broadening,
although the Stokes side is more intense. This agrees with the experimental
observation (Cubbedu et al., 1971; Cubbedu & Zagara, 1971) and the more
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Fig. 1.12 Theoretical power spectrum obtained by assuming a horn-shaped pulse propagating for
a certain distance in a nonlinear medium without any change in its shape. (a) Normalized intensity
output pulse; (b) �φ versus t; (c) power spectrum of the output (After Loy & Shen, 1973)

detailed numerical calculation of Shimizu and Courtens (1973). The reason is as
follows. The Stokes–anti-Stokes symmetry results from a symmetric �φ(t) pulse
that overlaps well with the intensity pulse. The neck portion of the horn-shaped
pulse with ∂(�φ)/∂t < 0 contributes to the anti-Stokes broadening. As seen in
Eq. (1.40), the time dependence of �φ comes solely from the time dependence in(
�n/n0 − 2/k2r2

0

)
. Without the diffraction term

(−1/k2r2
0

)
, the �φ pulse would

have a longer trailing edge because of the relaxation of �n. With the diffraction
term, the rapid reduction of r0 toward the neck makes the�φ pulse more symmetric.
Thus, it appears that the dynamic trapping model explains fairly well the qualitative
features of SPM and spectral broadening initiated by transient self-focusing. The
broadening is more extensive with more intense input pulses and longer propagation
lengths. In a long medium, dynamic trapping may exist only over a limit section of
the medium. In that case, the spectrally broadened light may seem to have originated
from a source inside the medium. This has also been observed experimentally (Ho
et al., 1987).

1.6 Conclusion

We have seen that the temporal SPM and the concomitant spectral broadening of
light arise because an intense optical field can induce an appreciable refractive
index change �n in a medium. The theory of pure SPM is, in principle, quite
straightforward. If the input pulse intensity is not very strong, the zeroth-order
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approximation taking into account only the direct contribution of �n to the
induced phase change �φ should already give a fairly good description. The
next-order approximation including the self-steepening effect on both �φ and the
amplitude pulse should satisfactorily cover the cases of strong SPM with spectral
superbroadening.

Unfortunately, the temporal SPM is often complicated by the spatial SPM. The
latter can lead to self-focusing, which dramatically alters the intensity distributions
of the laser pulse in space and time and therefore drastically modifies the temporal
SPM. In fact, in most practical cases, self-focusing occurs long before the temporal
SPM becomes appreciable; it is actually self-focusing that increases the beam
intensity in the medium and thus initiates a strong SPM in time. Only by using
an optical waveguide or a very thin nonlinear medium can self-focusing be avoided.
These are then the only experimental cases where a pure temporal SPM has been
realized.

In the pure SPM case, the theoretical difficulty is in the description of �n: it is
not easy, in general, to predict quantitatively the nonlinear response of a medium
from first principles; one must rely on experimental measurements. Quantitative
measurements of �n(t) in the picosecond and femtosecond domains are still rare.
In particular, measurements of �n with femtosecond time resolution are still rather
difficult. The various low-frequency resonances could make the time dependence of
�n very complex. Inclusion of the transient response of �n (or the dispersion of
�n) in the theory complicates the calculation; one may have to resort to numerical
solution of the problem. Experimentally, SPM of laser pulses in optical fibers has
been well studied; SPM of ultrashort pulses in thin nonlinear media is, however, still
not well documented. More careful quantitative measurements are needed in order
to have a more detailed comparison with theory.

With self-focusing, the theory of SPM becomes extremely complex. The main
difficulty lies in the fact that a quantitative theory capable of describing the details
of self-focusing is not yet available. We must then rely on the more qualitative
physical pictures for self-focusing. Therefore, the discussion of the subsequently
induced SPM can be at most semiquantitative. Thus, we find it quite satisfying that
the predicted spectral broadening from such theoretical discussions can give order-
of-magnitude agreement with the experimental observations in a number of very
different cases: nanosecond pulse propagation in liquids to pico- or femtosecond
pulse propagation in gases.

Spectral superbroadening is often observed with the propagation of ultrashort
pulses in condensed media and is apparently initiated by self-focusing. In most
cases, the details of the self-focusing process have not been measured; in some
cases, even the quantitative information on �n is not available. The measurements
on spectral broadening also tend to show strong fluctuations. All these made even
an order-of-magnitude comparison between theory and experiment rather difficult.

A complete theory of SPM with self-focusing requires the solution of a time-
dependent three-dimensional wave equation. With self-focusing modifying the laser
pulse rapidly in both space and time, such a solution, even on the largest computer,
is a formidable task. In our opinion, the best way to tackle the problem is to try
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to simplify the calculation by reasonable approximations derived from the physical
picture that has already been established for self-focusing.
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Chapter 2
Supercontinuum Generation
in Condensed Matter

Q. Z. Wang, P. P. Ho, and Robert R. Alfano

Abstract Self-phase modulation (SPM), induced-phase modulation (IPM), and
cross-phase modulation (XPM) for supercontinuum generation are presented.
Early day experimental measurements of supercontinuum in various materials are
reviewed. Recent developments of supercontinuum generation covering from deep
ultraviolet to far-infrared spectra are summarized in this chapter.

Keywords SPM · XPM · Supercontinuum · Nonlinear index of refraction · n2

2.1 Introduction

Supercontinuum generation, the production of intense ultrafast broadband “white
light” pulses, arises from the propagation of intense picosecond or shorter laser
pulses through condensed or gaseous media. Various processes are responsible for
continuum generation. These are called self-, induced-, and cross-phase modulations
and four-photon parametric generation. Whenever an intense laser pulse propagates
through a medium, it changes the refractive index, which in turn changes the
phase, amplitude, and frequency of the incident laser pulse. A phase change can
cause a frequency sweep within the pulse envelope. This process has been called
self-phase modulation (SPM) (Alfano & Shapiro, 1970a). Nondegenerate four-
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photon parametric generation (FPPG) usually occurs simultaneously with the SPM
process (Alfano & Shapiro, 1970a). Photons at the laser frequency parametrically
generate photons to be emitted at Stokes and anti-Stokes frequencies in an angular
pattern due to the required phase-matching condition. When a coherent vibrational
mode is excited by a laser, stimulated Raman scattering (SRS) occurs. SRS is an
important process that competes and couples with SPM. The interference between
SRS and SPM causes a change in the emission spectrum resulting in stimulated
Raman scattering cross-phase modulation (SRS-XPM) (Gersten et al., 1980). A
process similar to SRS-XPM occurs when an intense laser pulse propagates through
a medium possessing a large second-order χ2 and third-order χ3 susceptibility. Both
second harmonic generation (SHG) and SPM occur and can be coupled together.
The interference between SHG and SPM alters the emission spectrum and is called
second harmonic generation cross-phase modulation (SHG-XPM) (Alfano et al.,
1987). A process closely related to XPM, called induced phase modulation (IPM)
(Alfano, 1986), occurs when a weak pulse at a different frequency propagates
through a disrupted medium whose index of refraction is changed by an intense laser
pulse. The phase of the weak optical field can be modulated by the time variation of
the index of refraction originating from the primary intense pulse.

The first study of the generation and mechanisms of the ultrafast supercontinuum
dates back to the years 1968–1972, when Alfano and Shapiro first observed the
“white” picosecond continuum in liquids and solids (Alfano & Shapiro, 1970a).
Spectra extending over ~6000 cm−1 in the visible and infrared wavelength region
were observed. Over the years, improvements in the generation of ultrashort pulses
from mode-locked lasers led to the production of wider supercontinua in the visible,
ultraviolet, and infrared wavelength regions using various materials. Table 2.1
highlights the major accomplishments in this field over the past 20 years.

In this chapter, we focus on the picosecond supercontinuum generation in
liquids, solids, and crystals. Supercontinuum generation in gases, XPM, and IPM
is discussed by Corkum and Rolland (Chap. 7), Glownia et al. (Chap. 8), Baldeck et
al. (Chap. 4), Agrawal (Chap. 3), and Manassah (Chap. 5), respectively.

2.2 Simplified Model

Before we go further, let us first examine the nonlinear wave equation to describe the
self-phase modulation mechanism. A thorough theoretical study of supercontinuum
generation has been dealt with in Chaps. 1, 3, and 5.
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The optical electromagnetic field of a supercontinuum pulse satisfies Maxwell’s
equations:

∇ × E = − 1
c
∂B
∂t
,

∇ × H = 1
c
∂D
∂t

+ 4π
c
J,

∇ · D = 4πρ
∇ · B = 0.

(2.1)

Equations (2.1) can be reduced to (see Appendix)

∂A

∂z
+ 1

vg

∂A

∂t
= i

ω0n2

2c
|A|2A, (2.2)

where A(z, t) is the complex envelope of the electric field and vg = 1/(∂k/∂ω)ω0
is

the group velocity. The total refractive index n is defined by n2 = n2
0+2n0n2|A(t)|2,

where n2 is the key parameter called the nonlinear refractive index. This coefficient
is responsible for a host of nonlinear effects: self- and cross-phase modulation,
self-focusing, and the optical Kerr effect, to name the important effects. Equation
(2.2) was derived using the following approximations: (1) linearly polarized electric
field, (2) homogeneous radial fields, (3) slowly varying envelope, (4) isotropic and
nonmagnetic medium, (5) negligible Raman effect, (6) frequency-independent non-
linear susceptibility χ (3), and (7) neglect of group velocity dispersion, absorption,
self-steepening, and self-frequency shift.

Denoting by a and α the amplitude and phase of the electric field envelope
A = aeiα , Eq. (2.2) reduces to

∂a

∂z
+ 1

vg

∂a

∂t
= 0 (2.3a)

and

∂α

∂z
+ 1

vg

∂α

∂t
= ω0n2

2c
a2. (2.3b)

The analytical solutions for the amplitude and phase are

a (τ) = a0F (τ) (2.4a)

and

α (z, τ ) = ω0n2

2c

∫ z

0
a2dz′ = ω0n2

2c
a2

0F
2 (τ ) z, (2.4b)

where a0 is the amplitude, F(τ ) the pulse envelope, and τ the local time τ = t – z/vg.
For materials whose response time is slower than pure electronic but faster than
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molecular orientation (i.e., coupled electronic, molecular redistribution, libratory
motion), the envelope is just the optical pulse shape. For a “pure” electronic
response, the envelope should also include the optical cycles in the pulse shape.

The electric field envelope solution of Eq. (2.2) is given by

A (z, τ ) = a (τ) exp
[
i
ω0n2

2c
a2

0F
2 (τ ) z

]
. (2.5)

The main physics behind the supercontinuum generation by self-phase modula-
tion is contained in Eq. (2.5) and is displayed in Fig. 2.1. As shown in Fig. 2.1a,
the index change becomes time dependent, and therefore, the phase of a pulse
propagating in a distorted medium becomes time dependent, resulting in self-phase
modulation. The electric field frequency is continuously shifted (Fig. 2.1c) in time.
This process is most important in the generation of femtosecond pulses (see Chap.
10 by Johnson and Shank).

Since the pulse duration is much larger than the optical period 2π /ω0 (slowly
varying approximation), the electric field at each position τ within the pulse has a
specific local and instantaneous frequency at given time that is given by

ω (τ) = ω0 + δω (τ) , (2.6a)

where

δω (τ) = −∂α
∂τ

= −ω0

2c
n2a

2
0z
∂F 2 (τ )

∂τ
. (2.6b)

The δω(τ ) is the frequency shift generated at a particular time location τ within
the pulse shape. This frequency shift is proportional to the derivative of the pulse
envelope, which corresponds to the generation of new frequencies resulting in wider
spectra.

Pulses shorter than the excitation pulse can be produced at given frequencies.
It was suggested by Y.R. Shen many years ago that Alfano and Shapiro in 1970
most likely produced femtosecond pulses via supercontinuum generation. Figure
2.1c shows the frequency distribution within the pulse shape. The leading edge,
the pulse peak, and the trailing edge are red shifted, nonshifted, and blue shifted,
respectively.

The spectrum of SPM pulses is obtained by taking the Fourier transform of the
complex temporal envelope A(z, τ ):

A (�) = 1

2π

∫ ∞

−∞
A (z, τ ) exp [i�τ ] dτ, (2.7)

Where � = ω – ω0. The intensity spectrum is given by

S (�z) = c

4π
|A (�, z)|2. (2.8)

http://doi.org/10.1007/978-3-031-06197-4_10
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Fig. 2.1 A simple
mechanism for SPM for a
nonlinear index following the
envelope of a symmetrical
laser pulse: (a)
time-dependent nonlinear
index change; (b) time rate of
change of index change; (c)
time distribution of
SPM-shifted frequencies
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In practical cases, the phase of A(z, τ ) is large compare with π , and the stationary
phase method leads to

ω(z)max = ω0

2c
n2a

2
0

[
∂F 2

∂τ

∣
∣
∣
∣τ1 − ∂F 2

∂τ

∣
∣
∣
∣
τ2

]

z. (2.9)

The intensity

S (�, z) = ( c4π
) ( 4πc

ω0n2z

) {
F 2
(
τ ′) /∂F 2

∂τ 2

∣
∣
∣τ ′ + F 2

(
τ ′′) /∂2F 2

∂τ 2

∣
∣
∣
τ ′′

+ 2
F(τ ′)F(τ ′′)

[
∂2F 2/∂τ 2|τ ′∂2F 2/∂τ 2|τ ′′ ]1/2

× cos
[
�
(
τ ′ − τ ′′)+ ω0

2c n2a
2
0z
(
F 2
(
τ ′)− F 2

(
τ ′′))]} ,

(2.10)

where �ωmax is the maximum frequency spread, τ 1 and τ 2 are the pulse envelope
inflection points, and τ ′ and τ ′′ are the points of the pulse shape that have the same
frequency.

An estimate of the modulation frequency δωM can be made by calculating
the maximum number of interference minima and dividing this number into the
maximum frequency broadening. A straightforward calculation leads to

δωM ≈ 2π
∂F 2

∂τ

∣
∣
∣
∣
τ1

/F 2 (τ1) ≈ 2π
∂F 2

∂τ

∣
∣
∣
∣
τ2

/F 2 (τ2) . (2.11)

For a Gaussian laser pulse given by

F (τ) = exp
[
−τ 2/2τ 2

0

]
, (2.12)

the modulation frequency of the SPM spectrum is (Alfano, 1972)

δωM = 4π

τ0
or δ vM = 2

τ0c
. (2.13)

Using this relation, the average modulation period of 13 cm−1 corresponds to
an initial pulse duration of 5 ps emitted from mode-locked Nd: glass laser. The
maximum frequency extent in this case is (Alfano, 1972)

�ωmax ≈ ω0n2a
2
0z

cτ0
. (2.14)

The maximum frequency shift (Eq. 2.14) indicates the following salient points:

• The frequency extent is inversely proportional to the pumping pulse duration.
The shorter the incoming pulse, the greater the frequency extent. The first white
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light band supercontinuum pulses were generated using picosecond laser pulses
(Alfano & Shapiro, 1970a, b).

• The spectral broadening is proportional to n2. The supercontinuum generation
can be enhanced by increasing the nonlinear refractive index. This is discussed
in detail in Sect. 2.6.

• The spectral broadening is linearly proportional to amplitude a2
0 . Therefore,

multiple-excitation laser beams of different wavelengths may be used to increase
the supercontinuum generation. This leads to the basic principle behind IPM and
XPM. These processes are described by Baldeck et al. (Chap. 4) and Manassah
(Chap. 5).

• The spectral broadening is proportional to ω0 and z.

The chirp – the temporal distribution of frequency in the pulse shape – is an
important characteristic of SPM broadened pulse. In the linear chirp approximation,
the chirp coefficient C is usually defined by the phase relation

α = Cτ 2. (2.15)

For a Gaussian electric field envelope and linear approximation, the envelope
reduces to

F 2 (τ ) = exp
[
−τ 2/τ 2

0

]
≈ 1 − τ 2/τ 2

0 . (2.16)

The linear chirp coefficient derived from Eqs. (2.5) and (2.16) becomes

C =
(ω0

2c

)
(
n2a

2
0z

τ 2
0

)

. (2.17)

Typical calculated SPM spectra are displayed in Fig. 2.2. The spectral densities
of the SPM light are normalized, and β is defined as β = (

n2a
2
0ω0z

)
/2c, which

measures the strength of the broadening process. Figure 2.2a shows the spectrum
for a material response time slower than pure electronic but faster than molecular
orientation for β = 30 and τ = 0.1 ps. The extent of the spectrum is about
7000 cm−1. Figure 2.2b shows the SPM spectrum for a quasipure electronic
response for β = 30 and τ = 0.1 ps. Typical SPM spectral characteristics are
apparent in these spectra.

2.3 Experimental Arrangement for SPM Generation

To produce the supercontinuum, an ultrafast laser pulse is essential with a pulse
duration in the picosecond and femtosecond time region. A mode-locked laser
is used to generate picosecond and femtosecond light pulses. Table 2.2 lists the
available mode-locked lasers that can produce picosecond and femtosecond laser

http://doi.org/10.1007/978-3-031-06197-4_4
http://doi.org/10.1007/978-3-031-06197-4_5


2 Supercontinuum Generation in Condensed Matter 41

1

.1

.01

.001

.0001

10000

9000

8000

7000

6000

5000

4000

3000

WAVELENGTH, ANGSTROMS

S
P

E
C

T
R

A
L 

D
E

N
S

IT
Y

10
00

0

15
00

0

20
00

0

25
00

0

RECIPROCAL WAVELENGTH, CM–1
1.0

1

0.01

0.001

54

10
,0

00
90

00
80

00
70

00
60

00

50
00

40
00

SMAX

S

a b

Fig. 2.2 Calculated SPM spectrum: (a) for response time slower than pure electronic but faster
than molecular orientation: β = 30 and τ = 0.1 ps; (b) for pure electronic response: β = 30 and
τ = 0.1 ps. (From Alfano, 1972)

Table 2.2 Available ultrafast mode-locked lasers

Oscillator Wavelength (nm) Pulse duration

Ruby 694.3 30 ps
YAG 1064 30 ps
Silicate glass 1060 8 ps
Phosphate glass 1054 6 ps
Dye Tunable (SYNC or flash lamp) 5–10 ps
Dye + CO2 + semiconductor switches 9300 1–10 ps
Dye (CPM) 610–630 100 fs
Dye + pulse compression (SYNC) Tunable 300 fs
Dye + CPM (prisms in cavity) 620 27–60 fs
Dye + SPM + pulse compression (prisms
and grating pairs)

620 6–10 fs

pulses. Measurements performed in the 1970s used a mode-locked Nd:glass laser
with output at 1.06 μm with power of ~5 × 109 W and the second harmonic (SHG)
at 530 nm with power of 2 × 108 W. Typically, one needs at least a few microjoules
of 100-fs pulse passing through a 1-mm sample to produce continuum.
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Fig. 2.3 Experimental arrangement for generating and observing supercontinuum and self-
focusing. (From Alfano, 1972)

A typical experimental setup for ultrafast supercontinuum generation is shown in
Fig. 2.3. Both spectral and spatial distributions are measured. The 8-ps SHG pulse
of 5 mJ is reduced in size to a collimated 1.2-mm-diameter beam across the sample
by an inverted telescope. For weaker excitation pulses, the beam is focused into the
sample using a 10- to 25-cm focal lens. The typical sample length used is 10–15 cm
for picosecond pulses and 0.1–1 cm for 100-f pulses. The intensity distribution of
the light at the exit face of the sample was magnified 10 times and imaged on the
slit of a spectrograph. The spectrum of each individual filament within the slit was
displayed. Usually, there were 5–20 filaments. A thin quartz-wedge beam splitter
was used to photograph filament formation of the Stokes (anti-Stokes) side of the
spectra; three type 3–68 and three type 3–67 (two type 5–60) Corning filters were
used to prevent the 530-nm direct laser light from entering the spectrograph. To
reduce nonfilament light, a wire 2 mm in diameter was sometimes placed at the
focal point of the imaging lens. Previously, spectra were taken on Polaroid type 57
film. At present, video systems such as an Silicon-intensified target (SIT) camera
together with a PC computer are commonly used to display the spectra. Today, to
obtain temporal information about the supercontinuum, a streak camera is added to
the experimental system.

2.4 Generation of Supercontinuum in Solids

In the following sections, we review the experimental measurements of supercon-
tinuum generated in condense matter. Topics discussed include supercontinuum
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generation in various kinds of solids and liquids, optical glass fibers, liquid argon,
liquid and solid krypton, magnetic crystals, and dielectric crystals.

The mechanisms behind SPM are discussed in Chap. 1 by Shen and Yang. In
general, various mechanisms are responsible for SPM in condensed matter and give
rise to the coefficient of the intensity-dependent refractive index n2. These are the
orientational Kerr effect, electrostriction, molecular redistribution, librations, and
electronic distribution. In suitably chosen media (central-symmetric molecules),
these frequency-broadening mechanisms may be distinguished from the electronic
mechanism through their different time responses (Lallemand, 1966). The relation
times for these mechanisms are given approximately by (Brewer & Lee, 1968)

τ (orientation) = 4π

3
ηa3/kT > 10−12s, (2.18)

τ (molecular types) =
〈
x2
〉

D
= 6πηa

〈
x2
〉

kT
> 10−12s, (2.19)

τ (libration about field) =
√

2I

αE2
0

> 10−12s, (2.20)

τ (electronic) = 2πa0�

e2 > 1.5 × 10−16s, (2.21)

where η is the viscosity (η = 0.4 cp for liquids and η = 106 cp for glasses); a
is the molecular radius; D is the diffusion coefficient (≥10−5 cm/s for liquids)
and x is the diffusion distance of the clustering, ~10−8 cm; I is the moment
of inertia, Iargon = 9.3 × 10−38 esu and ICC14 = 1.75 × 10−38 esu; α is the
polarizability, αargon = 1.6 × 10−14 esu and aCC14 = 1.026 × 10−24 esu; and E0
is the amplitude of the electric field, taken as 105 esu, which is close to the atomic
field. The response time for an electron distortion is about the period of a Bohr orbit,
~1.5 × 10−16 s. Thus, typical calculated relaxation time responses for diffusional
motions are >10−11 s, while the electronic distortion response time is ~150 as.

With picosecond light pulses, Brewer and Lee (1968) showed that the dominant
mechanism for filament formation should be electronic in very viscous liquids.
Molecular rocking has been suggested as the cause of broadening and self-focusing
in CS2. The molecules are driven by the laser field to rock about the equilibrium
position of a potential well that has been set up by the neighboring molecules. This
mechanism is characterized by a relaxation time:

τ1 = η

G
= 2.3 × 10−13s, (2.22)

where G is the shear modulus ~1.5 × 1010 dynes/cm and viscosity η = 3.7 × 10−3

p for CS2.

http://doi.org/10.1007/978-3-031-06197-4_1
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In solids, mechanisms giving rise to the coefficient of the intensity-dependent
refractive index n2 for picosecond pulse excitation are either direct distortion of
electronic clouds around nuclei or one of several coupled electronic mechanisms:
librational distortion, where electronic structure is distorted as the molecule rocks;
electron-lattice distortion, where the electron cloud distorts as the lattice vibrates;
and molecular distortion, where electronic shells are altered as the nuclei redistribute
spatially. The electrostriction mechanism is rejected because it exhibits a negligible
effect for picosecond and femtosecond pulses.

Typical supercontinuum spectra generated in solids and liquids using 8-ps pulses
at 530 nm are displayed in Fig. 2.4. All continuum spectra are similar despite the
different materials.

2.4.1 Supercontinuum in Glasses

Spectra from the glass samples show modulation (see Fig. 2.4a). The spectral
modulation ranged from as small as a few wave numbers to hundreds of wave
numbers. The filament size was approximately 5–50 μm. Typically, 5–20 small-
scale filaments were observed. Occasionally, some laser output pulses from the
samples did not show modulation or had no regular modulation pattern. Typical
Stokes sweeps from these filaments were 1100 cm−1 in extradense flint glass of
length 7.55 cm and 4200 cm−1 in both borosilicate crown (BK-7) and light barium
(LBC-1) glass of length 8.9 cm. Sweeps on the anti-Stokes side were typically
7400 cm−1 in BK and LBC glasses. The sweep is polarized in the direction of
the incident laser polarization for unstrained glasses.

2.4.2 Supercontinuum in Quartz

SPM spectra from quartz using an 8-ps pulse at 530 nm are similar to the spectra
from glasses displayed in Fig. 2.4a. Typical Stokes sweeps from the filaments were
3900 cm−1 in a quartz crystal of length 4.5 cm, and the anti-Stokes sweeps were
5500 cm−1.

2.4.3 Supercontinuum in NaCl

Sweeps of 3900 cm−1 in NaCl of length 4.7 cm to the red side of 530 nm were
observed. Sweeps on the anti-Stokes side were about 7300 cm−1. Some of the
spectra show modulation with ranges from a few wave numbers to hundreds of
wave numbers. Some laser shots showed no modulation or no regular modulation
pattern. For unstrained NaCl, the supercontinuum light is polarized in the direction
of the incident laser polarization.
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Fig. 2.4 Supercontinuum spectra from various kind of solids and liquids. (a) Stokes and anti-
Stokes SPM from BK-7 glass and filament formation for different laser shots. The filaments are
viewed through Corning 3–67 filters. (b) Stokes and anti-Stokes SPM from calcite for different
laser shots. The laser beam propagates as an O-wave through the sample. (c) Stokes and anti-Stokes
SPM spectra from calcite for different laser shots. The laser beam propagates as an E-wave. (From
Alfano, 1972)

2.4.4 Supercontinuum in Calcite

Sweeps of 4400 cm−1 and 6100 cm−1 to the Stokes and anti-Stokes sides of
530 nm were observed in a calcite crystal of length 4.5 cm (see Fig. 2.4b). Some
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Fig. 2.4 (continued)

spectra showed modulation structure within the broadened spectra; some showed
no modulation or no regular modulation pattern. The exit supercontinuum light has
same polarization as the incident laser. The SRS threshold is lower for laser light
traveling as an O-wave than an E-wave. SPM dominates the E-wave spectra.



2 Supercontinuum Generation in Condensed Matter 47

STOKES

l = 4.5 cm

l = 4.5 cm

COLLIMATED = 5x
COLLINEAR = 10x

3,(3,68)
F = 3,(3,67)

COLLIMATED = 5x
COLLINEAR = 10x

F = 2,(5-60)

ANTISTOKES

5300
L 1S 2S

5769
6328Å

5300Å
L

5460
5790

3650 4046 4358

c

Fig. 2.4 (continued)

2.4.5 Supercontinuum in KBr

A high-power broadband coherent source in the near- and medium-infrared region
can be realized by passing an intense 1.06-μm picosecond pulse through a KBr
crystal. Figure 2.5 shows the spectra from 10-cm-long KBr crystal with excitation
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Fig. 2.5 Relative emission intensity versus emission wavelength for KBr. Exciting wave-
length = 1.06 μm. (From Yu et al., 1975)

of a 9-ps, 1011 W/cm2 pulse at 1.06 μm. On the Stokes side, the maximum intensity
occurs at 1.2 μm. When the signal drops to 10−1, the span of the spectral broadening
is �vs = 3200 cm−1 on the Stokes side and �va = 4900 cm−1 on the anti-Stokes
side. Beyond 1.6 mm, the signal level falls off rapidly. At 1.8 μm, the signal is 10−2,
and at 2 mm, no detectable signal can be observed (Yu et al., 1975).

2.4.6 Supercontinuum in Semiconductors

Infrared supercontinuum spanning the range 3–14 μm can be obtained when an
intense picosecond pulse generated from a CO2 laser is passed into GaAs, AgBr,
ZnSe, and CdS crystals (Corkum et al., 1985).

The supercontinuum spectra measured from a 6-cm-long Cr-doped GaAs crystal
and a 3.8-cm AgBr crystal for different laser pulse durations and intensities and
plotted in Figs. 1.6 and 1.7, respectively. The signals were normalized for the
input laser energy and the spectral sensitivity of filters, grating, and detectors.
Each point represents the average of three shots. The salient feature of the curves
displayed in Figs. 2.6 and 2.7 is that the spectral broadening spans the wavelength
region from 3 to 14 μm. The wave number spread on the anti-Stokes side is much
greater than that on the Stokes side. From data displayed in Fig. 2.6, the maximum

http://doi.org/10.1007/978-3-031-06197-4_1
http://doi.org/10.1007/978-3-031-06197-4_1
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Fig. 2.6 Supercontinuum spectra from a 6-cm-long Cr-doped GaAs crystal. (From Corkum et al.,
1985)

anti-Stokes spectral broadening is �ωa = 793 cm−1. Including second and third
harmonic generation (SHG and THG), it spans 2000 cm−1. On the Stokes side,
�ωs = 360 cm−1, yielding a value of δωa/δωs ~ 2.2. For AgBr, Fig. 2.7 shows that
�ωa = 743 cm−1 and �ωs = 242 cm−1, yielding �ωa/�ωs ~ 3.

The spectral broadening mechanism for the supercontinuum can originate from
several nonlinear optical processes. These include self-phase modulation, the four-
wave parametric effect, higher-order harmonic generation, and stimulated Raman
scattering. In Fig. 2.6, the supercontinuum from the GaAs has two small peaks at 4.5
and 3.3 μm. These arise from the SHG and THG, respectively. Small plateaus are
located at 7.5 and 12 μm. These arise from the first-order anti-Stokes and Stokes-
stimulated Raman scattering combined with SPM about these wavelengths. The
SPM is attributed to an electronic mechanism.

Summarizing the important experimental aspects of the spectra in condensed
matter, the spectra are characterized by very large spectral widths and a nonperiodic
or random substructure. Occasionally, a periodic structure interference minimum
and maximum are observed. The modulation frequencies range from a few cm−1

to hundreds of cm−1, and some modulation progressively increases away from the
central frequency. The Stokes and anti-Stokes spectra are approximately equal in
intensity and roughly uniform. The extents on the Stokes and anti-Stokes sides are



50 Q. Z. Wang et al.

500

50

5
3 4 5 6 7 8 9 10 11 12 13 14

(I
S
/I L

)C

(AgBr)

λ (mm)

Fig. 2.7 Supercontinuum spectra from a 3.8-cm-long AgBr crystal. (From Corkum et al., 1985)

not symmetric. The peak intensity at the central frequency is 102–103 the intensity
of the SPM spectra at a given frequency.

2.5 Generation of Supercontinuum in Liquids

Nonlinear optical effects in solids are very effective; however, damage generated in
solid media often limits their usefulness for ultrashort high-power effects. Various
kinds of inorganic and organic liquids are useful media for generating picosecond
or femtosecond supercontinuum light pulses since they are self-healing media. The
supercontinuum spectra produced in liquids (Alfano, 1972) are similar to the spectra
displayed in Fig. 2.4 (Alfano, 1972). The following highlights the supercontinuum
phenomena in the various favorite liquid media of the authors. These liquids give
the most intense and uniform supercontinuum spectral distributions.
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2.5.1 Supercontinuum in H2O and D2O

The supercontinuum generated in H2O and D2O by the second harmonic of a mode-
locked neodymium glass laser spanned several thousand wave numbers. The time
duration was equal to or less than the picosecond pulse that generated it (Busch et
al., 1973). The continuum extended to below 310 nm on the anti-Stokes side and to
the near-IR region on the Stokes side. There were sharp absorptions at 450 nm in
the H2O continuum and at 470 nm in the D2O continuum resulting from the inverse
Raman effect (Alfano & Shapiro, 1970b; Jones & Stoicheff, 1964). Focusing a 12-
mJ, 1060-nm single pulse 14 ps in duration into 25 cm of liquid D2O resulted in
a continuum that showed practically no structure, extending from 380 to at least
800 nm and highly directional and polarized (Sharma et al., 1976). Enhancing the
supercontinuum intensity using water with ions is discussed in Sect. 2.10.

2.5.2 Supercontinuum in CCl4

Another favorite liquid for producing a supercontinuum is CCl4, in which the
spectra produced are similar to the spectra displayed in Fig. 2.4. A typical flat white
supercontinuum extending from 430 nm through the visible and near infrared could
be produced by focusing an 8-ps pulse at 1060 nm with about 15 mJ pulse energy
into a cell containing CCl4 (Magde & Windsor, 1974).

2.5.3 Supercontinuum in Phosphoric Acid

Orthophosphoric acid was found to be a useful medium for generating picosecond
continuum light pulses ranging from the near UV to the near IR. By focusing a pulse
train from a mode-locked ruby laser into a 10-cm-long cell containing phosphoric
acid (60% by weight) solution in water by an 8-cm focal lens, a supercontinuum
from near 450 nm to the near IR was obtained. The supercontinuum spectra contain
structure arising from Raman lines (Kobayashi, 1979).

2.5.4 Supercontinuum in Polyphosphoric Acid

The supercontinuum from polyphosphoric acid was generated by focusing an optical
pulse at 694.3 nm with 100 mJ pulse energy and a pulse width of 28 ps into a cell
of any length from 2 to 20 cm containing polyphosphoric acid. It reaches 350 nm
on the anti-Stokes side, being limited by the absorption of polyphosphoric acid,
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and 925 nm on the Stokes side, being cut off by limitations of IR film sensitivity
(Nakashima & Mataga, 1975).

2.6 Supercontinuum Generated in Optical Fibers

The peak power and the interaction length can be controlled better in optical
fibers than in bulk materials. Optical fibers are particularly interesting material
for nonlinear optical experiments. In this section, we discuss supercontinuum
generation in glass optical fibers. Details of the use of SPM for pulse compression
are discussed in other chapters.

The generation of continua in glass optical fibers was performed by Stolen et
al. in 1974. Continua covering ~500 cm−1 were obtained. Shank et al. (1982)
compressed 90-fs optical pulses to 30-fs pulses using SPM in an optical fiber
followed by a grating compressor. Using the SPM in an optical fiber with a
combination of prisms and diffraction gratings, they were able to compress 30 fs
to 6 fs (Fork et al., 1987; also see Chap. 10 by Johnson and Shank).

A typical sequence of spectral broadening versus input peak power using 500-
fs pulses (Baldeck et al., 1987b) is shown in Fig. 2.8. The spectra show SPM
characteristic of heavy modulation. The spectral extent is plotted against the energy
in Fig. 2.9 for 500-fs pulses (Baldeck et al., 1987b). The relative energy of each
pulse was calculated by integrating its total broadened spectral distribution. The
supercontinuum extent increased linearly with the pulse intensity. The fiber length
dependence of the spectral broadening is plotted in Fig. 2.10. The broadening was
found to be independent of the length of the optical fiber for l > 10 cm. This is due
to group velocity dispersion. The SPM spectral broadening occurs in the first few
centimeters of the fiber for such short pulses (Baldeck et al., 1987b).

In multimode optical fibers, the mode dispersion is dominant and causes pulse
distortion. Neglecting the detailed transverse distribution of each mode, the light
field can be expressed by

E(t) =
∑

i

aiAi(t) exp [iω0t − ikiz] , (2.23)

where ω0 is the incident laser frequency; a i, Ai(t), and k = ni ω0/c are the effective
amplitude, electric field envelope function at the local time τ = t – z/vgi, and wave
number of mode i, respectively; and vgi is the group velocity of mode i. The effective
refractive index of mode i is denoted by n i and

ni = n0i + n2i |E(t)|2, (2.24)

where n0i and n2i are the linear refractive index and the nonlinear coefficient of the
ith mode, respectively. The nonlinearities of different modes are assumed to be the

http://doi.org/10.1007/978-3-031-06197-4_10
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Fig. 2.8 Sequence of
spectral broadening versus
increasing input energy in a
single-mode optical fiber
(length = 30 cm). The
intensity of the 500-fs pulse
was increased from (a) to (c).
(From Baldeck et al., 1987b)
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same, that is, n2i = n2. Substituting Eq. (2.21) into Eq. (2.20), we obtain

E(t) =
∑

aiAi(t) exp [iω0t − in0iω0z/c − i�φ(t)] , (2.25)

where

�φ(t) = (n2ω0z/c) |E(t)|2. (2.26)

After inserting Eq. (2.23) into Eq. (2.26), the time-dependent phase factor �φ(t)
can be expanded in terms of Ei (t):

�φ(t) =
∑

i

∑

j

(n2ω0z/c) aiajAi(t)Aj (t) exp
[
i
(
n0i − n0j

)
ω0z/c

]
. (2.27)

In the picosecond time envelope, the terms of i �= j oscillate rapidly. Their
contributions to the time-dependent phase factor are washed out. The approximate
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Fig. 2.9 Supercontinuum spectra versus input pulse energy in a single-mode optical fiber
(length = 30 cm) for a 500-fs pulse. (From Baldeck et al., 1987b)

Fig. 2.10 Supercontinuum spectra versus optical fiber length for a 500-fs pulse. (From Baldeck et
al., 1987b)

�φ(t) has the form

�φ =
∑

i

(n2ω0z/c) a
2
i A

2
i (t). (2.28)
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Fig. 2.11 Output spectra for
8-ps laser pulses at 527 nm
propagating through different
lengths of multimode optical
fibers: (a) no fiber; (b) 22 cm;
(c) 42 cm; (d) 84 cm. (From
Wang et al., 1989)
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The pulse shape changes due to the different group velocities of various modes.
When most of the incident energy is coupled into the lower modes, the pulse will
have a fast rising edge and a slow decay tail since the group velocity is faster for
lower-order mode. This feature was observed using a streak camera. Therefore, the
�φ(t, z) of Eq. (2.28) will also have a fast rising edge and a slow decay tail. The
time derivative of the phase �φ(t, z) yields an asymmetric frequency broadening.

Figure 2.11 shows the spectral continuum generated from multimode glass
optical fibers using 8-ps pulses at 530 nm. The spectral broadening is asymmetric
about the incident laser frequency. It is shifted much more to the Stokes side than
to the anti-Stokes side. The observed spectra did not show a modulation. This can
be explained by the spectral resolution of the measurement system. The calculated
modulation period is about 0.13 nm, which is much smaller than the resolution of
the measurement system (about 1 nm) (Wang et al., 1989).

2.7 Supercontinuum Generation in Rare-Gas Liquids
and Solids

Continuum generation is a general phenomenon that occurs in all states of matter. A
system for testing the role of the electronic mechanism is rare-gas liquids and solids
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(Alfano & Shapiro, 1970a). Rare-gas liquids are composed of atoms possessing
spherical symmetry. Thus, there are no orientational, librational, or electron-lattice
contributions to the nonlinear refractive index n2. However, interrupted rocking
of argon can occur in which a distorted atom can rock about an equilibrium
value before it collides with other atoms. Contributions to the nonlinear refractive
index might be expected from electrostriction, molecular redistribution, interrupted
rocking, and a distortion of the electron clouds:

n2 = n2ELECTRONIC + n2MR + n2LIBRATION + n2ELECTROSTR. (2.29)

Electrostriction is ruled out because picosecond exciting pulses are too short.
Molecular redistribution arises from fluctuations in the local positional arrangement
of molecules and can contribute significantly to n2. However, n2 due to all
mechanisms except electronic was estimated to be ~2 × 10−14 esu for liquid argon
from depolarized inelastic-scattering data. Electronic distortion (n2 = 6 × 10−14

esu) slightly dominates all nonlinear index contributions (Alfano & Shapiro, 1970a;
Alfano, 1972). Furthermore, the depolarized inelastic light-scattering wing vanishes
in solid xenon, implying that the molecular redistribution contribution to n2 vanishes
in rare-gas solids. Observations of self-focusing and SPM in rare-gas solids appear
to provide a direct proof that atomic electronic shells are distorted from their
spherical symmetry under the action of the applied field. However, both pure
electronic and molecular redistribution mechanisms contribute to n2 in rare-gas
liquids. The response time of the system for a combination of both of these
mechanisms lies between 10−15 and 10−12 s. For femtosecond and subpicosecond
pulses, the dominant mechanism for n2 and SPM is electronic in origin.

The experimental setup used to generate and detect a supercontinuum in rare-gas
liquids and solids is the same as that shown in Fig. 2.3 with the exception that the
samples are placed in an optical dewar.

Typical supercontinuum spectra from rare-gas liquids and solids are displayed
in Fig. 2.12. Sweeps of 1000–6000 cm−1 were observed to both the Stokes and
anti-Stokes sides of 530 nm in liquid argon. Modulation ranges from a few cm−1

to hundreds of cm−1. Similar spectral sweeps were observed in liquid and solid
krypton.

A most important point is that the threshold for observing SPM in liquid krypton
is 0.64 ± 0.12 that in liquid argon. The SPM threshold ratio of solid and liquid
krypton is 0.86 ± 0.15. In liquid argon, SPM spectra appear at a threshold power of
~0.5 GW focused in a 12-cm sample. The swept light is also collimated, polarized,
and modulated. These observations rule out dielectric breakdown.

The refractive index in rare-gas liquids is given by n|| = n0 + n2〈E2〉, where n|| is
the refractive index parallel to the field. 〈E2〉1/2 is the rms value of the electric field.
The electronic nonlinear refractive index in rare-gas liquids is given by

n2 =
[(
n2

0 + 2
)4
/81n0

]

πNρ, (2.30)
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Fig. 2.12 Supercontinuum spectra for picosecond laser pulses at 530 nm passing through rare-gas
liquids and solids; (a) Stokes SPM from liquid argon for different laser shots; (b) anti-Stokes SPM
for liquid argon for different laser shots; (c) Stokes SPM for liquid and solid krypton for different
laser shots. (From Alfano, 1972)

where n0 is the linear refractive index, ρ is the second-order hyperpolarizability,
and N is the number of atoms per unit volume. The term n2 = 0.6 × 10−13

esu in liquid argon and �1.36 × 10−13 in liquid krypton. For liquid argon and
liquid and solid krypton, the refractive indices are taken as 1.23, 1.30, and 1.35,
respectively (McTague et al., 1969). Intense electric fields distort atoms and produce
a birefringence. The anisotropy in refractive index between light traveling with
the wave vector parallel and perpendicular to the applied electric field is given by
(Alfano, 1972)

δn|| − δn⊥ = 1

3
n2E

2
0 , (2.31)
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Fig. 2.12 (continued)

where δn|| and δn⊥ are the changes in refractive indices parallel and perpendic-
ular to the field. The value of n2E

2
0 is ~5 × 10−5V/m in liquid argon when

E0~1.5 × 107V/m (~4 × 1011W/cm2). This change in index explains the self-
focusing and SPM described above which was observed by Alfano and Shapiro
in 1970. Similar SPM effects occur in organic and inorganic liquids, often accom-
panied by SRS and inverse Raman effects.

2.8 Supercontinuum Generation in Antiferromagnetic
KNiF3 Crystals

The influence of magnetic processes on nonlinear optical effects is an interesting
topic. In this section, we discuss the supercontinuum generation associated with the
onset of magnetic order in a KNiF3 crystal (Alfano et al., 1976). Light at 530 nm is
well suited for the excitation pulse because KNiF3 exhibits a broad minimum in its
absorption (Knox et al., 1963) between 480 and 610 nm.
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Fig. 2.12 (continued)

Typical spectra from an unoriented 5-cm-long KNiF3 single crystal are displayed
in Fig. 2.13 for 530-nm picosecond excitation (Alfano et al., 1976). The spectra are
characterized by extensive spectral broadening ranging up to ~3000 cm−1 to either
side of the laser frequency. The intensity, although not the spectral broadening,
of the output exhibited the large temperature dependence illustrated in Fig. 2.14.
There is no sharp feature at 552 nm, the position expected for stimulated Raman
scattering by the 746-cm−1 magnon pair excitation. Usually, the spectra were
smooth; however, occasionally structure was observed. A periodic structure with
a modulation frequency of tens to hundreds of wave numbers was evident. The
frequency broadening light is also polarized in the same direction as the incident
530-nm pulse. This property is the same observed in glass, crystals, and liquids (see
Sects. 2.3, 2.4, 2.5, and 2.6). Self-focusing was also observed, usually in the form
of 10 to 40 small self-focused spots 5–20 μm in diameter at the exit face of the
crystal. Using a focused beam, optical damage could also be produced. It should be
emphasized that spectral broadening was always observed even in the absence of
self-focusing, damage, or periodic spectral intensity modulation.

Figure 2.15 shows the output intensity at 570 nm as a function of input intensity
for two temperatures: above and below the Néel temperature. The output intensity
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Fig. 2.13 Spectra for
picosecond laser pulse at
530 nm passing through
5-cm-long KNiF3. (From
Alfano et al., 1976)

4800 5300 5800A

Fig. 2.14 Intensity of the frequency-broadening emission from KNiF3 as a function of tempera-
ture at fixed pump intensity at 552 nm. (From Alfano et al., 1976)

is approximately exponential in the input intensity at both temperatures. However,
the slope is more than a factor of two larger at 77 K than at 300 K. The rapid rise
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Fig. 2.15 Intensity dependence of continuum spectra at 570 nm from KNiF3 as a function of
pumping laser intensity at fixed lattice temperature

in conversion efficiency of four orders of magnitude within a small interval of input
intensity is indicative of an amplification process with very large gain. Identical
curves were obtained at 551 and 600 nm output wavelengths. The similarity in
results for several output frequencies shows that simple stimulated magnon pair
scattering is not the dominant process. If it were, one would expect the behavior at
552 nm to differ considerably from that at other wavelengths.
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The most novel experimental results in KNiF3 are the large (~20×) intensity
increases below TN . Spectra at 552, 570, and 600 nm behave identically –
within experimental error – consistent with the observations in Fig. 2.15. The
temperature dependence of the relative peak intensity for the spontaneous magnon
pair scattering in the KNiF3 sample (using 514.5 nm laser light) was measured
and is potted in Fig. 2.14. For KNiF3, the magnon pair scattering accounts for the
entire inelastic light scattering and therefore for the non-σ electronic contribution
to χ3 (Hellwarth et al., 1975). The temperature dependence is compelling evidence
for the magnetic origin of the low-temperature-enhanced nonlinear optical spectral
broadened intensity.

The observation can be semiquantitatively accounted for in terms of a
temperature-dependent spin contribution to the overall nonlinear susceptibility
χ ijkl

(3) that governs four-photon parametric mixing as the primary process. In
general, χ(3) may be written as a sum of electronic and Raman contributions
(Levenson & Bloembergen, 1974). For KNiF3, we may consider the latter to consist
solely of the magnon pair Raman scattering contribution (Chinn et al., 1971; Fleury
et al., 1975), which we can approximate as a Lorentzian:

χ
(3)
ijkl (−ω3, ω1, ω1,−ω2) = χ

(3)
E +K

αmij α
m
kl + αmil α

m
jk

ωm − (ω1 − ω2)+ i�m
. (2.32)

Here, ωm and ¦m denote the temperature-dependent frequency and linewidth,
respectively, of the magnon pair excitations, amij is the magnon pair polarizability,

and χ(3)E is the usual nonresonant, temperature-independent “electronic” contri-
bution from nonlinear distortion of the electronic orbits. The second term in Eq.
(2.32) is called magnetic χ(3)M . Since the integrated intensity of the spontaneous
magnon pair Raman spectrum, which is ~ |αm|2, has been measured and found to
be essentially temperature independent (Chinn et al., 1971; Fleury et al., 1975), the
only quantities in Eq. (2.32) that vary significantly with temperature are ωm and ¦m.
The observed temperature independence of the extent of spectral broadening, δω,
may be explained by noting that δω ∼ 2�ωn2kE

2
1l due to self-phase modulation.

Here, �ω is the spectral width of the input pulse, k is its propagation constant, E1
is the field amplitude, and l is the path length. n2 is the nonlinear refractive index,
which contains a purely electronic contribution, σ , and a contribution proportional
to the integrated Raman scattering cross section (Hellwarth et al., 1975). Since
neither σ nor |αm|2 is temperature dependent in KNiF3, n2, and therefore,�ω should
not vary either, in agreement with observations.

The observed strong temperature dependence of the intensity of the frequency-
broadened spectrum (see Fig. 2.14) arises from the resonant term in Eq.
(2.32) through the primary process 2ω1 → ω2 + ω3, which is strongest when
ω2 = ω1 + ωm and increases as ¦m decreases (on cooling below the Néel
temperature). That is, the resonant contribution to χ(3) in Eq. (2.31) varies
with temperature in the same way as the peak spontaneous magnon pair cross
section: �−1

m (T ). However, the individual contribution to χ(3) cannot be directly
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inferred from the dependence of the broadened spectrum. This is because the
latter receives significant contributions from secondary processes of the form
ω1 + ω′

2 → ω′
3 + ω4, etc., in which products of the primary process interact with

the pump to smooth the spectral distribution and wash out the sharp features that
the resonant spin nonlinearity produces in the primary process. The large values
of pump intensity and source spectral width make possible strong amplification in
spite of imprecise phase matching in the forward direction. Such behavior (washing
out of stimulated Raman features by the spectral broadening process) has frequently
been observed in both liquids and crystals. Thus, a full quantitative description of
the nonlinear optical processes in KNiF3 is not yet possible.

2.9 Generation of Supercontinuum Near Electronic
Resonances in Crystals

Since the active medium of a laser possesses well-defined electronic energy levels,
knowledge of SPM near electronic levels is of paramount importance. SPM near
electronic levels of a PrF3 crystal have been investigated experimentally and
theoretically to gain additional information on the SPM process – in particular, on
the role played by the electronic levels and on how the continuum spectrum evolves
through and beyond the electronic absorption levels (Alfano et al., 1974).

Experimentally, the Stokes and anti-Stokes spectrum and filament formation
from the PrF3 crystal are investigated under intense picosecond pulse excitation
at the wavelength of 530 nm. The c axis of the crystal is oriented along the optical
axis. The intensity distribution at the exit face of the crystal is magnified by 10× and
imaged on the slit of a Jarrell-Ash 1

2 -m-grating spectrograph so that the spectrum of
each filament can be displayed. The spectra are recorded on Polaroid type 57 film.
No visible damage occurred in the PrF3 crystal.

The PrF3 crystal was chosen for the experiment because its electronic levels
are suitably located on the Stokes and anti-Stokes sides of the 530-nm excitation
wavelength. The absorption spectra of a – 1

2 -mm-thick PrF3 crystal and the energy
level scheme of Pr3+ ions are shown in Fig. 2.16. The fluorides of Pr have the
structure of the naturally occurring mineral tysonite with D4

34 symmetry.
Typical spectra of frequency broadening from PrF3 about 530 nm are shown in

Fig. 2.17 for different laser shots. Because of the absorption associated with the
electronic level, it is necessary to display the spectrum over different wavelength
ranges at different intensity levels. In this manner, the development of the SPM
spectrum through the electronic absorption levels can be investigated. Using appro-
priate filters, different spectral ranges are studied and displayed in the following
figures: in Fig. 2.18a, the Stokes side for frequency broadening vB > 100 cm−1

at an intensity level (ISPM) of ~10−2 of the laser intensity (IL), in Fig. 2.18b, the
Stokes side for vB > 1500 cm−1 at ISPM ~ 10−4 IL, in Fig. 2.18c, the anti-Stokes
side for vB > 100 cm−1 at ISPM ~ 10−2 IL, and in Fig. 2.18d, the anti-Stokes side
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Fig. 2.16 Absorption spectra of 0.5-mm-thick PrF3 crystal; insert is the level scheme of Pr3+ ions.
(From Alfano et al., 1974)

for vB > 1500 cm−1 at ISPM ~ 10−4 IL. Usually, 50–100 small-scale filaments
5–50 μm in diameter are observed.

Several salient features are evident in the spectra displayed in Figs. 2.17 and 2.18.
In Fig. 2.17, the Stokes and anti-Stokes spectra are approximately equal in intensity
and frequency extent. The peak intensity at the central frequency is ~100 times the
intensity of the SPM at a given frequency. The extent of the frequency broadening is
~1500 cm−1, ending approximately at the absorption lines. Occasionally, a periodic
structure of minima and maxima is observed that ranges from a few cm−1 to
100 cm−1, and for some observations, no modulation is observed. Occasionally,
an absorption band appears on the anti-Stokes side of the 530-nm line whose
displacement is 430 cm−1. In Fig. 2.18, the main feature is the presence of a
much weaker superbroadband continuum whose frequency extends through and
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Fig. 2.17 Spectra from PrF3 excited by 4-ps laser pulses at 530 nm; neutral density (ND) filters:
(a) ND = 1.5; (b) ND = 1.5; (c) ND = 2.0; (d) ND = 2.0; (e) ND = 1.7; (f) ND = 1.4. A wire is
positioned after the collection lens at the focal length. (From Alfano et al., 1974)

past the well-defined absorption lines of the Pr3+ ion to a maximum frequency of
>3000 cm−1 on the Stokes side (end of film sensitivity) and >6000 cm−1 on the anti-
Stokes side. The intensity of the continuum at a given frequency outside absorption
lines is ~10−4 the laser intensity.

The observed absorption lines on the anti-Stokes side of 530 nm are located at
441.5, 465.3, and 484.5 nm and on the Stokes side at 593 and 610.9 nm. These
lines correspond within ±0.7 nm to the absorption lines measured with a Cary 14.
The absorption lines measured from the Cary spectra are ~3 cm−1 at 611.2 nm,
62 cm−1 at 5938.8 nm, 46 cm−1 at 485.2 nm, and >100 cm−1 at 441.2 nm. Figure
2.19 compares the Stokes absorption spectra of a PrF3 crystal photographed with a
1
2 -m Jarrell-Ash spectrograph with different broadband light sources. Figure 2.19a
was obtained with light emitted from a tungsten lamp passing through a 1

2 -mm PrF3
crystal, Fig. 2.19b was obtained with the Stokes side of the broadband picosecond
continuum generated in BK-7 glass passing through a 1

2 -mm PrF3, and Fig. 2.19c
was obtained with the broadband light generated in a 5-cm PrF3 crystal. Notice that
the absorption line at 611.1 nm is very pronounced in the spectra obtained with the
continuum generated in PrF3, whereas with conventional absorption techniques, it is
barely visible. The anti-Stokes spectrum obtained with light emitted from a tungsten
filament lamp passing through a 1

2 -mm PrF3 crystal is shown in Fig. 2.20a. This is
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Fig. 2.18 Spectra on the
Stokes and anti-Stokes sides
of the 530-nm excitation: (a)
Stokes side, Corning 3–68
filter, wire inserted,
ND = 2.0; (b) Stokes side,
Corning 3–66 filter, wire
inserted; (c) anti-Stokes side,
wire inserted, ND = 1.0; (d)
anti-Stokes side, Corning
5–61, wire inserted. (From
Alfano et al., 1974)

compared with the spectrum obtained with broadband light generated in a 5-cm PrF3
crystal shown in Fig. 2.20b.

The angular variation of the anti-Stokes and Stokes spectral emission from PrF3
is displayed in Fig. 2.21. The light emitted from the sample is focused on the slit
of a 1

2 -m Jarrell-Ash spectrograph with a 5-cm focal length lens with the laser
beam positioned near the bottom of the slit so that only the upper half of the
angular spectrum curve is displayed. In this fashion, a larger angular variation of
the spectrum is displayed. Emission angles >9◦ go off slit and are not displayed.
This spectrum is similar to four-photon emission patterns observed from glass and
liquids under picosecond excitation.

The experimental results show that a discontinuity in intensity occurs when the
self-phase modulation frequency extends beyond the absorption line frequency. This
is due to almost total suppression of the signal beyond the absorption resonance
(Alfano et al., 1974). A similar argument and conclusion hold for the blue side of
the laser line. The residual weak intensity that exists beyond the absorption line is
not due to SPM. It can arise, however, from three-wave mixing. Since there was
a continuum of frequencies created by SPM, it might be possible for three such
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Fig. 2.19 Comparison of the
Stokes absorption spectra of
PrF3 photographed with
different light sources: (a)
light emitted from a tungsten
lamp is passed through
0.5-cm-thick crystal; (b) SPM
light emitted from BK-7 glass
is passed through
0.5-mm-thick crystal; (c)
SPM light is generated within
the 5-cm PrF3. (From Alfano
et al., 1974)

Fig. 2.20 Comparison of the
anti-Stokes absorption
spectrum of PrF3
photographed with (a) light
emitted from a tungsten lamp
passing through
0.5-mm-thick crystal and (b)
SPM light generated within
the 5-cm PrF3. (From Alfano
et al., 1974)

Fig. 2.21 Angular variation
of the (a) Stokes and (b)
anti-Stokes spectral patterns
emitted from PrF3 crystal: (a)
Corning 4 (3–67) filters,
ND = 1.0; (b) Corning 2
(5–60) filters. (From Alfano
et al., 1974)
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frequencies, ω1, ω2, and ω3, to mix to create a signal at frequency ω1 + ω2 – ω3 that
lies beyond the absorption line. Since the frequencies are chosen from a continuum,
it is also possible for phase matching to be achieved. For the spectrum in the domain
between the laser frequency and the absorption line, the extent of self-broadening
is proportional to the intensity. Since the energy in the pulse is proportional to the
product of the frequency extent and the intensity spectrum, the intensity spectrum
remains approximately constant. The observed absorption band in the continuum on
the anti-Stokes side about 400 cm−1 away from the excitation frequency (see Fig.
2.17) is probably due to the inverse Raman effect (Jones & Stoicheff, 1964). The
observed absorption band is located in the vicinity of strong Raman bands: 401,
370, and 311 cm−1.

A curious feature of the associated weak broadband spectrum is the existence of
a pronounced absorption line at a position (611.2 nm) where the linear absorption
would be expected to be rather weak. A possible explanation for this is as follows:
Imagine tracing the spatial development of the phase modulation spectrum. At a
short distance, where the bounds of the spectrum have not yet intersected a strong
absorption line, the spectrum is reasonably flat. On intersecting the absorption line,
the spectrum abruptly drops (Alfano et al., 1974). The mechanism of FFPG is
presumably responsible for the appearance of the signal beyond the absorption line
limit. This explanation is also supported by the appearance of the angular emission
pattern (see Fig. 2.21). As the spectrum continues to develop, one reaches a point
where the limit of the regenerated spectrum crosses a weak absorption line. One can
again expect a drastic drop in the spectrum at the position of this line. At still greater
distances, renewed four-photon parametric regeneration accounts for the feeble
signal. A continuum is generated behind absorption bands due to contributions from
SPM, three-wave mixing (TWM), and FFPG.

2.10 Enhancement of Supercontinuum in Water by Addition
of Ions

The most common liquids used to generate a continuum for various applications
are CCl4, H2O, and D2O. In most applications of the ultrafast supercontinuum,
it is necessary to increase the conversion efficiency of laser excitation energy to
the supercontinuum. One method for accomplishing this is based on the induced-
or cross-phase modulation. Another way is to increase n2 in materials. In this
section, chemical means are used to obtain a tenfold enhancement of the ultrafast
supercontinuum in water by adding Zn2+ or K+ ions (Jimbo et al., 1987) for 8-ps
pulse generation.

The optical Kerr gate (OKG) (Ho & Alfano, 1979) was used to measure the
nonlinear refractive index of the salt solutions. The primary and second harmonic
light beams were separated by a dichroic mirror and then focused into a 1-cm-
long sample cell filled with the same salt solutions that produced the ultrafast
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supercontinuum pulse enhancements. The size of the nonlinear index of refraction,
n2, was determined from the transmission of the probe beam through the OKG.

Three different two-component salt solutions of various concentrations were
tasted. The solutes were KCl, ZnCl2, and K2ZnCl4. All measurements were per-
formed at 20 ± 1 ◦C. Typical spectra of ultrafast supercontinuum pulses exhibited
both SPM and FPPG features. The collinear profile arising from SPM has nearly
the same spatial distribution as the incident 8-ps, 530-nm laser pulse. The two
wings correspond to FPPG pulse propagation. The angle arises from the phase-
matching condition of the generated wavelength emitted at different angles from the
incident laser beam direction. FPPG spectra sometimes appear as multiple cones and
sometimes show modulated features. SPM spectra also show modulated patterns.
These features can be explained by multiple filaments.

Typical ultrafast supercontinuum pulse spectra on the Stokes side for different
aqueous solutions and neat water, measured with the optical multichannel analyzer,
are shown in Fig. 2.22. The salient features in Fig. 2.22 are a wideband SPM
spectrum together with the stimulated Raman scattering of the OH stretching
vibration around 645 nm. The addition of salts causes the SRS signal to shift toward
the longer-wavelength region and sometimes causes the SRS to be weak (Fig.
2.22a). The SRS signal of pure water and dilute solution appears in the hydrogen-
bonded OH stretching region (~3400 cm−1). In a high-concentration solution, it
appears in the nonhydrogen-bonded OH stretching region (~3600 cm−1). The latter
features of SRS were observed in an aqueous solution of NaClO4 by Walrafen
(1972).

To evaluate quantitatively the effect of cations on ultrafast supercontinuum
generation, the ultrafast supercontinuum signal intensity for various samples at a
fixed wavelength was measured and compared. Figure 2.23 shows the dependence
of the supercontinuum (mainly from the SPM contribution) signal intensity on
salt concentration for aqueous solutions of K2ZnCl4, ZnCl2, and KCl at 570 nm
(Fig. 2.23a) and 500 nm (Fig. 2.23b). The data were normalized with respect to
the average ultrafast supercontinuum signal intensity obtained from neat water.
These data indicated that the supercontinuum pulse intensity was highly dependent
on salt concentration and that both the Stokes and the anti-Stokes sides of the
supercontinuum signals from a saturated K2ZnCl4 solution were about 10 times
larger than from neat water. The insets in Fig. 2.23 are the same data plotted as a
function of K+ ion concentration for KCl and K2ZnCl4 aqueous solutions. Solutions
of KCl and K2ZnCl4 generate almost the same amount of supercontinuum if the
K+ cation concentration is same, even though they contain different amounts of
Cl− anions. This indicates that the Cl− anion has little effect on generation of the
supercontinuum. The Zn2+ cations also enhanced the supercontinuum, though to a
lesser extent than the K+ cations.

The measurements of the optical Kerr effect and the ultrafast supercontinuum
in salt-saturated aqueous solutions are summarized in Table 2.3. The measured n2
(pure H2O) is about 220 times smaller than n2 (CS2). The value GSPM(λ) represents
the ratio of the SPM signal intensity from a particular salt solution to that from
neat water at wavelength λ. GKerr is defined as the ratio of the transmitted intensity
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Fig. 2.22 SPM spectrum of (a) saturated K2ZnCl4 solution, (b) 0.6-m K2ZnCl4, and (c) pure
water. The SRS signal (645 nm) is stronger in pure water, and it disappears in high-concentration
solution. (From Jimbo et al., 1987)
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Fig. 2.23 Salt concentration dependence of the SPM signal (a) on the Stokes side and (b) on the
anti-Stokes side 20 ◦C. Each data point is the average of about 10 laser shots. The inserts are the
same data plotted as a function of K+ ion concentration for KCl and K2ZnCl4 aqueous solutions.
(From Jimbo et al., 1987)

caused by a polarization change of the probe beam in a particular salt solution to that
in neat water; GKerr is equal to [n2 (particular solution/n2 (water))]2. Table 2.3 shows
that, at saturation, K2ZnCl4 produced the greatest increase in the supercontinuum.
Although ZnCl2 generated the largest enhancement of the optical Kerr effect, it did
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Fig. 2.23 (continued)

not play an important role in the enhancement of the ultrafast supercontinuum (a
possible reason for this is discussed below). The optical Kerr effect signal from
saturated solutions of ZnCl2 was about 2–3 times greater than that from saturated
solutions of K2ZnCl4.

The enhancement of the optical nonlinearity of water by the addition of cations
can be explained by the cations’ disruption of the tetrahedral hydrogen-bonded
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Table 2.3 Enhancement of the supercontinuum and optical Kerr effects signals in saturated
aqueous solutions at 20 ◦Ca

Signal K2ZnCl4 (1.9 M) KCl (4.0 M) ZnCl2 (10.6 M)

GSPM(570) 11 ± 1 5.6 ± 0.9 6.6 ± 0.4
GSPM(500) 9.5 ± 2.5 4.9 ± 0.2 4.3 ± 0.5
GKerr 16 ± 1 6.1 ± 1.4 35 ± 9

aGSPM(λ) = [ISPM(λ)/Ilaser(530 nm)]solution/[ISPM(λ)/Ilaser(530 nm)]water

water structures and their formation of hydrated units (Walrafen, 1972). Since the
nonlinear index n2 is proportional to the number density of molecules, hydration
increases the number density of water molecules and thereby increases n2. The ratio
of the hydration numbers of Zn2+ and K+ has been estimated from measurements
of GKerr and compared with their values based on ionic mobility measurements.
At the same concentration of KCl and ZnCl2 aqueous solution, (GKerr generated
by ZnCl2 solution)/(GKerr generated by KCl solution) = [N(Zn2+)/N(K+)]2 ~ 2.6,
where N(Zn2+) ~ 11.2 ± 1.3 and N(K+) ~ 7 ± 1 represent the hydration numbers
for the Zn2+ and K+ cations, respectively. The calculation of the hydration
number of N(Zn2+)/N(K+) ~ 1.5 is in good agreement with the Kerr nonlinearity
measurements displayed in Table 2.3.

In addition, from our previous measurements and discussions of nonlinear
processes in mixed binary liquids (Ho & Alfano, 1978), the total optical nonlinearity
of a mixture modeled from a generalized Langevin equation was determined
by the coupled interactions of solute–solute, solute–solvent, and solvent–solvent
molecules. The high salt solution concentration may contribute additional optical
nonlinearity to the water owing to the distortion from the salt ions and the salt-water
molecular interactions.

The finding that Zn2+ cations increased GKerr more than GSPM is consistent
with the hydration picture. The transmitted signal of the OKG depends on �n,
while the ultrafast supercontinuum signal is determined by ∂n/∂t. The ultrafast
supercontinuum also depends on the response time of the hydrated units. Since
the Zn2+ hydrated units are larger than those of K+, the response time will be
longer. These effects will be reduced for longer pulses. Two additional factors
may contribute to part of the small discrepancy between GSPM and Gkerr for
ZnCl2. The first one is related to the mechanism of δn generation in which
χ1111 is involved in the generation of SPM while the difference χ1111 – χ1112 is
responsible for the optical Kerr effect. The second is the possible dispersion of n2
because of the difference in wavelength between the exciting beams of the ultrafast
supercontinuum and the optical Kerr effects.

The optical Ker effect is enhanced 35 time by using ZnCl2 as a solute, and the
ultrafast supercontinuum is enhanced about 10 times by using K2ZnCl4 as a solute.
The enhancement of the optical nonlinearity has been attributed to an increase in the
number density of water molecules owing to hydration and the coupled interactions
of solute and solvent molecules. Addition of ions can be used to increase n2 for SPM
generation and gating.
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2.11 Temporal Behavior of SPM

In addition to spectral features, the temporal properties of the supercontinuum light
source are important for understanding the generation and compression processes.
In this section, the local generation, propagation, and pulse duration reduction of
SPM are discussed.

2.11.1 Temporal Distribution of SPM

In Sect. 2.1, using the stationary phase method, it was described theoretically that
the Stokes and anti-Stokes frequencies should appear at well-defined locations in
time within leading and trailing edges of the pump pulse profile (Alfano, 1972).
Theoretical analyses by Stolen and Lin (1978) and Yang and Shen (1984) obtained
similar conclusions.

Passing an 80-fs laser pulse through a 500-μm-thick ethylene glycol jet stream,
the pulse duration of the spectrum in time was measured by the autocorrelation
method (Fork et al., 1983). These results supported the SPM mechanism for
supercontinuum generation. In the following, the measurements of the distribution
of various wavelengths for the supercontinuum generated in CCl4 by intense 8-ps
laser pulses (Li et al., 1986) are presented. Reduction of the pulse duration using the
SPM principle is discussed in Sect. 10.3.

The incident 530-nm laser pulse temporal profile is shown in Fig. 2.24. The pulse
shape can be fitted with a Gaussian distribution with duration τ (FWHM) = 8 ps.
The spectral and temporal distributions of the supercontinuum pulse were obtained
by measuring the time difference using a streak camera. The measured results are
shown as circles in Fig. 2.25. Each data point corresponds to an average of about
six laser shots. The observation is consistent with the SPM and group velocity
dispersion. To determine the temporal distribution of the wavelengths generated
within a supercontinuum, the group velocity dispersion effect (Topp & Orner, 1975)
in CCl4 was corrected. Results corrected for both the optical delay in the added
filters and the group velocity are displayed as triangles in Fig. 2.25. The salient
feature of Fig. 2.25 indicates that the Stokes wavelengths of the continuum lead the
anti-Stokes wavelengths.

Using the stationary phase SPM method [Eqs. 2.6a and 2.6b], the generated
instantaneous frequency ω of the supercontinuum can be expressed by

ω(t)− ωL = − (ωLl/c) ∂ (�n) /∂t, (2.33)

where ωL is the incident laser angular frequency, l is the length of the sample, and
�n is the induced nonlinear refractive index n2E2. A theoretical calculated curve
for the sweep is displayed in Fig. 2.26 by choosing appropriate parameters to fit
the experimental data of Fig. 2.25. An excellent fit using a stationary phase model

http://doi.org/10.1007/978-3-031-06197-4_10
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Fig. 2.24 Temporal profile of a 530-nm incident laser pulse measured by a 2-ps-resolution streak
camera. The dashed line is a theoretical fit to an 8-ps EWHM Gaussian pulse. (From Li et al., 1986)

up to maximum sweep demonstrates that the generation mechanism of the temporal
distribution of the supercontinuum arises from the SPM. During the SPM process, a
wavelength occurs at a well-defined time within the pulse. The above analysis will
be supported by the additional experimental evidence for SPM described in Sect.
10.3 (see Fig. 2.29).

2.11.2 Local Generation and Propagation

The dominant mechanisms responsible for the generation of the ultrafast supercon-
tinuum as mentioned in Sects. 2.1 and 2.2 are SPM, FPPG, XPM, and SRS. In the
SPM process, a newly generated wavelength could have bandwidth-limited duration
at a well-defined time location (Alfano, 1972) in the pulse envelope. In the FPPG
and SRS processes, the duration of the supercontinuum pulse could be shorter than
the pump pulse duration due to the high gain about the peak of the pulse. In either
case, the supercontinuum pulse will be shorter than the incident pulse at the local
spatial point of generation. These pulses will be broadened in time due to the group
velocity dispersion in condensed matter (Ho et al., 1987).

Typical data on the time delay of 10-nm-bandwith pulses centered at 530, 650,
and 450 nm wavelengths of the supercontinuum generated from a 20-cm-long cell

http://doi.org/10.1007/978-3-031-06197-4_10
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Fig. 2.25 Measured supercontinuum temporal distribution at different wavelengths: (o) data
points with correction of the optical path in filters; (�) data points with correction of both the
optical path in filters and group velocity dispersion in liquid. (From Li et al., 1986)

filled with CCl4 are displayed in Fig. 2.27. The peak locations of 530, 650, and
450 nm are −49, −63, and −30 ps, respectively. The salient features in Fig. 2.27
(Ho et al., 1987) indicate that the duration of all 10-nm-band supercontinuum pulses
is only 6 ps, which is shorter than the incident pulse of 8 ps, the Stokes side (650 nm)
of the supercontinuum pulse travels ahead of the pumping 530 nm by 14 ps, and the
anti-Stokes side (450 nm) of the supercontinuum pulse lags the 530 nm by 10 ps.

If the supercontinuum could be generated throughout the entire length of the
sample, the Stokes side supercontinuum pulse generated by the 530-nm incident
laser pulse at z = 0 cm of the sample would be ahead of the 530-nm incident
pulse after propagating through the length of the sample. Over this path, 530 nm
could continuously generate the supercontinuum pulse. Thus, the Stokes side
supercontinuum generated at the end of the sample coincides in time with the 530-
nm incident pulse. In this manner, a supercontinuum pulse centered at a particular
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Fig. 2.26 Comparison of the
measured temporal
distribution of
supercontinuum with the
SPM model. (From Li et al.,
1986)
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Stokes frequency could have a pulse greater than the incident pulse extending in time
from the energy of the 530-nm pulse to the position where the Stokes frequency was
originally produced at z ~ 0 cm. From a similar consideration, the anti-Stokes side
supercontinuum pulse would also be broadened. However, no slow asymmetric tail
for the Stokes pulse or rise for the anti-Stokes pulse is displayed in Fig. 2.27. These
observation suggest the local generation of supercontinuum pulses.

A model to describe the generation and propagation features of the supercon-
tinuum pulse has been formulated based on local generation. The time delay of
Stokes and anti-Stokes supercontinuum pulses relative to the 530-nm pump pulse is
accounted for by the filaments formed ~5 cm from the sample cell entrance window.
The 5-cm location is calculated from data in Fig. 2.27 by using the equation

T530 − Tsupercon. = �x

(
1

v530
− 1

vsupercon.

)

, (2.34)

where �x is the total length of supercontinuum pulse travel in CCl4 after the
generation. T350 and Tsupercon. are the 530-nm and supercontinuum pulse peak time
locations in Fig. 2.27, and ν530 and νsupercon are the group velocities of the 530-nm
and supercontinuum pulses, respectively.
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Fig. 2.27 Temporal profiles and pulse locations of a selected 10-nm band of a supercontinuum
pulse at different wavelengths propagated through a 20-cm-long CCl4 cell: (a) λ = 530 nm; (b)
λ = 650 nm; (c) λ = 450 nm. Filter effects were compensated. (From Ho et al., 1987)

The duration of the supercontinuum pulse right at the generation location is
either limited by the bandwidth of the measurement from the SPM process or
shortened by the parametric generation process. In either cases, a 10-nm-bandwidth
supercontinuum pulse will have a shorter duration than the incident pulse. After
being generated, each of these 10-nm-bandwidth supercontinuum pulses will travel
through the rest of the sample and will continuously generated by the incident
530 nm over a certain interaction length before these two pulses walk off. The
interaction length can be calculated as (Alfano, 1972)

l = τ
v530vsupercon.

v530 − vsupercon.
, (2.35)

where l is the interaction length over the pump, and the supercontinuum pulses
stay spatially coincident by less than the duration (FWHM) of the incident pump
pulse, and τ is the duration of the supercontinuum pulse envelope. From Eq. (2.35),
one can estimate the interaction length from the measured τ of the supercontinuum
pulse. Using parameters τ = 6 ps, v530 = c/l.4868, and vsupercon. = c/l.4656, the



2 Supercontinuum Generation in Condensed Matter 79

interaction length l = 8.45 cm is calculated. This length agrees well with the
measured beam waist length of 8 cm for the pump pulse in CCl4.

Since no long tails were observed from the supercontinuum pulses to the
dispersion delay times of the Stokes and anti-Stokes supercontinuum pulses, the
supercontinuum was not generated over the entire length of 20 cm but only over
1–9 cm. This length is equivalent to the beam waist length of the laser in CCl4.
The length of the local SPM generation over a distance of 8.45 cm yields a
possible explanation for the 6-ps supercontinuum pulse duration. In addition, a pulse
broadening of 0.3 ps calculated from the group velocity dispersion of a 10-nm band
at 650-nm supercontinuum traveling over 20 cm of liquid CCl4 is negligible in this
case.

Therefore, the SPM pulses have shorter durations than the pump pulse and were
generated over local spatial domains in the liquid cell.

2.11.3 SPM Pulse Duration Reduction

The principle behind the pulse narrowing based on the spectral temporal distribution
of the SPM spectrally broadened in time within the pulse is described in Sects. 2.2
and 10.1. At each time t within the pulse, there is a frequency ω(t). When a pulse
undergoes SPM, the changes in the optical carrier frequency within the temporal
profile are greatest on the rising and falling edges, where the frequency is decreased
and increased, respectively. Near the peak of the profile, and in the far leading
and trailing wings, the carrier frequency structure is essentially unchanged. The
maximum frequency shift is proportional to the intensity gradient on the sides of the
pulse, and this determines the position of the outer lobes of the power spectrum. If
these are then attenuated by a spectral window of suitably chosen width, the wings of
the profile where the high- and low-frequency components are chiefly concentrated
will be depressed, while the central peak will be largely unaffected. The overall
effect is to create a pulse that is significantly narrower in time than the original
pulse duration. A file can be used to select a narrow portion of the pulse, giving rise
to a narrower pulse in time.

A threefold shortening of 80-ps pulses to 30 ps from an Nd:YAG laser broadened
from 0.3 to 4 Å after propagation through 125 m of optical fiber with a monochro-
mator as a spectral window was demonstrated using this technique (Gomes et al.,
1986). The measurements of pulses at different wavelengths of the frequency sweep
of supercontinuum pulses generated by 8-ps laser pulses propagating in CCl4 show
that the continuum pulses have a shorter duration (~6 ps) than the pumping pulses
(Li et al., 1986).

A major advance occurred when a 25-ps laser pulse was focused into a 5-cm-
long cell filled with D2O. A continuum was produced. Using 10-nm-bandwidth
narrowband filters, tunable pulses of less than 3 ps in the spectral range from 480 to
590 nm (Fig. 2.28) were produced (Dorsinville et al., 1987).

http://doi.org/10.1007/978-3-031-06197-4_10
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Fig. 2.28 Streak camera
temporal profile of the 25-ps,
530-nm incident laser pulse
and 10-nm-bandwidth pulse
at 580 nm. The 3-ps pulse
was obtained by spectral
filtering a SPM frequency
continuum generated in D2O.
(From Dorsinville et al.,
1987)

To identify the SPM generation mechanism, the temporal distribution of the
continuum spectrum was determined by measuring the time delay between the
continuum and a reference beam at different wavelengths using a streak camera. The
results are displayed in Fig. 2.29, which is similar to data displayed in Fig. 2.25. The
time delay was ~22 ps for a 140-nm change in wavelength; as predicted by the SPM
mechanism, the Stokes wavelength led the anti-Stokes wavelength (Alfano, 1972).
The delay due to group velocity over a 5-cm D2O cell for the 140-nm wavelength
change is less than 3 ps.

The remaining 18 ps is well accounted for by the SPM mechanism using a 25-
ps (FWHM) pulse and the stationary phase method (Alfano, 1972). Furthermore, a
10-nm selected region in the temporal distribution curve corresponds to an ~2.6-ps
width matching the measured pulse duration (Fig. 2.28). This observation suggests
that by using narrower bandwidth filters, the pulse duration can be shortened to the
uncertainty limit.

2.12 Higher-Order Effects on Self-Phase Modulation

A complete description of SPM-generated spectral broadening should take into
account higher-order effects such as self-focusing, group velocity dispersion, self-
steepening, and initial pulse chirping. Some of these effects are described by
Suydam (Chap. 6), Shen (Chap. 1), and Agrawal (Chap. 3). These effects will
influence the observed spectral profiles.

http://doi.org/10.1007/978-3-031-06197-4_6
http://doi.org/10.1007/978-3-031-06197-4_1
http://doi.org/10.1007/978-3-031-06197-4_3
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Fig. 2.29 Continuum
temporal distribution at
different wavelengths.
Horizontal error bars
correspond to 10-nm
bandwidths of the filter.
(From Dorsinville et al.,
1987)

2.12.1 Self-Focusing

In the earliest experiments using picosecond pulses, the supercontinuum pulses were
often generated in small-scale filaments resulting from the self-focusing of intense
laser beams (Alfano, 1972). Self-focusing arises from the radial dependence of
the nonlinear refractive index n(r) = n0 + n2E2(r) (Shen, 1984; Auston, 1977).
It has been observed in many liquids, bulk materials (Shen, 1984), and optical
fibers (Baldeck et al., 1987a). Its effects on the continuum pulse generation can be
viewed as good and bad. On the one hand, it facilitates the spectral broadening by
concentrating the laser beam energy. On the other hand, self-focusing is a random
and unstable phenomenon that is not controllable. Femtosecond supercontinua are
generated with thinner samples than picosecond supercontinua, so it can reduce but
not totally eliminate self-focusing effects.



82 Q. Z. Wang et al.

2.12.2 Dispersion

Group velocity dispersion (GVD) arises from the frequency dependence of the
refractive index. These effects are described by Agrawal (Chap. 3). The first-order
GVD term leads to a symmetric temporal broadening (Marcuse, 1980). A typical
value for the broadening rate arising from ∂2k/∂ω2 is 500 fs/m-nm (in silica at
532 nm). In the case of supercontinuum generation, spectral widths are generally
large (several hundred nanometers), but interaction lengths are usually small
(<1 cm). Therefore, the temporal broadening arising from GVD is often negligible
for picosecond pulses but is important for femtosecond pulses. Limitations on the
spectral extent of supercontinuum generation are also related to GVD. Although
the spectral broadening should increase linearly with the medium length (i.e.,
�ω(z)max = ω0 n2 a2 z/c�τ ), it quickly reaches a maximum as shown in Fig. 2.10.
This is because GVD, which is large for pulses having SPM-broadened spectra,
reduces the pulse peak power a2 and broadens the pulse duration �τ . As shown in
Fig. 2.25, the linear chirp parameter is decreased by the GVD chirp in the normal
dispersion regime. This effect is used to linearize chirp in the pulse compression
technique.

The second-order term ∂3k/∂ω3 has been found to be responsible for asymmetric
distortion of temporal shapes and modulation of pulse propagation in the lower
region of the optical fiber (Agrawal & Potasek, 1986). Since the spectra of
supercontinuum pulses are exceptionally broad, this term should also lead to
asymmetric distortions of temporal and spectral shapes of supercontinuum pulses
generated in thick samples. These effects have been observed.

In multimode optical fibers, the mode dispersion dominates and causes distortion
of the temporal shapes. This in turn yields asymmetric spectral broadening (Wang
et al., 1989).

2.12.3 Self-Steepening

Pulse shapes and spectra of intense supercontinuum pulses have been found to be
asymmetric (De Martini et al., 1967). There are two potential sources of asymmetric
broadening in supercontinuum generation. The first one is the second-order GVD
term. The second one is self-steepening, which is intrinsic to the SPM process and
occurs even in nondispersion media. Details of the effects of self-steepening can be
found in Suydam (Chap. 6), Shen and Yang (Chap. 1), and Manassah (Chap. 5).

Because of the intensity and time dependence of the refractive index, n = n0 + n2
E(t)2, the supercontinuum pulse peak sees a higher refractive index than its edges.
Because v = c/n, the pulse peak travels slower than the leading and trailing
edges. This results in a sharpened trailing edge. Self-steepening occurs and more
blue-shifted frequencies (sharp trailing edge) are generated than red frequencies.
Several theoretical approaches have given approximate solutions for the electric

http://doi.org/10.1007/978-3-031-06197-4_3
http://doi.org/10.1007/978-3-031-06197-4_6
http://doi.org/10.1007/978-3-031-06197-4_1
http://doi.org/10.1007/978-3-031-06197-4_5
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field envelope distorted by self-steepening and asymmetric spectral extent. Actual
self-steepening effects have not been observed in the time domain.

2.12.4 Initial Pulse Chirping

Most femtosecond and picosecond pulses are generated with initial chirps. Chirps
arise mainly from GVD and SPM in the laser cavity. As shown in Fig. 2.30, the
spectral broadening is reduced for positive chirps and enhanced for negative chirps
in the normal dispersion regime. The spectral distribution of SPM is also affected
by the initial chirp.

2.13 High-Resolution Spectra of Self-Phase Modulation
in Optical Fibers

In bulk materials, self-focusing plays an important role in the SPM process, and the
spectral-broadening changes significantly from laser shot to shot. To obtain a stable,
repeatable SPM spectrum, one would like to keep the cross section constant over
the entire propagation distance in the medium. Optical fibers are ideal materials for
this type of investigation because the beam cross section of a guided wave would
be constant and the self-focusing effect can be neglected. The spectral features of
SPM in optical fibers measured by a piezoelectrically scanned planar Fabry–Perot
interferometer with the resolution of approximately one-third of the laser linewidth
were pioneered by Stolen and Lin (1978), using a 180-ps laser pulse. Measurements
performed on the fine structures of the SPM spectra of picosecond laser pulses by
use of a grating spectrometer with a spectral resolution higher than one-tenth of the
laser linewidth and comparing the spectral profiles with the results calculated by use
of the SPM model are discussed in the following.

2.13.1 Reduced Wave Equation

The optical electromagnetic field of a propagating optical pulse must satisfy
Maxwell’s equations. From Maxwell’s equations, one can obtain the wave equation
that describes the amplitudes of light pulses propagating in optical fibers [See Eq.
(A.19) in Appendix]:

∂A

∂z
+ 1

vg

∂A

∂t
+ i

1

2
k(2)

∂2A

∂t2
= i

ω0n2

c
|A|2A, (2.36)
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Fig. 2.30 Influence of initial
pulse chirping on
SPM-broadened spectra in
optical fibers. Peak
power = 1000 W. (a) C = 50;
(b) C = 0; (c) C = −50 [see
Eq. (2.17)]. (From Baldeck et
al., 1987b)
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The third term on the left-hand side of this equation is the dispersion term.
The absorption of the optical fiber and the higher-order nonlinearities have been
neglected in obtaining Eq. (2.36).
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Changing the variables

τ = t − z

vg
, (2.37)

z = z′ (2.38)

and denoting by a and α the amplitude and the phase of the electric envelope,
respectively, A can be expressed as

A (z, τ ) = a (z, τ ) exp [iα (z, τ )] , (2.39)

where τ is the local time of the propagating optical pulse.
Because the fiber lengths used in the experiment are much smaller than the

dispersion lengths, which can be calculated to be a few kilometers, the dispersion
term in Eq. (2.36) can be neglected. Therefore, Eq. (2.36) further reduces to

∂a

∂z
= 0 (2.40)

∂α

∂z
= ω0n2

c
a2 (2.41)

The analytical solutions for Eqs. (2.40) and (2.41) can be obtained as

a (τ) = a0F (τ) (2.42)

α (z, τ ) = ω0n2

c

∫ z

0

a2 (z′, τ
)
dz′ = ω0n2

c
a0

2F 2 (τ ) z, (2.43)

where a0 is the amplitude, and F(t) is the pulse envelope of the input optical pulse.
Because the pulse duration is much larger than the optical period 2π /ω0, the

electric field at each τ within the pulse has a specific local and instantaneous
frequency that is given by

ω (τ) = ω0 + δω (τ) (2.44)

where

δω (τ) = −∂α
∂τ

= −ω0n2

c
a0

2 ∂F
2 (τ )

∂τ
z (2.45)
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δω(τ ) is the frequency shift generated at a particular local time τ within the pulse
envelope. This frequency shift is proportional to the derivative of the pulse envelope
with respect to τ , the nonlinear refractive index, and the intensity of the pulse.

It can be obtained by the complex-field spectral profiles E(z,ω – ω0) of the
optical pulse affected by SPM by computing the Fourier transformation of its
temporal pulse distribution as

E (z, ω − ω0) = 1
2π

∫
A (z, τ ) exp (−iω0τ) exp (iωτ) dτ

= 1
2π

∫
a (z, τ ) exp

[(
iα
(
z, τ
)]

exp [i (ω − ω0) τ ] dτ
(2.46)

The spectral-intensity distribution of the pulse is given by

|E (z, ω − ω0)|2. (2.47)

Figure 2.31 shows a set of numerical solutions of Eq. (2.47) for laser pulses
at 532 nm. The initial pulse shape is Gaussian. The spectrum of the input laser
is shown in Fig. 2.31a. The length of the optical fiber used in the calculation is
1 m. As the intensity of the input laser pulse increases, the spectrum of the output
signal broadens. Large-intensity oscillations occur at the same time because of
the interference. In the same spectrum, the width of the maxima near the input
laser frequency is smaller than that farther away from the input laser frequency.
The outmost maxima have the largest widths. The salient feature of SPM is the
spectral broadening which is accompanied by oscillations structure. The structure
in the spectra consists of many maximum peaks (Max) where the outermost peaks
are more intense (Also see Agrawal, Chap. 3). These oscillations are caused by
interference. The maximum phase θmax is given by number of maxima peaks in the
SPM spectra by peaks:

PhaseMax = θmax = (Max −1/2) π. (2.48)

For example, Fig. 2.31e has max phase = 9½π and Fig. 2.31f has max
phase = 12½π.

For different spectra, the widths of the maxima at the same wavelength of the
spectra of higher-intensity laser pulses are smaller than are those for the lower-
intensity pulses. The peak intensities of the outermost maxima for all the different
intensities remain the largest, as can be seen in Fig. 2.31b–f. The SPM phase change
is θ = ωn2I(t)z/c. The peak of pulse gives rises to 1 radian after propagating a
distance given by:

Lspm = c/ωn2Ip (2.49)

After traveling a distance given by 5π Lspm, the phase change at the peak will be
5π.

http://doi.org/10.1007/978-3-031-06197-4_3
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Fig. 2.31 Calculated SPM
spectra of 532-nm laser
pulses propagating in an
optical fiber. The core
diameter of the optical fiber
was 2.5 μm.
n2 = 3.2 × 10−16 cm2/W. (a)
Input laser, (b) P0 = 110 W,
(c) P0 = 225 W, (d)
P0 = 460 W, (e) P0 = 630 W,
Max = 10 and Max
Phase = 9½π, (f)
Po = 790 W, Max = 13 and
Max Phase = 12½π. (From
Wang et al., 1994a, b)

The numerical solutions of expression (2.47) for laser pulses at 1064 nm are
displayed in Fig. 2.32. The results are similar to those displayed in Fig. 2.31 for
laser pulses at 532 nm.

2.13.2 Experiment

The experimental arrangement used to measure high-resolution spectra of self-phase
modulation in optical fibers is illustrated in Fig. 2.33. A 10-Hz mode-locked Quantel
Nd:YAG laser system was used to generate laser pulses at 1064 nm and pulses at
532 nm. The 1/e pulse durations were 39 and 28 ps, respectively, and the pulse
energies were approximately 2 μJ and 200 nJ for 1064 and 532 nm, respectively. A
set of color filters was used to select the wavelengths of the laser pulses. The laser
pulses were coupled into a 1-m optical fiber with a 20× microscope objective lens.
A set of neutral-density filters was used in front of the microscope objective lens
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Fig. 2.32 Calculated SPM
spectra of 1064-nm laser
pulses propagating in an
optical fiber. The core
diameter of the optical fiber
was 4 μm.
n2 = 2.28 × 10−16 cm2/W.
(a) Input laser, (b)
P0 = 1800 W, (c)
P0 = 2300 W, (d)
P0 = 3900 W, (e)
P0 = 4900 W, (f)
P0 = 5700 W. (From Wang et
al., 1994a, b)

to control the pulse energy coupled into the optical fiber. The optical signal pulse
was collected with a 20× microscope objective lens. The beam after the collecting
lens was split into two. One beam was used to monitor intensities of the pulses
coupled into the optical fiber by a photomultiplier tube. The other beam was passed
through a spectral analysis system consisting of a 1-m spectrometer combined with
a computer controlled CCD camera. The resolution of the spectral analysis system
was 0.05 A/pixel for light at the 532-nm region and 0.1 A/pixel at the 1064-nm
region.

Optical fibers with a core diameter of 2.5 μm and a cladding diameter of 127 μm
were purchased from Corning Inc. The numerical aperture of these fibers is 0.11.
Optical fibers with a core diameter of 4 μm and a cladding diameter of 125 μm
were purchased from Newport Corporation. Their numerical aperture is 0.1. The
optical fibers with a core diameter of 4 μm support a single mode for 1064-nm
laser pulses and multimodes for 532-nm laser pulses. The 2.5-μm-core optical fibers
support a single mode for 532-nm laser pulses. No detectable 1064-nm laser pulse
was coupled into the 2.5-μm-core optical fiber.
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Fig. 2.33 Experimental arrangement. F1, a set of color and neutral-density filters; F2, F3, neutral-
density filters; L1, L2, 20× microscope objectives; L3, lens. (From Wang et al., 1994a, b)
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Fig. 2.34 Input laser pulse shape. The laser pulse is slightly asymmetric. The leading edge is
shorter than the trailing edge. The dashed curve shows a theoretical fit to the pulse. (From Wang et
al., 1994a, b)

Figure 2.34 displays an input laser pulse at 532 nm measured with a Hamamatsu
2-ps streak camera. The laser pulse is slightly asymmetric. The leading edge is
shorter than the trailing edge. The dashed curve shows a theoretical fit to the pulse.
Because the 532-nm pulse is the second-harmonic generation of the laser pulse at
1064 nm, the pulse width of the 1064-nm pulse is

√
2 times that of the 532 nm pulse,

and the pulse shapes are similar.
The output spectra of the laser pulses at 532 nm with different pulse energies

propagating in a 1-m optical fiber or core diameter 2.5 μm are displayed in Fig.
2.35. The salient feature of the spectra shown in Fig. 2.35 is that the spectra
of the output signal pulses broaden toward both the Stokes and the anti-Stokes
sides. The spectral broadening increases as the power of the input pulse increases.
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Fig. 2.35 Video display of
the spectra of 532-nm laser
pulses propagating in a 1-m
2.5−/−Lm-core optical fiber
with different peak powers.
(a) Input laser, (b)
P0 = 110 W, (c) P0 = 225 W,
(d) P0 = 460 W, (e)
P0 = 630 W, (f) P0 = 790 W,
and (g) P0 = 270 W. (From
Wang et al., 1994a, b)
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In addition, the broadened spectra have large intensity oscillations. In the same
spectrum, the oscillation period is smaller near the central frequency and larger
near both ends of the broadened spectrum. For all the spectra of different input
power, the outermost maxima intensities have the largest intensities. The left-
hand column of Fig. 2.34 displays some spectral curves of the broadened spectra
shown in Fig. 2.35. The outermost maximum intensity on the anti-Stokes side is
larger than that on the Stokes side in the same spectral curve. There are two main
differences between the experimental observations shown in Figs. 2.35 and 2.36
and the theoretical calculations shown in Fig. 2.31. First, the spectral broadening of
calculated spectra are symmetric about the input laser line, whereas the spectral
broadening to the Stokes side is larger than that to the anti-Stokes side in the
experimental observations. Second, the intensities of the maxima in the calculated
spectra are symmetric about the laser line, whereas the intensities of the anti-Stokes-
side maxima are larger than the corresponding maxima on the Stokes side. These
two differences arise from the asymmetric input laser pulse. A set of numerical
solutions of expression (2.47) with the asymmetrical experimental input laser pulse
shown in Fig. 2.33 is displayed in the right-hand column of Fig. 2.34. These
calculated spectra agree well with the experimental observations.

Note that no fitting parameters were used in the theoretical calculations. All the
parameters used in the calculations are deduced from experimental measurements.

Figure 2.37 shows the spectra of the laser pulses at 1064 nm with different pulse
energies propagating in a 1-m optical fiber of 4-μm diameter. The spectral curves
are displayed in the left-hand column of Fig. 2.38. A set of numerical solutions of
expression (2.47) with the asymmetrical experimental input laser pulse is shown in
the right-hand column of Fig. 2.38. For the best fit of the experimental spectra, we
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Fig. 2.36 Digital-intensity spectral curves of 532-nm laser pulses propagating in a I-m 2.5-μm-
core optical fiber with different peak powers. The left-hand column shows the experimental results,
and the right-hand column displays the numerical simulations. (a) Input laser, (b) P0 = 110 W, (c)
P0 = 225 W, (d) P0 = 460 W, (e) P0 = 630 W, (e) P0 = 790 W. (From Wang et al., 1994a, b)

used n2 = 2.28 × 10−16 cm2/W in the calculations, which is approximately 0.7
times its value for 532 nm.

2.13.3 Discussion

The SPM spectra of laser pulses at wavelengths of 532 and 1064 nm were measured
with a high-resolution-grating spectral analysis system. The substructures of the
SPM spectra for single-mode operations were observed and were compared with
the theoretical results. The measured spectra and those calculated from SPM theory
agree well for short pulses propagating in optical fibers. The subspectral structure
can be useful in increasing the accuracy of the all-optical information coding. The
numerical results also show that the third-order nonlinearity of the optical fibers for
1064 nm is approximately 0.7 times the value for 532 nm.

Whereas the modulation structures of the calculated spectral profiles with the
SPM model fit the observed spectra, there is some difference in that the measured
spectra always show a weak peak at the input laser frequency. This peak can be
qualitatively understood by means of the transverse distribution of the intensity of
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Fig. 2.37 Video display of
the spectra of 1064-nm laser
pulses propagating in a 1-m
4-μm-core optical fiber with
different peak powers. (a)
Input laser, (b) P0 = 1800 W,
(c) P0 = 2300 W, (d)
P0 = 3100 W, (e)
P0 = 3920 W, (f)
P0 = 4900 W, (g)
P0 = 5700 W, (h)
P0 = 6900 W, (i)
P0 = 7800 W. (From Wang et
al., 1994a, b)

the laser pulse in the optical fiber. In the calculations, it is assumed that the intensity
of the optical pulse is uniformly distributed over the transverse cross section of the
core of the optical fiber, whereas the laser pulse has a Gaussian distribution in the
cross section for the lowest mode in practice. The laser light at the outermost area
of the fiber core remains at its input wavelength because of the low intensity. The
SPM process occurs near the center of the optical fiber core, where the laser pulse
has the highest intensity.

Various groups have suggested that the continuum generated by picosecond
pulses was not due to SPM because the extent of the spectrum was not in
agreement with the SPM mechanism. The measurements and theoretical fittings
clearly demonstrate the importance of using a well-defined spatial and temporal
beam profile to compare experimental results with theory to confirm the SPM
mechanism for continuum generation.

2.13.4 UV Supercontinuum Lower Limit in Holey Fibers

Two of important characteristics of the supercontinuum are (1) short and long
wavelength extent from UV to NIR and (2) to keep the pulse structure simple to
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Fig. 2.38 Digital-intensity spectral curves of 1064-nm laser pulses propagating in a 1-m 2.5-μm-
core optical fiber with different peak powers. The left-hand column shows the experimental results,
and the right-hand column displays the numerical simulations. (a) Input laser, (b) P0 = 1800 W, (c)
P0 = 2300 W, (d) P0 = 3900 W, (e) P0 = 4900 W, (f) P0 = 5700 W. (From Wang et al., 1994a, b)

one pulse. It is important to operate in the normal dispersion regime or have all-
normal dispersion holey fiber (see Chap. 6 by Alex Heidt) and/or keep the fiber
length long enough where self-phase modulation operates.

Typically, the short wavelength limit of SC generation in a 5 μm size holey
optical fiber is to about 380–400 nm, and the long wavelength can extend to
2400 nm. The UV SC limit most likely arises from linear (1P) and nonlinear two
photon absorption (2PA) process from the IMAG part χ1 of n0 and χ3 of n2 to about
280 nm using tapered optical PC fibers of 620 nm diameter. The index of refraction:
n = n0 + n0i + (n2r + n2i)E2 has real and imaginary parts for linear and nonlinear
parts of the n. The UV SC generation down to λ = 280 nm (see Stark et al., 2012)
is limited by 2PA and is ideal for optically exciting proteins and DNA of biological
materials. See the Chap. 5 authored by Taylor and Travers in this SC book for more
details on UV cutoff via 2PA and Chap. 6 authored by Heidt et al. in this book.

http://doi.org/10.1007/978-3-031-06197-4_6
http://doi.org/10.1007/978-3-031-06197-4_5
http://doi.org/10.1007/978-3-031-06197-4_6
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2.14 High-Resolution Spectra of Cross-Phase Modulation
in Optical Fibers

Cross-phase modulation (XPM) is a two-(or more) beam analog or the self-phase
modulation (SPM) process. It is similar to SPM, but the phase modulation is caused
by the nonlinear refractive index change induced by other more intense optical
pulses. When a weak optical pulse is propagating with a strong optical pulse, the
phase of the weak optical pulse is modulated by the index change induced by the
strong optical pulse to produce spectral broadening. This process is called XPM,
which plays an important role in some ultrabroad supercontinuum generations.

XPM in optical fibers can be isolated under certain conditions so that the
features of XPM can be observed. In this section, experiments performed on the
fine structures of the SPM and XPM of picosecond laser pulses using a grating
spectrometer with a spectral resolution higher than one tenth of the laser linewidth
will be presented. Measured spectral profiles have been compared and discussed
with the calculations of the SPM and XPM model (in Sect. 2.13).

2.14.1 Reduced Wave Equation

Similar to that in Sect. 2.13, from Maxwell’s equations, one can obtain the wave
equation that describes the amplitudes of light pulses propagating in optical fibers
for XPM:
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)
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where ω1 and ω2 are the carrier frequencies of the pump and the probe pulses, and
υg1 and υg2 are the group velocities. k(2)1 and k(2)2 are the group-velocity dispersions

at ω1 and ω2, respectively, n2(ω1) = 3 χ
(3)
1111 (ω1 = ω1 + ω1− ω1)/8 n0 (ω1),

and n2(ω2) = 3 χ
(3)
1111 (ω2 = ω2 + ω2− ω2)/8 n0 (ω2) are the nonlinear refractive

index coefficients, and n0(ωi) is the linear refractive index. Since the fiber length
used in the experiment is much smaller than the dispersion length, which can be
calculated to be a few kilometers, the dispersion term in Eqs. (2.50a) and (2.50b)
can be neglected.

Changing the variables

τ = t − z

vg1
, (2.51)
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z = z′ (2.52)

and denoting by ai and αi the amplitude and the phase of the electric envelope,
respectively, Ai can be expressed as

Ai (z, τ ) = ai (z, τ ) exp [iαi (z, τ )] , (2.53)

Where i = 1, 2 and τ is the local time of the propagating optical pulse.
Considering the fiber lengths used in the experiment are much smaller than the

dispersion lengths, which can be calculated to be a few kilometers, the dispersion
term in Eq. (2.50a) can be neglected. Therefore, Eq. (2.50b) further reduces to
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= 0, (2.54a)
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The analytical solutions for Eqs. (2.54a), (2.54b), (2.54c), and (2.54d) can be
obtained as

a1(T ) = a10F1(T ), (2.55a)
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a1(T ) = a10F1(T ), (2.55c)
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where ai0 are the amplitudes, Fi(t) are the pulse envelopes, T = τ /T0, Lw =
T0/
(

1
vg2

− 1
vg1

)
is the walk-off length of the pump and probe pulses, and T0 is

the 1/e pulse duration.
One can obtain the field spectral profiles of XPM by computing the Fourier

transformation of its temporal pulse distribution as

Ei (z, ω − ωi) = 1

2π

∫
ai (z, τ ) exp

[(
iαi

(
z, τ
)]

exp [i (ω − ωi) τ ] dτ.

(2.56)

The spectral-intensity distribution of the pulse is given by

|Ei (z, ω − ωi)|2. (2.57)

2.14.2 Experiment

The experimental arrangement is shown in Fig. 2.39. A 10-Hz mode-locked
Continuum Nd:YAG laser system was used to generate linearly polarized laser

Fig. 2.39 Experimental arrangement: F1, a set of color and neutral-density filters; F2–F3, neutral-
density filters; L1, L2, 20× microscope objectives; L3, lens; BS’s, beam splitters; D1, D2, detectors;
M’s, mirrors. Inset: The pulse shape of the 532-nm laser pulse generated from the laser system. The
laser pulse is slightly asymmetric. The leading edge is shorter than the trailing edge. The dashed
curve shows a theoretical fit to the pulse. (Reprinted with permission from Wang et al., 1994b ©
Optical Society of America)
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pulses at 1064 and 532 nm. An electronic optical shutter in the laser cavity allows
for single-pulse operation. The inset shows an input laser pulse at 532 nm measured
with a Hamamatsu 2-ps streak camera. The laser pulse is slightly asymmetrical.
The leading edge is shorter than the trailing edge. The dashed curve shows a
theoretical fit to the pulse. The leading part of the dashed curve is the front part
of a Gaussian pulse with FWHM of 40 ps. The trailing part is the back part of a
Gaussian pulse with a FWHM of 50 ps. Because the 532-nm pulse is the second-
harmonic generation of the laser pulse at 1064 nm, the pulse width of 1064 nm pulse
is approximately

√
2times that of the 532-nm pulse. The pulse shapes are similar.

The pulse energies were approximately 2 mJ and 200 nJ for 1064 and 532 nm,
respectively. The 1064- and 532-nm laser pulses were separated by a wavelength-
selective beam splitter (WBS). These beams were combined by another WBS after
propagating along different paths. A polarization rotator was inserted into the 1064-
nm beam path to change the polarization to be parallel to that of the 532-nm beam.
The optical path of the 532-nm pulse was controlled by variable optical delay. Two
sets of filters were used in the two different paths to control the pulse energies.
The intensities of the laser pulses were monitored with a photomultiplier tube
and a photodiode. The laser pulses were coupled into a 1-m optical fiber with a
20× microscope objective lens. The output signal pulse was collected with a 20×
microscope objective lens. An optical fiber with core diameter of 4 μm, a cladding
diameter of 125 μm, and a numerical aperture of 0.11 was purchased from Newport.
This optical fiber supports a single mode for 1064-nm pulses and multimodes for
532-nm laser pulses. By carefully adjusting the coupling to the optical fiber, we
coupled more than 90% of light at 532 nm into the lowest mode of the fiber. The
small portion of light at 532 nm coupled into higher modes was removed by a
mode scrambler applied 5 cm away from the output end of the optical fiber. The
output signal beam was passed through a spectral analysis system consisting of
a 1-m spectrometer combined with a computer-controlled CCD camera. A 1200-
groove/mm grating blazed at 1000 nm was used in the spectrometer, which enabled
us to measure effectively the first-order spectrum of an optical pulse at the 1064-
nm region and the second-order spectrum of an optical pulse at the 532-nm region
simultaneously. The resolution of the spectral analysis system was 0.01 nm/pixel
and 0.005 for the 1064- and 532- nm regions, respectively.

The output XPM spectra of the probe pulse at 532 nm and the SPM spectra of the
pump laser pulse at 1064 nm propagating in 1-m optical fiber are shown in Fig. 2.40.
The spectrum of the input probe pulse is shown in Fig. 2.40a. The XPM spectra for
different initial time delays between the pump and the probe pulses at a constant
pump intensity are shown in Fig. 2.40b–d. The SPM spectrum of the pump pulse
is shown in Fig. 2.40e. When the pulses coincide at the input end of the fiber, the
probe pulse sees only the trailing part of the pump pulse when it propagates in the
optical fiber, because of the walk-off effect. The phase of the probe pulse is then
modulated by the induced index change caused by the trailing edge of the pump
pulse, and the spectrum of the probe pulse is shifted to the anti-Stokes-side only,
as shown in Fig. 2.40b. When the probe pulse is 31 ps ahead of the pump pulse at
the fiber entrance, the phase of the probe pulse undergoes a symmetric modulation
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Fig. 2.40 Video display of the SPM spectra of the pump pulse at 1064 nm and the XPM spectra
of the probe pulse at 532 nm propagating in 1-m, 4-μm-core optical fiber with different initial
time delays between the pump and probe pulses: (a) input laser linewidth, (b) td = 0 ps, (c)
td = 31 ps, (d) td = 63 ps, (e) SPM spectrum of the pump pulse. The peak power of the pump
pulse is −2000 W. (Reprinted with permission from Wang et al., 1994b © Optical Society of
America)

on both the leading and the trailing edges of the pump pulse in the optical fiber.
The XPM spectrum broadens toward both the Stokes and the anti-Stokes sides, as
can be seen from Fig. 2.40c. When the probe pulse is initially set approximately
63 ps before the pump pulse, the probe pulse sees only the leading part of the pump
pulse in the optical fiber. The spectrum of the probe pulse broadens to the Stokes
side only, as displayed in Fig. 2.40d. In addition, the intensity oscillation structures
of the XPM and SPM spectra caused by the interference are resolved because of
the high spectral resolution of the measurement system. Both the XPM and SPM
spectra have large intensity oscillations. In the same spectrum, the oscillation period
is smaller near the input frequency and gets larger as the spectrum goes further away
from the input frequency. For pump pulses at 1064 nm, Fig. 2.40e shows that the
SPM spectral broadening to the Stokes side is larger than that to the anti-Stokes
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side. This effect arises from the asymmetric temporal distribution of the input laser
pulse. The leading edge of the input laser pulse is shorter than the trailing edge. For
all the cases, the spectral broadenings increase as the pump intensity increases.

2.14.3 Discussion

In Fig. 2.41, the digitized experimental spectral curves and the numerical calcula-
tions of the changes of the XPM and SPM spectra of the probe and pump pulses are
displayed in the left and the right columns, respectively. In the left-hand column of
Fig. 2.41, the thick solid curves are the digitized XPM spectral curves of the probe
pulse, and the thin solid curves are the experimental SPM spectra of the pump pulse.
In the right-hand column, the solid curves are the XPM spectra of the probe pulse,
and the dotted curves are the SPM spectra of the pump pulse. The spectra of the
input laser pulses are shown in Fig. 2.41a. Figure 2.41b–d show the XPM and SPM
spectra for different initial time delays between the probe and the pump pulses at a

Fig. 2.41 SPM of the pump pulse at 1064 nm and XPM spectra of the probe pulse at 532 nm
propagating in an optical fiber with different initial time delays. The left-hand column shows
the experimental results, and the right-hand column shows the theoretical calculations. The
core diameter of the optical fiber was 4 μm, and n2 = 3.2 × 10−16 cm2/W for 532 nm and
n2 = 1.79 × 10−16 cm2/W for 1064 nm. (a) Input laser pulse, (b) td = 0 ps, (c) td = 31 ps,
(d) td = 63 ps. The peak power of the pump pulse is 2000 W. (Reprinted with permission from
Wang et al., 1994b © Optical Society of America)
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constant pump intensity. The theoretical results for td = 0 and td = 63 ps reasonably
agree with the experimental results shown in Fig. 2.41b–d.

For the best fit of the experimental spectra, n2 = 1.79 × 10−16 cm2/W at 1064 nm
was used in the calculations, that is ~0.56 times the value for n2 at 532 rm. Because
of the high resolution of the SPM and XPM spectra, small changes of the XPM and
SPM spectra caused by the small differences of the nonlinearity can be resolved. By
fitting the spectral change, we can measure the small difference between the third-
order nonlinearities at the wavelengths of the pump and probe pulses. With our high
spectral resolution, depending on the stability of laser pulses, the accuracy of the
detected dispersion of the third-order nonlinearity between the pump and the probe
wavelengths is estimated to be ~5%.

2.15 Recent Developments of Supercontinuum Generation

Since the discovery made 51 years ago by Alfano and Shapiro (1970a), the
supercontinuum generation has been the subject of numerous investigations in a
wide variety of nonlinear media and various applications in Physics, Chemistry,
Biology, and soon to Medical fields. Over past 24 years, there has been a surge of
activity in supercontinuum field using various types of photonic crystal fibers after
the first introduction (Russell et al., 1996, 1997). The advancement in the generation
of ultrashort laser pulses led to the production of a wider supercontinuum generation
that resulted in applications of supercontinuum generation in a diverse range of
fields. These applications include optical coherence tomography (Hartl et al., 2001;
Hsiung et al., 2004), frequency metrology (Ranka et al., 2000; Jones, 2000; Schnatz
& Hollberg, 2003), fluorescence lifetime imaging (Dunsby et al., 2004), optical
communications (Takara et al., 2005; Morioka et al., 1993), gas sensing (Sanders,
2002; Ere-Tassou et al., 2003), and many others. The practice of these sources
has created a feedback loop whereby the scientists utilizing the supercontinua
are demanding better customizable continua to suit their particular applications.
This has driven researchers to develop novel methods to produce these continua
and to develop theories to understand their formation and aid future development.
Rapid progress in supercontinuum generation has been made since 2000. Extremely
broad supercontinuum spectra have been produced with various kinds of photonic-
crystal optical fibers, optical waveguides, and engineered integrated bulk. Spectrum
of supercontinuum generation covers the wider wavelength regions in the deep
ultraviolet (DUV), the ultraviolet (UV), the visible, near infrared (NIR), and the
infrared (IR).
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2.15.1 Nonlinear Refractive Index of Materials Used
in Supercontinuum Generation

Buckingham (1955; Boyle et al., 1966; Buckingham & Hibbardas, 1968) expanded
on John Kerr’s work (Kerr, 1875) by introducing the hyperpolarizability of the first
and second kinds. These became most important parameters in nonlinear optics
related to the nonlinear index change n2 as the main mechanism for supercontinuum
generation, higher harmonic generation, and attosecond pulse generation. The third-
order nonlinearity χ(3) makes the refractive index to depend on the intensity of light
propagating through the medium (Maker et al., 1964; Maker & Terhune, 1965). As
optical pulses become shorter and intense, the third-order nonlinearity χ(3) becomes
of increasing interest because its role in Supercontinuum generation via n2. When
optical waves propagate through a medium with the inversion symmetry, third-order
nonlinearity can be conveniently described as an intensity dependent index (Yariv,
1975) by average over many optical cycles:

n = n0 + n2

〈
E2
〉
, (2.58)

where n0 is the linear refractive index, E is the applied optical electric field, and n2
is the nonlinear refractive index. Buckingham gave the instantaneous index n(t) with
the full form of E(t) which forms the response of n(t) to electronic and molecular
motions.

Measurements of the nonlinear refractive index were performed for various
materials. Tables 2.4a, 2.4b, 2.4c, and 2.4d list measurement results of some optical
materials (Bokov, 1974; Milam et al., 1977; Adair et al., 1989; etc.).

The units of that quantity are m2/W (or cm2/W) in the SI system, but in older
literature, one finds n2 values in esu units. For the conversion of such units, Eq.
(2.59) can be used:

n2
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m2/W

) = 40π
c
n2(esu)
n

= 4.19 × 10−7 × n2(esu)
n

.
(2.59)

where n is the refractive index.
For example, for liquid Kr, n = 1.30, n2 = 1.36 × 10−13 esu

n2
(
m2/W

) = 4.19 × 10−7 × 1.36×10−13

1.30

(
m2/W

)
,

= 4.38 × 10−20 (m2/W
)
,

= 4.38 × 10−16 (cm2/W
)
.
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Table 2.4b Nonlinear refractive-index coefficients γ of fluoride crystals measured interferomet-
rically using linearly polarized 125 ps, 1064 nm laser pulse and calculated from Eqs. (2.3a and
2.3b)

γ (10-20m2/W)a

Material Structure type nD V Measured Calculated

LiF Cubic (NaCl) 1.392 99 1.05 ± 0.30 1.18
NaF Cubic (NaCl) 1.326 85 1.37 ± 0.34 1.19
CaF2 Cubic (fluorite) 1.434 95 1.90 ± 0.26 1.42
SrF2 Cubic (fluorite) 1.438 92 1.76 ± 0.29 1.51
BaF2 Cubic (fluorite) 1.475 82 2.85 ± 0.57 1.97
CdF2 Cubic (fluorite) 1.576 61 3.87 ± 0.54 3.93
PbF2 Cubic (fluorite) 1.769 34 11.7 ± 2.90 13.97
MgF2 Tetragonal (rutile) 1.378 (o)1.389 (e) 108 0.92 ± 0.31 0.99
LaF3 Hexagonal (tysonite) 1.603 (o)1.600 (e) 57 3.95 ± 0.72 4.63
CeF3 Hexagonal (tysonite) ≈1.60 ≈55 4.06 ± 0.93 4.85
LiYF4 Tetragonal (scheelite) 1.457 (o)1.477 (e) 93 1.72 ± 0.20 1.56

From Milam et al. (1977)
aTo convert to n2(esu), multiply γ (m2/W) by 2.39 ± 106n

(3) n2
(
10−13esu

) = K
(nd−1)

(
n2
d+2

)2

v
[
1.517+(n2

d+2
)
(nd+1)v/6nd

]1/2

2.15.2 Mid-Infrared Supercontinuum Generation Covering
1.4–13.3 μm

The mid-infrared spectral region is of great technical and scientific interest because
most molecules display fundamental vibrational absorptions in this region, leaving
distinctive spectral fingerprints (Schliesser et al., 2012; Allen, 1998).

The interaction of mid-IR radiation with a given sample provides a spectral
fingerprint useful for identification of the sample. The mid-IR spectrum results
from the absorption of specific frequencies of mid-IR radiation based on the
chemical structure of the sample. For this reason, the peaks and troughs in a mid-IR
spectrum are very specific to the sample measured. This makes mid-IR spectroscopy
well suited for a wide range of applications involving materials identification and
characterization for measurements ranging from the analysis of fuels to food safety
and detection of counterfeit materials. These applications and many others benefit
from the fundamental bands measured with mid-IR, which yield a higher intensity,
less convoluted spectra than the overtone and combination bands measured with
near-IR and visible radiation.

Mid-IR spectroscopy is widely used by researchers and educators for basic
and applied research and for teaching labs in Physics, Chemistry, and Biomedical
courses, such as early cancer diagnostics (Seddon, 2011), gas sensing (Allen, 1998;
Eggleton et al., 2011), and food quality control (Wegener et al., 1999).

A mid-infrared supercontinuum spanning 1.4–13.3 μm is generated using short
pieces of ultrahigh numerical-aperture step-index chalcogenide glass optical fiber by
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Table 2.4c Nonlinear- and linear-refractive index of optical crystals (o denotes ordinary, e
extraordinary)

Linear –index data Nonlinear-index data

Sample n(1.06 μm) Abbe number vd Measured n2(10−13esu)
Calculated
n2(10−13esu)

LiF [100] 1. 3866a 98.0 0.26 0.40
NaF [100] 1. 3213a 85.2 0.34 0.38
KF [100] 1. 3583a 97.9 0.75 0.36
NaCl [100] 1. 5312a 42.9 1.59 2.28
KC1 [100] 1. 4792a 44.1 2.01 1.84
NaBr [100] 1.6228a 31.7 3.26 4.74
KBr [100] 1. 5435a 33.7 2.93 3.41
MgF2(o) 1. 3735b 104.9 0.25 0.34
CaF2 [100] 1. 4285c 95.1 0.43 0.49
SrF2 [100] 1. 4328b 93.9 0.50 0.50
CdF2 [100] 1. 56d 61.0 3.95 1.37
BaF2 [100] 1. 4682b 81.8 0.67 0.70
LaF3 (o) 1.60* 57.0 1.4 1.78
CeF3 (o) ∼1.60c 1.3
AgCl
(polycryst.)

2.020b 21.2 23.3 23.0

MgO [100] 1. 72c 53.4 1.61 2.8
CaO [100] 1. 83e 5.20
SrO [l10] 1. 81e 5.07
ZnO (e) 1. 96c 11.6 23.0 57.6
ZnO (o) 1. 99c 12.3 25.0 45.0
A12O3(o) 1. 75c 71.8 1.23 1.9
A12O3(e) 1. 75c 75.2 1.30 1.8
Ga2O3 1. 96b 5.80
Y2O3 1. 92a 37.5 5.33 7.2
Er2O3 1. 96f 4.53
SiO2 (fused) 1. 4496c 67.8 0.85 0.83
SiO2 (quartz)
(o)

1. 5342c 71.6 1.12 1.06

SiO2 (quartz)
(e)

1. 5429c 70.1 1.16 1.13

TiO2 2. 48b 9.8 55.8 189
ZrO2 2. 12b 35.8 5.8 12.6
BeAl2O4 1.73b 72.5 1.46 1.74
MgAl2O4 1. 73b 60.6 1.50 2.3
CaMgSi2O6 1. 67g 1.73
YAIO3 (γ ) 1. 933b 51.2 3.37 4.88
Y3A15O12
(YAG)

1. 822b 52.4 2.7 3.6

(continued)
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Table 2.4c (continued)

Linear –index data Nonlinear-index data

Sample n(1.06 μm) Abbe number vd Measured n2(10−13esu)
Calculated
n2(10−13esu)

Gd3Sc2Al3Ol2
(GSAG)

1. 891h 48.0 4.0 5.6

Gd3Sc2Ga3O12
(GSGG)

1. 943i 37.3 5.5 8.0

Gd3Ga5O12
(GGG)

1. 945b 37.6 5.8 8.0

Y3Ga5O12
(YGG)

1. 912j 40.0 5.2 5.8

La3Lu2Ga3O12
(LLGG)

1.930i 36.4 5.8 8.2

SrTiO3 2. 31c 13.6 26.7 83.0
CaCO3 (o) 1. 6425c 47.6 1.11 2.7
CaCO3 (e) 1. 4795c 76.8 0.83 0.79

Reprinted with permission from Adair et al. (1989) © The American Physical Society

Table 2.4d Nonlinear refractive index of optical materials

Materials Wavelength Nonlinear index (n2)

Ar (gas) 800 nm 1.08 × 10−19 cm2/W bar (Wang et al., 2013)
1800 nm 6.65 × 10−20 cm2/W bar (Wang et al., 2013)
1055 nm 10.9 × 10−20 cm2/W (Bree et al., 2010)

Ar (liquid) 530 nm 2.04 × 10−16 cm2/W (Alfano, 1972)
Kr (liquid) 530 nm 4.38 × 10−16 cm2/W (Alfano, 1972)
BK7 810 nm 3.625 × 10−16 cm2/W (Lu et al., 2012)
Methanol (liquid) 1064 nm 1.8 × 10−15 cm2/W (Rau et al., 2008)
CdS 532 nm −3.79 × 10−11 cm2/W (Ganeev et al., 2003)
As2S3 1064 nm 5.09 × 10−10 cm2/W (Ganeev et al., 2003)
GaAs 1060 nm 4 × 10−14 cm2/W (Hurlbut et al., 2007)
Si 1600 nm 5.5 × 10−14 cm2/W (Dremetsika et al., 2016)

launching intense ultrashort pulses with a central wavelength of 6.3 μm (Petersen
et al., 2014). Typical output spectrum and beam profile are shown in Fig. 2.42.

2.15.3 Enhanced Bandwidth of Supercontinuum Generated
in Microstructured Fibers

Coherent octave spanning supercontinuum can be generated in photonic crystal fiber
by launching into the fiber femtosecond pulses with a wavelength located near the
zero-dispersion wavelength (λZD) of the photonic crystal fiber (Holzwarth et al.,
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Fig. 2.42 Experimental supercontinuum generation results with the pump centered at 4.5 μm.
(a) Input pump spectrum (dashed line) and spectral profile at maximum pump power (solid line),
showing a relatively flat supercontinuum (2.08–10.29 μm at −20 dB from the signal peak) with
distinct soliton peaks above the zero dispersion wavelength of ~5.83 μm, especially at 11 μm.
(b) Spectral evolution with increasing pump peak power, showing a gradual redshift of distinct
soliton peaks above the zero dispersion wavelength, and a combination of SPM and dispersive
waves below the pump wavelength. (c, d) Fiber output near-field beam profile corresponding to
the spectrum in a for all wavelengths (c) and beam profile for wavelengths above 7.3 μm only (d),
showing that the long wavelengths are still confined to the core. (Reprinted from Petersen et al.,
2014 © Macmillan Publishers Limited)

2000). For a pump wavelength on the anomalous side of λZD, it has been shown
that the fundamental mechanism leading to the supercontinuum generation mainly
involves two distinct physical effects: Amplification of dispersive waves matched in
phase with the pump extends the supercontinuum to the blue (Husakou & Hermann,
2002, 2003; Akhemediev & Karlsson, 1995), whereas pulse splitting and multiple
soliton self-frequency shifts are responsible for the spreading of the supercontinuum
into the infrared (Genty et al., 2002; Dudley et al., 2002).

Designing a photonic crystal fiber so that it has two λZD’s, one in the visible
(λZDV) and another in the vicinity of 1500 nm (λZDI), and properly adjust the pump
wavelength, a substantial increase of the bandwidth of the supercontinuum in the
infrared has been obtained while still efficiently generating the blue wavelength
components (Genty et al., 2004a, b). Figure 2.43 shows the typical supercontinuum
spectra.
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Fig. 2.43 Supercontinuum spectrum recorded when (a) tuning the pump wavelength and (b) vary-
ing the input pulse. (c) Supercontinuum generated in 50 cm of fiber with visible λZDV = 690 nm
and infrared λZDI = 1390 nm. (Reprinted with permission from Genty et al., 2004b © Optical
Society of America)

2.15.4 Deep-Ultraviolet to Mid-Infrared Supercontinuum
Generation

Triggered by a tremendous number of applications, such as semiconductor metrol-
ogy and inspection (Stokowski & Vaez-Iravani, 1998), pump-probe spectroscopy
(Riedle et al., 2013; Petersen et al., 2018a), pollution monitoring (Popov et al.,
1997), optical coherence tomography, and imaging (Colley et al., 2007; Petersen
et al., 2018b), fiber-based laser sources capable of covering the electromagnetic
spectrum from DUV (wavelengths <350 nm) up to mi-IR have attracted the
scientific attention around the globe. One of the most promising routes toward
development of ultrabroad bandwidth sources is supercontinuum generation.

Most reports on supercontinuum generation in the literature are based on solid-
core silica photonic crystal fibers (PCF) where the micro-structured cladding of
the fiber allows tailoring of the group velocity dispersion (GVD), which is an
important property that greatly influences the nonlinear effects (Dudley et al.,
2006). Despite silica solid-core PCF-based supercontinuum sources now being
commercially available, they can only operate in a limited transmission range
around 350–2300 nm due to the limited transparency window of the silica material.
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In 2015, Jiang et al. reported for the first time the fabrication of a fluoride (ZBLAN)
glass-based solid-core PCF with high air-filing fraction, and they demonstrated a
broad supercontinuum spanning more than three octaves in the spectral range of
200–2500 nm (Jiang et al., 2015).

Experimental demonstration of multioctave supercontinuum generation spanning
from DUV to mid-IR in a gas-filled HC-ARF pumped directly in the mid-IR region
at 2460 nm using a tunable optical parametric amplifier (OPA) system was first
reported in 2019 (Adamu et al., 2019). By coupling 100 fs, 20 μJ pulses into a
specially designed argon (Ar) filled HC-ARF under 30 bar pressure, soliton self-
compression dynamics enabled broadening from 200 to 4000 nm. Furthermore, it
was experimentally demonstrated how the pulse energy and the pressure have a
crucial role in the mid-IR spectral broadening and emission of DWs in the DUV.
Typical spectra are shown in Fig. 2.44.

The supercontinuum embedded in a 4.3-octave-wide spectrum spans from
200 nm up to 4000 nm when 8 μJ, 100 fs pulses are injected into the fiber filled with
Ar at a pressure of 30 bar. A total measured average output power of 5 mW (at 1 kHz

Fig. 2.44 (a) Measured spectral evolution and DW formation in the near/mid-IR range indicating
the spectrum broadening as a function of measured output power for a fixed pressure of 30 bar. (b)
Spectral broadening and DW emission as a function of pressure in the DUV/visible. (c) Pressure
dependent evolution of the spectrum at a fixed low power of 5 mW over the full spectrum from 10
up to 30 bar with a step of 5 bar. (Reprinted from Adamu et al., 2019)
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repetition rate) was obtained with a strong resonant DW emission at 275 nm. Finally,
it was experimentally demonstrated how the pump energy and pressure increases
the nonlinearity resulting in increased mid-IR spectral broadening and efficient DW
emission in the DUV range. The current work constitutes an efficient route toward
ultrafast source for spectroscopy both in the mid-IR molecular fingerprinting and in
the DUV spectral region.

2.15.5 Summary of Selected Supercontinuum Generation
Since 2000

Because of its ability to confine light in hollow cores or with confinement
characteristics not possible in conventional optical fiber, photonic crystal fiber
(PCF) (Knight et al., 1996), the nonlinearity can be increased and the zero
dispersion wavelength can be engineered in PCF. These two properties make PCF an
excellent medium for supercontinuum generation. There have been a lot of work for
supercontinuum generation using PCF (Dudley et al., 2006). There are also other
areas of development of supercontinuum generation, including the development
of fibers to include new material, production techniques, and tapers, generating
supercontinuum in gases, crystal waveguides, and gas-filled hollow-fibers.

An in-depth discussion of these achievements is beyond this chapter. Table 2.5
highlights the major achievements in supercontinuum generation since 2000.

2.16 Overview

Supercontinuum generation is the generation of bursts of E&M which cover wide
band of frequency in the so-called “Maxwell Rainbow” most noted as in visible
earlier in the “white light,” which can be obtained by passing intense picosecond
or femtosecond pulses through various materials in gases, liquids, and solids. The
supercontinuum is an universal effect and enabling technology. Supercontinuum
now covers most of Maxwell Rainbow, the X ray, XUV, UV, Visible, NIR, MIR,
IR, THz, and RF spectra zones. The nonlinear response of the medium n2 and the
pulse envelope yield a phase modulation that usually initiates the wide frequency
broadening (up to 10,000 cm−1). The extreme femtosecond laser pulse changes
the carrier envelope phase (CEP) in time from electronic cloud and molecular
changes causing the ultrasuper broadening and higher harmonic generation over
large portion of the Maxwell Rainbow. The phase modulation can be generated by
the pulse itself, a copropagating pump pulse, or the copropagating stronger pulse in
cross-phase modulation (XPM). These different configurations are called self-phase
modulation (SPM), induced-phase modulation (IPM), and cross-phase modulation
(XPM), respectively. The SPM process for supercontinuum generation in various
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materials was reviewed in this chapter. These latter two processes are closely related
to each other and are described by Baldeck et al. (Chap. 4) and Agrawal (Chap. 3).

In the early beginning days of supercontinuum generation using an 8-ps laser
at 530 nm, typical Stokes sweeps were 4400 cm−1 in a calcite crystal of length
4 cm, 3900 cm−1 in a quartz crystal of length 4.5 cm, 1100 cm−1 in extradense flint
glass of length 7.55 cm, 3900 cm−1 in NaCl of length 4.7 cm, and 4200 cm−1

in both BK-7 and LBC-1 glasses of length 8.9 cm. Sweeps on the anti-Stokes
side were typically 6100 cm−1 in calcite, 5500 cm−1 in quartz, 7300 cm−1 in
NaCl, and 7400 cm−1 in BK-7 and LBC-1 glasses. An infrared supercontinuum
spanning the range from 3 to 14 μm can be obtained by passing an intense laser
pulse generated from a CO 2 laser through GaAs, AgBr, ZnSe, and CdS crystals.
Near- and medium-infrared spectral sweeps of 3200 cm−1 on the Stokes side and
4900 cm−1 on the anti-Stokes side can be realized by passing a strong 1.06-μm
pulse through a KBr crystal of length 10 cm. Sweeps on the order of 1000 cm−1 are
observed to both the red and blue sides of 530 nm in liquid argon. Similar spectral
sweeps are observed in liquid and solid krypton arising from electronic mechanism
for SPM. Using a picosecond laser train of wavelength 530 nm, the spectra were
broadened up to 3000 cm−1 to either side of the laser frequency in a 5-cm-long
magnetic KNiF3 single crystal. Production of SPM near electronic levels of PrF3
crystal and enhancement of supercontinuum in water by addition of Zn2+ and K+
cations have been also discussed. The temporal properties of supercontinuum pulses
have been described. Higher-order effects on SPM arising from dispersion, self-
focusing, self-steepening, and initial pulse chirping were briefly described.

SPM will continue to be an important nonlinear process in science and technol-
ogy and has been one of the most important ultrafast nonlinear optical processes for
more than 50 years since the advent of ultrashort laser pulses.

In most recent developments (Alfano et al., 2021a), ultrasupercontinuum (USC)
broadening has been theoretically stimulated from the slow nonelectronic response
to the fifth- and third-order susceptibilities under the influence of an extremely high-
intensity femtosecond laser pulse to produce spectra broadening changes extending
from extreme UV to DC. The theoretical results show that a high-intensity pulse
as high as on the order of ~1016 W/m2 can influence the fourth-order refractive
index arising from fifth-order susceptibility large enough that the nonlinear n4I0

2

term to overtakes the n2I0 term to produce the ultrasupercontinuum broadening in
liquids such as CS2 and rare-gas liquids such as Argon. There has been experimental
verification that the supercontinuum extends from X-rays, UV to MIR by many
researchers using various states of matter.

In addition, an electronic cloud distortion model is also proposed (Alfano et al.,
2021b) based on the optical cycle response of rare-gas molecules to explain the
High-order Harmonic Generation (HHG) and supercontinuum generation from the
interaction of high-intensity ultrafast pulses. The theory reveals the salient experi-
mental features of HHG: three regimes based on electronic self-phase modulation
(ESPM) from nonlinear Kerr index n2, the cutoff frequency using the method of
the stationary phase on ESPM, and spectral broadening about the N harmonics
supporting the theoretical ansatz presented in this paper with prior supporting

http://doi.org/10.1007/978-3-031-06197-4_4
http://doi.org/10.1007/978-3-031-06197-4_3
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experimental results. The outcome from ESPM is a supercontinuum background
superimposed with the sharp HHG which was experimentally observed before. The
model also shows that the odd higher harmonic modes can be coupled in phase by
Kerr index change to generation the attosecond laser pulses.

The uses of supercontinuum as an enabler will be important for many appli-
cations to understand the fundamentals of the underlying physics in biology,
chemistry, condensed matter, and medicine processes. In communication and
computation, the bandwidths of supercontinuum will enhance by increasing the
bits/sec to unheard of limits!

A.1 Appendix: Nonlinear Wave Equation with Group
Velocity Dispersion

We start with Maxwell equations for the electric and magnetic fields E and H in
Gaussian units

∇ × E = − 1
c
∂B
∂t
,

∇ × H = 1
c
∂D
∂t

+ 4π
c
J,

∇ · D = 4πρ

∇ · B = 0.

(A.1)

The helping equations are D = εE and B = μH, and J and ρ are the current
and charge densities, respectively. For nonmagnetic material, B ≈ H. The refractive
index of an isotropic material possessing nonlinearity can be written as

n (ω) = [ε (ω)]1/2 = n0 (ω)+ n2|E|2, (A.2)

where n0(ω) is the linear refractive index, and n2 the nonlinear refractive index. In
the absence of sources, from Maxwell equations, one can readily obtain the wave
equation

∇2E (r, t)− 1

c2

∂2

∂t2
DL (r, t) = 2n0n2

c2

∂2

∂t2

(
|E|2E (r, t)

)
, (A.3)

where DL(r, t) is the linear electric displacement vector. In obtaining the equation,
we have used ∇ × (∇ × E) = ∇ (∇ · E) − ∇2E) ≈ − ∇2E and neglected the (n2)2

term.
The electric field can be written as

E (r, t) = �(x, y)E (z, t) , (A.4)
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where �(x, y) is the transverse distribution function. Substitute Eq. (A.4) into the
wave equation, and averaging over transverse coordinates, we have

∂2

∂z2E (z, t)− 1

c

∂2

∂t2
DL (z, t) = 2n0n2

c2

∂2

∂t2
|E (z, t)|2E (z, t) . (A.5)

We have neglected the ∂2/∂x2 and ∂ 2/∂y 2 terms. The effective nonlinear
refractive index n2 is

n2 =
∫
n2�

2 (x, y) dxdy
∫
�2 (x, y) dxdy

≈ 1

2
n2. (A.6)

Using a plane wave approximation with (k0z – ω0t) representation, a linearly
polarized electric field propagating along z direction can be written as

E (z, t) = êA (z, t) exp [i (k0z− ω0t)] , (A.7)

where ê is the unit vector of polarization of electric field, ω0 the carrier frequency,
k0 the carrier wave number, and A(z, t) the pulse envelope function. The form of DL

(z, t) becomes

DL (z, t) =
∫ +∞

−∞
n2

0 (ω) Ẽ (z, ω) exp (−iωt) dω, (A.8)

where

Ẽ (z, ω) = 1

2π

∫ +∞

−∞
E (z, t) exp (iωt) dt. (A.9)

If the (ω0t – k0z) representation is used, one obtains sign changes in the final
reduced wave equation.

Using the foregoing equations, we can write the linear polarization term on the
left-hand side of the one-dimensional wave equation as

− 1
c2

∂2

∂t2
DL (z, t) = − 1

c2

∫ +∞
−∞
(−ω2

)
n2

0 (ω) Ẽ (z, ω) exp (−iωt) dω
= 1

2π

∫∞
−∞
∫∞

−∞k
2 (ω)A

(
z, t ′
)

exp
[
iω
(
t ′ − t

)]
exp
[
i
(
k0z− ω0t

′)] dωdt ′.
(A.10)

The derivation of the wave equation then proceeds by expanding k2(ω) about the
carrier frequency ω0 in the form:

k2 (ω) ≈ k2
0 + 2k0k

(1)
0 (ω − ω0)+ k0k

(2)
P (ω − ω0)

2 + · · · , (A.11)
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where k0 = k(ω0) is the propagation constant, k(1)0 = ∂k
∂ω

∣
∣
ω=ω0

is the inverse of

group velocity, and k(2)0 = ∂2k
∂ω

∣
∣
∣
ω=ω0

is the inverse of group velocity of dispersion.

It is then possible to evaluate the integral of Eq. (A.10) by using the convenient delta
function identities

1

2π

∫ ∞

−∞
exp
[
i (ω − ω0)

(
t ′ − t

)]
dω = δ

(
t ′ − t

)
(A.12)

as well as

1

2π

∫ ∞

−∞
(ω − ω0) exp

[
i (ω − ω0)

(
t ′ − t

)]
dω = iδ(1)

(
t ′ − t

)
, (A.13)

and

1

2π

∫ ∞

−∞
(ω − ω0)

2 exp
[
i (ω − ω0)

(
t ′ − t

)]
dω = −δ(2) (t ′ − t

)
. (A.14)

In these relations, δ(n)(t) is an nth-order derivative of the Dirac delta function,
with the property that

∫ ∞

−∞
δ(n) (t − t0) f (t)dt = dnf (t)

∂tn

∣
∣
∣
∣
t=t0

(A.15)

when applied to a function f (t). Substitute Eq. (A.11) into Eq. (A.10) and use Eqs.
(A.12) to (A.15), the second term on the left-hand side of Eq. (1.5) becomes

− 1
c2

∂2

∂t2
DL (z, t) = 1

2π

∫∞
−∞
∫∞

−∞
[
k2

0 + 2k0k
(1)
0 (ω − ω0)+ k0k

(2)
0 (ω − ω0)

2
]
A
(
z, t ′
)

× exp
[
iω
(
t ′ − t

)]
exp [i (k0z− ω0t)] dωdt

′
= ∫∞

−∞
[
k2

0δ
(
t ′ − t

)+ i2k0k
(1)
0 δ(1)

(
t ′ − t

)− k0k
(2)
0 δ(2)

(
t ′ − t

)]
A
(
z, t ′
)

× exp [i (k0z− ω0t)] dt
′

=
[
k2

0A+ i2k0k
(2)
0

∂A
∂t

− k0k
(2)
0

∂2A
∂t2

]
exp [i (k0z− ω0t)] .

(A.16)

Neglecting the second derivative of A(z, t) with respect to z and ∂2

∂t2
|A (z, t)|2.

A(z, t), the first term on the left-hand side and the term on the right-hand side of Eq.
(1.5) are simply

∂2E (z, t)

∂z2
≈
[

−k2
0A (z, t)+ i2k0

∂A (z, t)

∂z

]

exp [i (k0z− ω0t)] , (A.17)

http://doi.org/10.1007/978-3-031-06197-4_1
http://doi.org/10.1007/978-3-031-06197-4_1


2 Supercontinuum Generation in Condensed Matter 119

and

2n0n2

c2

∂2

∂t2
|E|2E ≈ −n0n2ω

2
0

c2
|A|2A exp [i (k0z− ω0t)] , (A.18)

respectively.
Inserting Eqs. (A.16) to (A.18) into Eq. (1.5), the wave equation for electric field

reduces to the wave equation for the pulse envelope

i

(
∂A

∂z
+ 1

vg

∂A

∂t

)

− 1

2
k
(2)
0
∂2A

∂t2
+ ω0

2c
n2|A|2A = 0, (A.19)

where vg ≡ 1/k(1)0 is the group velocity. In Eq. (A.19), the first two terms describe
the envelope propagation at the group velocity vg; the third term determines the
temporal pulse broadening due to group velocity dispersion; the fourth characterizes
the second order of the nonlinear polarization, which is responsible for the self-
phase modulation effect and spectral broadening. Neglecting the group velocity
dispersion term in Eq. (A.19), we obtain

∂A

∂z
+ 1

vg

∂A

∂t
= i

ω0

2c
n2|A|2A. (A.20)

This is Eq. (2.2).
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Chapter 3
Ultrashort Pulse Propagation in
Nonlinear Dispersive Fibers

Govind P. Agrawal

Abstract This chapter focuses on the evolution of short optical pulses inside optical
fibers. After discussing the role of self-phase modulation and optical solitons,
we discuss supercontinuum generation, occurring when femtosecond pulses are
launched into an optical fiber. The extension of supercontinuum into the mid-
infrared and ultraviolet regions is also covered.

Keywords Optical fiber · Group-velocity dispersion · Nonlinear length ·
Dispersion length · Frequency chirp · Self-phase modulation · Spectral
broadening · Optical soliton · Self-steepening · Supercontinuum generation ·
Soliton fission · Raman scattering · Four-wave mixing · Mid-infrared radiation ·
Ultraviolet radiation

3.1 Introduction

Ultrashort optical pulses are often propagated through optical waveguides for a vari-
ety of applications including telecommunications and supercontinuum generation
(Agrawal, 2019). Typically, the waveguide is in the form of an optical fiber, but it
can also be a planar waveguide. The material used to make the waveguide is often
silica glass, but other materials such as silicon or chalcogenides have also been used
in recent years. What is common to all such materials is they exhibit chromatic
dispersion as well as the Kerr nonlinearity. The former makes the refractive index
frequency-dependent, whereas the latter makes it to depend on the intensity of light
propagating through the medium (Maker et al., 1964). Both of these effects become
more important as optical pulses become shorter and more intense. For pulses not
too short (pulse widths > 1 ns) and not too intense (peak powers < 10 mW),
the waveguide plays a passive role (except for small optical losses) and acts as
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a transporter of optical pulses from one place to another, without significantly
affecting their shape or spectrum. However, as pulses become shorter and more
intense, both the group-velocity dispersion (GVD) and the Kerr nonlinearity start to
affect the shape and spectrum of an optical pulse during its propagation inside the
waveguide. This chapter focuses on silica fibers, but similar results are expected for
other waveguides made of different materials.

Silica fibers have found many interesting applications owing to their nonlinear
dispersive nature. They are often used for pulse compression and pulses with
durations as short as 6 fs were produced by 1987 (Fork et al., 1987). In the
anomalous-GVD regime, fibers support formation of optical solitons, resulting
from a balance between the dispersive and nonlinear effects (Hasegawa & Tappert,
1973; Mollenauer et al. 1980; Mollenauer & Stolen, 1984; Stolen 2008). More
recently, new types of optical fibers have been developed and used for making
a supercontinuum source (Ranka et al. 2000; Dudley et al. 2006; Genty et al.
2007; Dudley & Taylor, 2010). In this case, dispersive effects and several nonlinear
phenomena, such as self-phase modulation (SPM), cross-phase modulation (XPM),
four-wave mixing (FWM), and stimulated Raman scattering (SRS), work together
to produce an extensive spectral broadening of the incident pulse, similar to that
observed by Alfano and Shapiro in several 1970 experiments (Alfano & Shapiro,
1970a, 1970b, 1970c, 1971).

This chapter reviews how the nonlinear and dispersive effects in optical fibers
influence the propagation of ultrashort pulses with widths in the femtosecond to
picosecond range. The basic propagation equation satisfied by the slowly varying
amplitude of the pulse envelope is presented in Sect. 3.2. Section 3.3 introduces the
dispersive and nonlinear length scales and identifies various propagation regimes of
optical pulses. Sections 3.4 and 3.5 then focus separately on the cases of normal-
and anomalous-GVD regimes. The phenomenon of supercontinuum generation is
studied in Sect. 3.6 in both the normal- and anomalous-GVD regimes of the optical
fiber used for this purpose. Extension of the supercontinuum into the ultraviolet
(UV) and mid-infrared (mid-IR) regions is covered in Sect. 3.7, as such sources are
useful for many practical applications. Section 3.8 provides a summary of the main
results and conclusions.

3.2 Basic Propagation Equation

As is the case for all electromagnetic phenomena, we need to solve Maxwell’s equa-
tions inside a dispersive nonlinear medium. Since details are available elsewhere
(Agrawal, 2019), only the main steps are summarized here. Consider the simplest
situation in which a single input pulse, polarized linearly at the carrier frequency
ω0, is launched such that it excites a single mode of the fiber. If we assume that the
pulse maintains its linear polarization along the x axis during its propagation along
fiber’s length (the z axis), the electric field can be written in the form
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E(r, t) = 1

2π

∫ ∞

−∞
x̂F (x, y, ω)ã(0, ω)ei[β(ω)z−ωt]dω, (3.1)

where x̂ is a unit vector along the x axis and F(x, y, ω) represents the spatial
distribution of the fiber mode. The physical meaning of this equation is clear. Each
spectral component of the input field with the amplitude ã(0, ω) acquires a slightly
different phase shift because of the frequency dependence of the propagation
constant β(ω) associated with that fiber mode.

As an exact functional form of β(ω) is rarely known, it is useful to expand it in a
Taylor series around the carrier frequency ω0 as

β(ω) = β0 + (ω − ω0)β1 + 1
2 (ω − ω0)

2β2 + · · · , (3.2)

where various dispersion parameters are defined as βm = (dmβ/dωm)ω=ω0 .
Depending on the pulse bandwidth, one can stop after the group-velocity dispersion
(GVD) term containing β2 or may need to include the third- and higher-order disper-
sion terms. Another common approximation replaces the mode profile F(x, y, ω)
with its shape at the carrier frequency ω0. It is also useful to remove the rapidly
varying part of the optical field at this frequency and introduce a slowly varying
pulse envelope A(z, t) by writing Eq. (3.1) in the form

E(r, t) = x̂ F (x, y, ω0)A(z, t)e
i(β0z−ω0t). (3.3)

Maxwell’s equations are then used to derive an equation for A(z, t), representing
the slowly varying amplitude of the pulse envelope at distance z.

As outlined in the book by Agrawal (2019), if we include both the Kerr
and Raman contributions to the nonlinear susceptibility, the slowly varying pulse
envelope A(z, t) satisfies the following time-domain propagation equation:

∂A

∂z
+ α

2
A = i

∞∑

m=1

imβm

m!
∂mA

∂tm
+ iγ

(

1 + i

ω0

∂

∂t

)

×
(∫ ∞

0
R(t ′)|A(z, t − t ′)|2dt ′

)

A(z, t), (3.4)

where α accounts for fiber losses and the nonlinear parameter γ is defined as

γ = ω0n2(ω0)

cAeff
, Aeff = [∫∫ |F(x, y, ω0)|2dxdy]2

∫∫ |F(x, y, ω0)|4dxdy . (3.5)

Aeff is known as the effective mode area of the fiber. In the case of supercontinuum
generation, it may become necessary to account for the frequency dependence of
both n2(ω) and F(x, y, ω).
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The nonlinear response function R(t) in Eq. (3.4) includes both the electronic
and nuclear (Raman) contributions and can be written as

R(t) = (1 − fR)δ(t)+ fRhR(t). (3.6)

Both the Raman response function hR(t) and its fractional contribution (fR ≈ 0.18)
are known for silica (Stolen et al., 1989). Because of the amorphous nature of
silica glasses, the Raman gain spectrum gR(ω) of optical fibers, shown in Fig. 3.1a,
extends over a frequency range exceeding 50 THz. Since gR(ω) is related to the
imaginary part of the Fourier transform of hR(t), it can be used to deduce the real
part through the Kramers–Kronig relation. The inverse Fourier transform of h̃R(ω)
then provides the Raman response function hR(t) shown in Fig. 3.1b.
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Fig. 3.1 (a) Measured Raman gain spectrum of silica fibers (Stolen et al., 1989); (b) temporal
form of the Raman response function deduced from the gain data
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3.3 Different Propagation Regimes

Although Eq. (3.4) must be solved for ultrashort optical pulses, it can be simplified
considerably for picosecond pulses, a common situation in many applications. To
understand why that is so, we note from Fig. 3.1 that hR(t) has an appreciable
magnitude only for t < 1 ps. For pulses wider than 3–4 ps, hR(t) can be replaced
with a delta function δ(t) with a reasonably good approximation. The derivative
term containing ω0 is also negligible for such pulses. At the same time, all dispersive
effects higher than the third order can be ignored for such pulses. Using these three
approximations, Eq. (3.4) is reduced to the following simpler equation:

∂A

∂z
+ α

2
A+ β1

∂A

∂t
+ iβ2

2

∂2A

∂t2
− β3

6

∂2A

∂t2
= iγ |A|2A. (3.7)

When α = 0 and β3 = 0, Eq. (3.7) is reduced to the nonlinear Schrödinger (NLS)
equation that is well known in the filed of nonlinear optics (Agrawal, 2019). One
can justify neglecting the loss term for fibers shorter than 1 km, especially in the
wavelength region near 1550 nm where losses are the smallest. However, losses
must be included for longer fibers.

Considerable insight can be gained by introducing normalized variables. For this
purpose, we note that any input pulse launched into the fiber has its amplitude in
the form A(0, t) = √

P0 S(t/T0), where S(t) is the shape function, P0 is the peak
power, and T0 is a measure of the pulse width. For a fiber of length L, it is useful to
define the normalized variables as

Z = z/L, τ = (t − β1z)/T0, A = √P0e
−αz/2U, (3.8)

where τ is defined in a frame of reference moving with the pulse at the group
velocity vg = 1/β1 (the so-called retarded frame). Note that the exponential decay
of the amplitude has been included in the definition of the normalized amplitude U .
The use of Eq. (3.8) in Eq. (3.7) leads to an equation in the form

∂U

∂Z
+ isL

2LD

∂2U

∂τ 2 − β3L

6T 3
0

∂3U

∂τ 3 = iL

LNL
e−αz|U |2U, (3.9)

where s = sgn(β2) = ±1, and the dispersion and nonlinear lengths are defined as

LD = T 2
0

|β2| , LNL = 1

γP0
. (3.10)

They provide two length scales over which the dispersive and nonlinear effects
become important for the pulse evolution.

When fiber length L is such that L 
 LNL and L 
 LD , neither the dispersive
nor the nonlinear effects play a significant role during pulse propagation. The fiber
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plays a passive role in this regime and acts as a mere transporter of optical pulses
(except for reducing the pulse energy because of fiber losses). At a wavelength near
1.5 μm, β2 ≈ −20 ps2/km, and γ ≈ 2 W−1km−1 for standard telecommunication
fibers. The use of these values in Eq. (3.10) shows that the dispersive and nonlinear
effects are negligible forL < 100 km if T0 > 100 ps and P0 < 1 mW. However, LD
and LNL become smaller as pulses become shorter and more intense. For example,
LD and LNL are ∼0.1 km for T0 ∼ 1 ps and P0 ∼ 1 W. For such optical
pulses, both the dispersive and nonlinear effects need to be included if fiber length
exceeds 100 m. Depending on three relative magnitudes of these length scales, the
propagation behavior can be classified in the following three regimes.

3.3.1 Dispersion-Dominant Regime

When the fiber length is such thatL 
 LNL butL > LD , the last term in Eq. (3.9) is
negligible compared to the other two. The dispersion-dominant regime is applicable
whenever the fiber and pulse parameters are such that

N2 = LD

LNL
= γP0T

2
0

|β2| 
 1. (3.11)

As a rough estimate, P0 should be less than 10 mW for 10-ps pulses. The parameter
N is later found to be related to the soliton order.

In the dispersion-dominant regime, the evolution of an optical pulse is governed
by the GVD alone, and the nonlinear effects play a negligible role. The resulting
linear equation,

∂U

∂z
+ is

2LD

∂2U

∂τ 2 − β3

6T 3
0

∂3U

∂τ 3 = 0, (3.12)

can be solved with the Fourier transform method. Let Ũ (z, ω) be the Fourier
transform of U(z, τ ) defined as

Ũ (z, ω) =
∫ ∞

−∞
U(z, τ )eiωτ dτ. (3.13)

In the Fourier domain, Eq. (3.12) becomes an ordinary differential equation and
can be solved easily. Converting the result back to the time domain, we obtain the
solution

U(z, τ ) = 1

2π

∫ ∞

−∞
Ũ (0, ω) exp

( isω2z

2LD
+ iβ3ω

3z

6T 3
0

− iωτ
)
dω, (3.14)
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where Ũ (0, ω) is the Fourier transform of the incident field at z = 0 and is obtained
by setting z = 0 in Eq. (3.13). Equation (3.14) can be used for input pulses of
arbitrary shapes. However, the integral can be evaluated in a closed form only for
a few specific pulse shapes. In general, both the width and the phase of an optical
pulse are expected to change as it propagates down the fiber. It should be stressed,
however, that the GVD affects only the spectral phase and not the spectral intensity,
i.e., the spectrum of any pulse remains unaltered during its propagation inside a
linear dispersive medium.

As a simple example, consider the case of a Gaussian pulse, for which the
incident field is of the form U(0, τ ) = exp(−τ 2/2), and neglect the contribution
of the β3 term. The integration can be carried out analytically, and the final result is
given by

U(z, τ ) = (1 − isξ
)−1/2 exp

[

− τ 2

2(1 − isξ)

]

, (3.15)

where ξ = z/LD is the distance normalized to the dispersion length. This expression
shows that a Gaussian pulse maintains its shape on propagation, but its width T1
increases with the distance z as

T1(ξ) = T0(1 + ξ2)1/2. (3.16)

At the same time, the pulse develops a time-dependent phase such that

φ(ξ, τ ) = − sξτ
2/2

1 + ξ2 + 1

2
tan−1(sξ). (3.17)

A time-dependent phase implies that the frequency of the electric-field oscilla-
tions changes with time, a feature referred to as the frequency chirp. This frequency
change is related to the phase as

δω = ω − ω0 = −∂φ
∂t

= sξτ

(1 + ξ2)T0
. (3.18)

This relation shows that the frequency changes linearly across the pulse and its value
depends on the sign of β2. In the normal-GVD regime (s = 1), δω is negative near
the leading edge and increases linearly across the pulse. The opposite occurs in
the anomalous-GVD regime (s = −1). As an example, Fig. 3.2 shows dispersion-
induced broadening and chirping for a Gaussian pulse at ξ = 2 and 4 in the case
of anomalous GVD (s = −1). As seen there, chirp imposed by GVD is perfectly
linear for Gaussian pulses.

One may wonder what happens if the input pulse itself is chirped. In the case
of linearly chirped Gaussian pulses, the incident field is of the form U(0, τ ) =
exp[−(1 + iC)τ 2/2], where C is a chirp parameter. It is common to refer to the
chirp as being positive or negative, depending on whether C is positive or negative.
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Fig. 3.2 Dispersion-induced broadening (a) and chirping (b) of a Gaussian pulse at distances of
2LD and 4LD in the case of anomalous GVD (s = −1). Dashed lines show the situation at z = 0

We can obtain Ũ (0, ω) from Eq. (3.13) and use it in Eq. (3.14) to find U(z, τ ). The
integral can again be done analytically to obtain

U(z, τ ) = 1√
Q

exp

[

− (1 + iC)τ 2

2Q(z)

]

, (3.19)

where Q = 1 − isξ(1 + iC). Even a chirped Gaussian pulse maintains its shape on
propagation, but its width and chirp change as

T1(ξ) =
[
(1 + sCξ2)2 + ξ2)

]1/2
T0, C1(z) = C + (1 + C2)sξ. (3.20)

Figure 3.3 shows the broadening factor T1/T0 and the chirp parameter C1 as a
function of ξ in the case of anomalous GVD (s = −1). An unchirped pulse (C = 0)
broadens monotonically by a factor of (1 + ξ2)1/2 and develops a negative chirp
such that C1 = −ξ (the dotted curves). Chirped pulses, on the other hand, may
broaden or compress depending on whether β2 and C have the same or opposite
signs. When sC > 0, a chirped Gaussian pulse broadens monotonically at a rate
faster than that of the unchirped pulse (the dashed curves). The situation changes
dramatically for sC < 0. In this case, the contribution of the dispersion-induced
chirp is of a kind opposite to that of the input chirp. As seen from Eq. (3.20), C1
becomes zero at a distance ξ = |C|/(1 + C2), and the pulse becomes unchirped.
This is the reason why the pulse width initially decreases in Fig. 3.3 and becomes
minimum at a specific distance. The minimum value of the pulse width depends on
the input chirp parameter as Tmin

1 = T0/
√

1 + C2.
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Fig. 3.3 Broadening factor (a) and chirp parameter (b) for chirped Gaussian input pulses
propagating in the anomalous-GVD region of a fiber. Dashed curves show the case of an unchirped
Gaussian pulse. The same curves are obtained for normal GVD if the sign of C is reversed

Fig. 3.4 Temporal evolution of an unchirped Gaussian input pulse propagating in the normal-
GVD region of a fiber with non-negligible third-order dispersion (β3/(6T 3

0 ) = 0.2)

We briefly consider the impact of third-order dispersion, which becomes impor-
tant for short pulses propagating near the zero-dispersion wavelength (ZDWL) of the
fiber. For a Gaussian input pulse, the integral can be done in a closed form in terms
of an Airy function (Agrawal, 2019) but must be performed numerically for other
pulse shapes. Figure 3.4 shows the evolution of a Gaussian pulse in the normal-
GVD region (s = 1) over five dispersion lengths using β3LD/(6T 3

0 ) = 0.2. The
pulse develops an asymmetric shape with an oscillating structure in its trailing edge.
A mirror image around τ = 0 occurs for negative values of β3 with an oscillating
structure developing on the leading edge of the pulse. It will be seen later that the
third-order dispersion plays an important role in the formation of a supercontinuum.
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3.3.2 Nonlinearity-Dominant Regime

When the fiber length L is such that L 
 LD but L > LNL, the dispersion terms in
Eq. (3.9) are negligible compared to the nonlinear term. In that case, pulse evolution
in the fiber is governed by the SPM alone, which produces changes in the pulse
spectrum but leaves the pulse shape intact. The nonlinearity-dominant regime is
applicable only when N  1. If we neglect the dispersion terms in Eq. (3.9), it can
be solved analytically to obtain the general solution

U(L, τ) = U(0, τ ) exp[iφNL(L, τ)], (3.21)

where φNL(L, τ) = |U(0, τ )|2(Leff/LNL). The effective length Leff for a fiber of
length L is defined as Leff = [1 − exp(−αL)]/α. It is smaller than L because of
fiber losses. In the absence of fiber losses, Leff = L. Equation (3.21) shows that
SPM gives rise to an intensity-dependent phase shift, but the pulse shape remains
unaffected. The maximum phase shift φmax occurs at the pulse center located at
τ = 0. With U normalized such that |U(0, 0)| = 1, it is given by

φmax = Leff/LNL = γP0Leff. (3.22)

If we use γ = 2 W−1/km andLeff = 20 km, φmax = 40 at a power level P0 = 1 W.
Spectral changes induced by SPM are a direct consequence of the time depen-

dence of φNL. Recalling that a temporally varying phase implies that the pulse
becomes chirped such that

δω(τ) = −∂φNL

∂t
= −

(
Leff
LNL

)
1

T0

∂

∂τ
|U(0, τ )|2. (3.23)

The chirp induced by SPM increases in magnitude with the propagated distance.
In other words, new frequency components are generated continuously as the pulse
propagates down the fiber. These SPM-generated frequency components broaden
the spectrum compared to its initial width at z = 0. The spectrum is obtained
by taking the Fourier transform of Eq. (3.21). Figure 3.5 shows the spectrum
|Ũ (L, ω)|2 calculated for an unchirped Gaussian pulse using φmax = 40. In this
situation, the number of internal peaks increases linearly with the fiber length, and
the dominant peaks occur near the spectral boundaries. These SPM-induced spectral
features were first observed in optical fibers in a 1978 experiment (Stolen & Lin,
1978) and were used to estimate the nonlinear parameter n2.

Since the nonlinear phase φNL depends on the pulse intensity, its derivative
needed in Eq. (3.23) is quite sensitive to the shape of the pulse. This feature
makes the SPM-broadened spectrum to depend on the pulse shape. We can see
this dependence by considering super-Gaussian pulses whose intensity varies with
time as |U(0, τ )|2 = exp(−τ 2m), where m > 1 for super-Gaussian pulses. The
pulse becomes nearly rectangular for m > 5. Figure 3.6 compares the evolution of
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Fig. 3.5 SPM-induced spectral broadening of a Gaussian pulse for φmax = 40. The dashed curve
shows the input spectrum

Fig. 3.6 Evolution of SPM-broadened spectra for fiber lengths in the range 0 to 50LNL for
unchirped super-Gaussian pulses with m = 1, 3, and 5. A color bar shows the 50-dB range used
for plotting the spectral density

pulse spectra for the Gaussian (m = 1) and super-Gaussian (m = 3 and 5) pulses
over 50LNL using Eq. (3.22) in Eq. (3.21) and performing the Fourier transform
numerically. In all cases, input pulses are assumed to be unchirped (C = 0), and
fiber losses are ignored (α = 0). The qualitative differences between the three
spectra are quite noticeable. Even though all spectra in Fig. 3.6 exhibit multiple
peaks, most of the energy remains in the central peak for a super-Gaussian pulse.
This is so because the chirp is nearly zero over the central region for such a
pulse, a consequence of the nearly uniform intensity of super-Gaussian pulses for
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Fig. 3.7 Evolution of SPM-broadened spectra for fiber lengths in the range 0 to 50LNL for chirped
Gaussian pulses with C = −10, 0, and 10. A color bar shows the 50-dB range used for plotting
the spectral density

|t | < T0. In contrast, most of the energy appears in the outermost spectral peaks
for a Gaussian pulse. The spectral range becomes larger for super-Gaussian pulses
because the maximum chirp becomes larger as m increases. A triangular shape of
the spectral evolution in Fig. 3.6 indicates that the SPM-induced spectral broadening
increases linearly with distance.

An initial frequency chirp on the input pulse can also lead to drastic changes in
the SPM-broadened pulse spectrum. This is illustrated in Fig. 3.7, which compares
the spectral evolution of a Gaussian pulse for C = −10, 0, and 10 under conditions
identical to those used in Fig. 3.6. It is evident that the sign of the chirp parameter
C plays a critical role. For C > 0, spectral broadening increases, and the oscillatory
structure becomes less pronounced. However, a negatively chirped pulse undergoes
a spectral narrowing phase before its spectrum begins to broaden and exhibit
multiple peaks. This behavior can be understood from Eq. (3.23) by noting that the
SPM-induced chirp is linear and positive (frequency increases with increasing time)
over the central portion of a Gaussian pulse. Thus, it adds to the initial chirp for C >
0, resulting in a broader spectrum. In the case of C < 0, the two chirp contributions
are of opposite signs (except near the pulse edges), and the pulse becomes less
chirped. If we employ the approximation that φNL(t) ≈ φmax(1 − t2/T 2

0 ) near
the pulse center for Gaussian pulses, the SPM-induced chirp is nearly canceled for
C = −2φmax. This relation provides a rough estimate of the distance at which
which narrowest spectrum occurs for a given value of C.
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3.3.3 Dispersive Nonlinear Regime

When the fiber length L is longer or comparable to both LD and LNL, dispersion
and nonlinearity act together as the pulse propagates along the fiber. The interplay
of the GVD and SPM effects can lead to a qualitatively different behavior compared
with that expected from GVD or SPM alone. In the anomalous-GVD regime (β2 <

0), the fiber can support solitons. Equation (3.9) is helpful in understanding pulse
evolution in optical fibers when both the dispersive and nonlinear effects should
be taken into account. It is a fundamental equation of nonlinear science and has
been studied extensively in many different contexts. The β3 term is often negligible
in practice. The parameter β2 can be positive or negative with values in the range
0.1–20 ps2/km, depending on how close the pulse wavelength is to the ZDWL of
the fiber. The nonlinear parameter γ is positive and has a value in the range of 1–10
W−1/km for most silica fibers; its values can be increased to beyond 100 W−1/km in
narrow-core photonic crystal fibers; even values>1000 W−1/km have been realized
using non-silica glasses.

It is useful to normalize the distance as ξ = z/LD and write Eq. (3.9) in the form
(assuming that the β3 term is negligible)

∂U

∂ξ
+ is

2

∂2U

∂τ 2
= N2e−αz|U |2U. (3.24)

In the lossless case (α = 0), Eq. (3.24) becomes the standard NLS equation. Its
solutions depend on the nature of dispersion through s = ±1 and on the peak power
of the input pulse through the parameter N . They also depend on the pulse shape.
As an example, Fig. 3.8 shows the temporal and spectral evolution of an initially
unchirped Gaussian-shape pulse launched in the anomalous-GVD regime (s = −1)
with a peak power such that N = 1. The pulse broadens slightly, and its spectrum
narrows a bit, but neither the temporal nor the spectral width of the pulse changes
much after a dispersion length. The pulse also appears to lose some energy in the
form of dispersive waves that form a low-intensity pedestal around the pulse.

This behavior can be understood by noting that the NLS equations have exact
solutions in the form of solitons in the case of anomalous GVD. For an initial
pulse shape U(0, τ ) = sech(τ ) and integer values of the parameter N , the solitons
follow a periodic evolution pattern with the period ξ0 = π/2. The fundamental
soliton corresponds to N = 1 and propagates without change in its shape. The only
reason that the pulse shape and spectrum change in Fig. 3.8 is that the initial pulse
shape is Gaussian and does not correspond to a soliton. Indeed, if we repeat the
calculation with a “sech” pulse shape, we find that both the shape and spectrum
do not change with z. From Eq. (3.11), the peak power necessary to excite the
fundamental soliton is given by P1 = |β2|/γ T 2

0 . For a hyperbolic secant pulse,
the pulse width is related to T0 by Tp ≈ 1.76T0. This relation should be used for
comparison with experiments. As a rough estimate, for 1.55 μm solitons to form in
silica fibers, P1 ∼ 1 W when Tp = 1 ps. In the next two sections, we consider the
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Fig. 3.8 Temporal and spectral evolution of an initially Gaussian-shape pulse launched in the
anomalous-GVD region with a peak power such that N = 1. The color bar shows 50-dB range
used for plotting the intensity

pulse propagation in the normal and anomalous GVD regimes by solving Eq. (3.24)
numerically with the split-step Fourier method (Agrawal, 2019).

3.4 Normal Dispersion

In the normal-GVD region, the GVD parameter β2 > 0 and s = 1 in Eq. (3.24).
We set α = 0 assuming that the fiber is short enough that losses are negligible.
The parameter N can vary over a wide range depending on the widths and peak
powers of input pulses. As an example, Fig. 3.9 shows the evolution of pulse shape
and spectrum over one dispersion length for a sech-shape pulse launched with
N = 5. Initially, the spectrum broadens because of SPM-induced chirping, while
pulse shape remains almost unchanged. However, spectral broadening saturates at a
distance of about ξ = 0.3, and beyond that the chirped pulse starts to broaden, and
its shape changes drastically with a nearly flat central region.

An interesting phenomenon occurs for larger values of N . Figure 3.10 shows
the evolution of an initially sech-shape pulse launched such that N = 30. As the
pulse propagates, it broadens and develops a nearly rectangular profile with sharp
leading and trailing edges. The combination of rapidly varying intensity and SPM in
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Fig. 3.9 Evolution of (a) pulse shape and (b) spectrum over one dispersion length in the normal-
GVD region when a sech-shape pulse is launched with N = 5

these steep-slope regions broadens the pulse spectrum. Because the new frequency
components are mainly generated near the edges, the pulse develops a nearly linear
frequency chirp across its entire width. This linear chirp can be used to compress
the pulse by passing it subsequently through a dispersive delay line such as a grating
pair (Agrawal, 2020).

An interesting feature of Fig. 3.10 is the presence of rapid oscillations in the
wings of the pulse. These can be more clearly in Fig. 3.11 where the pulse and
spectrum are plotted at ξ = 0.1. In a 1985 paper, Tomlinson et al. (1985) interpreted
such oscillations in terms of optical wave breaking, resulting from a mixing of the
SPM-induced frequency-shifted components with the unshifted light in the wings.
This phenomenon can also be understood as a FWM process. Indeed, one can clearly
see two side bands in the pulse spectrum, as expected for a FWM process. The
central structure in the spectrum is due to SPM (see Fig. 3.5). The results shown in
Figs. 3.10 and 3.11 are for an initially unchirped pulse. If input pulses are chirped,
they may follow a different evolution pattern than that shown in Fig. 3.10.
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Fig. 3.10 Same as Fig. 3.9 except that the pulse is launched with N = 30. The color schemes are
also identical in two figures

3.5 Anomalous Dispersion

In the anomalous-GVD regime, the GVD parameter β2 < 0 and s = −1 in
Eq. (3.24). For silica fibers, this is typically the situation in the spectral region
near 1.55 μm that is of considerable interest for telecommunications. As mentioned
earlier, a simple sign change leads to the formation of optical solitons. In particular,
a sech-shape input pulse launched with N = 1 forms a fundamental soliton
and propagates without any change in its shape. In the absence of fiber losses,
the fundamental solitons can propagate undistorted for arbitrarily long distances
(Hasegawa & Tappert, 1973). The soliton formation capacity of optical fibers has
led to the development of the soliton laser (Mollenauer & Stolen, 1984). A piece of
single-mode fiber inside the cavity was used to shape the intra-activity pulses, and
the width of output pulses was controlled by adjusting the fiber length. Pulses as
short as 50 fs have been generated directly from a soliton laser.

All higher-order solitons (N > 1) follow a periodic evolution pattern along the
fiber with a period z0 = (π/2)LD . Figure 3.12 shows, as an example, the evolution
pattern of the N = 3 soliton over one period, obtained by solving Eq. (3.24) with
U(0, τ ) = sech(t). The pulse initially narrows, develops a two-peak structure, and
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Fig. 3.11 (a) Pulse shape and (b) spectrum at ξ = 0.1 forN = 30. Two sidebands in the spectrum
and temporal oscillations near the pulse edges are due to optical wave breaking

then reverses its propagation behavior beyond z/LD = π/4 such that the original
pulse is restored at z/LD = π/2. Initial narrowing of the higher-order soliton can
used to compress an optical pulse by suitably selecting its peak power and the fiber
length (Agrawal, 2020).

3.5.1 Fission of High-Order Solitons

Equation (3.24) has proved to be very useful in understanding the propagation
behavior in the anomalous-GVD regime of optical fibers. However, as discussed in
Sect. 3.2, the NLS equation is not adequate for ultrashort pulses (T0 < 1 ps), and its
generalized version, Eq. (3.4), should be used in its place. It turns out that even the
inclusion of third-order dispersion (TOD) affects the soliton dynamics considerably.
As an example, Fig. 3.13 shows the evolution under conditions identical to those of
Fig. 3.12 except that the TOD is included using δ3 = β3LD/6T 3

0 = 0.02. The
propagation distance was increased to 3LD to identify all new features clearly. The
TOD breaks up the third-order soliton into three fundamental solitons of different
widths and peak powers, a phenomenon called soliton fission (Wai et al., 1986). A
clear evidence of soliton fission is seen in the spectral evolution, where we see a
sudden emergence of a new spectral peak at a distance of about z = 0.4LD on the
high-frequency (blue) side of the pulse spectrum. This peak represents a dispersive
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Fig. 3.12 Evolution of a third-order soliton from ξ = 0 to π/2; (a) pulse shape and (b) spectrum.
The color bar is identical to that in Fig. 3.9

wave created after the fission through a Cherenkov-like phase-matching process
(Akhmediev & Karlsson, 1995).

To understand the physics behind soliton fission, we need to realize that a high-
order soliton, say of the order N , actually consists of N fundamental solitons that
evolve, in the absence of TOD, as one entity in a periodic fashion because they move
at the same speed inside the fiber. However, their speeds become slightly different
when the TOD is not negligible. This feature destroys their periodic evolution, and
individual fundamental solitons separate from each other as they travel inside the
fiber. The inverse scattering method shows that the widths and peak powers of the
individual fundamental solitons are related to the width T0 and peak power P0 of
the input pulse as (Kodama & Hasegawa, 1987)

Tk = T0

2N + 1 − 2k
, Pk = (2N + 1 − 2k)2

N2 P0, (3.25)

where k varies from 1 to N .
The TOD affects the dynamics of each fundamental soliton after the soliton

fission because solitons can propagate unperturbed only in its absence. The TOD-
induced perturbation forces each soliton to shed some energy in the form of a
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Fig. 3.13 Fission of a third-order soliton induced by TOD (δ3 = 0.02); (a) pulse shape (red tilted
cone) and (b) spectrum (vertical blue line) show the signature of a blue-shifted dispersive wave.
The color scheme is identical to that in Fig. 3.9

dispersive wave. Generation of dispersive waves through TOD attracted consider-
able attraction soon after this phenomenon was identified numerically (Wai et al.,
1990; Gordon, 1992; Roy, 2009). Such radiation is also known as the Cherenkov
radiation (Akhmediev & Karlsson, 1995). It is emitted at a frequency at which
phase velocity of the dispersive wave matches that of the soliton. The frequency
shift between the soliton and the dispersive wave is the temporal analog of the angle
at which the Cherenkov radiation is emitted by charged particles in a bulk medium.

The frequency of the dispersive wave that grows because of radiation emitted
by the perturbed soliton can be obtained by a simple phase-matching argument
requiring that the dispersive wave at frequency ω propagates with the same phase
velocity as that of the soliton at the frequency ωs . The frequency shift Ω = ω − ωs
is found by the roots of a third-order polynomial (Akhmediev & Karlsson, 1995)

β2Ω
2 + β3

3
Ω3 − γPs = 0, (3.26)
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where Ps is the peak power of the fundamental soliton formed after the fission
process (and not that of the input pulse). Similarly, the dispersion parameters
appearing in Eq. (3.26) are at the soliton central frequency ωs . The only real solution
of this polynomial is approximately given by

Ω ≈ −3β2

β3
+ γPsβ3

3β2
2

. (3.27)

For solitons propagating in the anomalous-GVD region such that β2 < 0 and β3 >

0, the frequency shift of the dispersive wave is positive. As a result, the dispersive
wave is emitted at a higher frequency (a blue shift) than that of the soliton. This was
the case for the numerical results shown in Fig. 3.13. Indeed, the dispersive-wave
frequency seen in this figure agrees well with the prediction of Eq. (3.27).

3.5.2 Intrapulse Raman Scattering

The Raman term appearing in Eq. (3.4) affects the fission process considerably
through a phenomenon known as the soliton self-frequency shift. First observed in
1986, it manifests as a red shift of short optical pulses propagating as fundamental
solitons (Mitschke & Mollenauer, 1986). Physically, the low-frequency components
of the pulse are amplified from the Raman gain by the high-frequency components
of the same pulse (Gordon, 1986). Since such an amplification is not restricted
to solitons, the term Raman-induced frequency shift (RIFS) or intrapulse Raman
scattering is also employed (Santhanam & Agrawal, 2003). Large values of the RIFS
(>50 THz) were observed after 2000 with the advent of microstructured fibers (Liu
et al., 2001).

In a 1987 experiment, 30-fs input pulses of different peak powers (resulting
in different values of N ) were launched into a 1-km-long fiber, and their spectra
observed at its output end (Beaud et al., 1987). The fission process occurred at
different distances within the fiber for different N values, but in all cases the
spectrum of each fundamental soliton shifted toward longer wavelengths because
of intrapulse Raman scattering, the shortest pulse exhibiting the largest shift. At
the highest peak power of 530 W, three distinct spectral peaks appeared that
corresponded to three fundamental solitons. The shortest soliton had a RIFS of
nearly 200 nm.

For the sake of comparison, Fig. 3.14 shows the evolution of a third-order soliton
under conditions identical to those of Fig. 3.13 except that, in addition to the TOD,
intrapulse Raman scattering is also included by solving Eq. (3.4) numerically. In
addition to the blue-shifted dispersive wave (appearing as a red cone on the left), one
can see a considerable red shift of the shortest soliton that increases continuously
with distance. In the time domain, this red shift leads to bending of the soliton
trajectory because of a continuous slowing down of the red-shifted soliton owing
to changes in its group velocity. It should be clear by now that the generalized
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Fig. 3.14 Fission of a third-order soliton in the presence of TOD (δ3 = 0.02) and intrapulse
Raman scattering. In addition to a blue-shifted dispersive wave, the shortest soliton slows down
(light blue curve on the left). The color scheme is identical to that in Fig. 3.9

NLS equation, Eq. (3.4), should be used for a realistic description of the underlying
physics when ultrashort pulses are propagated through optical fibers.

3.6 Supercontinuum Generation

As we saw in Sect. 3.5, when an optical pulse propagates through a nonlinear
dispersive fiber, its temporal as well as spectral evolution is affected not only by
a multitude of nonlinear effects but also by the dispersive properties of that fiber.
It turns out that, for sufficiently intense pulses, the pulse spectrum becomes so
broad that it often extends over a frequency range exceeding 50 THz. Such extreme
spectral broadening is referred to as supercontinuum generation, a phenomenon
first observed around 1970 in a glassy bulk nonlinear medium (Alfano & Shapiro,
1970a). In the context of optical fibers, a supercontinuum was first observed in
1976 using 10-ns pulses from a dye laser (Lin & Stolen, 1976). Although this topic
attracted some attention during the decades of 1980s and 1990s, it was only after
2000, with the emergence of microstructured and photonic crystal fibers (PCFs), that



148 G. P. Agrawal

the use of optical fibers for supercontinuum generation became common (Dudley
et al. 2006; Genty et al. 2007; Dudley & Taylor, 2010).

In a 2000 experiment, 100-fs pulses with 7-kW peak power at 790 nm were
launched in the anomalous-GVD region of a microstructured fiber that was only
75 cm long (Ranka et al., 2000). Even for such a short fiber, the supercontinuum
extended from 400 to 1600 nm; it was also relatively flat over the entire bandwidth
(on a logarithmic power scale). Since then, similar features have been observed
in many experiments using different types of fibers. In this section, we review the
physical mechanisms behind the supercontinuum generation using optical fibers and
discuss the progress realized since the year 2000.

3.6.1 Supercontinuum Generation Through Soliton Fission

The important question is what physical processes within an optical fiber are
responsible for generating such a wide supercontinuum. The answer turned out to
be the soliton fission in the case of femtosecond pulses. One can see a hint of this in
Fig. 3.14 showing the evolution of a third-order soliton over three dispersion lengths.
The pulse spectrum at z = 3LD has broadened considerably compared to its input
shape and consists of multiple peaks. In addition to the central SPM-broadened
structure and the leftmost dominant peak that corresponds to the shortest soliton
created after the soliton fission, there is blue-shifted peak on the right belonging to
a dispersive wave. Moreover, several other peaks have begun to appear as a result of
XPM and FWM. The spectrum in Fig. 3.14 cannot yet be called a supercontinuum,
but it is not difficult to imagine that a supercontinuum may form for solitons of
much higher orders.

As an example, Fig. 3.15 shows the evolution of an eighth-order soliton (N =
8) over one dispersion length, obtained by solving Eq. (3.4) numerically in its
following dimensionless form:

i
∂U

∂ξ
− s

2

∂2U

∂τ 2
− iδ3

∂3U

∂τ 3
+ δ4

∂4U

∂τ 4

= N2
(

1 + ifs
∂

∂τ

)(

U(ξ, τ )

∫ ∞

0
R(τ ′)|U(ξ, τ − τ ′)|2dτ ′

)

, (3.28)

where s = ±1 and fs = (ω0T0)
−1 is the self-steepening parameter. We have

retained dispersion up to fourth order through

δ3 = β3LD/(6T
3

0 ), δ4 = β4LD/(24T 4
0 ). (3.29)

In obtaining Fig. 3.15, we used U(0, t) = sech(t/T0) with T0 = 50 fs, neglected
the self-steepening term by setting fs = 0, and used the form of hR(t) suggested
by Lin and Agrawal in a 2006 paper (Lin & Agrawal, 2006). The two dispersion
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Fig. 3.15 Evolution of an N = 8 soliton from ξ = 0 to 1 using the parameter values given in
the text; (a) pulse shape and (b) spectrum. The supercontinuum nature of the spectrum becomes
apparent for such large values of N . The color scheme is identical to Fig. 3.9

parameters were chosen to be δ3 = 0.02 and δ4 = 1 × 10−4. It is clear from
Fig. 3.15 that the pulse evolution becomes quite complex for an N = 8 soliton.
In particular, the pulse spectrum begins to look like a supercontinuum that extends
over a bandwidth that is more than 20 times larger compared to that of the input
pulse.

To understand the role of self-steepening, Fig. 3.16 shows the pulse evolution
under conditions identical to those used for Fig. 3.15 except that self-steepening is
included assuming an input wavelength of 1550 nm; fs = 0.0163 at this wavelength.
Clearly, self-steepening affects both the temporal and spectral features. Although it
reduces the total width of the supercontinuum, it also makes the supercontinuum
more uniform compared to the one in Fig. 3.15. Figure 3.17 compares the input and
output pulse spectra for the N = 8 soliton after one dispersion length.

Figure 3.16 shows how the pulse spectrum begins to broaden after the fission of
an N = 8 soliton and how the pulse spreads rapidly in the time domain. However,
it does not reveal which parts of the spectrum belong to which parts of the pulse.
The mathematical tool for revealing this information is known as the short-time or
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Fig. 3.16 Evolution of an N = 8 soliton from ξ = 0 to 1 under conditions identical to those used
for Fig. 3.15 except that self-steepening is also included. The color scheme is identical to Fig. 3.9

Fig. 3.17 Supercontinuum generated by launching an N = 8 soliton into a fiber of length L =
LD . The input spectrum is shown for comparison by a dashed green line
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Fig. 3.18 Spectrogram generated numerically at a distance L = LD by launching an N = 8
soliton in a fiber with L = LD . The input spectrum is also shown for comparison by a dashed line

windowed Fourier transform (WFT). In contrast with the optical spectrum, shown
in Fig. 3.17 and obtained by taking the Fourier transform of U(L, τ) over the entire
range of τ , the WFT employs a window function that selects U(L, τ) over a limited
range of τ centered at a specific location T . Mathematically, the WFT is given by

S(T , ω) =
∣
∣
∣
∣

∫ ∞

−∞
U(L, τ)W(τ − T ) exp(iωτ) dτ

∣
∣
∣
∣

2

, (3.30)

where W(τ − T ) is the window function centered at τ = T . A Gaussian form is
often used for the window function by choosing

W(τ − T ) = 1√
2πσ

exp
[

− (τ − T )2

2σ 2

]
, (3.31)

where σ controls the window size. The WFT depends on both time and frequency
and reveals which parts of the pulse contain which spectral contents. It is also called
the spectrogram, a term borrowed from acoustics.

Figure 3.18 shows the spectrogram corresponding to the spectrum shown in
Fig. 3.17 by choosing σ = 1. It shows the output at a distance of one dispersion
length when an N = 8 soliton is launched into a fiber. The spectral features near
T = 0 represent SPM-induced spectral broadening of the pulse before it undergoes
soliton fission. Two bright spots near T = 12 and 28 represent two shortest solitons
created after the fission. Their spectra are shifted toward the red side because of
intrapulse Raman scattering, the shortest soliton undergoing the most red shift.
The two blue-shifted cigar-like features extending over T = 30–75 belong to the
dispersive waves created by these solitons. Depending on the dispersive properties
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of the fiber, such dispersive waves are sometimes trapped by the red-shifted solitons
through XPM if they happen to overlap in time.

Spectrograms can be constructed experimentally (Nishizawa & Goto, 2001)
using an extension of the frequency resolved optical gating (FROG), a technique
used commonly for measuring the width of ultrashort optical pulses (Trebino, 2002).
It is referred to as the X-FROG technique, and it consists of performing cross-
correlation of the output pulse with a narrow reference pulse whose peak can be
shifted using an adjustable delay line. The two pulses overlap inside a nonlinear
crystal that creates a signal through sum-frequency generation. Spectrogram is
produced by recording a series of optical spectra at the crystal output with different
delays between the two pulses.

3.6.2 Supercontinuum Generation Through Modulation
Instability

The use of ultrashort optical pulses is not essential for supercontinuum generation.
In a 2003 experiment, 42-ns pulses from a Q-switched Nd:YAG laser were launched
into a 2-m-long microstructured fiber (with a random hole pattern) to produce a
relatively wide supercontinuum at 10-kW peak-power levels (Town et al., 2003).
Somewhat surprisingly, it turned out that even continuous-wave (CW) lasers can
produce a supercontinuum at sufficiently high power levels. Indeed, CW lasers were
used for this purpose as early as 2003, and, by now, such supercontinuum sources
are being used for a variety of applications (Avdokhin et al., 2003; Nicholson et al.,
2003; Abeeluck et al., 2004; Travers, 2010).

It should come as no surprise that the phenomenon of modulation instability is
behind the CW or quasi-CW supercontinuum generation (Travers, 2010). It is well
known that when a CW beam propagates in the anomalous-GVD region of an optical
fiber, the phenomenon of modulation instability can create amplitude modulations
that manifest spectrally as two sidebands at specific frequencies ω0 ±Ωmax, where
ω0 is the frequency of the CW beam (Agrawal, 2019). The frequency shift Ωmax
depends on the input power P0 and fiber’s dispersion and nonlinear parameters as

Ωmax =
√

2γP0

|β2| . (3.32)

In the case of spontaneous modulation instability, the growth of these sidebands
is initiated by intensity fluctuations within the CW beam. Their amplitudes grow
initially with distance z exponentially. This growth manifests in the time domain as
sinusoidal oscillations with the period Tm = 2π/Ωmax. The exponential growth
continues as long as the fraction of the power in the two sidebands remains a small
fraction of the total power (the so-called linear regime).
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Fig. 3.19 Temporal and spectral evolutions of a noisy CW beam in the anomalous-GVD region
of a fiber using parameter values given in the text

Once the modulation-instability process enters the nonlinear regime, evolution of
the optical field can only be studied by solving the NLS equation (3.7) numerically
with noise added to the input CW beam. Figure 3.19 shows, as an example, the
temporal and spectral evolutions of a noisy CW beam assuming α = 0, β2 = −20
ps2/km, and LNL = 10 m. The TOD is included using β3 = 0.2 ps3/km, but
intrapulse Raman scattering is not included in these simulations. The input spectrum
is quite narrow in this case and nothing much happens until the onset of modulation
instability begins to create spectral sidebands at a frequency predicted by Eq. (3.32),
together with the corresponding temporal modulations on the CW beam. Both of
these features are clearly apparent in Fig. 3.19 at a distance of about 150 m. With
further propagation, temporal modulations become sharper and take the form of
a train of short optical pulses of different widths and peak powers that propagate
as fundamental solitons in the anomalous-GVD regime of the fiber. The reason
why solitons have different widths is related to the noisy nature of spontaneous
modulation instability. Indeed, when modulation instability is induced by launching
a weak signal at the sideband frequency, all solitons within the pulse train are
expected to have nearly the same width.

Even without the Raman effects, one can see supercontinuum formation as more
and more spectral sidebands are created through FWM. In the presence of intrapulse
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Fig. 3.20 X-FROG spectrogram calculated numerically when a CW beam with 44 W power is
launched inside a 20-m-long PCF at a wavelength of 10570 nm. The output pulse train and
spectrum are shown on the top and the right side, respectively (After Cumberland et al. (2008);
©2008 OSA.)

Raman scattering, the formation of a supercontinuum proceeds as follows. First,
modulation instability converts the CW beam into a train of pulses of different
widths and peak powers that propagate as fundamental solitons. Since the RIFS
depends on the pulse width, different solitons shift their spectra by different amounts
toward longer wavelengths. At the same time, blue-shifted radiation is generated in
the form of dispersive waves because of perturbations of these solitons by third-
order dispersion. As a soliton shifts its spectrum, it also slows down as long as it
experiences anomalous GVD. As a result, solitons collide (overlap temporally) with
neighboring solitons and dispersive waves and interact with them though XPM and
FWM. It turns out that such a collision can transfer energy to the slowing soliton,
which reduces its width further (to maintain the condition N = 1) and slows
down even more, and its spectrum shifts even further toward longer wavelengths.
Multiple soliton collisions eventually produce a supercontinuum that is extended
mostly toward the red side of the input wavelength.

Figure 3.20 shows the numerically computed WFT spectrogram of a super-
continuum with parameters corresponding to a 2008 experiment in which a CW
beam with 44 W power was launched inside a 20-m-long PCF (γ = 43 W−1/km)
at a wavelength of 1057 nm (Cumberland et al., 2008). The PCF exhibited two
ZDWLs located near 810 and 1730 nm. As a result, dispersion was relatively
large (65 ps/km/nm) at the pump wavelength of 1070 nm, but it decreased for
longer wavelengths. One sees clearly the formation of solitons (round objects)
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through modulation instability, together with their different spectral shifts and
different speeds (leading to different delays). Collisions among these solitons are
also apparent from their temporal overlap. Eventually, the spectrum of a short soliton
approaches the ZDWL near 1730 nm, where it stops shifting because of the radiation
pressure induced by the corresponding dispersive waves (cigar-like objects) emitted
at wavelengths longer than 1730 nm. The interaction (collision) of solitons with
these dispersive waves generates new spectral components through FWM in the
wavelength region near 1900 nm. The spectrogram in Fig. 3.20 shows both the
calculated spectrum and noisy pulse train in the time domain.

It is clear from the preceding description that the noisy nature of the input CW
beam plays a critical role since it seeds the process of modulation instability. Even
a CW laser beam is only partially coherent because of its finite spectral width
resulting from intrinsic phase fluctuations. Any numerical modeling must include
such fluctuations. The nonlinear propagation of a partially coherent CW beam inside
single-mode optical fibers was investigated in several studies, revealing the physics
behind CW supercontinuum generation (Mussot et al. 2004; Vanholsbeeck et al.
2005; Kobtsev & Smirnov, 2005; Cumberland et al. 2008).

The two most important ingredients for generating a CW supercontinuum are a
high-power laser and a highly nonlinear fiber so that the product γP0L exceeds 30,
where P0 is the CW power launched into a fiber of length L. This condition can be
satisfied for a 100-m-long fiber with γ = 100 W−1/km at a pump–power level of
a few watts. Such power levels are readily available from modern, high-power, Yb-
doped fiber lasers. In the original 2003 experiment, a 100-m-long holey fiber was
employed, and a Yb-fiber laser was used for CW pumping at 1065 nm (Avdokhin
et al., 2003). The resulting supercontinuum extended from 1050 to 1380 nm when
8.7 W of CW power was coupled into the fiber. In a 2004 experiment, highly
nonlinear fibers of lengths ∼ 1 km were used for supercontinuum generation by
launching a CW beam at 1486 nm (Abeeluck et al., 2004). The ZDWL of the fibers
was below 1480 nm, resulting in the anomalous GVD at the pump wavelength.
Output spectra extended from 1200 to >1800 nm when pump power was close
to 4 W. The spectrum was highly asymmetric with much more power on the
long-wavelength side. This asymmetry was due to intrapulse Raman scattering
that selectively extended the spectrum toward the long-wavelength side. The PCF
used in a 2008 experiment exhibited two ZDWLs located near 810 and 1730 nm
(Cumberland et al., 2008). When 44 W of CW power was launched into this fiber,
the supercontinuum extended from 1050 to 1680 nm. More importantly, the output
power was close to 29 W, and the spectral power density exceeded 50 mW/nm up
to 1400 nm. These features are useful for applications of such a supercontinuum
source for biomedical imaging.

The formation of CW supercontinuum in the visible region has also attracted
attention (Cumberland et al., 2008a; Kudlinski et al., 2009, 2010). This is not easy
to do because the most practical source of CW radiation is a high-power Yb-fiber
laser emitting light near 1060 nm. When such a laser is used with a suitable PCF
having its ZDWL near 1000 nm, the observed supercontinuum rarely extends below
900 nm. In a 2006 experiment, a tapered PCF whose core diameter decreased



156 G. P. Agrawal

along its length was employed for this purpose together with a quasi-CW source
(a Nd:YAG microchip laser) emitting nanosecond pulse (Kudlinski et al., 2006).
The observed supercontinuum extended from 350 to 1750 nm with a high spectral
density when the taper length exceeded 5 m. The extension of the supercontinuum
into the visible region was possible because of a monotonically decreasing |β2(z)|
that allowed the FWM phase-matching condition to be satisfied for progressively
shorter idler wavelengths.

In a 2009 experiment, the use of a PCF whose core was both tapered and doped
with GeO2 created a CW supercontinuum that extended toward wavelengths as short
as 450 nm (Kudlinski et al., 2009). In the case of a uniform-core PCF pumped at
1075 nm with 70 W of CW power, the supercontinuum extended on the visible
side only up to 550 nm and contained no light in the blue region. However, when a
uniform-core section of 50 m was followed with a 130-m-long PCF section whose
outer diameter decreased from 135 to 85 μm, the supercontinuum extended from
470 to >1750 nm when pumped with 40 W of CW power and thus covered the
entire visible region. These results clearly show that an ultrabroad supercontinuum
covering both the visible and near-infrared regions can be produced with 1060-nm
pumping provided the PCF is suitably designed.

3.6.3 Supercontinuum Pumping in the Normal-GVD Region

From a practical perspective, coherence properties of a supercontinuum are impor-
tant when it is employed as a broadband source of light for medical, metrological,
or other applications. When optical pulses propagate inside a single-mode fiber
with a fixed spatial profile, the output is clearly spatially coherent. However, its
temporal coherence is affected by fluctuations in the energy, width, and arrival
time of individual input pulses. As a result, spectral phase is also likely to
fluctuate from pulse to pulse across the bandwidth of the supercontinuum (Dudley
et al., 2006). Indeed, coherence measurements show that the spectral coherence
of a supercontinuum is limited in practice when the process of soliton fission or
modulation instability initiates its buildup (Kobtsev & Smirnov, 2006; Türke et al.
2007; Genty et al. 2010).

The origin of coherence degradation in both cases is related to a noisy process
that is very sensitive to small variations in the widths and peak powers associated
with the input pulses. It follows that the supercontinuum coherence should improve
dramatically if input pulses are launched in the normal-GVD regime of a fiber where
solitons cannot form. Indeed, this feature was predicted as early as 2005 in a PCF
exhibiting two ZDWLs that was tapered along its length to ensure that optical pulses
always experienced normal dispersion (Falk et al., 2005). However, the resulting
supercontinuum was not very broad, and its bandwidth was limited to below 400 nm.
The problem was solved by 2011, and broadband supercontinua were generated with
normal-GVD pumping by using PCFs whose dispersion was suitably tailored (Heidt
et al., 2011a; Hooper et al., 2011a; Heidt et al., 2011b).
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Fig. 3.21 Evolution of (a) pulse shape and (b) spectrum from ξ = 0 to 0.1 in the normal-GVD
region when a sech-shape pulse is launched with N = 30

As an example, Fig. 3.21 shows the temporal and spectral evolutions of an intense
sech-shape pulse launched in the normal-GVD region of a fiber with N = 30. The
generalized NLS equation (3.4) was solved numerically with s = 1, δ3 = 0, and
δ4 = 0.001 to ensure that the minimum dispersion occurs at the input wavelength
of the pulse. It should be compared with Fig. 3.10, obtained for the same input
pulse without including the higher-order nonlinear and dispersive effects. In both
cases, the spectrum broadens mainly through the SPM but becomes asymmetric
in the general case because of self-steepening and intrapulse Raman scattering.
Two spectral sidebands are still generated because of optical wave breaking but
their amplitudes are quite different. The supercontinuum formed at z = 0.1LD is
relatively uniform over its entire bandwidth. Since soliton fission does not occur, it
is also expected to be relatively coherent.

Experiments support the preceding numerical scenario. In a 2011 experiment, the
PCF employed was designed such that it exhibited normal GVD over a wavelength
region that extended from 400 to beyond 1500 nm (Heidt et al., 2011a). Figure 3.22a
shows the broadband spectra observed at the output of a 50-cm-long PCF (fabricated
with a 2.3 μm-diameter core) when it was pumped at 1050 nm with 50-fs pulses of
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Fig. 3.22 (a) Optical spectra observed at the output of a 50-cm-long PCF when it was pumped
at a wavelength of 1050 nm with 50-fs pulses of energies ranging from 0.25 to 7.8 nJ. (b) Output
spectra when the same PCF was pumped at 790 nm (After Heidt et al. (2011a); ©2011 OSA.)

energies ranging from 0.25 to 7.8 nJ. Figure 3.22b shows the output spectra when
the same PCF was pumped at 790 nm. In both cases, the supercontinua extend over
an 800-nm bandwidth at the highest pulse energy and are relatively flat and smooth
compared to those formed in the anomalous-GVD region.

A similar PCF design was used in another 2011 study (Hooper et al., 2011a).
It exhibited normal dispersion over a wide wavelength region with a minimum
occurring near 1064 nm, the wavelength at which 400-fs input pulses were launched.
The output spectrum at the end of a 4-cm-long piece of such a fiber exhibited a shape
that is typical of SPM (see Fig. 3.23). When fiber was 1 m long, the supercontinuum
extended over 800 nm, and its shape was relatively flat and smooth. Moreover,
the output was compressible to a duration of 26 fs and exhibited a high degree
of coherence between its spectral components. The width of the compressed pulse
was only 5 fs in another experiment (Heidt et al., 2011b) in which octave-spanning
spectra were generated by launching 15-fs pulses with 1.7 nJ energy into a fiber that
was only 1.7 mm long. Such a coherent supercontinuum is useful for a variety of
applications including biomedical imaging. Chapter 6 by Heidt et al. describes in
detail supercontinuum generation in the normal-GVD region of an optical fiber.
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3.7 Mid-Infrared and Ultraviolet Regions

The experimental results seen in Fig. 3.22 clearly show that the nonlinear effects
inside optical fibers can provide a coherent, wideband source of radiation covering
the visible and near-infrared regions. An important question is whether a supercon-
tinuum can be extended into the ultraviolet (UV) and mid-infrared (mid-IR) regions
because such sources are useful for many practical applications. In this section, we
focus first on the mid-IR region and then consider generation of UV radiation.

3.7.1 Supercontinuum in the Mid-Infrared Region

As early as 2000, experiments showed that the supercontinuum extended into the
near-IR region up to 1600 nm when a PCF was pumped with short optical pulses
at a wavelength near 800 nm (Ranka et al., 2000). Wavelengths beyond 1600 nm
could be produced by pumping silica fibers at a wavelength near 1550 nm, but high
losses of such fibers in the mid-IR region limited the use of such fibers. A fiber
made with lead-silicate glass was used in a 2006 experiment, and it was found that
the supercontinuum extended beyond 3 μm, even for a fiber that was only 6 mm
long (Omenetto et al., 2006).

As coherent sources in the mid-IR region (wavelength range 3–10 μm) have
many applications, the use of nonlinear fibers for producing such radiation became
an important area of research after the year 2005. In a 2006 experiment, the
supercontinuum was extended to 4500 nm by combining a silica fiber (length
∼1 m) with a few-meter-long fluoride fiber (Xia et al., 2006). Longer wavelengths
could not be produced in this experiment because of strong absorption exhibited by
fluoride fibers at wavelengths beyond 4500 nm. An ultrabroad supercontinuum was
realized in 2009 when a 2-cm-long fluoride fiber was pumped with 180-fs pulses at
a wavelength of 1450 nm (Qin et al., 2009). Figure 3.23a shows the output spectrum
observed for pulses with 50 MW peak power; its 10 dB bandwidth extends from 565
to 5240 nm. The spectra in the mid-IR region are compared in part (b) for two fibers
of different lengths. As seen there, almost the same bandwidth is obtained for the
shorter 0.9-cm-long fiber. The drop in power at wavelengths beyond 5 μm is due to
high losses of fluoride fibers. In a 2020 experiment (Li et al., 2020), a 60-cm-long
fluorotellurite fiber generated a supercontinuum extending from 0.93 to 3.95 μm
with a total power of 22.7 W and a high conversion efficiency of 57%.

Starting in 2010, chalcogenide fibers were used to extend the supercontinuum
into the mid-IR region (Hudson et al., 2011; Rudy et al., 2013; Yu et al., 2015; Cheng
et al., 2016; Karim et al., 2015, 2018; Lemière et al., 2019; Jiao et al., 2019; Yuan
et al., 2020). Such fibers have low losses for wavelengths beyond 10 μm and can be
made to provide large values of the nonlinear parameter γ . In a 2011 experiment,
an As2S3 fiber was tapered such that its effective mode area was< 1 μm2, resulting
in γ = 12, 400 W−1/km at the pump wavelength of 1.55 μm. When 250-fs pulses
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Fig. 3.23 (a) Supercontinuum observed at the output of a 2-cm-long fluoride fiber by pumping
with 100-fs pulses with a peak power about 50 MW. Dashed line shows the 10-dB bandwidth. (b)
Comparison of the mid-IR spectra for two fibers of different lengths (After Qin et al. (2009) ©2009
American Institute of Physics.)

were launched into such a 5-cm-long fiber, the supercontinuum extended from 0.97
to near 2 μm (Hudson et al., 2011). A later experiment employed a Tm-doped
fiber laser operating at 2.04 μm to pump a 2.1-mm-long As2S3 fiber (Rudy et al.,
2013). The resulting supercontinuum extended from 1 to 3.7 μm, clearly showing
the potential of chalcogenide fibers for mid-IR generation.

This potential was realized in a 2015 experiment that pumped a 11-cm-long fiber
with 330-fs pulses at a wavelength of 4.0 μm (Yu et al., 2015). The spectrum
extended from 1.8 to 10 μm at the 40-mW average power, and this range was
limited by fiber’s losses. In a 2016 experiment, losses were reduced enough that
the observed supercontinuum extended from 2 to 15 μm, when a 3-cm-long fiber
was pumped with 170-fs pulses at a wavelength of 9.8 μm (Cheng et al., 2016).
Figure 3.24 shows the measured and stimulated spectra for input pulses with
2.9 MW peak powers. A similar spectral range was realized by using chalcogenide
fibers that avoided the use of toxic materials such as arsenic and antimony (Lemière
et al., 2019). By 2020, a 16-cm-long microstructured chalcogenide fiber generated
a coherent supercontinuum that extended from 2 to 13 μm, when pumped in the
normal-GVD region of the fiber with 150-fs pulses at a wavelength of 5 μm (Yuan
et al., 2020).

Dispersion engineering plays an important role for chalcogenide fibers used
for mid-IR generation. In a 2015 study, three fibers with microstrucured air holes
were analyzed for optimizing the fiber’s design (Karim et al., 2015). Among these,
equiangular spiral microstrucured fiber was found to be the most promising can-
didate for generating an ultrawide supercontinuum in the mid-IR region. In a later
study, a triangular-core fiber was designed such that the predicted supercontinuum
extended from 2.3 to 17 μm, when pumped with 100-fs pulses of 3-kW peak power
at a wavelength of 4 μm (Karim et al., 2018).
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Fig. 3.24 Experimental (top) and simulated (bottom) supercontinuum at the output of a 3-cm-long
chalcogenide fiber, pumped at 9.8 μm using 170-fs pulses with 2.9 MW peak power (After Cheng
et al. (2016) ©2016 OSA.)

3.7.2 Sources of Ultraviolet Radiation

An important application of the supercontinuum process is to use it as a source of
UV radiation. Extending supercontinuum into the UV region is not easy because
optical fibers not only become lossy in this region, but their dispersive properties
also become unsuitable. The ZDWL of standard silica fibers occurs at a wavelength
near 1300 nm such that they provide anomalous GVD at longer wavelengths. The
ZDWL can be moved closer to 800 nm by reducing the fiber’s core diameter. In
fact, the microstructured fiber used for the 2000 supercontinuum experiment (Ranka
et al., 2000) had a core diameter close to 2 μm for this reason. For extension into
the UV region, the ZDWL must be shifted below 400 nm.

In one approach, the core size of fibers is reduced to below 1 μm, resulting in
the so-called nanofibers. As early as 2006, fibers with core diameters ranging from
0.2 to 1.2 μm were made (Gattass et al., 2006). They were used for extending the
supercontinuum into the UV region by pumping the tapered fibers with femtosecond
pulses at 800 nm. However, the UV radiation near 400 nm was observed only for
the fiber with the 1.2-μm core diameter.

In a 2010 experiment, a 5-cm-long tapered PCF, having a core diameter of only
600 nm and exhibiting two ZDWLs at 509 and 640 nm, was employed for extending
the supercontinuum into the UV region (Stark et al., 2010). The fiber was pumped
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using femtosecond pulses (width <50 fs) whose peak powers could be as high as
4 kW. Input wavelength of 640 nm was near the second ZDWL of the fiber in this
experiment. The soliton orderN exceeded 200 at peak powers>3 kW. The observed
supercontinuum covered the entire visible region and extended into the UV region.
It should be noted that the fiber’s GVD was anomalous only from 509 to 640 nm, the
region between the two ZDWLs. The UV band was formed owing to the dispersive
waves emitted by solitons, and it extended as far as 350 nm when the peak power
of pulses was close to 4 kW. When the fiber was pumped at 523 nm, the UV band
extended from 300 to 470 nm and was intense enough to be useful for practical
applications.

It is clear that pumping a fiber at shorter wavelengths will help in producing the
UV radiation. An extreme example of this approach was provided in an experiment
in which a supercontinuum extending from 350 to 470 nm was produced by
pumping a PCF with Q-switched pulses at 355 nm (Sylvestre et al., 2012). The
PCF exhibited large normal GVD (β2 nearly 2000 ps2/km) and strong absorption
in the UV region. It also supported several modes at the pump wavelength (core
diameter close to 4 μm). Physical mechanisms behind supercontinuum generation
were found to be cascaded SRS and intermodal FWM.

In another study, numerical simulations were used to show that nanofibers with
core diameters < 1 μm can extend a supercontinuum into the UV region with
pumping in the visible region (Hartung et al., 2012). The fibers were assumed to
exhibit normal GVD in both the UV and visible regions. As discussed in Chap. 6,
a coherent supercontinuum can be produced under such conditions, without making
use of soliton fission or modulation instability. Indeed, the predicted spectra, for a
fiber with 450-nm core diameter and pumped at 400 nm with 50-fs pulses, extended
into the UV region near 220 nm at a peak power of 80 kW. A similar behavior
occurs for suspended-core fibers.

In a different approach, hollow-core fibers are filled with a suitable gas before
launching femtosecond pulses into them. In a 2013 study, a 10-cm-long, hollow-
core, PCF was filled with different gases and pumped with 38-fs pulses at a
wavelength of 805 nm (Mak et al., 2013). The output spectra depended consid-
erably on pulse energy and gas pressure and extended into the UV region near
200 nm because of dispersive waves generated by the perturbed solitons. The same
technique was used in a 2020 experiment where an anti-resonant hollow-core fiber
was filled with argon gas and pumped with 30-fs pulses obtained from a fiber
laser operating at 1030 nm. Figure 3.25 shows how the spectra of dispersive waves
emitted in the UV region could be shifted over a range from 220 to 400 nm by
varying the pressure of argon gas and the energy of pump pulses (Smith et al., 2020).

It has proved difficult to generate UV wavelengths shorter than 180 nm using
gas-filled fibers. In a 2018 study, it was found numerically that wavelengths as short
as 90 nm can be realized using a tapered, Ne-filled fiber (Habib et al., 2018). The
fiber had a 12-cm-long uniform section that was followed by a 25-cm-long tapered
section. It was pumped with 30-fs pulses at 800 nm with peak powers such that
each pulse propagated as a fifth-order soliton (N = 5) inside the fiber. The higher-
order soliton went through a compression phase in the uniform section (down to
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Fig. 3.25 Spectra of dispersive waves in the 220–400 nm range at different pressures of argon gas
and energies of 30-fs pump pulses (at 1030 nm) from an argon-filled PCF (After Smith et al. (2020)
©2020 CC BY.)

< 2 fs), which broadened its spectrum and increased its peak power so much that
the neon gas was partially ionized. Fission of the compressed fifth-order soliton
created multiple dispersive waves whose wavelengths were in the deep UV region.
These results indicate that suitably designed, gas-filled fibers provide a practical
route for generating the UV radiation.

One may wonder whether it is possible to extend the bandwidth of a supercon-
tinuum so much that it extends from UV to IR regions. Considerable work has been
done in recent years to realize such ultrawide spectra. In a 2015 experiment, a 15-
cm-long, hollow-core PCF was filled with hydrogen gas. Figure 3.26 shows the
ultrawide spectrum obtained when such a fiber was pumped at 805 nm using 30-fs
pulses with 2.5-μJ energy (Belli et al., 2015). As seen there, the supercontinuum
extended from 120 nm to >1000 nm with a relatively strong peak at 182 nm that
could be attributed to a dispersive wave. Such a supercontinuum, extending over
multiple octaves, is useful for a variety of applications.

It is possible to realize spectra that are even wider than the one in Fig. 3.26. The
main issue is related to fiber’s losses as it is hard to find a fiber exhibiting low losses
over a very wide spectral range. In a 2015 study, a 4-cm-long, zirconium fluoride
fiber (known as the ZBLAN fiber) was used because this glass exhibits relatively low
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Fig. 3.26 Supercontinuum at the output of a 15-cm-long, H2-filled, PCF pumped at 805 nm
with 30-fs pulses of 2.5-μJ energy. Dashed curves show the low-energy spectrum for comparison
(After Belli et al. (2015) ©2015 OSA.)

losses over a wavelength region extending from 0.2 to 6 μm (Jiang et al., 2015). The
fiber was in the form of a PCF with a slightly elliptical core (average diameter 3 μm),
and its ZDWL was near 1 μm. When it was pumped at a wavelength of 1.04 μm in
the anomalous-GVD region with pulse energies of up to 1 nJ, the output spectrum
extended from 0.2 to 2.5 μm. In a 2017 experiment, a gas-filled, hollow-core fiber
was used containing a single ring of air holes in its cladding (Cassataro et al., 2017).
This fiber structure was found to have relatively low losses (<5 dB/m) over a wide
spectral range over which its GVD was also relatively flat. The 5-cm-long fiber was
filled with the krypton gas at a pressure of 18 bar and pumped with 30-fs pulses of
10 μJ energy at a wavelength of 1.7 μm. Such a pulse formed a 13th-order soliton
and produced a supercontinuum that extended from 270 nm to 3100 nm.

Even a wider supercontinuum was obtained in a 2019 experiment using a 30-
cm-long, argon-filled, anti-resonant, hollow-core fiber (Adamu et al., 2019). It
was realized by pumping the fiber at a wavelength near 2460 nm, where the
fiber exhibited an anti-resonant transmission window. When 100-fs pulses with
8-μJ energies were launched into the fiber, the output was in the form of a
supercontinuum that extended from 200 nm to 4000 nm. Moreover, the output was
spectrally coherent over this entire range. Figure 3.27 shows both the measured
ultrawide spectrum (top) and the degree of coherence (bottom). The numerically
simulated spectrum is also shown for comparison. The physical mechanism behind
the extreme spectral broadening is related to the soliton–plasma nonlinear dynamics
that leads to efficient generation of dispersive wave (DW) in the deep UV region.
This experiment clearly indicates that the nonlinear effects in suitably designed
fibers can produce ultrabroad supercontinua, extending from deep UV to mid-IR
regions, with a proper choice of the pump wavelength.
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Fig. 3.27 Ultrawide supercontinuum extending from 200 to 4000 nm (top) from an argon-filled,
hollow-core fiber pumped at 2460 nm with 100-fs pulses of 8-μJ energy. Simulated spectrum is
also shown for comparison. The bottom curve shows measured degree of coherence (After Adamu
et al. (2019) ©2019 CC BY.)

3.8 Summary

This chapter has reviewed the propagation characteristics of ultrashort optical pulses
in single-mode fibers influenced by various dispersive and nonlinear effects. When
pulse widths exceed a few picoseconds and only second-order dispersive effects
dominate, the propagation behavior is modeled quite well by the NLS equation. New
qualitative features arise depending on whether the propagation occurs in the normal
or the anomalous dispersion regime. It is useful to introduce two length scales,
LD and LNL, referred to as the dispersion and nonlinear lengths, respectively. A
dimensionless parameter defined as N2 = LD/LNL plays a particularly important
role. The nonlinear effects become important when N is close to or exceeds 1.

In the case of normal GVD, pulses broaden as they propagate and their shape
becomes more rectangular. For N > 10, the pulse begins to exhibit optical wave
breaking and develops a linear chirp across its entire width, a feature that is useful
for compressing such pulses. In the case of anomalous GVD, the fiber supports
optical solitons that are of fundamental interest and have also found important
applications. In this case, the pulse preserves its shape and spectrum throughout its
propagation when N = 1 and is referred to as the fundamental soliton. In contrast,
the pulse evolves in a periodic fashion for other integer values of N .
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Much more interesting effects occur for femtosecond pulses, for which one
must include both the TOD of the fiber and the phenomenon of intrapulse Raman
scattering. Mathematically, one must use a generalized version of the NLS equation.
It shows that higher-order solitons undergo a fission process in which an N th-order
soliton is broken into N fundamental solitons of different widths and peak powers.
At the same time, dispersive waves are generated through a Cherenkov-like process.
For sufficiently large values of N , the onset of dispersive waves in combination
with intrapulse Raman scattering, XPM, and FWM leads to the formation of a
supercontinuum, whose spectral bandwidth can exceed 1000 nm under suitable
conditions. Depending on the input wavelength of the optical pulses and the material
used to make the fiber, a supercontinuum can be produced to cover the visible, near-
IR, or the mid-IR spectral regions. With a proper choice of the pump wavelength,
hollow-core fibers filled with gases can be used to obtain ultrawide supercontinua
that extend from deep UV to mid-IR regions and are spectrally coherent over the
entire wavelength range.

The use of optical fibers for supercontinuum generation has found a variety
of applications, especially in the area of biomedical imaging. Indeed, fiber-based
supercontinuum sources have been available commercially for more than a decade
by now. Clearly, optical fibers provide an extremely versatile optical medium for
studying nonlinear phenomena and for creating novel optical sources in different
spectral regions. Such sources are already used and will continue to be used for a
variety of applications in diverse areas of optics and photonics.
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Chapter 4
Cross-Phase Modulation: A New
Technique for Controlling the Spectral,
Temporal, and Spatial Properties
of Ultrashort Pulses

P. L. Baldeck, P. P. Ho, and Robert R. Alfano

Abstract The chapter focus on self-phase modulation, cross-phase modulation
(XPM)processes, white-light supercontinuum, modulation instability for SRS,
SHG, and four-wave mixing properties of beams for different XPM applications for
computation, defection, and coding of beams in communication for wide spectral
from UV to THz.

Keywords Cross-phase modulation · Self-phase modulation · Continuum ·
Modulation instability · Normal dispersion · Group velocity · Pulse walk off ·
Optical fibers · THz · Polarization · Stimulated Raman scattering · 4 wave and ·
Second harmonic beams

4.1 Introduction

Self-phase modulation (SPM) is the principal mechanism responsible for the gen-
eration of picosecond and femtosecond white-light supercontinua. When an intense
ultrashort pulse propagates through a medium, it distorts the atomic configuration
of the material, which changes the refractive index. The pulse phase is time
modulated, which causes the generation of new frequencies. This phase modulation
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originates from the pulse itself (self -phase modulation). It can also be generated by
a copropagating pulse (cross-phase modulation).

Several schemes of nonlinear interaction between optical pulses can lead to
cross-phase modulation (XPM). For example, XPM is intrinsic to the generation
processes of stimulated Raman scattering (SRS) pulses, second harmonic generation
(SHG) pulses, and stimulated four-photon mixing (SFPM) pulses. More important,
the XPM generated by pump pulses can be used to control, with femtosecond time
response, the spectral, temporal, and spatial properties of ultrashort probe pulses.

Early studies on XPM characterized induced polarization effects (optical Kerr
effect) Kimura et al. (1986), Kitayama et al. (1985b) and induced phase changes
(Chraplyvy & Stone, 1984), but did not investigate spectral, temporal, and spatial
effects on the properties of ultrashort pulses. In 1980, Gersten, Alfano, and Belic
predicted that Raman spectra of ultrashort pulses would be broadened by XPM
(Gersten et al., 1980). The first experimental observation of XPM spectral effects
dates to early 1986, when it was reported that intense picosecond pulses could be
used to enhance the spectral broadening of weaker pulses copropagating in bulk
glasses (Alfano et al., 1986). Since then, several groups have been studying XPM
effects generated by ultrashort pump pulses on copropagating Raman pulses (Schadt
et al., 1986; Schadt & Jaskorzynska, 1987a; Islam et al., 1987a; Alfano et al., 1987b;
Baldeck et al., 1987b, c, d; Manassah, 1987a, b; Hook et al., 1988), second harmonic
pulses (Alfano et al., 1987a; Manassah, 1987c; Manassah and Cockings, 1987; Ho
et al., 1988), stimulated four-photon mixing pulses (Baldeck & Alfano, 1987), and
probe pulses (Manassah et al., 1985; Agrawal et al., 1989a; Baldeck et al., 1988a,
c). Recently, it has been shown that XPM leads to the generation of modulation
instability (Agrawal, 1987; Agrawal et al., 1989b; Schadt and Jaskorzynska, 1987b;
Baldeck et al., 1988b, d; Gouveia-Neto et al., 1988a, b), solitary waves (Islam et al.,
1987b; Trillo et al., 1988), and pulse compression (Jaskorzynska & Schadt, 1988;
Manassah, 1988; Agrawal et al., 1988). Finally, XPM effects on ultrashort pulses
have been proposed to tune the frequency of probe pulses (Baldeck et al., 1988a), to
eliminate the soliton self-frequency shift effect (Schadt & Jaskorzynska, 1988), and
to control the spatial distribution of light in large core optical fibers (Baldeck et al.,
1987a).

This chapter reviews some of the key theoretical and experimental works that
have predicted and described spectral, temporal, and spatial effects attributed
to XPM. In Sect. 4.2, the basis of the XPM theory is outlined. The nonlinear
polarizations, XPM phases, and spectral distributions of copropagating pulses are
computed. The effects of pulse walk-off, input time delay, and group velocity
dispersion broadening are particularly discussed. (Additional work on XPM and
on SPM theories can be found in Manassah (Chap. 5) and Agrawal (Chap. 3).)
Experimental evidence for spectral broadening enhancement, induced-frequency
shift, and XPM-induced optical amplification is presented in Sect. 4.3. Sections
4.4, 4.5, and 4.6 consider the effects of XPM on Raman pulses, second harmonic
pulses, and stimulated four-photon mixing pulses, respectively. Section 4.7 shows
how induced focusing can be initiated by XPM in optical fibers. Section 4.8 presents
measurements of modulation instability induced by cross-phase modulation in the

http://dx.doi.org/10.1007/978-1-4939-3326-6_5
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normal dispersion region of optical fibers. Section 4.9 describes XPM-based devices
that could be developed for the optical processing of ultrashort pulses with terahertz
repetition rates. Finally, Sect. 4.10 summarizes the chapter and highlights future
trends.

4.2 Cross-Phase Modulation Theory

4.2.1 Coupled Nonlinear Equations of Copropagating Pulses

The methods of multiple scales and slowly varying amplitude (SVA) are the two
independent approximations used to derive the coupled nonlinear equations of
copropagating pulses. The multiple scale method, which has been used for the first
theoretical study on induced-phase modulation, is described in Manassah (Chap. 5).
The following derivation is based on the SVA approximation.

The optical electromagnetic field of two copropagating pulses must ultimately
satisfy Maxwell’s vector equation:

∇ × ∇ × E = −μ0
∂D
∂t

(4.1a)

and

D = ε E + PNL, (4.1b)

where ε is the medium permittivity at low intensity and PNL is the nonlinear
polarization vector.

Assuming a pulse duration much longer than the response time of the medium,
an isotropic medium, the same linear polarization for the copropagating fields,
and no frequency dependence for the nonlinear susceptibility χ (3), the nonlinear
polarization reduces to

PNL (r, z, t) = χ(3)E3 (r, z, t) , (4.2)

where the transverse component of the total electric field can be approximated by

E (r, z, t) = 1

2

{
A1 (r, z, t) e

i(ω1t−β1z) + A2 (r, z, t) e
i(ω2t−β2z) + c.c.

}
. (4.3)

A1 and A2 refer to the envelopes of copropagating pulses of carrier frequencies
ω1 and ω2, and β1 and β2 are the corresponding propagation constants, respectively.

Substituting Eq. (4.3) into Eq. (4.2) and keeping only the terms synchronized
with ω1 and ω2, one obtains

PNL (r, z, t) = PNL1 (r, z, t)+ PNL2 (r, z, t) , (4.4a)
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PNL1 (r, z, t) = 3

8
χ(3)

(
|A1|2 + 2|A2|2

)
A1e

i(w1t−β1z), (4.4b)

PNL2 (r, z, t) = 3

8
χ(3)

(
|A2|2 + 2|A1|2

)
A2e

i(w2t−β2z), (4.4c)

where PNL1 and PNL2 are the nonlinear polarizations at frequencies ω1 and ω2,
respectively. The second terms in the right sides of Eqs. (4.4b) and (4.4c) are cross-
phase modulations terms. Note the factor of 2.

Combining Eqs. (4.1a and 4.1b)–(4.4a, 4.4b and 4.4c) and using the slowly
varying envelope approximation (at the first order for the nonlinearity), one obtains
the coupled nonlinear wave equations:

∂A1

∂z
+ 1

νg1

∂A1

∂t
+ i
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where νgi is the group velocity for the wave i, β(2)i is the group velocity dispersion
for the wave i, and n2 = 3χ (3)/8n is the nonlinear refractive index.

In the most general case, numerical methods are used to solve Eqs. (4.5a and
4.5b). However, they have analytical solutions when the group velocity dispersion
temporal broadening can be neglected.

Denoting the amplitude and phase of the pulse envelope by a and α, that is,

A1 (τ, z) = a1 (τ, z) e
iα1(τ,z) and A2 (τ, z) = a2 (τ, z) e

iα2(τ,z), (4.6)

and assuming β(2)1 ≈ β
(2)
2 ≈ 0, Eqs. (4.5a) and (4.5b) reduce to
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= 0, (4.7a)
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= 0, (4.7c)



4 Cross-Phase Modulation: A New Technique for Controlling the Spectral,. . . 175
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c
n2

[
a2

2 + 2a2
1

]
, (4.7d)

where τ = (t − z/νg1)/T0 and T0 is the 1/e pulse duration.
In addition, Gaussian pulses are chosen at z = 0:

A1 (τ, z = 0) =
√
P1

Aeff
e−τ 2/2, (4.8a)

A2 (τ, z = 0) =
√
P2

Aeff
e−(τ−τd )2/2, (4.8b)

where P is the pulse peak power, Aeff is the effective cross-sectional area, and
τ d = Td /T0 is the normalized time delay between pulses at z = 0. With the initial
conditions defined by Eqs. (4.8a and 4.8b), Eqs. (4.5a and 4.5b) have analytical
solutions when temporal broadenings are neglected:

A1 (τ, z) =
√
P1

Aeff
e−τ 2/2eiα1(t,z), (4.9a)

A2 (τ, z) =
√
P2

Aeff
e−(τ−τd−z/Lw)2/2eiα2(τ,z), (4.9b)
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α2 (τ, z) = ω2
c
n2

P2
Aeff
ze−(τ−τd−z/Lw)2

+ √
π ω2
c
n2

P1
Aeff
Lw

[
erf (τ )− erf

(
τ − z

Lw

)]
,

(4.9d)

where Lw = T0/(1/νg 1–1/νg 2) is defined as the walk-off length.
Equations (4.9c) and (4.9d) show that the phases α1(τ , z) of copropagating

pulses that overlap in a nonlinear Kerr medium are modified by a cross-phase
modulation via the peak power Pj �= i . In the case of ultrashort pulses, this cross-
phase modulation gives rise to the generation of new frequencies, as does self-phase
modulation.
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The instantaneous XPM-induced frequency chirps are obtained by differenti-
ating Eqs. (4.9c) and (4.9d) according to the instantaneous frequency formula
�ω = −∂α/∂τ . These are
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c
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Aeff

z
T0
τe−τ 2
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c
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]
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(4.10a)
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(4.10b)

where �ω1 = ω − ω1 and �ω2 = ω − ω2. The first and second terms on the right
sides of Eqs. (4.10a) and (4.10b) are contributions arising from SPM and XPM,
respectively. It is interesting to notice in Eqs. (4.10a and 4.10b) than the maximum
frequency chirp arising from XPM is inversely proportional to the group velocity
mismatch Lw /T0 = 1/(1/νg1–1/νg2) rather than the pump pulse time duration or
distance traveled z as for ZPM. Therefore, the time duration of pump pulses does
not have to be as short as the time duration of probe pulses for XPM applications.

More generally, spectral profiles affected by XPM can be studied by computing
the Fourier transform:

S (ω − ω0, z) = 1

2π

∫ +∞

−∞
a (τ, z) eiα(τ,z)ei(ω−ω0)τ dτ, (4.11)

where |S(ω − ω0, z)|2 represents the spectral intensity distribution of the pulse.
Equation (4.10a and 4.10b) is readily evaluated numerically using fast Fourier
transform algorithms.

Analytical results of Eqs. (4.9a, 4.9b, 4.9c, and 4.9d) take in account XPM, SPM,
and group velocity mismatch. These results are used in Sect. 4.2.2 to isolate the
specific spectral features arising from the nonlinear interaction of copropagating
pulses. Higher-order effects due to group velocity dispersion broadening are
discussed in Sect. 4.2.3.

4.2.2 Spectral Broadening Enhancement

The spectral evolution of ultrashort pulses interacting in a nonlinear Kerr medium
is affected by the combined effects of XPM, SPM, and pulse walk-off.

For a negligible group velocity mismatch, XPM causes the pulse spectrum to
broaden more than expected from SPM alone. The pulse phase of Eqs. (4.9c) and
(4.9d) reduces to
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αi (τ, z) = ωi

c
n2

(
Pi + 2Pj

)

Aeff
ze−τ 2

. (4.12)

The maximum spectral broadening of Gaussian pulses, computed using Eq.
(4.12), is given by

�ωi(z) ≈ ωi

c
n2

(
Pi + 2Pj

)

Aeff

z

T0
. (4.13)

Thus, the spectral broadening enhancement arising from XPM is given by

�ωiSPM+XPM

�ωiSPM
= 1 + 2Pj

Pi
. (4.14)

Therefore, XPM can be used to control the spectral broadening of probe pulses
using strong command pulses. This spectral control is important, for it is based
on the electronic response of the interacting medium. It could be turned on and
off in a few femtoseconds, which could lead to applications such as the pulse
compression of weak probe pulses, frequency-based optical computation schemes,
and the frequency multiplexing of ultrashort optical pulses with terahertz repetition
rates.

The effect of pulse walk-off on XPM-induced spectral broadening can be
neglected when wavelengths of pulses are in the low dispersion region of the
nonlinear material, the wavelength difference, or/and the sample length are small,
and the time duration of pulses is not too short. For other physical situations, the
group velocity mismatch and initial time delay between pulses affect strongly the
spectral shape of interacting pulses (Islam et al., 1987a; Manassah 1987a; Agrawal
et al., 1988, 1989a; Baldeck et al., 1988a).

Figure 4.1 shows how the spectrum of a weak probe pulse can be affected by
the XPM generated by a strong copropagating pulse. The wavelength of the pump
pulse was chosen where the pump pulse travels faster than the probe pulse. Initial
time delays between pulses at the entrance of the nonlinear medium were selected
to display the most characteristic interaction schemes. Figure 4.1a, b are displayed
for reference. They show the probe pulse spectrum without XPM interaction (Fig.
4.1a) and after the XPM interaction but for negligible group velocity mismatch (Fig.
4.1b). Figure 4.1c is for the case of no initial time delay and total walk-off. The probe
spectrum is shifted and broadened by XPM. The anti-Stokes shift is characteristic
of the probe and pump pulse walk-off. The probe pulse is blue shifted because it is
modulated only by the back of the faster pump pulse. When the time delay is chosen
such that the pump pulse enters the nonlinear medium after the probe and has just
time to catch up with the probe pulse, one obtains a broadening similar to that in
Fig. 4.1c but with a reverse Stokes shift (Fig. 4.1d). The XPM broadening becomes
symmetrical when the input time delay allows the pump pulse not only to catch up
with but also to pass partially through the probe pulse (Fig. 4.1e). However, if the
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Fig. 4.1 Influence of cross-phase modulation, walk-off, and input time delay on the spectrum of
a probe pulse from Eqs. (4.9a, 4.9b, 4.9c and 4.9d) and (4.11) with P1 
 P2. φ = 2(ω1/c)n2P2Lw,
δ = z/Lw, and τ d are the XPM, walk-off, and input time delay parameters, respectively. (a)
Reference spectrum with no XPM; i.e., φ = 0. (b) XPM in the absence of walk-off; i.e., φ = 50
and δ = 0. (c) XPM, total walk-off, and no initial time delay; i.e., φ = 50, δ = −5, and τ d = 0. (d)
XPM and initial time delay to compensate the walk-off; i.e., φ = 50, δ = −5, and τ d = 5. (e) XPM
and symmetrical partial walk-off; i.e., φ = 50, δ = −3, and τ d = 1.5. (f) XPM and symmetrical
total walk-off; i.e., φ = 50, δ = −5, and τ d = 2.5
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interaction length is long enough to allow the pump pulse to completely overcome
the probe pulse, there is no XPM-induced broadening (Fig. 4.1f).

The diversity of spectral features displayed in Fig. 4.1 can easily be understood
by computing the phase and frequency chirp given by Eqs. (4.9a, 4.9b, 4.9c and
4.9d) and (4.10a and 4.10b) (Fig. 4.2). For reference, Fig. 4.2a shows the locations
of the pump pulse (solid line) and the probe pulse (dotted line) at the output of the
nonlinear sample (case of no initial delay and total walk-off). In this case, the XPM
phase, which is integrated over the fiber length, has the characteristic shape of an
error function whose maximum corresponds to neither the probe pulse maximum
nor the pump pulse maximum (Fig. 4.2b). The probe pulse (dotted line in Fig. 4.2c)
sees only the blue part of the frequency chirp (solid line in Fig. 4.2c) generated by
the pump pulse. As a result, the probe spectrum is simultaneously broadened and
shifted toward the highest frequencies (Fig. 4.1c). One should notice that opposite
to the SPM frequency chirp, the XPM chirp in Fig. 4.2c is not monotonic. The pulse
leading edge and trailing edge have a positive chirp and negative chirp, respectively.
As a result, dispersive effects (GVD, grating pair, . . . ) are different for the pulse
front and the pulse back. In the regime of normal dispersion (β(2) > 0), the pulse
front would be broadened by GVD, while the pulse back would be sharpened. Figure
4.2d, e show XPM-induced phase and frequency chirp for the mirror image case of
Fig. 4.2b, c. The probe spectrum is now shifted toward the smallest frequencies. Its
leading edge has a negative frequency chirp, while the trailing edge has a positive
one. A positive GVD would compress the pulse front and broaden the pulse back.
The case of a partial symmetrical walk-off is displayed in Fig. 4.2f, g. In first
approximation, the time dependence of the XPM phase associated with the probe
pulse energy is parabolic (Fig. 4.2f), and the frequency chirp is quasi-linear (4.2 g).
This is the prime quality needed for the compression of a weak pulse by following
the XPM interaction by a grating pair compressor (Manassah, 1988). Figure 4.2h,
i show why there is almost no spectral broadening enhancement when the pump
pulse passes completely through the probe pulse (Fig. 4.1f): The part of XPM
associated with the probe pulse energy is constant (Fig. 4.2h). The probe pulse is
phase modulated, but the phase shift is time independent. Therefore, there is neither
frequency chirp (Fig. 4.2i) nor spectral broadening enhancement by XPM.

The combined effects of XPM and walk-off on the spectra of weak probe pulses
(negligible SPM) have been shown in Figs. 4.1 and 4.2. When the group velocity
mismatch is large, the spectral broadening is not significant, and the above spectral
features reduce to a tunable induced-frequency shift of the probe pulse frequency
(see Sect. 4.3.2). When strong probe pulses are used, the SPM contribution has to
be included in the analysis. Figure 4.3 shows how the results of Fig. 4.1 are modified
when the probe power is the same as the pump power, that is, the SPM has to be
taken in account. Figure 4.3a shows the spectral broadening arising from the SPM
alone. Combined effects of SPM and XPM are displayed in Figs. 4.3b–e with the
same initial delays as in Fig. 4.1. The SPM contribution to the spectral broadening
is larger than the XPM contribution because the XPM interaction length is limited
by the walk-off between pump and probe pulses.
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Fig. 4.2 Influence of cross-phase modulation, walk-off, and input time delay on the phase and
frequency chirp of a probe pulse. (a) Locations of pump (solid line) and probe (dotted line) at the
output of the nonlinear medium for total walk-off and no initial time-delay; i.e., δ = −5 and τ d = 0.
(b) XPM phase with a total walk-off and no initial time delay; i.e., φ = 50, δ = −5, and τ d = 0. (c)
XPM-induced chirp (solid line) with total walk-off and no initial time delay. (Dotted line) Probe
pulse intensity. (d) XPM phase with an initial time delay to compensate the walk-off; i.e., φ = 50,
δ = −5, and τ d = 5. (e) XPM-induced chirp (solid line) with an initial time delay to compensate
the walk-off. (Dotted line) Probe pulse intensity. (f) XPM phase and symmetrical partial walk-off;
i.e., φ = 50, δ = −3, and τ d = 1.5. (g) XPM-induced chirp (solid line) and symmetrical partial
walk-off. (Dotted line) Probe pulse intensity. (h) XPM phase and symmetrical total walk-off; i.e.,
φ = 50, δ = −5, and τ d = 2.5. (i) XPM-induced chirp (solid line) and symmetrical total walk-off.
(Dotted line) Probe pulse intensity
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Fig. 4.2 (continued)

The XPM spectral features described in this section have been obtained using
first-order approximation of the nonlinear polarization, propagation constant, and
nonlinearity in the nonlinear wave equation (Eqs. 4.1a and 4.1b). Moreover, plane
wave solutions and peak powers below the stimulated Raman scattering threshold
have been assumed. For practical purposes, it is often necessary to include the effects
of (1) first- and second-order group velocity dispersion broadening, β(2) and β(3),
(2) induced- and self-steepening, (3) four-wave mixing occurring when pump and
probe pulses are coupled through χ (3), (4) stimulated Raman scattering generation,
(5) the finite time response of the nonlinearity, and (6) the spatial distribution
of interacting fields (i.e., induced- and self-focusing, diffraction, Gaussian profile
of beams, . . . ). In Sect. 4.2.3, the combined effect of XPM and group velocity
dispersion broadening β(2) is shown to lead to new kinds of optical wave breaking
and pulse compression. Some other effects that lead to additional spectral, temporal,
and spatial features of XPM are discussed by Agrawal (Chap. 3) and Manassah
(Chap. 5).

http://dx.doi.org/10.1007/978-1-4939-3326-6_3
http://dx.doi.org/10.1007/978-1-4939-3326-6_5
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Fig. 4.3 Influence of self-phase modulation, cross-phase modulation, walk-off, and input time
delay on the spectrum of a probe pulse from Eqs. (4.9a, 4.9b, 4.9c, 4.9d) and (4.11) with P1 = P2.
The parameter values in Fig. 4.1 are used

4.2.3 Optical Wave Breaking and Pulse Compression Due
to Cross-Phase Modulation in Optical Fibers

When an ultrashort light pulse propagates through an optical fiber, its shape and
spectrum change considerably as a result of the combined effect of group velocity
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dispersion β(2) and self-phase modulation. In the normal dispersion regime of the
fiber (λ ≤ 1.3 μm), the pulse can develop rapid oscillations in the wings together
with spectral sidelobes as a result of a phenomenon known as optical wave breaking
(Tomlinson et al., 1985). In this section, it is shown that a similar phenomenon can
lead to rapid oscillations near one edge of a weak pulse that copropagates with a
strong pulse (Agrawal et al., 1988).

To isolate the effects of XPM from those of SPM, a pump-probe configuration is
chosen (P2 
 P1) so that pulse 1 plays the role of the pump pulse and propagates
without being affected by the copropagating probe pulse. The probe pulse, however,
interacts with the pump pulse through XPM. To study how XPM affects the probe
evolution along the fiber, Eqs. (4.5a) and (4.5b) have been solved numerically using
a generalization of the beam propagation or the split-step method (Agrawal &
Potasek, 1986). The numerical results depend strongly on the relative magnitudes
of the length scales Ld and Lw, where Ld = T 2

0 / |β2| is the dispersion length and
Lw = νg1νg2T0/|νg1 − νg2| is the walk-off length. If Lw 
 Ld, the pulses walk off
from each other before GVD has an opportunity to influence the pulse evolution.
However, if Lw and Ld become comparable, XPM and GVD can act together and
modify the pulse shape and spectra with new features.

To show these features as simply as possible, a specific case is considered in
which Lw /Ld = 0.1 and λ1/λ2 = 1.2. Both pulses are assumed to propagate in the
normal GVD regime with β1 = β2 > 0. It is assumed that the pump pulse goes
faster than the probe pulse (νg1 > νg2). At the fiber input both pulses are taken to
be a Gaussian of the same width with an initial delay τ d between them. First, the
case τ d = 0 is considered, so the two pulses overlap completely at z = 0. Figure 4.4
shows the shapes and spectra of the pump and probe pulses at z/Ld = 0.4 obtained
by solving Eqs. (4.5a) and (4.5b) numerically with N = (γ 1P1Ld)0.5 = 10. For
comparison, Fig. 4.5 shows the probe and pump spectra under identical conditions
but without GVD effects (β1 = β2 = 0). The pulse shapes are not shown since they
remain unchanged when the GVD effects are excluded.

From a comparison of Figs. 4.4 and 4.5, it is evident that GVD can substantially
affect the evolution of features expected from SPM or XPM alone. Consider first
the pump pulse for which XPM effects are absent. The expected from dispersive
SPM for N = 10. With further propagation, the pump pulse eventually develops
rapid oscillations in the wings as a result of conventional SPM-induced optical wave
breaking. Consider now the probe pulse for which SPM effects are absent and probe
pulse evolution is governed by dispersive XPM. In absence of GVD, the pulse shape
would be a narrow Gaussian centered at τ = 4 (the relative delay at the fiber output
because of group velocity mismatch). The GVD effects not only broaden the pulse
considerably but also induce rapid oscillations near the trailing edge of the probe
pulse. These oscillations are due to XPM-induced optical wave breaking.

To understand the origin of XPM-induced optical wave breaking, it is useful to
consider the frequency chirp imposed on the probe pulse by the copropagating pulse.
As there is total walk-off and no initial delay, maximum chirp occurs at the center of
the probe pulse. Since the chirp is positive, blue-shifted components are generated
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Fig. 4.4 Shape and spectrum of probe pulse (left) and pump pulse (right) at z/Ld = 0.4 when the
two pulses copropagate in the normal dispersion regime of a single-mode fiber. The parameters are
N = 10, Lw /Ld = 0.1, λ1/λ2 = 1.2, and τ d = 0. Oscillations near the trailing edge (positive time)
of the probe pulse are due to XPM-induced optical wave breaking. (From Agrawal et al., 1988)

by XPM near the pulse center. As a result of the normal GVD, the peak of the probe
pulse moves slower than its tails. Since the peak lags behind as the probe pulse
propagates, it interferes with the trailing edge. Oscillations seen near the trailing
edge of the probe pulse in Fig. 4.4 result from such an interference. Since the basic
mechanism is analogous to the optical wave-breaking phenomenon occurring in the
case of dispersive XPM, we call it XPM-induced optical wave breaking.

In spite of the identical nature of the underlying physical mechanism, optical
wave breaking exhibits different qualitative features in the XPM case compared with
the SPM case. The most striking difference is that the pulse shape is asymmetric
with only one edge developing oscillations. For the case shown in Fig. 4.4,
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Fig. 4.5 Spectra of probe and pump pulses under conditions identical to those of Fig. 4.4 but
without the GVD effects (β1 = β2 = 0). Pulse shapes are not shown as they remain unchanged.
(From Agrawal et al., 1988)

oscillations occur near the trailing edge. If the probe and pump wavelengths were
reversed so that the pump pulse moved slower than the probe pulse, oscillations
would occur near the leading edge since the pump pulse would interact mainly with
that edge. In fact, in that case, the shape and the spectrum of the probe pulse are just
the mirror images of those shown in Figs. 4.4 and 4.5.

The effect of initial delay between probe and pump pulses is now investigated.
The effect of initial delay on XPM-induced spectral broadening has been discussed
in the dispersionless limit (β1 = β2 = 0) in Sect. 4.2.2. For example, if the pump
pulse is delayed by the right amount so that it catches up with the probe pulse at
the fiber output, the probe spectrum is just the mirror image of that shown in Fig.
4.4, exhibiting a red shift rather than a blue shift. Furthermore, if τ d is adjusted
such that the pump pulse catches up with the probe pulse halfway through the fiber,
the probe spectrum is symmetrically broadened since the pump walks through the
probe in a symmetric manner. Our numerical results show that the inclusion of GVD
completely alters this behavior. Figure 4.6 shows the probe shape and spectrum
under conditions identical to those of Fig. 4.4 except that the probe pulse is advanced
(τ d = −2) such that the pump pulse would catch it halfway through the fiber in
the absence of GVD effects. The lower row shows the expected behavior in the
dispersionless limit, showing the symmetrical spectral broadening in this case of
symmetrical walk-off. A direct comparison reveals how much the presence of GVD
can affect the SPM effects on the pulse evolution. In particular, both the pulse shape
and spectra are asymmetric. More interestingly, the probe pulse is compressed, in
sharp contrast to the case of Fig. 4.4, where GVD led to a huge broadening. This can
be understood qualitatively from Eqs. (4.10a and 4.10b). For the case shown in Fig.
4.6, the XPM-induced chirp is negative and nearly linear across the trailing part of
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the probe pulse. Because of this chirp, the traveling part is compressed as the probe
pulse propagates inside the fiber.

Experimental observation of XPM-induced optical wave breaking would require
the use of femtosecond pulses. This can be seen by noting that for picosecond
pulses with T0 = 5–10 ps, typically Ld ≈ 1 km while Lw ≈ 1 m even if the pump-
probe wavelengths differ by as little as 10 nm. By contrast, if T0 = 100 fs, both
Ld and Lw become comparable (≈ 10 cm), and the temporal changes in the probe
shape discussed here can occur in a fiber less than a meter long. Pulses much
shorter than 100 f. should also not be used since higher-order nonlinear effects
such as self-steepening and a delayed nonlinear response then become increasingly
important. Although these effects are not expected to eliminate the phenomenon of
XPM-induced optical wave breaking, they may interfere with the interpretation of
experimental data.
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4.3 Pump-Probe Cross-Phase Modulation Experiments

Cross-phase modulation is intrinsic to numerous schemes of ultrashort pulse
interaction. The first observation of spectral effects arising from XPM was reported
using a pump-probe scheme (Alfano et al., 1986). The phase modulation generated
by the infrared pulse at the probe wavelength was referred to as an induced-phase
modulation (PM). More recently, the induced-frequency shift and spectral broad-
ening enhancement of picosecond probe pulses have been observed using optical
fibers as nonlinear media (Baldeck et al., 1988a; Islam et al., 1987a, b). Pump-probe
experiments on XPM are of prime importance for they could lead to applications
for pulse compression, optical communication, and optical computation purposes.
Results of the pump-probe experiments on XPM are discussed in this section.

4.3.1 Spectral Broadening Enhancement by Cross-Phase
Modulation in BK-7 Glass

The possibility of enhancing the spectral broadening of a probe pulse using a
copropagating pump pulse was first observed experimentally in early 1986 (Alfano
et al., 1986). The spectral broadening of a weak 80-μJ picosecond 530-nm laser
in BK-7 glass was enhanced over the entire spectral band by the presence of an
intense millijoule picosecond 1060-nm laser pulse. The spectral distributions of
the self-phase modulation and the cross-phase modulation signals were found to
be similar. The dominant enhancement mechanism for the induced supercontinuum
was determined to be a cross-phase modulation process, not stimulated four-photon
scattering.

The experimental setup is shown in Fig. 4.7. A single 8-ps laser pulse at 1060 nm
generated from a mode-locked glass laser system was used as the pump beam. Its
second harmonic was used as the probe beam. These pulses at the primary 1060-nm
and the second harmonic 530-nm wavelengths were weakly focused into a 9-cm-
long BK-7 glass. A weak supercontinuum signal was observed when both 530-
and 1060-nm laser pulses were sent through the sample at the same time. This
signal could arise from the IPM process and/or stimulated four-photon parametric
generation (FPPG).

In this induced supercontinuum experiment, the 530-nm laser pulse intensity was
kept nearly constant with a pulse energy of about 80 μJ. The primary 1060-nm laser
pulse energy was a controlled variable changing from 0 to 2 mJ. Filters were used
to adjust the 1060-nm pump-laser pump intensity. The output beam was separated
into three paths for diagnosis.

The output beam along path 1 was imaged onto the slit of a 0.5-m Jarrel-Ash
spectrograph to separate the contributions from the possible different mechanisms
for the supercontinuum by analyzing the spatial distribution of the spectrum
from phase modulation and stimulated four-photon scattering processes. In this
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Fig. 4.7 Schematic diagram of the experimental arrangement for measuring the spectral broad-
ening enhancement of probe pulses by induced-phase modulation. F1: Hoya HA30 (0.03%), R72
(82%), Corning 1–75 (1%), 1–59 (15%), 0–51 (69%), 3–75 (80%). The numbers in parentheses
correspond to the transmittivity at 1054 nm. All these color filters have about 82% transmittivity at
527 nm. F2: 1–75 + 3–67 for Stokes side measurements; F2: 1–75 + 2 (5–57) for anti-Stokes side
measurements; F3: neutral density filters; F: ND3 + 1–75; D1, D2; detectors; M: dielectric-coated
mirror; BS: beam splitter. (From Alfano et al., 1986)

spectrograph measurement, films were used to measure the spatial distribution of
the supercontinuum spectrum, and a photomultiplier tube was used to obtain quan-
titative reading. To distinguish different contributions from either phase modulation
or stimulated four-photon scattering, geometric blocks were arranged in the path
for the selection of a particular process. An aperture of 6-mm diameter was placed
in front of the entrance slit of the spectrograph to measure the signal contributed
phase modulation, while an aluminum plate of 7-mm width was placed in front of
the spectrograph entrance slit to measure the λ = 570-nm contribution.

The beam along path 2 was directed into a spectrometer with an optical mul-
tichannel analyzer to measure the supercontinuum spectral intensity distribution.
The spectrum was digitized, displayed, and stored in 500 channels as a function of
wavelength. The beam along path 3 was delayed and directed into a Hamamatsu
Model C1587 streak camera to measure the temporal distribution of the laser pulse
and induced supercontinuum. The duration of the induced supercontinuum with a
selected 10-nm bandwidth was measured to be about the same as the incident laser
pulse duration.
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Fig. 4.8 Intensities of the induced ultrafast supercontinuum pulse (IUSP) and the ultrafast
supercontinuum pulse (USP). Each data point was an average of about 20 laser shots and was
corrected for the detector, filter, and spectrometer spectral sensitivity. (�) IUSP (F1: 3–75); (◦)
USP from 527 nm (F1: HA30). USP from 1054 nm, which is not shown here was ≈1% of the
IUSP signal. The measured 527-nm probe pulse was about 5 × 10 counts on this arbitrary unit
scale. The error bar of each data point is about ±20%. (From Alfano et al., 1986)

Experimental results for the spectral distribution of induced supercontinuum and
supercontinuum are displayed in Fig. 4.8. More than 20 laser shots for each data
point in each instance have been normalized and smoothed. The average gain of
the induced supercontinuum in a BK-7 glass from 410- to 660-nm wavelength was
about 11 times that of the supercontinuum. In this instance, both the 530- and 1060-
nm laser pulse energies were maintained nearly constant: 80 μJ for 530 nm and
2 mJ for 1060 nm. In this experiment, the 530-nm laser pulse generated a weak
supercontinuum and the intense 1060-nm laser pulse served as a catalyst to enhance
the super-continuum in the 530-nm pulse. The supercontinuum generated by the
1060-nm pulse alone in this spectral region was less than 1% of the total induced
supercontinuum. The spectral shapes of the induced supercontinuum pulse and the
supercontinuum pulse in Fig. 4.8 are similar. Use of several liquid samples such as
water, nitrobenzene, CS2, and CCl4 has also been attempted to obtain the induced
supercontinuum. There was no significant (twofold) enhancement from all other
samples that we tested.

A plot of the intensity dependence of the induced supercontinuum is displayed
in Fig. 4.9 as a function of the 1060-nm pump pulse energy. The wavelengths
plotted in Fig. 4.9 were λ = 570 nm for the Stokes side and λ = 498 nm for the
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Fig. 4.9 Dependence of the IUSP signal on the intensity of the 1.06-μm pump pulse. (◦) Stokes
side at λ = 570 nm; (�) anti-Stokes side at λ = 498 nm. The error bars of the anti-Stokes side
were similar to those of the Stokes side. The solid line is a guide for the eye. The vertical axis is
the normalized IIUSP/I527 nm. (From Alfano et al., 1986)

anti-Stokes side. The 530-nm pulse energy was set at 80 ± 15 μJ. The induced
supercontinuum increased linearly as the added 1060-nm laser pulse energy was
increased from 0 to 200 μJ. When the 1060-nm pump pulse was over 1 mJ, the
supercontinuum enhancement reached a plateau and saturated at a gain factor of
about 11 times over the supercontinuum intensity generated by only the 530-nm
pulse. This gain saturation may be due to the trailing edge of the pulse shape
function being maximally distorted when the primary pulse intensity reaches a
certain critical value. This implies a saturation of the PM spectral distribution
intensity when the pumped primary pulse energy is above 1 mJ, as shown in Fig.
4.9.

Since the supercontinuum generation can be due to the phase modulation
and/or the stimulated four-photon scattering processes, it is important to distinguish
between these two different contributions to the induced supercontinuum signal.
Spatial filtering of the signal was used to separate the two main contributions. The
induced supercontinuum spectrum shows a spatial spectral distribution similar to
that of the conventional supercontinuum. The collinear profile that is due to the
phase modulation has nearly the same spatial distribution as the incident laser
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Fig. 4.10 Dependence of Is (PM) and Is (FPPG) at λ = 570 nm or the intensity of the 1054-nm
pump laser pulse. (◦) PM; (�) FPPG. The measured signal has been normalized with the incident
527-nm pulse energy. The error bar of each data point is about ±20% of the average value. (From
Alfano et al., 1986)

pulse. Two emission wings at noncollinear angles correspond to the stimulated
four-photon scattering continuum arising from the phase-matching condition of
the generated wavelengths emitted at different angles from the incident laser
beam direction. Using a photomultiplier system and spatial filtering, quantitative
measurements of the induced supercontinuum contributions from the collinear PM
and the noncollinear stimulated four-photon scattering parts were obtained (Fig.
4.10). These signals, measured at λ = 570 nm from the collinear PM and the
noncollinear parts of the induced supercontinuum, are plotted as a function of the
pump pulse energy. There was little gain from the contribution of the stimulated
four-photon scattering process over the entire pulse-energy-dependent measurement
as shown in Fig. 4.10. The main enhancement of the induced supercontinuum
generation is consequently attributed to the PM mechanism, which corresponds
to the collinear geometry. Another possible mechanism for the observed induced
supercontinuum could be associated with the enhanced self-focusing of the second
harmonic pulse induced by the primary pulse. There was no significant difference
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in the spatial intensity distribution of the 530-nm probe beam with and without the
added intense 1060-nm pulse.

In this experiment, the spectral broadening of 530-nm pulses was enhanced by
nonlinear interaction with copropagating strong infrared pulses in a BK-7 glass
sample. The spectral change has been found to arise from a phase modulation
process rather than a stimulated four-photon mixing process. It is in good agreement
with predictions of the induced-phase modulation theory. This experiment showed
the first clear evidence of a cross-phase modulation spectral effect.

4.3.2 Induced-Frequency Shift of Copropagating Pulses

Optical fibers are convenient for the study of nonlinear optical processes. The
optical energy is concentrated into small cross section (typically 10−7 cm2) for
long interaction lengths. Thus, large nonlinear effects are possible with moderate
peak powers (10–104 W). Optical fibers appear to be an ideal medium in which to
investigate XPM effects. The first pump probe experiment using picosecond pulses
propagating in optical fibers demonstrated the importance of the pulse walk-off in
XPM spectral effects (Baldeck et al., 1988a). It was shown that ultrashort pulses
that overlap in a nonlinear and highly dispersive medium undergo a substantial
shift of their carrier frequencies. This new coherent effect, which was referred to
as an induced-frequency shift, resulted from the combined effect of cross-phase
modulation and pulse walk-off. In the experiment, the induced-frequency shift
was observed by using strong infrared pulses that shifted the frequency of weak
picosecond green pulses copropagating in a 1-m-long single-mode optical fiber.
Tunable red and blue shifts were obtained at the fiber output by changing the time
delay between infrared and green pulses at the fiber input.

A schematic of the experimental setup is shown in Fig. 4.11. A mode-locked
Nd: YAG laser with a second harmonic crystal was used to produce 33-ps infrared
pulses and 25-ps green pulses. These pulses were separated using a Mach–Zehnder
interferometer delay scheme with wavelength-selective mirrors. The infrared and
green pulses propagated in different interferometer arms. The optical path of each
pulse was controlled using variable optical delays. The energy of infrared pulses
was adjusted with neutral density filters in the range 1–100 nJ, while the energy of
green pulses was set to about 1 nJ. The nonlinear dispersive medium was a 1-m-long
single-mode optical fiber (Corguide of Corning Glass). This length was chosen to
allow for total walk-off without losing control of the pulse delay at the fiber output.
The group velocity mismatch between 532- and 1064-nm pulses was calculated to
be about 76 ps/m in fused silica. The spectrum of green pulses was measured using a
grating spectrometer (1 meter, 1200 lines/mm) and an optical multichannel analyzer
(OMA2).

The spectra of green pulses propagating with and without infrared pulses are
plotted in Fig. 4.12. The dashed spectrum corresponds to the case of green pulses
propagating alone. The blue-shifted and red-shifted spectra are those of green pulses
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Fig. 4.11 Experimental setup used to measure the induced-frequency shift of 532-nm pulses as
a function of the time delay between pump and probe pulses at the optical fiber input. Mirrors
M1 and M2 are wavelength selective; i.e., they reflect 532-nm pulses and transmit 1064-nm pulses
(From Baldeck et al., 1988a)

Fig. 4.12 Cross-phase
modulation effects on spectra
of green 532-nm pulses. (a)
Reference spectrum (no
copropagating infrared pulse).
(b) Infrared and green pulses
overlapped at the fiber input.
(c) Infrared pulse delayed by
80 ps at the fiber input. (From
Baldeck et al., 1988a)
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copropagating with infrared pulses after the input delays were set at 0 and 80 ps,
respectively. The main effect of the nonlinear interaction was to shift the carrier
frequency of green pulses. The induced-wavelength shift versus the input delay
between infrared and green pulses is plotted in Fig. 4.13. The maximum induced-
wavelength shift increased linearly with the infrared pulse peak power (Fig. 4.14).
Hence, the carrier wavelength of green pulses could be tuned up to 4 Å toward both
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Fig. 4.13 Induced wavelength shift of green 532-nm pulses as a function of the input time delay
between 532-nm pulses and infrared 1064-nm pulses at the input of a 1-m-long optical fiber, (◦)
Experimental points. The solid line is the theoretical prediction from Eq. (3.3). (From Baldeck et
al., 1988a)

the red and blue sides by varying the time delay between infrared and green pulses
at the fiber input. The solid curves in Figs. 4.13 and 4.14 are from theory.

When weak probe pulses are used, the SPM contribution can be neglected in
Eqs. (4.9a, 4.9b, 4.9c, 4.9d) and (4.10a and 4.10b). Thus, nonlinear phase shifts and
frequency chirps are given by

α1 (τ, z) ≈ √
π
ω1

c
n2
P2

Aeff
Lw

[

erf (τ − τd)− erf

(

τ − τd + z

Lw

)]

, (4.15)

δω1 (τ, z) ≈ −2
ω1

c
n2
P2

Aeff

Lw

T0

[
e−(τ−τd )2 − e−(τ−τd−z/Lw)2

]
. (4.16)

When the pulses coincide at the fiber entrance (td = 0), the point of maximum
phase is generated ahead of the green pulse peak because of the group velocity
mismatch (Eq. 4.15). The green pulse sees only the trailing part of the XPM
profile because it travels slower than the pump pulse. This leads to a blue induced-
frequency shift (Eq. 4.16). Similarly, when the initial delay is set at 80 ps, the
infrared pulse has just sufficient time to catch up with the green pulse. The green
pulse sees only the leading part of the XPM phase shift, which gives rise to a red

http://doi.org/10.1007/978-3-031-06197-4_3
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Fig. 4.14 Maximum induced wavelength shift of 532-nm pulses versus the peak power of infrared
pump pulses, (◦) Experimental points. The solid line is the theoretical prediction from Eq. (3.4).
(From Baldeck et al., 1988a)

induced-frequency shift. When the initial delay is about 40 ps, the infrared pulse has
time to pass entirely through the green pulse. The pulse envelope sees a constant
dephasing, and there is no shift of the green spectrum (Fig. 4.13).

Equations (4.15) and (4.16) can be used to fit our experimental data shown in
Figs. 4.13 and 4.14. Assuming that the central part of the pump pulses provides the
dominant contribution to XPM, we set t = 0 in Eq. (4.16) and obtain

δω1 (τ, z) ≈ ω1

c
n2
P2

Aeff

Lw

T0

[
e−(τ−τd )2 − e−(τ−τd+z/Lw)2

]
. (4.17)

The maximum induced-frequency shift occurs at td = d = z/Lw and is given by

|�ωmax| = ω1

c
n2
P2

Aeff

Lw

T0
. (4.18)

Equations (4.17) and (4.18) are plotted in Figs. 4.13 and 4.14, respectively. There
is very good agreement between this simple analytical model and experimental data.
It should be noted that only a simple parameter (i.e., the infrared peak power at the
maximum induced-frequency shift) has been adjusted to fit the data. Experimental
parameters were λ= 532 nm, T0 = 19.8 ps (33 ps FWHM), Lw = 26 cm, and δ = 4.

http://doi.org/10.1007/978-3-031-06197-4_3
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We have shown experimentally and theoretically that ultrashort optical pulses
that overlap in a nonlinear and highly dispersive medium can undergo a substantial
shift of their carrier frequency. This induced-frequency shift has been demonstrated
using strong infrared pulses to shift the frequency of copropagating green pulses.
The results are well explained by an analytical model that includes the effect of
cross-phase modulation and pulse walk-off. This experiment led to a conclusive
observation of XPM spectral effects.

4.3.3 XPM-Induced Spectral Broadening and Optical
Amplification in Optical Fibers

This section presents additional features that can arise from the XPM interaction
between a pump pulse at 630 nm and a probe pulse at 532 nm. With this choice
of wavelengths, the group velocity dispersion between the pump pulse and the
probe pulse is reduced and the XPM interaction enhanced. The spectral width
and the energy of the probe pulse were found to increase in the presence of the
copropagating pump pulse (Baldeck et al., 1988c).

A schematic of the experimental setup is shown in Fig. 4.15. A mode-locked
Nd: YAG laser with a second harmonic crystal was used to produce pulses of
25-ps duration at 532 nm. Pump pulses were obtained through stimulated Raman
scattering by focusing 90% of the 532-nm pulse energy into a 1-cm cell filled with
ethanol and using a narrowband filter centered at 630 nm. Resulting pump pulses at
630 nm were recombined with probe pulses and coupled into a 3-m-long single-
mode optical fiber. Spectra of probe pulses were recorded for increasing pump
intensities and varying input time delays between pump and probe pulses.

With negative delays (late pump at the optical fiber input), the spectrum of the
probe pulse was red shifted as in the 1064 nm/532 nm experiment (Fig. 4.12). A new

630 nm

NB 630 nm

532 nm

OPTICAL FIBER

ETHANOLNd: YAG

Fig. 4.15 Experimental setup for generating copropagating picosecond pulses at 630 and 532 nm.
(From Baldeck et al., 1988c)
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Fig. 4.16 Cross-phase
modulation effects on the
spectrum of a probe
picosecond pulse. (Dashed
line) Reference spectrum
without XPM. (Solid line)
With XPM and no time delay
between pump and probe
pulses at the optical fiber
input. (From Baldeck et al.,
1988c)

XPM effect was obtained when both pulses entered the fiber simultaneously. The
spectrum of the probe pulse not only shifted toward blue frequencies as expected
but also broadened (Fig. 4.16). An spectral broadening as wide as 10 nm could
be induced, which was, surprisingly, at least one order of magnitude larger than
predicted by the XPM theory. As shown in Fig. 4.16, the probe spectrum extended
toward the blue-shifted frequencies with periodic resonant lines. These lines could
be related to modulation instability sidelobes that have been predicted theoretically
to occur with cross-phase modulation (see Sect. 4.8).

The optical amplification of the probe pulse is another new and unexpected
feature arising from the XPM interaction. Pump power-dependent gain factors of
3 or 7 were measured using probe pulses at 532 nm and pump pulses at 630 or
1064 nm, respectively. Figure 4.17 shows the dependence of the XPM-induced gain
for the probe pulse at 532 nm with the input time delay between the probe pulse
and the pump pulse at 630 nm. The shape of the gain curve corresponds to the
overlap function of pump and probe pulses. Figure 4.18 shows the dependence or
the gain factor on the intensity of pump pulses at 1064 nm. This curve is typical
of a parametric amplification with pump depletion. The physical origin of this
XPM-induced gain is still under investigation. It could originate from an XPM-
phase-matched four-wave mixing process.

The spectral distribution of probe pulses can be significantly affected by the XPM
generated by a copropagating pulse. In real time, the probe pulse frequency can be
tuned, its spectrum broadened, and its energy increased. XPM appears as a new
technique for controlling the spectral properties and regenerating ultrashort optical
pulses with terahertz repetition rates.
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pulses at 630 nm and probe pulses at 532 nm. (Crosses) Experimental data; (solid line) fit obtained
by taking the convolution of pump and probe pulses. (From Baldeck & Alfano, 1988c)
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Fig. 4.18 XPM-induced optical gain I532(out)/I532(in) versus intensity of pump pulses at 1064 nm.
(From Baldeck et al., 1987c, d)

4.4 Cross-Phase Modulation with Stimulated Raman
Scattering

When long samples are studied optically, stimulated Raman scattering (SRS)
contributes to the formation of ultrafast supercontinua. In 1980, Gersten, Alfano,
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and Belic predicted that ultrashort pulses should generate broad Raman lines due to
the coupling among laser photons and vibrational phonons (Gersten et al., 1980).
This phenomenon was called cross-pulse modulation (XPM). It characterized the
phase modulation of the Raman pulse by the intense pump laser pulse. Cornelius
and Harris (1981) stressed the role of SPM in SRS from more than one mode.
Recently, a great deal of attention has been focused on the combined effects of
SRS, SPM, and group velocity dispersion for the purposes of pulse compression and
soliton generation (Dianov et al., 1984; Lu Hian-Hua et al., 1985; Stolen & Johnson,
1986; French et al., 1986;Nakashima et al., 1987; Johnson et al., 1986; Gomes
et al., 1988; Weiner et al., 1986, 1988, to name a few). Schadt et al. numerically
simulated the coupled wave equations describing the changes of pump and Stokes
envelopes (Schadt et al., 1986) and the effect of XPM on pump and Stokes spectra
(Schadt & Jaskorzynska, 1987a) in nonlinear and dispersive optical fibers. Manassah
(1987a, b) obtained analytical solutions for the phase and shape of a weak Raman
pulse amplified during the pump and Raman pulse walk-off. The spectral effects of
XPM on picosecond Raman pulses propagating in optical fibers were measured and
characterized (Islam et al., 1987a, b; Alfano et al., 1987b; Baldeck et al., 1987b,
d). In this section, we review (1) Schadt and Jaskorzynska theoretical analysis of
stimulated Raman scattering in optical fibers and (2) measurements of XPM and
SPM effects on stimulated Raman scattering.

4.4.1 Theory of XPM with SRS

The following theoretical study of stimulated Raman scattering generation of
picosecond pulses in optical fibers is from excerpts from Schadt et al. (1986) and
Schadt and Jaskorzynska (1987a).

In the presence of copropagating Raman and pump pulses, the nonlinear
polarization can be approximated in the same way as in Sect. 4.2.1 by

PNL (r, z, t) = χ(3)E3 (r, z, t) , (4.19)

where the total electric field E3(r, z, t) is given by

E (r, z, t) = 1

2

{
Ap (r, z, t) e

i(ωP t−βP z) + As (r, z, t) e
i(ωS t−βSz) + c.c.

}
.

(4.20)

In this case, A1 = Ap and A2 = As .
The subscripts P and S refer to the pump and Stokes Raman pulses, respectively.

The anti-Stokes Raman is neglected. Substituting Eq. (4.20) into Eq. (4.19) and
keeping only terms synchronized with either pump or Stokes carrier frequency, the
nonlinear polarization becomes
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PNLP (z, t) = 3

8

{
i2χ(3)R |AS |2 + χ

(3)
PM

[
|AP |2 + 2|AS |2

]}
AP e

i(ωP t−βP z) + c.c.,

(4.21a)

PNLS (z, t) = 3

8

{
−i2χ(3)R |AP |2 + χ

(3)
PM

[
|AS |2 + 2|AP |2

]}
ASe

i(ωSt−βSz) + c.c.,

(4.21b)

where χ(3) = χ
(3)
PM + iχ

(3)
R , χ(3)R gives rise to the Raman gain (or depletion) of

the probe (or pump), and χ(3)PM leads to self- and cross-phase modulations. Note the
factor 2 associated with XPM.

As in the pump-probe case, the phase shift contribution of the nonlinear
polarization at the pump (or Raman) frequency depends not only on the pump (or
Raman) peak power but also on the Raman (or pump) peak power. This gives rise to
cross-phase modulation during the Raman scattering process.

Using the expressions for PNLP and PNLS in the nonlinear wave equation leads to
the coupled nonlinear dispersive equations for Raman and pump pulses:

∂AP
∂Z

+ zK
zW

∂AP
∂T

+ i
2
zK
zD

∂2AP
∂T 2 = − 1

2
�P
�S

zK
zA

|AS |2AP + i
2

[|AP |2 + 2|AS |2
]
AP

− zK
zL
AP ,

(4.22a)
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∂Z

+ i
2
k′′R
k′′P

zK
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2
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|AP |2AS + i
2
�S
�P

[|AS |2 + 2|AP |2]AS
− �S
�P

zK
zL
AS,

(4.22b)

where A1 = a1/|a0P| are the complex amplitudes a1 normalized with respect to the
initial peak amplitude |a0P| of the pump pulse. The index 1 = P refers to the pump,
whereas 1 = S refers to the Stokes pulse. Z = z/zK and T = (t − z/νs)/ τ 0 are
the normalized propagation distance and the retarded time normalized with respect
to the duration of the initial pump pulse. � = ω/(1/τ 0) is a normalized frequency.
Moreover, the following quantities were introduced:

zK = 1/γ P |a0P|2 = 1/(|a0P|2n2ωP /c) is the Kerr distance, with the PM coefficient
γ P, the Kerr coefficient n2, and ωP as the carrier frequency of the pump pulse; c
is the velocity of light.

zW = τ0/
(
v−1
p − v−1

s

)
is the walk-off distance; νp and νs are the group velocities

at the pump and Stokes frequencies, respectively.
zD = τ 2

0 /k
′′
P is the dispersion length; k′′P = ∂2kP /∂ω2, where kP is the propagation

constant of the pump.
zD = 1/αS |a0P|2 = 1/γ |a0P|2 is the amplification length, with g the Raman gain

coefficient.
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zL = 1/�P is the pump loss distance, where � P is the attenuation coefficient at the
pump frequency.

The derivation of Eqs. (4.22a and 4.22b) assumes that a quasisteady-state
approximation holds. Thus, it restricts the model to pulses much longer than the
vibrational dephasing time (∼100 fs) of fused silica. The Raman gain or loss is
assumed to be constant over the spectral regions occupied by the Stokes and pump
pulses, respectively. Furthermore, the quasimonochromatic approximation is used,
which is justified as long as the spectral widths of the pulses are much smaller than
their carrier frequencies. As a consequence of these simplifications, the considered
spectral broadening of the pulses is a result only of phase modulations and pulse
reshaping. The direct transfer of the chirp from the pump to the Stokes pulse
by SRS is not described by the model. The frequency dependence of the linear
refractive index is included to a second-order term, so both the walk-off arising from
a group velocity mismatch between the pump and Stokes pulses and the temporal
broadening of the pulses are considered.

Using Eqs. (4.22a) and (4.22b), Schadt and Jaskorzynska numerically simulated
the generation of picosecond Raman pulses in optical fibers. They particularly
investigated the influence of walk-off on the symmetry properties of pulse spectra
and temporal shapes and the contributions from SPM and XPM to the chirp of the
pulses.

4.4.1.1 Influence of Walk-Off on the Symmetry Properties of the Pulse
Spectra

Results obtained in absence of walk-off are shown in Fig. 4.19 (Schadt & Jasko-
rzynska, 1987a). The pump spectrum, broadened and modulated by SPM, is
slightly depleted at its center due the energy transfer toward the Raman pulse (Fig.
4.19a). The Raman spectrum is almost as wide as the pump spectrum, but without
modulations (Fig. 4.19b). The spectral broadening of the Raman spectrum arises
mainly from XPM. The modulationless feature appears because the Raman pulse,
being much shorter than the pump pulse, picks up only the linear part of the XPM-
induced chirp. Such a linearly chirped Raman pulse could be efficiently compressed
using a grating-pair pulse compressor.

The influence of the walk-off on the Raman process is displayed in Fig. 4.20.
The pronounced asymmetry of the spectra in Fig. 4.20a, b is connected with the
presence of the pulse walk-off in two different ways. When the Stokes pulse has
grown strong enough to deplete the pump pulse visibly, it has also moved toward
the leading edge of the pump (it is referred only to regions of normal dispersion).
The leading edge has in the meantime been downshifted in frequency as a result of
SPM. Consequently, the pump pulse loses energy from the lower-frequency side. On
the other hand, the asymmetric depletion of the pump gives rise to the asymmetric
depletion buildup of the frequency shift itself, as can be seen from Fig. 4.20c, d.
Theoretical spectra in Fig. 4.20 agree very well with measured spectra (Gomes et
al., 1986; Weiner et al., 1986; Zysset & Weber, 1986).
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Fig. 4.19 Spectra of pump and Stokes Raman pulses in the absence of walk-off. (a) Spectrum of
the pump pulse. (b) Spectral broadening of the Stokes pulse because of phase modulations. (From
Schadt & Jaskorzynska, 1987a)

4.4.1.2 Contributions from Self-Phase Modulation and Cross-Phase
Modulation to the Chirp of Pulses

The chirps of Raman and pump pulses originate from SPM and XPM. The
contributions from SPM and XPM are independent as long as the effect of second-
order dispersion is negligible. In Fig. 4.21 are plotted the contributions to the pump
and Stokes chirps coming from either SPM only (Fig. 4.21a, b) or XPM only (Fig.
4.21c, d). The shapes of SPM contributions shown in Fig. 4.21a, b apparently reflect
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Fig. 4.20 Influence of walk-off on spectra and chirps of pump and Stokes Raman pulses, (a)
Spectrum of the pump pulse, (b) Spectral broadening of the Stokes pulse because of phase
modulations, (c) Chirp (solid line) and shape (dashed line) of the pump pulse, (d) Chirp (solid
line) and shape (dashed line) of the Stokes pulse. (From Schadt & Jaskorzynska, 1987a)

the history of their buildup according to the changes of pulse shapes during the
propagation. Their strong asymmetry is a result of an asymmetric development of
the pulse shapes that is due to walk-off. The XPM affecting the pump pulse in the
initial stage of the Raman process plays a lesser role as the pump depletion becomes
larger. This constituent of the chirp, associated with the Stokes pulse is built up just
in the region where most of the pump energy is scattered to the Stokes frequency if
the Raman process goes fast enough. However, if for a fixed walk-off SRS is slow, as
in the case illustrated by Fig. 4.21c, the leading part of the pump pulse will remain
affected by the XPM.

The most characteristic feature of the XPM-induced part of the Stokes chirp,
shown in Figure 4.21d, is a plateau on the central part of the Stokes pulse. In the
case of the lower input power (Fig. 4.21d), this plateau can be attributed mainly
to the effect of walk-off. Since pump depletion becomes considerable only close
to the end of the propagation distance, it has little influence on the buildup of the
chirp. For higher input powers, the range over which the chirp vanishes is wider.
Consequently, after the walk-off distance, the effect of XPM on the Stokes chirp is
negligible for a severely depleted pump, whereas in the case of insignificant pump
depletion, the leading part of the Stokes pulse will remain influenced by XPM.
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Fig. 4.21 Chirp components that are due to SPM and XPM for the case of walk-off. (a) Pump
chirp due to SPM only. (b) Stokes chirp due to SPM only. (c) Pump chirp due to XPM only. (d)
Stokes chirp due to XPM only. (From Schadt & Jaskorzynska, 1987a)

Schadt et al. have developed a numerical model to describe combined effects
of SRS, SPM, XPM, and walk-off in single-mode optical fibers. They explained
the influence of the above effects on pump and Stokes spectra and chirps. They
separately studied the contributions of SPM and XPM to the chirps and found that
both walk-off and pump depletion tend to cancel the effect of XPM on the chirp in
the interesting pulse regions. However, for more conclusive results, an investigation
of the direct transfer of the pump chirp and consideration of the finite width of the
Raman gain curve are needed.
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4.4.2 Experiments

In the late 1970s and early 1980s, numerous experimental studies investigated the
possibility of using SRS to generate and amplify Raman pulses in optical fibers
(Stolen, 1979). However, most of these studies involved “long” nanosecond pulses
and/or neglected to evaluate SPM and XPM contributions to the pump and Raman
spectral broadenings. It was not until 1987, after the success of the first spectral
broadening enhancement experiment (Alfano et al., 1986), that measurements of
XPM effects on Raman pulses were reported (Islam et al., 1987a; Alfano et al.,
1987b). In this section, research work at AT&T Bell Laboratories and at the City
College of New York is reported.

4.4.2.1 XPM Measurements with the Fiber Raman Amplification Soliton
Laser

Islam et al. showed the effects of pulse walk-off on XPM experimentally in the Fiber
Raman Amplification Soliton Laser (FRASL) (Islam et al., 1986). They proved that
XPM prevents a fiber Raman laser from producing pedestal-free, transform limited
pulses except under restrictive conditions (Islam et al., 1987b). The following simple
picture of walk-off effects and experimental evidence is excerpted from reference
(Islam et al., 1987a).

The spectral features and broadening resulting from XPM depend on the walk-
off between the pump and signal pulses. These spectral features can be confusing
and complicated, but Islam et al. show that they can be understood both qualitatively
and quantitatively by concentrating on the phase change as a function of walk-off.
XPM is most pronounced when the pump and signal are of comparable pulse widths
and when they track each other. The phase change �ϕ induced on the signal is
proportional to the pump intensity, and the signal spectrum (Fig. 4.22a) looks like
that obtained from self-phase modulation (SPM).

The opposite extreme occurs when the phase shift is uniform over the width of
the signal pulse. This may happen in the absence of pump depletion or spreading
if the pump walks completely through the signal, or if the signal is much narrower
than the pump and precisely tracks the pump. XPM is canceled in this limit, and the
original spectral width of the signal (much narrower than any shown in Fig. 4.22)
results.

A third simple limit exists when the pump and signal coincide at first, but then
the pump walks off. This is most characteristic of stimulated amplification processes
(i.e., starting from noise) and may occur also in synchronously-pumped systems
such as the FRASL. The net phase change turns out to be proportional to the
integral of the initial pump pulse, and, as Fig. 4.22b shows, the signal spectrum
is asymmetric and has “wiggles.” Figure 4.22c treats the intermediate case where
the pump starts at the trailing edge of the signal, and in the fiber walks through to
the leading edge. A symmetric spectrum results if the walk-off is symmetric.
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Fig. 4.22 Phase shifts and spectra corresponding to various degrees of walk-off between pump
and signal pulses. (a) Perfect tracking case (t0 = β = 0, 2A2l = 3.5π , α = 1); (b) pump and signal
coincide initially, and then pump walks off (t0 = 0, βl = 4, 2A2/β = 3.5π , α = 1); and (c) pump
walks from trailing edge of signal to the leading edge (t0 = −2, βl = 4, 2A2/β = 3.5π , α = 1).
(From Islam et al., 1987a)

A FRASL consists of a optical fiber ring cavity that is synchronously pumped by
picosecond pulses and designed to lase at the stimulated Raman scattering Stokes
wavelength (Fig. 4.23). To obtain the generation of soliton Raman pulses, the pump
wavelength is chosen in the positive group velocity dispersion region of the optical
fiber, whereas the Raman wavelength is in the negative group velocity dispersion
region. Inserting a narrowband tunable etalon in the resonant ring, Islam et al.
turned their laser in a pump-probe configuration in which they could control the
seed feedback into the fiber and observe the spectral broadening in a single pass.
The effect of walk-off on XPM could be studied by changing the fiber length in the
cavity. Output Raman signals were passed through a bandpass filter to eliminate the
pump and then sent to a scanning Fabry-Perot and an autocorrelator.

When a 50-m fiber is used in the FRASL (l < lw), the signal remains with the
pump throughout the fiber. With no etalon in the cavity, the signal spectrum is wider
than the 300-cm−1 free spectral range of the Fabry-Perot. Even with the narrow-
passband etalon introduced into the cavity, the spectral width remains greater than
300 cm−1 (Fig. 4.24a). Therefore, more or less independent of the seed, the pump
in a single pass severely broadens the signal spectrum. As expected from theory, the
Raman spectrum is featureless.
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Fig. 4.23 Modified fiber Raman amplification soliton laser (FRASL). B.S., beam splitter. (From
Islam et al., 1987a)

If the fiber length is increased to 100 m (l ≈ lw), there is partial walk-off between
the pump and signal, and XPM again dominates the spectral features. Without an
etalon in the FEASL cavity, the emerging spectrum is wide and has wiggles (Fig.
4.24b). By time dispersion tuning the FRASL, thus varying the amount of walk-
off, the details of the spectrum can be changed as shown in Fig. 4.24c. Even after
the etalon is inserted and the cavity length appropriately adjusted, the spectrum
remained qualitatively the same (Fig. 4.24d).

When there is complete walk-off between pump and signal (l = 400 m  lw),
without an etalon, the spectrum is symmetric and secant-hyperboliclike, although
still broad (Fig. 4.24e). The effects of XPM are reduced considerably, but they are
not canceled completely because the walk-off is asymmetrized by pump depletion.
As Fig. 4.24f shows, the addition of the etalon narrows the spectrum (the narrow
peak mimics the seed spectrum). However, XPM still produces a broad spectral
feature (at the base of the peak), which is comparable in width to the spectrum
without the filter (Fig. 4.24e). In autocorrelation, it was found that the low-level
wider feature corresponded to a τ ≈ 250 f. peak, while the narrow spectral peak
results in a broader τ ≈ 2.5 ps pulse.

With these experimental results, Islam et al. have conclusively assessed the
effects of walk-off on Raman XPM. It should be noted that, despite the long non-
linear interaction lengths, spectral broadenings were small and the SPM generated
by the Raman pulse itself was negligible. Furthermore, measured spectral features
were characteristic of XPM for the Raman amplification scheme, as expected for
the injection of Raman seed pulses in the optical fiber loop.
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Fig. 4.24 Experimental spectra for various fiber lengths (l) with and without the tunable etalon in
the FRASL cavity. (a) l = 50 m with etalon in cavity. (b) l = 100 m, no etalon. (c) l = 100 m, no
etalon, but different FRASL cavity length than in (b). (d) Same as (c), except with etalon inserted.
(e) l = 400 m, no etalon. (f) Same as (e), except with etalon inserted. Here, except for the wings,
the spectrum is nearly that of the etalon. The vertical scales are in arbitrary units, and the signal
strength increases for increasing fiber lengths. (From Islam et al., 1987a)
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4.4.2.2 Generation of Picosecond Raman Pulses in Optical Fibers

Stimulated Raman scattering of ultrashort pulses in optical fibers attracts a great
deal of interest because of its potential applications for tunable fiber lasers and
all-optical amplifiers. XPM effects on weak Raman pulses propagating in long low-
dispersive optical fibers were characterized in the preceding section. Temporal and
spectral modifications of pump and Raman pulses are more complex to analyze
when Raman pulses are generated in short lengths (i.e., high Raman threshold)
of very dispersive optical fibers. In addition to XPM and walk-off, one has to
take into account pump depletion, SPM of the Raman pulse, Raman-induced XPM
of the pump pulse, group velocity dispersion broadening, higher-order SRS, and
XPM-induced modulation instability. This section presents measurements of the
generation of Raman picosecond pulses from the noise using short lengths of a
single-mode optical fiber (Alfano et al., 1987b; Baldeck et al., 1987b–d).

A mode-locked Nd:YAG laser was used to generate 25-ps time duration pulses at
λ = 532 nm with a repetition rate of 10 Hz. The optical fiber was custom-made by
Corning Glass. It has a 3-μm core diameter, a 0.24% refractive index difference, and
a single-mode cutoff at λ= 462 nm. Spectra of output pulses were measured using a
grating spectrometer (1 m, 600 lines/mm) and recorded with an optical multichannel
analyzer OMA2. Temporal profiles of pump and Raman pulses were measured using
a 2-ps resolution Hamamatsu streak camera.

Spectra of pump and Raman pulses, which were measured for increasing pump
energy at the output of short fiber lengths, are plotted in Fig. 4.25. The dashed line in
Fig. 4.25a is the reference laser spectrum at low intensity. Figures 4.25a (solid line)
and 4.25b show spectra measured at the Raman threshold at the output of 1- and 6-
m-long optical fibers, respectively. The Raman line appears at λ = 544.5 nm (about
440 cm−1). The laser line is broadened by SPM and shows XPM-induced sidebands,
which are discussed in Sect. 4.8. For moderate pump intensities above the stimulated
Raman scattering threshold, spectra of Raman pulses are broad, modulated, and
symmetrical in both cases (Fig. 4.25c, d). For these pump intensities, the pulse
walk-off (6 m corresponds to two walk-off lengths) does not lead to asymmetric
spectral broadening. For higher pump intensities, Raman spectra become much
wider (Fig. 4.25e, f). In addition, spectra of Raman pulses generated in the long
fiber are highly asymmetric (Fig. 4.25f). The intensity-dependent features observed
in Fig. 4.24 are characteristic of spectral broadenings arising from nonlinear phase
modulations such as SPM and XPM as predicted by the theory (Sect. 4.4.1). At
the lowest intensities XPM dominates, while at the highest intensities, the SPM
generated by the Raman pulse itself is the most important. However, it should
be noted that the widths of Raman spectra shown in Fig. 4.25 are one order of
magnitude larger than expected from the theory. Modulation instability induced by
pump pulses could explain such a discrepancy between measurements and theory
(Sect. 4.8).

Temporal measurements of the generation process were performed to test
whether the spectral asymmetry originated from the pump depletion reshaping as
in the case of longer pulses (Schadt et al., 1986). Pump and Raman profiles were
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Fig. 4.25 Spectra of picosecond Raman pulses generated in short lengths of a single-mode optical
fiber. The laser and Raman lines are at 532 and 544.5 nm, respectively. Results in the left column
and right column were obtained with 1- and 6-m-long single-mode optical fibers, respectively. (a
and b) Dashed line: referenced of laser spectrum at low intensity; solid line: pump and Raman lines
near the stimulated Raman scattering threshold. Frequency sidebands about the laser line are XPM-
induced modulation instability sidebands (see Sect. 4.8). (c and d) Raman spectra for moderate
pump peak powers above threshold. (e and f) Raman spectra for higher pump peak powers. (From
Baldeck et al., 1987c, d)
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measured at the output of a 17-m-long fiber (Fig. 4.26). The dotted line is for a pump
intensity at the SRS threshold and the solid line for a higher pump intensity. The
leading edge of the pump pulse is partially “eaten” but is not completely emptied
because of the quick walk-off between pump and Raman pulses. Thus, the leading
edge of the pump pulse does not become very sharp, and the contribution of pump
depletion effects to the spectral asymmetry of pump and Raman pulses does not
seem to be significant.

Figure 4.26 shows a typical sequence of temporal profiles measured for input
pump intensities strong enough to generate higher-order stimulated Raman scat-
tering lines. The temporal peaks are the maxima of high-order SRS scatterings
that satisfy the group velocity dispersion delay of 6 ps/m for each frequency shift
of 440 cm−1. These measurements show that (1) the Raman process clamps the
peak power of pulses propagating into an optical fiber to a maximum value and
(2) high-order stimulated Raman scatterings occur in cascade during the laser pulse
propagation.

4.4.2.3 Generation of Femtosecond Raman Pulses in Ethanol

Nonlinear phenomena such as supercontinuum generation and stimulated Raman
scattering were first produced in unstable self-focusing filaments generated by
intense ultrashort pulses in many liquids and solids. Optical fibers are convenient
media for studying such nonlinear phenomena without the catastrophic features
of collapsing beams. However, optical fibers are not suitable for certain appli-
cations such as high-power experiments, the generation of larger Raman shifts
(>1000 cm−1), and Raman pulses having high peak powers (>1 MW). In this
section, spectral measurements of SRS generation in ethanol are presented. Spectral
shapes are shown to result from the combined effects of XPM, SPM, and walk-off.

Spectral measurements of SRS in ethanol have been performed using the output
from a CPM ring dye amplifier system (Baldeck et al., 1987b). Pulses of 500 f
duration at 625 nm were amplified to an energy of about 1 mJ at a repetition rate
of 20 Hz. Pulses were weakly focused into a 20-cm-long cell filled with ethanol.
Output pulses were imaged on the slit of a 1

2 -m Jarrell-Ash spectrometer, and spectra
were recorded using an optical multichannel analyzer OMA2.

Ethanol has a Raman line shifted by 2928 cm−1. Figure 4.27 shows how the
Stokes spectrum of the Raman line changes as a function of the pump intensity.
Results are comparable to those obtained using optical fibers. At low intensity,
the Stokes spectrum is narrow and symmetrical (Fig. 4.27). As the pump intensity
increases, the Raman spectrum broadens asymmetrically with a long tail pointing
toward the longer wavelengths. Spectra of the anti-Stokes Raman line were also
measured (Baldeck et al., 1987b). They were as wide as Stokes spectra but with
tails pointing toward the shortest wavelengths, as predicted by the sign of the walk-
off parameter.
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Fig. 4.26 Temporal shapes of reference pulse, pump pulse, and SRS pulses at the output of a 17-
m-long single-mode optical fiber for increasing pump intensity. (a) First-order SRS for slightly
different pump intensity near threshold. (b) First- and second-order SRS. (c) First- to third-order
SRS. (d) First- to fifth-order SRS. (From Baldeck et al., 1987d)
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Fig. 4.27 Effects of cross-
and self-phase modulations
on the Stokes-shifted Raman
line generated by 500-fs
pulses in ethanol. (a–c)
Increasing laser intensity.
(From Baldeck et al., 1987b)

4.5 Harmonic Cross-Phase Modulation Generation in ZnSe

Like stimulated Raman scattering, the second harmonic generation (SHG) process
involves the copropagation of a weak generated-from-the-noise pulse with an
intense pump pulse. The SHG of ultrashort pulses occurs simultaneously with cross-
phase modulation, which affects both the temporal and spectral properties of second
harmonic pulses. In this section, measurements of XPM on the second harmonic
generated by an intense primary picosecond pulse in ZnSe crystals are reported
(Alfano et al., 1987a; Ho et al., 1988).

The laser system consisted of a mode-locked Nd:glass laser with single-pulse
selector and amplifier. The output laser pulse had about 2 mJ energy and 8 ps
duration at a wavelength of 1054 nm. The 1054-nm laser pulse was weakly focused
into the sample. The spot size at the sample was about 1.5 mm in diameter. The
second harmonic produced in this sample was about 10 nJ. The incident laser energy
was controlled using neutral density filters. The output light was sent through a 1

2 -m
Jarrell-Ash spectrometer to measure the spectral distribution of the signal light. The
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1054-nm incident laser light was filtered out before detection. A 2-ps time resolution
Hamamatsu streak camera system was used to measure the temporal characteristics
of the signal pulse. Polycrystalline ZnSe samples 2, 5, 10, 22, and 50 mm thick were
purchased from Janos, Inc., and a single crystal of ZnSe 16-mm thick was grown at
Philips.

Typical spectra of nonphase-matched SHG pulses generated in a ZnSe crystal
by 1054-nm laser pulses of various pulse energies are displayed in Fig. 4.28. The
spectrum from a quartz sample is included in Fig. 4.28d for reference. The salient
features of the ZnSe spectra indicate that the extent of the spectral broadening about
the second harmonic line at 527 nm depends on the intensity of the 1054-nm laser
pulse. When the incident laser pulse energy was 2 mJ, there was significant spectral
broadening of about 1100 cm−1 on the Stokes side and 770 cm−1 on the anti-Stokes
side (Fig. 4.29). There was no significant difference in the spectral broadening
distribution measured in the single and polycrystalline materials. The spectral width
of the SHG signal is plotted for the Stokes and anti-Stokes sides as a function of the
incident pulse energy in Fig. 4.30. The salient feature of Fig. 4.30 is that the Stokes
side of the spectrum is broader than the anti-Stokes side. When the incident pulse
energy was less than 1 mJ, the spectral broadening was found to be monotonically
increasing on the pulse energy of 1054 nm. The spectral broadening generated
by sending an intense 80-μJ, 527-nm, 8-ps laser pulse alone through these ZnSe
crystals was also measured for comparison with the ±1000 cm−1 induced spectral
broadening. The observed spectral broadening was only 200 cm−1 when the energy
of the 527-nm pulse was over 0.2 mJ. This measurement suggests that the self-phase
modulation process from the 10-nJ SHG pulse in ZnSe is too insignificant to explain
the observed 1000 cm−1. Most likely, the broad spectral width of the SHG signal
arises from the XPM generated by the pump during the generation process.

The temporal profile and propagation time of the intense 1054-nm pump pulse
and the second harmonic pulse propagating through a 22-mm ZnSe polycrystalline
sample is shown in Fig. 4.31. A pulse delay of ∼189 ps at 1054 nm was observed
(Fig. 4.31a) when an intense 1054-nm pulse passed through the crystal. The second
harmonic signal, which spread from 500 to 570 nm, indicated a sharp spike at
189 ps and a long plateau from 189 to 249 ps (Fig. 4.31b). Using 10-nm bandwidth
narrowband filters, pulses of selected wavelengths from the second harmonic signal
were also measured. For example, time delays corresponding to the propagation
of two pulses with wavelengths centered at 530 and 550 nm are displayed in Fig.
4.31c, d, respectively. All traces from Fig. 4.31 indicated that the induced spectrally
broadened pulses have one major component emitted at nearly the same time as the
incident pulse (Fig. 4.31a). The selected wavelength shifted 10 nm from the second
harmonic wavelength has shown a dominant pulse distribution generated at the end
of the crystal. Furthermore, when a weak 3-nJ, 527-nm calibration pulse propagated
alone through the 22-mm ZnSe, a propagation time of about 249 ps was observed,
as expected from the group velocity.

The difference in the propagation times of a weak 527-nm calibration pulse and
a 1054-nm pump pulse through a ZnSe crystal can be predicted perfectly by the
difference in group velocities. The measured group refractive indices of ZnSe can
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Fig. 4.28 Induced spectral
broadening spectra in ZnSe
crystal excited by an intense
1060-nm laser pump. In (d),
the ZnSe crystal was replaced
by a 3.7-cm-long quartz
crystal. (From Alfano et al.,
1987a)
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Fig. 4.29 Spectral measurement of the induced spectrally broadened pulse about λ = 527 nm by
sending a 1054-nm pulse through 22-mm ZnSe. (From Alfano et al., 1988)
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Fig. 4.30 Intensity dependence of induced spectral width about 530 nm in ZnSe pumped by
a 1060-nm laser pulse. The horizontal axis is the incident laser pulse energy. (◦) 2.2-cm-
long polycrystalline ZnSe anti-Stokes broadening. (•) 2.2-cm-long polycrystalline ZnSe Stokes
broadening. (�) 1.6-cm-long single-crystal ZnSe anti-Stokes broadening. (�) 1.6-cm-long single-
crystal ZnSe Stokes broadening. (�) 3.7-cm-long quartz crystal anti-Stokes broadening. (�)
3.7-cm-long quartz crystal Stokes broadening. The measured�n is defined as the frequency spread
from 527 nm to the farthest detectable wavelengths measured either photographically or by an
optical multichannel analyzer. (From Alfano & Ho, 1988)

be fitted to ng,1054 = 3.39 and ng,1054 = 2.57, respectively. These values are in
agreement with the calculated values.

The sharp spike and plateau of the second harmonic pulse can be explained
using the XPM model of second harmonic generation (Ho et al., 1980). Because
of lack of phase matching, i.e., destructive interferences, the energy of the second
harmonic pulse cannot build up along the crystal length. As a result, most of the
second harmonic power is generated at the exit face of the crystal, which explains
the observed spike. However, since very intense pump pulses are involved, there is a
partial phase matching due to the cross-phase modulation and two photon absorption
effects at the second harmonic wavelength. Some second harmonic energy can build
up between the entrance and exit faces of the sample, which explains the plateau
feature.

4.6 Cross-Phase Modulation and Stimulated Four-Photon
Mixing in Optical Fibers

Stimulated four-photon mixing (SFPM) is an ideal process for designing parametric
optical amplifiers and frequency converters. SFPM is produced when two high-
intensity pump photons are coupled by the third-order susceptibility χ (3) to generate
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Fig. 4.31 Temporal profile
and propagation delay time of
(a) incident 1054 nm, (b)
SHG-XPM signal of all
visible spectra, and (c)
selected 530 nm from
SHG-XPM of a 22-nm-long
ZnSe crystal measured by a
2-ps resolution streak camera
system. (d) same as (c) for a
signal selected at 550 nm.
The reference time
corresponds to a laser pulse
traveling through air without
the crystal. The right side of
the time scale is the leading
time. The vertical scale is an
arbitrary intensity scale.
(From Alfano & Ho, 1988)
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a Stokes photon and an anti-Stokes photon. The frequency shifts of the SFPM
waves are determined by the phase-matching conditions, which depend on the
optical geometry. SFPM was produced in glass by Alfano and Shapiro (1970)
using picosecond pulses. Later, SFPM was successfully demonstrated by a number
of investigators in few mode, birefringent, and single-mode optical fibers (Stolen,
1975; Stolen et al., 1981; Washio et al., 1980). Most of the earlier experiments
using optical fibers were performed with nanosecond pulses. Lin and Bosch (1981)
obtained large-frequency shifts; however, the spectral dependence on the input
intensity was not investigated. In the following, measurements of the intensity
dependence of SFPM spectra generated by 25-ps pulses in an optical fiber are
reported (Baldeck & Alfano, 1987). For such short pulses, spectra are influenced
by the combined effects of SPM and XPM. The broadening of SFPM lines and the
formation of frequency continua are investigated.
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Fig. 4.32 Evolution of a
stimulated four-photon
spectrum with increasing
pulse intensity. (a)
I < 108 W/cm2; (b and c)
I = 5 × 108 W/cm2; (d)
I = 10 × 108 W/cm2; (e)
I = 15 × 108 W/cm2; (f)
I = 30 × 108 W/cm2; (g)
I = 35 × 108 W/cm2. (From
Baldeck & Alfano, 1987)
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The experimental method is as follows. A Quantel frequency-doubled mode-
locked Nd: YAG laser produced 25-ps pulses. An X20 microscope lens was used
to couple the laser beam into the optical fiber. The spectra of the output pulses were
measured using a 1-m, 1200 lines/mm grating spectrometer. Spectra were recorded
on photographic film and with an optical multichannel analyzer OMA2. Average
powers coupled in the fiber were measured with a power meter at the optical fiber
output. The 15-m-long optical fiber had a core diameter of 8 mm and a normalized
frequency V = 4.44 at 532 nm. At this wavelength, the four first LP modes (LP01,
LP11, LP21, and LP02) were allowed to propagate.

Typical intensity-dependent spectra are displayed in Figs. 4.32, 4.33, and 4.34.
At low intensity, I < 108 W/cm2, the output spectrum contains only the pump
wavelength λ = 532 nm (Fig. 4.32a). At approximately 5 × 108 W/cm2, three
sets of symmetrical SFPM lines (at � = 50, 160, and 210 cm−1) and the first
SRS Stokes line (at 440 cm−1) appear (Fig. 4.32b, c). As the intensity increases,
the SFPM and SRS lines broaden, and a Stokes frequency continuum is generated
(Fig. 4.32d, e). Above an intensity threshold of 20 × 108 W/cm2, new sets of
SFPM lines appear on the Stokes and anti-Stokes sides with frequency ranging
from 2700 to 3865 cm−1. Finally, the large shifts merge (Fig. 4.32f) and contribute
to the formation of a 4000 cm−1 frequency continuum (Fig. 4.32g). Figure 4.33
shows how the large Stokes shift SFPM lines are generated and broaden when the
pump intensity increases from 20 × 108 to 30 × 108 W/cm2. Figure 4.34 gives two
examples of complete spectra including the large-shift anti-Stokes and Stokes lines.
The measured SFPM shifts correspond well with the phase-matching condition of
SFPM in optical fibers.

Figure 4.35 shows the development of a Stokes continuum from the combined
effects of SFPM, SRS, SPM, and XPM. As the pump intensity is increased, the
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Fig. 4.33 (a–e) Sequence of
the large-shift SFPM line
broadening. The pulse peak
intensity increases from
I = 20 × 108 W/cm2 in (a) to
I = 30 × 108 W/cm2 in (e) in
steps of 2.5 × 108 W/cm2

(From Baldeck & Alfano,
1987.)
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Fig. 4.34 Examples of large-shift Stokes lines with their corresponding anti-Stokes lines. Pho-
tographs of the Stokes and anti-Stokes regions were spliced together. (From Baldeck & Alfano,
1987)

pump, SFPM, and first SRS lines broaden and merge (Fig. 4.35a). For stronger pump
intensities, the continuum is duplicated by stimulated Raman scattering, and the
continuum expands toward the lowest optical frequencies (Fig. 4.35b). As shown,
the maximum intensities of new frequencies are self-limited.

The broadening of the SFPM and SRS lines arises from self- and cross-phase
modulation effects. It is established that spectral broadenings generated by SPM are
inversely proportional to the pulse duration and linearly proportional to the pump
intensity. In this experiment, SPM effects are important because of the pump pulse
shortness (25 ps) and intensity (109 W/cm2). Furthermore, the modulation that is
seen in the continuum spectrum fits well with the spectrum modulation predicted by
phase modulation theories.

Figure 4.36 shows the spectral broadening of the anti-Stokes SFPM line of
λ = 460 nm (� = 2990 cm−1). This line is a large-shift SFPM anti-Stokes line
generated simultaneously with the λ = 633 nm SFPM Stokes line by the laser
pump of λ = 532 nm (see Fig. 4.34). The corresponding frequency shift and mode
distribution are W = 2990 cm−1 and LP01 (pump)–LP11 (Stokes and anti-Stokes),
respectively. From Figs. 4.36a–d, the peak intensity of the λ= 460 nm line increases
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Fig. 4.35 Supercontinuum generation. (a) The pump, SFPM, and first SRS Stokes lines are
broadened at I = 10 × 108 W/cm2. (b) The broadened second and third SRS Stokes lines appear
and extend the spectrum toward the Stokes wavelengths at I = 15 × 108 W/cm2. (From Baldeck
& Alfano, 1987)

from approximately 20 × 108 to 30 × 108 W/cm2 in steps of 2.5 × 108 W/cm2. In
Fig. 4.36a, the spectrum contains only the 460-nm SFPM line generated by the laser
pump (λ = 532 nm). In Fig. 4.36b, the line begins to broaden and two symmetrical
lines appear with a frequency shift of 100 cm−1. This set of lines could be a new set
of small-shift SFPM lines generated by the 460-nm SFPM line acting as a new pump
wavelength. Figure 4.36c, d show significant broadening, by a combined action of
SFPM, SPM, and XPM, of the 460 nm into a frequency continuum. Similar effects
were observed on the Stokes side as displayed in Fig. 4.33.

The intensity effects on SFPM spectra generated by 25-ps pulses propagating
in optical fibers have been investigated experimentally. In contrast to SFPM lines
generated by nanosecond pulses, spectra were broadened by self-phase modulation
and cross-phase modulation. Intensity-saturated wide frequency continua covering
the whole visible spectrum were generated for increasing intensities. Applications
are for the design of wideband amplifiers, the generation of “white” picosecond
pulses, and the generation by pulse compression of femtosecond pulses at new
wavelengths.
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Fig. 4.36 (a–d) Spectral broadening of the anti-Stokes SFPM line generated at 460 nm. The pulse
peak intensity increases from I = 20 × 108 W/cm2 in (a) to I = 30 × 108 W/cm2 in (e) in steps of
2.5 × 108 W/cm2. (From Baldeck & Alfano, 1987)

4.7 Induced Focusing by Cross-Phase Modulation in Optical
Fibers

Cross-phase modulation originates from the nonlinear refractive index �n (r, t) =
2n2E

2
p (r, t) generated by the pump pulse at the wavelength of the probe pulse.

Consequently, XPM has not only temporal and spectral effects but also spatial
effects. Induced focusing is a spatial effect of XPM on the probe beam diameter.
Induced focusing is the focusing of a probe beam because of the radial change of
the refractive index induced by a copropagating pump beam. Induced focusing is
similar to the self-focusing (Kelley, 1965) of intense lasers beams that has been
observed in many liquids and solids. Overviews and references on self-focusing in
condensed media are given by Auston (1977) and Shen (1984).

In 1987, Baldeck, Raccah, and Alfano reported on experimental evidence for
focusing of picosecond pulses propagating in an optical fiber (Baldeck et al.,
1987a). Focusing occurred at Raman frequencies for which the spatial effect of
the nonlinear refractive index was enhanced by cross-phase modulation. Results
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Fig. 4.37 Experimental setup for the observation of Raman focusing in a large-core optical fiber.
(From Baldeck et al., 1987a, b, c, d)

of this experiment on induced focusing by cross-phase modulation in optical fibers
are summarized in this section.

The experimental setup is shown in Fig. 4.37. A Quantel frequency-doubled
mode-locked Nd: YAG laser produced 25-ps pulses at 532 nm. The laser beam
was coupled into the optical fiber with a 10× microscope lens. A stable modal
distribution was obtained with a Newport FM-1 mode scrambler. Images of the
intensity distribution at the output face were magnified by 350× and recorded
on photographic film. Narrowband (NB) filters were used to select frequencies of
the output pulses. The optical fiber was a commercial multimode step-index fiber
(Newport F-MLD). Its core diameter was 100 μm, its numerical aperture 0.3, and
its length 7.5 m.

Several magnified images of the intensity distributions that were observed at the
output face of the fiber for different input pulse energies are shown in Fig. 4.38.
The intensity distribution obtained for low pulse energies (E < 1 nJ) is shown in
Figure 4.38a. It consists of a disk profile with a speckle pattern. The intensity
distribution of the disk covers the entire fiber core area. The disk diameter, measured
by comparison with images of calibrated slits, is 100 μm, which corresponds to
the core diameter. The characteristics of this fiber allow for the excitation of about
200,000 modes. The mode scrambler distributed the input energy to most of the
different modes. The speckle pattern is due to the interference of these modes
on the output face. Figure 4.37b shows the intensity distribution in the core for
intense pulses (E > 10 nJ). At the center of the 100-mm-diameter disk image,
there is an intense smaller (11-mm) ring of a Stokes-shifted frequency continuum
of light. About 50% of the input energy propagated in this small-ring pattern.
The corresponding intensities and nonlinear refractive indices are in the ranges of
gigawatts per square centimeter and 10−6, respectively. For such intensities, there is
a combined effect of stimulated Raman scattering, self-phase modulation, and cross-
phase modulation that generates the observed frequency continuum. In Fig. 4.37c,
an NB filter selected the output light pattern at 550 nm. This clearly shows the ring
distribution of the Stokes-shifted wavelengths. Such a ring distribution was observed
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Fig. 4.38 Images of the
intensity distributions at the
optical fiber output: (a) input
pulses of low energies (E < 1
nJ); (b) input pulses of high
energies (E > 10nJ); (c) same
as (b) with an additional
narrowband filter centered at
λ = 550 nm. (M = 350χ).
(From Baldeck et al., 1987a)
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for a continuum of Stokes-shifted wavelengths up to 620 nm for the highest input
energy before damage.

The small-ring intensity profile is a signature of induced focusing at the Raman
wavelengths. First, the small ring is speckless, which is characteristic of single-
mode propagation. This single-mode propagation means that the guiding properties
of the fiber are dramatically changed by the incoming pulses. Second, SRS, SPM,
and XPM occur only in the ring structure, i.e., where the maximum input energy
has been concentrated. Our experimental results may be explained by an induced-
gradient-index model for induced focusing. For high input energies, the Gaussian
beam induces a radial change of the refractive index in the optical fiber core.
The step-index fiber becomes a gradient-index fiber, which modifies its light-
guiding properties. There is further enhancement of the nonlinear refractive index
at Raman frequencies because of XPM. Thus, Stokes-shifted light propagates in a
well-marked induced-gradient-index fiber. The ray propagation characteristics of a
gradient-index fiber are shown schematically in Fig. 4.39 (Keiser, 1983). The cross-
sectional view of a skew-ray trajectory in a graded-index fiber is shown. For a given
mode u, there are two values for the radii, r1 and r2, between which the mode
is guided. The path followed by the corresponding ray lies completely within the
boundaries of two coaxial cylindrical surfaces that form a well-defined ring. These
surfaces are known as the caustic surfaces. They have inner and outer radii r1 and
r2, respectively. Hence, Fig. 4.39 shows that skew rays propagate in a ring structure
comparable to the one shown in Fig. 4.38c. This seems to support the induced-
gradient-index model for induced focusing in optical fibers.
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Fig. 4.39 Cross-sectional
projection of a skew ray in a
gradient-index fiber and the
graphical representation of its
mode solution from the WBK
method. The field is
oscillatory between the
turning points r1 and r2 and is
evanescent outside this region Ray
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Induced focusing of Raman picosecond pulses has been observed in optical
fibers. Experimental results may be explained by an induced-gradient-index model
of induced focusing. An immediate application of this observation could be the
single-mode propagation of high-bit-rate optical signals in large-core optical fibers.

4.8 Modulation Instability Induced by Cross-Phase
Modulation in Optical Fibers

Modulation instability refers to the sudden breakup in time of waves propagating
in nonlinear dispersive media. It is a common nonlinear phenomenon studied in
several branches of physics (an overview on modulation instability can be found
in Hasegawa, 1975). Modulation instabilities occur when the steady state becomes
unstable as a result of an interplay between the dispersive and nonlinear effects. Tai,
Hasegawa, and Tomita have observed the modulation instability in the anomalous
dispersion regime of silica fibers, i.e., for wavelengths greater than 1.3 μm (Tai
et al., 1986). Most recently, Agrawal (1987) has suggested that a new kind of
modulation instability can occur even in the normal dispersion regime when two
copropagating fields interact with each other through the nonlinearity-induced
cross-phase modulation. This section summarizes the first observation by Baldeck,
Alfano, and Agrawal of such a modulation instability initiated by cross-phase
modulation in the normal dispersion regime of silica optical fibers (Baldeck et al.,
1988b; Baldeck & Alfano, 1989).

Optical pulses at 532 nm were generated by either a mode-locked Nd: YAG laser
or a Q-switched Nd: YAG laser with widths of 25 ps or 10 ns, respectively. In both
cases, the repetition rate of pulses was 10 Hz. Pulses were coupled into a single-
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Fig. 4.40 Characteristic
frequency sidebands of
modulation instability
resulting from cross-phase
modulation induced by the
simultaneously generated
Raman pulses in lengths L of
a single-mode optical fiber.
The laser line is at
λ = 532 nm and the Raman
line at λ = 544.5 nm. The
time duration of input pulses
is 25 ps. (a) Reference
spectrum at low intensity; (b)
Spectrum at about the
modulation instability
threshold and L = 3 m; (c)
same as (b) for L = 0.8 m.
(From Baldeck et al., 1988d;
Baldeck & Alfano, 1989)

mode optical fiber using a microscope lens with a magnification of 40. The peak
power of pulses into the fiber could be adjusted in the range 1–104 W by changing
the coupling conditions and by using neutral density filters. The optical fiber was
custom-made by Corning Glass. It has a 3-μm core diameter, a 0.24% refractive
index difference, and a single-mode cutoff at λ = 462 nm. Spectra of output pulses
were measured using a grating spectrometer (1 m, 600 lines/mm) and recorded with
an optical multichannel analyzer OMA2.

Figures 4.40 and 4.41 show spectra of intense 25-ps pulses recorded for different
peak powers and fiber lengths. Figure 4.40a is the reference spectrum of low-
intensity pulses. Figures 4.40b, c show spectra measured at about the modulation
instability threshold for fiber lengths of 3 and 0.8 m, respectively. They show
modulation instability sidebands on both sides of the laser wavelength at 532 nm
and the first-order stimulated Raman scattering line at 544.5 nm. Notice that the
frequency shift of sidebands is larger for the shorter fiber. Secondary sidebands were
also observed for pulse energy well above the modulation instability threshold and
longer optical fibers as shown in Fig. 4.41.

Similar to spectra in the experiment of Tai et al., spectra shown in Figs. 4.40 and
4.41 are undoubtedly signatures of modulation instability. A major salient difference
in the spectra in Figs. 4.40 and 4.41 is that they show modulation instability about
532 nm, a wavelength in the normal dispersion regime of the fiber. According to the
theory, modulation instability at this wavelength is possible only if there is a cross-
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Fig. 4.41 Secondary
sidebands observed for pulse
energies well above the
modulation instability
threshold. (From Baldeck et
al., 1988d; Baldeck & Alfano,
1989)

Fig. 4.42 Sideband shifts
versus fiber length near the
modulation instability
threshold. The time duration
of input pulses is 10 ns.
Crosses are experimental
points. The solid line is the
theoretical fit from Eq. (4.25).
(From Baldeck et al., 1988d;
Baldeck & Alfano, 1989)
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phase modulation interaction (Agrawal, 1987). As shown in Fig. 4.40, modulation
instability sidebands were observed only in the presence of stimulated Raman
scattering light. It has recently been demonstrated that cross-phase modulation is
intrinsic to the stimulated Raman scattering process (see Sect. 4.4). Therefore,
sideband features observed in Figs. 4.40 and 4.41 are conclusively a result of the
cross-phase modulation induced by the simultaneously generated Raman pulses.
To rule out the possibility of a multimode or single-mode stimulated four-photon
mixing process as the origin of the sidebands, Baldeck et al. note that the fiber is
truly single-mode (cutoff wavelength at 462 nm) and that the sideband separation
changes with the fiber length.

The strengthen the conclusion that the sidebands are due to modulation instability
induced by cross-phase modulation, Baldeck et al. measured and compared with
theory the dependence of sideband shifts on the fiber lengths. For this measurement,
they used 10-ns pulses from the Q-switched Nd:YAG laser to ensure quasi-CW
operation. The spectra were similar to those obtained with 25-ps pulses (Fig. 4.40).
As shown in Fig. 4.42, the side-lobe separation, defined as the half-distance between
sideband maxima, varied from 1.5 to 8.5 nm for fiber lengths ranging from 4
to 0.1 m, respectively. The energy of input pulses was set at approximately the
modulation instability threshold for each fiber length. The solid line in Fig. 4.42
corresponds to the theoretical fit. As discussed in Agrawal (1987), the maximum
gain of modulation instability sidebands is given by gmax = k′′�2

m, where
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� m = 2π fm is the sideband shift. Thus, the power of a sideband for an optical
fiber length L is given by

P (�m,L) = Pnoise exp
(
k′′�2

mL
)
, (4.23)

where Pnoise is the initial spontaneous noise, and k′′ = ∂(νg) − 1/∂ω is the group
velocity dispersion at the laser frequency.

For such amplified spontaneous emission, it is common to define a threshold gain
gth by

Pth(L) = Pnoise exp (gth) , (4.24)

where Pth is the sideband power near threshold such that each sideband contains
about 10% of the input energy. A typical value for gth is 16 (Tai et al., 1986).

From Eqs. (4.23) and (4.24), the dependence of the sideband shift on the fiber
length near threshold is given by

�m = (gth/k
′′L
)1/2

. (4.25)

At λ= 532 nm, the group velocity dispersion in k′′ ≈ 0.06 ps2/m. The theoretical
fit shown in Fig. 4.42 (solid line) is obtained using this value and gth = 18.1 in
Eq. (4.25). The good agreement between the experimental data and the theory of
modulation instability supports the belief of Baldeck et al. that they have observed
cross-phase modulation-induced modulation instability, as predicted in Agrawal
(1987).

Tai et al. have shown that modulation instability leads to the breakup of long
quasi-CW pulses in trains of picosecond subpulses. The data in Fig. 4.42 show that
the maximum sideband shift is �λmax ≈ 8.5 nm or 8.5 THz, which corresponds
to the generation of femtosecond subpulses within the envelope of the 10-ns input
pulses with a repetition time of 120 fs. Even though autocorrelation measurements
were not possible because of the low repetition rate (10 Hz) needed to generate
pulses with kilowatt peak powers, Baldeck et al. believe they have generated for the
first time modulation instability subpulses shorter than 100 fs.

Baldeck et al. (1988b) observed modulation instability in the normal dispersion
regime of optical fibers. Modulation instability sidebands appear about the pump
frequency as a result of cross-phase modulation induced by the simultaneously
generated Raman pulses. Sideband frequency shifts were measured for many fiber
lengths and found to be in good agreement with theory. In this experiment, cross-
phase modulation originated from an optical wave generated inside the nonlinear
medium, but similar results are expected when both waves are incident externally.
Modulation instability induced by cross-phase modulation represents a new kind of
modulation instability that not only occurs in normally dispersive materials but also,
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most important, has the potential to be controlled in real time by switching on or off
the copropagating pulse responsible for the cross-phase modulation. Using optical
fibers, such modulation instabilities could lead to the design of a novel source of
femtosecond pulses at visible wavelengths.

4.9 Applications of Cross-Phase Modulation for Ultrashort
Pulse Technology

Over the last 20 years, picosecond and femtosecond laser sources have been
developed. Researchers are now investigating new applications of the unique
properties of these ultrashort pulses. The main efforts are toward the design of
communication networks and optical computers with data streams in, eventually,
the tens of terahertz. For these high repetition rates, electronic components are too
slow and all-optical schemes are needed. The discovery of cross-phase modulation
effects on ultrashort pulses appears to be a major breakthrough toward the real-time
all-optical coding/decoding of such short pulses. As examples, this section describes
the original schemes for a frequency shifter, a pulse compression switch, and a
spatial light deflector. These all-optical devices are based on spectral, temporal, and
spatial effects of cross-phase modulation on ultrashort pulses.

The first XPM-based technique to control ultrashort pulses was developed in
the early 1970s. It is the well-known optical Kerr gate, which is shown in Fig.
4.43. A probe pulse can be transmitted through a pair of cross-polarizers only
when a pump pulse induces the (cross-) phase (modulation) needed for the change
of polarization of the probe pulse. The principle of the optical Kerr gate was
demonstrated using nonlinear liquids (Shimizu & Stoicheff, 1969; Duguay &
Hansen, 1969) and optical fibers (Stolen & Ashkin, 1972; Dziedzic et al., 1981;
Ayral et al., 1984). In optical fibers, induced-phase effects can be generated with
milliwatt peak powers because of their long interaction lengths and small cross
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Fig. 4.43 Schematic diagram of an optical Kerr gate
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sections (White et al., 1988). XPM effects in optical fibers have been shown to
alter the transmission of frequency multiplexed signals (Chraplyvy et al., 1984) and
also to allow quantum nondemolition measurements (Levenson et al., 1986; Imoto
et al., 1987). In addition, phase effects arising from XPM have been used to make
all-fiber logic gates (Kitayama et al., 1985a), ultrafast optical multi/demultiplexers
(Morioka et al., 1987), and nonlinear interferometers (Monerie & Durteste, 1987).

The novelty of our most recent work was to show that XPM leads not only to
phase effects but also to spectral, temporal, and spatial effects on ultrashort pulses.
New schemes for XPM-based optical signal processors are proposed in Fig. 4.44.
The design of an ultrafast frequency shifter is shown in Fig. 4.44a. It is based
on spectral changes that occur when pulses copropagate in a nonlinear dispersive
medium. In the absence of a pump pulse, the weak signal pulse passes undistorted
through the nonlinear medium. When the signal pulse copropagates in the nonlinear
medium with a pump pulse, its carrier wavelength can be changed by an amount�λ
that is linearly proportional to the peak power of the pump pulse (see Sect. 4.3.2).
Thus, in Fig. 4.44, the signal pulses S1 and S2 have their frequencies shifted by�λ1
and �λ2 by the pump pulses P1 and P2, while S3 is not affected by the stream of
pump pulses.

The design of a pulse-compression switch is proposed in Fig. 4.44b. It is a
modified version of the usual optical fiber/grating-pair pulse compression scheme
(see Chap. 9 by Dorsinville et al. and Chap. 10 by Johnson and Shank). First, the
probe pulse is spectrally broadened by a copropagating pump pulse in the nonlinear
medium (case of negligible group velocity mismatch; see Sects. 4.2.2 and 4.3.1).
Then, or simultaneously, it is compressed in time by a dispersive element. Thus, in
the presence of the pump pulse, the signal pulse is compressed (“on” state), while
in its absence, the signal pulse is widely broadened (“off” state) by the device.

An example of an all-optical spatial light deflector based on spatial effects of
XPM is shown in Fig. 4.44c. In this scheme, the pump pulse profile leads to an
induced focusing of the signal pulse through the induced nonlinear refractive index
(Sect. 4.7). The key point in Fig. 4.43c is that half of the pump pulse profile is
cut by a mask, which leads to an asymmetric induced-focusing effect and a spatial
deflection of the signal pulse. This effect is very similar to the self-deflection of
asymmetric optical beams (Swartlander & Kaplan, 1988). In the proposed device,
pump pulses originate from either path P1 or path P2, which have, respectively,
their left side or right side blocked. Thus, if a signal pulse copropagates with a
pump pulse from P1 or P2, it is deflected on, respectively, the right or left side of
the nondeflected signal pulse.

The prime property of future XPM-based optical devices will be their switching
speed. They will be controlled by ultrashort pulses that will turn on or off the
induced nonlinearity responsible for XPM effects. With short pulses, the nonlin-
earity originates from the fast electronic response of the interacting material. As an
example, the time response of electronic nonlinearity in optical fibers is about 2–4
f (Grudinin et al., 1987). With such a response time, one can envision the optical
processing of femtosecond pulses with repetition rates up to 100 THz.

http://dx.doi.org/10.1007/978-1-4939-3326-6_9
http://dx.doi.org/10.1007/978-1-4939-3326-6_10
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Fig. 4.44 Schematic diagrams of ultrafast optical processors based on cross-phase modulation
effects. (a) Ultrafast frequency shifter; (b) all-optical pulse compression switch; (c) all-optical
spatial light deflector

4.10 Conclusion

This chapter reviewed cross-phase modulation effects on ultrashort optical pulses.
It presented XPM measurements that were obtained during the years 1986–
1988. XPM is a newly identified physical phenomenon with important potential
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applications based on the picosecond and femtosecond pulse technology. XPM is
similar to SPM but corresponds to the phase modulation caused by the nonlinear
refractive index induced by a copropagating pulse. As for SPM, the time and space
dependences of XPM lead to spectral, temporal, and spatial changes of ultrashort
pulses.

Experimental investigations of cross-phase modulation effects began in 1986,
when the spectral broadening enhancement of a probe pulse was reported for the
first time. Subsequently, spectra of Raman, second harmonic, and stimulated four-
photon mixing picosecond pulses were found to broaden with increasing pump
intensities. Moreover, it was demonstrated that the spectral shape of Raman pulses
was affected by the pulse walk-off, that the frequency of copropagating pulses could
be tuned by changing the input time delay between probe and pump pulses, and
that modulation instability could be obtained in the normal dispersion regime of
optical fibers. All these results are well understood in terms of the XPM theory.
Furthermore, induced focusing of Raman pulses, which was recently observed in
optical fibers, was explained as a spatial effect of XPM.

The research trends are now toward more quantitative comparisons between
measurement and theory and the development of XPM-based applications. Future
experiments should clarify the relative contributions of SPM, XPM, and modulation
instability to the spectral broadening of Raman, second harmonic, and stimulated
four-photon mixing pulses. XPM appears to be a new tool for controlling (with the
fast femtosecond time response of electronic nonlinearities) the spectral, temporal,
and spatial properties of ultrashort pulses. Applications could include the frequency
tuning in real time of picosecond pulses, the compression of weak pulses, the gen-
eration of femtosecond pulse trains from CW beams by XPM-induced modulation
instability, and the spatial scanning of ultrashort pulses. The unique controllability
of XPM should open up a broad range of new applications for the supercontinuum
laser source.

Experiments on induced- and cross-phase modulations have been performed by
the authors in close collaboration with T. Jimbo, Z. Li, Q.Z. Wang, D. Ji, and F.
Raccah. Theoretical studies were undertaken in collaboration with J. Gersten and
Jamal Manassah of the City College of New York and, most recently, with Govind
P. Agrawal of AT&T Bell Laboratories.

We gratefully acknowledge partial support from Hamamatsu Photonics K.K.

4.11 Addendum

This chapter was written during the spring of 1988. Since then, many more of
new theoretical and experimental results on XPM effects have been or are being
published by various research groups. The reference list in the introduction section
of this chapter has been updated. The interested readers should refer themselves to
original reports in the most recent issues of optics and applied physics publications.
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Chapter 5
Fibre-Based Supercontinuum

J. C. Travers and J. R. Taylor

Abstract We comprehensively review the historical development, fundamental
physical processes, numerical modelling, practical implementation and recent
progress in supercontinuum generation in optical fibres.

Keywords Supercontinuum generation · Non-linear fibre optics · Modulational
instability · Solitons · Photonic crystal fibre · Dispersive wave emission ·
Single-mode fibre · Pulse compression · Raman self-frequency shift · Frequency
conversion · Pulse propagation

5.1 Introduction

As comprehensively described in the earlier chapters of this book, by 1970, Alfano
and Shapiro had published three defining papers on supercontinuum generation in
bulk materials (Alfano & Shapiro, 1970a, b, c), identifying some of the principal
non-linear effects contributing to the observed spectral broadening, as well as
recognising the importance of the source in transient absorption measurements, and
publishing on the application to picosecond Raman absorption (Alfano & Shapiro,
1970d). By 1970 enormous progress was also being made on the development of
low-loss silica glass fibres (Kapron et al., 1970) with the achievement of a loss
of ~17 dB/km in a titanium-doped silica fibre by Maurer, Schultz and Keck at
Corning Inc. that was driven by the promise of high-capacity broadband optical
communications, as predicted by Kao and Hockham (1966), should such “low
loss” be attainable. The availability of relatively low-loss single-mode or few-mode
optical fibre was the catalyst for expanding the relatively new field of non-linear
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optics to lower-power regimes. The discovery of the laser (Maiman, 1960) and
the techniques of Q-switching (McClung & Helwarth, 1962) and mode locking
of solid-state lasers (Mocker & Collins, 1965; De Maria et al., 1966) meant that
even for pulses of relatively modest energy, power densities greater than a terawatt
per square centimetre could be readily achieved at the focal spot of a convex
lens, with corresponding field strengths exceeding a megavolt per centimetre.
The consequential need to consider higher-order terms of the electric field in the
description of the pump-induced polarisation provided the foundation of non-linear
optics and the remarkably simple experimental expedient of simply focusing such
pulsed laser outputs into bulk materials provided the early means to generate basic
supercontinua.

Despite the fact that silica has one of the lowest non-linear coefficients, the
advantage of deploying single-mode fibre over bulk material can be realised by
considering the power-length factor associated with non-linear optical processes.
With lens focusing in bulk, the effective interaction length is limited by the confocal
parameter, and with a focal spot size of a few microns, a confocal parameter
of only a few millimetres is possible. If, on the other hand, the light is focused
into a single-mode fibre with a core diameter of a few microns, the interaction
length is limited only by absorption. For modern fibres, exhibiting a loss of around
0.2 dB/km this gives rise to an effective length in excess of 10 km, although this is
wavelength dependent. As a consequence, enhancement of the power-length factor
by six or seven orders of magnitude compared to deployment in bulk material clearly
demonstrates the potential for lower pump power requirements when undertaking
studies of non-linear optics in optical fibre structures. In addition, the use of single-
mode fibre permitted greater control over the non-linear processes through the
elimination of self-focusing and filamentation, which often played a major role
in supercontinuum generation in bulk materials but often led to pulse-to-pulse
irreproducibility.

5.2 Non-linear Optics in Fibres

The first non-linear effect in optical fibre to be reported was stimulated Raman
scattering in a 1-m-long, 12-μm-diameter, hollow-core fibre filled with carbon
disulphide (Ippen, 1970), when pumped by a relatively low peak power (~5 W)
pulsed Argon ion laser. Raman laser action was achieved by placing high reflectors
at each end of the fibre assembly. The first reported non-linear effect to be
characterised in a solid-core silica fibre was the stimulated Brillouin scattering of a
pulsed Xenon laser at 535.5 nm with a measured threshold peak power of less than
1 W in a 20-m-long fibre (Ippen & Stolen, 1972). Self-phase modulation (SPM)
was subsequently characterised (Ippen et al., 1974) in a 7-μm-diameter hollow-core
fibre filled with carbon disulphide, when pumped by the pulses from a mode-locked
dye laser. In solid-core fibres, SPM was characterised using the ~200-ps pulses
from an actively mode-locked argon ion laser, and an independent measurement
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of the non-linear refractive index of silica was determined (Stolen & Lin, 1978).
Throughout the 1970s, all the non-linear effects that had been characterised in the
previous decade using direct laser pumping of bulk materials were reinvestigated
in single-mode fibres, taking advantage of the reduced power levels required as
a result of the increased interaction lengths achievable in fibre. These included
stimulated Raman scattering (Stolen et al., 1972), the optical Kerr effect (Stolen
& Ashkin, 1973) and four-wave mixing (Stolen et al., 1974). Other effects such
as second harmonic generation (Österberg & Margulis, 1986) and third harmonic
generation (Gabriagues, 1983) in fibres have been characterised and exploited;
however, these tend to play an insignificant role in the overall supercontinuum
generation process. An excellent review of the early years of non-linear fibre optics
is given by Stolen (2008) who pioneered and made an extensive contribution to
the field in its formative years, while a comprehensive coverage of the field can
be found in Agrawal’s seminal text “Nonlinear Fiber Optics”, presently in its fifth
edition (Agrawal, 2012).

The first report of supercontinuum generation in fibre (Lin & Stolen, 1976)
utilised nanosecond pulse excitation provided by several different nitrogen laser-
pumped dye lasers operating in the visible spectral region. Pumping a 19.5-m-long,
7-μm core, silica fibre with kilowatt pulses generated a continuum extending
from around 440 to 620 nm. Cascaded stimulated Raman scattering and self-
phase modulation were identified as the principal broadening mechanisms, and
the potential use of the source for excited state spectroscopy was identified by
the authors. Subsequently, the use of a Q-switched Nd:YAG laser—capable of
producing 150-kW, 20-ns pulses—enabled a cascaded Raman supercontinuum in
the infrared to be achieved in a 315-m-long, 35-μm core diameter, relatively low-
loss (less than 10 dB/km from 0.7 to 1.7 μm) multimode fibre (Lin et al., 1978).
When a single-mode fibre was deployed, similar spectral behaviour was observed at
substantially lower pump powers. That supercontinuum, which is shown in Fig. 5.1,
exhibits all the classic features of cascaded Raman generation. With the pump in the
normal dispersion regime at 1.06 μm, the first three distinct cascaded Raman orders
at 1.12, 1.18 and 1.24 μm were observed. Beyond 1.3 μm an effective continuum
was recorded apart from a large dip in the region around 1.38 μm as a result of the
relatively large water loss associated with these early fibres. To the short-wavelength
side of the pump, weak four-wave mixing (FWM) was observed. In Fig. 5.1 the
intensity scale of the FWM has been expanded by an order of magnitude, since the
efficiency of generation was low as a result of the pump being far away from the
dispersion zero.

Similar performance had been achieved by Cohen and Lin (1977) using a Q-
switched and mode-locked Nd:YAG laser system to provide a broadband source that
was employed in the measurement of the dispersion of optical fibres using the pulse
delay technique. The most interesting feature of these supercontinua is the broad
continuous nature of the spectra in the anomalous dispersion regime at wavelengths
above the dispersion zero, what is now generally referred to as the soliton-Raman
continuum. Initially, it was solely attributed to broadening of the cascaded Raman
components due to self-phase modulation (Cohen & Lin, 1978), and although
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Fig. 5.1 Supercontinuum generated in 315 m of multimode Ge-doped silica fibre by 50-kW pulses
from a Q-switched Nd:YAG laser. (After Lin et al., 1978)

time-resolved measurements were taken of the various spectral components of the
supercontinuum, the temporal resolution of a few hundred picoseconds used in the
pulse delay measurements was inadequate to resolve what most certainly would
have been the femtosecond pulse structures of the Raman soliton supercontinuum;
consequently the important role of solitons in the dynamics of the supercontinuum
was only to be resolved much later.

The role of the pump laser and its location relative to the dispersion zero was
qualitatively investigated by Washio et al. (1980) in various lengths of single-mode
fibre with a dispersion zero, left unspecified, in the region of the pump wavelength.
Using a Q-switched Nd:YAG laser operating at either ~1.32 or ~1.34 μm, the
pump wavelength-dependent output spectra were investigated in relation to the fibre
length. In short fibres pumped at 1.32 μm, distinct four-wave mixing was recorded,
but with increased length the first Raman Stokes at 1.40 μm was generated and a
continuum evolved essentially from this. In long-length fibres pumped at 1.34 μm,
Washio et al. observed what was the signature of a modulational instability-initiated
soliton-Raman supercontinuum, as a result of the long pump pulses operating
directly in the anomalous dispersion regime. However, these results were taken in
the very early days of soliton and modulational instability studies, and so these were
not proposed as contributing mechanisms for the spectral broadening observed. In
addition it would be several more years before the soliton-Raman mechanism would
be purported (Vysloukh & Serkin, 1983).
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5.3 Solitons, Modulational Instability and Pulse Compression

The formation of optical solitons through a balance of non-linear and linear
effects—either spatially through self-focusing and diffraction, or temporally
through the balance of self-phase modulation and dispersion—was first proposed
theoretically by Zakharov and Shabat (1971); in fact they showed that any system
described by the non-linear Schrödinger equation (NLSE) supported solitons. A
few years later Hasegawa and Tappert (1973) proposed the use of optical fibres
to achieve soliton propagation, which would enable both spatial and temporal
pulse shape preservation. They derived an NLSE describing the propagation
through a fibre of the complex optical pulse envelope U(z, τ ) in a single fibre
mode (normalised such that |U(z, τ )|2 = P(z, τ ) where P(z, τ ) is the instantaneous
power in Watts, z is the fibre position and τ is a co-moving time frame). By defining
the group velocity dispersion β2 (ω) = ∂2

ωβ (where β(ω) = neffω/c is the axial
wavenumber, neff is the effective modal refractive index, ω is the angular frequency
and c the speed of light) and the non-linear coefficient γ = n2ω/cAeff (where n2 is
the non-linear refractive index, and Aeff is the effective modal area), the NLSE can
be written as

∂zU = −i β2

2
∂2
τ U + iγ |U |2U, (5.1)

which has soliton solutions of the form

U (z, τ ) = √P0 sech

(
τ

τ0

)

exp

(

i
γ P0

2
z

)

, (5.2)

where the soliton peak power P0 = |β2| /γ τ 2
0 and τ 0 is the soliton duration. From

Eq. (5.2) it is clear that the soliton pulse profile does not change upon propagation.
Although it can be argued that optical solitons were generated in the super-

continua of Cohen and Lin (1977, 1978) and Lin et al. (1978), no real physical
characterisation of soliton behaviour was presented, and it was not until 1980 that
Mollenauer et al. provided unequivocal experimental evidence of optical soliton
generation and propagation.

Soliton dynamics plays a pivotal role in the physics of supercontinuum gener-
ation, and the early historical development of optical solitons and their properties
have been comprehensively treated by Mollenauer and Gordon (2006). The long
delay between the theoretical prediction of Hasegawa and Tappert and Mollenauer’s
experimental realisation was simply due to the lack of a suitable pulse source, while
in addition, in 1973, long lengths of low-loss single-mode fibre in the spectral
regions around 1.3 or 1.55 μm did not exist. The initial experiments required
picosecond, transform-limited pulses in the anomalously dispersive spectral region,
which for conventional silica fibres was above 1.3 μm. Mollenauer had, in fact,
spent many years developing synchronously pumped mode-locked colour centre
lasers to undertake what was to be a series of classic experiments on the characterisa-
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tion of optical solitons in fibres, which apart from the first observation (Mollenauer
et al., 1980) included soliton breathing and pulse restoration (Stolen et al., 1983),
pulse compression (Mollenauer et al., 1983), the soliton laser (Mollenauer & Stolen,
1984), long-distance soliton propagation and Raman amplification (Mollenauer
et al., 1985), soliton-soliton interaction (Mitschke & Mollenauer, 1987a) and
ultrashort pulse generation (Mitschke & Mollenauer, 1987b). Soliton generation was
expedited by Mollenauer using transform-limited picosecond pulses with the precise
soliton power. We have seen above that solitons had previously been generated but
had gone unrecognised in the early supercontinuum work, while Hasegawa and
Kodama (1981) theoretically proposed that pulses of any reasonable shape could
evolve into a soliton, with any excess energy of the launched pulse shed off as
dispersive radiation. It has subsequently been experimentally demonstrated that
optical solitons can evolve from noise bursts of sufficient power, again with the
excess radiation shed as a dispersive wave (Gouveia-Neto & Taylor, 1989), and
that the Raman amplification of noise bursts could give rise to ultrashort pulse, and
consequently broadband, soliton generation (Gouveia-Neto et al., 1989a).

The spectral-temporal breathing of solitons and the extreme temporal narrowing
initially observed by Mollenauer and colleagues are a result of the high-order soliton
propagation that had been predicted by Satsuma and Yajima (1974). This occurs
when instead of initial conditions corresponding to Eq. (5.2), a pulse with a higher
peak power is launched: U (0, τ ) = N

√
P0 sech (τ/τ0). For integer N the ideal

Satsuma and Yajima high-order soliton dynamics result, but any N > 0 will result
in at least initial breather dynamics. The ideal high-order solitons are simply a
non-linear superposition of N fundamental solitons. Pulse narrowing results from
the periodic non-linear interference between these solitons upon propagation, with
a compression factor of 4.1N being theoretically possible (Dianov et al., 1986).
Throughout the 1980s, high-order soliton decay was extensively investigated as
a mechanism for ultrashort pulse generation, with associated ultrabroad spectral
bandwidths. The technique was first demonstrated by Tai and Tomita (1986) using
2-ps pulses at 1.32 μm derived from a fibre-grating pair pulse compressor and
launched into a fibre with a dispersion zero at 1.275 μm, with pulses as short as
90 fs being generated. On optimisation of the launch power and fibre length, pulses
of only four optical cycles (~18 fs) were generated centred around 1.3 μm (Gouveia-
Neto et al., 1988a). Figure 5.2 shows the spectrum of such a pulse with an intensity
autocorrelation trace as the insert.

In the early to mid-1980s, pulses of the order of a few femtoseconds were
generated using the optical fibre grating compressor configuration (Tomlinson et
al., 1984). This technique utilised grating pairs to compensate the effects of spectral
broadening through self-phase modulation and normal dispersion experienced
by intense short pulses on propagation through single-mode fibres, enabling the
generation of pulses on the order of the inverse of the bandwidth. Johnson and Shank
(1989) provided a comprehensive treatment of the technique in the first edition of
this book. As many of these systems were pumped by amplified, mode-locked dye
lasers operating around 600 nm, the generated supercontinua seldom exceeded 100-
nm bandwidth (Halbout & Grischkowsky, 1985; Palfrey & Grischkowsky, 1984;
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Fig. 5.2 Supercontinuum spectrum (on a linear scale) associated with high-order soliton compres-
sion to 18 fs (autocorrelation trace inset) in conventional optical fibre. (After Gouveia-Neto et al.,
1988a)

Knox et al., 1985), while in the infrared, associated supercontinua of several hundred
nanometres were achieved as represented by Fig. 5.2.

As first proposed by Hasegawa and Brinkman (1980), the process of modula-
tional instability in single-mode fibres, which results from the interplay of non-
linearity and anomalous dispersion, is akin to soliton generation and leads to intense
modulation of the steady state. Many non-linear equations exhibit modulational
instabilities, and these had been predicted and observed in fluids and in plasmas
(see Zakharov & Ostrovsky, 2009, for a review of the early works) prior to the
first experimental observation in optical fibre by Tai et al. (1986a,b). In the mid-to-
late 1980s, the unavailability of adequately powered continuous-wave (CW) sources
operating in the anomalously dispersive regime and in the region of zero dispersion,
as well as the difficulty in obtaining long lengths of low-loss fibres at the appropriate
wavelength, restricted the initial observation of modulational instability to the quasi-
CW regime, where the period of the modulation was substantially less than the
duration of the pump pulse deployed. The initial report by Tai et al. used transform-
limited 100-ps pulses from a mode-locked Nd:YAG laser operating at 1.319 μm
and fibres of up to 2 km long, with typical dispersion of ~−3 ps/nm.km. In these
conditions the modulation periods were ~2 ps, much shorter than the effectively CW
100-ps pump pulses. This process, supporting the growth of soliton-like structures,
is essential for the initiation of supercontinuum generation in the “long” pulse pump
regime. It can also degrade the coherence of the supercontinua generated through
high-order soliton compression beyond the minimum compression point. True CW
excitation of the modulational instability process was first reported by Itoh et al.
(1989) using a 1.319-μm Nd:YAG laser to pump a small core, 5-km length of silica
fibre with a fluoride-doped depressed cladding, which exhibited a −2.6-ps/nm.km
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dispersion at the pump wavelength. Modulation frequencies in excess of 100 GHz
were observed.

Modulational instability can be envisaged as four-wave mixing, where the Stokes
and anti-Stokes sidebands exhibit an exponential growth at the expense of two
photons from the pump. The process is generally self-starting and is noise seeded.
For growth, the sideband frequency separation from the carrier should be less than
a defined critical frequency given by

√
4γP0/β2, where P0 is the pump power. The

maximum growth occurs at a frequency shift of
√

2γP0/β2. It is possible to seed the
process using an additional laser source provided the frequency separation from the
carrier lies within the above frequency gain window. This technique was originally
proposed by Hasegawa (1984) and experimentally realised by Tai et al. (1986a).

The modulational instability process plays a vitally important role in the initia-
tion of the supercontinuum both in the CW and picosecond-pulsed pump regimes
and indeed an equally important role in perturbing the coherence of supercontinua
produced through the process of high-order soliton compression when the length
scale of the generation process extends beyond the optimum compression length.
Induced modulational instability does provide a mechanism to manipulate and
enhance the supercontinuum generation process. This has been demonstrated by
Gouveia-Neto et al. (1988b) in the quasi-CW pumping regime. Through seeding
of the modulational instability sidebands, soliton generation can occur earlier in
the fibre leading to significantly enhanced spectral coverage to the long-wavelength
side of the generated spectra, for equivalent laser pump powers. The technique was
reprised some 20 years later when Solli et al. (2008) actively seeded a modulational
instability-initiated supercontinuum. The process allowed short pulse solitons once
again to form earlier in the fibre.

5.4 Stimulated Raman Effect and Ultrashort Soliton Pulse
Instabilities

As was remarked upon above, with reference to Fig. 5.1, for a pump pulse in the
normally dispersive regime and for relatively long pump pulses, the stimulated
Raman process cascades until the generated higher orders encroach the anomalously
dispersive regime, beyond which a continuum is formed as a result of soliton effects.
The stimulated Raman process was first proposed as a means of soliton generation
by Vysloukh and Serkin (1983, 1984) and was first experimentally realised by
Dianov et al. (1985). Also described in this paper was the first observation
of the process of soliton self-Raman interaction, where, upon the evolution of
ultrashort soliton structures, the associated bandwidth becomes large enough such
that the short-wavelength component was capable of providing gain to the long-
wavelength component, through the stimulated Raman process. As a consequence
the generated solitons exhibited a long-wavelength shift of their central wavelength
on propagation, which generally self-terminated through the increasing peak power



5 Fibre-Based Supercontinuum 245

demands of the dispersion-dependent soliton power that increased with wavelength,
or through the increased long-wavelength loss of the fibres used. This process was
later termed the soliton self-frequency shift (Mitschke & Mollenauer, 1986) and was
theoretically modelled by Gordon (1986), and it plays the major role in determining
the long-wavelength extent in supercontinuum generation.

In the late 1980s, emphasis was placed upon studies of ultrashort pulse propaga-
tion in fibres primarily for pulse compression and femtosecond pulse generation,
and although these did not highlight supercontinuum generation, they laid both
the theoretical foundation and provided vital experimental discovery that would
later underpin the description and realisation of the supercontinuum source. For
the propagation of femtosecond pulses, self-effects and in particular self-Raman
interaction were of principal interests (Golovchenko et al., 1985, 1987a, b, 1991).
In order to achieve high-order solitons and correspondingly high compression
ratios, pulses were launched in close proximity to the dispersion zero. This led to
instability through the effect of higher-order dispersion and other self-effects such
as Raman gain on the femtosecond soliton structures (Vysloukh, 1983; Wai et al.,
1986a, 1986b) resulting in fragmentation into the numerous fundamental solitons
constituting the high-order soliton, as had been theoretically predicted (Serkin,
1987a, 1987b). This fragmentation into coloured solitons which was renamed
soliton fission (Herrmann et al., 2002) plays a dominant role in supercontinuum
generation, with the consequently generated short pulse fragments experiencing
self-Raman interaction and extending continuously into the longer-wavelength
regions.

For a pulse of any arbitrary shape or intensity launched in the region of the
dispersion minimum or extending across it, Wai et al. (1987) predicted solitons
would emerge together with a dispersive wave component in the normal dispersion
regime. They showed that with increasing amplitude at launch, the generated
solitons would frequency down shift, as a result of the self-Raman interaction,
and that the dispersive wave component would correspondingly frequency up shift.
Using a tunable femtosecond pulse source, based upon a soliton self-frequency-
shifted Nd:YAG laser source operating around 1.32 μm, Gouveia-Neto et al. (1988c)
experimentally verified the predicted behaviour. Prior to that Zysset et al. (1987) and
Beaud et al. (1987), by launching 800-fs, 1.341-μm pulses from a synchronously
pumped dye laser into a single-mode fibre with a dispersion zero around the
same wavelength, unequivocally demonstrated the group velocity matching between
the spectrally shifting dispersive wave and the solitons, as the pump power was
increased. It should be noted that these observations were made around the same
time as Gordon’s development of the theory of the soliton self-frequency shift
(Gordon, 1986). Nishizawa and Goto (2002a, b) in a series of experiments further
confirmed this process of the binding of the group velocity-matched soliton and
dispersive wave which plays a pivotal role in the short-wavelength extension of the
supercontinuum source.
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5.5 Early Studies of Supercontinuum Generation in Fibres

Following the work of Lin et al. (1978) at the end of the 1970s and throughout
the 1980s, most of the studies on supercontinuum generation employed mode-
locked Nd:YAG lasers, lens coupled to differing fibre formats. Fuji et al. (1980)
reported a smooth continuum extending from 300 to 2,100 nm, effectively the
complete transmission window of silica, using 100-kW pulses from a Q-switched
and mode-locked Nd:YAG coupled with 70% efficiency into comparatively short
lengths (5–15 m) of both single-mode and multimode fibres. Although the main
spectrum was not displayed, it was reported to be similar to the results of Lin et al.
although only the first two cascaded Raman orders were apparent with the remainder
of the spectrum being continuous and structureless. In the visible, because of the
multimode nature of the fibres deployed, enhanced four-wave mixing through phase
matching to higher-order modes was possible.

A Q-switched and mode-locked Nd:YAG laser operating at 1.338 μm was also
used by Washio et al. (1980), demonstrating that through pumping in the region of
the minimum dispersion of the fibre, the individual orders of the cascaded stimulated
Raman signal were not observed, generating only a smooth continuum. When
pumping a relatively long 150-m length of single-mode fibre, the clear signatures
of both modulational instability and a soliton-Raman continuum are reported.
However, the reported results predated the theoretical predictions of modulational
instability (Hasegawa & Brinkman, 1980), the experimental realisation of optical
solitons (Mollenauer et al., 1980) and the proposals for soliton-Raman generation
(Vysloukh & Serkin, 1983), but the authors did clearly note the difference in spectral
output through pumping around the dispersion zero.

It was also observed (Nakazawa & Tokuda, 1983) that the shape of the
supercontinuum could be modified by using a dual-wavelength pump scheme in the
region of low dispersion of a multimode fibre by pumping simultaneously at 1.32
and 1.34 μm from synchronised Q-switched Nd:YAG lasers. It was proposed that
the 1.34-μm component along with the pump gave rise to four-wave mixing that
enhanced the supercontinuum generation, whereas when only the 1.32-μm pump
was deployed, only two cascaded Raman orders were observed.

These experiments were providing evidence that self-phase modulation and
stimulated Raman scattering were not the sole contributions to the supercontinuum
generation process. This had been realised by Grigoryants et al. (1982) who
demonstrated that four-wave mixing was playing a vital role in the process when
pumping a multimode fibre with a Q-switched YAG, as well as hinting that the
increased peak power within the sub-nanosecond spikes of their Q-switched pump
laser would enhance spectral coverage. They also pointed out that the role of noise
was an important consideration in the overall generation process.

By the mid-1980s basic studies of supercontinuum generation in fibre were in
decline, and although the source had been used in the dispersion characterisation
of optical fibres, application was not particularly widespread despite the relative
simplicity of the experimental configuration. On the other hand, there was consider-
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Fig. 5.3 High average power soliton-Raman supercontinuum on a linear intensity scale. (From
Gouveia-Neto et al. 1987)

able interest in coherent broad bandwidth generation in optical fibre, primarily for
ultrashort pulse generation. The techniques used were either self-phase modulation
under normal dispersion, along with external grating pairs for phase compensation,
or high-order soliton effects where pulses of only a few optical cycles had been
generated, as described above.

Following the report of broadband generation as a result of high-order soliton
compression and self-Raman interaction (Dianov et al., 1985), several laborato-
ries worldwide were inspired to investigate Raman generation in the anomalous
dispersion regime using a variety of laser sources and pump pulse durations as
a means for short pulse generation and consequential broadband coverage in the
near infrared (Gouveia-Neto et al., 1987; Vodop’yanov et al., 1987; Grudinin
et al., 1987; Islam et al., 1989). These investigations used various pump wave-
length and pump pulse durations. For pumps in the normal dispersion regime,
the classic cascade of stimulated Raman orders was observed up to the region
of zero dispersion beyond which a continuum developed. Gouveia-Neto et al.
(1987) clearly demonstrated that modulational instability initiated the continuum
generation process when deploying 100-ps pump pulses at 1.32 μm operating in the
anomalously dispersive regime and close to the zero dispersion wavelength of the
fibre. It was proposed too that the generated continuum spectrum contained many
fundamental solitons randomly distributed in time, which gave rise to a pedestal on
the measured autocorrelation/cross-correlations. Figure 5.3 shows a representative
spectrum of a typical soliton-Raman supercontinuum, where the pump at 1.32 μm
and modulational instability sidebands are clearly visible. It should also be noted
that these were probably the first high average power supercontinuum sources, with
average powers in the watt regime.

Islam et al. (1989) also noted the role of modulational instability in initiating the
process, as well as that of the soliton self-frequency shift giving rise to the long-
wavelength extension. They also pointed out the important role of soliton collisions
in the presence of Raman gain as a wavelength extension mechanism. In the tem-
poral and spectral domains, Gouveia-Neto et al. (1989b) investigated the evolution
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from modulational instability to soliton-Raman continuum. It was also demonstrated
that through seeding of the modulational instability sidebands, the continuum
could be generated at substantially lower pump powers and that for equivalent
total incident power, the seeded systems extended to longer wavelengths and the
autocorrelation traces of the output soliton signals exhibited shorter durations and
substantially reduced pedestal components (Gouveia-Neto et al., 1988b). Selection
within the supercontinuum allowed the generation of a source of wavelength-tunable
femtosecond pulses—although the process of evolution from noise to Raman
solitons does prohibit application where low temporal jitter is required. Islam et
al. (1989) demonstrated that there was no temporal correlation between widely
separated wavelengths within the generated Raman supercontinuum.

As technological improvements allowed the scaling of average power levels
in double-clad fibre laser configurations, soliton-Raman generation in a 2.8-km-
long, 18% Ge-doped silica fibre for enhanced Raman gain allowed the first
CW-pumped supercontinuum to be generated. Using a ring geometry pumped by a
1-W Yb:Er fibre laser at 1.55 μm, a spectrum extending nearly 400 nm was obtained
(Persephonis et al., 1996). By the end of the 1990s, the further advances in fibre laser
technology allowed the first all-fibre fully integrated supercontinuum source to be
demonstrated by Chernikov et al. (1997). This was based upon a diode-pumped
Yb fibre laser, directly fuse coupled to a length of single-mode fibre with an angled
output facet. Rayleigh backscatter initiated laser action and spectral narrowing in the
high gain device which consequently led to stimulated Brillouin scattering causing
the laser to Q-switch. This produced pulses of about 2-ns duration at selectable
repetition rates in the range 1–20 kHz and an average power of up to 1 W. With
pulse energies of up to 50 μJ, peak powers in excess of 10 kW were generated
in-fibre. Starting from the fundamental at 1.06 μm, the generated supercontinua
exhibited the characteristic features of cascaded Raman orders up to the dispersion
zero and a soliton-Raman continuum up to 2.3 μm. To the short-wavelength side,
weak four-wave mixing was observed plus second and third harmonic generation of
the pump and cascaded Raman orders. The peak power within the supercontinuum
was also sufficient to also allow external frequency doubling in a crystal of the
broad infrared supercontinuum spectrum allowing access to the complete visible.
The completely integrated, compact nature of this source, with a footprint ~160 cm2,
made the source attractive for applications such as optical coherence tomography.
Another application area that had been investigated was in the spectral selection
of a continuum for channel allocation of synchronised pulse streams in dense
wavelength division multiplexing in communications.

5.6 Supercontinuum Applications in Telecommunications

The concept of utilising a supercontinuum for the generation of multiple syn-
chronised information channels was introduced by Morioka et al. (1993) using a
mode-locked Nd:YLF laser operating at 1.314 μm, with the 7.6-ps, 100-W peak



5 Fibre-Based Supercontinuum 249

power pulses used to pump a 450-m length of polarising maintaining fibre in the low
anomalously dispersive regime (0.33 ps/nm.km). The generated spectrum extended
nearly 200 nm, and a birefringent fibre filter was used to select 100 channels, each
separated by about 1.9 nm. The spectral coverage requirements of the technique
are quite modest needing only that the continuum coincides with the principal
telecommunication amplifier windows, the second around 1.3 μm or the third
around 1.5 μm. It also calls for the supercontinuum source to be relatively flat over
its operational extent—although this can be achieved through passive filtering—and
also that the noise-induced jitter on each channel should be less than the temporal
window of the receiver. Consequently, the influence of noise on some soliton-based
schemes, which can be significant, should be minimised.

To make the source more practical, by deploying an all-fibre, mode-locked Er-
fibre laser–amplifier pump configuration, Morioka et al. (1994) demonstrated nearly
penalty-free transmission of 6.3 Gbit/s over the spectral range 1535–1560 nm,
although only a fraction of the 200-nm generated supercontinuum was effectively
utilised. Further development in terms of capacity continued, with in excess of 1000
channels being generated over relatively modest spectral continua of around 100 nm
(Collings et al., 2000; Takara et al., 2000). However, Kubota et al. (1999) did point
out that coherence degradation occurred during soliton pulse compression and the
associated supercontinuum generation through the interaction between amplified
spontaneous emission and modulational instability. They numerically investigated
techniques to negate or minimise this, proposing the use of normally dispersive
fibre, consequently eliminating solitons, or through the use of dispersion-decreasing
fibre or through spectral band filtering, and suggested that this should be considered
when generating WDM channels from supercontinua.

Tapered fibres had been employed earlier (Lou et al., 1997; Mori et al., 1997;
Okuno et al., 1998), with the fibres exhibiting a dispersion-decreasing charac-
teristic along the length of the fibre and a dispersion-flattened profile. At input
the dispersion was anomalous, changing to normal at the output. The relatively
slow decreasing dispersion with transmission length gave rise to adiabatic pulse
compression of the soliton input signals, which gave a corresponding spectral
broadening, while at the normally dispersive output, self-phase modulation of the
compressed pulses dominated the spectral broadening. However, on propagating
through the region of zero dispersion, the evolution of very high-order solitons leads
to severe temporal and spectral instability.

In a differing approach, adiabatic soliton compression in a 10-km-long dis-
tributed Raman amplifier also contributed to a supercontinuum extending over
100 nm centred around 1550 nm at 10 GHz generating up to 10 mW/nm (Lewis
et al., 1998).

For potential telecommunications applications, increased stability was achieved
through the simple expedient of operating in the normally dispersive regime, where
broadening was simply dominated by self-phase modulation (Takushima et al.,
1998). Using high-order soliton compression in two cascaded short fibres with a
steplike decreasing dispersion profile, Nowak et al. (1999) generated a relatively
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flat 210-nm broad continuum for potential application to communications, where
spectral shaping was introduced using third-order dispersion effects.

Although total transmission rates of up to 1 Tbit/s were demonstrated (Morioka
et al., 1996) with ten spectrally selected channels at 100 Gbit/s propagating over
40 km, the general technique was not investigated much further after the end of
the century and was not deployed in the field; however, the techniques developed
to minimise instability, such as the use of normal dispersion, short tapers, and
short length, high-order soliton compression, were all successfully applied to the
following generation of supercontinuum sources.

5.7 Modelling Broadband Pulse Propagation in Optical
Fibres

The experimental demonstrations of dramatic soliton-effect pulse compression,
soliton fission, coloured soliton generation and Raman self-frequency shift in the
mid-1980s required the development of enhanced numerical modelling. The NLSE
given by Eq. (5.1) was derived for narrowband pulses where the higher-order terms
resulting in most of the supercontinuum dynamics are negligible, and were omitted.
In the first numerical studies, the higher-order effects were considered individually:
higher-order dispersion by Vysloukh (1983), Wai et al. (1986a, b) and Agrawal
and Potasek (1986); self-steepening by Tzoar and Jain (1981) and Anderson and
Lisak (1983); and the Raman effect by Vysloukh and Serkin (1983), Gordon
(1986) and Stolen et al. (1989). Subsequently there emerged several seemingly
independent papers describing comprehensive models which include all of the above
effects, derived from first principles, by Golovchenko et al. (1987a), Beaud et al.
(1987), Kodama and Hasegawa (1987), Blow and Wood (1989) and Mamyshev and
Chernikov (1990). They all essentially reduce to what is now called the generalised
non-linear Schrödinger equation (GNLSE), valid for optical pulses with just a few
optical cycles. In the frequency domain, it takes the following form:

∂z
∼
U = i

(

β (ω)− ω

νref

) ∼
U + i

n2ω

cAeff
F
[(
R ∗ |U |2

)
U
]
, (5.3)

where
∼
U = F [U (z, τ )], with F the Fourier transform, vref is a chosen reference

velocity and R(t) is the non-linear response function, which for glass takes the form
R(t) = (1 − fr)δ(t) + frhR(t), i.e. there is an instantaneous Kerr part and a delayed
Raman response described by hR (Stolen et al., 1989). The GNLSE as presented
in Eq. (5.3) includes the full modal dispersion, the Raman effect and—through the
explicit ω prefix to the non-linear term—self-steepening (which leads to optical
shock formation). It is often modified in a number of ways, for example, by using a
truncated Taylor expansion of the dispersion operator, removing the phase velocity
offset by subtracting β(ωref) from the linear term and including the frequency
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dependence of the effective area—though some care is required when doing this
(Laegsgaard, 2007). It can also be further extended to include additional effects,
such as adding a term describing third harmonic generation (Genty et al., 2007b),
or non-linear effects arising from interactions with the conjugate of the envelope
(i.e. negative frequencies) (Conforti et al., 2013). In the latter case, it is valid for
arbitrary pulse durations—so long as the assumed material response remains valid
(i.e. propagation far from resonances). The full GNLSE can also be generalised
to the case of multimode propagation (Poletti & Horak, 2008), and tapered fibres
(Mamyshev & Chernikov, 1990; Travers & Taylor, 2009; Laegsgaard, 2012).

Although the NLSE and GNLSE are widely used for supercontinuum simula-
tions, and also are highly amenable to analysis, the ever-expanding bandwidth of
supercontinuum sources makes the use of an envelope model more of a hindrance
than a simplification. When dealing with multiple octave spectra—although the full
GNLSE is still valid in that case—it can be much simpler to model the propagation
of the real electric field, and this has become more prominent over the last decade
(Husakou & Herrmann, 2001; Kolesik & Moloney, 2004; Kinsler, 2010; Chang et
al., 2011). The field equivalent of Eq. (5.3), propagating the spectrum of the full

real electric field
∼
E = F [E (z, τ )], is the so-called unidirectional pulse propagation

equation (UPPE) given by
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E = i
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]
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This equation, while strikingly similar to Eq. (5.3), includes a full description
of third harmonic generation, and is not restricted to positive frequencies. When
modelling broadband supercontinua, it is also often more efficient. A multimode
version of the UPPE has been recently introduced by Tani et al. (2014).

All of the propagation Eqs. (5.1), (5.3) and (5.4) can be straightforwardly and
efficiently integrated using a variation of the split-step Fourier method introduced by
Hardin and Tappert (1973), and further refined by Fisher and Bischel (1973, 1975),
Blow and Wood (1989) and Hult (2007). Alternatively, through the transformation
∼
E

′
= ∼
E exp

[
−i
(
β (ω)− ω

νref

)]
, Eq. (5.4) (and similarly Eqs. (5.1) and (5.3))

is cast as a system of ordinary differential equations, solvable with the usual
techniques. A simple and complete implementation of Eq. (5.3) using this technique
was provided by Travers et al. (2010).

For some parameter regimes, it is essential to include a realistic model of the
noise inherent to the system to fully reproduce experimental results—especially
when dealing with modulational instability-based dynamics. The most widespread
treatment involves adding a representation of quantum noise fluctuations to the
initial conditions, simply by adding a field with spectral power corresponding to
one photon per mode with random phase (Drummond & Corney, 2001; Dudley
et al., 2002; Corwin et al., 2003). Depending on the pump source conditions, the
additional noise of the pump source may also need to be included (see, e.g. the CW
Supercontinuum Modelling section below). Additionally, some works have included
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a non-deterministic spontaneous Raman term in the GNLSE (Drummond & Corney,
2001; Corwin et al., 2003; Dudley et al., 2006), although this has a relatively minor
effect.

As the basic models were complete by the late 1980s, several pioneering works
numerically studied the generation and dynamics of what might be classed as
supercontinua (Beaud et al., 1987; Golovchenko et al., 1987a; Islam et al., 1989;
Blow & Wood, 1989; Dianov et al., 1989; Golovchenko et al., 1991; Gross &
Manassah, 1992; Boyer, 1999). This effort was significantly reinvigorated when the
next generation of experimental supercontinuum sources emerged at the turn of the
last century (see below), and an explosion of modelling work began to understand
the results (Karasawa et al., 2001; Husakou & Herrmann, 2001; Coen et al., 2001;
Gaeta, 2002; Dudley & Coen, 2002; Dudley et al., 2002; Herrmann et al., 2002).

5.8 The New Generation of Supercontinuum Sources

Despite the enormous advances made in the understanding of the physical processes
contributing to supercontinuum generation in fibres, up to 2000, apart from a few
examples, the actual experimental configurations had changed very little since
the first demonstrations by Alfano and Shapiro (1970a, b, c, d). Quite simply
the bulk sample had been replaced by a single-mode fibre, yet the large frame,
low repetition rate pump laser and lens coupling remained, making the schemes
unstable, irreproducible and unsuitable for widespread application. The use of
conventional fibre negated efficient generation in the visible spectral region, due
to the unfavourable dispersion landscape, and most supercontinua exhibited the
classic cascade of Raman orders followed by a soliton-generated continuum in the
anomalously dispersive regime, if there was adequate pump power. Two factors were
to then impact upon the scientific and commercial success of the supercontinuum.
The first was the availability of high-power, fibre-based pulse sources in master
oscillator power fibre amplifier configurations, which would allow pump formats
from CW through to femtosecond pulses and permit complete fibre integration
of the source. The second was the development of photonic crystal fibre, PCF
(Knight et al., 1996; Knight, 2003; Russell, 2006) which—through design of
the microstructure—allowed great control of the dispersion and the non-linearity,
as well as endlessly single-mode operation over the complete supercontinuum
spectrum (Birks et al., 1997). As a result soliton operation could be achieved with
all of the readily available laser pump wavelengths (Wadsworth et al., 2000).

5.9 Femtosecond Pulse-Pumped Supercontinua

The result that probably had the greatest impact on supercontinuum generation in
fibre and drove research and development into the first decade of the twenty-first
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Fig. 5.4 Characteristic, time integrated, supercontinuum generated in a photonic crystal fibre with
a zero dispersion around 770 nm pumped by 100-fs, 8-kW pulses at 795 nm. (After Ranka et al.,
2000)

century was reported by Ranka et al. (2000). Using a mode-locked Ti-sapphire laser
around 790 nm to pump a 75-cm length of PCF with a zero dispersion at 770 nm,
the launch of 100-fs high-order solitons with a power of approximately 8 kW led
to rapid pulse compression accompanied by spectral broadening, followed by pulse
break-up or fission into numerous single solitons. As can be seen in Fig. 5.4, the
generated supercontinuum extended from 400 to 1600 nm.

The striking features of the generated supercontinuum are its relative flatness
(while remembering it is time integrated), the spectral coverage including the
complete visible to the near infrared and saturation of the pump. No new non-linear
processes were involved, yet the ability to manipulate the physical parameters of
the PCF to allow control of the non-linearity and the dispersion zero to readily
facilitate soliton generation of unamplified pulses from conventional femtosecond
lasers created instant impact. Key to the generation process was the rapid pulse
compression of the launched, high-order pump solitons to their minimum pulse
width, over a length scale given approximately by Lfiss = τ 2

0 /N |β2|. Beyond
this length further propagation is affected by inherent system perturbation such
as higher-order dispersion, self-Raman interaction and modulational instability,
resulting in the temporal and spectral fragmentation into numerous fundamental
solitonic and dispersive structures (Herrmann et al., 2002; Cristiani et al., 2004;
Genty et al., 2007a). As a result of the noise-driven processes, the supercontinuum
spectrum associated with each pump pulse is not identical, and the smooth profile
recorded as in Fig. 5.4 is the result of the accumulation of ~108 spectra.

In situations where noise reduction and high stability are essential in application
of the supercontinuum, such as in metrology, it is advisable to employ pump pulses
with duration of 50 fs or less, such that for the peak pump powers launched, the fibre
length corresponds to the length of maximum compression of the high-order soliton,
with spectral extraction at that point. Alternatively, soliton effects can be negated by
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solely operating in the normal dispersion regime such that self-phase modulation is
the dominant process (Nowak et al., 1999; Heidt, 2010; Hooper et al., 2010).

For soliton-based spectra, if the bandwidth of a soliton extends beyond the zero
dispersion and into the normally dispersive regime, dispersive waves can be emitted
(Vysloukh, 1983; Wai et al., 1986a, b); usually the group velocity of these waves is
lower than that of the solitons (as they are emitted further from the zero dispersion
point), and hence they are delayed with respect to the main pulse. As the solitons
then experience self-frequency shifting due to the Raman effect, they are decelerated
to the point at which they overlap with the dispersive waves, which are subsequently
blue-shifted due to cross-phase modulation from the trailing edge of the soliton.
Thus, a cycle of soliton red shift and deceleration, dispersive wave blue shift and
delay leads to the trapping of the dispersive waves, and is the main mechanism by
which the short-wavelength edge of the supercontinuum is extended (Gorbach &
Skyrabin, 2007). Experimentally this was originally reported by Beaud et al. (1987)
and has been verified by many since (Nishizawa & Goto, 2002a, b; Cristiani et al.,
2004; Genty et al., 2004).

Although photonic crystal fibres were instrumental in allowing solitons to be
generated by common pump lasers, they were not essential. Innovative techniques
were developed that allowed conventional telecommunications fibre to be used by
employing controlled, tapered structures manufactured using a travelling flame and
fibre stretching, with the zero group velocity dispersion of the taper shifting to
shorter wavelengths with decreased taper diameters. Birks et al. (2000) demon-
strated a continuum extending from 370 to 1545 nm pumped by an unamplified,
100-fs, mode-locked Ti-sapphire laser which allowed up to 0.25-mW/nm spectral
density in the continuum. By cascading several tapers and pumping with a diode-
pumped, picosecond, Nd:YVO4 laser at 1064 nm, Teipel et al. (2005) generated
supercontinua with 5.65-W average power. Manufacturing submicron diameter
tapers, down to 200 nm, permitted Leon-Saval et al. (2004) to produce visible
supercontinua using the low-power pump of a 532-nm frequency-doubled microchip
laser delivering 1 kW, 600-ps pulses at 6.3 kHz.

This post-tapering process can also be applied to PCF, enabling the creation of
extremely small isolated silica cores. The resulting very high non-linear coefficients
and dispersion landscapes enable supercontinuum formation with extremely low
peak powers, and this can be used to generate supercontinua from mode-locked
frequency combs with very high repetition rate—Stark et al. (2011) demonstrated
a stabilised 14-GHz repetition rate visible supercontinuum for applications to
astronomy. Alternatively the dynamics in very short lengths of PCF tapers can
enable deep-UV extended supercontinuum generation down to 280 nm (Stark et
al., 2012a). These results were reviewed in Stark et al. (2012b).

Conventionally structured, highly non-linear fibres may also be used
for femtosecond-pumped supercontinuum generation. A fibre with a γ of
8.5 W−1 km−1 was manufactured by Nicholson et al. (2003a, b) and pumped
in an all-fibre configuration using a passively mode-locked Er fibre laser and
amplifier delivering up to 50-mW pump power. The generated supercontinuum
extended from about 1050 to 2400 nm. The system was later improved and power
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scaled using a chirped pulse amplification scheme to generate 34-fs pump pulses
at 1550 nm to enable a continuum that extended from around 850 to 2600 nm
(Nicholson, Yablon, et al., 2004a). Er-doped femtosecond laser pumping of highly
non-linear polarisation preserving (Takayanagi et al., 2005) and hybrid designs of
cascaded dispersion shifted and highly non-linear fibres (Hori et al., 2004) have
produced continua typically in the range of 1000–2400 nm, with the use of fibres
with dispersion zeroes in the range of 1500 nm simply inhibiting visible wavelength
generation. By utilising a cascaded hybrid of a highly non-linear conventional
fibre, followed by a PCF with a zero dispersion at 753 nm, Nicholson et al. (2008)
extended the short wavelength of an Er fibre laser-pumped supercontinuum to below
440 nm. An alternative technique to obtain visible generation with an Er pump is to
simply frequency double to 780 nm and pump a PCF with a dispersion zero around
740 nm as was demonstrated by de Matos et al. (2005), generating a spectrum
extending from about 400 to 1450 nm.

5.10 Modelling of Femtosecond-Pumped Supercontinua

With the increased understanding of the subtleties contributing to the overall spectral
generation and with increased computing power, the modelling of supercontin-
uum generation exhibited remarkable agreement between experiment and theory
(Husakou & Herrmann, 2001; Gaeta, 2002; Dudley & Coen, 2002; Dudley et al.,
2002; Herrmann et al., 2002). Cross-correlation frequency-resolved optical gating
traces were used to investigate the evolution of the spectral and temporal features of
a 25-fs, Ti-sapphire-pumped continuum generated in a 16-cm-long PCF (Dudley et
al., 2002). All the features of soliton fission, self-frequency shift, soliton-dispersive
wave trapping and their relation to the supercontinuum were clearly identified.

Figure 5.5 shows modelling results, based on Eq. (5.3), for a 50-fs, 10-kW peak
power pulse at 835 nm launched into a fibre with a zero dispersion wavelength of
780 nm and non-linear coefficient of 110 W−1 km−1. The input soliton order is
~8.6. The lower part of Fig. 5.5b shows the initial soliton-effect self-compression,
enhanced by self-steepening. The corresponding part of Fig. 5.5(c) shows the initial
SPM-driven spectral broadening and blue asymmetry due to the self-steepening
effect (DeMartini et al., 1967; Anderson & Lisak, 1983). When the pulse is
sufficiently compressed, the blue edge extends into the normal dispersion region,
and dispersive waves are emitted (Fig. 5.5b and c at z = 6.8 mm). This corresponds
to the fission point in the time domain (Kodama & Hasegawa, 1987; Tai et al., 1988;
Husakou & Herrmann, 2001). Subsequent propagation (upper parts of Fig. 5.5b
and c) exhibits red soliton self-frequency shift and corresponding temporal delay.
The blue edge of the supercontinuum is also extended. From the spectrogram plot
in Fig. 5.5(a), we see that the most blue-shifted dispersive wave is trapped behind
the most intense and red-shifted soliton (indicated by the dashed line), following
the mechanism described above (Beaud et al., 1987; Nishizawa & Goto, 2002a, b;
Genty et al., 2004; Gorbach & Skyrabin, 2007).
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Fig. 5.5 Femtosecond-pumped supercontinuum from a 50-fs, 10-kW peak power pulse at 835 nm
launched into a fibre with a zero dispersion wavelength of 780 nm, and non-linear coefficient of
110 W−1 km−1. The input soliton order is ~8.6. (a) XFROG spectrogram at 104-mm propagation;
(b) temporal slices through propagation; (c) corresponding spectral slices. The lower parts of (b,
c) show details of the initial self-compression and soliton fission dynamics. The dashed line in (a)
indicates the soliton-dispersive wave trapping



5 Fibre-Based Supercontinuum 257

5.11 Picosecond Pulse-Pumped Supercontinua

Wide application of the supercontinuum source is based on the capability of exten-
sive wavelength coverage, preferably covering the complete window of transmission
of the fibre type used, which for silica is around 350–2400 nm. In addition,
high spectral power densities, and consequently high average powers, lead also
to ease of application. Although the fibre-integrated Er-pumped systems described
above achieved power densities approaching 1 mW/nm, this occurred over a
rather restricted spectral range. In addition, pumping at 1550 nm does not readily
lead to operation in the visible through limitations of the soliton-dispersive wave
interaction. Despite impressive spectral coverage using unamplified femtosecond
Ti-sapphire pumping, the typical average power levels achievable were in the tens
of milliwatts regime with corresponding spectral power densities in the few tens
of microwatts per nanometre. Unlike the femtosecond regime, by operating in
the picosecond regime, watts of average power can be extracted from oscillator–
amplifier configurations without concerns of non-linearity. Initial reports on the
application of 60-ps pump pulses from a krypton ion laser at 647 nm showed
coverage from 400 nm to beyond 1000 nm (Coen et al., 2001), and a rather modestly
average powered 800-ps, frequency-doubled microchip laser at 530-nm lens coupled
into a PCF exhibited coverage from 450 to 800 nm and clearly identified the
potential for construction of compact supercontinuum sources (Provino et al., 2001).

Increased average powers were achieved with picosecond (Seefeldt et al., 2003)
and femtosecond (Schreiber et al., 2003) solid-state Nd-doped laser outputs, lens
coupled to PCFs with up to 5-W average power, in the range of 500–1800 nm.
The first, high-power, fully fibre-integrated supercontinuum source was reported
by Rulkov et al. (2004a) and Rulkov et al. (2005). This used a master oscillator,
power fibre amplifier configuration. The master oscillator was a normally dispersive,
polarisation rotation mode-locked Yb fibre laser, generating chirped pulses, the
duration of which was controlled through spectral filtering. The outputs were
amplified, single pass, in a 1-m Yb preamp and a 1.5-m large mode area amplifier.
The 60-kW peak power pulses at an average power of 8 W were launched into
various lengths of PCF with a zero dispersion at 1040 nm. A typical spectral output
is shown in Fig. 5.5 where spectral power densities in excess of 1 mW/nm were
achieved over the spectral range 525–1800 nm.

The temporal behaviour of the spectral components of a similarly generated
supercontinuum was investigated by Rusu et al. (2005), while over the years the
power scaling has been undertaken (Chen et al., 2010; Hu et al. 2011a, b), with
average power in the continuum reaching ~50 W.

High-order soliton dynamics do not play an important role in the formation of
a supercontinuum using picosecond pumping, although the fundamental soliton
power scales as the inverse square of the pulse duration, the fission length period
scales as the square of the pulse duration and is also inversely proportional to the
dispersion; consequently, the fission length tends to be substantially greater than
the actual fibre lengths used. For these longer pulses, modulational instability and
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Fig. 5.6 High average power supercontinuum obtained in 35 m of photonic crystal fibre with a
zero dispersion wavelength of 1040 nm pumped by a Yb MOPFA at 1 060 nm. (After Rulkov et
al., 2005)

four-wave mixing are the processes that initiate the continuum generation, breaking
the long input pulses into femtosecond scale sub-pulses that experience parametric
and Raman gain (Coen et al., 2002), such that random femtosecond solitons evolve.
These ultrashort pulse solitons subsequently experience the soliton self-frequency
shift and collisions, leading to spectral broadening. In addition the previously
discussed soliton-dispersive wave dynamic leads to short-wavelength extension of
the spectral output.

It was observed, see, for example Fig. 5.6, that using 1060-nm pumping of
anomalously dispersive fibres, in the region of the dispersion zero, that the short
wavelength of the supercontinuum did not extend below 525 nm and that this also
was independent both of pump power and fibre length. This was simply related
to the observation made by Zysset et al. (1987) on the group velocity matching
of the self-frequency shifting soliton and the coupled dispersive wave. Due to
scattering and waveguiding, the losses of silica-based fibres begin to increase
substantially above about 2000 nm. Consequently, self-shifting solitons approaching
this wavelength will experience loss and subsequently broaden, and the process will
be self-terminating. The short-wavelength extreme is thus limited to the spectral
extent that is group velocity matched to this upper wavelength limit.

Several techniques were introduced to overcome the short-wavelength limit,
and have been recently reviewed in Travers (2010c). The technique of cascading
two photonic crystal fibres was introduced by Travers et al. (2005a, b), where the
dispersion zero of the output fibre was less than that of the input fibre. In the first
realisation of this, the input fibre generated a spectrum similar to that of Fig. 5.5 in a
0.7-m-long PCF with a dispersion zero at 1040 nm. The 10-m-long output fibre had a
dispersion zero around 800 nm, and the supercontinuum generated in the input fibre
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was used to pump the second fibre. Once the supercontinuum generated in the input
fibre extended to around 750 nm, rapid extension of the output continuum to around
400 nm was observed. This was simply due to the fact that group velocity matching
in the second fibre allowed shorter wavelength matching of the long wavelengths as
a result of the lower dispersion zero point.

The concept of the concatenated, dispersion-decreasing fibre configuration was
taken to its extreme in the form of a continuously dispersion-decreasing tapered
PCF that was directly manufactured at the pulling tower through variation of the
pull speed and manipulation of the environmental pressure to regulate hole size.
In a 1-m-long taper, pumped by 3–4-ps pulses of up to 50-kW peak power at
1060 nm, the generated continuum effectively covered the complete transmission
window of silica from 320 to 2300 nm at an average power of 3.5 W (Kudlinski
et al., 2006; Travers et al., 2007). The use of a tapered fibre structure is also
important in enhancing the soliton-dispersive wave interaction, leading to short-
wavelength extension. For a PCF of constant pitch and air hole diameter, there is
a single group velocity dispersion versus wavelength map. For a tapered fibre, this
group velocity profile versus wavelength varies continuously along the length of
the fibre, with the zero dispersion shifting to shorter wavelength as the dimensions
compress. Consequently, for a given wavelength, the group velocity dispersion
decreases continuously with wavelength. Even in the absence of the self-Raman
effect, this GVD decrease with wavelength is equivalent to the soliton self-frequency
shift, as the solitons will decelerate, experiencing a lower group velocity, leading
to a trapping of the short-wavelength dispersive waves (Travers & Taylor, 2009).
Consequently the taper process adds further enhancement to the short-wavelength
continuum extension, which can be up to 300 nm as compared to equivalent
operation in a fixed core fibre. Up to 2 mW/nm has been achieved in the UV region
using tapered fibre technology (Kudlinski et al., 2006). Figure 5.7 shows a typical
continuum generated in a 1.5-m taper, and the inset shows the detail of the short-
wavelength extent of a continuum, down to 320 nm, generated in a similar taper
(Travers et al., 2007). Several recent works have attempted to further optimise the
long PCF tapers for picosecond pumping (Sørensen et al., 2012).

Stone and Knight (2008) proposed that through modifying the waveguide
structure of their photonic crystal fibre in the infrared, by making it more like a
strand of silica, i.e. by increasing the air fill fraction, they could decrease the group
velocity in the IR, where the waveguide contribution is greatest, and so be able
to match the group velocity on the short-wavelength side at a substantially shorter
wavelength. Using 600-ps pulses from a 60-mW average power microchip laser at
1064 nm, they covered the spectral region 400–2450 nm in 10-m-long PCF. Other
more complicated processes have been used to promote short-wavelength extension,
such as the irradiation of highly non-linear fibres using UV light, which causes a
UV-induced refractive index change such that the zero dispersion wavelength can
shift by up to 100 nm, consequently allowing the short-wavelength limit of the
generated supercontinuum to extend by up to 200 nm (Nicholson et al., 2004b;
Westbrook et al., 2005).
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Fig. 5.7 3.5-W average power supercontinuum obtained in a 1.5-m tapered fibre pumped at 1,060
nm with an input zero dispersion at 1,040 nm (After Kudlinski et al., 2006). Inset shows the detail
of the short-wavelength extent in a similar fibre. (After Travers et al., 2007)

Champert et al. (2004) used a long pulse, ~600 ps, dual-wavelength 1064-
nm and 532-nm pumping scheme based on a frequency-doubled microchip laser.
It was observed that when pumping a 4-m-long PCF with a zero dispersion
at 870 nm with only the second harmonic signal, the classic cascade of up to
seven Raman orders was observed, while on simultaneous excitation with both the
fundamental and second harmonic pump signals, a smooth, featureless continuum
was observed extending from just below 400 to 1700 nm, the upper limit of the
detector. Although no explanation as to the mechanism was presented, it is highly
likely that the cascaded Raman orders were trapped and broadened through cross-
phase modulation and intra-pulse four-wave mixing from the solitonic infrared
components derived from the pump pulse at 1064 nm.

As has been mentioned above, solitons can evolve from noise or from the
amplification of noise, and noise seeding of modulational instability can influence
signal evolution. Short pulse, noise-driven structures occurring in the early stages of
soliton evolution experience self-Raman interaction earlier and consequently exhibit
increased long-wavelength extent. This process underpins the observation of so-
called rogue waves in supercontinua (Solli et al., 2007). Solli et al. undertook a novel
dispersive Fourier transformation characterisation of the noise-based distribution
of long-wavelength events. Further refinement in the technique has allowed single
shot (Goda & Jalali, 2013) and the real-time measurements of spectral noise in the
generation process (Wetzel et al., 2012; Godin et al., 2013). It should be noted
that the understanding of what constitutes a rogue wave is now more nuanced,
with soliton collisions, and generalised soliton solutions and breathers having been
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identified as perhaps better rogue wave analogues than extreme solitons (Erkintalo
et al., 2010; Ruban et al., 2010; Genty et al., 2010; Dudley et al., 2014).

5.12 Modelling of Picosecond-Pumped Supercontinua

Coen et al. (2001) were the first to model picosecond supercontinuum generation in
PCF, using exactly the same equations as those for the femtosecond case, i.e. Eq.
(5.3) or (5.4). It is important to include suitable noise conditions in the long pulse
case, because, as described above, the dominant initial supercontinuum mechanism
for long pulses is modulational instability (MI), which is noise seeded. Simulations
of a 10-ps, 20-kW peak power pulses at 1060 nm propagating through a high
air-filling fraction PCF, or silica strand, with a zero dispersion at 994 nm and non-
linear coefficient of 18 W−1 km−1, are shown in Fig. 5.8. In the lower panel of
Fig. 5.8b and c, the initial MI dynamics are exposed both in the emergence of a
temporal ripple leading to >150-kW spikes in the time domain (starting from 20 kW)
and corresponding multiple side-band growth in the spectral domain. In the upper
panels of Fig. 5.8b and c, the whole temporal and spectral features of the emerging
supercontinuum are exposed. The initial 10-ps pulse is completely broken up into
many short structures. The MI side-band spectrum merges into a continuum that
extends both to longer and shorter wavelengths upon propagation. Inspection of
spectrogram traces, such as the one shown in Fig. 5.8a, reveals that, as proposed
in the 1980s, the long-wavelength spectrum consists of many randomly separated,
self-frequency red-shifting, solitons (notable by their clear sech2 shape in both time
and frequency and the fact that they do not chirp upon propagation), i.e. the so-
called soliton-Raman continuum. The short-wavelength edge is less structured as
the continuum is made up of dispersive waves. However, careful analysis of the
evolution of the spectrograms reveals that, like in the femtosecond case, the shortest
dispersive waves are associated with the most red-shifted solitons—merely this
is repeated over many soliton-dispersive wave pairs. The averaging of randomly
emerging solitons and dispersive waves is what leads to the very smooth continuum
spectrum shown in Fig. 5.8c, as compared to the femtosecond pump case.

In the case of picosecond pump supercontinuum, many numerical studies have
considered the shot-to-shot noise and rogue-wave formation resulting from the
stochastic nature of the initial MI dynamics, simply by performing many numerical
simulations and analysing the statistics of certain metrics of the supercontinuum
fields (Erkintalo et al., 2010; Genty et al., 2010).

5.13 CW-Pumped Supercontinua

Despite the remarkable progress made in the power scaling of mid-infrared fibre
lasers, at first it does appear quite anomalous that a CW laser producing an average
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Fig. 5.8 Numerical simulations of supercontinuum generation by 10-ps, 20-kW peak power
pulses at 1060 nm in a high air-filling fraction PCF with a zero dispersion at 994 nm and non-
linear coefficient of 18 W−1 km−1. (a) XFROG spectrogram at 300-mm propagation; (b) temporal
slices through propagation; (c) corresponding spectral slices. The lower parts of (b, c) show details
of the initial MI dynamics
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power of a few tens of watts should be capable of generating a supercontinuum in
an optical fibre, when equivalent spectral coverage with a pulsed laser necessitates
peak powers several orders of magnitude greater. Essential to the generation
mechanism is the process of modulational instability, and the role it plays in CW
supercontinuum generation has been comprehensively reviewed by Travers (2010a).

Although relatively high-power CW lasers had been used to observe modula-
tional instability in 5-km lengths of small core anomalously dispersive fibre (Itoh et
al., 1989) and broadband high-power operation had been observed from fibre Raman
lasers pumped by a Yb:Er fibre laser at the watt level (Persephonis et al., 1996),
the first report of high-power CW-pumped supercontinua in both conventional and
photonic crystal fibres was made by Popov et al. (2002). In early reports using PCF
water loss significantly affected the spectral extent. Avdokhin et al. (2003), using
a CW Yb fibre laser pump at 1064 nm, reported a 3.8-W continuum in 100 m of a
2.3-μm cored PCF, where the long-wavelength operation terminated at 1380 nm as a
result of strong water absorption at the hole-glass interfaces. Technological advance
in manufacture enabled a reduction in the water loss by an order of magnitude
and enabled long-wavelength extension to beyond 1550 nm, pumped at 1060 nm
(Travers et al., 2005a).

The continuum generation process is initiated by modulational instability. This
leads to the evolution of fundamental solitons, which experience adiabatic Raman
gain and consequently temporally compress and subsequently experience self-
Raman interaction and collisions, leading to long-wavelength shifting. The process
terminates due to fibre loss, through increased dispersion placing too high power
demands for soliton operation, or the presence of a second dispersion zero leading to
normal dispersion terminating soliton operation. Soliton collisions in the presence of
Raman gain provide an important contribution to the generated continuum (Frosz et
al., 2006). The role of modulational instability was recognised by several researchers
(González-Herráez et al., 2003; Nicholson et al., 2003b; Abeeluck et al., 2004).
Using a high-power tunable fibre Raman laser, Rulkov et al. (2004b), pumping a
highly non-linear conventionally structured fibre, showed that when the pump was
in the normal dispersion regime that evolution of the continuum originated from the
first Stokes component which was in the anomalously dispersive regime, but when
the pump was tuned so that operation was just in the anomalously dispersive regime,
the continuum evolved directly from the pump.

With the soliton-Raman process dominating CW-pumped supercontinuum gen-
eration, the spectra tend to be dominated by the long-wavelength component;
however, significant short-wavelength excursion has been observed (Popov et al.,
2002; Abeeluck & Headley, 2005). For short-wavelength generation, it is essential
that the pump operates close to the dispersion zero and in the anomalously dis-
persive regime. Consequently, on evolution of soliton structures from modulational
instability, there is sufficient spectral overlap of the solitons into the normally
dispersive regime so that soliton-dispersive wave interaction occurs, as described
previously for the picosecond and femtosecond cases. Low dispersion and high non-
linearity consequently enhance the process, and four-wave mixing can also make
a significant contribution to the short-wavelength generation about the dispersion
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Fig. 5.9 CW-pumped supercontinuum in 50-m PCF with a zero dispersion at 1050 nm pumped
by 230 W at 1060 nm. (After Travers et al., 2008)

zero (Cumberland et al., 2008b). Pumping far from the dispersion zero, but in
the anomalously dispersive regime, can give high average power soliton-Raman-
based supercontinua, up to 29 W, but the pump scheme inhibits short-wavelength
generation (Cumberland et al., 2008a).

The continuum generation process using CW pumping is practically identical to
that using long pulse picosecond pumping, although fibre length scales significantly
increase as the peak powers are lower. Consequently, the soliton-dispersive wave
interaction can be enhanced through similar fibre design considerations, specifically
the use of long tapered structures and doping the core material (Kudlinski & Mussot,
2008; Mussot & Kudlinki, 2009; Kudlinski et al., 2009a,b; Labat et al., 2011). By
employing GeO2 doping, which allows an increased non-linear response, a 180-
m fibre with a 130-m tapered end section supported spectral coverage from 470
to 1750 nm pumped by 40-W CW at 1060 nm; however, care should be taken in
generating high power visible in Germania-doped fibres as photo-darkening and
power roll-off can take place through colour centre generation. In a pure silica PCF,
spectral extension down to 600 nm has been observed in a continuum extending
to 1900 nm, with spectral power densities of ~3 mW/nm in the visible and up
to 50 mW/nm in the infrared, by pumping a 50-m fibre with a zero dispersion at
1050 nm with a 400-W continuous-wave Yb fibre laser (Travers et al., 2008); Figure
5.9 shows a representative spectrum. In fibres that supported infrared generation
only, through shifting the position of the dispersion zero to shorter wavelengths
relative to the pump wavelength, up to 100 mW/nm in the IR was reported, using
the same pumping scheme (Travers et al., 2008).

The role of noise on the pump has been recognised, and supercontinuum
generation has been investigated using amplified low coherence diode pumps
(Abeeluck & Headley, 2004), while de Matos et al. (2004) quantified the noise
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performance when using either a fibre laser or high-power amplified spontaneous
emission source. Martin-Lopez et al. (2006) experimentally studied the effect of
Raman amplification of three signal sources of differing coherence using three fibre-
based seed sources of spectral widths, 0.02, 0.22 nm and approximately 1 nm,
and demonstrated that the intermediate bandwidth source acquired the greatest
spectral broadening. Travers (2010a) proposed that there was an optimum degree
of pump incoherence for supercontinuum formation based on the relative durations
of the coherence time and modulational instability period. Kelleher et al. (2012a)
undertook numerical simulations, and an experimental verification of the evolution
of CW based supercontinuum from modulational instability and characterised the
role of the pump source coherence through the use of an ASE-seeded amplifier
pump scheme which incorporated a tunable wavelength, tunable bandwidth in line
filter to control the pump coherence. A clear optimum bandwidth was demonstrated.
This can be very simply understood in terms of the temporal characteristics of the
noise signals associated with a given pump linewidth. A narrow linewidth would
infer relatively long fluctuations in time. Consequently, the length scale for these
temporal structures to evolve into solitons is long, and long pulse structures would
be generated that would not efficiently self-frequency shift. At the other extreme, the
inverse of exceedingly broad spectral pump bandwidths would infer ultrashort pulse
durations, and the power requirement for soliton evolution would be exceedingly
high. Empirically, it can be argued that an intermediate pump bandwidth would
be optimum for maximum spectral broadening of a CW-pumped supercontinuum,
as was theoretically proposed (Travers, 2010a) and experimentally verified by
Kelleher et al. (2012a). It was subsequently understood that in the intermediate
pump bandwidth regime (and hence intermediate coherence time), the individual
temporal fluctuations can correspond to high-order solitons which undergo their
own soliton fission dynamics (Kelleher et al. 2012b).

5.14 Modelling of CW-Pumped Supercontinua

The physics of CW supercontinuum generation is completely contained in the
GNLE or UPPE (i.e. Eq. (5.3) or (5.4)); however, the issue arises of how to model
what is essentially an infinite interaction between the CW pump source and the fibre.
The solution adopted by all reports in the literature is simply to take a sufficiently
long snapshot of the field and follow its propagation through the fibre. For most
CW supercontinuum regimes, the MI dynamics occur on timescales less than 10 ps,
and so snapshots of the order of 200 ps are common. In addition, averaging of an
ensemble of simulations is required to obtain full agreement with experiment.

The generated continua under CW pumping exhibit a very smooth spectral
profile, which results from the integration of numerous exceedingly noisy spectra.
In the soliton-Raman process that plays a major role in the CW supercontinuum
generation process, solitons are stochastically generated with a broad distribution
of spectral and temporal parameters from phase and amplitude perturbations on the
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pump. The usual CW pump sources are not single frequency, but instead have a
finite bandwidth (of ~1 nm) and hence contain temporal and spectral phase and
intensity fluctuations. Improvements in the modelling of noise both in the pump
laser and in the continuum generation system have led to excellent agreement
between theoretical prediction and experimental observation (Mussot et al., 2004,
2007, 2009; Vanholsbeeck et al., 2005; Kobtsev & Smirnov, 2005; Travers et al.,
2008; Cumberland et al., 2008a, b; Travers, 2010a, b; Frosz et al., 2006; Frosz, 2010;
Kelleher et al., 2012a). In what follows we use the technique described in Travers
(2010a) and Kelleher et al. (2012a) to model a 50-W CW laser source with 1-nm
spectral width. The initial spectral and temporal intensity are shown in the z = 0 m
slice of the upper panels of Fig. 5.10b and c. The temporal intensity fluctuations on
the scale of ~200 W are apparent.

The lower panels of Fig. 5.10b and c show how these intensity fluctuations break
up due to MI, and the upper panels show the evolution towards a very flat and
broad supercontinuum over 100 m of propagation. The spectrogram visualisation in
Fig. 5.10a clearly shows how the red portion of the spectrum consists of a soliton-
Raman continuum of randomly distributed solitons in both time and frequency—a
phenomenon that has been described as a soliton gas (Travers, 2009). The short-
wavelength part is much weaker in temporal intensity (but much more uniform, so
time integration yields similar spectral power as seen in the upper panels of Fig.
5.10c), and consists of dispersive waves. Similar to the previous cases, some of the
dispersive waves are temporally localised and are associated with intense solitons
on the long-wavelength side, i.e. they are trapped and this enhances their blue shift.
One particular soliton, individually visible in the upper panels of Fig. 5.10c, has
very strongly red-shifted, and can be regarded as a rogue soliton under the original
definition.

5.15 Extending Wavelength Operation

Since Lin and Stolen’s first report (Lin & Stolen, 1976) of supercontinuum
generation in an optical fibre, the source has been developed into a compact, highly
efficient device that has been a commercial success, deployed in the laboratory
and in the field in applications ranging from medical imaging to remote sensing.
With a full understanding of the contributing processes and sophisticated numerical
modelling, the operation of the source can be accurately predicted, exhibiting
remarkable agreement between theory and experiment. However, the majority
of commercial sources are based on silica fibres, consequently limiting spectral
coverage from about 320 to 2400 nm. Over the past decade, numerous studies
have been undertaken to extend this range. Beyond 2-μm germanium-based fibres
exhibit lower loss than silica, and they also exhibit nearly an order of magnitude
greater Raman gain coefficient. Consequently, as self-Raman gain shifting solitons
provide the mechanism for long-wavelength extension, shorter fibre lengths can be
deployed with good efficiency. Zhang et al. (2013) employed a compact, chirped
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Fig. 5.10 Numerical simulation of supercontinuum generation when pumping a PCF with a zero
dispersion wavelength at 1040 nm and a non-linear coefficient of 10 W−1 km−1 with a 50-W
CW laser with 1-nm bandwidth. (a) XFROG spectrogram at 80-m propagation; (b) temporal slices
through propagation; (c) corresponding spectral slices. The lower parts of (b, c) are zoomed in to
show detailed modulational instability dynamics
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pulse, amplified mode-locked Tm fibre laser system generating 850-fs, 1945-nm
pulses with a peak power of 12 kW to generate a continuum from 1945 to 3000 nm in
a 3.4-m-long highly germanium-doped silica fibre. However, to extend operation in
the infrared, emphasis has been placed on the operation of new materials, primarily
the soft glasses, while in the UV, sources have exploited gas-filled hollow-core
photonic crystal fibres.

5.16 Infrared Supercontinuum Sources

Many of the non-silica glasses—although they currently have substantially lower-
power handling capability, thus difficult to handle and may be hydroscopic—are
attractive in that they exhibit substantially higher non-linear coefficients mean-
ing that operational lengths can be shortened and pump power levels can be
reduced while achieving extensive wavelength operation. In addition, the shorter
lengths required often means that operational fibre lengths may be manufactured
through extrusion (Kumar et al. (2002)), simplifying the overall manufacturing
process. Mid-infrared supercontinuum generation in microstructured optical fibres
constructed from an array of various glass types has been reviewed by Price et al.
(2007).

A diode-pumped, passively mode-locked Yb fibre laser, generating 60-fs pulses
with energies up to ~60 pJ in fibre at 1060 nm has been used unamplified, to pump a
highly non-linear, 1.7-μm core SF6 glass PCF, 4 cm long to generate an octave
spanning continuum from 600 to 1450 nm, clearly demonstrating the potential
for compact, low-power supercontinuum operation (Hundertmark et al., 2009). In
addition, a tellurite fibre, also manufactured by extrusion (Kumar et al., 2003) only
8 mm long, with a zero dispersion wavelength at 1380 nm, was pumped by the
100-fs, 1.9-nJ pulses from a Ti-sapphire-pumped optical parametric oscillator at
1550 nm to generate a continuum that extended from 789 to 4870 nm (Domachuk
et al., 2008).

The manufacture of conventionally structured fluoride fibres is a relatively well-
established technology. Despite the hydroscopic nature of the material, the broad
material transmission window from 200 to 8000 nm makes ZBLAN-based fluo-
ride an attractive fibre-based supercontinuum source for mid-infrared generation,
although the waveguide loss contribution would contribute to a significant reduction
on the long-wavelength edge. Initially pumped by a mode-locked Er fibre laser at
1550 nm, Hagen et al. (2006) reported a modest average power supercontinuum
of 5 mW in the range of 1800–3400 nm, although the continuum did also extend
down to 1400 nm. The technique was expanded upon by Xia et al. (2007, 2009)
to achieve in excess of 10-W average power covering the range 800–4000 nm
in a conventionally structured 7-m-long fluoride fibre, pumped by a pulsed 1542-
nm semiconductor DFB laser-seeded Er-MOPFA system. Heidt et al. (2013) used
a gain-switched 2-μm laser diode and a Tm fibre amplifier chain, generating 33-
ps pulses with 3.5-μJ pulse energy to pump a 7-m-long step-index ZBLAN fibre,
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to generate a continuum that extended from 750 to 4000 nm. Over three octaves
generation was reported by Qin et al. (2009a, b), from 350 to 3850 nm in a 2.5-
cm-long step-index fluoride fibre pumped by the 180-fs, 1-kHz, 20-mW average
power pulses at 1450 nm from a Ti-sapphire-pumped OPO. Interestingly, a 2.5-
cm silica fibre pumped by the same pulse source generated a continuum extending
from approximately 360–3000 nm. In a similar experimental arrangement, using
a 2-cm-long fluoride fibre sample and with peak pump powers of 50 MW, the
supercontinuum covered the spectral range 350–6280 nm (Qin et al., 2009a, b).
Recently, Jiang et al. (2013) have reported the successful fabrication of ZBLAN PCF
with submicron features by fibre drawing, rather than by extrusion. Consequently,
non-linear infrared generation is possible at substantially lower pump power in the
submicron structures, and this was demonstrated by continuum generation from 400
to about 2400 nm in a 4.3-cm-long fibre, using nJ pumping of 140-fs pulses around
1040 nm.

Chalcogenide glass PCF structures have also been produced (Monro et al.,
2000) for non-linear application in the 2–12-μm range. Using the 100-fs pulses at
2500 nm from an optical parametric amplifier pump system, Sanghera et al. (2009)
have observed supercontinuum generation from 2000 to 3600 nm in conventionally
structured 7-μm cored As-S fibre and from about 2000–3200 nm in a 10-μm
cored selenide-based PCF. Arsenic selenide chalcogenide nanowires with non-linear
coefficients up to 80,000 times that of standard single-mode silica-based fibre, with
an effective mode area of 0.48 μm2, have enabled low-threshold supercontinuum
generation, pumped at a peak power of 7.8 W at 1550 nm and extending from about
1100–1750 m (Yeom et al., 2008). Using a suspended 3.5-μm core geometry AsSe
fibre, 1.7 m long, with a zero dispersion at 3.15 μm, up to four cascaded Raman
orders, which merged into a continuum extending to 2450 nm, were observed for
a peak power of only 19 W from a gain-switched Tm fibre laser around 2 μm
(Duhant et al., 2011). Møller et al. (2014) obtained a supercontinuum spanning
from 2 to 6 μm in a 9-cm suspended core chalcogenide fibre by pumping close
to the fibre zero dispersion wavelength at 3.5 μm with an OPA system. Extension
to beyond 13 μm in a step-index chalcogenide fibre, pumped using a difference-
frequency generation source, was recently realised by Petersen et al. (2014). The
use of highly non-linear chalcogenide-based materials and submicron structures has
enabled impressive spectral coverage through non-linear interaction at exceedingly
low peak powers. The problem that arises in the handling and robustness of the
submicron waveguides has been elegantly solved by Granzow et al. (2013) through
the incorporation of arsenic trisulphide nano-spikes encapsulated in a fused silica
cladding, providing a 2-mm-long uniform core of 1-μm diameter. When pumped
by the 65-fs pulses from a Tm fibre laser with pulse energies as low as 18 pJ
around 2 μm, the generated continuum extended to almost 4 μm. Such compact and
highly efficient structures provide a clear route to the development of mid-infrared
wavelength versatile sources.
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5.17 Ultraviolet Supercontinuum Sources

Short-wavelength generation in silica PCF has been limited to 280 nm (Stark et
al., 2012b), mainly due to glass damage and the large dispersion in the ultraviolet,
prohibiting continued group velocity matching of the dispersive wave component of
the supercontinuum spectra with the infrared soliton components. In one exceptional
result, the use of recently realised ZBLAN PCF, pumped by a low-cost, 7-kW, 140-fs
source at 1042 nm, enabled the generation of an extraordinary flat supercontinuum
extending down to 200 nm, without any signs of glass degradation (Jiang et al.,
2015).

An alternative way to expand spectral coverage beyond glass transmission
windows (and damage thresholds) is to remove the glass from the core of the
fibre. Two types of photonic crystal fibres have been particularly successful: those
based on the use of a photonic band gap (Cregan et al., 1999) and those based on
a kagomé-like anti-resonant structure (Benabid et al., 2002; Couny et al., 2006).
While the former has been used for intense soliton propagation (Ouzounov et al.,
2003; Fedotov et al., 2007), soliton-effect compression (Ouzounov et al., 2005) and
soliton self-frequency shift (Gérôme et al., 2008), and also for many other non-linear
optical experiments including stimulated Raman scattering (Benabid et al., 2004;
Abdolvand et al., 2009), and experiments with alkali vapours (Ghosh et al., 2006),
their limited guidance bandwidth and strong dispersion make them unsuitable for
supercontinuum applications. In contrast, anti-resonant guiding PCF has broadband
low-loss guidance, even with small hollow-core diameters (10–50 μm) (Benabid et
al., 2002; Im et al., 2009), and the waveguide dispersion of these relatively small
cores is anomalous with low dispersion slope, and can be readily balanced by the
normal dispersion of a filling gas at pressures of a few atmospheres, enabling easy
tuning of the zero dispersion wavelength (Im et al., 2009; Nold et al., 2010). The
resulting fibre system can have weak anomalous dispersion in the visible spectral
region, a zero dispersion in the near-UV, a high damage threshold and a non-linearity
sufficient to create low-order optical solitons (N = 1–10) from ultrashort (~35 fs)
μJ-scale pump pulses at 800 nm (Travers et al., 2011). Guidance in these types of
fibres, or the very similar negative-curvature fibres, has been demonstrated from the
mid-infrared (Yu & Knight, 2013) down to the VUV (Belli et al., 2015; Ermolov
et al., 2015). A wide range of soliton and other non-linear dynamics have been
observed in this system, and have been reviewed by Travers et al. (2011) and Russell
et al. (2014). These include Raman frequency comb generation (Benabid et al.,
2002; Abdolvand et al., 2012), UV dispersive wave emission (Joly et al., 2011; Mak
et al., 2013a), soliton-plasma interactions (Hölzer et al., 2011), pulse compression
(Mak et al., 2013b; Emaury et al., 2013), modulational instability (Tani et al., 2013)
and non-linear multimode effects (Tani et al., 2014).

As described in the previous sections, pumping with high-order solitons in the
anomalous dispersion region can lead to supercontinuum formation. Both long
pump pulse, MI-driven supercontinuum dynamics, and short pulse soliton-fission-
driven dynamics have been demonstrated in gas-filled kagomé PCF. Tani et al.
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(2013) showed that by pumping an 18-μm-diameter kagomé PCF filled with 10-
bar Xe with 5-μJ, 500-fs pulses at 800-nm, high-order solitons (~N > 100) are
achievable, and the resulting modulational instability-based dynamics leads to the
break-up of the pump pulse. A high-energy supercontinuum spanning from 320 to
1200 nm was observed after 20 cm.

Several routes to extending the supercontinuum to the vacuum UV have recently
been demonstrated (Belli et al., 2015; Ermolov et al., 2015; Travers et al., 2014). In
the first result, Belli et al. (2015) showed that 15 cm of 28-μm-diameter kagomé
PCF filled with five bar of hydrogen broadened a 2.5-μJ, 35-fs pump pulse at
800 nm into a supercontinuum spanning from 124 to 1200 nm, through Kerr-
and Raman-induced self-steepening and strong impulsive rotational and vibrational
Raman scattering of dispersive waves. Subsequently, the use of 28-bar He in a
similar fibre resulted in a supercontinuum spanning from 110 to over 200 nm with
several hundred nanojoules of energy per shot (Ermolov et al., 2015). In that case,
the primary mechanism was dispersive wave emission emerging from the fission
of the self-compressed, high-order soliton pump pulse. The continuum was formed
by repeated dispersive wave emission and broadening by ionisation-driven blue-
shifting solitons.

5.18 Developments Since 2015

When the manuscript of this chapter in the third edition of The Supercontinuum
Laser Source was originally prepared, if reference was made to an academic search
engine to quantify the occurrences of the words “fibre supercontinuum” in the titles
of published research papers, around 100–120 articles per year would have been
recovered. Since publication, similarly identified titles have plateaued around this
figure for the past 5 years. The supercontinuum source, based upon the relatively
standard application of a solid-core, silica-based, photonic crystal fibre, pumped by
either a bulk, solid-state laser or a fibre laser has become a considerable commercial
success, with the latter format allowing the convenience and efficiency of all-fibre
integration, while more than 20 companies offer devices with diverse specification in
average power level, pulse repetition rate and spectral coverage. Typically in silica,
commercial devices operating over a range of pulse formats cover the spectral range
400 nm–2400 nm with maximum average output power in the range of 5–10 W,
with approximately 30% of the average power extending over the visible range.

As has been described above, the processes contributing to supercontinuum
generation in fibre were very well established at the time of writing the third
edition of this book, and the theoretical modelling and prediction of supercontinuum
generation in fibre under the complete range of pump pulse conditions, from CW
through to femtosecond, agreed exceptionally well with experimental measurement.
In addition, the reported spectral coverage was that of the complete window of
transmission of silica, consequently, leaving the average power in the supercon-
tinuum as the only parameter potentially open to scaling in the interim period. In
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2011a, b, Hu et al. had reported the generation of a supercontinuum covering the
range from about 500 nm to 1700 nm with an average power of 49.8 W. An all-
fibre MOPFA (master oscillator power fibre amplifier) integrated configuration had
been used, incorporating a passively mode-locked Yb fibre laser generating 350-
ps pulses at 4-MHz repetition rate at 1053.3 nm as a seed and a three-stage Yb
fibre amplifier system which could deliver up to 100.3 W to pump a 5 m length
of commercially available photonic crystal fibre with a nominal zero dispersion
wavelength of 1040 nm. In a similar configuration, a 13-ps seed pulse at 1064 nm
was amplified via a four-stage amplifier to an average power of 120 W (~19-kW
peak power), with the all-fibre configuration terminated by a 2.6-m length of PCF
with a mode field diameter of 6 μm and a zero dispersion wavelength at 1120 nm.
Up to 92.5 W of average power was achieved in a supercontinuum extending
from about 700 nm to over 1700 nm (Chen et al., 2013a), and the same authors
subsequently reported breaking of the 100-W average power barrier (Chen et al.,
2013b).

A combination of extreme average power and supercontinuum bandwidth has
been achieved by combining the latest high-power pump laser configurations with
tapered PCF (Zhang et al., 2021). A supercontinuum spanning from 390 nm to
2400 nm with over 314 W of output power was demonstrated by making use of a
long-tapered PCF pumped with 75-ps pulses and 942-W average power. The spectral
range up-converted from the pump, below 960 nm, contained over 36% of the output
power, or 113.5 W, and exhibited a 16-dB spectral flatness.

With picosecond pulse seeds and extended multistage fibre amplifier lengths,
extreme spectral broadening, caused by self-phase modulation, stimulated Raman
scattering, soliton and associated soliton self-effects, can readily lead to super-
continuum generation in the final amplifier stages themselves, negating in some
cases the need for any additional external fibre (Lewis et al., 1998). In an all-
fibre-integrated scheme, using nanosecond seed pulses from a stretched pulse
mode-locked fibre laser and a three-stage Yb-fibre amplifier configuration, with the
final double-stage, double-clad Yb amplifier, 3 m long and with a core diameter
of 30 microns, up to 70 W average power was observed in a soliton-Raman
supercontinuum extending from the seed wavelength of 1060 nm to beyond 1700 nm
(Song et al., 2012a). The authors subsequently power scaled the system to achieve
an average power of 177.6 W in a similar supercontinuum (Song et al., 2012b). By
reducing the restrictions of gain saturation through replacing the final stage amplifier
with a 17-m-long, 25-μm core, 400-μm double-clad amplifier and with a final stage
pump power of up to 360 W, a supercontinuum extending from 1000 nm to beyond
2200 nm was generated in this final stage with an average output power of 200 W
(Song et al., 2013).

Average power scaling of all-fibre-integrated supercontinuum sources has pri-
marily concentrated on the use of picosecond Yb-MOPFA configurations, where
several stages of amplification incorporated final stage amplifiers with core diame-
ters in the 10–30-μm range. Consequent mode matching problems have restricted
achievable average powers and limited the coupling efficiency to the single, solid-
core PCFs, which have typical diameters of the order of 5 μm, necessary to
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have zero dispersions in the region of the Yb pump lasers and explaining also
why continuum generation in the fibre amplifier themselves was attractive. With
femtosecond pump schemes, however, it had been proposed that multicore PCFs
because of their large effective mode area offered a very attractive solution to the
power scaling question. Pumping with an average power of 16 W from a grating
compressed, 80-fs, 49-MHz pulse source at 1038 nm, a supercontinuum extending
from 500nm to 1700nm had been generated in a 5-cm length of seven-core PCF
(Fang et al., 2012), where the fibre had a 2.62-μm pitch and an air hole size of
1.43 μm, enabling a zero dispersion around 1038 nm. With 160-picosecond pulse
pumping at 1060 nm and an average power of 4.5 W from a gain-switched fibre laser
scheme, a supercontinuum extending from 500 nm to 1700 mm was produced with
an average output power of 2.44 W from a 35-m-long double-clad seven-core PCF
(Huang et al., 2013). Power scaling subsequently took place, increasing the average
output power to 42.3 W in a 720 nm–1700-nm continuum in a 20-m-long seven-
core PCF with a zero dispersion at 1115 nm, where the process cascaded through
the first Stokes generation from a 20-ps, fully fibre-integrated four-amplifier stage
Yb MOPFA capable of delivering 56 W at 480 MHz (Wei et al., 2013). Following
that, 104.2 W was recorded, from 750 nm to 1700 nm pumped by 141.6 W (Chen et
al. 2014a) and 116 W, 800 nm–1650 nm at 1.9 GHz (Chen et al. 2014b).

With output powers from single small core PCFs reaching practical limits, the
spatial combining of the outputs of several commercial supercontinuum sources
was investigated by the commercial company Fianium (Hooper et al., 2015). The
outputs from seven supercontinua from individual 20-W Yb lasers were combined
into a single multimode fibre. The authors directed their efforts primarily to the
visible range, and the combiner-filter configuration was designed to transmit only
wavelengths below 950 nm. Up to 26-W average power was demonstrated over the
range 450 nm–950 nm, with a peak spectral density of 75 mW/nm around 700 nm,
dropping to about 50 mW/nm at 500 nm. The authors also proposed a moderately
simple extension to the technique to allow scaling of the average power in the
supercontinuum to the kilowatt level, which at time of writing has yet to be realised.

Power scaling of CW-pumped supercontinua has also been demonstrated by
enhanced Raman gain through collecting back scattered Raman signals from two
CW Yb fibre laser systems operating at 1070 nm and 1117 nm and relaunching it
along with the pumps to enhance the Raman gain process (Arun et al., 2020). A
continuum extending from 850 nm to 1900 nm was generated in a 1-km length of
standard telecom fibre, with an average power of 72 W and a spectral power density
of greater than 100 mW/nm from 1350 nm–1900 nm.

With seven-core PCF, researchers initially found it difficult to maintain the
balance between an appropriate dispersion curve to allow spectral extension to the
UV/blue and the in-phase supermode output. Through pumping at 800 nm, some
relaxation was placed on the requirements, and by pumping with 80-fs pulses at
10-kHz repetition rate from a Ti-sapphire laser system and average powers of a few
10s of mW, operation down to 350 nm was observed; however, end face damage of
the fibre was reported (Wang et al., 2018). Impressive power scaling in the visible
spectral region, pumped by a Yb-amplified source at 1016 nm, was reported (Qi
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et al., 2018). A 120-ps, 27-MHz source at 1016 nm was frequency quadrupled and
amplified in a three-stage Yb fibre amplifier to an average power of 114 W, which
was coupled into a seven-core PCF, designed to enhance visible generation, with an
air hole pitch of 3.9 μm and an air hole diameter to pitch ratio of 0.85 μm. The
zero dispersion wavelength of the in-phase supermode was at 991 nm, but quite
intricate mode matching of the pump laser to PCF was required. However, up to
80-W average power extending from 350 nm to 2400 nm was reported, with up to
108 mW/nm at 580 nm recorded and over 50 mW/nm across the complete visible
spectrum.

Pumping seven-core PCF in the visible has also been investigated as a mechanism
to enhance generated visible supercontinua. A 1030-nm Yb fibre laser generating 2-
ns pulses with 60-μJ pulse energy at 25 kHz was frequency doubled in LBO to give
20-μJ pulses, with the visible 515-nm radiation coupled into a seven-core, 6-m-
long PCF. As the fibre exhibited a zero dispersion around 840 nm, supercontinuum
generation proceeded through numerous cascaded orders of stimulated Raman
scattering. The supercontinuum extended from 400 nm to 900 nm with an output
energy of 4.2 μJ, beyond which, if the pump power was increased, facet damage
to the PCF occurred. The authors also investigated generation in a tapered 7-core
structure, and up to 15 orders of Raman scattering were observed (Bi et al., 2019).

As would be expected, numerical modelling of supercontinuum generation in
seven-core PCF has shown that the generated spectra are very sensitive to the spac-
ing between the cores, and it has been shown that larger core separations generally
gave rise to broader spectra (Antikainen & Agrawal, 2019), with soliton formation
playing the most important role in all cases. Soliton supermode transitions, inter-
supermode four-wave mixing and inter-supermode dispersive wave generation were
shown by the authors to be the key mechanisms in the overall supercontinuum
generation process.

An alternative route to high average power or high pulse energy supercontinuum
generation has been investigated through the use of multimode fibres and in
particular graded index fibres. However, in the linear regime, mode beating and
mixing give rise to speckled outputs, while output beam intensity profiles are also
critically dependent on the launch condition. However, it has been shown that with
increased intensity, the Kerr effect can negate the effects of linear mixing, and
clean, multimode outputs with Gaussian-like profiles can be achieved, though the
process which is termed Kerr self-cleaning (Krupa et al., 2016). Fortuitously, the
Kerr self-cleaning process occurs at power levels that are more than an order of
magnitude lower than the critical power for catastrophic self-focussing in graded
index multimode fibres. Using an amplified 1064-nm Nd:YAG microchip laser with
900-ps pulses at 30 kHz and average in fibre powers at the watt level to pump various
lengths of 52-μm core diameter graded index multimode fibre, supercontinua
covering the range from about 500 nm to 2500 nm were generated, with Gaussian-
like far-field profiles at the output. In a similar configuration, a 28.5-m-long graded
index fibre with a 50-μm core diameter, pumped by 95-μJ, 400-ps pulses at 500-
Hz repetition rate supported the generation of supercontinua extending from below
450 nm to 2400 nm, with high-quality mode profiles and the absence of speckle,



5 Fibre-Based Supercontinuum 275

while spectral enhancement of regions of the spectra could be enabled through
varying the launch condition (Lopez-Galmiche et al., 2016).

With the proliferation of commercial silica fibre-based supercontinuum sources,
the reports of application have significantly increased over the past 5 years.
One such area is that of optical coherence tomography (OCT), where white
light interferometry is utilised to create 3-D images, primarily of biomedical
specimens. As the axial resolution is inversely proportional to the bandwidth of
the applied source, the high average power, fibre-based supercontinuum source,
allowing central wavelength and bandwidth selectivity, was initially an attractive
source; however, noise considerations also play a vitally important role in the
applicability of these sources. It had long been realised that soliton Raman-based
continua were inherently noisy (Gouveia-Neto et al., 1987, 1988; Keller et al.,
1989). Since the vast majority of commercial supercontinuum sources are based
upon the amplification of noise-like structures and non-linear soliton effects such
as self-Raman interaction, the sources are inherently noisy and consequently can
be problematic in application to OCT. Through avoiding soliton operation and
operating in the normal dispersion regime, many of the effects can be mitigated
(Heidt, 2010), and in recent years extended studies have been carried out on the
amplification of such supercontinua and its application and impact on photonic
applications (Sierro & Heidt, 2020; Heidt et al., 2020), while direct comparison of
the noise performance of femtosecond-pumped supercontinua in the normal and the
anomalous regimes has been undertaken (Klimczak et al., 2016) with two orders of
magnitude signal to noise improvement experimentally reported through deploying
the all-normal dispersion supercontinuum platform. All-normal dispersion photonic
crystal fibres, with flattened and low dispersion in the region 1400 nm–1800 nm for
pumping in the 1550-nm window with erbium fibre laser systems, have been realised
for ultra-low noise supercontinuum generation (Rao et al., 2019). Polarisation
noise, via polarisation modulational instability, however, has been predicted and
demonstrated experimentally to decrease the pump pulse durations and the fibre
lengths at which coherence in all-normal dispersion, femtosecond-pumped systems
is degraded (Gonzalo et al., 2018). With longer fibre lengths and normally dispersive
fibre, stimulated Raman scattering has also been shown to play an important role
in degrading the coherence of continua, particularly with picosecond pumping
(Gonzalo & Bang, 2018).

In the characterisation of the noise of supercontinuum sources for application in
OCT, it was previously assumed that the source was thermal or pseudo-thermal.
It has been shown (Jensen et al., 2019) that the excess photon noise cannot be
generated by a modification of the established formula. They derived a general
expression for the excess noise based on measurements of the noise and showed that
it was superior in predicting OCT noise figures than the established method. They
showed that the excess noise could be reduced by increasing the spectral integration
time or by increasing the repetition rate of the supercontinuum source. Two pump
schemes were investigated in a comparative study, one employing a commercial
supercontinuum source and the other a bespoke all-normal dispersion supercontin-
uum source, with the latter demonstrating superior noise floor performance. It has
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also been shown numerically that the relative intensity noise of a supercontinuum
source pumped in the anomalous dispersion regime where multi-soliton effects are
dominant and particular in picosecond-pumped systems can be reduced by more
than a factor of two by so-called undertapering, where the host fibre is tapered to
a diameter that is smaller than the diameter that leads to the shortest blue edge of
the continuum. Such a process effectively limits the red spectral extent resulting
from soliton self-interaction (the soliton self-frequency shift) with large numbers of
solitons present effectively averaging (Engelsholm & Bang, 2019).

With the extensive commercialisation of silica-based supercontinuum sources
and the relatively complete theoretical understanding of the supercontinuum gen-
eration processes under the extensive array of pump pulse formats together with
significant power scaling and characterisation undertaken, in the past few years
researchers have concentrated their efforts more to extending the sources into new
spectral regions based on various glass hosts and investigate the power scaling of
these in order to extend the applications palette and commercial potential.

In silica-based fibres, transmission loss effectively limits the upper extent of
generated supercontinua to around 2200 nm–2400 nm. Above 2200-nm, germanium
dioxide-based fibres exhibit a lower loss than silica and a phonon energy of around
820 cm-1, while the non-linear coefficient of germania is about five times that of
silica; consequently its exploitation as a host for supercontinuum generation above
2000 nm has been targeted. However, the increased refractive index of germania
does lead to reduced core diameters and increased problems for integration with
pump systems. Using a Er-Yb MOPFA, 1-ns pulsed pump source around 1550 nm,
capable of delivering up to 34 W at 10 MHz, two germania-doped fibres of
different doping level (74% and 56%) were investigated. Non-linearity in the Er-
Yb amplifiers of the MOPFA extended the pump spectra to beyond 2200 nm and
in a 0.9-m length of the 74% doped, 3.5-μm core diameter fibre the generated
supercontinuum extended from around 700 nm–3200 nm at an average power of
1.44 W. With the larger core 9-μm-diameter fibre (56% doping), up to 4.9-W
average power was achieved extending from 800 nm to 2700 nm (Jain et al., 2016).
A supercontinuum source (1500 nm–2300 nm), derived from a Yb-Er MOPFA,
was also used after amplification in a Tm fibre amplifier to provide a broadband
pump source, ~1900 nm–2700 nm to pump a 3.5-μm pure germania-cored fibre,
12 cm long in a fully fibre-integrated configuration, to allow spectral coverage from
1900 nm to 3600 nm at a repetition rate of 2 MHz with an average power of 6.12 W
(Yin et al., 2016). Up to 30 W average power was obtained by the same authors
(Yin et al., 2018), in a supercontinuum extending from ~2000 nm to 3000 nm
generated in a 8-μm pure Ge-cored fibre, 1 m long, pumped by chirped, several
hundred picosecond pulses from a Tm MOPFA capable of delivering an average
pump power of ~130 W.

For further spectral extension into the important MIR region, fluoride fibres such
as ZBLAN have been widely investigated. Typically, the long-wavelength edge
of generated supercontinua does not extend significantly beyond 4.3 μm (Yang
et al., 2014), although up to 6.3 μm has been recorded by utilizing 2-cm fibre
lengths pumped by 50-MW pulses at 1450 nm (Qin et al., 2009) and a maximum
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average output power of 24.3 W has been reported (Liu et al., 2014). However,
ZBLAN fibres can be quite difficult to work with. Because of their relatively low
melting temperature, ZBLAN fibres can become distorted at high average power
pump levels, misaligning in schemes where bulk optical coupling is involved or
the ingression of OH- can ultimately lead to the damage of end facets, where
high average power pumps are employed. Improved robustness has been achieved
through an all-fibre fusion-spliced geometry with just over 10-W average power
obtained in a supercontinuum that extended from around 1.9 μm to 4.1 μm (Zheng
et al., 2016), where a picosecond Tm-MOPFA pump scheme was integrated with a
8-m-long single-mode ZBLAN passive fibre. In an alternative all-fibre-integrated
approach, a nanosecond pulse from a distributed feedback laser was amplified
in an Yb-Er MOPFA configuration, generating a soliton-Raman supercontinuum
in a single-mode fibre, which was amplified in a high-power Tm amplifier, with
the resulting pulses around 2.0 μm used to pump a 12-m length of 9-μm cored
ZBLAN fibre. As expected, a relatively flat 15.2-W average power supercontinuum
extending from 1.9 μm to 4.2 μm was achieved, with more than 8-W average power
at wavelengths above 3 μm and 1 W average from 3.8 μm to 4.2 μm (Yin et al.,
2017).

For supercontinuum generation at high average pump powers, photodegradation
of ZBLAN fluoride fibres and chemical instability has resulted in alternative
fluoride-based glasses being investigated as alternative host material in the spectral
window 0.4 μm–5 μm. A 60-cm-long fluorotellurite fibre, with a 6.8-μm core
diameter manufactured by the rod in tube technique, has been pumped by the 200-
fs pulses from a Tm-amplified system and delivering an average power of 19.6 W
at a 50-MHz repetition rate, generating a 10.4-W average power supercontinuum
extending from 947 nm to 3,934 nm (Yao et al., 2018). Researchers from the same
laboratory have recently used a multistage thulium fibre amplifier system to amplify
the femtosecond pulses from a soliton Raman supercontinuum to a maximum
average power of 46.7 W, with a broad spectrum extending from 1.93 to 2.5 μm
at a 50-MHz repetition rate, which were used to pump a 0.6-m-long fluorotellurite
fibre, with an 11-μm core, generating a supercontinuum extending from 0.93 μm to
3.95 μm at an average power of 22.7 W (Li et al., 2020).

With most practical fibre lengths, fluorozirconate (ZnF4)-based glass fibres
like ZBLAN, the maximum wavelength extent of any generated supercontinuum
is around 4.5 μm, although there are exceptions (see above, Qin et al., 2009a,
b); consequently, in recent years interest has been increasingly directed towards
fluoroindate (InF3) glasses as a very competitive alternative. Fluoroindate is a
low phonon energy glass (maximum frequency ~510 cm-1), which allows high
transparency to about 5 μm. In addition, fluoroindate glasses are relatively robust
and environmentally stable. Researchers at Thorlabs (Salem et al., 2015) have
reported on broadband generation in two lengths (30 cm and 55 cm) of step-index
fluoroindate fibre, with a core diameter of 7 μm employing a novel femtosecond
pump geometry. Commencing with a passively mode-locked, femtosecond Er-fibre
laser at 1560-nm and 50-MHz repetition rate, the generated pulses were shifted in
a highly non-linear fibre to 1960 nm using self-Raman interaction (the soliton self-
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frequency shift) generating pulses with a 20-nm bandwidth at an average power of
30 mW. These were then amplified in a Tm fibre amplifier to an average power
greater than 500 mW. As a result of self-frequency shifting in the amplifier, more
than 90% of the output energy shifted to a spectral band around 2125 nm and a
maximum average power of 570 mW in dispersion compensated pulses of about
100 fs. Lens coupling was used to excite the fluoroindate fibre. The generated
supercontinua extended from about 1.25 μm to 4.6 μm, with -20 dB bandwidths
of 2250 nm and 2980 nm in the 30- and 55-cm fibres, respectively.

Extension to beyond 5 μm was reported in a 15-m length of InF3 fibre which was
fusion coupled to a Er3+:ZrF4 amplifier which was seeded by picosecond pulses
from an optical parametric generator operating at 2.75 μm (Gauthier et al., 2016).
The seed pulses which were 400 ps long with an average power of 2 mW and a
2-kHz repetition rate were lens coupled into the 1.25-m-long, 16-μm core diameter
double-clad amplifier and for a pump power of about 1 W, output ~20 mW, with
the signal exhibiting significant spectral broadening (beyond 3 m) at the maximum
pump power. The InF3 fibre had a core diameter that varied over its 31-m length,
from 12.5 μm to 14.5 μm. Optimal spectral coverage was achieved with a 15m
long fibre, extending from 2.4 μm to 5.4 μm and an average power of 8.0 mW. As
a result of the increasing material losses above about 5 μm, higher average power
was obtained with shorter lengths of the fluoroindate fibre; however, the generated
supercontinua did not extend beyond 4.7 μm.

Power scaling of infrared supercontinuum generation has been undertaken in a
fluoroindate fibre through the use of a multistage Tm-based MOPFA system (Liang
et al., 2018). The approximate 100-ps pulses from a 1-MHz repetition rate, gain-
switched laser diode operating at 1953 nm with an average power of ~1 μW were
amplified in a four-stage thulium fibre amplifier chain, which ultimately delivered
a maximum average power of 10.34 W in pulses of 35 ps, corresponding to a peak
power of 295 kW. These were lens coupled into a 10-m length of commercially
available indium fluoride fibre, with a zero dispersion wavelength in the region
of 1700 nm and with a loss of ~3 dB/m at 5.5 μm. A total average power of
1.76 W was recorded in a spectrum that extended from around 750 nm–5000 nm,
with approximately 8% of the average power remaining in the pump signal. Above
2900 nm, the average power in the continuum was 0.56 W and with 0.33 W beyond
3500 nm.

Power scaling to the watt level was also reported using the gain-switched 50-ps
pulses at 1 MHz from a 1.55-μm laser diode and amplifying them in a multistage
Yb-Er amplifier configuration to generate a 1.2-μm–2.5-μm supercontinuum in
silica fibre, which was then filtered and amplified in a dual-stage Tm amplifier to an
average power of 2.3 W. The output from the Tm amplifier system was butt coupled
to a 20-m length of InF3 fibre with an efficiency of 56%, generating a watt level
continuum that extended from around 1 μm to 5 μm (Théberge et al., 2018).

The increasing interest in mid-infrared has been driven by the technological need
for simple, wavelength versatile sources for diverse application in spectroscopy
and metrology to allow ease of diagnostics covering the function group region
(2 μm–6 μm) and the so-called molecular fingerprint region (6 μm–20 μm). Of
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the soft glasses that are transparent in these regions, the chalcogenides have been
particularly attractive, because of their ultrawide transmission band and high non-
linear coefficients, although power handing and damage have been major concerns
with chalcogenides. At the time of writing the original chapter, probably the broad
spectral coverage of the supercontinuum 1.4 μm–13.3 μm (Petersen et al., 2014)
represented the benchmark for spectral extent. Since then, however, researchers have
concentrated on simplifying the pump lasers, power scaling and spectrally extending
the operational wavelength regime.

Long-wavelength extension was reported through the use of a custom-designed,
triangular-core graded index, photonic crystal chalcogenide (As2Se3 based) fibre,
designed to have an all-normal dispersion over the complete mid infrared range. A
5-mm length of fibre was pumped by 50-fs pulses, with a peak power of 3.5 kW at
4.1 μm, generating a continuum extending from 2 μm to 15 μm (Saini et al., 2015).
Through co-doping chalcogenide glass with tellurium, the non-linear coefficient
can be enhanced, and supercontinuum generation, from 1.5 μm to 14 μm, was
reported in a 23-cm length of a 70-μm cored (Ge20As20Se15Te45) multimode step-
index fibre, pumped by the 150-fs, 10-mW average power, 1-kHz repetition rate
pulses at 4.5 μm derived through difference-frequency mixing of signal and idler
sources generated by an amplified, mode-locked Ti:Sapphire laser pumped optical
parametric amplifier (Zhao et al. 2016). A similar difference frequency generation
technique was used to derive a 2.5–11 μm tunable source, although solely operated
at 9.8 μm to pump a 3 cm long, hence reduced loss, step-index fibre based on
As2Se3/AsSe2 with a 15-μm core diameter, that gave rise to a single zero dispersion
wavelength around 5.5 μm and a dispersion-flattened profile. For an estimated in-
fibre peak power of ~2.9 MW, the generated supercontinuum covered the range
2.0–15.1 μm (Cheng et al., 2016). As Te-based chalcogenide glass probably exhibits
the highest non-linear refractive index of all glasses, as well as having potential
transparency to 25 μm, a Ge-Te-AgI, 20-μm core fibre with a double-clad structure
was designed and optimised for extended supercontinuum operation (Zhao et al.,
2017). The fibre had a dispersion zero at 10.5 μm, and a 14-cm length was pumped
at 7 μm by the 150-fs, 1-kHz repetition rate pulses from an optical parametric
amplifier. The resultant supercontinuum covered the spectral range 2.0 μm–16 μm
for an average pump power of 11.5 mW. To improve the potential coherence of
the generated supercontinuum, a Ge-As-Se-Te, double-clad structured fibre was
designed to have an all-normal dispersion, so as to remove soliton-like operation
in the generation process (Jiao et al., 2019a). With a core diameter of 20 μm,
the supported fundamental mode exhibited all-normal dispersion from 4 to 15 μm.
Pumped at 5 μm from an OPA, producing 150-fs pulses at 1-kHz repetition rate and
for 30-mW average power in a 22-cm length of fibre, a flatten spectrum covering
3.2 μm–12.1 μm at the -10-dB level and 2 μm–14 μm at the -30-dB mark.

Researchers have also endeavoured to simplify the experimental configurations
for generation in chalcogenides and to lower the peak power requirements. A small,
elliptical-core (4.1 × 4.6 μm), 11-cm fibre, pumped with the relatively low peak
power of 3 kW from 330-fs pulses at 4 μm from an optical parametric amplifier,
supported the generation of a continuum extending from 1.8 μm to 10 μm (Yu
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et al., 2015). A compact source was reported using 400-ps pulses at 2.8 μm
and 2-kHz repetition rate to seed an erbium-doped zirconium fluoride glass fibre
amplifier giving rise to supercontinuum generation, which after filtering extended
from around 3–4.2 μm and was used to pump a 3.5-m length of commercially
available As2Se3 step-index fibre, which was single mode above ~5 μm. The
generated supercontinuum covered the spectral range 3 μm–8 μm with an average
output power of 1.5 mW at 2-kHz repetition rate (Robichaud et al., 2016). In
a clear demonstration of potential simplification and in particular to reduce the
need for large and expensive optical parametric oscillators/amplifiers/generators
as pump sources, a mode-locked Holmium fibre laser was used as the pump for
supercontinuum generation in a tapered As2Se3 fibre (Hudson et al., 2017). The Ho-
Pr co-doped ZBLAN fibre laser was polarisation rotation mode locked to provide
230-fs pulses at 42-MHz repetition rate operating around 2.87 μm with an average
output power of 140 mW. This was coupled into a 14-μm core diameter As2Se3
fibre, which was adiabatically tapered to provide a 5-cm-long, 3-μm-diameter,
power density enhanced interaction zone. This novel and simple configuration
allowed the generation of a continuum extending from 2 to 12 μm with an average
output power of greater than 30 mW. A Kerr-lens mode-locked Cr:ZnSe laser
oscillator, generating 38-fs pulses at 2.4 μm, and a 170-MHz cavity round-trip
frequency, generating an average output power of 150 mW, has also been used to
pump tapered suspended core AsSe fibres. Two tapers were investigated, a 10-mm
interaction region with a 1.98-μm-core diameter and a 5-mm length with a 1.38-μm
core diameter. For 90-mW average power launched into the taper, 35-mW average
output power in a continuum extending from 1.4 μm to 4.2 μm was obtained in
the 10-mm taper (Leonov et al., 2020). Another approach towards pump source
simplification involved the amplification of the 440-fs pulses from an erbium-doped
fluoride fibre laser, mode locked using non-linear polarisation rotation, to provide
a peak power of about 9.5 kW at 2.8 μm at a 57.9-MHz repetition rate. These
pulses were subsequently amplified in a 20-m-long Er-doped zirconium fluoride
fibre amplifier. As a result of the gain and the short duration, the pulses exhibited
a soliton self-frequency shift, which was lens coupled into various commercially
available chalcogenide step-index fibres. Anti-reflection coatings were spluttered on
to the facets of the chalcogenide fibres in order to maximise coupling efficiency and
allowed an average power of 825 mW to be extracted from a continuum extending
from 2.5 μm to 5.0 μm (Robichaud et al., 2020).

In order to allow extended mid-infrared coverage but pumping with more
readily available fibre lasers and less demanding pulse durations, a cascaded
supercontinuum all-fibre-integrated approach has been adopted (Martinez et al.,
2018). The fundamental pump source was a Er-Yb MOPFA scheme, delivering 1.1-
ns, 800-kHz repetition rate pulses at 1.553 μm, which on coupling into 10 m of
standard telecom fibre generated a soliton Raman continuum, 1.5 μm–2.4 μm, with
an average power of 3 W. This was subsequently amplified in a Tm fibre amplifier
to an average power of 14 W covering the spectral range ~1.9 μm–2.5 μm. In
cascade this pumped firstly a 6.5-m-long 7.5-μm core ZBLAN fibre extending the
upper range of the continuum to ~4.5 μm, a 4 m, 9 μm core As2S3 fibre which
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supported extension to ~6 μm and finally into a 4 m, length of 12-μm core As2Se3
fibre which delivered a continuum extending from ~1.6 μm to 11 μm at the -20-dB
level, with an average power of 417 mW. It has been suggested that the cascade of
As2S3 and As2Se3 fibres used above could be replaced by a single iodine-doped
Ge10As22Se68 glass to produce a fibre with a zero dispersion in the region of
4.03 μm as compared to the ZDW of the host glass of ~7 μm (Jiao et al., 2019b).
Characterisation and optimisation of this fibre was undertaken, and it was shown
that a 12-cm length pumped by the 150 fs, 1 kHz repetition rate pulses from an
optical parametric amplifier system at 4 μm, a 1.9 mW average power continuum
~1.5 μm–13 μm was obtained, and when pumped at 8 μm, the continuum extended
from ~1.2 μm to 15.2 μm with and average power of ~0.8 mW.

The chalcogenides offer a versatile platform to extend the wavelength palette
of the fibre-based supercontinuum source, and remarkable progress has been made
since the first edition of this chapter. Various platforms have been investigated and
optimised from conventional step-index profile fibres to suspended core (Møller et
al., 2015), and microstructured fibres (Liu et al., 2016) or tapered fibre structures
(Petersen et al., 2017) with all selectable all-normal dispersion (Zhang et al., 2019);
however, there are many other equally important aspects that also require further
addressing, such as the pump sources, the operational output power levels, the
required coherence as well as host materials themselves, before impact on the
commercial marketplace, although this has already commenced. Some of these
parameters have been addressed in a recent review (Dai et al., 2018).

As addressed in the previous section, extension to the ultraviolet (UV) range
is even more limited by material properties than the infrared. However, UV
supercontinuum sources are of significant importance for applications (Poudel &
Kaminski, 2019). Most solid-core fibre-based supercontinuum sources extend to
the 350 nm–400-nm region, in the usual case, with carefully designed tapered fibres
enabling further extension to around 280 nm (Stark et al., 2012b). These limits arise
due to glass damage and the large dispersion in the UV, prohibiting continued group
velocity matching of the dispersive wave component of the supercontinuum spectra
with the infrared soliton components. Demonstrations of extension in solid-core
fibres below 280 nm are limited to two exceptional results: generation down to
200 nm in ZBLAN as described previously (Jiang et al., 2015) and a brief report
on UV supercontinuum generation to 200 nm in silica fibre by making use of
higher-order modes (Wang et al., 2017), which unfortunately did not discuss any
lifetime issues or elaborate significantly on the mechanism. Further extension to the
UV region requires the use of gas-filled hollow fibres, as discussed in the previous
section. Some notable new results in that context since 2015 include Hosseini et al.
(2018), Smith et al. (2020) and Fu et al. (2021).

Many of these developments are discussed in further detail in the new chapters
of the fourth edition of this book.
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Chapter 6
All-Normal Dispersion Fiber
Supercontinuum: Principles, Design,
and Applications of a Unique White Light
Source

Alexander M. Heidt, Dirk-Mathys Spangenberg, Anupamaa Rampur,
Alexander Hartung, and Hartmut Bartelt

Abstract Ultrafast and low-noise supercontinuum (SC) sources based on
all-normal dispersion (ANDi) fibers are emerging as key-enabling technology
for new applications in spectroscopy, microscopy, and ultrafast photonics. In this
chapter we review the fundamental physics, fiber designs, and applications of this
unique white light source.

Keywords Supercontinuum · All-normal dispersion fibers · Ultrafast photonics ·
Photonic crystal fibers · Specialty optical fibers · Spectroscopy · Advanced
microscopy · Biophotonics · Nonlinear pulse compression · Few-cycle pulses ·
Nonlinear fiber optics · Ultra-low noise lasers · Coherence

6.1 Introduction

Supercontinuum (SC) generation has become a scientific and commercial success
story in the past decade driven by specialty optical fiber technology, in particular the
invention of the photonic crystal fiber (PCF). From optical frequency metrology to
biophotonic imaging—its unique spectral properties have revolutionized dozens of
applications, many of which are described in this book. However, especially noise-
sensitive or ultrafast photonics applications such as time-resolved spectroscopy and
nonlinear pulse compression, which require not only a broad spectral bandwidth but
also a coherent ultrashort pulse in the time domain, have struggled to incorporate
fiber-based SC sources.
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Fig. 6.1 Typical fiber dispersion profiles for two different concepts of SC generation. The
“conventional” PCF has a single zero dispersion wavelength (ZDW) at 780 nm and is intended
for anomalous dispersion pumping around 800 nm. The ANDi PCF has a minimum dispersion
wavelength (MDW) at 1050 nm and is optimized for normal dispersion pumping in the vicinity of
this MDW. Both fiber designs can be adapted for a large range of different pump wavelengths and
can cover the spectral regions from the UV to the mid-IR

The reasons behind this initially surprising lack of adoption are the nonlinear
dynamics in the most commonly used fiber design for SC generation when laser
pulses with sub-picosecond durations are used for pumping. This “conventional”
PCF design has a single zero dispersion wavelength (ZDW) closely matched to
the central wavelength of the pump pulses, which are injected on the anomalous
dispersion side and close to the ZDW. Figure 6.1 shows the group velocity
dispersion (GVD) curve of such a fiber with ZDW at 780 nm. PCFs with sim-
ilar dispersion designs are commercially available (e.g., NKT NL-PM-750) and
frequently employed for pumping with Ti-sapphire femtosecond systems around
800 nm central wavelength. This anomalous dispersion pumping leads to rich
soliton-driven nonlinear dynamics that maximize the obtainable bandwidth for a
given pump source, but also cause the temporal breakup of the injected pump pulse
and high sensitivity to noise (Dudley et al., 2006). Consequently, the generated SCs
have highly complex temporal and spectral profiles that fluctuate from shot to shot
under most pumping conditions, i.e., they have poor temporal coherence properties.
This often plays a precision or resolution-limiting role, e.g., in applications that use
the coherence as content in the acquired signal, such as coherent anti-Stokes Raman
scattering (CARS) microscopy. Fiber-based SC sources using this conventional fiber
design have therefore found only very limited use in ultrafast photonics and noise-
sensitive applications.

It has long been known that temporal pulse breakup and noise amplification can
largely be avoided when pumping occurs entirely in the normal dispersion regime.
In fact, the first ever SC generation in 1970 was observed in the normal dispersion
region of bulk glasses and crystals, as described by Alfano and Shapiro in their
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three seminal papers (Alfano & Shapiro, 1970a, b, c). In their pioneering work,
they reported the formation of filaments with micrometer diameters and centimeter
lengths due to self-focusing of the optical pulse, and could link the spectral
broadening to nonlinear electronic cloud distortion in these filaments leading to self-
phase modulation and four-wave mixing, which are highly deterministic processes
and conserve both coherence and temporal integrity of the input pulse. The filaments
work as a short “natural fiber”: they guide the light with extremely high intensity
over extended lengths and therefore enhance the nonlinear interaction with the
material. A review of SC generation in the normal dispersion region in a variety
of condensed matter and gases can be found in Chaps. 1 and 2. After the realization
of low-loss optical fibers, high intensity light pulses could be guided over much
longer lengths than in bulk materials, which quickly led to the first fiber-based
SC demonstrations (Lin & Stolen, 1976; Lin et al., 1978). In these cases pumping
occurred also in the normal dispersion region, but long nanosecond pump pulse
durations led to the occurrence of noise-seeded Raman scattering and resulted in
the formation of incoherent SCs. When sub-picosecond pump pulses are employed,
normal dispersion pumping of a fiber generates highly coherent SC pulses with
properties very similar to the bulk case, but is associated with significantly reduced
spectral bandwidths compared to anomalous dispersion pumping due to the steep
slope of the dispersion curve and fast temporal broadening of the pump pulse.
Hence, it has attracted only little attention after PCF technology was available.

This situation changed with the introduction of all-normal dispersion (ANDi)
PCFs (Heidt, 2010). They are designed to have a flattened convex profile of normal
GVD with a distinct point where the dispersion is closest to zero (minimum
dispersion wavelength, MDW), but exhibit no ZDW in the region of interest. Figure
6.1 shows the dispersion curve of an ANDi PCF with MDW at 1050 nm. Similar
to the ZDW in the conventional SC generation, the MDW should be located in the
vicinity of the central pump wavelength to obtain maximum spectral broadening.
The design shown here is therefore suited for pumping with ytterbium-doped fiber
laser systems around 1 μm, and a commercial PCF with very similar dispersion
profile is available, whose properties are discussed in more detail in Sect. 6.6.1.
The low and flat dispersion minimizes temporal broadening of the input pulse and
enables the generation of SCs with ultrabroad, more than octave-spanning band-
widths previously only known from anomalous dispersion pumping. At the same
time, the SCs benefit from the typical characteristics of normal dispersion pumping,
such as low-noise sensitivity, preservation of the injected ultrashort pump pulse,
smooth and uniform spectral and temporal profiles, and the absence of spectral
fine structure. Inspired by earlier work on PCFs with two closely spaced ZDWs
(Hilligsøe et al., 2004; Falk et al., 2005) and solid circular fibers (Hori et al., 2004;
Nishizawa & Takayanagi, 2007), the design of ANDi PCFs optimized for pumping
at the emission wavelengths of the most commonly employed femtosecond pump
sources and the first experimental demonstrations of octave-spanning coherent SC
generation in these fibers was a breakthrough for the application of fiber-based SC
sources in ultrafast photonics and noise-sensitive applications (Heidt, 2010; Heidt
et al., 2011a; Hooper et al., 2011).

http://doi.org/10.1007/978-3-031-06197-4_1
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This chapter is dedicated to this relatively new concept of SC generation in
optical fibers. We compare the characteristics of conventional, anomalously pumped
SCs and ANDi SCs in detail using the fiber dispersion profiles of Fig. 6.1 as
representative examples, explore the nonlinear dynamics of SC generation in the
normal dispersion regime, examine the origins of noise in SC generation and how
it can be suppressed by appropriate engineering of the fiber, give guidelines for
the design of ANDi fibers for SC generation from the deep ultraviolet to the mid-
infrared spectral regions, and review the most important experimental results and
applications.

6.2 Brief Remarks About Numerical Modeling

The numerical simulations we use in this chapter are based on the generalized non-
linear Schrödinger equation (GNSLE) already introduced in Chap. 3 by Agrawal.
In order to solve this equation, we use the Runge–Kutta in the interaction picture
(RK4IP) integration method described by Hult (2008). We evaluate the GNLSE
entirely in the frequency domain, because this approach was found to be numerically
more accurate and efficient than the time-domain formulation (Rieznik et al., 2012).
Additionally we employ an adaptive step size algorithm to improve computational
speed and ensure sufficient accuracy as the pulse is propagated along the fiber
(Heidt, 2009). A version of our simulation code that includes all these features
in a MATLAB implementation is freely available for download under http://
www.freeopticsproject.org.

In general, such pulse propagation models require the GVD and nonlinear
characteristics of the fiber under investigation as input, which have to be obtained
from the fiber’s geometry and material properties. Commercial packages are
available for this, but in the special case of PCFs with hexagonal lattice geometry,
an analytical method has been formulated to obtain dispersion and effective mode
field diameter of the fundamental mode (Koshiba & Saitoh, 2004; Saitoh & Koshiba,
2005). This can serve as a good starting point for any researcher wishing to simulate
nonlinear pulse propagation in microstructured optical fibers.

We assume propagation in a single transversal mode and a single polarization
axis, and exclude any coupling between the fundamental polarization modes. These
conditions are usually fulfilled in highly birefringent fibers when the pump pulse
polarization is aligned to one of the principle fiber polarization axes. For low-
birefringence fibers or for off-axis pumping linear and nonlinear mode coupling,
effects can introduce additional nonlinear processes with important consequences
for the noise and coherence properties of the generated SC. The origin of noise in SC
generation dynamics and its control by appropriate fiber engineering are discussed
in Sect. 6.5.

http://doi.org/10.1007/978-3-031-06197-4_3
http://www.freeopticsproject.org/
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6.3 Supercontinuum Generation: Conventional vs. ANDi
PCF

The objective of this section is to give an overview of the most important differences
between ANDi and conventional SC generation, using numerical simulations and
the two fibers introduced in Sect. 6.1 as representative examples. We focus on
the nonlinear dynamics and properties that are most relevant from an applications
point of view. For a more detailed discussion of the nonlinear effects responsible
for spectral broadening, we refer to Chaps. 3 and 5 by Agrawal and Taylor for
conventional fibers and Sect. 6.4 in this chapter for ANDi fibers. Of course, this
can only be a qualitative comparison as the exact properties and dynamics of SC
generation are sensitively dependent on both fiber and pump source parameters, and
the specialized literature and numerical simulations should be consulted to ensure
that the SC properties generated from a specific system fulfill the requirements of
any particular application of interest.

A good first impression of the major differences between the SCs generated in
ANDi and conventional PCF can be obtained from Fig. 6.2, which illustrates the
SC development in the spectral and temporal domain in our two example fibers
from Fig. 6.1 under realistic pumping conditions. In the conventional case, these
simulations correspond to pumping in the anomalous dispersion region with pump
pulses of 50 fs duration (FWHM) and 10 kW peak power at 850 nm. For the ANDi
fiber, we also consider 50 fs pump pulses, but with higher peak power of 90 kW and
centered at 1050 nm, close to the MDW of the fiber.

When the pump pulses are injected into the anomalous dispersion region of the
conventional PCF, they form solitons of order N = (LD/LNL)1/2  1, where LD =
T 2

0 / |β2| and LNL = (γP0)−1 are the dispersive and nonlinear lengths introduced in
Chap. 3, respectively, γ and β2 are nonlinear and second-order dispersive parameter
of the fiber, and T0 and P0 are duration and peak power of the pump pulse. For our
specific example, N ≈ 6.6. Consequently, the initial dynamics of spectral broadening
and temporal compression are very similar to the well-known high-order soliton
evolution (Agrawal, 2007). However, the presence of higher-order dispersion and
Raman scattering disturbs their ideal periodic evolution, and after approximately 1.5
cm, the pulses break up (Golovchenko et al., 1985). This process known as soliton
fission is a crucial point in the nonlinear dynamics: the integrity of the input pulse
is lost, and the temporal profile becomes extremely complex, consisting of a train
of individual fundamental solitons and low-level dispersive waves (Herrmann et al.,
2002). At the same time, the clean high-order soliton spectrum is transformed into a
complex and highly structured SC as the solitons continuously self-frequency shift
to longer wavelengths due to the Raman effect and transfer some of their energy to
dispersive waves in the normal dispersion regime (Mitschke & Mollenauer, 1986;
Gordon, 1986; Akhmediev & Karlsson, 1995; Gu et al., 2002). These dynamics are
visualized in Fig. 6.2a, which highlight in particular the point of soliton fission, a
spectrally and temporally shifting soliton and the dispersive waves. Of course, if the
multi-pulse structure is undesirable in an application, it is possible to optimize the

http://doi.org/10.1007/978-3-031-06197-4_3
http://doi.org/10.1007/978-3-031-06197-4_5
http://doi.org/10.1007/978-3-031-06197-4_3
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Fig. 6.2 Spectral and temporal evolution of the SC generation process in the PCFs of Fig. 6.1. (a)
Conventional PCF, pumped at 850 nm with a 50 fs, 10 kW pulse. (b) ANDi PCF, pumped at 1050
nm with a 50 fs, 90 kW input pulse. Note the different scales (logarithmic vs. linear) used in these
simulations, highlighting the superior flatness and smoothness of the ANDi SC

fiber length and interrupt the evolution just before soliton fission occurs. This has
been studied in the context of soliton pulse compression, and a characteristic fission
length could be determined that can be written approximately as (Chen & Kelley,
2002)

Lfiss � LD/N = T0(γP0 |β2|)−1/2 (6.1)
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At this point the high-order soliton assumes its maximum spectral bandwidth
and shortest pulse duration. However, the necessity of matching the fiber parameters
exactly to the pump source and the quickly deteriorating quality of the compressed
pulse with increasing N have limited the practical relevance of this technique for
ultrafast photonics. Significant parts of spectral bandwidth and power density in the
spectral wings are only generated after soliton fission occurs, and hence it is an
integral part of the conventional SC generation dynamics.

In contrast, these soliton dynamics are completely suppressed in the ANDi
fiber. As shown in Fig. 6.2b, during the SC evolution, a single ultrashort pulse is
maintained at all times, which temporally broadens from its original duration of
50 fs to about 1 ps at the end of the investigated 10 cm propagation distance as it
experiences normal dispersion along the fiber. After the initial formation of spectral
side lobes, which identify SPM as the dominant spectral broadening process (Stolen
& Lin, 1978), the spectrum smoothens very quickly and acquires an almost uniform
rectangular shape with flat top and steep edges. The broadening is concluded after
approximately 5 cm, which can be attributed to the decreasing peak power as the
pulse spreads temporally. Both spectral and temporal profiles do not acquire any
significant fine structure. In fact, the SC generation process occurs so quickly and
smoothly that the logarithmic scale chosen for the conventional case is inadequate
here, and even the linear scale used in the plots in Fig. 6.2b reveals very little about
the broadening dynamics. We therefore investigate the SC development in more
detail in Sect. 6.4 using projected axis spectrograms. Yet it is clear already from
this initial comparison that the ANDi fiber delivers much cleaner, less complex,
and more uniform SC pulses than would be possible in the conventional case. This
is achieved at the cost of requiring higher peak powers than soliton-driven SC
generation to achieve comparable, octave-spanning spectral bandwidths. However,
the required peak powers are within easy reach of modern femtosecond oscillators
and therefore do not limit the applicability of this type of SC.

6.3.1 Spectro-Temporal Characteristics

A more intuitive insight into the SC characteristics can be obtained from Fig. 6.3,
which displays the time–wavelength correlations of the SCs investigated in the
previous section in a projected axis spectrogram. This is arguably the most complete
visualization of any ultrafast optical waveform (Cohen, 1989). These snapshots of
the SC pulses are taken after a propagation distance of 15 cm in the conventional
PCF and 6 cm in ANDi PCF, when the respective spectral broadening processes
are essentially concluded. The pump pulse parameters are identical to the previous
section. The figure visually contrasts the relative simplicity of the ANDi SC pulse
against the full spectro-temporal complexity of the conventional SC, and can be
used to deduct the major advantages of ANDi over conventional SCs.



306 A. M. Heidt et al.

Fig. 6.3 Characteristic projected axis spectrograms of (a) conventional SC and (b) ANDi SC after
the respective spectral broadening processes are concluded. Pump pulse parameters are identical
to Fig. 6.2

Pulse Conservation We have already seen in the previous section that the SC
generation process in ANDi fibers conserves a single ultrashort pulse in the time
domain. In addition we can now deduce from the spectrogram that it also maintains
a well-defined and relatively simple phase distribution. In the purely normal
dispersion of the ANDi fiber, the group velocity strictly increases with wavelength,
and hence the wavelength distribution within the SC pulse is also strictly increasing:
from the slower short wavelengths at the trailing pulse edge to the faster long
wavelengths at the front of the pulse. At the center of the pulse near the MDW,
where the dispersion is minimal, the pulse has a nearly linear chirp, with increasing
nonlinear contributions for wavelengths located in the pulse wings.

This is in sharp contrast to the significantly more complex temporal characteris-
tics of the conventional SC. Here wavelength components at or near the ZDW are
the first to arrive at any given position along the fiber. All other radiation experiences
a higher group index and hence is delayed with respect to that at the ZDW (Knight
& Wadsworth, 2010). Consequently, the spectrogram takes on a “U” shape with
a normal (top) and anomalous (bottom) dispersion arm. Radiation in normal and
anomalous dispersion arms can therefore temporally overlap and create interference
structures and fast oscillations, as shown in the highlighted section between 0.8 and
1.1 ps. The individual solitons originating from the soliton fission process are readily
identifiable as compact objects in the spectrogram, while the dispersive waves in the
normal dispersion arm can be linked to low-level pedestals traveling in between the
solitons and at the trailing edge of the pulse. The spectral phase follows the intrinsic
fiber group index profile, but contains significant fine structure as well as distinct flat
regions of wavelength-independent spectral phase across the fundamental solitons
(Dudley & Coen, 2004).

Spectral Uniformity A large part of the fine structure in the conventional SC
spectrum can be linked to the distinct spectral signatures of the individual solitons.
Additionally, the overlapping bandwidths of the temporally separated solitons cause
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spectral interference fringes in the central part of the spectrum (Gu et al., 2002). In
the ANDi SC pulse, each wavelength component is located at a unique temporal
position inside the pulse, such that spectral or temporal interference is avoided and
both spectrum and temporal profile are free of any significant fine structure.

Compressibility The enormous bandwidths of supercontinua should allow the
generation of very short, few-cycle (sub-5 fs) pulses using appropriate dispersive
compression. Although it has been shown that it is indeed theoretically possible
to compress the complex temporal structure of an octave-spanning conventional
SC back into a single, few-cycle pulse by dispersively compensating its spectral
phase (Dudley & Coen, 2004), in practice this could never be demonstrated owing
to the significant fine structure present in spectrum and group delay (Schenkel et
al., 2005). In contrast, the simple phase profile of the ANDi SC pulse is excellently
suited for pulse compression, and in fact has led to the generation of high-quality,
Fourier-limited pulses as short as 3.7 fs (Demmler et al., 2011). More details on the
application of ANDi fibers in nonlinear pulse compression can be found in Sect.
6.7.1 of this chapter.

Coherence and Stability So far we have only considered the evolution of a single
ultrashort pulse in the fiber. However, since there is always a certain level of
quantum or technical noise on the input pulses, the evolution of subsequent pulses
inside the fiber is not necessarily identical. The properties of the generated SC might
change considerably from shot to shot if the nonlinear effects responsible for the
spectral broadening are sensitive to this noise. Driven by the increased demand for
ultra-low noise broadband coherent light sources in spectroscopy, microscopy, and
ultrafast photonics, ANDi SCs are rapidly gaining popularity in these fields as it
becomes increasingly apparent that the fiber design strongly suppresses the gain for
noise-amplifying incoherent nonlinear dynamics (Heidt et al., 2017). In Sect. 6.5 we
provide further details on the origin of SC noise and how to control it using specialty
optical fiber design principles.

6.4 Nonlinear Dynamics in ANDi Fibers

In this section we have a closer look at the nonlinear dynamics in ANDi SC
generation and identify the physical effects dominating the broadening process
using numerical simulations. We focus on the coherent nonlinear processes that do
not introduce any excess noise; pulse-to-pulse fluctuations and noise introduced by
incoherent nonlinear processes are further discussed in Sect. 6.5.
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Fig. 6.4 (a) Simulated spectral and temporal evolution of the SC generation process in the ANDi
PCF of Fig. 6.1, pumped with a 200 fs, 90 kW pulse at 1050 nm. (b) Projected axis spectrograms of
the SC pulse at 2.0 cm, 3.7 cm, and 20 cm. Arrows indicate energy transfer process due to optical
wave breaking

6.4.1 Spectrogram Analysis

A very convenient way to display the evolution of the pulse as it propagates along
the fiber is the projected-axis spectrogram representation already introduced in Sect.
6.3.1. As representative example we chose again the ANDi PCF of Fig. 6.1, pumped
at 1050 nm with a 90 kW peak power input pulse. However, we use a longer pump
pulse duration of 200 fs since the nonlinear dynamics are slowed down for longer
pulses and the physical effects can easier be identified. Fig. 6.4a shows the spectral
and temporal evolution of the SC generation process over a propagation distance of
20 cm. Three distinctive positions along the fiber at 2.0 cm, 3.7 cm, and 20 cm are
marked, and the spectrograms of the SC pulse at these positions are displayed in
Fig. 6.4b.

For our input pulse and fiber parameters, LD is >20 cm, i.e., much longer than
LNL (<1 mm). The dynamics are therefore initially dominated by nonlinear effects,
in particular SPM-induced spectral broadening, which is discussed in more detail in
Chaps. 1 and 2 of this book. The spectrogram of the SC pulse at 2.0 cm clearly
shows the SPM-characteristic S shape, with spectral broadening toward longer
wavelengths occurring at the leading edge of the pulse, while broadening toward
shorter wavelengths is introduced at the trailing pulse edge. The spectrum also
displays the typical oscillatory structure associated with SPM, which is created
by spectral interference of identical spectral components being present at different
temporal positions within the pulse.

http://doi.org/10.1007/978-3-031-06197-4_1
http://doi.org/10.1007/978-3-031-06197-4_2
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With further propagation the dispersion profile of the fiber becomes the gov-
erning factor of the nonlinear dynamics: since the fiber exhibits normal dispersion
at all wavelengths, the group velocity monotonically increases with wavelength.
Hence, the pulse tail travels faster than the blue-shifted wavelength components
created by SPM in the intermediate section of the pulse (marked in spectrogram (I)
in Fig. 6.4b). The faster tail eventually overtakes the slower intermediate section,
which leads to the steepening of the trailing pulse edge and the onset of optical
wave breaking (OWB) (Anderson et al., 1992). The temporal overlap of the two
pulse components with different instantaneous frequencies leads to the nonlinear
generation of new frequency components at

ωOWB = 2ωSPM − ω0, (6.2)

via a degenerate four-wave mixing (FWM) process (Agrawal, 2007; Finot et al.,
2008), where ωSPM is the angular frequency of the SPM components in the
intermediate pulse section and ω0 is the center frequency of the pulse. The energy
transfer process from the center to the wing of the spectrum is clearly visible after
3.7 cm of propagation in spectrogram (II) in Fig. 6.4b and marked with an arrow.
The overlap of SPM-generated components around 900 nm with the pulse tail at
1050 nm creates a new wavelength band around 750 nm. After further propagation,
OWB also occurs on the leading pulse edge (not shown) and generates new
wavelengths extending to >1400 nm. During the remaining part of the propagation,
OWB continuously redistributes energy from the central frequency to the spectral
wings until the original front and tail of the pulse at ω0 are completely depleted. The
corresponding spectrogram at the end of the 20 cm propagation distance is finally
very similar to Fig. 6.3b, except for the longer temporal pulse duration. After OWB
is concluded, no interference structures are present in neither temporal nor spectral
profile as the OWB process assigns each wavelength to a unique temporal position
within the pulse.

In summary, after an initial phase of SPM-dominated broadening OWB occurs
on both leading and trailing edges of the pulse and is responsible for the generation
of the extreme wavelengths on both sides of the spectrum as well as for the uniform
temporal and spectral profiles of the final SC spectrum. As a consequence, a single
ultrashort pulse with well-defined phase is available from the fiber after the SC
generation process.

6.4.2 Influence of Fiber and Pump Pulse Parameters

The FWM energy transfer from the spectral center to the wings occurs only in the
instant of their temporal overlap as they propagate with different group velocities.
Hence, the OWB-induced FWM processes, which create the extreme wavelength
components of the SC spectrum, are not phase-matched. Therefore, there is no
restriction on the achievable bandwidth of the spectrum—it solely depends on the
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amount of SPM-induced broadening before OWB occurs, according to Eq. (6.2).
With this insight we can deduce some general dependencies of the generated SC
bandwidth on fiber and input pulse parameters.

Since LNL 
 LD in the first phase of the propagation, we can initially neglect
dispersive effects and estimate the spectral broadening due to SPM as

|ωSPM (z, t)− ω0| = γP0
∂U(t)

∂t
z, (6.3)

where U(t) is the normalized intensity profile of the input pulse and z the prop-
agation distance (Agrawal, 2007). In order to estimate the maximum broadening
at the point of OWB, we estimate the maximum slope of the pump pulse as
max(∂U(t)/∂t) ∝ 1/T0, with the input pulse duration T0 , and the expression for
the OWB distance (Finot et al., 2008)

LOWB � LD/N = T0(γP0 |β2|)−1/2 (6.4)

and obtain

|ωSPM (LOWB)− ω0|max ∝
(
γP0

β2

)1/2

(6.5)

In consequence, the spectral broadening in ANDi fibers can be enhanced by
higher peak power of the input pulse, as well as higher nonlinearity or decreased
and flattened dispersion of the fiber, which is a very intuitive result. However,
there is usually a trade-off between spectral bandwidth and flatness. As the ratio
of nonlinearity to dispersion is increased, the OWB process progressively depletes
the central frequency such that a spectral “dip” with magnitude of >10 dB can
form around the pump wavelength. This is especially an issue when the MDW
approaches zero (Heidt, 2010). The spectral flatness can be improved by increasing
the dispersion at the pump wavelength, but at the cost of decreased bandwidth (and
vice versa).

Not quite so intuitive is the fact that the spectral bandwidth, and in extension
also the coherence properties and temporal compressibility, is independent of the
input pulse duration if the peak power remains constant. This has been verified
by numerical simulations (Heidt et al., 2017), and is valid as long as incoherent
nonlinear effects do not play a significant role, i.e., up to input pulse durations of
about 1 ps (see also Sect. 6.5). However, since the wave breaking distance grows
linearly with the pulse duration (Eq. (6.4)), the nonlinear dynamics are slowed
down for longer pulses, and the fiber length needs to be increased accordingly.
Therefore, the loss profile of the fiber may play a more significant role, particularly
if technologically less mature non-silica glasses are used for fiber fabrication (Price
et al., 2012).

Note also that the spectral broadening is only weakly dependent on β2. It is
therefore not a critical necessity to match the pump wavelength exactly to the MDW
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of the fiber. If the dispersion profile is sufficiently flat, pump wavelengths several
hundred nanometers on either side of the MDW can be acceptable and can still
create more than octave-spanning SC spectra (Heidt et al., 2011a; see also Sect.
6.6.1). In this case, spectral broadening occurs preferentially toward the side where
the MDW is located, i.e., toward wavelengths with low and flattened dispersion
where the temporal broadening of the pulse is limited and continuously high peak
powers are maintained during propagation. This can be effectively used to steer the
SC generation process toward a desired spectral region (Price et al., 2012).

6.5 Noise Properties of Fiber Supercontinuum Sources

With every new edition of this book, a variety of new applications are emerg-
ing for the supercontinuum laser source, and as such these versatile broadband
coherent light sources have become undispensable tools for spectroscopy, biomed-
ical imaging, optical coherence tomography, advanced microscopy, and many
more applications. However, due to the ever-increasing sensitivity and speed of
spectroscopic detection and imaging techniques, the noise properties, shot-to-shot
stability, and temporal characteristics of fiber-based SC sources are now becoming
increasingly relevant.

Commercially available sources, often constructed from pico- or nanosecond
pulsed lasers pumping an anomalous dispersion fiber, suffer from huge pulse-
to-pulse fluctuations of spectral amplitude and phase that arise from nonlinear
noise amplification processes dominating the SC generation dynamics. While the
correspondingly large relative intensity noise (RIN) in the order of 50% or more can
often be reduced by long-term averaging (Dupont et al., 2014), SC noise has become
the predominant factor limiting the precision, speed, resolution, or sensitivity of
many applications (Jensen et al., 2019).

In this section we explore the origin of this noise in more detail in an effort to
identify strategies and fiber designs that can effectively suppress any nonlinear noise
amplification during SC generation. While it is well-known that SC noise depends
on input pulse duration and fiber length, only recent results have highlighted the fact
that the noise characteristics of fiber-based SC sources can be effectively controlled
both by the dispersion profile and the cross-sectional geometry of the nonlinear fiber.
In particular, highly birefringent polarization-maintaining ANDi fibers are currently
emerging as the key-enabling technology for the realization of the next generation
of ultra-low noise SC sources.

6.5.1 Origin of Supercontinuum Noise

A typical fiber-based SC source operates at MHz repetition rates and thus emits
millions of pulses per second. So far in this chapter, we have considered only the
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evolution of a single ultrashort pulse and its transformation into a supercontinuum
as it propagates along the fiber. However, since there is always a certain level of
quantum or technical noise on the input pulses, the evolution of subsequent pulses
inside the fiber is not necessarily identical. The properties of the generated SC might
change considerably from shot to shot if the nonlinear effects responsible for the
spectral broadening are sensitive to this noise.

We can investigate this sensitivity numerically by including quantum noise terms
into the simulations, e.g., as described by Dudley et al. (2006), and comparing the
results of multiple simulations obtained with different random noise seeds. It is
common to characterize the shot-to-shot fluctuations using the spectrally resolved
modulus of first-order coherence at zero path difference:

|g12 (λ)| =
∣
∣
∣
∣
∣
∣

〈
S∗

1 (λ) S2 (λ)
〉

√〈|S1 (λ)|2
〉 〈|S2 (λ)|2

〉

∣
∣
∣
∣
∣
∣

(6.6)

where angle brackets indicate an ensemble average over independently generated
SC pairs [S1(λ), S2(λ)] obtained from a large number of simulations. At each
wavelength bin, this yields a positive number in the interval [0;1] with the value
1 representing perfect stability in amplitude and phase and the value 0 indicating
completely uncorrelated fluctuations from pulse to pulse (Dudley & Coen, 2002).

In order to illustrate the origin of SC noise, we consider again our representative
ANDi fiber from the previous sections, but increase the pump pulse duration to 5
ps and limit the peak power to 5 kW. Figure 6.5a shows the calculated evolution as
well as the spectral fluctuations and coherence properties after 1 m of propagation
through the fiber, extracted from 20 simulations with independent quantum noise
seeds. In the central part of the spectrum, the coherent dynamics dominated by
SPM/OWB discussed in Sect. 6.4 are at work, which are seeded by wavelength
components within the pump pulse itself and, therefore, maintain high coherence.
After about 40 cm of propagation, a broad peak starts to develop redshifted from
the central spectrum by a frequency of around 13.2 THz, which corresponds to
the peak frequency of the Raman gain in silica. Consequently, the origin of this
peak is stimulated Raman scattering (SRS), which provides enormous exponential
gain to any seed signal injected into its gain bandwidth. If the Raman gain remains
unseeded, like in this case, then quantum noise serves as the seed and is amplified
to become significant and even dominate the spectral broadening dynamics. The
noise-seeded spectral components contained in the Raman peak exhibit random
fluctuations in amplitude and phase from shot to shot and are thus incoherent with
the pump. With further propagation cascaded Raman Stokes (redshifted) and anti-
Stokes (blueshifted) peaks appear, which are also noise-seeded and show similarly
large fluctuations and low coherence.

Raman anti-Stokes components are rarely observed in fibers, since neither SRS
nor other nonlinear mechanisms such as parametric FWM are efficient enough to
generate them by themselves—the ANDi profile excludes phase matching of Stokes
and anti-Stokes Raman components with the pump wave. Instead, the presence
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Fig. 6.5 (a) Origin of SC noise. Bottom: simulated spectral evolution of 5 ps, 5 kW pulses in the
ANDi fiber from Fig. 6.1. Arrows indicate primary gain bands for amplification of quantum noise.
Center: spectrum at the fiber exit. The mean spectrum is displayed in red, obtained from averaging
20 simulations with random noise seeds. Gray traces show single-shot spectra. Top: coherence
calculated according to Eq. (6.6). (b) Mixed parametric Raman (MPR) gain gMPR, normalized
by the standard Raman gain gR. We use the MPR gain to describe the dispersion dependence
of noise-amplifying incoherent nonlinearities in SC generation dynamics. Typical conditions for
octave-spanning SC generation for ANDi and conventional SC from Fig. 6.2 are indicated

of anti-Stokes peaks can only be explained by the combined action of SRS and
FWM, which couple in a high peak power/low dispersion environment, i.e., exactly
in conditions that are usually employed for SC generation (Bloembergen & Shen,
1964; Coen et al., 2002a). In single-mode fibers, this nonlinear coupling of SRS
and FWM can be described by the mixed parametric Raman (MPR) gain (Coen et
al., 2002b), which amplifies and distributes noise across the SC spectrum and can
generally be regarded as the main noise-amplifying nonlinear effect responsible for
incoherent spectral broadening (Heidt et al., 2017).

6.5.2 Supercontinuum Noise Control by Fiber Dispersion
Engineering

Clearly, the noise properties of SC sources can be understood in terms of a
competition between coherent and noise-amplifying incoherent nonlinear processes.
While the coherent nonlinearities preserve the coherence and stability of the input
pulses, the MPR gain builds up new spectral components from noise and quickly
distributes it throughout the SC pulse. By comparing the strength of these two sets of
nonlinearities and their dependence on input pulse and fiber design, we can develop
strategies how to reduce noise amplification or even suppress it altogether.
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As discussed in Sects. 6.3 and 6.4 of this chapter, the coherent dynamics are
dominated by OWB in the normal dispersion and soliton fission in the anomalous
dispersion regime. Interestingly, by comparing Eqs. (6.1) and (6.4), we note that
the characteristic length scales of these two processes are virtually identical. In
particular, for the low dispersion conditions employed for SC generation and for a
given pump peak power, it is only weakly dependent on the fiber design and mainly
proportional to the pump pulse duration.

In contrast, the MPR gain gMPR, which we use here to describe the strength of
noise-amplifying incoherent dynamics, is independent of the pump pulse duration,
but highly dependent on the fiber dispersion. It is shown in Fig. 6.5b normalized to
the standard peak Raman gain gR � 0.5γP0 in dependence ofK = −β2�

2
R/ (2γP0),

which is essentially the ratio of dispersion and nonlinearity (Vanholsbeeck et al.,
2003). Here �R is the angular frequency shift of the Raman gain peak. For large
|K|, SRS and FWM decouple and gMPR � gR. However, in the region |K| < 1
relevant to SC generation, the incoherent dynamics are strongly suppressed in the
normal dispersion, while noise amplification is strongly amplified in the anomalous
dispersion region. The peak of the MPR gain is located at K � 1 − fR/2, where
fR (~ 0.18 for silica) is the fractional contribution of the Raman effect to the
nonlinear material response (see Chap. 3, Eq. (3.6)). At the peak, Stokes and anti-
Stokes Raman sidebands are effectively amplified by FWM, a process that is also
known as modulational instability (MI) and whose role in the coherence collapse
of conventional SC has been investigated since the early days of fiber-based SC
generation (Nakazawa et al., 1998; Corwin et al., 2003). Describing incoherent
nonlinear dynamics in terms of the MPR gain therefore incorporates previous
literature results, while providing a broader and more universal perspective on SC
noise and the opportunities arising from its control via dispersion engineering.

Returning to our representative fiber designs and SC dynamics discussed in
Sect. 6.3 pumped with high peak power femtosecond pulses for generating octave-
spanning bandwidths, K � − 0.02 for the ANDi SC and K � +0.28 for the
conventional SC. The corresponding MPR gains are indicated in Fig. 6.5b. Hence,
we find that the MPR gain and associated noise amplification can be decreased
by over one order of magnitude by changing from the conventional to the ANDi
fiber design. In fact, this order of magnitude difference in noise susceptibility is a
recurrent factor found in many theoretical and experimental studies, as we detail
below, and can be seen as the main reason behind the attraction of ANDi fibers for
low-noise SC source development.

From this fundamental physics perspective, we expect ANDi SC to be sig-
nificantly more stable than conventional SC for any given pump source. These
analytical arguments are confirmed by the numerical simulations in Fig. 6.6
illustrating the significantly different noise amplification behavior of conventional
and ANDi SC. Displayed are the calculated coherence properties and spectral
fluctuations for various input pulse durations using our representative fiber designs.

The competition between the coherent and incoherent dynamics typically leads
to a threshold pulse duration Tcrit or threshold soliton number Ncrit above which the
nature of the SC changes from coherent to incoherent (Dudley et al., 2006; Genty et

http://doi.org/10.1007/978-3-031-06197-4_3
http://doi.org/10.1007/978-3-031-06197-4_3
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Fig. 6.6 Temporal coherence and stability calculations for (a) conventional SC and (b) ANDi SC
in dependence of input pulse duration. Pump peak power and fiber lengths are fixed and values
given in the text. The temporal coherence function �g12(λ)� (Eq. (6.6)) is displayed on top of each
spectrum. The gray traces show spectra from 20 individual simulations including shot noise, while
the mean spectrum appears in red

al., 2007). For the conventional SC, significant spectral shot-to-shot fluctuations and
coherence degradation indicate the beginning dominance of incoherent dynamics
governed by the MPR gain already for pump pulses as short as Tcrit ≈ 100 fs or
Ncrit ≈ 10. Consequently, very short pump pulses, low pulse energies, and short
fiber lengths are necessary to maintain coherence. In contrast, for ANDi fibers
noise amplification becomes significant only for much longer pump pulse durations.
At about 1000 fs, we observe first low-level fluctuations, especially at the long-
wavelength edge, while the coherence function is still relatively unaffected. Only at
pulse durations exceeding 1500 fs, incoherent dynamics become significant and the
coherence function starts to collapse. In a comprehensive study on the coherence
limits of ANDi SC, Heidt et al. (2017) clarified the role of the MPR gain in the
decoherence of ANDi SC and revealed the complex interaction between coherent
and incoherent dynamics in the long-pulse regime, which leads to novel mechanisms
such as incoherent cloud formation and incoherent optical wave breaking. In ANDi
fibers, coherent octave-spanning SC can be generated with pump pulse durations
Tcrit > 1000 fs and “soliton” orders of Ncrit ~ 600, corresponding to an approximately
50 times increase of the coherent regime compared to conventional SC generation.
Consequently, ANDi SCs allow for much higher pulse energies and power spectral
densities in the order of mW/nm.
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Since quantum noise amplified by the MPR gain grows exponentially with
propagation distance (Smith, 1972), the coherence properties are also dependent on
the fiber length. Shorter fibers generally yield better coherence, but might also result
in narrower spectral bandwidths. In practice, balancing coherence and bandwidth
with the correct choice of fiber length becomes more and more critical as the pump
pulse duration is increased (Heidt et al., 2017).

The superior coherence and noise properties of ANDi SCs over conventional
SCs were also experimentally verified, for example, by measurements of relative
intensity noise (RIN), spectral coherence, dispersive Fourier transformation, and
RF beating with stabilized laser diodes (Nishizawa & Takayanagi, 2007; Nishizawa
et al., 2018; Klimczak et al., 2016). While initial results indicated a coherence
collapse of ANDi SC when technical noise such as pump laser power fluctuations
is considered (Genier et al., 2019), it was later shown that coherence is not a
useful figure of merit to quantify SC stability in the presence of technical noise
(Sierro & Heidt, 2020). In fact, ANDi SCs exhibit a remarkable resistance against
technical noise (Sierro & Heidt, 2020, Eslami et al., 2020), and further studies have
highlighted that the RIN of ANDi SC can actually be lower than the RIN of the
pump laser in the central part of the spectrum (Genier et al., 2019; Rao et al., 2019).
In contrast, in conventional SC technical noise is amplified by factors up to 20 dB,
even in the regime where coherent dynamics dominate (Newbury et al., 2003).

6.5.3 Supercontinuum Noise Control by Designing Fiber
Geometry and Birefringence

Although the above analysis suggests excellent stability of ANDi SC sources up
to the picosecond regime, it assumes that the linear polarization state of the pulses
remains unchanged during propagation in the fiber. In reality, every fiber exhibits
a certain amount of birefringence that breaks the degeneracy of polarization states.
This birefringence might be introduced, for example, by geometrical asymmetries of
the fiber core and cross section, stresses introduced around air-hole microstructures,
stresses due to different thermal expansion coefficients of multiple glass composi-
tions, or twisting of the fiber during the drawing process. Consequently, linear and
nonlinear mode coupling between the polarization modes leads to several nonlinear
effects that, in addition to the MPR gain, have the potential to amplify quantum noise
and results in unpredictable fluctuations of the polarization state. Table 6.1 provides
an overview of the most relevant polarization-dependent noise-amplifying nonlinear
processes in optical fibers. Polarization modulation instability (PMI) is especially
relevant as it was shown to cause a significant degradation of coherence and stability
of SC generated in low-birefringence ANDi fibers, even when the polarization of the
pump pulses is aligned to one principal axes of the fiber (Gonzalo et al., 2018).

In general, the nonlinear noise amplification is a complex function of fiber bire-
fringence and dispersion, as well as relative orientation of input pulse polarization
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Table 6.1 Overview of the most relevant polarization-dependent nonlinear processes for (quan-
tum) noise amplification in birefringent optical fibers, including the fiber or input pulse parameter
that can be used for their control and suppression

Type Description
Control
parameter Ref.

Polarization
instability
(PI)

Low-frequency polarization
fluctuations
Competition of fiber birefringence
and nonlinear Kerr effect
Onset above power threshold

Birefringence Winful (1986),
Domingue and
Bartels (2013), and
Tu et al. (2012b)

Polarization
modulation
instability
(PMI)

Coherent (phase-dependent)
coupling of polarization modes
Weakly birefringent fibers
Quantum noise amplification
possible in two sidebands with
orthogonal polarization to the
pump
Even for normal GVD and highly
polarized beams along principal
fiber axis

Birefringence Wabnitz (1988), Liu
et al. (2015), Gonzalo
et al. (2018), and
Loredo-Trejo et al.
(2019)

Cross-phase
modulation
instability
(XMI)

Incoherent (intensity-dependent)
coupling of polarization modes
Highly birefringent fibers
Quantum noise amplification
possible in one sideband created
in each pol. axis
In normal GVD: ceases above
power threshold or for
polarization close to principle
fiber axis

Highly polarized
beams
Polarization
alignment
Peak power
Dispersion
design

Agrawal et al. (1989),
Drummond et al.
(1990), Rothenberg
(1990), and Genier et
al. (2020)

XPM-
assisted
Raman
amplification

Transfer of MPR noise to a
co-propagating signal in
orthogonal polarization axis
Occurs for both high and low
birefringence
Leads to chaotic polarization state
once MPR dynamics dominate

Pump pulse
duration

Feehan and Price
(2020) and Feehan et
al. (2020)

and fiber axes. This can be visualized by the high-resolution polarization-dependent
RIN measurements shown in Fig. 6.7. For these measurements, pulses from an
ultrafast Er-fiber laser (80 fs, 40 MHz, 0.05% RIN) were coupled into ANDi fibers
with similar dispersion profiles, but very different geometries and birefringence,
generating SC with comparable spectral bandwidths in the range 1.2–2.2 μm.
A rotating half-wave plate in front of the fiber and a synchronized analyzer at
the fiber exit control the plane of pump pulse and detection polarization with
respect to the fiber geometry. Polarization-dependent RIN values are measured
with an angular resolution of approximately 0.2◦ using a photodiode and electronic
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Fig. 6.7 Noise fingerprints of various ANDi SC (a–c) and conventional SC sources (d) pumped
by an Er-fiber laser (80 fs, 40 MHz) at 1550 nm, generating comparable bandwidths in the
range 1.2–2.2 μm. Shown are SC RIN values (in %) in a polar plot in dependence of pump
pulse polarization orientation. The corresponding fiber geometry is shown in the background. The
fiber’s slow axis is aligned to zero degrees. The red-dotted line shows the RIN of the pump laser
(0.05%). The birefringence at 1550 nm is given below each measurement. (a) Low-birefringence
all-solid ANDi PCF with SF6 glass core (Klimczak et al., 2017). (b) Weakly polarization-
maintaining (PM) air-hole microstructured PCF with Ge-doped silica core (Tarnowski et al., 2017).
(c) Extremely birefringent nanohole suspended-core pure silica ANDi fiber (Hartung et al., 2019).
(d) Commercial conventional fiber NKT PM-1550-01

spectrum analyzer and visualized in polar plots. These plots were found to be unique
for each tested fiber and are therefore referred to as “noise fingerprints.”

We observe a strong correlation between the noise fingerprints and the cross-
sectional geometry of a particular fiber, which we attribute to the unique stress
profile associated with each fiber structure. The ANDi fiber in Fig. 6.7a is designed
as an all-solid microstructured PCF made from two different soft glasses forming
the photonic lattice and inclusions (Klimczak et al., 2017). The structure causes a
complex stress pattern due to different thermal expansion coefficients of the two
glasses. Since there is no intentional stress axis defined in this design, the resulting
birefringence is random, and the polarization axes are not well defined. This enables
all of the nonlinear effects listed in Table 6.1 to occur at various angles; a more
detailed analysis reveals PI as origin of the narrow noise spike around the fast axis,
for example, while a combination of PMI and XMI is responsible for the noise peak
at 49◦.

Figure 6.7 also illustrates that birefringence is an effective control parameter
to reduce polarization-dependent noise in ANDi SC generation. With increasing
birefringence the noise fingerprints become more regular and environmentally
stable. Near the slow axis of birefringent ANDi fibers, the noise of the SC is
found to be virtually identical to the noise of the pump laser. Eventually, complete
suppression of noise-amplifying nonlinear processes is observed ANDi fiber designs
exhibiting extreme birefringence, such as the nanohole suspended-core fiber in Fig.
6.7c, even when the pump polarization is not aligned to one of the principal fiber
axes. In contrast, the noise fingerprint of a comparable polarization-maintaining
conventional SC source in Fig. 6.7d is significantly more complex, and shows noise
amplification up to a factor of 40. In the test conditions, the soliton number is N � 6,
such that stable and coherent conventional SC is generated when the polarization of



6 All-Normal Dispersion Fiber Supercontinuum: Principles, Design. . . 319

the pump pulses is exactly aligned to a principal axis of the fiber. However, even
slight misalignment of the polarization in the order of just 1◦ causes a significant
rise of the SC noise.

These measurements highlight the importance of the cross-sectional fiber geom-
etry and the homogeneity of the stress profile, in addition to dispersion engineering,
for the realization of high-quality, low-noise SC sources. As we discuss in the
following section, ANDi SC sources designed with these considerations in mind
are currently emerging and provide further experimental evidence for the excellent
quality and stability of these broadband coherent light sources.

6.6 Experimental Results and Fiber Designs for Various
Spectral Regions

Based on the discussions in the previous sections, we can establish general fiber
design guidelines for efficient SC generation in the normal dispersion region:

• The fiber should exhibit a convex and flattened all-normal dispersion profile.
This ensures broadband uniform and smooth spectral and temporal profiles and
suppresses soliton dynamics and MI gain entirely. The spectra can therefore be
generally expected to be highly coherent if the MPR gain is negligible, i.e., for
sub-picosecond pump pulses and 10s of cm fiber lengths.

• The fiber should have a birefringence in the order of 10-4 or higher in order
to properly suppress polarization-dependent noise amplification processes, such
as PMI. Alignment of the pump laser polarization to a principle fiber axis is
generally recommended.

• For generating high-quality SC spectra, high-quality pump pulses are required.
Nonideal pump pulse shapes containing satellite pulses or low-level pedestals
lead to spectral and temporal fine structure (Rampur et al., 2020).

• The MDW should be close to the desired pump wavelength to ensure minimum
temporal spreading of the input pulse and maximum generated SC bandwidth.

• For maximizing spectral bandwidth, the dispersion at the MDW should be
close to zero and the dispersion profile as flat as possible. However, this can
compromise spectral flatness and result in the formation of a depletion region
around the MDW with a dip in spectral intensity larger than 10 dB.

• For maximizing spectral flatness, the dispersion at the MDW should be slightly
normal to balance nonlinearity and dispersion and avoid the depletion region
around the MDW. For typical input pulse parameters, the range −10 ps/(nm
km) ≤ D ≤−30 ps/(nm km) has led to good results.

• For asymmetric broadening toward a preferred wavelength region, the MDW
should not be located at the pump wavelength, but further toward the preferred
side of the spectrum.

• For a given fiber design, the generated spectral bandwidth is determined by
the peak power and is independent of the input pulse duration (if MPR gain is
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negligible). However, the fiber length should be chosen according to input pulse
duration: longer pump pulses require longer fibers for the SC to fully develop.
For pump pulses approaching the picosecond regime, careful adjustment of fiber
length is required to maximize spectral bandwidth while maintaining coherence.

In the following paragraphs, we give examples of fiber designs that fulfill these
guidelines and discuss important experimental results of SC generation pumped in
the normal dispersion regime in different spectral bands.

6.6.1 Visible and Near-IR Spectral Region

In order to realize an all-normal GVD profile in the visible and near-IR spectral
region, the material dispersion of silica, which has a single ZDW in the vicinity of
1300 nm, has to be substantially modified. In optical fibers, the geometry-dependent
waveguide dispersion can counteract the material dispersion. This requires a high
refractive index contrast between fiber core and cladding materials in combination
with a small core diameter in the order of one wavelength. This can be realized
using microstructured optical fiber technology, which enables the fabrication of
fibers with small silica core surrounded by a photonic crystal cladding of air holes
running longitudinally along the optical fiber (Knight, 2003). The structure of the
photonic crystal cladding has a significant influence on the waveguide dispersion
and hence allows the engineering of GVD profiles with large design freedom. Two
kinds of microstructured optical fibers, PCF and suspended-core fibers (SCF), have
been considered for the realization of ANDi fibers with MDW in the visible and
near-IR region, and we discuss them here in more detail.

6.6.1.1 Photonic Crystal Fibers (PCFs)

Silica PCFs, in which the air-hole inclusions are arranged in a hexagonal lattice
structure and a single lattice defect represents the guiding core, offer an enormous
potential for dispersion engineering. By tuning the two design parameters, pitch Λ
and relative air-hole diameter d/Λ, ANDi fibers with MDWs virtually anywhere
between 500 and 1300 nm can be realized. Figure 6.8 demonstrates the full
versatility of the concept, which is discussed in detail by Hartung et al. (2011a). The
position of the MDW is predominantly determined byΛ, while d/Λ serves to reduce
the GVD into the normal dispersion regime, accompanied by a slight decrease of the
MDW. Consequently, smallΛ and large d/Λ are required for the MDW to be located
at visible wavelengths, while large Λ and small d/Λ shift the MDW further into the
near-IR. Note that the absolute diameter d of the air holes stays almost constant at
about 500 nm for every design.
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Fig. 6.8 Variety of possible ANDi PCF designs, optimized for various pump wavelengths in
the visible and near-infrared spectral regions. The schematic cross section of the PCF illustrates
the definition of the basic design parameters, pitch Λ and air-hole diameter d. (Adapted with
permission from Hartung et al. (2011a). © The Optical Society)

Relative air-hole diameters near unity are approached for pumping at short
wavelengths, which corresponds to a pure silica strand with submicron diameter
suspended in air that can be fabricated simply by tapering of a standard single-mode
fiber. Such nanofibers could therefore be an interesting approach for deep ultraviolet
SC generation (see Sect. 6.6.2). On the long-wavelength side, the extremely flat
profiles should result in ultra-broadband SC generation. However, the small d/�
values result in large confinement losses and require a large number of rings in the
photonic crystal cladding as counterbalance, which is challenging in fabrication.
Additionally, a limit is imposed by the material dispersion of silica, and it is not
possible to place the MDW further than around 1300 nm using the simple hexagonal
PCF design considered here. However, using slightly modified PCF designs, the
MDW can be shifted toward 1550 nm to create coherent and uniform spectra for
telecommunications or optical coherence tomography (Hansen, 2003; Chow et al.,
2006; Rao et al., 2019). In Sect. 6.6.3, we consider additional approaches how this
limit can be overcome and discuss ANDi fiber designs for longer near-IR and mid-
IR wavelengths.

ANDi PCF structures have usually been in-house fabricated, e.g., with MDWs
around 650 nm (Heidt et al., 2011a), 800 nm (Humbert et al., 2006), and 1050 nm
(Tse et al., 2006; Hooper et al., 2011). But the most extensively studied ANDi PCF
to date is commercially available (NKT Photonics NL1050-NEG1) and optimized
for pumping with femtosecond ytterbium fiber lasers at 1 μm, but also works well
for pumping with widespread Ti-sapphire femtosecond systems around 800 nm.
Figure 6.9 shows experimental ANDi SC generated in this fiber as well as in other
selected low-birefringence PCF structures optimized for pump wavelengths in the
visible and near-IR spectral regions.

The commercial NKT fiber has a dispersion profile very similar to our example
fiber from Fig. 6.1 used in the numerical simulations in the previous sections. It has
a core diameter of 2.3 μm and a photonic crystal cladding with design parameters
�≈ 1.46 μm and d/�≈ 0.39, resulting in a peak dispersion parameter of D ≈ −11
ps/(nm km) at a wavelength of 1020 nm. Since the ratio d/Λ is smaller than 0.4,
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Fig. 6.9 Experimental SC generation results in low-birefringence ANDi PCF. Measured SC
spectra in a commercially available ANDi PCF (NKT NL1050-NEG1) with MDW near 1020 nm
using a central pump wavelength of (a) 1050 nm and (b) 790 nm in dependence of pump pulse
energy. The pump pulse duration is 50 fs. The fiber cross section is shown in (e). (c) Visible ANDi
SC generated in fiber (f) under 50 fs, 1.1 nJ, 650 nm pumping. (d) Near-IR ANDi SC generated in
fiber (g) under 125 fs, 1550 nm pumping in dependence of peak power. (Adapted with permission
from Heidt et al. (2011a) and Rao et al. (2019). © The Optical Society)

this fiber fulfills the criterion for endlessly single-mode guidance (Birks et al.,
1997; Koshiba & Saitoh, 2004). Despite the relatively small core, input coupling
efficiencies from free space in the order of 60% or more are achievable with
properly sealed and cleaved or polished end facets. The SC spectra generated in this
fiber exhibit the flatness and smoothness expected from the numerical simulations,
and with a bandwidth of up to 1.5 octaves, they are among the broadest SC
spectra generated in the normal dispersion regime of a silica optical fiber to date.
These experiments demonstrate that a single fiber can consistently generate smooth,
coherent, and broadband SC spectra with a variety of different pump sources if the
dispersion curve is sufficiently flat. Note also the preferential broadening toward the
side of the spectrum where the MDW is located in the case of 790 nm pumping.
Experiments could also confirm the high temporal coherence of the SC and the
conservation of single ultrashort pulses in the time domain (Heidt et al., 2011a),
as well as their excellent compressibility (e.g., Heidt et al., 2011b; Demmler et al.,
2011; Liu et al., 2012b).

Other experiments have demonstrated ANDi SC covering the entire visible
spectral region (400–950 nm; Fig. 6.9c, f), where the small air-hole diameter
(~400 nm) of the PCF structure leads to large confinement losses for longer
wavelengths, which were minimized by using short pump pulses and fiber lengths
(Heidt et al., 2011a). A different approach was chosen by Rao et al. (2019) for
overcoming confinement losses of PCF structures above 1300 nm, highlighted in
Fig. 6.9d, g. They fabricated a fiber with nonuniform design, where the air holes
in the first three rings define the extremely flat dispersion according to the design
criteria in Fig. 6.8, while rings 4–11 exhibit an increased diameter to reduce the
losses. As a result, 9 kW pump peak power was sufficient to generate low-noise
broadband ANDi SC in the 1300–1900 nm region with RIN as low as 0.5%.
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Fig. 6.10 Experimental SC generation results in high-birefringence, polarization-maintaining
ANDi PCF. (a) Measured SC spectra and polarization extinction ratio (PER) in a PM-ANDi fiber
(birefringence 4.7 × 10−4) with MDW at 1040 nm pumped with 180 fs, 48 kW pulses at 1049 nm.
The inset shows a microscope image of the fiber facet. Figure kindly provided by E. Genier, T.
Sylvestre, Institut FEMTO-ST, Université de Franche-Comté (Genier et al., 2021). (b) Measured
(black), simulated (green) SC spectra from an all-fiber ANDi SC source realized by splicing a
PM-ANDi fiber (birefringence ~ 10−5) with MDW at 1.7 μm directly to the output of an Er-fiber
femtosecond laser. Dispersive Fourier transformation (individual traces, gray; mean, red) highlight
the excellent shot-to-shot stability of the spectrum. Insets show microscope images of the fiber
facet. Adapted from Tarnowski et al., 2019

A major advantage of ANDi SC is the extraordinarily good agreement of
experimentally measured spectral intensity and phase with numerical simulations,
which was shown by Tu et al. (2010, 2012a). So far, the same level of predictability
has not been possible to achieve for conventional SC generation.

In Sect. 6.5.2 we stressed the critical importance of designing polarization-
maintaining (PM) ANDi fibers with high birefringence and homogeneous stress
profiles for avoiding quantum noise amplification via incoherent polarization-
dependent nonlinear processes. Consequently, first prototypes of PM-ANDi fibers
are now emerging. Figure 6.10 shows two recent examples of such fibers based on
silica PCF, optimized for pumping at 1050 nm and 1550 nm, respectively. While
Genier et al. (2021) demonstrated the extraordinary flatness, quality, and stability
of their source, Tarnowski et al. (2019) realized an extremely simple and compact
solution by splicing their PM-ANDi fiber directly to the output of a femtosecond
Er-fiber laser. Both results impressively demonstrate the importance of highly
birefringent ANDi fibers as the key-enabling technology for the next generation of
ultra-low noise ultrafast SC sources. Nishizawa et al. (2004, 2007, 2018) describe
multi-octaves for OCT and clocks.

6.6.1.2 Suspended-Core Fibers (SCF)

For the realization of silica fibers with ANDi profile, PCFs with a large number
of closely spaced air holes in the cladding are necessary for reducing confinement
losses, as seen in the previous section. SCF exhibit similar design freedom as PCF,
but can be much simpler to fabricate (Hartung et al., 2011a). In these fibers, a core is
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Fig. 6.11 (a) Calculated dispersion profiles of nanohole suspended-core fibers (SCF) with n = 3
struts in dependence of the core diameter, hole diameter, and strut width. Microscope image of
SCF with n=4 struts are shown in the insets. (b) Dispersion characteristics of the fundamental
polarization modes of highly birefringent nanohole SCF. Polarization direction is given with
respect to the long core axis. The insets show microscope image and preliminary SC spectrum
using an Er-fiber femtosecond pump laser. (Adapted with permission from Hartung et al. (2019).
© The Optical Society)

suspended in air in the central section of a fiber, connected to the walls typically via
three or more silica bridges. The dispersion parameters of such fibers depend on the
core diameter d as well as on the number n of silica bridges and hence implicitly on
the geometry of the core. Such structures have been exploited to generate ANDi SC
in the visible range covering the spectral range 350–900 nm (Hartung et al., 2011b),
but have not gained practical relevance to date.

An interesting new development in this area is the introduction of an additional
degree of freedom into SCF design, achieved by including a nanohole into the center
of the core with variable diameter (Hartung et al., 2019). As shown in Fig. 6.11a,
this design facilitates ANDi fibers with MDWs between 500 nm and 1900 nm,
but without the confinement loss challenges associated with PCF structures. By
elongating one side of the core, extremely birefringent fibers with �n > 10−2

can be realized that exhibit very different dispersion characteristics of the two
principal polarization modes. In one such design, shown in Fig. 6.11b, both principal
polarization modes exhibit an ANDi profile, but with vastly different MDWs, 800
nm and 1600 nm, depending on the polarization direction with respect to the long
core axis. Preliminary experiments using femtosecond pump pulses from an Er-
fiber laser have confirmed highly polarized, high-quality ANDi SC generation in
the region 1200–2000 nm. Such new fiber designs could in the future enable,
for example, ultra-broadband ANDi SC by synchronized simultaneous pumping at
different central wavelengths.

6.6.2 Deep-UV Spectral Region

A long-standing challenge in SC generation is the generation of significant power
densities in the deep ultraviolet (UV) region at wavelengths below 350 nm.
Especially applications in spectroscopy and fluorescence microscopy require light
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sources in the UV, as many photo-induced processes are excited in this wavelength
region (Prasad, 2003). Therefore, many studies have tried to extend the bandwidth
of the conventional SC generation on the short wavelength edge (e.g., Kudlinski et
al., 2006; Travers, 2010). However, it is difficult to generate significant spectral
power densities below 350 nm wavelength, mainly due to the fact that many
approaches rely on dispersive wave generation from soliton effects. This requires
phase matching with the original soliton, which is difficult to achieve for short
wavelengths.

In contrast, the generation of short wavelengths in ANDi fibers is extremely
fast and independent of any phase-matching condition, and could therefore be an
interesting approach to extend short wavelength edge of fiber-generated SCs deeper
into the UV region. In addition, the coherence and temporal properties of the ANDi
SC would be favorable, e.g., for broadband transient absorption spectroscopy at
UV wavelengths. As discussed in the previous section, ANDi fibers with MDWs
between 400 and 500 nm can be realized either with freestanding nanofibers or SCF
with core diameters of approximately 500 nm, which can be easily obtained in taper
configurations. However, SCF are generally the better choice as the tapered core is
also protected by the surrounding silica cladding, which offers improved stability,
ease of handling, and improved protection against surface contamination. Spectral
broadening down to wavelengths of 250 nm can be expected when pumped with
femtosecond pulses from frequency-doubled Ti-sapphire systems around 400 nm
and peak powers of about 20–50 kW (Hartung et al., 2012). Although this approach
is promising, it has not yet been verified experimentally.

Using a related technique exploiting nonlinear dynamics both in normal and
anomalous dispersion regime of a tapered PCF, Stark et al. (2012) have succeeded
to experimentally demonstrate deep-UV SC generation down to 280 nm—the
current record for SC generation in solid-core silica fibers. In these experiments,
summarized in Fig. 6.12, the pump pulses are launched in the normal dispersion
regime at the input face of the fiber, but undergo soliton fission in the anomalous
dispersion of the taper waist, where the nonlinearity is strongly enhanced. In order
to achieve this, a PCF with high air-filling fraction (d/�= 0.85) and single ZDW at
1040 nm was tapered from an original core diameter of 5.4 μm down to ~620 nm
using taper transition lengths of ~20 mm. The 130 fs, 50 kW peak power pump
pulses are launched at 800 nm in the normal dispersion regime of the original
fiber and experience SPM broadening. During propagation, the ZDW shifts toward
shorter wavelengths as the fiber diameter decreases, and eventually sweeps across
the pump pulse. The pulse, now experiencing anomalous dispersion and the high
nonlinearity in the waist, undergoes a strong temporal compression to up to ten times
higher peak power than the input pulse. Eventually soliton fission dynamics take
place, generating the short wavelength components down to 280 nm. The energy
conversion efficiency from the pump to UV (<400 nm) is about 20%.

The fundamental limit of the UV generation in solid-core silica fibers is
ultimately given by both linear and nonlinear absorption in the material, defined
by the relation
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Fig. 6.12 (a) Simulated spectral evolution of SC generation in a 24-mm-long PCF taper, pumped
by 110 fs, 50 kW pulses at 800 nm. The black lines show the evolution of ZDWs as the fiber
core diameter decreases from 5.4 μm to 620 nm. (b) Experimental results from PCF tapers with
different lengths. The lower spectral boundary is 280 nm. (Reproduced with permission from Stark
et al. (2012). © The Optical Society)

−∂I
dz

= α (ω) I + β (ω) I 2, (6.7)

where α(ω) and β(ω) are the frequency-dependent coefficients of linear and two-
photon absorption (TPA), respectively, and I is the intensity. Although α rises
sharply at UV wavelength in silica, it typically remains below 0.1 dB/cm and
therefore almost negligible when considering a short taper as above. The TPA
threshold, however, is reached at approximately 250 nm and causes an exponential
increase in β (Brimacombe et al., 1989; Taylor et al., 1988). While the loss due to
TPA depends on the intensity and hence the experimental conditions, Stark et al.
(2012) estimated it to be as high as 100 dB/mm for their experiment described
above. Such a strong attenuation would, of course, represent a hard barrier for
any experiment, and therefore it seems hard to imagine a significant further UV
extension of SC generation in solid-core silica fibers.

Further extension is possible in other fiber materials, and conventional SC
spanning 200–2500 nm in ZBLAN PCF has been demonstrated (Jiang et al.,
2015). However, hollow-core fibers filled with noble gases have emerged as the
most successful approach for generating considerable spectral power density and
powerful ultrashort pulses in the deep-UV hollow-core fibers filled with noble gases.
Such fibers guide the light in the gas with minimal overlap with the silica cladding,
avoiding the material-induced nonlinear absorption (Markos et al., 2017).
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6.6.3 Mid-Infrared Spectral Region

We mentioned in Sect. 6.5.1 that the achievable bandwidth toward the mid-infrared
(mid-IR) spectral region is limited with the traditional hexagonal silica PCF designs.
For the extension of ANDi SCs toward the mid-infrared (mid-IR) spectral region,
different fiber designs have to be considered. Since the material dispersion of
silica is anomalous but fairly low and flat above 1300 nm, it can be compensated
by modest waveguide dispersion and hence a relatively low refractive index step
between core and cladding material, which can be realized also in standard solid
silica fiber by doping a small diameter core with GeO2, for instance. In their early
work, Hori et al. (2004) and Nishizawa and Takayanagi (2007) could demonstrate
broadband SC generation spanning up to 2.1 μm in such highly nonlinear fibers with
extremely flat and low normal dispersion in most of the near-IR region, but pumping
required more complex schemes and not much detail was given about fiber design
and composition.

Ultimately, new fiber materials need to be introduced in order to realize ANDi
fiber designs at wavelengths of 2 μm and beyond, where silica is intransparent.
Soft glass materials offer low losses in the mid-IR and ZDWs between 1.6 μm
for fluoride and 5 μm for chalcogenide glasses (Price et al., 2007). The variety
of available soft glass materials provides a whole new dimension for the design of
ANDi fibers at mid-IR wavelengths, because significant dispersion design flexibility
is given not only by the inclusion of air-hole microstructures but also by combining
glass materials with different characteristics in all-solid designs. An excellent
example how this design freedom offered by soft glass materials can be exploited is
given by the work of Klimczak et al. (2014), who realized ANDi SC generation in
the range 900–2300 nm in an all-solid PCF combining commercial N-F2 glass used
for the core and lattice structure with an in-house synthesized, thermally matched
boron silicate glass used for lattice filling (Martynkien et al., 2014; Stepien et al.,
2014). Of course, the SC has the typical excellent coherence and temporal properties
associated with ANDi fibers, and the overlap with the amplification bandwidths of
both thulium- and holmium-doped fiber amplifiers offers intriguing prospects for
ultrafast coherent seeding and few-cycle pulse generation at wavelengths around 2
μm, which we discuss in Sect. 6.7.1. The design freedom offered by this approach
is more comprehensively reviewed by Klimczak et al. (2017) as well as in Chap. 15
of this book.

Large freedom in dispersion design can not only be achieved in microstructured
fibers but also in solid step-index fibers by combining core and cladding glasses
with large refractive index difference and choosing an appropriate core size (Poletti
et al., 2011). Chalcogenide glasses are good candidates for this approach as they
exhibit extremely large refractive index variations depending on their composition,
and additionally offer a transparency window covering the molecular fingerprint
region up to 12 μm and above as well as orders of magnitude larger nonlinearity
than silica (Price et al., 2007). A fiber design using these beneficial properties in
an ANDi fiber context is shown in Fig. 6.13. It consists of Te-based chalcogenide

http://doi.org/10.1007/978-3-031-06197-4_15
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Fig. 6.13 (a) Dispersion profiles of a chalcogenide step-index fiber (Ge20As20Se15Te45 core,
Ge20As20Se20Te40 cladding) in dependence of the core diameter. Effective dispersion control can
be achieved by tapering the fiber to the desired size. (b) Robust handling of the tapers enabled
by the polymer coating. Insets show microscope images of the taper in different regions. (c)
Experimental measurement of the SC spectrum generated in a taper with 13.4 μm waist, pumped
with pulses of about 150 fs duration at different central wavelengths. (Adapted with permission
from Zhang et al. (2019). © The Optical Society)

core and cladding glasses with numerical aperture NA ≈ 0.4, embedded in a
thermally matched polymer jacket (Zhang et al., 2019). The compatibility of thermal
and mechanical properties of the three materials enables the tapering of this fiber
in its entirety, i.e., without removing the polymer, which makes these devices
mechanically extremely robust and in practice allows the precise control over
the fiber dimensions via straightforward post-processing (Shabahang et al., 2013).
By choosing an appropriate core diameter in the taper waist, ANDi profiles with
MDWs between 7 and 8 μm can be realized, as illustrated in Fig. 6.13a. When
pumped by 150 fs pulses with central wavelengths in the range 4.5–6.5 μm, SC
spectra covering the range 2–12 μm were generated (Zhang et al., 2019) (Fig.
6.13c). Similar experimental results were obtained by Wang et al. (2017) in As-
S-based chalcogenide fiber tapers, albeit with slightly narrower spectral bandwidth.
Several other, more complex ANDi fiber designs have been proposed for increased
flatness or other pump wavelengths (Baili et al., 2014; Ben Salem et al., 2016). In
combination, these efforts represent important steps toward fiber-based broadband
coherent and ultrafast photonics in the mid-IR, but the realization of birefringent
fibers in this wavelength regime remains a challenge.



6 All-Normal Dispersion Fiber Supercontinuum: Principles, Design. . . 329

6.7 Selected Application Examples

It is clear that SCs generated in ANDi fibers will be particularly relevant for
applications in which the spectral uniformity, the temporal profile, or the stability
of the continuum is of importance and that have hence struggled to incorporate
the noise-sensitive and complex conventional SCs. Two salient areas stand out and
have received particular attention: ultrafast photonics and advanced imaging and
spectroscopy. We therefore discuss them in more detail in this section.

6.7.1 Ultrafast Photonics

The generation and application of short laser pulses is at the heart of ultrafast optics,
and the motto “shorter is better” usually applies. Today, laser pulses containing only
a few or even just a single oscillation of the light field1 enable the time-resolved
study of fundamental processes in physics, chemistry, and biology (Kärtner, 2004),
or drive the generation of coherent soft X-rays and attosecond pulses, which open
up new frontiers in atomic spectroscopy (Krausz & Ivanov, 2009). Although Ti-
sapphire oscillators are commercially available that can deliver few-cycle pulses
directly in the near-IR, these systems are costly and sensitive to environmental
changes, and the shortest pulses have relatively poor quality, i.e., are accompanied
by pre- and post-pulses. Spectral broadening of longer femtosecond pulses in optical
fibers with subsequent external compression has therefore long been considered as
an inexpensive and robust alternative, and the extreme bandwidths of microstruc-
tured fiber SCs are particularly attractive. But although it is theoretically possible to
compress octave-spanning conventional SCs to single-cycle pulses (Dudley & Coen,
2004), in practice the sub-two cycle regime could never be reached and the pulse
duration remained above ~5.5 fs (Schenkel et al., 2005). Even when maximizing the
coherence using very short 15 fs pump pulses and only a few millimeters of fiber,
the noise sensitivity and the spectro-temporal fine structure are the main practical
limitations to reach the predicted Fourier-limited pulse durations.

These fundamental limitations do not apply to ANDi SCs, and consequently
numerous studies have investigated their compressibility. When considering non-
linear pulse compression based on solid-core optical fibers, the ANDi fiber design
has enabled:

(i) The highest compression ratio to the sub-two optical cycle regime. Liu et al.
(2012b) obtained a compression ratio of almost 30×, shortening 180 fs input
pulses to high-quality, near transform-limited 6.4 fs (1.8 cycle) pulses after
full phase compensation using a liquid crystal-based spatial light modulator
(SLM). This is an impressive result, transforming a compact and reliable

1 A single optical cycle has the duration λ0/c, e.g., 2.7 fs at 800 nm central wavelength.
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Fig. 6.14 Applications of ANDi SC sources in ultrafast photonics. (a) Generation of a single
cycle of light via compression of an octave-spanning ANDi SC. Up to 19 dB pre- and post-pulse
suppression (note the logarithmic scale!) and pulse durations as low as 3.7 fs (1.3 optical cycles)
were measured. Adapted with permission from Demmler et al. (2011). © The Optical Society. (b)
Measured spectrum of a Tm-/Ho-codoped chirped pulse fiber amplifier (CPFA) seeded by an ANDi
SC, which is generated by an ultrafast Er-fiber laser at 1550 nm. (c) Measured pulse at the output of
the all-fiber CPFA system. Adapted from Heidt et al. (2020). (d) Noise spectra of amplified pulses
in an all-PM CPFA implementation in comparison with the Er-fiber seed laser. The integrated RIN
of the ultra-low noise CPFA system is as low as 0.03% (10Hz–10 MHz). Adapted with permission
from Rampur et al. (2019). © The Optical Society

commercial 180 fs oscillator into a sub-two cycle pulse source. Even when
taking coupling efficiencies and losses in the compressor into account, the
compressed pulses can have more than 10× higher peak power than the pulses
available directly from the oscillator.

(ii) The best pulse quality. Demmler et al. (2011) demonstrated the compression
of an octave-spanning SC to Fourier-limited, single-cycle pulses with a quality
superior to any other technique. Almost 20 dB suppression of sub-pulses was
achieved, as shown in Fig. 6.14a. Similarly high-quality sub-two cycle pulses
could even be obtained using linear chirp compensation only, as Heidt et
al. (2011b) could demonstrate using a static chirped mirror compressor and
extremely short fiber lengths that limit the influence of higher-order dispersion.

(iii) The shortest pulse duration. Pulses as short as 3.67 fs (1.3 optical cycles)
were measured by Demmler et al. (2011) by recompressing an octave-spanning
ANDi SC using a SLM. This is the shortest pulse duration obtained from
nonlinear pulse compression in solid-core fibers to date.

Such sub-two cycle, high-quality ultrashort ANDi SC pulses are the ideal seed
source for ultra-broadband optical parametric chirped pulse amplification (OPCPA)
systems, and have consequently facilitated the generation of carrier-envelope phase
stable 5.0 fs pulses with up to 22 W average power at 1 MHz repetition rate
(Rothhardt et al., 2012). Such high-power few-cycle laser systems have already
enabled unique applications such as efficient generation of coherent soft X-ray
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radiation and isolated attosecond pulses at up to 0.6 MHz repetition rate (Krebs et
al., 2013). In the future, many more applications such as photoelectron spectroscopy
and XUV microscopy might benefit from modern high-power few-cycle lasers based
on amplified ANDi SC pulses (Rothhardt et al., 2017).

Low-noise ultrafast ANDi SC sources have recently also been considered as
seed source for the next generation of ultra-low noise high-power ultrafast fiber
amplifiers and frequency combs operating in the 2 μm spectral region. This
waveband is particularly important as stepping stone for the exploration of the
molecular fingerprint region in the mid-infrared via nonlinear frequency conversion.
Pumped by robust, turnkey mode-locked Er-fiber systems with ultra-low amplitude
and phase noise, ANDi fibers with MDW near 1550 nm were recently employed
in proof-of-principle experiments for low-noise spectral broadening into the 2 μm
region and subsequent coherent seeding of thulium (Tm)- or holmium (Ho)-doped
fiber amplifiers (Rampur et al., 2019; Heidt et al., 2020). Figure 6.14b shows the
spectrum of such an amplifier system with a -20 dB bandwidth of 320 nm and the
comparison to the ANDi SC seed. High-quality 66 fs pulses with 70 kW peak power
could be obtained at the output of the all-fiber system (Fig. 6.14c). When constructed
with highly birefringent ANDi fibers in an all-PM architecture, the amplified pulses
exhibit a RIN of only 0.03%, which is virtually identical to the Er-fiber seed laser
(Fig. 6.14d). These excellent noise characteristics are enabled by the suppression of
incoherent nonlinearities in the PM-ANDi fiber (as discussed in Sect. 6.5), as well
as by the coherent seeding of the entire amplifier gain spectrum with the broadband
ANDi SC, which effectively suppresses amplified spontaneous emission noise in the
amplifier. These results represent an order of magnitude improvement of amplifier
noise over comparable conventionally seeded implementations, overcoming the
major challenge limiting the further development and power-scaling of frequency
comb sources at 2 μm (Gaida et al., 2018).

Recent experiments also convincingly demonstrated the advantages of ANDi SC
over conventional SC in the construction of stabilized frequency combs (Nishizawa
et al., 2018). In combination with the progress of fiber amplifiers described above,
these studies have laid the foundations for exciting opportunities arising from using
ANDi SC seed sources for the next generation of ultra-low noise frequency combs
and ultrafast fiber amplifiers operating in the 2 μm spectral region and beyond in
the mid-IR.

6.7.2 Advanced Imaging and Spectroscopy

SC sources in the visible and near-IR have been commercially available for
over a decade, and are the excitation source of choice for a range of advanced
microscopy techniques, such as multiphoton- and stimulated emission depletion
(STED) microscopy (Wildanger et al., 2008). In optical coherence tomography
(OCT), SC sources facilitate high-speed, high-resolution 3D imaging across several
medical specialities, including ophthalmology and cardiology (Moon & Kim 2006).
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Pumped by high repetition-rate pico- or nanosecond pulsed lasers and equipped
with the high beam quality of optical fibers, the brightness of these fiber-based
SC sources is unparalleled. However, due to the stochastic nature of the nonlinear
processes involved in spectral broadening, these SC sources provide spatially but
not temporally coherent light and exhibit very large pulse-to-pulse fluctuations of
spectral amplitude and phase. This SC noise has become the predominating factor
limiting acquisition speed, sensitivity, and resolution in many applications (Jensen
et al., 2019).

The adaptation of low-noise ultrafast ANDi SC sources has therefore started
to push the boundaries in several spectroscopy and imaging modalities. Their
recent implementation in hyperspectral stimulated Raman scattering microscopy for
label-free, chemical-specific biomedical, and mineralogical imaging is particularly
impressive, as source noise is critically important in this technique and has excluded
the use of many other nonlinear spectral broadening schemes (Abdolghader et al.,
2020). In high-resolution spectral-domain OCT, ANDi SC sources have enabled, for
the first time, imaging limited by detection shot noise and not by SC source noise
(Rao et al., 2020). ANDi SCs are also starting to replace white light generation in
bulk media like YAG, sapphire, and CaF2 in ultrafast spectroscopy, removing the
need for expensive amplified laser systems (Kearns et al., 2019).

The combination of an ANDi SC source with a SLM-based pulse shaping
device and subsequent imaging or spectroscopy system has proven to be an
especially powerful and versatile tool in biophotonic imaging and spectroscopy
(Fig. 6.15a) (Tu & Boppart, 2013). It offers full digital and programmable control
over the spectro-temporal profile of the incident light field at the sample and allows
the realization of numerous coherently controlled applications in a single setup.
Conveniently, the incorporation of the pulse shaper facilitates the complete or partial
compression of the SC pulses at the sample position via digital algorithms, such
as multiphoton intrapulse interference phase scanning (MIIPS) and time-domain
ptychography (Tu et al., 2011; Dwapanyin et al., 2020). Of course, an additional
arbitrary spectral phase may be applied with the same pulse shaper to enable the
desired coherently controlled applications.

Using such amplitude and phase shaping of an ANDi SC, alignment-free and
programmable-contrast multimodal multiphoton microscopy of biological samples
over a broad spectral range becomes possible (Liu et al. (2012a); Dwapanyin et al.,
2020). Figure 6.15b illustrates such imaging of a human breast tumor. By carving
different spectral slices out of the SC and compressing the resulting ultrashort
pulses at the focus of a scanning microscope, selective and efficient nonlinear
optical imaging using three different modalities (two-photon fluorescence, second-
harmonic generation, and third-harmonic generation) was shown with a single beam
and an easily tunable setup. The enhanced multiphoton signals enable the selective
visualization of various intrinsic molecules and internal structures.

The full power of combining an ANDi SC source with a pulse shaper is
revealed when implemented in a modality that requires full coherent control
of the field incident on the sample, such as single-beam coherent anti-Stokes
Raman scattering (CARS) spectroscopy (Fig. 6.15c). Due to the coherence and
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Fig. 6.15 (a) The combination of ANDi SC source, SLM-based pulse shaping device, and
subsequent imaging or microspectroscopy system is a powerful setup in biophotonics. Multiple
coherently controlled modalities can be realized, including label-free nonlinear microscopy with
various contrast methods and single-beam CARS microspectroscopy. (b) Label-free multimodal
multiphoton imaging of human mammary tumor using compressed pulses from the ANDi
SC source. The image contains two-photon fluorescence (yellow), third-harmonic generation
(magenta), and second-harmonic generation (cyan) signals used as contrast methods. Represen-
tative image data from the study detailed in Liu et al. (2012a), courtesy of Y. Liu, H. Tu, and S.
Boppart, University of Illinois. (c) Schematic operational principle of CARS microspectroscopy
and experimental single-beam CARS spectrum of para-xylene. (Adapted with permission from
Viljoen et al. (2020). © The Optical Society)

ultrafast properties of the ANDi SC, pump, probe, and reference beam can be
carved from a single SC pulse, and using the pulse shaper, it is possible to
compress, stretch, and delay them independently as well as separating the coherent
information from the incoherent background (Liu et al., 2013; Tu and Boppart,
2014; Viljoen et al., 2020). Ultimately, the combination of multiphoton microscopy
and hyperspectral CARS imaging based on digitally programmable ANDi SC pulses
has led to the development of an extremely versatile platform for optical alignment-
free programmable-contrast imaging, offering the potential to translate stain-free
molecular histopathology for disease diagnosis into routine clinical use (Tu et al.,
2016). Even without the relatively expensive SLM device, broadband multimodal
CARS and multiphoton imaging systems based on ANDi SC sources have been
developed (Herdzik et al., 2020).

6.8 Conclusion

In this chapter, we provide a comprehensive review of SC generation in ANDi fibers,
fiber design possibilities, and related applications. While coherent SC generation in
normal dispersion fibers has been studied since the early beginnings of nonlinear
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fiber optics, the emergence of the ANDi fiber design concept has pushed the
obtainable bandwidths to magnitudes previously only known from anomalous
dispersion pumping. In combination with their high stability, the conservation of an
ultrashort compressible temporal pulse, and their uniform and flat spectral profiles,
ANDi SCs are a truly unique “white light” source whose full potential is yet to be
explored. The possibility to achieve these characteristics with relatively long pump
pulses and the relaxation of previously demanding pump source requirements to
maintain coherence increases availability and applicability of broadband coherent
SC sources.

It should have become clear that the ANDi fibers are an important complement
to the fibers with single ZDW conventionally used for SC generation, and both
have their unique advantages and drawbacks. Ultimately, the choice of fiber design
depends on the application demands. The ANDi design is preferable if coherence,
stability, temporal profile, or spectral flatness is required, but for a given input peak
power, the achievable spectral bandwidth is usually narrower in comparison with
anomalous dispersion pumping. For applications in which stability and the presence
of fine structure are less important, the classic approach of anomalous dispersion
pumping close to the single ZDW still provides the broadest achievable spectral
bandwidth and allows pump sources from the femtosecond to the CW regime. ANDi
fibers do not offer the same flexibility in the choice of pump source; the high peak
powers required for substantial spectral broadening put a practical limit on the pump
pulse duration and imply a sub-picosecond pulse source.

Highly birefringent ANDi fibers are emerging as the key-enabling technology for
the next generation of ultra-low noise ultrafast SC sources and are already beginning
to push the boundaries in several spectroscopy and imaging applications. From
our perspective this is really just the beginning of a movement that will see these
versatile sources of broadband, low-noise, and ultrashort pulses being used in an
increasing numbers of applications which so far were not able to use conventional
fiber-based SC sources due to their noise or complex temporal pulse shapes. It will
also be interesting to follow the further development of ANDi fibers made of soft
glass materials like chalcogenides, which will enable the extension of coherent and
ultrafast photonics based on optical fibers to the emerging mid-IR waveband.
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Chapter 7
Self-Focusing and Continuum
Generation in Gases

Paul B. Corkum and Claude Rolland

Abstract The chapter focuses on nonlinear optics effects produced in gases; in par-
ticular, continuum generation with 100 femtoseconds for different pressures arising
from gas ionization and n2 in Xenon. At high pressures continuum generation, self-
focusing, and conical emission occur similar to condense matter.

Keywords Gases · Nonlinear susceptibility · χ3 · Kerr index · n2 · fs · SPM ·
Pressure dependence · High pressures · Multiphoton · Ionization · Plasmas ·
Self-focusing · Xenon · Self-phase modulation · Continuum · Conical
emission · 4 wave · Moving-focus model · n2E2

7.1 Introduction

This book attests to the fact continuum generation has become both technically
and conceptually important. Discovered in 1970 (Alfano & Shapiro, 1970a, b),
continuum generation is a ubiquitous response of transparent materials (liquids,
solids, and gases) to high-power, ultrashort-pulse radiation. This chapter highlights
some of these aspects while presenting the sometimes unique characteristics of
continuum generation in gases. In addition, we introduce some related results that
reflect on the light-atom interaction at high intensities.

Gases are ideal media in which to study nonlinear phenomena, such as continuum
generation. The choice of low-density rare gases makes the nonlinearity simple
since the susceptibility will be purely electronic in nature. Experimentally, the
strength of the nonlinearity can be precisely controlled by varying the gas pressure.
Gases are ideal in another way. There is a strong conceptual link between the
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susceptibility and the transition probability. Since there is a lot of emphasis, at
present, on understanding multiphoton ionization in rare gases,1 concepts being
developed in this area can provide a framework for further advances of nonlinear
optics in general and continuum generation in particular.

In gases, the lowest-order contribution to the nonlinear susceptibility is
χ (3). The magnitude of the nonresonant χ (3) for the rare gases (Lehmeier et
al., 1985) and for many molecular gases is well known. For xenon n2 =(

3χ(3)1111/n
0 = 2.4 × 10−25 m2/V2 atm

)
, where the refractive index n is given

by n = n0 + n2E2 + · · · , E being the rms electric field. χ(3) is proportional to the
gas pressure.

This chapter is organized around the pressure-dependent strength of the nonlin-
earity. Much of the content originates from six experimental papers (Corkum et al.,
1986a, b; Corkum & Rolland, 1987, 1988a, b; Chin et al., 1988) describing related
work at the National Research Council of Canada.

Section 7.2 discusses the aspects of the experiment that are common to all parts
of the chapter.

Section 7.3 describes the interaction of ultrashort pulses with very low-pressure
gases. Low pressure ensures that nonlinear optics plays no role in the interaction
(Corkum & Rolland, 1988a; Chin et al., 1988). This allows the ionization properties
of xenon to be established. We will see that relatively high intensities are required
to ionize gases with ultrashort pulses (∼100 fs). In this way, we establish an upper
intensity limit for the nonlinear interaction in a purely atomic system.

Section 7.3 also introduces the concept of transient resonances. Although
transient resonances are a characteristic of the interaction of ultrashort pulses with
matter in the intensity and wavelength range discussed in this chapter, their role in
multiphoton ionization depends on the pulse duration.

As the gas pressure is increased, we enter the traditional realm of nonlinear
optics. If the intensity for the production of significant plasma is not exceeded,
changes to the spectrum of the pulse can be investigated under conditions where
self-phase modulation is the dominant mechanism. We will see in Sect. 7.4 that
high-order nonlinear terms must contribute to the spectral bandwidth if the laser
intensity reaches 1013 W/cm2 or higher (Corkum & Rolland, 1988b).

A qualitative explanation of why high-order terms must contribute to self-phase
modulation is given in Sect. 7.5.

At still higher pressures, the region of continuum generation (Corkum et al.,
1986a, b) and self-focusing (Corkum & Rolland, 1988b) is reached. Section 7.6.1
describes the spectral aspects of continua in gases. In particular, it shows that the
spectra are similar for condensed media and for gases.

The spatial characteristics of continuum generation are particularly striking
(Corkum & Rolland, 1988b). These are described in Sect. 7.6.2 with special

1 See, for example, papers in Multiphoton Ionization of Atoms (S.L. Chin and P. Lambropoulos,
eds.), Academic Press, New York (1984), and special issue on Multielectron Excitation of Atoms,
J. Opt. Soc. Am. B4, no. 5 (1987).
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emphasis on the role of self-focusing in continuum generation. There is a wide
range of conditions over which continua are produced with virtually the same
beam divergence as the incident diffraction-limited beam (Corkum & Rolland,
1987, 1988b). As the intensity or the gas pressure is increased, conical emission
is observed.

7.2 Experimental Aspects

Pulses of three different durations (22, ∼90, and ∼900 fs full width at half maximum
(FWHM)) were used in various parts of the experiment. This section discusses the
experimental aspects that are common to all parts of the chapter. Each subsection
includes experimental details of specific interest.

Laser pulses were produced by amplifying the output of either a spectrally
filtered synchronously pumped dye laser (900 fs) or a colliding-pulse mode-locked
dye laser (90 fs). The temporal, spatial, and spectral characteristics of the pulses
have been fully described (Corkum & Rolland, 1988a; Rolland & Corkum, 1986).
The wavelength of the 900-fs pulse was centered at 616 nm, and its bandwidth (�ν)
was slightly greater than the transform limit (�t �ν = 0.52;�t is the FWHM pulse
duration). The 90-fs pulse was centered at 625 nm and had �t �ν = 0.5. The pulse
durations were measured by autocorrelation and fit by a sech2 (90 and 22 fs) or to
a Gaussian (900 fs) pulse shape. After amplification the 90- and 900-fs pulses were
spatially filtered to ensure diffraction-limited beam profiles.

The 22-fs pulses were created from the 90-fs pulses using large-aperture pulse
compression techniques (Rolland & Corkum, 1988). The resulting 100-μJ pulses
were diffraction limited with a signal-to-background power contrast ratio of approx-
imately 30:1 (5:1 in energy). Compensation for the dispersion in all optical elements
(lenses, windows, beam splitters, etc.) was accomplished by predispersing the pulse.
Thus, the pulse measured 22 fs only in the target chamber and at the autocorrelation
crystal. Since the 350-Å bandwidth of the 22-fs pulse gives rise to serious chromatic
aberration in a single-element lens, an achromatic lens (f = 14.3 cm) was used to
focus the pulses into the vacuum chamber (and onto the autocorrelation crystal).

All focal spot measurements were made by either scanning a pinhole (900 and
90 fs) through the focus or observing the portion of the energy transmitted through
a pinhole (22 fs) of known diameter. Within the accuracy of the scans, the beam
profiles were Gaussian.

7.3 Multiphoton Ionization

Some time ago it was proposed (Bloembergen, 1973) that ionization could play a
major role in continuum generation though a time-dependent change in the plasma
density. Plasma density changes impress a frequency chirp on a transmitted pulse.
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However, to influence continuum generation (Corkum et al., 1986a, b) even to a
small degree by plasma production, there is a price to pay in energy absorption
and in the distortion of the spatial beam profile (Corkum & Rolland, 1988b). Since
we will show that these signatures of plasma production are not observed, we can
conclude that ionization plays no role in gaseous continuum generation. The absence
of ionization can be used to establish a maximum intensity in the laser focus where
the continuum is being generated and hence the maximum value of η2E2.

Continuum experiments were the first to indicate that it is difficult to ionize
xenon and krypton with ultrashort pulses (Corkum et al., 1986a, b) relative to
extrapolations of 0.53-μm, 1.06-μm experiments (l’Huillier et al., 1983) (25 ps).
Since the ionization threshold is a major uncertainty in continuum generation, we
have performed two experiments (Corkum & Rolland, 1988a; Chin et al., 1988)
whose specific aim was to study multiphoton ionization. The more recent and more
quantitative of these is described in this section (Chin et al., 1988).

Femtosecond pulses were focused into a vacuum cell filled with ∼4 × 10−6 torr
of xenon. Ions were extracted with an ∼80-V/cm static field into a time-of-flight
mass spectrometer. Data were obtained using a microcomputer, coupled to a boxcar
integrator that was programmed to accept only laser pulses within a narrow energy
range (±2.5%). The computer recorded and averaged the associated ion signals. The
intensity in the vacuum chamber was varied by rotating a λ/2 plate placed in front
of a polarizer (reflection from a Brewster’s angle germanium plate was used as a
dispersion-free polarization selector for the 22-fs pulse).

Figure 7.1 is a graph of the number of ions as a function of the peak laser intensity
for both rare gases and all three laser pulse durations. (Higher ionization states were
observed but not plotted since they were too weak.) The solid curves were obtained
from a modified Keldysh theory (Szöke, 1988). Although we did not measure the
absolute number of ions, we estimate the threshold sensitivity (the lowest ion signals
in Fig. 7.1) of our ion collector to be approximately 10 ions. The relative scaling
between experimental and calculated ion signals for Xe (Fig. 7.1) is consistent with
this estimate.

We performed this experiment to find the intensity at which ionization would
need to be considered in nonlinear optics experiments. Not only does Fig. 7.1 answer
this question qualitatively, but the agreement between theory and experiment allows
us to make quantitative predictions. However, the agreement raises an important
issue. How can a Keldysh theory, which assumes that resonances are unimportant,
be consistent with electron spectral measurements (Freeman et al., 1987) which
indicate that resonances play a major role in ionization? Because of the importance
of this issue for nonlinear optics, we discuss it below with respect to ionization and,
in Sect. 7.5, with respect to high-order nonlinear optics.

An important feature of the high-power light-atom interactions is the ac Stark
shift. At I = 1013 W/cm2, the laser field exceeds the atomic field (of hydrogen) for
all radii greater than R = 4 Å. At this radius the atomic potential is 3.8 eV below the
ionization potential. For R > 4 Å, it is appropriate to consider the electron oscillating
in the laser field as the lowest-order solution and the atomic field as a perturbation.
Nearly all excited states, therefore, have an energy of oscillations (ac Stark shift)
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Fig. 7.1 Ion yield of Xe for 900-, 90-, and 22-fs pulses. The solid curves are calculated from a
modified Keldysh theory (Szöke, 1988). The calculations give an absolute number of ions for the
measured focal geometry and the neutral gas density. The experimental number of ions is plotted
in relative units. The data have been positioned on the graph so as to emphasize the agreement
between experiment and theory. The error bars show the standard error of the experimental data

approximately equal to the ponderomotive potential (Uosc = (qE)2/2mω2 where q is
the electronic charge, ω is the laser angular frequency, and m is the electron mass).
At 1013 W/cm2 and 620 nm, the ponderomotive potential is approximately 0.4 eV.
Thus, resonances are transiently produced, and resonant enhancement of high-order
terms in the susceptibility will occur.



348 P. B. Corkum and C. Rolland

In view of the transient resonance induced in the medium, we might expect
resonances always to be important. However, small deviations from Keldysh models
appear only at relatively low intensities. Transient resonances appear to play a
significant role in the overall ionization rate over, at most, a limited intensity/time
range. (Note that detailed electron spectral measurements have so far been per-
formed only in the 1–3 × 1013 W/cm2 intensity range with ∼500-fs pulses (Freeman
et al., 1987).)

To understand why the contributions of transient resonances to ultrashort pulse
ionization should be so small, consider just how transient these resonances can be.
Assuming that all high-lying states move with the ponderomotive potential, we can
write the maximum rate of change of the ponderomotive shift as dU/dt)max =
2
√

2U0
(
ln (0.5)1/2/�t(0.5)

)
where U0 is the maximum value of the ponderomotive

shift during the pulse and a Gaussian pulse shape has been assumed. In the
case of the 90-fs pulse with a characteristic peak intensity of 1014 W/cm2,
dU/dt)max = 0.1 eV/optical cycle. In the even more extreme case of the 22-fs pulse,
the same peak intensity gives dU/dt)max = 0.4 eV/optical cycle.

The significance of such large ponderomotive shifts can be seen by considering
a two-level system. For a two-level system, both the pulse duration dependence
and the intensity dependence of the dephasing between the transition (transition
frequency = ωab) and the near-resonant harmonic of the laser frequency can be
estimated. For a constantly shifting transition, ωab + (dU/dt)t/h, the dephasing time
(T) is given by the condition that δφ ∼ 2π . That is, T ∼ (2 h/dU/dt)1/2 where
dU/dt is assumed constant. For a 90-fs pulse at 1014 W/cm2, T ∼ 13 fs. At the
same intensity T ∼ 6 fs for a 22-fs pulse. Resonances that last only a few cycles
are hardly resonances at all and can be expected to have only minor effects on the
overall ionization rate. Only for relatively small dU/dt can transient resonances play
an important role. They may account for the deviations of the experimental and
calculated curves observed in the 900-fs and low-power 90-fs xenon results.

The above discussion does not imply that transient resonances cannot lead to
observable nonlinear optical consequences. In fact, nonlinear optics may provide
one of the best methods of observing transient resonances.

In summary, these experiments show that ionization will be barely significant for
90-fs pulses at intensities of 1013 W/cm2. In addition, the slopes of the ion curves
in Fig. 7.1 indicate that a lowest-order perturbation expansion for the transition rate
(and, therefore, the susceptibility) will be incomplete for intensities greater than
∼3 × 1013 W/cm2 for 0.6-μm light. This intensity can be used to estimate the
maximum value of η2E2 that is experimentally accessible with 90-fs pulses.

7.4 Self-Phase Modulation

One of the most studied nonlinear processes with ultrashort pulses is self-phase
modulation. It is the basis of optical pulse compression, which is widely used
in femtosecond technology. In many cases continuum generation is believed to



7 Self-Focusing and Continuum Generation in Gases 349

be an extreme version of self-phase modulation. Thus, it seems natural to adjust
the strength of the nonlinearity by varying the gas pressure so that only modest
self-phase modulation occurs. We can then follow the magnitude of the spectral
broadening as the intensity or the nonlinearity is increased. Analogous experiments
can be performed in fibers by increasing the length of the fiber.

Self-phase modulation is more complex in unbounded media than in fibers
because, in unbounded media, self-phase modulation is inescapably related to
self-focusing. (This relationship ensured that pulse compression based on self-
phase modulation remained a curiosity until fiber compression became available.)
It is possible to minimize the effects of self-focusing by keeping the medium
shorter (Rolland & Corkum, 1988; Fork et al., 1983) than the self-focusing length.
High-power pulse compression experiments use precisely this technique to control
self-focusing (Rolland & Corkum, 1988). However, long before the self-phase
modulation has become strong enough to generate continua, the beam propagation
can no longer be controlled (Rolland & Corkum, 1988). In spite of this complexity,
most continua are produced in long, unbounded media. Much of the remainder of the
chapter addresses some of the physics issues associated with continuum production
in this kind of medium.

The self-phase modulation experiment (Corkum & Rolland, 1988b) was per-
formed with the 90-fs, 625-nm pulse with a maximum energy of ∼500 μJ. A
vacuum spatial filter with aperture diameter less than the diffraction limit of the
incident beam produced an Airy pattern from which the central maximum was
selected with an iris. The resulting diffraction-limited beam was focused into a gas
cell that was filled to s maximum pressure of 40 atm. We report here mainly on the
results obtained with xenon. However, where other gases have been investigated, we
have found similar behavior.

As the gas pressure or laser power is increased, spectral broadening due to self-
phase modulation is observed. In the η2 limit (i.e., terms of higher order than η2E2

are negligible) and neglecting dispersion, the spectral width depends only on the
laser power:

δλ)max ∼ 8
√

2η2P0

c2ε0τ exp(0.5)
+ δλ)init, (7.1)

where the power in the pulse is given by P = P0e
−(t/τ )2 and δλ)max and δλ)init

are the maximum and initial bandwidth of the pulse, respectively. All other symbols
have their conventional meaning. The factor exp(0.5) arises because the maximum
broadening for a Gaussian pulse occurs at t = τ/

√
2. It will be present in Eq. (7.2)

for the same reason. We can evaluate2 δλ)max for η2 = 2.4 × 10−25 m2/V2 atm
and obtain δλ)max = 3.9 × 10−7 Å/W atm. Equation (7.1) is valid only below the
self-focusing threshold.

2 η2 of xenon at atmospheric pressure was erroneously reported to be η2 = 4 × 10−26 m2/V2 in
Corkum et al. (1986a, b).
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Fig. 7.2 Spectral width of the radiation transmitted through a cell filled with 5, 10, and 20 atm of
xenon as a function of the peak laser power. The circles and squares represent data obtained with
an F/70 and an F/30 lens, respectively. The solid curves are plots of Eq. (7.2) with a saturation
intensity of 1013 W/cm2 corresponding to 1.5 × 108 W for the F/30 lens (ω0 = 21 μm)

Equation (7.1) shows that modifications of the nonlinearity can be observed
through an intensity dependence of the spectral broadening. The results obtained
with two different focusing lenses (F/70 and F/30) and a selection of pressures are
presented in Fig. 7.2. In all cases, the power was maintained below the self-focusing
threshold. The solid lines are a fit to the experimental data using Eq. (7.2) and a
saturation intensity of Isat = 1013 W/cm2:

δλ)max = 8
√

2P0

(2.1)c2ε0τ exp(0.5)

[
η2

1 + I/ (Isat exp(0.5))

]

+ δλinit. (7.2)

In Fig. 7.1, the saturation intensity of 1013 W/cm2 corresponds to a power of
1.5 × 108 W for the F/30 and 8 × 108 W for the F/70 lens. The dashed lines are
obtained using Eq. (7.2) and Isat = ∞. Compared to Eq. (7.1), a factor of 2.1 is
required in the denominator of Eq. (7.2) to fit the data. This factor is attributed to
uncertainties in the input parameters such as the value of η2, the pulse shape and
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duration (measured by autocorrelation), and approximations made in deriving Eq.
(7.1).

Saturation-like behavior of the nonlinearity could be caused by plasma produced
by ionization (Corkum & Rolland, 1988b). There are four experimental reasons
to believe that saturation is a fundamental phenomenon, not directly related to
ionization:

1. At 1013 W/cm2, sufficient ionization to modify the beam propagation by one
diffraction-limited beam divergence, or to modify the spectrum measurably,
would require ∼25% of the beam energy. We measure an absorption of less than
3%.

2. Ionization would produce asymmetric self-phase modulation since the plasma
would most affect the trailing region of the pulse. We observe a nearly symmet-
rical spectrum.

3. Figure 7.1 shows that insignificant plasma density is produced by I < 3 × 10
13 W/cm2.

4. Ionization would produce irreversible distortion of the transmitted beam profile.
In fact, beam distortion is frequently used as a diagnostic of ionization (Corkum
& Rolland, 1988a; Guha et al., 1985). We see little beam distortion.

7.5 Saturation of the Nonlinear Response in Gases

Since the nonlinear response is not modified by ionization, we must consider other
explanations. For xenon and 0.6-μm light, the first excited state is 4.2 photon
energies above the ground state. Any pulse duration or intensity-dependent changes
must come from higher-order terms. In the absence of resonances, high-order terms
should contribute to the nonlinear response approximately in the ratio χ (3)E2/χ (1).
At 1013 W/cm2, the ratio is ∼0.04. To explain the observations in Fig. 7.2, resonant
enhancement is required, and, as we have already indicated in Sect. 7.3, resonant
enhancements are inevitable.

In discussing transient resonances, we have already pointed out that bound
carriers in a high-lying resonant level respond as free electrons. It was just this
fact that required that the ac Stark shift be equal to the ponderomotive potential.
These bound electrons must reduce the refractive index as would truly free electrons.
Since the high-lying states are only transiently resonant, they are only virtually
occupied. Thus, aside from resonantly enhanced ionization, which is discussed
below, the reduced refractive index need not be associated with net absorption from
the beam. The change in refractive index due to bound electrons in high-lying levels
is equivalent to η2E2 when only 10−3 of the ground-state population is in these
levels. (It is interesting to note that the connection between the ac Stark shift and
the susceptibility, implicit in this description, can also be shown for a weakly driven
two-level system (Delone & Krainov, 1985)).
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It is essential to consider whether a transiently resonant population of 10−3 is
consistent with low ionization levels, since transiently resonant states in xenon
lie within one or two photon energies of the continuum. Resonantly enhanced
ionization of xenon has been observed in multiphoton ionization experiments with
∼500-fs pulses (Freeman et al., 1987). If we assign a cross section (Mainfray &
Manus, 1980) of σ = 10−19 (10−20) cm2 to the single-photon ionization from a
near-resonant state, we can calculate the ratio of resonantly excited electrons (Ne) to
free electrons (Ni) at an intensity of 1013 W/cm2 (Ne/Ni = -hω/σ Iτ ). The ratio for a
90-fs pulse is ∼3(30). Note the pulse duration scaling. Thus, the resonant population
can exceed the free-electron population for ultrashort pulses.

It may seem that the small cross section used above is in contrast to what
would be calculated from Keldysh-type theories (Szöke, 1988; Keldysh, 1965) for
1013 W/cm2, assuming an ionization potential of <1 eV. This apparent discrepancy
is explained by the fact that a transiently resonant electron is only weakly bound.
Since an unbound electron cannot absorb photons from a plane electromagnetic
wave, as we cross the boundary between an unbound and a weakly bound electron,
we should not expect the electron to absorb photons readily. (In the long-wavelength
limit, this is no longer valid because of the Lorentz force contribution to ionization.)

Values for σ are very poorly known experimentally, especially for levels near
the continuum. Recent UV measurements (Landen et al., 1987) for the krypton
4p5d and 4p4d levels (1 and 1.7 eV below the continuum) yielded values of
σ = 3 × 10−18 and 8 × 10−18 cm−2, respectively. These results satisfy the trend of
decreasing σ as the continuum is approached.

It is useful to reexpress the above discussion in more general terms. Many high-
order nonlinear terms will be enhanced by transient resonance due to the dense
packing of levels at high energies. Our qualitative description of the plasmalike
response of the electron is equivalent to summing a series of nonlinear terms.
It should be emphasized that transient resonances will influence all nonlinear
processes in this intensity range. Their effects could well exceed the nonresonant
contributions to the susceptibility. Note that enhancement of the nonlinear response
is also observed in partially ionized plasma due to excited state population (Gladkov
et al., 1987).

7.6 Self-Focusing: χ (3) Becomes Large

The modification to the nonlinear response of the medium that we have described
has important consequences for self-focusing. In Fig. 7.2 the highest-intensity data
points (for a given F-number and gas pressure) give approximately the threshold
above which the nature of the spectral broadening changes nearly discontinuously.
For F/70 optics this value is approximately a factor of 2 above the calculated self-
focusing threshold. A factor of 2 discrepancy is consistent with the correction factor
of 2.1 that we required to make Eq. (7.2) agree with experimental data. The critical
power is clearly not a useful parameter if the intensity at the geometric focus exceeds
1013 W/cm2.
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To ensure that self-focusing will be initiated, all remaining results are taken with
large F-number optics (F/200).

7.6.1 Spectral Characteristics of Gaseous Continua

When the beam intensity is increased above that plotted in Fig. 7.2, the wavelength
scale of the spectral broadening increases dramatically. In Fig. 7.3 typical multishot
spectra are plotted for the 70-fs and 2-ps pulses (with characteristics similar to the
90- and 900-fs pulses described previously) transmitted through a gas cell filled
with various gases. Shown in Fig. 7.3a are spectra for 30 atm of xenon illuminated
with 70-fs and 2-ps pulses, respectively. Figure 7.3b shows spectra for 40 atm of N2
(2 ps) and 38 atm of H2 (70 fs). The spectra in Fig. 7.3 are typical of spectra obtained
with all gases that we have investigated, provided only that the laser intensity was
sufficient to exceed the critical power for self-focusing.

The similarity in the blue spectral component for all the curves in Fig. 7.3 should
be noted. In fact, the blue spectral component is nearly universal for all gases that
produce continua regardless of the (above-threshold) intensity or pressure. (It is also
typical of a chaotic spectrum (Ackerhalt et al., 1985).) The red component, however,
varies with the laser and gas parameters. We have investigated the red cutoff only
with CO2 using femtosecond pulses. The maximum wavelength for 30 atm of CO2
exceeded the 1.3-μm limit of our S1 photocathode. (Because of an orientational
contribution to the nonlinearity, continua can be produced at a particularly low
threshold intensity with picosecond pulses in CO2.)

Figure 7.4 shows that spectral modulation is another characteristic of the
spectrum of gaseous continua. Modulation has been noted previously on the single-
shot spectra of gases (Glownia et al., 1986). Spectral modulation is a characteristic
of continua from condensed media as well (Smith et al., 1977). Figure 7.4 illustrates
the intensity and η2 scaling of the spectral modulation of a xenon continuum
as measured in the region of 450 nm. Figure 7.4a, b shows that the modulation
frequency is reproducible from shot to shot. The modulation depth is not always
as great as shown in Fig. 7.4. Figure 7.4c, d demonstrates that the modulation
frequency varies with η2E2 near the continuum threshold. However, in Fig. 7.4e–d,
we see that the simple η2E2 scaling is eventually lost at higher pressure-power
products. In all cases, the modulation frequency increases further from the laser
frequency. This behavior is in contrast with that expected for self-phase modulation
(Smith et al., 1977).

The characteristics of gaseous continua described so far are similar to those of
condensed-medium continua. However, the extra flexibility provided by pressure
dependence of the nonlinearity allows issues like the η2E2 dependence of the
spectral modulation to be addressed. We will see that it also allows us to correlate
self-focusing with continuum generation much more precisely than previously
possible.
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Fig. 7.4 Details of the single-shot continuum spectrum centered near λ = 450 nm illustrating the
spectral modulation on the continuum. (The horizontal scale for all traces except (f) is 137 Å/div.)
(a) and (b) (7 atm pressure of xenon) show the reproducibility of the spectral modulation. (c) and
(d) (14 atm pressure of xenon) show the η2E2 scaling of the spectral modulation. (c) was taken
with the same laser power as (a) and (b). (d) was taken with one-half the laser power of (a)–(c).
(e)–(g) (21 atm pressure of xenon) show that the η2E2 scaling is not valid well above the continuum
threshold. (e) and (f) were taken with the same laser power as (a)–(c). The wavelength scale in (f)
has been expanded by a factor of 10. (g) was taken with one-third of the laser power of (a)–(c)
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Fig. 7.5 Laser power multiplied by the gas pressure at the continuum threshold, plotted as a
function of the inverse of the laser power for different gases

As already mentioned, continuum generation showed a sharp threshold, below
which spectral broadening is described by Eq. (7.2) and above which full continua
are produced. The threshold power for continuum generation equals the self-
focusing threshold power to the accuracy to which the self-focusing threshold is
known. The functional dependence of the continuum threshold on laser power, gas
pressure, and the hyperpolarizability is also the same as that for self-focusing. This
dependence is shown in Fig. 7.5, where the product of the gas pressure and the laser
power at threshold for all gases investigated with the femtosecond pulse is plotted as
a function of the laser power. Comparing the pressure-power products for each gas,
we find that they are inversely proportional to the hyperpolarizabilites. Similar data
were obtained (but are not plotted) with the picosecond pulse. For the rare gases
and H2, the picosecond data would fit on their respective lines in Fig. 7.5. Both N2
and CO2, however, have lower thresholds than would be indicated from their purely
electronic nonlinearities. This is due to orientational effects that are important in
both gases.

7.6.2 Spatial Characteristics of Gaseous Continua

One might expect that spatial changes in a beam that has experienced at least
the onset of self-focusing would be severe. Considering that the spectrum of the
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Fig. 7.6 Near-field (top row) and far-field (bottom row) distributions of the beam after passing
through the gas cell. From left to right are shown the red spectral component (λ > 650 nm), the
beam with the gas cell evacuated, and the blue spectral component (λ < 525 nm)

beam is catastrophically modified, can we expect anything but a severely distorted
transmitted beam?

Figure 7.6 shows the near-field and far-field distributions of the beam after
passing through the gas cell. The first row is composed of reproductions of Polaroid
photos of the near-field spatial distribution as viewed through an ∼0.5-mm-wide
slit and recorded on an optical multichannel analyzer (OMA). The second row
shows far-field distributions recorded in a similar manner. From left to right are
distributions taken through a filter that blocks all wavelengths λ < 650 nm (left
column), with the gas cell evacuated (middle column), and through a filter that
blocks λ > 525 nm (right column). The left- and right-hand columns were obtained
with the gas cell filled with sufficient pressure to ensure that the laser peak power
exceeded the continuum threshold. On the basis of the spatial profile alone, it
is virtually impossible (with large F-number optics) to distinguish between the
presence and absence of self-focusing and continuum generation for powers near
the self-focusing threshold.

As the laser power is increased to approximately four times the continuum
threshold, conical emission is observed. At first the ring structure is simple, but
it becomes increasingly complex at higher powers. Figure 7.7 shows the ring
structure only slightly above the threshold for conical emission. Conical emission
was previously observed in condensed-medium continuum generation (Smith et al.,
1977; Alfano & Shapiro, 1970a).



358 P. B. Corkum and C. Rolland

Fig. 7.7 Conical emission as observed in the near field through the red (λ > 650 nm, left image)
and blue (λ < 525 nm, right image) filters

Figure 7.6 indicates that the transverse beam distribution is almost totally
reconstructed after self-focusing. The spatial reconstruction of the beam stands in
stark contrast to the catastrophic change in the initial spectrum. With such beam
reconstruction, it is natural to reexamine whether self-focusing was ever initiated.
Several reasons to associate continuum generation with self-focusing in gases are
listed below:

1. Conceptually, self-focusing is just the free-space spatial manifestation of self-
phase modulation. Since Eq. (7.1) is valid for large F-number optics, η2 must be
the dominant nonlinearity, rendering self-focusing inevitable. Of course, when
the intensity approaches 1013 W/cm2, η2 is no longer dominant.

2. The continuum threshold has approximately the same magnitude as the calcu-
lated self-focusing threshold. It also has the same functional dependence on the
gas pressure, laser power, and hyperpolarizability.

3. Conical emission has been predicted by the moving-focus model of self-focusing
(Shen, 1975). It is also a characteristic of a saturating nonlinearity (Marburger,
1975) and high-order nonlinear mixing processes. With large F-number optics,
all of these potential explanations of conical emission require self-focusing to
increase the peak intensity.

4. We have projected conical emission to its source and find that it originates from
the prefocal region. This origin can be graphically illustrated by placing a 3-
mm-diameter opaque disk at the geometric focus. Significant conical emission
escapes around its side.

5. The η2E2 dependence of the spectral modulation implies that η2 plays at least a
limited role in continuum generation.

6. In no case have we been able to observe continuum generation without the laser
power exceeding the calculated self-focusing power.
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7.6.3 Discussion

It is not possible to consider gaseous continuum generation as if it were produced by
self-phase modulation in the η2 limit alone. The conceptual link between self-phase
modulation and self-focusing makes this approach unrealistic. The very small value
of η2E2, even at the ionization threshold (Corkum et al., 1986a, b), gives additional
evidence that continuum generation is not only an η2 process.

There is a second conceptual problem. If plasma is not created (as we have
shown experimentally), then high-order nonlinearities are required to stabilize
self-focusing: consequently, η2 is no longer the dominant nonlinear term. (It is
interesting to note that nonlinear optics will be very different in the long-wavelength
limit, where the Lorentz force severely limits the lifetime of most high-lying states.)

Out of this apparent complexity, however, very simple and near-universal
behavior emerges. This simple behavior will have to be explained by continuum
theories. In particular, theory will have to explain the periodicity of the modulation,
the spatial properties of the beam, conical emission, and the universality of the blue
spectral component of the continuum.

7.7 Conclusions

With the recent development of ultrashort pulses, it is now possible to perform
nonlinear optics experiments in new limits of intensity and pulse duration. Due to
the sweep of the focus, earlier self-focusing experiments may already have explored
this region, although unwittingly.

This chapter has described experiments explicitly performed to investigate
subpicosecond nonlinear optics. It described the first high-intensity experiments
performed with pulses as short as 22 fs and showed that ionization cannot be
described by perturbation theory for pulse durations shorter than 1 ps. It also
discussed the role of transient resonances in multiphoton ionization and in high-
intensity self-phase modulation experiments. For ultrashort pulses, these transient
resonances dominate the nonlinear optical response of gases in much the same
way that high-lying resonances dominate in partially ionized plasmas (Gladkov et
al., 1987) (presumably, the same is true in condensed media near the multiphoton
ionization threshold).

Continuum generation in gases (and indeed all nonlinear optical phenomena in
this intensity and pulse duration range) will be understood only in the context of
transient resonances and limited convergence of perturbation theory.

In conclusion, it should be emphasized that the observations in this chapter are
very much in keeping with the condensed-medium results. The difference is only
that gases show the properties of continua in such a dramatic form as to strongly
challenge conventional ideas of continuum generation.
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Chapter 8
Attosecond Extreme Ultraviolet
Supercontinuum

Qi Zhang, Kun Zhao, and Zenghu Chang

Abstract The chapter focus on a review of attosecond pulse generation and
characterization toward single attosecond pulse toward achieving isolate 25 as
pulses in gases. The mechanism toward HHG is discussed in terms of three-
step model and cutoff frequency in a classical approach of tunneling followed by
acceleration by driving laser electric field E(t) and electron return to parent ion with
odd HHG of attosecond pulse in return to atom. The conversion to HHG is on order
10−6. Several techniques are reviewed in XUV emission for HHG with discussions
of double gating method and phase-retrieval algorithms.
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8.1 Introduction

The generation of attosecond laser pulses requires a spectrum that spans an
ultrabroad range. One of the enabling methods in the generation of such attosecond
pulses is to use the frequency comb composed of hundreds of beat notes of
supercontinuum from rare gas medium irradiated by an intense laser pulse. It is
found that when an intense ultrafast laser beam is focused into a gaseous target,
hundreds of harmonic orders of the fundamental frequency of the driving laser
can be generated, extending the spectrum to the extreme ultraviolet (XUV) region
(Ferray et al., 1988; McPherson et al., 1987). This highly nonlinear process is termed
high-order harmonic generation (HHG), and the broadband spectra generated from
HHG can support a coherent light source with the pulse duration on the attosecond
(as) time scale (Chang & Corkum, 2010; Chini et al., 2014). Since the high-
order harmonic frequency comb is actually hundreds of beat notes of a series of
supercontinuum spectra, there are a train of attosecond pulses in the time domain.
If the train of the pulses can be truncated and only one single isolated attosecond
pulse is produced, the corresponding spectrum is a real supercontinuum without
any beat notes. We note here that, by the most restrictive definition, the attosecond
pulse discussed here is not a laser pulse because there is no amplification of
stimulated emission of radiation involved in the final generation process. However,
the attosecond pulses produced by HHG are a kind of light radiation highly coherent
in both space and time. In this sense, we refer to the coherent attosecond pulse as a
laser pulse.

Since the first observation of attosecond pulses in 2001 (Hentschel et al., 2001;
Paul et al., 2001), attosecond science has been a hot topic in the ultrafast community.
Due to the unprecedented temporal resolution achievable by attosecond pulses in
pump-probe spectroscopy, attosecond XUV pulses have been used to study fast
electron dynamics in atomic, molecular, and condensed-matter systems (Baker et
al., 2006; Cavalieri et al., 2007; Hentschel et al., 2001; Pfeifer et al., 2008; Sansone
et al., 2010). High-order harmonics from a linearly polarized driving laser form
a train of attosecond pulses. However, for studying electron dynamics, it is much
more desirable to have a single attosecond pulse, which corresponds to a continuous
spectrum in the frequency domain. The generation of a single attosecond pulse
has attracted many significant interests (Feng et al., 2009; Gilbertson et al., 2010;
Goulielmakis et al., 2008; Itatani et al., 2002; Kienberger et al., 2004; Mashiko et
al., 2008; Sansone et al., 2006; Zhao et al., 2012). In 2001, a single attosecond
pulse was first demonstrated. In 2008, 80 isolated attosecond pulses were realized
(Goulielmakis et al., 2008). Most recently in 2012, a single 67 as pulse was
generated, claiming the shortest optical pulse ever created (Zhao et al., 2012).

In this chapter, some of the most important advances in single attosecond pulse
generation and characterization are reviewed. Section 8.2 introduces the basic
concepts of HHG, which is the process for generating broadband spectra in the
XUV region, and a semiclassical model for understanding the mechanics behind
HHG. With this simple model, several characteristic parameters for HHG such as
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the cutoff harmonic are calculated. In Sect. 8.3, several techniques for extracting
single attosecond pulses from the pulse train are described. Among them, the Double
Optical Gating (DOG) method is discussed in most detail. Section 8.4 focuses
on two phase-retrieval algorithms for temporal characterization of an attosecond
pulse. In Sect. 8.5, an experimental setup with a high-resolution electron energy
spectrometer for attosecond streaking built at the Institute for the Frontiers of
Attosecond Science and Technology (iFAST) is introduced, and simulations on
the spectrometer resolution are compared with experimental results. In Sect. 8.6,
some of the most recent progress toward the generation of isolated 25 as pulses is
discussed. Finally in Sect. 8.7, a summary of the chapter is given, and paths for
future work are brought up for consideration.

8.2 High-Order Harmonic Generation

High-order harmonic generation was first observed in late 1980s (Ferray et al.,
1988). A 1067 nm, 50 ps laser was focused on an argon gas target, and a series
of odd order harmonics of the driving laser was observed. This process has been
understood through the so-called three-step model, a semiclassical picture involving
an electron in an atom that is tunnel-ionized, accelerated, and finally recombined
with the parent ion in a laser field (Corkum, 1993). The kinetic energy gained
during the acceleration is released as the energy of a photon. A schematic drawing
of this process is plotted in Fig. 8.1a. The recombination happens within a laser
cycle, and repeats itself every half cycle. Therefore, only odd order harmonics can
be observed. The generated spectra can cover up to thousands of harmonic orders,
reaching keV photon energy (Popmintchev et al., 2012; Seres et al., 2005). A typical
XUV spectrum from HHG is shown in Fig. 8.1b. A fast drop in signal strength is
observed in the first few orders followed by a relatively flat plateau. After that,
an abrupt drop is observed near the cutoff. This rather simplified model has been
demonstrated to be particular useful, although a fully quantum-mechanical model
should be used when accurate simulation of the HHG process is needed.

For a simple discussion, we consider a plane wave driving laser, linearly
polarized in the x-direction, whose electric field at a given spatial point can be
expressed by

ε(t) = E0 cos (ω0t) . (8.1)

In the first step, a ground-state electron tunnels through the potential barrier.
We assume that the ionization happens instantaneously, and the initial position and
velocity of the electron are both zero. We further assume in the second step that the
Coulomb field of the atom is neglected for calculating the electron trajectory. The
electron motion is treated classically
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Fig. 8.1 (a) A schematic
drawing illustrating the
three-step model (i) Tunnel
ionization. (ii) Acceleration
by the driving field. (iii)
Recombination with the
parent ion. (b) A schematic
plot of a typical intensity
spectrum from high-order
harmonic generation

d2x

dt2
= − e

m
ε(t) = − e

m
E0 cos (ω0t) , (8.2)

where e and m are the electron charge and mass, respectively.
We can hence solve the differential equation, finding that

v(t) = dx

dt
= − eE0

mω0
[sin (ω0t)− sin (ω0t0)] , (8.3)

x(t) = eE0

mω2
0

{[cos (ω0t)− cos (ω0t0)] + ω0 sin (ω0t0) (t − t0)} . (8.4)

Here, t0 is the time that electron is freed. In the third step, the electron recombines
with the parent ion at x = 0 and emits a photon, whose energy can be calculated by

�ω(t) = Ip + 1

2
mv2(t) = Ip + 2Up[sin (ω0t)+ sin (ω0t0)]

2, (8.5)
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Fig. 8.2 (a) Numerically
calculated recombination
time as a function of the
emission time for
tunnel-ionized electron. (b)
The kinetic energy of the
returned electron before it
recombines with the parent
ion, as a function of the
emission time

where Ip is the ionization potential of the atom and Up is the ponderomotive energy
defined by

Up = (eE0)
2

4mω2
0

. (8.6)

If we set x(t) = 0 in Eq. (8.4), it can be seen that once we know the ionization
time t0, we are able to obtain the recombination time t. The relation between the
recombination time and ionization time is plotted in Fig. 8.2a. The fact that the
returning time spans over 0.75 laser cycle suggests that the emitted pulse may last
for 2 fs for an 800 nm Ti-sapphire laser.

The kinetic energy of the returning electron can be calculated as

K = 2Up[sin (ω0t)+ sin (ω0t0)]
2. (8.7)

Plotting the kinetic energy vs. emission time in Fig. 8.2b shows that the
maximum kinetic energy is Kmax = 3.17Up, which is carried by the electron released
at ω0t0 = 0.05 × 2π rad and returns at ω0t = 0.7 × 2π . Thus, the maximum photon
energy emitted from HHG is
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�ωmax = Ip + 3.17Up. (8.8)

The ponderomotive energy Up can be expressed as

Up [eV ] = 9.33 × 10−14I0λ
2
0, (8.9)

in which I0 is the peak intensity of the laser in W/cm2 and λ0 is the wavelength of
the driving laser in μm. For example, for neon gas, Ip = 21.6 eV. The peak intensity
from a Ti-sapphire laser can reach 1015 W/cm2, and hence the corresponding cutoff
photon energy can be 200 eV.

Moreover, from Fig. 8.2b, two important features of the HHG can be observed.
First, each kinetic energy corresponds to two different ionization/recombination
times, which means there are two trajectories contributing to the generation of
a given harmonic. Electrons ionized before the critical time ω0t0 = 0.05 × 2π
return later, so their trajectory is “long.” In contrast, electrons emitted later will
return earlier; therefore, the trajectory is “short.” The existence of two trajectories
further complicates the generation of isolated attosecond pulse. Fortunately, the long
trajectory can be suppressed by phase matching, and the two trajectories can be
separated by their different divergences so that the contribution of the long trajectory
can be removed from the final HHG signal. Second, electrons with different energies
recombine with parent ions at different times, causing the emitted XUV pulse
carrying an intrinsic chirp. For photons generated from the short trajectory, this so-
called attochirp is positive. In order to produce short attosecond pulses, the attochirp
must be carefully compensated. More discussion can be found in Sect. 8.5.3.

The three-step model predicts that the tunneling, acceleration, and recombination
processes occur once per half laser cycle, indicating that for a multi-cycle laser
pulse, an attosecond pulse train is generated with a period of half of an optical
cycle. A alternative model for HHG generation is given in Chap.17 based on electro
magnetic model. While attosecond pulse trains are useful, an isolated pulse is more
desirable for pump-probe experiments since contributions from pre- and post-pulses
can excite or ionize the target, thereby modifying the time-resolved experimental
results. In the next section, methods for generating isolated attosecond pulses are
discussed.

8.3 Isolated Attosecond Pulse Generation with Gating
Techniques

Ever since attosecond pulses were demonstrated for the first time in 2001, there
have been many schemes proposed for single attosecond pulse generation, including
amplitude gating (AG), polarization gating (PG), and double optical gating (DOG).
AG takes advantage of the fact that only the field close to the envelope peak of
a few-cycle laser contributes to the cutoff region. By filtering out all the low-
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order harmonics, 80 as isolated pulses were generated (Goulielmakis et al., 2008).
However, there are a few drawbacks to this technique. This gating method requires
a few-cycle laser (3.5 fs used in the work (Goulielmakis et al., 2008)), which is
difficult to achieve with high energy (>1 mJ). Besides that, since it filters out many
low-order harmonics, only the cutoff region can contribute to the attosecond pulse.
This condition significantly limits the achievable bandwidth for the supercontinuum,
since the cutoff region is typically only a small portion of the total HH spectrum.
On the other hand, PG and DOG loosen the requirement for the driving laser and
can generate continuum spectra even in the plateau region. Therefore, in this section,
more details are discussed about PG and DOG, especially DOG, which allows using
longer driving pulses and has demonstrated the generation of single 67 as pulses
(Zhao et al., 2012)—the shortest coherent optical pulse generated to date.

8.3.1 Polarization Gating

Polarization gating was first proposed by Corkum in 1994, and relies on the fact
that high harmonic generation efficiency is strongly dependent on the ellipticity of
the driving laser field (Corkum et al., 1994). In the original proposal, two laser
pulses with different frequencies were used. In 1999, Platonenko and Strelkov
suggested superimposing a left- and right-circularly polarized pulse for PG, which
requires only one central frequency (Platonenko & Strelkov, 1999). In 2006, PG was
experimentally demonstrated to generate single isolated attosecond pulses (Sansone
et al., 2006).

The ellipticity dependence of the HHG can be understood by the three-step
model. After the electron is ionized, it is accelerated by the laser field. A linearly
polarized field drives the electron back to the parent ion. However, if the generating
field is elliptically polarized, the electron can be steered away from the parent ion,
resulting in no recombination and hence no XUV emission.

Experimentally, gating a single attosecond pulse from a pulse train is accom-
plished by changing a linearly polarized, few-cycle laser pulse into a pulse with
time-varying polarization. By superimposing a right- and left-circularly polarized
laser pulse with a certain delay Td between them, a pulse that has circularly
polarized leading and trailing edges and a linearly polarized central portion is
created. This linearly polarized portion is where the gate opens, and the gate width
can be made shorter than a half laser period by manipulating the delay Td. For
example, for a Ti-sapphire laser at a 780 nm center wavelength, the gate width
should be narrower than 1.3 fs. In this scenario, only one single attosecond pulse
can be generated, leading to a supercontinuum spectrum in the frequency domain.

Experimentally this can be achieved by two simple optical elements. At first,
a linearly polarized driving laser is split into two perpendicularly polarized fields
with a birefringent plate. A delay between those two pulses is introduced by the
difference in the group velocities along the ordinary and extraordinary axes. The
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two delayed pulses are then converted to circularly polarized pulses with a quarter-
wave plate, resulting in a combined pulse with a time-dependent ellipticity.

Mathematically, the final pulse can be decomposed into two perpendicular
components called the driving and gating fields, expressed as (Chang, 2004)

Edrive(t) = E0

⎡
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(8.10)

Egate(t) = E0
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(8.11)

where E0 is the amplitude of the circularly polarized laser field with carrier
frequency ω0, pulse duration τ p, and CE phase ϕCE. Thus, the ellipticity is a
function of time and can be expressed as

ξ(t) = 1 − e
−4 ln(2)

Td

τ2
p
t

1 + e
−4 ln(2)

Td

τ2
p
t

(8.12)

Since we are only interested in the time range where the field is approximately
linear, a Taylor expansion of Eq. (8.12) about the center of the pulse, or t = 0,
keeping the first nontrivial term, yields:

ξ(t) =
∣
∣
∣
∣
∣
2 ln(2)

Td

τ 2
p

t

∣
∣
∣
∣
∣

(8.13)

Solving Eq. (8.13) for t and multiplying by 2 gives the gate width equation:

δtG ≈ ξth

ln(2)

τ 2
p

Td
, (8.14)

where ξ th is the threshold ellipticity for harmonic generation. To generate a single
attosecond pulse, the gate width must be less than half of the pump laser cycle. In the
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Fig. 8.3 (a) Delay of the first
quartz plate required for
generating single attosecond
pulses as a function of the
driving pulse duration. Black:
PG. Red: DOG. (b) The peak
intensity inside of the gate
assuming the peak intensity
of the linearly polarized input
pulse is 2 × 1015 W/cm2.
Black: PG. Red: DOG

instance of a Ti-sapphire laser where the optical period T0 is 2.5 fs and ξ th is ~0.2,
we can plot the required delay Td as a function of the input laser pulse duration,
as shown in Fig. 8.3a. Therefore, we can maintain a gate width of half the laser
cycle—even with a very long pulse—if the delay is properly chosen. Moreover, it is
also very important to know the peak intensity inside the gate, since this determines
the HH spectral bandwidth and attochirp. Obviously, higher intensity is preferred to
produce a broader bandwidth XUV source.

As shown in the black line in Fig. 8.3b, the maximum peak intensity inside the
gate (determined by the half-cycle gate width) is plotted as a function of the pulse
duration, assuming a linear peak intensity of 2 × 1015 W/cm2. It is easy to see that
shorter pulse duration requires less delay in the first quartz plate.

Besides the gate width, another necessary condition for HHG limiting the
pulse duration and peak intensity is that the ground-state population of the atom
responsible for attosecond light emission must not be zero. This means the electrons
in the ground state of the atoms cannot be fully ionized before the gate. With
the ADK model (Ammosov, Delone, and Krainov), we calculated the ionization
probability of neon as a function of the peak intensity inside the gate, assuming
PG is used with an input pulse duration of 7 fs (Ammosov et al., 1986). The
result is shown in Fig. 8.3a. Obviously, the highest intensity achievable with neon
gas for a driving field with 7 fs duration is 7 × 1014 W/cm2, corresponding to
a cutoff photon energy of 150 eV. Practically the measured bandwidth is usually
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narrower due to phase matching, and PG has not demonstrated the ability to produce
supercontinuum spectra with 150 eV or above. Alternatively, helium atoms can be
used as the generation target for higher-intensity pulses due to a higher ionization
potential. On the other hand, conversion efficiency of the harmonic generation is
greatly sacrificed. Therefore, it is preferred to obtain higher peak intensity in the
gate with neon atoms for higher photon flux.

8.3.2 Double Optical Gating

To reduce the leading edge ionization and still have an intense laser field inside
the gate, the double optical gating (DOG) technique was developed (Chang, 2007;
Gilbertson et al., 2008; Mashiko et al., 2008). The technique is a combination of
the two-color gating and polarization gating, which means a second harmonic was
applied in addition to the original polarization gating field. The second harmonic
field breaks the symmetry of the system, and only one attosecond pulse is generated
within one full optical cycle. A schematic plot of the driving and gating field of
DOG is shown in Fig. 8.4, showing a similarity to PG except for the weak second
harmonic field added to the driving field.

Fig. 8.4 Schematic drawings
of the (a) driving and (b)
gating field for double optical
gating technique. The blue
line in the (a) driving field is
second harmonic of the
gating field
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Fig. 8.5 The ionization probabilities of neon atom calculated from the ADK model as a function
of the peak intensity inside the gate. The pulse duration is assumed to be 7 fs, and the gate width
is calculated for PG and DOG to select a single attosecond pulse. Black line: PG. Red line: DOG

Compared to PG, one of the advantages of DOG is that much longer pulse
durations can be used for isolated attosecond pulse generation due to the full-cycle
gate width requirement, as shown in the red curve of Fig. 8.3a. Another advantage
is that for equal pulse durations, DOG allows the use of less delay time Td, hence
increasing the peak intensity inside the gate with the same pulse energy, as shown
in Fig. 8.3b with the red curve.

Most importantly, due to less delay time needed in the DOG, the ionization before
the gate is significantly reduced under the same peak intensity, as calculated by ADK
model and shown in the red curve of Fig. 8.5. In other words, this calculation shows
that a higher peak intensity inside the gate can be used for DOG than PG, which is
crucial for generating a broadband supercontinuum from HHG.

Experimentally it is simple to apply DOG (Gilbertson et al., 2008; Mashiko et al.,
2008). In place of the quarter-wave plate in PG, a combination of a quartz plate and
a β-BaB2O4 (BBO) crystal is used. The BBO generates a second harmonic from the
fundamental beam and forms a zero-order quarter-wave plate with the second quartz
plate.

8.4 Temporal Characterization of Attosecond Pulses

While the single attosecond pulse spectrum can be measured readily, determining
the pulse duration remains a challenge. Since the photon spectrum can be measured
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Fig. 8.6 (a) A schematic
drawing illustrating the
attosecond streaking by
scanning the delay between
the IR and the XUV pulses.
(b) The streaking trace
obtained by recording the
XUV photoelectron spectra at
each temporal delay. A single
60 as pulse and a 7 fs
streaking IR field is assumed.
The peak intensity for the
streaking field is
5 × 1011W/cm2

by recording the corresponding photoelectron spectrum, only the phase information
is needed for the complete characterization. In this section, the principle of the
attosecond streaking technique for measuring the spectral phase is introduced, and
two algorithms to retrieve the phase are discussed.

8.4.1 Principle of Attosecond Streaking

Traditional streak cameras have been used to image fast (femtosecond) electron
pulses by applying a fast-varying high voltage perpendicular to the flying electrons.
The electrons are then streaked depending on the time they experience in the fast-
varying voltage. The basic idea of the attosecond streaking is also similar, which
is to modify the momentum of the photoelectrons ionized by the XUV pulse by
applying a phase-locked femtosecond laser field, which is called the “streaking
pulse” (Itatani et al., 2002; Mairesse & Quéré, 2005). By scanning the delay
between the XUV and the streaking field as shown in Fig. 8.6a, a spectrogram
can be obtained, as plotted in Fig. 8.6b. This so-called streaking trace contains
the complete information needed for temporal characterization. The phase can be
retrieved through the reconstruction of the streaking spectrogram.
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8.4.2 Complete Reconstruction of Attosecond Bursts

In a streaking experiment, the attosecond XUV pulse is focused into a gaseous target
to generate a burst of photoelectrons. The photoelectrons are then streaked with a
few-cycle intense IR laser field, giving a momentum shift to the electrons. When
using a linearly polarized laser, the momentum change can be expressed as (Itatani
et al., 2002; Mairesse & Quéré, 2005)

� p(t) =
∞∫

t

eε
(
t ′
)
dt ′ = eAL(t), (8.15)

where AL (t) is the vector potential of the laser field. Then, the electron kinetic
energy is modulated, which can be measured with a time-of-flight (TOF) electron
spectrometer. As the temporal delay between the XUV and the streaking field is
altered, the so-called streaking trace can be measured, which can be expressed in
atomic unit as (Mairesse & Quéré, 2005)

S (W, τD) ≈
∣
∣
∣
∣
∣
∣

∞∫

−∞
dtEX (t − τ) d [p + AL(t)] e

iϕ(p,t)e−i(W+Ip)t
∣
∣
∣
∣
∣
∣

2

(8.16)

ϕ (p, t) = −
∞∫

t

dt ′
[
pAL

(
t ′
)

cos θ + AL
2 (t ′
)
/2
]
. (8.17)

where EX is the complex field amplitude of the XUV pulse, τ is the delay between
the XUV and streaking pulses, W is the kinetic energy of the photoelectron, and Ip

is the ionization potential of the target gas.
In Eq. (8.15), the momentum shift of the classical electron can be understood as

a phase modulation of the quantum electron wave packet by the laser field, which
is expressed in Eq. (8.17). To understand the physical mechanisms of the phase
modulation, we assume the momentum in (8.17) can be replaced by the central
momentum p0 and the dipole transition element d(p) to be constant since the energy
bandwidth of the ionized electrons is narrow compared to the central energy. This is
called the central momentum approximation (CMA). Under the CMA, we obtain:

S (W, τD) ∝
∣
∣
∣
∣
∣
∣

∞∫

−∞
dtEX (t − τ)G (t)e−i(W+Ip)t

∣
∣
∣
∣
∣
∣

2

(8.18)

where the gating function G(t) can be expressed as (assuming only electrons parallel
to the streaking field are detected)
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G(t) = exp

⎧
⎨

⎩
−i

∞∫

t

dt ′
[
p0AL

(
t ′
)+ AL

2 (t ′
)
/2
]
⎫
⎬

⎭
. (8.19)

The key replacement here is using the central momentum p0 instead of p from
the Eq. (8.17), resulting in a phase modulation independent of the momentum of
the electron. Under this approximation, the measured spectrogram has the same
form as a frequency-resolved optical gating (FROG) trace for femtosecond laser
pulse characterization. The phase modulation acts as a temporal phase gate in the
FROG language, which can be retrieved by the well-known principal component
generalized projections algorithm (PCGPA) (Trebino et al., 1997). This technique
is known as the complete reconstruction of attosecond burst (CRAB) (Mairesse &
Quéré, 2005).

The gate function here is a pure phase modulation, which can be written as
G(t) = e−iϕ(t), where the total phase ϕ(t) = ϕ1(t) + ϕ2(t) + ϕ3(t), with

ϕ1(t) =
∞∫

t

dtUp(t), (8.20)

ϕ2(t) = −
(√

8WUp(t)/ω0

)
cos (ω0t) , (8.21)

ϕ3(t) = (Up(t)/2ω0
)

sin (2ω0t) , (8.22)

and Up(t) = E2
0(t)/4ω

2
0 is the ponderomotive potential. Apparently, the kinetic

energy shift due to ϕ2(t) is

�W(t) = �ω(t) = dϕ2(t)

dt
= −

√
8W0Up(t) sin (ω0t) , (8.23)

where W0 is the central energy. A very efficient algorithm, PCGPA, can be used
to extract both EX (t) and G(t) from the streaking trace. It is very robust against
noise (Delong et al., 1994; Trebino et al., 1997; Wang et al., 2009). However, the
CMA must be obeyed for CRAB to perform correctly. When generating isolated
attosecond pulses with DOG, we can generate broadband continuous spectra at low
energy, thereby violating the CMA.

8.4.3 Phase Retrieval by Omega Oscillation Filtering

The CRAB technique assumes that the bandwidth of the attosecond pulse is much
smaller than the central energy of the photoelectrons. This central momentum
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approximation is needed to apply the FROG phase-retrieval technique developed
for measurement of femtosecond lasers, and it poses a limitation on the shortest
attosecond pulses that can be characterized at a given central photon energy.
Moreover, in the streaking model, high streaking laser intensity is needed for the
FROG-CRAB to retrieve the phase correctly (Gagnon & Yakovlev, 2009; Itatani et
al., 2002; Mairesse & Quéré, 2005). This intense streaking field can produce high-
energy photoelectrons through above-threshold ionization of the target atoms, which
would overlap with the XUV photoelectron spectrum, thereby preventing the phase
from being correctly retrieved.

In phase retrieval by omega oscillation filtering (PROOF), the mechanism of
phase encoding in the electron spectrogram and the method of phase retrieval are
different (Chini et al., 2010). For low streaking intensities, one can interpret the
streaking as the interference of electrons ionized through different pathways. As
explained in Chini et al. (2010), the electron signal at a given energy may come
from direct ionization from one XUV photon, one XUV plus one IR photon, and
one XUV minus one IR photon. Therefore, when the component of oscillation with
the dressing laser center frequency ω L is extracted, the phase angle of the sinusoidal
oscillation, α(v), is related to the spectral phases ϕ(ωv −ωL), ϕ(ωv), and ϕ(ωv +ωL)
of the three XUV frequency components separated by one laser photon energy and
the intensities I(ωv − ωL), I(ωv + ωL):

tan [α(v)] =
√
I (ωv + ωL) sin [ϕ (ωv)− ϕ (ωv + ωL)] − √

I (ωv − ωL) sin [ϕ (ωv − ωL)− ϕ (ωv)]√
I (ωv + ωL) cos [ϕ (ωv)− ϕ (ωv + ωL)] − √

I (ωv − ωL) cos [ϕ (ωv − ωL)− ϕ (ωv)]
(8.24)

The equation can be understood as the interference between the single-photon
(XUV only) and two-photon (XUV plus NIR) transitions from the atomic ground
state to the continuum state ωv − Ip (Fig. 8.7).

To retrieve the spectral phase difference, it is only needed to guess the spectral
phase that matches the modulation amplitudes and phase angles of the sinusoidal
oscillation. Then, retrieving the spectral phase from these oscillations reduces to
a minimization problem (Chini et al., 2010). Unlike FROG-CRAB, this PROOF
method does not use FROG phase-retrieval algorithms, and the central momentum
approximation is not needed. Furthermore, observation of this oscillation does not
require high streaking intensities, as only one NIR photon is needed to couple the
continuum states.

Initially, the PROOF algorithm was written to minimize only the difference
between the experimental phase angle and the guessed one. However, the robustness
against many practical parameters was untested. In contrast, the PCGPA algorithm
applied in the CRAB method has been demonstrated to be very robust against noise
and other imperfections. Therefore, it would be ideal to use the PCGPA algorithm
in the PROOF. In the limit of low streaking intensities, the streaking spectrogram is
given by
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Fig. 8.7 The principle of PROOF. (a) The spectra of photoelectrons ionized by the single
attosecond pulse are recorded as a function of delay. Any continuum state may come from three
different quantum paths: ωv, ωv + ωL, ωv − ωL. Therefore, the sinusoidal oscillation can be viewed
as the interference between different quantum paths. (b) Fourier transform of the spectrogram from
(a). The component with frequency ωL is selected for filtering. (c) Spectrogram obtained by inverse
Fourier transform of the filtered component. (Reproduced from Chini et al., 2010)

S′ (v, τ ) ≈ I0(v)+ IωL (v, τ )+ I2ωL (v, τ ) (8.25)

where IωL (v, τ ) and I2ωL (v, τ ) are two spectrograms oscillating with the streaking
laser frequency, ωL, and twice the frequency, respectively (Chini et al., 2010). Since
the spectrum and phase information is completely encoded in the modulation depth
and phase angle of the component IωL (v, τ ), we constrain the intensity of the
retrieved spectrogram using S′(v, τ ) only in the first iteration of the PCGPA. In
subsequent iterations, the I0(v) and I2ωL (v, τ ) from the previous guess are fed back
into the algorithm, along with the experimentally obtained IωL (v, τ ). In this way,
both the spectrum and phase of the XUV pulse can be simultaneously guessed to
match the modulation depth and phase angle of IωL (v, τ ), and comparison of the
final guessed spectrum to that of an independent measurement can be used to check
the accuracy of the retrieval. This method has been applied in retrieving the single
67 as pulse (Zhao et al., 2012).
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Fig. 8.8 Experimental configuration of the attosecond streak camera with a magnetic-bottle
energy spectrometer (MBES). BS beam splitter, QP quartz plate, M1–M7 silver mirror, M2 and
M3 focusing mirrors, GC gas cell, MF metallic filter, TM toroidal mirror, FM flat mirror, L focus
lens, HM hole mirror, MBES magnetic-bottle electron energy spectrometer

8.5 Experimental Configuration and Results

8.5.1 Magnetic-Bottle Electron Energy Spectrometer for
Attosecond Streaking

The experimental setup at the authors’ laboratory for attosecond streaking is shown
in Fig. 8.8.

Laser pulse of about 25 fs duration and 2 mJ energy with central wavelength
of 750 nm are produced at 1 kHz repetition rate by a home-built multi-pass Ti-
sapphire amplifier. A hollow-core fiber filled with neon gas is used to expand the
bandwidth by self-phase modulation, and six pairs of chirped mirrors compress the
fiber output beam to around 7 fs duration. The beam is then split into two arms by a
broadband beam splitter. The transmitted arm contains 90% of the total energy, and
is sent through the DOG optics and focused to a neon gas target to produce isolated
attosecond XUV pulses. The streaking arm (reflected, 10% of the total energy) is
temporally locked relative to the generation arm and recombined with the XUV
pulses by a hole-drilled mirror.

The laser field in the generation arm goes through two birefringent quartz plates
for implementing DOG and is focused by a convex (f = −150 mm) and a concave
mirror (f = 250 mm), whose effective focal length equals to 175 mm. Then, the
focusing beam passes a BBO crystal with a thickness of 141 μm, which forms a
zero-order quarter-wave plate with the second quartz plate. A neon gas cell with a
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backing pressure of about 0.1 bar is positioned roughly 1 mm after the laser focal
spot to promote good phase matching of the HHG.

The generated XUV pulses after the neon gas cell pass through a thin metal
foil (hundreds of nanometers thick) to filter out the residual driving light and
to compensate for the intrinsic XUV chirp. The XUV beam is then focused by
a grazing-incidence gold-coated toroidal mirror (f = 250 mm) through the hole
(diameter d = 2.5 mm) on a silver mirror to a neon gas jet located between the
entrance of the flight tube and the tip of a strong permanent magnet. The generated
photoelectrons are collected by a magnetic-bottle energy spectrometer (MBES).
The streaking IR beam travels the same optical distance and is focused by a lens
(f = 300 mm) to the same position as the XUV beam. The delay between the XUV
and streaking field is controlled in the streaking optical path by a piezo-transducer
(PZT) attached to one of the flat silver mirrors (M5). A 532 nm continuous-wave
laser co-propagates through both arms and generates a temporal interference pattern
once they recombine after the hole mirror, as indicated with green beams in Fig. 8.8.
The interference fringes of the green light are detected by a CCD camera to stabilize
the Mach-Zehnder interferometer to about 20 as RMS and to change the delay as
well (Chini et al., 2009a).

The magnetic-bottle (MB) TOF spectrometer was chosen for two reasons. First,
it has a high collection efficiency (Kruit and Read, 1983). The MB spectrometer
can record electrons up to a 2π steradian solid angle and hence increase statistics
of the experimental data significantly. As a comparison, for a half-meter-long field-
free TOF with a 50-mm-diameter microchannel plate, the collecting solid angle is
only 0.008 steradian. Second, it has a high resolution over a very broadband energy
range. For a regular TOF spectrometer, increasing the flying distance reduces the
collecting angle, hence limiting the longest flying distance in use, which results in a
limitation on achievable energy resolution. In MBES, flying distance is independent
of the collecting efficiency, giving a possibility of using a very long flying tube and
thereby obtaining a high resolution (Kruit and Read, 1983).

8.5.2 MBES Resolution

The principle of the MB spectrometer has been explained in details in previous
publications (Kruit & Read, 1983; Tsuboi et al., 1988). In our experimental
configuration, a strong rare earth magnet (NdFeB) and a conical pole piece made
of soft iron are used to create a bottle-shaped inhomogeneous magnetic field. The
electrons with different flying angles can be parallelized by the strong magnetic field
in about 100 mm. After that, a constant 10 G magnetic field from a solenoid guides
the parallelized electrons until they reach the microchannel plate for detection. The
flying tube after the parallelization is electronically isolated from the tube entrance,
and retarding potential can be applied to the flying tube to improve the resolution.

To evaluate the energy resolution of the MBES, the electron trajectories and
their flight times are traced by numerical simulations. As shown in Fig. 8.9a, for
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Fig. 8.9 (a) The calculated
ratio between measured
energy ETOF and initial
electron energy Ei as a
function of emission angle of
the photoelectron. (b) The
calculated response function
of 100 eV electrons with all
possible emission angles

monochromatic 100 eV electrons, the kinetic energy calculated from the flight time
depends on the emission angle of the photoelectrons relative to the axis of the
flight tube. This energy is termed as the “TOF energy,” to distinguish it from the
true initial kinetic energy of the photoelectrons. Clearly, for electrons emitted with
larger angles, the TOF energy is more deviated from the true value. For instance, the
TOF energy of electrons emitted at 107◦—the largest accepting angle of the current
setup—is 1.8% smaller than the true value for a 3-m-long TOF.

The angular distribution of the photoelectrons for a given target atom can be
expressed as

dσ

d�
∝ 1 + β

2

[
3cos2 (θ)− 1

]
, (8.26)

where dσ/d� is the differential photoionization cross section, θ is the emission
angle, and β is the asymmetric parameter (Kennedy & Manson, 1972). Neon atoms
are used in the simulations due to the large photoionization cross section and nearly
constant β value for energies above 40 eV (Kennedy & Manson, 1972). Using the
above equation and the results shown in Fig. 8.9a, we plot in Fig. 8.9b the TOF
energy distribution of monochromatic 100 eV electrons with all emission angles
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smaller than 107◦, which is referred to as the “response function” of the MBES.
The long tail in the lower energy part of the response function comes from the
electrons with large emission angles. We note that with this unique distribution, it
is not appropriate to define the energy resolution by the full width at half maximum
(FWHM) since it does not reflect the contribution of the long tail.

Although experimentally it is difficult to measure the spectrometer resolution
directly due to the lack of a narrowband light source, certain comparisons between
experimental results and simulations can still be made, and good agreements
between them are observed. A 25 fs pulse from the Ti-sapphire amplifier was
used to drive HHG to produce narrow harmonic peaks. Then, a 30 V retarding
potential was applied, as shown in Fig. 8.10a. For the harmonic peak around 33
eV, the measured spectrum should be the convolution of the response function
of the MBES and the XUV harmonic peak. Since the latter one is unknown, we
assumed a Gaussian spectrum in order to match the convoluted spectrum with the
measurement performed with 30 V retarding potential, as shown in Fig. 8.10b. Then,
the convolution can be done for the case of no retarding potential. The simulated
and measured spectra are plotted in Fig. 8.10c for comparison, and reasonably good
agreement was observed.

8.5.3 Generation of a Single 67 as Pulse

Up to now, we have presented the solution for generating broadband continua from
HHG and characterizing single attosecond pulses. Before 2012, the shortest single
attosecond pulses (with duration of 80 as) were generated from the cutoff region
of the high harmonic spectrum using the AG technique (Goulielmakis et al., 2008).
In our case, DOG allows the XUV continuum to cover both the plateau and cutoff
region, extending the available bandwidth. If the attochirp, which is positive for
photon emitted from the short trajectory, is properly compensated, even shorter
attosecond pulses can be obtained (Zhao et al., 2012). From the three-step model,
the attochirp is roughly a constant over the plateau region but increases rapidly at
both the low- (ωX < Ip) and high-energy (approaching Ip + 3.17Up) spectral regions
(Chang, 2007). Here ω X is the XUV photon angular frequency. Metallic filters are
used to compensate the intrinsic chirp as well as to block the remaining driving IR
laser. Within the transmission of many metallic filters, the group delay dispersion
(GDD) is typically negative at low photon energies of the transmission window and
gradually increases to positive at higher energies. Therefore, a metal filter usually
provides good chirp compensation only in the low-energy part of its transmission
window. Additional control over the spectrum and phase of the XUV continuum is
therefore needed (Henke et al., 1993; Ko et al., 2012; López-Martens et al., 2005).

As shown in Fig. 8.11, the GDD of a 300 nm zirconium (Zr) filter (blue dash-
dotted line) and the attochirp (red dashed line) calculated with a peak intensity of
1 × 1015 W/cm2 are plotted. It is shown that the GDD of the filter is negative
below 130 eV, which compensates the positive attochirp. However, above 130 eV,
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Fig. 8.10 (a) The narrow
harmonic peaks from HHG
driven by a 25 fs laser. Red:
no retarding potential. Blue:
30 V retarding potential. (b)
Harmonic peak around 33 eV
with 30 V retarding potential.
Blue solid: experiment result.
Black dash: simulation. (c)
Harmonic peak around 33 eV
with no retarding potential.
Blue solid: experiment result.
Black dash: simulation

no compensation can be made. Therefore, the spectrum (black solid line) should be
chosen to match the area where the attochirp is best compensated for generating the
shortest attosecond pulses.

In high-order harmonic generation, the observable spectrum is determined not
only by the response of individual atoms but also by the coherent buildup of the
XUV photons. As a result, the macroscopic cutoff is Ip + αUp, with α smaller than
3.17 depending on the experimental phase-matching conditions. Utilizing phase
mismatch, the single atom cutoff spectrum region with large attochirp that cannot be
compensated by the filter can be removed. Experimentally the phase matching can
be controlled by the gas pressure inside the gas target (Altucci et al., 1996; Huillier
et al., 1993).

The photoelectron spectra generated with DOG recorded by the MBES are shown
in Fig. 8.12. The driving peak intensity inside the gate is estimated to be 1 × 1015

W/cm2. It can be seen that when the neon backing pressure in the gas cell was tuned
from 0.03 to 0.33 bar, the cutoff photon energy was observed to decrease from 160
to 120 eV, corresponding to Ip + 2.6Up to Ip + 1.8Up. It can be seen from Fig. 8.11,
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Fig. 8.11 Attosecond intrinsic chirp compensated by a 300 nm Zr filter. The spectrum is specially
chosen to cover the area where the attochirp is best compensated. Black solid line: XUV spectrum
taken with 300 nm Zr filter. Red dashed line: intrinsic chirp of the attosecond pulses. Blue dash-
dotted line: GDD of 300 nm Zr filter

Fig. 8.12 XUV
photoelectron spectrum
generated by DOG in Ne gas
with six different pressures.
The length of the gas cell is 1
mm. The peak intensity at the
center of the polarization gate
is about 1 × 1015 W/cm2.
(Reproduced from Zhao et
al., 2012)

the backing pressure of 0.2 bar should be used in the streaking experiment, since
the spectrum under this condition matches well with the spectral range where the Zr
filter can best compensate the attochirp. The streaking trace taken with this spectrum
is shown in Fig. 8.13a, and retrieved spectrum and temporal phase are shown in
Fig. 8.13c, d, respectively. Both CRAB and PROOF methods were applied to the
experimental data, and the same results of single 67 as pulse were obtained. In Fig.
8.13b, the filtered streaking trace with one omega frequency IωL (v, τ ) is compared
with the retrieved one. The good agreement between those two indicates the validity
of the retrieval.
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Fig. 8.13 Characterization of a 67 as XUV pulse. (a) Streaked photoelectron spectrogram
obtained experimentally. (b) Filtered IωL trace (left) from the spectrogram in (a) and the retrieved
IωL trace (right). (c) Photoelectron spectrum obtained experimentally (thick gray solid) and
retrieved spectra and spectral phases from PROOF (blue solid) and FROG-CRAB (red dashed). (d)
Retrieved temporal profiles and phases from PROOF (blue solid) and FROG-CRAB (red dashed).
(Reproduced from Zhao et al., 2012)

8.5.4 Broadband Supercontinuum Generation with Lens
Focusing

In order to generate an even broader-bandwidth attosecond continuum, higher
intensity is needed inside the gate. The easiest way is to use a tighter focusing
configuration for the input driving laser. However, due to space limitations, further
shortening the focal length using the two-mirror configuration would introduce
significant astigmatism. To reduce the astigmatism, lenses can provide a good
alternative to mirrors if the input beam size and focal length are chosen properly
and the material dispersion is compensated (Porras et al., 2012).

Calculations were done with the parameters for our experiment, assuming a
transform-limited 7 fs input pulse and a 140 mm focal length lens. The beam waist
on the lens surface is set at 3 mm (Fig. 8.14).

It can be seen that even when the beam size at the lens is 3 mm (which allows
about 70% of the total power incident on the lens), the pulse duration and spectrum
are not significantly changed at the focus when the dispersion is pre-compensated.
Therefore, a lens can be used in generating supercontinuum spectra and single
attosecond pulses. A spectrum using the lens focusing configuration and measured
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Fig. 8.14 Performance of the
lens focusing a 7 fs TL input
pulse, with 3 mm waist on the
lens surface. (a) The electric
field in the temporal domain.
Red solid line: input field.
Blue dashed line: electric
field at the focus. (b) The
laser spectra. Red solid line:
input field. Blue dashed line:
electric field at the focus

with our TOF spectrometer is shown in Fig. 8.15. The cutoff extends to 180 eV
photon energy, which supports 40 as pulses.

8.6 Route to the Generation of Single 25 as Pulses

To generate 25 as pulses, which is about one atomic unit, significant challenges still
remain. First of all, a transform-limited 25 as Gaussian pulse has a spectral FWHM
of 75 eV, and its whole spectrum covers about 150 eV energy range. In order to
detect such a broadband spectrum, the spectrometer resolution becomes a critical
parameter. The imperfection of the spectrometer can smear out the small structures
inside the XUV photoelectron spectra and therefore deteriorate the accuracy of
the characterization. Second, to support 25 as pulses, ideally a photon spectrum
covering Ip to 170 eV should be used. However, no metallic filters available are
transparent within such a spectral window. Several filters can transmit over a 150
eV bandwidth only at the energy region near 500 eV or above, which is extremely
difficult to achieve. In this section, important progress which has been made just
recently at iFAST to address those two issues is discussed.
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Fig. 8.15 (a) The
supercontinuum spectrum
measured with a 140 mm
focal lens and a 300 nm
molybdenum filter. The cutoff
has extended to 180 eV
photon energy. (b) The
Fourier-transformed temporal
spectrum assuming TL pulse
for the spectrum in (a). The
FWHM is 40 as

8.6.1 Characterizing the Contrast of 25 as Isolated Pulses

When an isolated attosecond pulse is generated from the HHG, the main pulse
is always accompanied by pre- and post-pulses, usually referred to as satellite
pulses, albeit one gating technique or another is employed (Chang, 2005; Chini et
al., 2009b; Goulielmakis et al., 2008; Sansone et al., 2006). Usually the intensity
of those satellite pulses should be less than 10% of the main pulse, to avoid
disturbing the system under investigation by the attosecond pump-attosecond probe
experiments. The contrast of the attosecond XUV pulses can be retrieved from
attosecond streaking traces (Mairesse & Quéré, 2005). However, the effect of
the spectrometer resolution on the characterization accuracy needs to be studied
carefully, especially for 25 as pulse due to its ultrabroad spectral range.

To numerically study the retrieval effects, we considered the characterization of
a 25 as transform-limited (TL) Gaussian pulse, with central energy at 151 eV. It
has pre- and post-pulses with 1% intensity contrast to the main pulse. The satellite
pulses have 50 as pulse duration and are 2500 as away from the main pulse, as
depicted in Fig. 8.16a. The spacing equals to one optical period of the driving laser
centered at 750 nm, which is typical for the double optical gating (Chang, 2007). The
Fourier-transformed spectrum is shown in Fig. 8.16b, which extends from 30 eV to



386 Q. Zhang et al.

Fig. 8.16 Effects of the response function on characterizing satellite pulses (1% satellite pulse is
assumed). (a) The blue solid line shows the input temporal pulse. The red dashed line with dot is
the retrieved temporal pulse from the streaking trace. (b) The blue solid line shows the spectrum
of the input pulse, and the red dashed line is the convoluted spectrum in a 3 m TOF. Inset shows
the enlarged spectra from 120 to 140 eV

220 eV. The red dashed line in Fig. 8.16b represents the spectrum after convoluting
the spectrum with the MBES response function calculated with 3 m flight tube.
Since the response function is dependent on electron energy, the convolution is
done by multiplying each element in the spectral spectrum by its corresponding
response function, and then adding them together. Each response function has to be
normalized to its area before the multiplication to ensure the equal weight for all
energies. Immediately it can been seen that the interference depth is reduced, due to
the convolution.

Next, a streaking spectrogram is generated with the XUV pulse and a 5 fs, 750
nm near-infrared (NIR) streaking pulse which has a peak intensity of 5 × 1011

W/cm2. The spectrum at each delay in the streaking spectrogram is independently
convoluted with the response function. Then, the spectrum phase is characterized by
the CRAB technique, and the retrieved temporal intensity profile is plotted in Fig.
8.16a, as a comparison with the input pulse. It can be seen that the satellite pulse
contrast retrieved from the convoluted spectrum is only 0.16%, much smaller than
the 1% true value. The reason is the interference pattern between the satellite pulses,
and the main pulse is greatly smeared out by the response function. Therefore,
retrieval from the recorded spectrum significantly underestimates the satellite pulse
contrast (best seen from the inset of Fig. 8.16b).
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To improve the spectrometer resolution, one can increase the length of the
flight tube of MBES. Our simulation shows that with an 8-m-long flight tube, the
retrieved 1% satellite pulse is 0.36%. Even though the satellite pulse is retrieved
more accurately than with the 3 m flight tube, it is still three times smaller than the
real value.

Further increasing the flight tube could not significantly improve the energy
resolution because the error introduced during the increased flight distance starts to
play a role. Alternately, the response function of the TOF can be further improved
by eliminating electrons with large emission angles. Actually, in the attosecond
streaking experiment, electrons emitted with large angles are highly unwanted
because the streaking effects decrease with emission angle. Electrons emitted with
angles larger than 90◦ will be streaked to the opposite direction. Therefore, it would
be ideal to block the large angle electrons for both the benefit of the streaking data
quality and energy resolution. Given the fact that electrons with larger emission
angle deviate transversely away from the axis of the flight tube more as they fly
in the magnetic field, a pinhole can effectively block those electrons. Theoretically
the pinhole can be put anywhere between the generation point of the photoelectrons
and the electron detector. However, experimentally it is much easier to put it at the
beginning of the electron trajectory. We plotted the relation between the pinhole
size and the collection angle as shown in Fig. 8.17a, b. The pinhole size varies
from 0.15 to 0.4 mm and is placed 2 mm away from the electron birth place. Then,
the new response function with different pinhole size can be calculated from the
revised collection angle. Particularly, the response functions of 180 eV electrons for
0.25 mm pinhole in 8 m TOF are shown in Fig. 8.18. Comparing with the response
function without pinhole (red dashed line in Fig. 8.18), it can be seen that the long
tail of the response function is eliminated and the FWHM is 0.19 eV for the 8
m TOF.

To study the effects of the pinhole size on the accuracy of satellite pulse contrast
measurements, we simulated the streaking trace using the spectra convoluted with
the new response functions and plotted the retrieved satellite pulse contrast as a
function of pinhole size in Fig. 8.19. To compare, the real value is also plotted for
satellite pulses with intensities of 1% of the main pulses. This figure shows that as
pinhole size decreases, the satellite pulse characterization becomes more accurate,
as expected. Particularly, a 0.25 mm pinhole in an 8 m TOF can be chosen to retrieve
the satellite pulse ratio with less than 10% error. On the other hand, the collection
efficiency is also reduced to 15%.

8.6.2 Driving Laser Suppression with Microchannel Plate
Filters

In HHG, the driving IR pulse is converted to the XUV light source. However,
the conversion efficiency of this process is typically on the order of 10−6–10−5.
Therefore, the generated XUV coherent light has to be separated from the remaining
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Fig. 8.17 (a) Collection angle and (b) collection efficiency as functions of the electron energy for
different pinhole diameters

Fig. 8.18 Response function
calculated with a 0.25 mm
pinhole in the 8 m TOF, for
180 eV electrons (blue solid
line). The response function
without is plotted with red
dashed line for comparison

driving laser for detection and characterization. This has been proven to be a
technical challenge. Even though there are several methods for filtering out the
XUV pulse, all of them lose certain portions of the spectral component, significantly
limiting the spectral bandwidth available after the separation and hence ultimately
limiting the shortest attosecond pulse achievable (Falcone & Bokor, 1983; Frassetto
et al., 2008; Peatross et al., 1994; Takahashi et al., 2004). For example, a metallic
filter with hundreds of nanometers thickness is often used to block the IR and
transmit the XUV. However, the transmission window of the metallic filter is usually
limited. A 300 nm zirconium filter can only transmit photon energies above 60 eV,
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Fig. 8.19 Comparison of the
retrieved satellite pulse
contrast limited by MBES
resolution with real values.
The red line with circles
shows the retrieved contrast
with an 8 m TOF. The blue
line with diamonds shows the
real value of 1% contrast as a
comparison

and the transmission drops significantly near 300 eV. Another technique is to use
a specially designed dielectric mirror which reflects the XUV and transmit the IR.
However, this type of dielectric mirror can only reflect XUV pulses with a relatively
narrow bandwidth and a low reflectivity.

To address this issue, we proposed and demonstrated that a microchannel plate
can be utilized as a short-wavelength-pass filter. It can effectively block the IR
driving laser and transmit photons over a broad XUV and X-ray spectral region,
leading to the full use of the bandwidth generated from the HHG.

An MCP is made of millions of parallel glass capillaries which lead from
one surface to the other. The diameter of each channel is several micrometers,
comparable to the wavelength of the IR laser but much larger than that of the XUV or
soft X-ray. Therefore, the driving pulses propagating through the MCP are expected
to be strongly diffracted, while the high harmonics should be relatively unperturbed
after the MCP.

To demonstrate this scheme, the transmission of the MCP was measured at
different wavelengths, as shown in Fig. 8.20. Three types of lasers with visible
wavelength or longer were used in the measurement shown in Fig. 8.20b. The home-
built Ti-sapphire laser has a central wavelength of 750 nm and pulse duration about
25 fs, which is commonly used as the driving pulse for HHG. The ultrafast Mid-IR
laser is from a commercial TOPAS (Coherent, HE-TOPAS-Prime), with the central
wavelength of 1.6 μm and pulse duration of 50 fs. This type of laser is capable
of generating a much broader bandwidth supercontinuum from HHG due to the
cutoff extension by the long wavelength (Shan & Chang, 2001). The 532 nm laser
is a continuous laser with maximum output energy of 300 mW. The plot in Fig.
8.20 clearly shows that the zeroth-order transmission sensitively depends on the
wavelength of the incident beam, varying from the lowest transmission of 0.4% for
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Fig. 8.20 The zeroth-order transmission of the MCP for (a) XUV photons and (b) visible or longer
wavelengths. The red line in (a) is the transmission measured with 300 nm Zr filter and the blue
dotted line is with 300 nm Al filter

1.6 μm to 11% for 532 nm wavelength. For the Ti-sapphire laser which is used for
HHG in our current setup, the transmission is about 5%.

To separate the XUV and the driving pulse effectively, the transmission of the
two through the MCP must be largely different. The total MCP transmission in
the XUV spectral region has been measured to be as high as 60% for photon
energy from 50 eV to 1.5 keV (Cao et al., 2013), reaching the upper limit set
by the MCP opening ratio. For photons with even higher energy, the transmission
should be the same due to their shorter wavelength. In our scenario, only the zeroth-
order transmission should be used for studying ultrafast dynamics, and therefore
the transmission should be evaluated carefully. Experimentally, we placed the filter
in the same position as the metallic filter in our HHG beam line. Higher orders
of the diffracted light were blocked by the hole mirror, and eventually only the
zeroth-order transmission contributes to the photoelectron spectrum recorded by the
MBES.

To obtain the zeroth-order transmission of the XUV photons over the MCP,
photoelectron spectra with and without the MCP filter are measured under the same
condition. An Al filter and a Zr filter were used to block the IR driving laser and
to select different energy ranges. The results are shown in Fig. 8.20a. Within the
measured energy range, the transmission is about 25%. From Fig. 8.20, it is clearly
shown that the transmission is increasing for shorter wavelength, as expected. We
believe that for an XUV signal with higher photon energies, the transmission should
become larger and eventually reach the opening ratio of the MCP.

Even when the transmission of the MCP filter has been measured, it is still
important to compare the photoelectron spectra with MCP filter and metallic filters.
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Fig. 8.21 The photoelectron
spectra taken with MCP
(black), Al filter (blue), and
Zr filter (red) under the same
condition. The relative
intensities are adjusted to
shown the comparison

As shown in Fig. 8.21, the spectra taken with MCP filter, 300 nm aluminum (Al)
and 300 nm zirconium (Zr) filters under the same condition were plotted separately.
The spectrum taken with the MCP filter has shown discrete harmonics clearly, and
good agreement between the spectra with MCP and metallic filters can be observed.
The remaining energy of the driving laser after passing through the MCP filter is
less than 1 μJ due to the large diverging angle and does not noticeably affect the
photoelectron spectrum. This means it is possible to characterize the attochirp with
RABBITT or PROOF (Chini et al., 2010; Mairesse & Quéré, 2005).

This technique has greatly extended the bandwidth usable from the XUV super-
continuum generation and essentially paves the way for achieving an ultrabroadband
coherent XUV light source.

8.7 Conclusion and Outlook

In summary, we have discussed the latest frontiers in the generation and characteri-
zation of a single attosecond pulse from high-order harmonic generation. The double
optical gating method is developed to increase the intensity inside the gate and hence
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to extend the bandwidth of the attosecond XUV source. To overcome the bandwidth
limit set by previous phase-retrieving technique, the PROOF method is developed
to retrieve phase information for the complete characterization of ultrabroadband
attosecond XUV pulses. Experimentally, an electron energy spectrometer with high
resolution and collection efficiency was built for attosecond streaking experiment.
A 67 as isolated pulse was demonstrated in 2012. Finally, several important issues
regarding the 25 as single pulse measurement have been discussed in detail. The
spectrometer resolution is found to be greatly improved by placing a pinhole near
the entrance of the MBES, enabling the accurate satellite pulse contrast retrieval.
Additionally, an MCP filter was demonstrated for an ultrabroadband coherent light
source.

To further shorten the attosecond pulse duration and to obtain broader bandwidth
supercontinuum, few-cycle mid-infrared laser should be used for the extended HHG
cutoff and reduced intrinsic chirp. Technologies which allows for compensating the
HHG intrinsic chirp in a wide spectral range are still needed for generating isolated
25 as pulse.
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Chapter 9
Supercontinuum in Telecom Applications

S. V. Smirnov, J. D. Ania-Castañón, S. Kobtsev, and S. K. Turitsyn

Abstract This chapter documents progress in the extensive area of supercontinuum
(SC) generation research devoted to applications in telecommunications, including
research into the different mechanisms of spectral broadening and their interplay, SC
generation in various media and the most promising SC applications in fibre-based
and free-space telecom.

Keywords Pump power · Optical fibre · Wavelength division multiplexing ·
Time division multiplexing · All-optical processing · Stimulate Raman
scattering · Four-wave mixing · Photonic crystal fibre · Rogue wave · Orbital
angular momentum

9.1 Introduction

Supercontinuum (SC) generation and spectral broadening of coherent or partially
coherent light signals in optical fibres has captured much attention over the past
couple of decades, fuelled by the advent of microstructured photonic crystal fibres
(PCF) that can be designed for extremely high non-linear responses (Knight et
al., 1996; Leong et al., 2005). Fibre-optic-based supercontinuum presents multiple
practical applications both within and outside the field of optical communications
(Holzwarth et al., 2000; Fedotov et al., 2000; He et al., 2002; Sanders, 2002; Hartl et
al., 2001; Ivanov et al., 2001; Povazay et al., 2002; Wang et al., 2003a; Marks et al.,
2002), and the interest in this phenomenon has led to an improved knowledge of the
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interplay between the different non-linear processes affecting high-power radiation
evolution in optical fibre waveguides. By applying techniques such as frequency-
resolved optical gating (FROG) (Kane & Trebino, 1993; Dudley et al., 2002a; Gu
et al., 2002; Cao et al., 2003) and spectral-phase interferometry for direct electric-
field reconstruction (SPIDER) (Iaconis & Walmsley, 1998, 1999; Anderson et al.,
2000; Stibenz & Steinmeyer, 2004), researchers have been able to painstakingly
analyse non-linearly broadened radiation, improve on the models used to describe
the broadening process and increase our understanding of the phenomenon (Tamura
et al., 2000; Appl. Phys. B 77, No. 2–3 (2003) – Special Issue: Supercontinuum
generation; Biancalana et al., 2003; Foster et al., 2004; Ranka & Gaeta, 1998;
Dudley & Coen, 2002; Corwin et al., 2003a; Nikolov et al., 2003). From a purely
practical point of view, the progress has also been impressive and has allowed, for
example, for generation of high-power supercontinuum radiation (Cumberland et
al., 2008; Chen et al., 2011; Chi et al., 2014) with spectra spanning more than one
octave, and even reaching thousands of nm (Wadsworth et al., 2002; Nicholson et
al., 2003a, 2004a; Takanayagi et al., 2005; Silva et al., 2012; Qin et al., 2009) in
microstructured, tapered and highly non-linear fibres (HNLF). Broad supercontinua
extending well into the mid-infrared region have been reported using ZBLAN
HNLF fluoride fibres (Chenan et al., 2009), ZBLAN PCF (Jiang et al., 2015),
chalcogenide tapered fibre (Petersen et al., 2014; Hudson et al., 2017), chalcogenide
step-index fibre (Cheng et al., 2016) and silicon-on-sapphire nanowire (Singh et al.,
2015).

Supercontinuum generation, first observed in 1970 by R.R. Alfano and S.L.
Shapiro in bulk borosilicate glass (Alfano & Shapiro, 1970a), is an essentially
non-linear phenomenon arising from synergic combination of several fundamental
non-linear processes, most important of which are self-phase modulation (SPM),
four-wave mixing (FWM) and stimulated Raman scattering (SRS). The interplay
between different non-linear effects has a substantial impact on important SC
properties such as homogeneity and coherence. These interactions between different
non-linear processes are themselves determined by the pumps’ spectral locations
and powers and the non-linear and dispersive characteristics of the medium. In
that regard, the development of PCFs offered interesting opportunities to control
(to some extent) SC generation by using specially tailored fibre waveguides with
desirable dispersive and non-linear properties (Reeves et al., 2003; Dudley et al.,
2006). Large spectral broadening and SC in optical fibre at the telecom wavelengths
was first demonstrated in (Nelson et al., 1983; Baldeck & Alfano, 1987), whereas
the first application of photonic crystal fibre for SC generation was demonstrated in
1999 in (Ranka et al., 1999, 2000a).

Despite important recent advances in SC studies, and although the main mech-
anisms of SC generation are well understood, a number of fundamental problems
are yet to be explored, and the complex interplay of intervening factors can be elu-
sive. Hence, all-encompassing, universally valid, quantitatively precise numerical
modelling for SC generation in optical fibre is yet to be fully realised. Important
topics for basic research in this field have included the study of the noise and
coherence properties (Dudley & Coen, 2002; Corwin et al., 2003a, b; Mori et al.,
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1998; Nakazawa et al., 1998; Kubota et al., 1999; Washburn & Newbury, 2004;
Kelleher et al., 2012) of SC, analysis of the effect of polarisation (Proulx et al.,
2003; Lehtonen et al., 2003) in the non-linear broadening process, the observation
of extreme temporal events such as rogue waves (Dudley et al., 2008) or formulation
of a general theory of SC generation based on wave turbulence (Barviau et al., 2009;
Swiderski & Michalska, 2013), to name a few.

From an application standpoint, a healthy fraction of the current research is
focused on exploitation of fibre-optically generated spectrally broadened radiation,
whether in bio-medical optics, where it allows for the improvement of longitudinal
resolution in optical coherence tomography by more than an order of magnitude
(Hartl et al., 2001; Povazay et al., 2002; Wang et al., 2003a, b; Marks et al., 2002;
Drexler et al., 1999; Fercher et al., 2003; Drexler, 2004); in optical frequency
metrology, where a revolutionary breakthrough has been achieved (Holzwarth et
al., 2000, 2001; Fedotov et al., 2000; He et al., 2002; Sanders, 2002; Jones et al.,
2000; Diddams et al., 2000a, b, 2001; Bellini & Hänsch, 2000); or in many other
areas from material science (Wang et al., 2003c) to telecommunications. Note that in
some telecom applications, in contrast to the technologies mentioned above, ultra-
large broadening associated with SC generation is not a desirable feature at all, and
many useful applications require moderate or even minimal spectral broadening of
the signal or pumping wave. The aim of this manuscript is to provide the reader with
a general overview of the recent development of spectral broadening applications
and SC generation in the particular area of optical communications.

9.2 Basic Physics of Optical Spectral Broadening and SC
Generation in Fibres

Light radiation propagating through a non-linear medium experiences spectral
broadening that can be very substantial under certain conditions. SPM—an effect
caused by dependence of the refractive index on the intensity of the transmitted
light (Kerr non-linearity)—has been identified in the early works on continuum
generation (CG) of 4-ps-long laser pulses propagated through bulk samples of
different glasses and crystals (Alfano & Shapiro, 1970a, b) as the main mechanism
responsible for generation of ~50-THz-wide spectra. In a medium with Kerr
non-linearity, after propagation over the distance z, an optical pulse acquires an
additional phase (due to non-linear part �n of the refractive index) that can be
estimated (Agrawal, 2001) as:

ϕNL (z, t) = �n · ω
c
z = n2I (t) · ω

c
z (9.1)
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The corresponding frequency shift then is:

δω (z, t) = − d

dt
ϕNL (z, t) = −n2

dI (t)

dt
· ω
c
z (9.2)

where n2 is the non-linear refractive index of the medium, ω the carrier frequency, c
the light speed in vacuum and I the power flux density. It can be seen from (9.2) that,
as the optical pulse propagates, the frequency at its leading edge decreases and that
at the trailing edge, conversely, increases. Spectral broadening is proportional both
to the energy flux and to the propagation distance; therefore, SPM can be amplified
due to self-trapping, which was reported in (Alfano & Shapiro, 1970b). When the
pump power is greater or about 10 TW/cm2, which can be reached in light filaments,
free-electron plasma formation can also occur, further strengthening the effect of
SPM (Bloembergen, 1973).

One of the primary inherent disadvantages of CG schemes based on bulk media
(also including those based on liquids (Werncke et al., 1972; Smith et al., 1977)
and gases (Corkum et al., 1986; Corkum & Rolland, 1989; François et al., 1993)
as non-linear media) is a requirement of high pump powers. Typical level of power
density required is around several terawatts per cm2, thus necessitating additional
amplification of laser pulses at the risk of sample damage. It became possible to
relax such high pump power requirements during the next phase of SC generation
studies by using optical fibres as non-linear medium (Tamura et al., 2000; Lin &
Stolen, 1976; Baldeck & Alfano, 1987; Morioka et al., 1993). The required pump
power was lowered, on the one hand, due to a substantially longer path of interaction
between light and matter and, on the other hand, thanks to a higher localisation of
radiation. Thus, for example, dispersion length for 4-ps-long Gaussian pulses at
530 nm in standard SMF-28 is about 80 m, or 5.3 × 104 times larger than the
length of light filaments observed in (Alfano & Shapiro, 1970b), which amounted
to about 1.5 mm. The effective area of SMF-28 at 530 nm is about 50 μm2, which is
30–60 times smaller than the area of power concentration estimated for 5–10 light
filaments having diameter of 20 μm each as observed in (Alfano & Shapiro, 1970b).
Correspondingly, generation of continuum covering a significant part of the visible
spectrum became possible with a peak pump power of only 1 kW (Lin & Stolen,
1976), whereas the power used to induce CG in glasses was about 200 MW (Alfano
& Shapiro, 1970b).

In early experiments using optical fibres (Lin & Stolen, 1976; Baldeck & Alfano,
1987), continuum was formed by broadening and merging of separate spectral lines,
generated due to SRS and FWM. Phase matching conditions for the latter were met
as a result of multi-mode propagation of light through the fibre. SPM could not
contribute considerably to the spectrum broadening because of low power density
and comparatively long pulses (within picosecond and nanosecond range), so that
the value of dI/dt in (9.2) was small compared to those typical in bulk media
experiments.

In the next generation of fibre experiments on SC generation, however, SPM
plays a key role again, allowing one to obtain flat spectra with good noise parameters
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in the normal dispersion regime. By using additional optical elements with negative
second group velocity dispersion β2, it is possible to achieve temporal compression
of pump pulses as well (Fisher et al., 1969; Gouveia-Neto et al., 1987; Tomlinson
et al., 1984). With this method, it was possible to generate pulses as short as 6-fs
(Fork et al., 1987). Another physical mechanism of spectral broadening is based on
adiabatic soliton compression in a fibre with decreasing dispersion (Tamura et al.,
2000; Tamura & Nakazawa, 1998; Mori et al., 1997; Okuno et al., 1998). A relative
disadvantage of this method is instability of higher-order solitons in the presence of
noise, which imposes an upper limit on the pump power and, hence, on the resulting
spectral width.

One can also combine these two approaches using specially designed fibres with
dispersion smoothly changing along the fibre from positive to negative values (Mori
et al., 1997, 2001; Okuno et al., 1998).

The most recent period of CG investigations is associated with the development
of PCFs (Knight et al., 1996, 1997, 1998a, b, c; Birks et al., 1997; Broeng et al.,
1998; Mogilevtsev et al., 1998; Silvestre et al., 1998). Essentially, they consist of
quartz fibres sheathed in a conduit formed by two-dimensional (usually regular)
array of air-filled capillaries (Zheltikov, 2000). It is pertinent to note that there
are two different types of fibres called PCF. The first of them proposed in 1996
(Knight et al., 1996) has a quartz core with refractive index greater than the average
refractive index of cladding formed by an array of air capillaries. The principle of
light propagation in this type of fibre is similar to that in standard optical fibres
where the condition n core > n cladding is also met. Fibres of the second type
introduced in 1999 (Cregan et al., 1999) have an air channel in the core, so that the
inverse inequality holds: n core < n cladding. These fibres can be considered as two-
dimensional crystals, and a single or several holes (capillaries) absent in the centre
of the lattice can be treated as a defect. Light propagation along this type of fibre is
possible due to the photon band-gap effect. One of the most important applications
of the hollow-core PCF is in high-power lasers, since breakdown threshold in gases
is much higher than in solids (Zheltikov, 2000), and thus special efforts are required
to obtain intense SC in condensed media (Lu et al., 2014). In this paper, we will use
the term PCF for fibres of the first type—guiding light through the effect of total
internal reflection.

Compared to conventional optical fibres, PCF presents several significant advan-
tages. First of all, this type of fibre gives a quite unique opportunity of dispersion
control. This is possible because penetration of electro-magnetic field into the fibre
cladding (and hence, its effective index of refraction) depends on the wavelength
of radiation inside the fibre. As a result, the refractive index of the cladding at
different wavelengths can be controlled by arranging capillaries in a certain way
at the time of pulling. This technique was used to create fibres with flat dispersion
profile (Ferrando et al., 1999, 2000, 2001; Reeves et al., 2002; Renversez et al.,
2003; Saitoh et al., 2003; Poli et al., 2004; Saitoh & Koshiba, 2004), which allow
generation of flat and wide SC spectra. In addition, one can shift the zero dispersion
wavelength λ ZD of PCF and produce anomalous dispersion in the visible spectral
region (Knight et al., 2000; Ranka et al., 2000b). It is the latter feature that made
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it possible to generate SC spanning more than two octaves (Ranka et al., 2000a).
Another advantage is that PCF can be designed to support only one spatial mode
in a wide spectral range (Birks et al., 1997; Mogilevtsev et al., 1998) having rather
small effective area of the waveguide mode.

We note also a special type of PCF called free-strand or cobweb fibre (Wadsworth
et al., 2002; Apolonski et al., 2002). The quartz core of such waveguides is attached
to the cladding by a cobweb-like structure of thin bridges, from which the name
of the fibres comes. Since the core of cobweb fibres is almost entirely surrounded
by air, the structure of these waveguides is similar to that of air-clad tapered fibres
(ACTF). Continuum spectra generated in these two types of fibres under the same
conditions are nearly identical (Wadsworth et al., 2002). In particular, CG spanning
two octaves was observed in ACTF (Birks et al., 2000; Akimov et al., 2002). Soliton
self-frequency shift of several hundred nm was also demonstrated in ACTF (Kobtsev
et al., 2004) and cobweb fibres (Kobtsev et al., 2005). ACTF have some advantages
such as an easier fabrication process compared to PCF, as they can be made by
pulling a heated conventional single-mode fibre. On the other hand, the design
freedom is limited, since there is practically only one single parameter of ACTF
that can be controlled—its waist diameter, which means there are limitations on the
fabrication of ACTF with the required dispersion characteristics. Besides, it is quite
complicated to make long ACTF due to fragility of very thin quartz strand.

Microstructured fibres can be designed within a huge range of possible dispersive
characteristics and parameters, and their non-linearity can be rather large due to a
small effective area. These remarkable features call into play a plethora of non-linear
mechanisms of spectral broadening in PCF that may differ depending on waveguide
dispersion profile, power, wavelength and duration of pumping pulses. For example,
using femtosecond pump pulses within the anomalous dispersion region, most of the
authors point out a key role of soliton effects in CG (Ortigosa-Blanch et al., 2002;
Genty et al., 2002; Husakou & Herrmann, 2001; Herrmann et al., 2002). The red
wing of the spectrum generated under these conditions is formed due to soliton self-
frequency shift (Gordon, 1986; Mitschke & Mollenauer, 1986; Reid et al., 2002),
while the blue one is a result of resonant energy transfer and soliton fission. In
the case when a femtosecond pump falls within the normal dispersion region, CG
develops in two stages. First, the spectrum of the pumping pulse is broadened to the
point of zero dispersion due to SPM and SRS, upon which soliton effects come into
play (Ortigosa-Blanch et al., 2002). Parametric processes and Raman scattering are
also observed to contribute to CG under these circumstances (Genty et al., 2002).

When duration of pumping pulses is within the picosecond and nanosecond
domain, SPM does not affect CG significantly. Spectral broadening is usually
assumed to occur as a result of SRS giving rise to a series of spectral lines,
each of which, once emerged, can act as a pump source for parametric processes.
Phase matching conditions can be met in this case due to proximity of the zero
dispersion wavelength (Dudley et al., 2002b; Coen et al., 2001, 2002). When energy
is transferred into the region of anomalous dispersion, modulation instability (MI)
and soliton effects come into operation and broaden the spectrum further (Knight et
al., 1996; Coen et al., 2001).
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Let us illustrate in more detail the spectral broadening of femtosecond pump
pulses propagating in anomalous dispersion region, this case being the most frequent
in CG studies. To do this we will examine the dynamics of spectrum broadening as a
function of pump power. Figure 9.1 shows simulated spectra of chirp-free 60-fs-long
sech2 pulses after passing 10 cm through a 2.3-μm-diameter ACTF waist. Pump
pulse power increases from 0.5 kW for the bottom graph (Fig. 9.1a) up to 20 kW
for the top graph (Fig. 9.1f). The pump pulse spectrum is shown in the bottom
of Fig. 9.1 with a dotted line. Our simulations are based on the generalised non-
linear Schrödinger equation (Agrawal, 2001) which is mostly used for theoretical
modelling of CG when polarisation effects can be averaged out or neglected.
Continuum spectra given in Fig. 9.1 are typical for the case of a femtosecond pump;
similar results can be found in numerous published papers (Dudley et al., 2002a, b;
Dudley & Coen, 2002). When P0 = 0.5 kW (Fig. 9.1a), the pump pulse spectrum is
broadened due to SPM. As the pump peak power reaches 2.5 kW (Fig. 9.1b), a peak
at the long-wavelength side of the spectrum emerges. It corresponds to an optical
soliton, which experiences an increased shift of its frequency farther into IR region
as the pump power grows, thus leading to further spectral broadening. Besides,
in this process, the number of solitons also increases, and their spectra begin
overlapping and form the red wing of the continuum spectrum. As the pump power
rises, the spectrum is also broadened toward shorter wavelengths. The position of
the short-wavelength spectrum edge depends on the fibre dispersion and is governed
by the equality of temporal delays for long- and short-wavelength components of
continuum radiation, which agrees with the model of resonant energy transfer into
the short-wavelength part of the spectrum mentioned above.

Reports on observation of spectral broadening in media or with light sources
never used before with the purpose of CG constituted a significant part of early
papers in this field, and they did not cease to appear till now. Among these are, for
example, generation of broadband continuum directly in Ti/Sa laser (Morgner et al.,
1999; Bartels & Kurz, 2002), CG in fibres with continuous wave pump (Nicholson
et al., 2003b; González-Herráez et al., 2003; Avdokhin et al., 2003; Abeeluck et al.,
2004) and CG in new types of fibres and waveguides (Phillips et al., 2011; Zhang
et al., 2006; Hsieh et al., 2007; Liao et al., 2009; Hudson et al., 2011). However,
at the present phase of CG studies, papers of another sort are more common. They
are dedicated to investigation of different properties of continuum radiation, such
as spectral shape and width (Wadsworth et al., 2002; Mori et al., 2001; Apolonski
et al., 2002; Teipel et al., 2003; Tianprateep et al., 2004; Kobtsev et al., 2003),
temporal structure (Dudley et al., 2002a; Dudley & Coen, 2002; Teipel et al., 2003;
Kobtsev et al., 2003; Bagaev et al., 2004; Zeller et al., 2000), polarisation (Knight
et al., 1996; Apolonski et al., 2002; Kobtsev et al., 2003), noise and coherence
(Tamura et al., 2000; Dudley & Coen, 2002; Bellini & Hänsch, 2000; Apolonski
et al., 2002; Kobtsev & Smirnov, 2006; Demircan & Bandelow, 2007; Heidt et al.,
2017), as well as to research into dependence of these properties on conditions
of CG. Aside from this, a considerable number of papers seek to understand the
physical mechanisms of spectral broadening (Knight et al., 1996; Dudley et al.,
2002a, b; Ortigosa-Blanch et al., 2002; Genty et al., 2002; Husakou & Herrmann,
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Fig. 9.1 Simulated spectra at the exit of 10-cm-long tapered fibre waist with diameter of 2.3 μm.
We use 60-fs-long sech2 pump pulses at λ= 800 nm. Pump peak power is 0.5 kW (for graph a),
2.5 kW (b), 5 kW (c), 10 kW (d), 15 kW (e) and 20 kW (f ). The pump pulse spectrum is shown at
the bottom with a dotted line

2001; Herrmann et al., 2002; Gaeta, 2002; Gorbach & Skryabin, 2007; Skryabin et
al., 2003). The practical goal of most of these studies is to optimise continuum
generation for diverse applications or even to make SC generators controllable
(Kobtsev & Smirnov, 2008a; Genty et al., 2009; Cheung et al., 2011), since each
application sets its own specific requirements to the SC properties. For instance,
spectroscopic and some other applications require SC in different spectral areas,
so that generation of mid- and near-IR SC in short waveguides of different types
(Domachuk et al., 2008; Kurkov et al., 2011; Geng et al., 2012; Granzow et al., 2011;
Lopez-Galmiche et al., 2016), producing ultra-broadband SC spectra (Silva et al.,
2012; Qin et al., 2009), extending SC toward UV (Qin et al., 2009; Kudlinski et al.,
2006; Belli et al., 2015; Jiang et al., 2015) and terahertz CG (Kim et al., 2008) and
bandwidth maximising/restriction and spectral tailoring (Hu et al., 2010; Bétourné
et al., 2009; Kudlinski et al., 2009) are of particular interest. Another example of
contradictory requirements is related to the power level, so that both low-threshold
(Hudson et al., 2011; Yeom et al., 2008) and high-power SC (Cumberland et al.,
2008; Kudlinski & Mussot, 2008; Chen et al., 2010) are interesting for different
applications.

As far as telecom applications are concerned, the spectral flatness and temporal
parameters of continuum are of a prime importance in development of multiplexing
schemes for fibre communication systems. Development of broadband Raman fibre
amplifiers requires a high degree of spectral uniformity of the gain factor, and a
continuum with a specific spectral profile I(λ) can be used as a pump source to
solve this problem in a cost-efficient way, avoiding multi-pump schemes.
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Let’s also note that optical fibre is obviously a very convenient optical medium
for experimental investigations into SC generation as well as an appropriate basis
for commercial SC generators. That’s why the majority of recent studies deal with
optical fibres, especially in what concerns telecom applications. However, there is
another one very promising research area that is paid a constantly growing attention
and that is expected to further gain research focus in the future, namely, on-chip
(nano-photonics) SC generators. There have been a number of reports on broadband
SC generation in different types of waveguides including silicon (Kuyken et al.,
2011; Safioui et al., 2014; N. Singh et al., 2015, 2018; Ettabib et al., 2015), silicon
nitride (Johnson et al., 2015; Epping et al., 2015) and others.

9.3 Application of Spectral Broadening and Continuum
Generation in Telecom

In this section, we overview the main applications of the spectral broadening
effect and SC generation in optical fibre communications. The idea of main SC
applications is outlined, whereas in the next section, we will discuss preferable
conditions of SC generation that should be met in order to better fulfil the
requirements of SC applications in telecom.

9.3.1 Pulse Compression and Short Pulse Generation

Ultrashort optical pulses form the foundation of optical telecom systems. Infor-
mation transmitted through telecom lines are encoded using amplitude and phase
of such pulses. Therefore, it is essential for telecom to have reliable low-noise
sources of high-quality ultrashort laser pulses, especially broadband or multi-
wavelength sources. The latter can be used for simultaneous transmission of many
information channels through a single optical fibre, known as wavelength division
multiplexing (WDM) technology, which is the optical analogue of frequency-
division multiplexing commonly used for radio transmission.

Islam et al. (1989) demonstrated application of non-linear broadening to gener-
ation of femtosecond pulses. When a fibre is pumped in the anomalous dispersion
regime with a narrow-spectrum laser, modulation instability and the soliton self-
frequency shift initiate a multi-soliton collision that generates a series of short,
low-intensity solitons. On the other hand, non-linear temporal compression has been
for a long time a well-known technique for generating ultrashort pulses (Tomlinson
et al., 1984; Shank et al., 1982). In this technique, the spectrum of the signal
is first non-linearly broadened, and the chirp is then eliminated by a dispersion-
compensating element. Südmeyer et al. (2003) have recently demonstrated that the
use of microstructured fibres, combined with a prism pair for chirp elimination,
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would make it possible for this method to be applied at very high power levels,
obtaining a train of 33 fs pulses with peak power of 12 MW, whereas Schenkel et al.
(2003) employed gas-filled hollow fibres for the broadening, together with a spatial
light modulator using SPIDER measurements as a feedback signal for adaptive pulse
compression and generation 3.8-fs pulses with energies up to 15 μJ.

The fundamental limits on generation of few-cycle pulses by compression of SC
spectra generated in microstructured fibres have been analysed by Dudley & Coen
(2004), confirming that quality of compressed pulses was closely related to spectral
coherence of the SC. According to their work, a median coherence of about 0.7
could be expected to be a good benchmark for the potential compressibility of SC
down to few-cycle pulses, provided compressors with sufficiently high resolution to
compensate for the fine structure in the SC group delay were made available in the
future.

Conversely, high-power ultrashort pulse sources obtained with techniques such
as the ones explained above can be used as the input to generate ultra-broadband
octave-spanning SC radiation in optical fibres, as illustrated, for example, by the
works of Takanayagi et al. (2005) and Nishizawa and Goto (2001). Stretched
femtosecond pulses have been used by Nicholson et al. (2004b) in the development
of a high-repetition-rate, swept-wavelength Raman pump source.

9.3.2 Pulse Train Generation at High Repetition Rates

Quite a simple and convenient technique for producing an ultrashort pulse train
of high repetition rate was suggested by Hasegawa (1984) and for the first time
was implemented by Tai et al. (1986) as early as 1986. This technique utilises
the effect of induced modulation instability, i.e., growth of initial relatively small-
intensity modulation amplitude of CW radiation due to modulation instability (MI).
Such spectral sideband growth is an initial stage of spectral broadening and SC
generation.

Since the first demonstration, a number of groups proposed different modifi-
cations and improvements of this method (see, for instance, Dianov et al., 1989;
Chernikov et al., 1993, 1994; Tadakuma et al., 2000; Pitois et al., 2002). Specifically,
using numerical modelling (Dianov et al., 1989) and experiment (Chernikov et
al., 1993), it was demonstrated that application of optical fibres with adiabatically
decreasing dispersion or optical amplifiers allows one to produce periodic trains
of non-interacting solitons. Also it was shown that optical fibres with longitudinal
step dispersion profile (Chernikov et al., 1994; Tadakuma et al., 2000) allow
one to obtain periodic soliton trains. Paper Pitois et al. (2002) theoretically and
experimentally demonstrated that generation of regular spectral-limited Gaussian
pulses is possible in passive optical fibres with longitudinally constant dispersion
provided the pumping wave has optimal power.

Various groups reported generation of ultrashort pulse (USP) trains with repeti-
tion frequency in the range between 60 GHz (Chernikov et al., 1994) and 340 GHz
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Fig. 9.2 Dependence of noise-to-signal ratio at the fibre exit on parameter ξ and modulation depth
Is/I0

(Tai et al., 1986). Achieved relatively high USP repetition rates constrain sub-
stantially the application field of this technique, since most applications including
telecom require post-processing of such pulse train by electronic means. This fact
stimulates development of methods for changing and lowering pulse repetition
rate attainable with this technique. For example, paper by Chernikov et al. (1993)
reported pulse train generation with repetition rate of 80–120 GHz. In the past
decade, USP generation with much wider range of repetition rates from 20 GHz
up to 1 THz was produced (Fatome et al., 2006). As it has been shown recently
(Kobtsev & Smirnov, 2008b), there is a fundamental problem preventing arbitrary
low repetition frequencies with the use of induced MI, namely, noise amplification.
It can be easily seen, if we consider initial modulation in terms of square of
dimensionless frequency ξ = −β2Ω

2LNL/2 = (�/�c)2, where L NL = (γP)−1

stands for non-linear fibre length, γ is fibre non-linearity and P is power of CW
pump, that � c is the frequency scale introduced in (Agrawal, 2001). Figure 9.2
shows the results of NLSE-based full numerical modelling (Kobtsev & Smirnov,
2008b) for output pulse train noise-to-signal ratio (NSR) as a function of input
modulation depth Is/I0 and modulation frequency square ξ . Note that the NSR
reaches its minimum at large values of initial modulation depth (0.1 . . . 1) and
large values of ξ (minimum is reached at ξ = 1, whereas the plot shows the range
0.08 < ξ < 0.8). As the modulation depth is reduced and/or ξ is decreased, NSR
worsens and reaches unity (0 dB) in the lower left part of the area plotted in Fig. 9.2,
which corresponds to completely “noisy” generation mode and irregular temporal
structure of the formed pulse train. This result allows estimation of the minimal
pulse repetition frequency for a given NSR and explains the problem of producing
pulse frequencies lower than 1 GHz using induced MI (Kobtsev & Smirnov, 2008b).
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9.3.3 Multi-wavelength Optical Sources

One of the most important applications of SC to the field of telecommunications
is the design of multi-wavelength sources for ultra-broadband wavelength-division-
multiplexed (WDM) systems based on spectral slicing of SC generated by a single
laser. As it was mentioned in the previous section, a powerful short optical pulse
can be non-linearly broadened into a SC spectrum. This spectrum can then be sliced
with an array of filters to create a series of WDM channels. This was the approach
originally adopted by Morioka et al. (1993) using short (few ps) pulses with GHz
repetition rates in dispersion-decreasing fibre (DDF) to create WDM pulsed sources,
and different variations have been implemented by multiple authors (Dudley et al.,
2008; Morioka et al., 1996; Tamura et al., 1996; Sotobayashi et al., 2002a; Takara
et al., 2000, 2003a; Yusoff et al., 2003; Mori et al., 2003; Takada et al., 2002;
Miyagawa et al., 2006; Ohara et al., 2006) ever since. In particular, a long-haul
data transfer was demonstrated, including distances over 1000 km (Takara et al.,
2003a).

The ultimate limit for dense packing of WDM channels in a SC generated from
a pulsed source is imposed by the spectral distance between cavity modes in the
original mode-locked laser. In a medium with normal dispersion, cascaded non-
linear processes used to broaden the spectrum preserve the structure of cavity modes
(Alfano, 1989) present in the original laser output. This makes it possible to generate
an optical frequency comb, in which the separation between peaks corresponds to
the microwave mode-locking frequency of the source laser, with accuracy of the
order of kHz (see Sect. 9.4.3 on frequency combs). Each peak can be considered
as potential transmission channel. This property was used by Takara et al. (2000)
to generate more than 1000 optical frequency channels with a channel spacing
of 12.5 GHz between 1500 and 1600 nm. Out of those, between 600 and 700
were demonstrated to offer SNRs and Q-Factors sufficient for 2.5 Gbit/s multi-
span transmission. Following the same principle, Takara et al. (2003b) recently
reported 124 nm seamless transmission of 3.13 Tbit/s, over 160 km using 313
10 Gbit/s channels spaced at 50 GHz. In their experiment, they used Raman
amplification in hybrid tellurite/silica fibre for improved gain flatness. In an even
more recent experiment from the same group, Ohara et al. (2005) demonstrated
transmission of over 1000 channels, with a 6.25 GHz spacing, using a SC multi-
carrier source. In Ref. Takada et al. (2002), supercontinuum radiation within the
1460–1620 nm range was subdivided into 4200 channels spaced 5 GHz apart, and
paper by Miyagawa et al. (2006) reports the highest channel count of 10,000 with
individual channels spaced at 2.5 GHz within the range of 1460–1640 nm and
per-channel data rate of 1.25 Gbit/s. The conservation of coherence properties was
also successfully employed by Sotobayashi et al. (2002b) to create a 3.24 Tb/s (84
channels × 40 Gbit/s) WDM source of carrier-suppressed return-to-zero (CS-RZ)
pulses. By generation of SC in a normal dispersion fibre, the relative phase between
adjacent pulses is preserved in different channels, allowing for the multiplication of
the CS-RZ structure. More recently, but following a related approach, multi-channel
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coherent OFDM sources relying also on SC-generated optical frequency combs have
allowed capacities of up to 32.5 Tbit/s (Hillerkuss et al., 2011, 2012).

SC WDM sources can be of great utility in more modest systems: Kartapoulos &
Bouhiyate (2005), for example, studied the use of supercontinuum sources in coarse
WDM applications with channel protection and concluded that in systems with a
limited number of channels, the use of supercontinuum WDM sources can result in
lower costs and increased reliability.

9.3.4 All-Optical Analogue-to-Digital Conversion

All-optical analogue-to-digital conversion, signal processing and switching are
very promising technologies that open new horizons in ultra-high-speed data
transmission by allowing one to overcome bit rate limits imposed by electronics.

In a series of recent papers (Oda et al., 2004; Oda & Maruta, 2004, 2005a),
Oda et al. proposed and successfully demonstrated a novel quantisation scheme
for all-optical analogue-to-digital conversion based on splicing of the non-linearly
broadened spectrum of a train of short pulses by means of an arrayed waveguide
grating (AWG).

By varying the power of the input pulses by means of an erbium-doped fibre
amplifier (EDFA) prior to their launch into a section of dispersion-decreasing
fibre (DDF), they were able to generate a series of non-linearly broadened quasi-
symmetrical spectra, in which the degree of broadening was directly dependent
on the amount of power injected into the fibre. The broadened spectra were then
passed through an AWG providing a series of output ports set on the Stokes side of
the initial signal. The number of ports that are “on” (i.e., the number of ports that
transmit power above a certain threshold) for each spectrum depends on the amount
of broadening and thus on the power of the input pulses. This imaginative solution,
partially based on the work of Ho et al. (1997), still has to overcome some important
problems, such as high average power requirements of the first prototype, but could
open the door to a new generation of all-optical analogue-to-digital convertors. A
later refinement (Oda & Maruta 2005b) uses a NOLM for coding of the signal after
slicing. Since the proposed solution relies only on fibre non-linearity, and not on
electronic devices, it can operate beyond 40 GHz.

9.3.5 TDM-to-WDM-to-TDM Conversion

Basically, there are two major approaches for combining low-speed data channels
from different local networks into a single high-speed optical telecom line: mul-
tiplexing in wavelength and in time. The latter method known as time-division
multiplexing (TDM) relies on synchronised switching of communication channels
so that the signal from each channel is fed into the high-speed line only for a
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fraction of time in an alternating pattern. In contrast, information from different
WDM channels is transmitted simultaneously being separated spectrally rather than
temporally. Both technologies are widely used to considerably (up to several orders
of magnitude) improve the transmission capacity of telecom lines. WDM-to-TDM
conversion is required between low-bit-rate WDM data stream and high-bit-rate
TDM data stream and vice versa (e.g., at a gateway between local-, metropolitan-
and wide-area networks). All-optical multiplexing/demultiplexing schemes allow
one to go beyond the present limitations of electronic gateways and thus to further
increase achievable bit rates.

Sotobayashi et al. (2001, 2002a) proposed and demonstrated the concept of
a photonic gateway able to perform conversion from time-division-multiplexed
(TDM) signals to WDM signals and vice versa by using SC generation. Their
scheme is based on combining ultrafast photonic processing in both the time and
the frequency domain, using optical gating and time shifting in the time domain,
combined with non-linear broadening under normal dispersion and spectral slicing.

In order to convert from TDM to WDM, the signal is first amplified and then non-
linearly broadened. The spectral properties of SC generated under normal dispersion
(high coherence, flat spectrum, easily equalised channel power, similar pulse width
in different frequencies and relative independence of the spectrum from the input
pulse characteristics) make possible generation of a series of independent channels
through spectral splicing, all of them carrying the same sequence of pulses as
the original signal. By time-shifting different channels and using an optical time
gate with the appropriate repetition rate, it is then possible to split the information
between the newly created WDM channels, effectively switching from TDM to
WDM.

For the opposite conversion, the process starts by differentially time-shifting
the input WDM channels, so the bits transmitted at different frequencies are all in
temporal sequence. Then, non-linear broadening effectively performs superposition
of all the different channels, and spectral splicing selects a single channel at the
central frequency, which now contains the complete bit sequence.

The solution, of course, is not without its drawbacks. Although quite robust with
respect to input pulse quality and featuring good noise performance, its response is
polarisation dependent (because of the time-gating devices), and its application is
limited to the return-to-zero format. It is nevertheless an excellent illustration of the
possibilities that non-linear broadening has opened in terms of adding flexibility to
signal manipulation.

9.3.6 Optical Fibre Characterisation

Optical fibre plays crucial role in state-of-the-art telecom industry. Besides standard
SMF fibres following ITU-T G.652 recommendations, such as SMF-28, used for
long-haul data transmission, there is a plethora of types of optical fibres used
for amplification, dispersion compensation, optical processing, etc. In order to
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improve existing legacy telecom systems, new types of fibres are constantly invented
with tailored dispersion and non-linearity. SC provides a convenient, quick and
cost-effective way for characterisation of optical fibres in a wide spectral range.
Measurements of wavelength-dependent attenuation can be made simultaneously
over a wide bandwidth, and group-velocity-dispersion (GVD) measurements in
conventional fibre with group delay resolutions of 0.01 ps/km in fibre lengths of
up to 130 km over more than 600 nm, using SC white pulses as was demonstrated
by Mori et al. (1995). GVD measurements can also be carried out in non-typical
media such as tapered air-silica microstructure fibres by means of white-light
interferometry with the help of broadband sources, as demonstrated by Ye et al.
(2002). Spectral interferometry with a SC source was also used by Jasapara et al.
(2003) to perform GVD measurements in photonic bandgap fibre. González-Herráez
et al. (2003) showed that continuous-wave generated SC could be effectively used
to perform accurate, long-range (>200 km) measurements of polarisation mode
dispersion in fibres (see Sect. 9.4.4 for more information on CW-generated SC).

9.3.7 Frequency Combs

One of the most fascinating applications of SC generation, which has revolutionised
optical frequency metrology and may potentially have impact on telecom, is
frequency comb generation. An optical frequency comb is an optical spectrum
showing spectral lines at fixed frequency spacing. A simple example would be
the longitudinal mode structure at the output of a mode-locked cavity laser. By
measuring frequency separation between laser radiation at a given frequency f and
its second harmonic 2f, the laser’s absolute frequency can be determined. Hence,
frequency combs can be used as “optical rulers” for high-precision spectroscopy
and, by extension, for high-precision frequency or time-based metrology, achieving
accuracies of one part in 1017 in the measurement of optical clocks (Newbury, 2011;
Ye & Cundiff, 2005). In order for a frequency comb to be used for the purpose of
determining absolute frequency, its spectrum must span at least a complete optical
octave. The development of optical frequency combs earned Profs. John L. Hall and
Theodor W. Hänsch one half of the Nobel Prize in Physics in 2005.

Non-linear broadening is the key for generation of at-least-octave-spanning
optical frequency combs, and multiple different methods have been proposed and
applied that go beyond the scope of this chapter. Let it be mentioned, as a typical
example (Ye & Cundiff, 2005), that a stable (one allowing for multiple hours of
continuous operation) frequency comb can be generated by non-linearly broadening
a high-powered output pulse train from a mode-locked fs fibre laser in a single-mode
HNLF. It is important that broadening in the HNLF takes place under controlled
effective dispersion and that noise gain is kept sufficiently low not to spoil the
spectral comb structure.
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Potential applications of frequency combs in telecommunications can be grouped
into two distinct groups: namely, those related to extremely precise transmission of
signals and those related to transmission of high-speed optical data.

The former makes use of phase coherence and broad bandwidth of frequency
combs and could theoretically and through the use of Doppler-compensated fibre
links (Newbury, 2011) be used to couple optical clocks with uncertainties of one
part in 1019.

The latter application relies on the use of narrow-band, chip-scale frequency
combs to enable highly parallel WDM or OFDM with tens or hundreds of channels,
in which multi-Terabit/s rates can be achieved while symbol rates are kept low
enough to stay compliant with electronics speed limitations (Hillerkuss et al.,
2011, 2012; Levy et al., 2012). So far, frequency combs have been successfully
applied in this type of Terabit/s optical interconnects to demonstrate 26.2 Tbit/s
encoding-decoding with OFDM and up to 32.5 Tbit/s with Nyquist WDM, with
net spectral efficiencies of 6.4 bits/Hz. These schemes have been demonstrated to
be applicable to transmission of advanced coherent modulation formats (QPSK
and dual-polarisation 16QAM signals with Nyquist pulse shaping). Gaeta et al.
(2019) have overviewed recent developments and progress in the generation of the
optical frequency comb in photonic-chip waveguides by using supercontinuum. The
underlying physics of generating a frequency comb in microresonators exploiting
Kerr effect is very similar to fibre systems. Therefore, a solid knowledge accumu-
lated during the study of supercontinuum and solitons in nonlinear fibre-optics can
be transferred to micro-resonator systems, enabling comb technology for a broad
spectral range from the near-ultraviolet to the mid-infrared with numerous practical
applications including and beyond telecom.

9.3.8 Orbital Angular Momentum Multiplexing

Although linear optics has a pretty long story, there is a concept that was discovered
only several decades ago, namely, orbital angular momentum (OAM). Optical
beams carrying OAM have a helical phase structure and attracted much attention
last years. In contrast to spin angular momentum associated with photon spin that
has only two possible values ±-h (what corresponds CW and CCW circular beam
polarisations; here -h is Planck’s constant), OAM is theoretically unlimited and
thus has a great potential for increasing the capacity of communication systems,
either by using different OAM states as encoding basis or by employing OAM
beams as information carriers for multiplexing (Gibson et al., 2004). Let’s note
that OAM multiplexing may be used in combination with other well-established
techniques such as polarisation-division multiplexing (PDM), optical time-division
multiplexing (OTDM), etc.

In particular, the group of Prof. Willner (Wang et al., 2012) reported
proof-of-concept experiments demonstrating the multiplexing/demultiplexing of
information-carrying OAM beams for terabit free-space data transmission, as well
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as data exchange between OAM beams for efficient all-optical data processing.
The authors used four polarisation-multiplexed OAM beams, each carrying a
42.8 × 4 Gbit/s (4 bits per symbol) quadrature amplitude modulation (16-QAM)
signal, thereby achieving a capacity of 1369.6 (42.8 × 4 × 4 × 2) Gbit/s (4 bits
per symbol for the 16-QAM, with 4 OAM beams and 2 polarisation states) with a
spectral efficiency of 25.6 bit/s/Hz (50 GHz grid). Two years later, the Willner’s
group managed to improve their first results by almost two orders of magnitude: by
utilising WDM along with OAM and polarisation multiplexion, they demonstrated
100 Tbit/s free space data link (Huang et al., 2014). Let’s note that OAM-carrying
supercontinuum for WDM and other applications can be generated by introducing
helical phase wavefront either before (Prabhakar et al., 2019) or after spectral
broadening (Sztul et al., 2006; Wright et al., 2008).

OAM multiplexing can be used also for data transfer through optical fibres,
as a particular case of mode-division multiplexing, with much of the transmitter
and receiver technology being similar to those used for free-space communications
(Willner & Liu, 2020). However, in this case, special efforts should be made in order
to mitigate significant modal cross-talk that takes place in conventional optical fibres
(Bozinovic et al., 2013; Richardson et al., 2013; Ndagano et al., 2015; Brunet et al.,
2014).

Finally it’s worth noting that OAM multiplexing can be implemented not only in
optics but also in other frequency bands of electromagnetic waves, in particular, in
millimeter-wave communications (Yan et al., 2014; Willner et al., 2015; Ren et al.,
2017), what makes this technique very promising for future generations of cellular
data networks.

9.4 Different Regimes of SC Generation

A series of major SC applications in telecom were outlined above. In our treatment,
we have so far focused on applications, not paying close attention to practically
important questions about conditions that should be met in order to obtain required
spectral broadening and properties of generated SC. In what follows, we perform
briefly such analysis, namely, we discuss the main regimes of SC generation
and properties of SC generated under different conditions (including peculiarities
of temporal structure, noise and coherence) as well as applicability of different
supercontinua in telecom.

9.4.1 Pulse-Pumped SC

Along with spectral properties such as bandwidth and spectral power uniformity,
temporal structure of SC radiation may be critical for various applications including
telecom, spectroscopy, sensing, ultrashort pulse generation and others. We continue
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our discussion with an outline of peculiarities in temporal structure of SC radi-
ation under different pumping conditions: pulse pumping in a fibre with normal
dispersion, spectral broadening of relatively short (normally in the range of tens to
hundreds of femtoseconds) and of long pulses in fibres with anomalous dispersion.

Spectral broadening of pumping pulses in the normal dispersion regime is caused
mainly by the effect of self-phase modulation (SPM). Temporal radiation profile at
the output from the optical fibre usually has the form of a train of isolated pulses
with repetition rate equal that of the pumping pulse repetition rate (see typical results
of numerical modelling (Kobtsev & Smirnov, 2007, 2008c) shown in Fig. 9.3, upper
row). As a rule, such SC is highly coherent, which makes it preferable for noise-
sensitive telecom applications. In most cases, such SC has comparatively narrow
spectral width, usually not exceeding 100–200 nm in the telecom spectral range.
However, in Ref. Heidt et al. (2011), authors managed to obtain an octave-spanning
SC in all-normal dispersion PCF.

Efficiency of spectral broadening is usually considerably improved in the
anomalous dispersion regime of the optical fibre due to soliton effects. In case of
relatively short pumping pulses, soliton fission effect is the principal mechanism of
spectral broadening during the initial stage of SC generation that leads to broadening
of the pulse spectrum and its temporal decomposition into a train of sub-pulses (see
Fig. 9.3, second row). This process can be regarded as the decay of a high-order
soliton into a sequence of fundamental solitons. As they propagate further along
the fibre, these fundamental solitons undergo a self-shift of their carrier frequency
caused by the effect of stimulated Raman self-scattering, thus leading to widening
of the SC spectrum. Since the multi-soliton pumping pulse decays into a train of
fundamental solitons mostly because of SPM within a comparatively short stretch
of fibre, noise amplification does not noticeably affect this process. As a result, the
temporal profile of SC intensity in this case has the form of a regular sequence of
wave packets, each of which, in its turn, consisting of a complicated non-periodic
train of soliton sub-pulses with different intensity, energy and wavelength (Kobtsev
& Smirnov 2004). Due to large spectral width achievable at moderate pump powers,
this SC generation regime is attractive for a wide range of applications. However,
for telecom tasks, the priority is not an extreme spectral width of SC (which in
fact may be quite moderate, only covering data transmission bands) but perfect
stability and reliability of light sources: low noise level, high coherence and spectral
flatness, stable temporal profile of SC. From the viewpoint of these requirements,
SC produced under pulsed pumping in normal dispersion is, as a rule, preferable for
telecom applications.

A completely different picture can be seen when pumping with comparatively
long (dozens of picoseconds and longer) pulses in the anomalous dispersion domain
of the fibre (see Fig. 9.3, third row). Because the spectrum broadening rate caused
by SPM is inversely proportional to pulse duration, soliton fission requires too
long a fibre stretch, and therefore does not occur. Instead, modulation instability
(MI) becomes the principal factor leading to noise amplification within two spectral
bands located symmetrically with respect to the pumping line. By the time when
the magnitude of amplified noise becomes comparable to that of the pumping pulse,
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Fig. 9.3 Evolution of temporal structure of pumping radiation during SC generation under
different conditions (Kobtsev & Smirnov, 2007, 2008c)

the pulse decays into a stochastic train of sub-pulses whose mean repetition rate is
governed by the position of MI gain lines. Some of these sub-pulses form optical
solitons experiencing self-shift of carrier frequency, thus giving rise to significant
broadening of the SC spectrum. However, in contrast to the case of short pumping
pulses discussed above, the energy and wavelength of these solitons are random
values and exhibit considerable shot-to-shot fluctuations from one pumping pulse to
another. Consequently, experimental SC spectra are much smoother and are often
free from isolated soliton peaks, which happens because of averaging during data
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acquisition over a large number of solitons with random parameters. The temporal
structure of SC radiation is formed by a train of wave packets following one another
with the pump pulse repetition rate, each of them consisting of a large number
(several hundred or more) sub-pulses with essentially random parameters. Such SC
has low pulse-to-pulse coherence and cannot be re-compressed to a single ultrashort
pulse.

In an intermediate case of pulses with sub-picosecond and picosecond durations,
partially coherent pulse trains (wave packets) are formed in the optical fibre due to
interplay of soliton fission effect and modulation instability, which, the latter, creates
a considerable level of amplified noise. As it has been shown previously (Kobtsev
& Smirnov, 2006; Dudley & Coen, 2002), the pulse-to-pulse degree of coherence
reaches its maximum in the limit of short pumping pulses, and in the opposite limit
of very long pulses, it approaches zero, accordingly corresponding to generation of
a regular or a stochastic wave packet sequence.

9.4.2 Spectral Broadening of CW Pump

As we have shown, non-linear broadening is usually achieved by transmitting short,
high-power pulses through a strongly non-linear medium. The initial modulation
may lead to an increased initial bandwidth and allows the effect of SPM to act
on the transmitted signal from the beginning, usually increasing the efficiency of
the broadening process. On occasion, however, it can be practical to generate a
wide spectrum from a conventional high-power CW source (typically a fibre laser).
This possibility was illustrated in 2000 by the work of Prabhu et al. (2000), who
demonstrated generation of a 100 nm SC centred at 1483.4 nm with output power
of over 1 W and a weak spectral modulation of 0.11 nm, from a 1064 nm CW
8.4 W ytterbium-doped fibre laser. The broadening medium consisted of a 700 m
phosphorus-doped and a 500 m Flexcor-1060 single-mode fibre that, together with
a series of gratings, formed a Raman and a Brillouin cavity. The whole setup worked
as a hybrid Raman/Brillouin fibre laser that produced a broad output SC spectrum.
Further work in this direction was carried out by Abeeluck et al. (Nicholson et
al., 2003b; Abeeluck et al., 2003), who in 2003 demonstrated generation of a
broad 247 nm SC by pumping a 4.5 km HNLF with a tuneable Raman fibre laser
and clearly identified modulational instability (MI) as a fundamental effect in the
generation of the SC. The same authors have recently reported much broader SC
generation of more than 544 nm bandwidth, with output powers of up to 3.2 W
(Abeeluck et al., 2004; Fermann et al., 2000). Other groups have made interesting
contributions to the use of CW to generate SC for metrological applications
(González-Herráez et al., 2003). In 2008, ultra-long cavity fibre lasers (Ania-
Castañón et al., 2006) were used to obtain SC generation from CW in conventional
(non-PCF) fibres with a flatness of <1 dB over 180 nm, with more than 40% energy
conversion efficiency, thanks to partial confinement of the pumps within the laser
cavity (El-Taher et al., 2009).
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The spectral broadening of CW radiation may be considered in the limit
as equivalent to the broadening of extremely long pulses, so similar physical
mechanisms can be considered as responsible for CW SC generation and for the
spectral broadening of quite long pulses in the anomalous dispersion regime. Thus,
temporal distribution of SC intensity in this case takes the shape of a stochastic train
of pulses (solitons) having different (random) parameters and propagating along
the fibre at different velocities (see Fig. 9.3, the bottom row). When recording
the spectra of such SC in the experiment, an average over an enormous number
of “random” solitons is taken, giving, as a result, a smooth spectrum without any
peaks corresponding to individual solitons (Vanholsbeeck et al., 2005; Kobtsev &
Smirnov, 2005). For telecom applications, CW-pumped SC may be attractive due
to its smooth and adjustable spectrum (El-Taher et al., 2009). Irregular temporal
structure makes such SC inapplicable as a multi-wavelength source light source
for data transmission; however, there are some other telecom applications that can
use irregular temporal profile as well. Thus, for example, non-linear broadening of
CW can be applied to the pumps of a Raman amplifier widely used in telecom, in
order to reduce its gain ripple when amplifying over a large bandwidth. The gain
ripple in broadband Raman amplification can also be minimised by using a large
number of pumps, but this is not always a practical solution, since it implies an
increase on the complexity of the system, reducing its adaptability and increasing its
cost. A Raman pump can be initially modulated and then rapidly broadened through
SPM, but a more interesting possibility is to use modulational instability in the fibre
to provide the initial modulation, thus considerably simplifying the design of the
amplifier by using continuous wave pump lasers. This was the approach originally
taken by Ellingham et al. (2002) and later followed by Chestnut & Taylor (2003)
to broaden the spectra of single pumps in different sets of fibre. In the original
paper by Ellingham et al., broadening performance of several non-zero dispersion-
shifted fibres was evaluated at different pump input powers, and a fivefold gain
ripple reduction was predicted for future dual-pump implementations. In order to
maximise the effect of modulational instability, the wavelengths of the pumps must
be such that they propagate through the broadening fibre in a slightly anomalous
regime, close to the zero-dispersion point. Other desirable properties of the fibre
include a high non-linear coefficient and a small attenuation, in order to minimise
the loss of the pump power. The non-linear-broadening method was finally applied
to a multi-pump Raman amplifier by Ellingham et al. (2005), using Truewave™
fibre, and increasing the 0.1-dB gain ripple bandwidth from 5 to 19 nm in an
amplifier designed to provide gain in the 1565–1595 nm region.

In general, using a pulsed pump in the normal dispersion regime is preferable
for SC generation in telecom applications due to much better coherence and noise
properties and preserved temporal pulse structure (Heidt, 2010; Hooper et al., 2011;
Nishizawa & Takayanagi, 2007).
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9.4.3 Rogue Waves

When discussing peculiarities of the temporal structure of spectrally broadened
radiation, it is impossible to pass over an intriguing aspect of non-linear optical
science involved in supercontinuum generation, which is related to the optical
analogue of oceanic rogue waves—rare events with extremely large intensity
fluctuations (Solli et al., 2007, 2008; Mussot et al., 2009; Dudley et al., 2009;
Erkintalo et al., 2009; Lafargue et al., 2009; Akhmediev et al., 2013; Vergeles &
Turitsyn, 2011). It was shown that supercontinuum generators can be used as a
simple and convenient test bed for studying the optical analogue of oceanic freak
waves, since non-linear optics provides a relatively large frequency of high-intensity
fluctuations and presents an opportunity of experimental studies that can be carried
out with just a table-top set of equipment offering a high degree of control and rapid
data acquisition.

The appearance of rogue waves can be caused by MI, which is known to have
high sensitivity to the initial conditions and to exhibit emergent behaviour (Solli
et al., 2007; Mussot et al., 2009; Dudley et al., 2009). Extensive studies in this
area were focused on different non-linear physical systems such as optical cavities,
passively mode-locked lasers and EDFA (see review Akhmediev et al., 2013) and
even in linear telecom data transmission lines (Vergeles & Turitsyn, 2011) due to
pulse (bit) overlapping.

9.4.4 Noise and Coherence of SC Sources

Noise and coherence properties of light sources are extremely important in telecom.
Coherence loss and excess noise potentially lead to deterioration of transmitted
data. Thus, obtaining high coherence and low noise operation of SC generators are
of primary importance for telecom applications. Let us note that there are several
different types of coherence such as spatial, temporal, pulse-to-pulse and so on.
Spatial coherence of SC is usually high enough, thanks to a small effective core area
of single-mode fibres used for spectral broadening. Pulse-to-pulse coherence, on the
other hand, will only be high in the case of SC generated from periodic pulse trains,
in which the effects leading to non-linear broadening have preserved the correlation
between the electric fields of different pulses. The noise limitations (Corwin et al.,
2003a) and coherence properties (Dudley & Coen, 2002) of SC spectra generated
in different kinds of fibre have been studied theoretically and experimentally by
multiple groups with the goal of designing the best possible SC sources. The
effect of pump fluctuations in the generation of SC pulses was first studied by
Mori et al. (1998), who showed that pulses were more stable when generated
in dispersion-flattened decreasing-dispersion fibre (DDF). Nakazawa et al. (1998)
studied degradation of coherence during SC generation in DDF, concluding that
FWM phase-matched by SPM and a small anomalous dispersion in the presence of
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amplified spontaneous noise (i.e. modulational instability) was the main cause of the
coherence loss. More recently, other studies appeared about the noise and coherence
properties of SC generated in PCF and highly non-linear fibres (HNLF) (Washburn
& Newbury, 2004; Gu et al., 2003). Corwin et al. (2003a, b) identified amplification
of quantum-limited shot noise and spontaneous Raman scattering as the main causes
of amplitude fluctuations in microstructured fibres and concluded that short input
pulses were critical for generation of broad SC with low noise, whereas Dudley and
Coen (2002) demonstrated that coherence degradation depended strongly on the
input pulse duration and wavelength and that the effect of modulational instability
in anomalous dispersion could be reduced by using short pulses.

9.5 Summary and Outlook

Research conducted over the past 20 or so years has convincingly demonstrated
the possibility of efficient telecom applications relying on SC techniques, mostly
in WDM and DWDM technologies using large numbers of channels (up to 10,000)
with different wavelengths. However, despite this demonstration of efficiency over
the entire telecommunication spectrum, these technologies have yet to be widely
adopted in the industry. Most probably, the following considerations have played a
role in delaying their acceptance by the industry:

1. Poor resilience. Failure of one master oscillator or an amplifier used in SC gener-
ation immediately causes interruption of data transfer in all generated channels.
Separate diode lasers with different output wavelengths used to generate each
channel generally provide better resilience of the data transfer system.

2. Difficulties in generation of SC with uniform radiation parameters over a broad
spectral range. The output at different wavelengths may have different intensity,
stability, different degree of coherence and so forth. In case of SC, not all of the
channels may have identical data transmission parameters.

Still, improvements to the reliability of the components used in SC generators
and the development of methods to better equalise SC radiation parameters within a
broad spectral range might yet allow SC technologies to fully realise their potential
and bring them into mainstream telecommunication applications. In this regard, it is
worth pointing out recent advances in the generation of SC-based optical frequency
combs, which have paved a promising way for applications in telecom.
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Chapter 10
Twisted Light in Supercontinuum: From
Self-Phase Modulation to Superfluidity
in Kerr Medium

J. T. Mendonça

Abstract This chapter considers the influence of laser pulse topology on the
formation of a supercontinuum. This occurs when the usual Gaussian laser pulses
are replaced by twisted pulses, which carry a finite amount of orbital angular
momentum (OAM). Generation of ring-shaped and of helical pulses with a broad
spectrum is discussed. We also study the possible relation between self-phase mod-
ulation (SPM), which is at the origin of the supercontinuum, and the superfluidity
of light. These two phenomena can occur in a Kerr medium. For short pulses and
long propagation distances, SPM could modify the conditions for the observation of
superfluid light.

Keywords Photon OAM · Self-phase modulation · Superfluidity · Kerr medium

10.1 Introduction

Self-phase modulation (SPM) of a short laser pulse, which is at the origin of the
so-called supercontinuum, is presently well understood (Boyd, 1992; Alfano, 2016;
Alfano & Shapiro, 1970). The supercontinuum arises from the nonlinear change in
the refractive index which occurs in a Kerr medium. In a recent work Mendonça
(2020), we have extended SPM to the case of twisted laser pulses from OAM, a
topic which became popular in the modern literature (Secor et al., 2017; Yao &
Padgett, 2011). It is well-known that twisted laser pulses carry a finite amount of
orbital angular momentum and possess remarkable nonlinear properties (Mendonça
et al., 2009; Zhu et al., 2018).

In this chapter, we review SPM and the supercontinuum of twisted laser pulses
and discuss two different pulse configurations. One is that of a single twisted
mode, characterized by a single topological charge l, and corresponds to a donut or
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ring-shaped helical intensity distribution. The other is that of mode superposition,
particularly that of light springs (Pariente and Quéré, 2015), which corresponds to
a helical energy distribution, and contains two or more topological charges. Light
springs are particularly important because they are able to accelerate helical electron
beams (Vieira et al., 2018).

We also relate SPM with the superfluidity of light, another possible process in
a nonlinear Kerr medium. The interest on superfluid light emerged in recent years,
as an alternative experimental approach to condensed matter processes (Carusoto
& Ciuti, 2013; Bolda et al., 2001; Chiao & Boyce, 1999). This effect is associated
with the disappearance of diffraction produced by optical obstacles and can occur
for sufficiently intense laser beams. Nonlinear inhibition of diffraction is the main
signature of superfluidity, when light becomes insensitive to small optical obstacles.
Several experimental arrangements have been proposed (Lerario et al., 2017; Michel
et al., 2018; Silva et al., 2017; Rodrigues et al., 2020). The standard theoretical
models of superfluid light usually ignore the influence of pulse duration. But,
for short pulses, nonlinear frequency shifts associated with SPM could eventually
interfere with superfluidity. In that case, SPM could modify the basic properties of
the photon fluid and, as a result, introduce qualitative changes in the fluid-superfluid
transition, due to its sensitivity to frequency and intensity space-time distributions.

10.2 Ring-Shaped Supercontinuum

We first consider SPM in a twisted beam of light with topological charge l. This
charge represents the orbital angular momentum of light in the forward direction.
The corresponding transverse field profile is given by a radial Laguerre-Gauss (LG)
function, for unbounded beam propagation, or by a radial Bessel function for fiber
mode propagation. Let us then describe the field mode as:

E (r, t) = elEl (r⊥, z, t) exp (iφl (r, t)) , (10.1)

where el is the unit polarization vector, El(r⊥,z,t) is a slowly varying amplitude, and
φl(r⊥, z, t) is the total phase. We can write them explicitly as:

El (r⊥, z, t) = u (z, t) | Flp (r⊥) |, (10.2)

where u(z, t) is the mode amplitude profile and (l, p) are pairs of quantum numbers
specifying the different LG modes. The mode number p gives the number of zeros in
the radial direction, and will be considered equal to zero in the numerical examples
given here, for simplicity. Using polar coordinates r⊥ = (r, θ ), we can write the LG
functions as:

Flp (r ⊥) = Clp X
|l|/2L|l|p(X) exp (−X/2 + ilθ) , (10.3)
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where Lp
l are the associated Laguerre polynomials with argument X = r2/w2 and

w defines the laser beam waist. Note that this quantity is slowly varying along
propagation but can be assumed nearly constant inside of the focal region, over
a distance of the order of the Rayleigh length. This is valid for unbounded media.
The normalization factors Clp are used to satisfy the orthonormal relations between
modes, as defined by:

∫ ∞

0
r dr

∫ 2π

0
d� F ∗

lp (r,�) Fl′p′ (r,�) = δll′δpp′. (10.4)

A similar description can be used for optical fibers, but using radial Bessel
functions, instead of the above LG functions. The field phase in Eq. (10.1) is given
by:

φl (r, t) = lθ + (kz− ωt) , (10.5)

where the frequency ω is related to the wavenumber by the nonlinear dispersion
relation:

ω = kc√
ε (ω)

[
1 − α (ω) |E|2

]
, (10.6)

with:

ε (ω) = 1 + χ(1) (ω) , α (ω) = ω vk

2kc2
χ(3), (10.7)

where χ(1) and χ(3) are the linear and the Kerr susceptibilities, respectively. The
resulting nonlinear dependence of the phase on the field intensity leads to a radially
symmetric frequency shift, determined by the expression:

ω (t) = ω0

{

1 + α
t

v0

∣
∣Flp (r⊥)

∣
∣2 ∂

∂η
|u (η)|2

}

. (10.8)

Here, ω0 = ω(t = 0) is the initial pulse frequency, η = (z − v0t) is the space
variable in the pulse reference frame, and v0 is the linear group velocity. SFM and
the subsequent generation of the supercontinuum will therefore depend on the radial
pulse profile, as determined by the new factor |Flp(r⊥)|2. Noting that the intensity
profile is independent of the angular variable θ, this will lead to a donut or ring-
shaped frequency shift, as illustrated in Fig. 10.1. Here, we have used a Gaussian
envelope profile, as determined by |u(η)| = u0 exp.(−η2/2σ 2), where σ determines
the pulse duration.
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Fig. 10.1 Three-dimensional representation of a twisted laser beam, described by the LG mode
(l = 1, p = 0): (a) laser pulse intensity I(η); (b) frequency shift δω(η), due to SPM inside the pulse.
This configuration can lead to the formation of a ring-shaped white light

10.3 Helical Supercontinuum

Let us now consider the superposition of two different twisted modes, characterized
by two distinct topological charges, or angular momentum quantum numbers, l1 and
l2. In this case, Eq. (10.1) is replaced by:

E (r, t) =
∑

j=1,2

ejEj (r⊥, η) exp
[
iφj (r, t)

]
, (10.9)

With:

Ej (r⊥, η) = uj (η)
∣
∣Fj (r⊥)

∣
∣ , φj (r, t) = lj θ + (kj z− ωj t

)
, (10.10)

We assume ej = e and ignore polarization effects. Let us introduce the relative
amplitude R = E2/E1. In general, this quantity depends on both the axial and radial
variables, R ≡ R(r⊥, η), but in some useful cases, its radial dependence is small
and can be ignored. The resulting pulse intensity will then be proportional to the
quantity:

|E (r⊥, η)|2 = |E1|2
{(

1 + R2
)

+ 2R cos (δlθ − δk z− δω t)
}
, (10.11)

with δl = l1 − l2, δk = k1 − k2, and δω = ω1 − ω2. For δω �= 0, we get the so-called
light springs. These configurations are particularly useful for laser acceleration
schemes, because they lead to the formation of energetic helical electron beams
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(Vieira et al., 2018). The simplest example of a light spring corresponds to R � 1,
and δl = 1. The above expression is reduced to:

|E (r⊥, η)|2 � 2|E1|2
{(

1 + cos (θ − δk z− δω t)
}
, (10.12)

The other interesting example is that of two modes with the same frequency,
such that δk = δω = 0, but dephased in time. We get the self-torque configurations,
recently discussed in Rego et al. (2019). They can be described by:

|E (r⊥, η)|2 � |E1|2
[
1 + R(η)2

]
+ 2R (η) cos (δlθ) , (10.13)

The interest of this new example of two temporally dephased modes is that the
angular momentum seems to vary continuously inside the pulse, from l1 to l2 �= l1,
due to the variation of their relative amplitudes.

The frequency shift originating from the light spring configuration of Eq. (10.12)
is given by:

ω(t) = ω0 {1 + α t cos (θ − δk z− δω t)} , (10.14)

with the nonlinear factor:

α =
∑

j=1,2

αj

vj

∣
∣Fj (r⊥)

∣
∣2 ∂

∂η
|u (η)|2. (10.15)

Here, the pulse envelope was assumed identical for the two modes, uj(η) = u(η).
This leads to the formation of a supercontinuum with new topological properties.
The frequency space-time distribution follows a helical shape, similar to that of the
pulse intensity, and is fundamentally different from that of a single twisted mode,
because it now depends on both the transverse and the angular coordinates. These
new features are illustrated in Fig. 10.2. Of particular interest is the topological
similarity between the acceleration of helical electron beams, demonstrated in Vieira
et al. (2018), and the formation of the helical frequency shifts shown in this figure.
Similarities between particle acceleration and photon frequency shifts were noted
long ago in plasma physics and led to the concept of photon acceleration [see
Mendonça, 2001 and references therein].

Finally, for the self-torque configurations of Eq. (10.13), the SPM frequency
shifts are determined by an expression of the form:

ω(t) = ω0 {1 + ν0t + [2R + cos (δlθ)] ν1t} , (10.16)

where ν0 � ᾱ and ν1 ∝ (∂R/∂η). Here, the frequency distribution not only loses
the axial symmetry of the single twisted mode case, shown in Fig. 10.1b, but also
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Fig. 10.2 Three-dimensional representation of a light spring, described by the superposition of
two LG modes (l = 6, p = 0) and (l = 7, p = 0) with equal amplitude: (a) laser pulse intensity
I(η); (b) frequency shift δω (η), due to SPM inside the spring

the helical property observed with light springs, shown in Fig. 10.2b. This lack of
symmetry is due to the conditions (δl �= 0, δω = 0), similar to those considered in
Mendonça and Vieira (2014), and also to an additional contribution associated with
ν1.

10.4 Superfluidity

We now briefly discuss the superfluidity of twisted laser pulses. It is well-known
that pulse propagation in a Kerr medium satisfies a nonlinear equation of the form:

i
∂E

∂z
= −

[
1

2k
∇2⊥ + k

2ε (ω)
χ(3)|E|2

]

E. (10.17)

We should keep in mind that, for any given location inside the pulse, specified by
η, the frequency will increase or decrease along propagation. But we are now more
interested in the processes taking place in the perpendicular direction. Equation
(10.17) is able to describe the evolution of perturbations in the perpendicular plane
r⊥, during pulse propagation along the z direction. Noting that the center of the
pulse moves with η = 0, or z = v0t, we can replace the axial variation along z by
a temporal variation of the envelope. On the other hand, we can introduce a new
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field function, ψ(r⊥, t) = E(r⊥, z = v0t), and reduce Eq. (10.17) to the standard
nonlinear Schrödinger form:

i�
∂

∂z
ψ = −

[
�

2

2m
∇2⊥ − g|ψ |2

]

ψ. (10.18)

The effective photon mass m, and coupling parameter g, appearing in this
equation, are defined by:

m = �k

v0
, g = −�v0

c

ω√
ε (ω)

. (10.19)

The Planck constant � was introduced for dimensional purposes. This is formally
identical to the Gross-Pitaevskii equation used to describe Bose-Einstein conden-
sates (Pethick and Smith, 2008), and we have chosen the sign of g according to
the usual convention. The case of positive nonlinear susceptibility, χ(3) > 0, will
correspond to condensates with attractive interactions, and the opposite case of a
negative nonlinearity, χ(3) < 0, to repulsive condensates. At this point, it is useful
to introduce a Madelung transformation, such that ψ = √

n exp. (iφ). This allows
us to describe the laser pulse as a fluid, where the photon fluid density n and mean
velocity v are defined as n = |ψ|2 = |E|2, and v = ∇⊥φ. From Eq. (10.18), we can
then derive the corresponding fluid equations, similar to those of a condensate, as
(Carusoto & Ciuti, 2013; Rodrigues et al., 2020):

∂n

∂t
+ ∇⊥ (n v) = 0,

∂v
∂t

+ v.∇⊥ v = − g

m
∇⊥n+ �

2

2m2
∇⊥

(
∇2⊥

√
n√
n

)

,

(10.20)

Here, the laser pulse (or photon fluid) parameters m and g depend on the
position η inside the laser pulse envelope. It should be noticed that the equilibrium
values for the photon density and transverse velocity, n0 and v0, are determined
by the appropriate twisted mode structure. They will also depend on the frequency
shifts associated with SPM, which result from the pulse propagation through the
nonlinear medium. In that way, the fluid properties become dependent on the SPM
process. For a single twisted mode, characterized by the topological charge l, these
equilibrium values are:

n0 = |ul |2
∣
∣Flp (r⊥)

∣
∣2, v0 = ∇⊥φ = l

r
eθ . (10.21)

This equilibrium state corresponds to a concentric photon fluid ring, as repre-
sented in Fig. 10.1a, rotating with a finite polar velocity v0 = vθ. The resulting
transverse flow is proportional to the orbital angular momentum of the twisted beam,
� l, and vanishes for a purely Gaussian pulse.
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Let us now assume some elementary perturbations inside these rotating rings of
light, as defined by the perturbed quantities δn = n − n0, and δv= v− v0. Assuming
that these perturbed quantities are proportional to exp. (iq·r⊥ − i�t), where q is the
wave vector and � is the frequency, assumed very small with respect to the photon
frequencies, � 
 ω, we can obtain after linearization of Eq. (10.20), a dispersion
relation of the form:

(�− v0.q)2 = c2
s q

2 + �
2q4

4m2 . (10.22)

where cs = (g n0/m)1/2 can be called the Bogoliubov speed of the photon fluid.
Notice that this quantity depends parametrically on η, through the values of g and
m, given by Eq. (10.19). It also depends on t, because the photon frequency ω(η)
and wavenumber k(η) evolve along propagation, and on the radial position as well,
through the equilibrium density n0. This shows that, even if this dispersion relation
is formally identical to that of a moving Bose-Einstein condensate, its physical
meaning is significantly different and that a more complex view of light superfluidity
emerges when SPM is taken into account.

These elementary oscillations in the photon fluid reveal a possible transition to
superfluidity, as shown next. Given the radial shape of this fluid, it is appropriate
to consider purely poloidal oscillations, eventually relevant to experiments. In this
case, we assume q = qθeθ and, due to the existence of periodic boundaries, we
should also keep in mind that such oscillations typically evolve as qθ ∼ l′/w, with
l′  l. The dispersion relation (10.22) then becomes:

(

�− lqθ

r

)2

= gn0 (r⊥)
m

q2
θ + �

2q4
θ

4m2 . (10.23)

At this point, it is useful to invoke the Landau criterion (Pethick and Smith,
2008). It states that superfluidity will only occur if none of these acoustic type
of oscillations can be excited. The photon flow in the poloidal direction will then
become insensitive to any given obstacle. This is only possible when vθ < cs, or in
other terms, when the laser intensity I ≡ n0 is larger than some critical value I ≥ Ic,
defined as:

Ic = l2

w2

m

g
. (10.24)

It is clear that this quantity will depend on η and t, as well as on the radial
position. This means that, sufficiently close to the optical axis, superfluidity will
necessarily collapse, at a critical radius rc ≤ l m/g, thus creating a kind of moving
horizon between the normal fluid and superfluid.

Let us now discuss the implications of our analysis to possible observation of
superfluidity with SPM. For very long pulses, with duration �t = σ /v0, SPM can
be ignored if the maximum frequency shift is smaller than the natural pulse width,
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Fig. 10.3 Map of laser intensity versus propagation distance. Intensity is normalized to the
critical intensity Ic for superfluidity; and distance is normalized to the critical distance Lc
for supercontinuum. Three regions are identified for the observation of superfluidity alone,
supercontinuum alone, and both

δω0 � 1/�t. In this case, we can study superfluidity as an isolated phenomenon.
This is no longer true for large propagation distances L, because the frequency
shifts modify the value of this critical intensity, Ic. It is therefore useful to state
a condition for the inclusion of SPM in the analysis of superfluid light. This can be
approximately written as:

�ω ≥ α
2ω0η

σ
n0, (10.25)

Assuming that maximum frequency shifts occur at a position η � σ, we can
establish a criterion for the occurrence of SPM in a superfluid experiment in terms
of the propagation distance as L ≥ Lc, where the critical distance is determined by:

Lc = v0

αω0n0
. (10.26)

This means that, for sufficiently large laser pulse intensities I ≡ n0, or alter-
natively, for sufficiently long distances L, the two effects of SPM and light
superfluidity will eventually merge and will have to be considered simultaneously.
However, for sufficiently long pulses, or sufficiently weak laser intensities, they can
be observed separately, as it occurs in most experiments so far. The three possible
experimental regions are illustrated in the (I, L) diagram of Fig. 10.3.
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10.5 Conclusions

In this chapter, we have explored the new topological features of SPM and
supercontinuum when twisted laser configurations are introduced, as well as their
relations with the superfluid properties of light.

Twisted laser pulses carry a finite amount of orbital angular momentum, and
the influence of their topological properties on the formation of a supercontinuum
was discussed. Two main examples of twisted pulses were considered. One is that
of simple twisted pulses, characterized by a single topological charge l. The other
example corresponds to more complex pulses, such as those of light springs and self-
torque configurations proposed in recent years. They result from the superposition
of two (or more) twisted modes with different topological charges and frequencies.
Simple twisted pulses lead to ring-shaped frequency profiles, whereas more complex
pulses can lead to helical-shaped or to asymmetric frequency profiles. This opens
the way to even more complex configurations, such as those of half-integer (or spin
type of fermionic) configurations, described in Mendonça et al. (2018). The road to
topological studies of the supercontinuum is therefore open for exploration.

We have also briefly discussed the possible observation of superfluid light,
which is related with the inhibition of diffraction above some critical intensity. This
property is related with the inhibition of poloidal perturbations in the transverse
direction. It is particularly relevant for twisted laser pulses because, in contrast with
purely Gaussian pulses, they possess a transverse photon flow velocity proportional
to the topological charge. Superfluidity is adequately described by a nonlinear
Schrödinger equation, generally valid in Kerr media, from where appropriate fluid
equations can be derived.

Transition between a normal fluid and superfluid light can be established using
the celebrated Landau criterion. When applied to the present problem, this criterion
depends on the laser pulse intensity and frequency profiles and is modified by the
occurrence of SPM. Based on the Landau criterion, an intensity-distance map was
established, where three different experimental regimes could be identified. They
correspond to the observation of SPM and supercontinuum alone, to the observation
of superfluidity alone, or to a yet unexplored new regime where SPM modifies
the Landau criterion and nonlinear effects along the propagation direction can
influence those in the perpendicular direction. This could bring new challenges and
opportunities for the experimental work and for future optical applications.
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Chapter 11
Conical Emission Produced
from Femtosecond Laser Pulses

Henry J. Meyer and Robert R. Alfano

Abstract Presented is a review of conical emission (CE) produced from femtosec-
ond pulses in transparent solids, focusing on BK-7 glass. Conical emission is one
of the most fundamental and colorful nonlinear optical effects. CE describes the
radial emission of light due to four-wave mixing, producing a beautiful ring-like
color pattern. The effect today is often modeled using the X-wave equation from
2006 but has been historically described using the Luther method from 1994 and the
original model from CE’s first recorded observation by Alfano and Shapiro in 1970.
Often left out of modern literature is what is known as degenerate conical emission,
which described the angular re-emission of light matching the source laser due to
the influence of the nonlinear index of refraction (n2). This type of emission was first
observed in 1970 by Alfano and Shaprio and can yield important information into
the transient nature of the nonlinear index induced by femtosecond pulses. A method
of measuring degenerate CE and how it can be used as a new way for measuring the
nonlinear index of material are described in this review.

Keywords Conical emission · Four-wave mixing · Nonlinear optics · Ultrafast
optics · BK-7 glass · Phase matching · Nonlinear index · Transient nonlinear
index · X-waves · Nonlinear Schrodinger equation

11.1 Introduction

Conical emission (CE) is one of the most fundamental and beautiful nonlinear
effects. Its name refers to the cone-like shape of the emitted light. CE was first
observed by Alfano and Shapiro in 1970 (Alfano & Shapiro, 1970), after being
first modeled in 1966 (Shimoda, 1966a, b). The first observation of CE was done
using 532 nm picosecond pulses focused into BK-7 glass. The glass sample emitted
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Fig. 11.1 Rings of anti-Stokes conical emission surrounding a white supercontinuum center.
Image shows how colorful rings of red, orange, yellow green, blue, and violet spread out angularly
from a central white light supercontinuum signal

supercontinuum white light surrounded by multicolored rings that were blue and
red shifted from the input green laser. These rings spread out angularly in a cone-
like structure as a function of the emitted photon’s wavelength in both the Stokes
and anti-Stokes directions. This creates an effect that in appearance looks similar
to a circular rainbow or grating. In the case of an 800 nm light source, anti-Stokes
CE can be seen in Fig. 11.1, in which the generated CE covers the entire visible
spectrum (Meyer & Alfano, 2020).

Since CE was first theorized (Chiao & Kelley, 1966), ultrafast lasers have vastly
improved. Current lasers can easily achieve pulse durations thousands of times
smaller than what was possible in the 1970s putting them into femtosecond regime.
This improvement has a dramatic impact on the response of a material’s nonlinear
index (n2). The nonlinear index is transient in nature, as it is comprised of multiple
different processes with different relaxation times (τR) (Shen, 1964; Shen & Yang,
2016; Ho & Alfano, 1979). Pulse durations in the femtosecond regime are often
too short for many of nonlinear index’s (n2) components to ramp up and activate
(Brewer & Lee, 1968; Hellwarth et al., 1971). For example, a laser pulse in the
tens of femtoseconds would render the n2 of material in its nearly pure electronic
state. The laser pulse in this case is too short for the molecular contributions, which
typically have picosecond relaxation times, to adequately express themselves. This
can have a large effect on nonlinear optical process such as conical emission. So,
it is important to note that it can be expected that a 50 fs laser would produce a
very different angular spectrum in BK-7 glass than what was first measured using a
picosecond laser in 1970.
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11.2 Theory

Conical emission comes from the four-wave mixing (FWM) effect (Alfano &
Shapiro, 1970). During nonlinear optical action, two photons (k1 and k2) can
nonlinearly combine in a material and emit two new photons of new frequencies
(k3 and k4), such that k1 + k2 = k3 + k4. In its original 1970 description, this
interaction is entirely subject to the phase matching condition, which is where the
process gets its angular dependence (φ) (Alfano & Shapiro, 1970). However, CE
is now often described using solutions to the nonlinear Schrodinger equation, and
this has given rise to new models of the effect such as the Luther model of 1994
(Luther et al., 1994) and the X-wave model of 2006 (Faccio et al., 2006). The X-
wave model is currently the most popular model in use today. These three models
all predict different emission angles, with the original 1970 model being the only
one that predicts degenerate emission. Degenerate CE is a special case in which the
material angular re-emits photons at source wavelength such that k1 = k2 = k3 = k4.

For the derivations of these models, we will consider the case of monochromic
laser light source such that kL = k1 = k2 that undergoes CE and emits a Stokes
photon (kS) with a loss of energy and an anti-Stokes photon (kA) with a gain
in energy compared to source laser giving the relationship 2kL = kA + kS. This
condition is often represented by the linear phase matching triangle in Fig. 11.2a
and the energy level diagram Fig. 11.2b.

11.2.1 The Alfano-Shapiro Model

The original 1970 model (Alfano & Shapiro, 1970) comes from the condition
of phase mismatch (�kA) of the wavevectors, such that �kA = kA + kS − 2kL.
Following the work of Shimoda (1966a, b), this can be used to calculate the emitted

Fig. 11.2 The phase matching triangle (a) and the energy level diagram (b) of FWM. Here kL, S, A
represents the wavevectors, and ωL, S, A represents the input photon frequencies, Stokes, and anti-
Stokes. φS and φA are the angles of conical emission
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angle φA using the small angle approximation giving

φ2
A = 2�kA

kA
+ a2

2l2
(11.1)

The term �kA can be expanded using �k′
A = (kA + 2�k) + (kS + 2�k) –

2(kL + �k), to include the contribution of the nonlinear index n2. This expansion
allows for Eq. 11.1 to be rewritten as

φ2
A = 2�kA

kA
+ 4�k

kA
+ a2

2l2
. (11.2)

Here �k = �nL ωL/c, with ωL being the frequency of the laser and c the speed of
light. The term �nL is the change in the index of refraction at the laser wavelength
due to the nonlinear index of refraction n2. The term �nL is derived from the first
term in the equation of nonlinear polarization (PNL) of four-wave mixing (Alfano,
1972)

PNL = ε2

8π
{I (EL + 2ES + 2EA)+ . . . } , (11.3)

Combining this with the nonlinear polarization created by the charge in the
dielectric constant

PNL = �ε

4π
E = 2n �n

4π
E. (11.4)

gives�nL ∼= 1
4 ε2 I/nL for the strong wave and�nS,A = 1

2 ε2 I/nS,A for the weak
waves (Alfano, 1972). The term ε2 is the electronic Kerr coefficient ε2 = 2 nL n2,
with n2 representing the nonlinear index of the material. The variable I is the input
intensity, and nL and nS, A are the linear indexes of refraction at the input laser,
Stokes and Anti-Stokes wavelengths. It is also important to note that the term a2/2l2

in Eq. 11.2 corresponds to the filament diameter and length and is very small in both
Eqs. 11.1 and 11.2, making it negligible in most cases.

Importantly, Eq. 11.2 is nonzero when �kA = 0, and this occurs when
kL = kA = kS, or �ω = 0. This is a prediction of the angular re-emission of
the source wavelength otherwise known as degenerate conical emission. Equation
11.2 in this case simplifies to

φ2 (�ω = 0) = 2n2I

kL
(11.5)
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This relationship directly ties the degenerate angular emission of CE to the Kerr
nonlinear index n2. Of the models reviewed in this chapter, only the Alfano-Shapiro
model predicts this type of emission.

11.2.2 The Luther Model

The Luther and X-wave models come from the nonlinear Schrödinger equation of
the form

dA

dz
= i

2kL
∇2⊥A− i k′′

L

2

d2A

dt2
+ i

ωL n2

c
I A, (11.6)

with A = Exp(i k⊥ r − i � t) • Exp(i kL z), k⊥ =
√
k2
x + k2

y , r = √
x2 + y2, and

� = ωA − ωL (Silberberg, 1990; Liou et al., 1992).
Following Luther et al. (1994), CE occurs during the phase matching of

maximum instability growth; mathematically, this occurs when the linear diffraction
term and the dispersion term cancel each other out for both Stokes and anti-Stokes
emission. Solving Eq. 11.6 for the perpendicular wavevector (k⊥) in this condition
gives the relationships

k⊥ =
√
kLk

′′
L �, (11.7)

φA = k⊥
kL

=
√
k′′
L

kL
�, (11.8)

The Luther model (Eq. 11.8) predicts an essentially linear relationship between
the emitted angle and wavelength and doesn’t account for degenerate emission and
the influence on the nonlinear index. In modern comparative literature, this model
underperforms; however, this model provided an important steppingstone to the
formation of the X-wave model.

11.2.3 The X-Wave Model

The X-wave model, first proposed by D. Faccio et al., is described as the four-wave
mixing and amplification of X-waves (Faccio et al., 2006), and it mathematically
follows a similar calculation to the Luther model. Here the dispersion, diffraction,
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and nonlinear term from Eq. 11.6 are taken to cancel to zero; solving for the
perpendicular wavevector (Liou et al., 1992) gives

k2⊥ = kL k
′′
L �

2 − 2 β kL, (11.9)

where β = ωL n2
c

I . At k⊥ = 0 gives the relationships k′′
L�

2/2 = β and�k⊥=0 =√
2 β/k′′

L . The perpendicular wavevector can also be written as

k⊥ =
√
k(ω)2 − k2

z , (11.10)

expanding the kz term gives kz = kL + k′
L �+ 1

2k
′′
L�

2. This can be rewritten as

kz = kL +
(

k′
L + β

�k⊥=0

)

�. (11.11)

Combining Eqs. 11.9, 11.11, and 11.12 gives the X-wave model (Faccio et al., 2006,
2007, 2008)

φA = k⊥
kL

=
√√
√
√1 −

(
kL + �

vg

k (ω)

)2

, (11.12)

The original derivation of the X-wave model omits predictions of CE in the near-
degenerate state. In most literature published since its derivation, the X-wave model
has been the most common model used for CE outside the degenerate range.

11.3 Measuring Conical Emission

Conical emission can be experimentally measured fairly simply. CE is naturally
produced when focusing a high-intensity pulsed beam of light into a material, such
as glass. However, the intensity threshold needed for noticeable generation can
vary dramatically depending on nature and state of them sample. Transparent solid
lattice structures like glass or calcite require significantly less intensity than air, for
example. The angle of CE can be measured using a CCD camera, a spectrometer,
simple lens trigonometry, and Snell’s Law. An example of a CE measuring system
can be seen in Fig. 11.3 (Meyer & Alfano, 2020).
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Fig. 11.3 Diagram of the system used to collect conical emission data. Spectrometer used a single
grating with 600 line/mm blazed at 750 nm

Fig. 11.4 Image of the angular growth of anti-Stokes conical emission. X-axis is the span of
450 nm to 750 nm and the Y-Axis is the height change at the slit entrance before converting into
internal sample angle. The zero location is the center of the generated supercontinuum

11.3.1 Non-degenerate Emission

In this system, a 2uJ, 50 fs beam centered at 800 nm with a repetition rate of 250 kHz
from a pulse compressed Monaco pumped Opera-F system is focused into a 7.5-
cm-long sample of BK-7 glass using a 20 cm lens. Light emitted from the sample
is collected through a 5 cm lens placed directly behind the sample and exactly 5 cm
from the entrance slit of a single grating spectrometer. This configuration allows
for the height of the signal at the entrance slit to be converted into the angle of the
light leaving the sample using lens trigonometry. The angle can then be converted
into the sample’s internal emission angle using Snell’s Law. A CCD camera can be
placed at the end of the spectrometer and its x and y pixel axis calibrated to height at
the slit and wavelength emitting from the grating. In the case of this experiment, the
calibration was done using a HeNe laser with adjustable height. In this experiment,
several images from the CCD camera were taken and spliced together to create Fig.
11.4 (Meyer & Alfano, 2020).

The image in Fig. 11.4 can be converted into a dataset allowing for calculation
of the internal sample angle using lens trigonometry and Snell’s law. This image
when plotted gives Fig. 11.5, which shows the angle of the emitted anti-Stokes
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Fig. 11.5 Anti-Stokes conical emission produced from BK-7 glass, in the anti-Stokes span of 2000
to 9000 cm−1

light compared to the three models discussed earlier in the energy change span of
2000 cm−1 to 9000 cm−1 from at 50 fs 800 nm source beam in BK-7 glass (Meyer
& Alfano, 2020).

This image shows the angular spectrum of the emitted anti-Stokes light covering
a span of +2000 to +9000 cm−1. This span is approaching ωA → 2ωL, which is the
limit of the Alfano-Shapiro model as the reciprocal Stokes signal would be quickly
approaching zero ωS → 0. Omitted from this figure is the sub 2000 cm−1 range that
covers the degenerate state and near-degenerate emission. The light in the spectral
region is emitted at smaller angles and becomes obscured by the much stronger
colinear signals, so it is rarely investigated.

11.3.2 Degenerate Emission

To measure CE emitted in the region at or near the degeneracy state, the system
in Fig. 11.3 can be adapted by adding a small wire in front of the entrance focal
distance (f) away from the collection lens. If the wire is sufficiently small, any
angular emission should be able to go around it, while collinear signals such as
supercontinuum and the remainder of the source laser are blocked. A diagram
showing how this works can be seen in Fig. 11.6.

With the addition of the wire, all colinear signals are visibly absent from the
spectrometer’s output spectrum. Repeating the technique that gave Fig. 11.4 now
gives Fig. 11.7.
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Fig. 11.6 A diagram showing how the degenerate conical emission can be measured using a wire
and the same lens trigonometry discussed in the previous section. The wire blocks out any of the
colinear light traveling along the dashes line while allowing CE at angle φ to travel around it. This
figure is also relevant for measuring non-degenerate emission

Fig. 11.7 Image of the angular growth of CE from Bk-7 glass before correcting for internal angle.
In the span of +3000 to −2000 cm−1. (Note that the wire is visibly blocking collinear signals,
compared to Fig. 11.4)

Noticeably, in Fig. 11.7, the CE signal is nonzero at the source wavelength of
800 nm. The addition of the wire also makes it possible to view the Stokes emission
produced in the range of the CCD camera. Plotting this figure after adjusting for
internal angle gives Fig. 11.8.

The produced degenerate emission is nonzero and fits well with the value
predicted by the Alfano-Shapiro model. As noted in Eq. 11.5, the degenerate angle
is directly tied to the nonlinear index of refraction (n2) of a material and its response
time. This observation also implies that a term resembling Eq. 11.5 could be used
to adapt the other models discussed to better fit in this region.

11.4 Concluding Remarks

In practice today, the X-wave model is the most commonly used. It has been shown
to make accurate predictions of conical emission in air and fused silica (Maioli et al.,
2009; Gong et al., 2016), allowing for it to become an important part of CE-derived
technology such as optical parametric amplification (Li et al., 2019). However,
omitted from its original derivation is the behavior of CE in the degenerate in
near-degenerate spectral region. In this range, the nonlinear index has a pronounced
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Fig. 11.8 Degenerate and near-degenerate CE produced from BK-7 glass in the Stokes and anti-
Stokes span of +3000 to −2000 cm−1

Fig. 11.9 Difference of the predicted degenerate CE when using the 3.18 × 10−20m2/W nonlinear
index of a femtosecond laser (Lu et al., 2012) and the 8.3 × 10−20 m2/W of a picosecond laser
(Alfano & Shapiro, 1970)

contribution to the phase matching process of CE. This means that degenerate CE
can provide new useful information about a materials expression of the nonlinear
index. For example, effect of transience in the nonlinear index can be easily seen in
Fig. 11.9.
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Figure 11.9 shows how the predictions of degenerate emission by the Alfano
model change depending on the transience of the nonlinear index. The nonlinear
index of picosecond pulses in BK-7 of 8.3 × 10−20m2/W used in the original
1970 paper (Alfano & Shapiro, 1970) missed the observed angle from a 50 fs
laser by approximately 70%, while the 33 fs femtosecond nonlinear index of
3.18 × 10−20m2/W calculated and measured by X. Lu et al. (2012) was accurate
within less than 5%. This is because the pulse of a 50 fs femtosecond laser is
significantly shorter than the relaxation times of many other components of the
nonlinear index leaving only the ultrafast electronic response (Ho & Alfano, 1979).
This means the n2 of a BK-7 glass interacting with a femtosecond pulse is much
smaller than when interacting with a picosecond pulse.

The relationship of degenerate conical emission angle and the accuracy of the
described data suggest that this method of measuring degenerate CE could be used
as a new means of measuring the nonlinear index of a material and cataloging n2’s
transient responses. Degenerate conical emission could prove to be a useful tool in
the field of nonlinear optics, working in conjunction with Z-scanning and other n2
measuring tools.
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Chapter 12
Supercontinuum in IR–MIR from
Narrow Bandgap Bulk Solid-State
Materials

Audrius Dubietis, Vytautas Jukna, and Arnaud Couairon

Abstract In this chapter, we present a brief summary on the state of the art of
supercontinuum generation in wide-bandgap dielectric materials with near-infrared
pumping and a more detailed overview of recent experimental developments along
with representative examples of infrared supercontinuum generation employing
narrow bandgap bulk solid-state materials: dielectric crystals, soft glasses, and
semiconductors pumped by femtosecond pulses with carrier wavelengths located
in the near- and mid-infrared.

Keywords Supercontinuum generation · Femtosecond filamentation · Nonlinear
index of refraction · Pulse splitting · Pulse compression · Wide bandgap
dielectrics · Narrow bandgap dielectrics · Soft glasses · Semiconductors ·
Polycrystalline materials · Zinc blende

12.1 Introduction

Since its discovery by Alfano and Shapiro in 1970 (Alfano & Shapiro, 1970a,
1970b), supercontinuum (SC) generation in bulk materials attracts a great deal
of scientific and technological interest. The advent of ultrafast solid-state laser
technology, which was initiated by the invention of the chirped pulse amplification
(CPA) technique in 1985 (Strickland & Mourou, 1985) and the discovery of Kerr-
lens mode locking a couple of years later (Spence et al., 1991), boosted an exciting
experimental progress in SC generation. With femtosecond CPA Ti:sapphire lasers
(Backus et al., 1998), SC generation in transparent dielectric materials became
a robust, reliable, compact, and well-established technique for the generation of
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spatially and temporally coherent and spectrally uniform broadband light sharing
the distinctive properties of laser radiation. SC sources currently find numerous
applications in diverse fields of modern ultrafast science.

Owing to simple experimental implementation, which guarantees stable and
reproducible operation without optical degradation and damage of the nonlinear
material, SC sources paved new ways in the development of a particular class
of ultrafast laser sources, optical parametric amplifiers, which provide broad
wavelength tunability by employing SC light as a broadband seed signal (Cerullo &
De Silvestri, 2003). In that regard, SC generation became a backbone of few optical
cycle technology, providing perfectly suited seed for noncollinear optical parametric
amplification (Wilhelm et al., 1997), which affords extremely broad amplification
bandwidths, and serves as a well-established technique for the generation of few
optical cycle pulses, see, e.g., Brida et al. (2010). More recently, the average and
peak powers of these pulses were boosted to unprecedented levels by the use of the
optical parametric chirped pulse amplification (OPCPA) technique (Rigaud et al.,
2016; Budriunas et al., 2017; Toth et al., 2020). On the other hand, SC generation-
based extracavity compression allows generation of pulses with sub-TW peak power
(He et al., 2017) and duration of a single optical cycle (Seo et al., 2020). Moreover,
femtosecond SC sources serve as powerful tools in ultrafast electronic spectroscopy,
performing pump and probe experiments with femtosecond time resolution, see,
e.g., Aubock et al. (2012); Riedle et al. (2013).

In the meantime, the advent of Yb-doped laser systems (Fattahi et al., 2014)
allowed the generation of femtosecond pulses at very high repetition rates, while
subsequent frequency downconversion and pulse shaping techniques (Krogen et al.,
2017), extracavity compression/self-compression in bulk materials (Hemmer et al.,
2013; Shumakova et al., 2016), and more recent developments of ultrafast tran-
sition metal-doped chalcogenide lasers (Mirov et al., 2018) made high-power-
femtosecond and few optical cycle pulses in the mid-infrared readily available.
These developments in turn fostered the research on SC generation in this particular
spectral range, which is of growing interest for spectroscopic studies in the molec-
ular fingerprint region (Calabrese et al., 2012), experiments in strong field physics
(Wolter et al., 2015), and attosecond science (Popmintchev et al., 2012), connected
with further advancement of OPCPA technology (Voronin et al., 2016), and pulse
compression techniques (Kurucz et al., 2020), potentially yielding extremely short
pulses, with a duration approaching a single optical cycle and carrier wavelengths
located in the far infrared.

However, the performance of standard, commonly used wide-bandgap dielectric
materials in this spectral region is restricted first of all by their limited transmit-
tance in the mid-infrared. In that regard, a broad class of solid-state materials:
narrow bandgap dielectric crystals, soft glasses, and semiconductors, which possess
considerably broader infrared transparency windows and much larger cubic nonlin-
earities, emerge as very promising and versatile nonlinear media for SC generation.
Although these materials show just very modest spectral broadening or do not
produce SC generation at all with visible and near-infrared pump wavelengths, they
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have a great and yet not fully explored potential for ultrabroad SC generation with
mid-infrared pumping.

12.2 Physics of Supercontinuum Generation

In simple terms, the optical properties of the material: energy bandgap, nonlinear
index of refraction, chromatic dispersion, and laser wavelength are the relevant
parameters, which define the basic features of the SC light, i.e., the extent of
spectral broadening and attainable spectral blueshifts (Brodeur & Chin, 1998, 1999;
Kolesik et al. 2003). However, the entire picture of SC generation in transparent
dielectrics fully unveils in the framework of femtosecond filamentation (Couairon
& Mysyrowicz, 2007), which explains spatial, temporal, and spectral features of the
SC light in great detail.

Filamentation of femtosecond laser pulses in transparent materials with cubic
nonlinearity is a very dynamic process that emerges from a complex interplay
between nonlinear (self-focusing, self-phase modulation, multiphoton absorption,
generation of a free electron plasma, and four-wave mixing) and linear (diffraction
and dispersion processes), which take place simultaneously in space and time
domains. Propagation features of a light filament (a narrow light beam that carries a
broadband spectrum) such as the spatial localization of light could be well explained
as a result of dynamic balance between self-focusing due to Kerr effect, diffraction,
and defocusing due to free electron plasma created via multiphoton absorption
and impact ionization. However, the temporal features of the pulse, which are
responsible for large-scale spectral broadening, are more complex as they originate
from space–time coupling and exhibit non-trivial dynamics.

In that regard, the sign of material group velocity dispersion (GVD) plays a
central role in driving the temporal dynamics, suggesting two distinct temporal
scenarios of SC generation. In a normally dispersive medium, the pulse spectrum
gets broadened due to self-phase modulation that produces red (Stokes) and blue
(anti-Stokes) shifts of the instantaneous frequency at the leading (ascending) and
trailing (descending) fronts, respectively. At the same time, intensity continues
increasing due to self-focusing of the beam, until the nonlinear absorption comes
into play acting on the most intense part of the pulse and beam. The interplay
between these nonlinear effects and chromatic dispersion, which tends to stretch the
spectrally broadened pulse in time, results in pulse splitting at the nonlinear focus
where intensity becomes the highest. As a result, two sub-pulses with redshifted
(the leading pulse, which is faster) and blueshifted (the trailing pulse, which
is slower) carrier frequencies are produced. These sub-pulses thereafter undergo
independent self-steepening that arises from the velocity differences between their
peaks and tails as a result of intensity-dependent refractive index. This induces sharp
intensity gradients (optical shocks) in the temporal profiles of the sub-pulses, which
facilitate explosive spectral broadening, i.e., SC generation (Gaeta, 2000, 2009).
On the other hand, the scale of anti-Stokes spectral broadening is related to self-
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steepening of the descending front of the trailing sub-pulse, which is defined by
the phase matching condition derived from the effective three-wave mixing model
that interprets generation of new frequency components as scattering of the incident
optical field from material perturbation via the nonlinear polarization (Kolesik et al.,
2003). In that way, small chromatic dispersion of the material allows fulfilment of
the phase matching condition for a broader range of scattered spectral components,
that is, supports a larger spectral broadening, while the opposite is true for materials
with large chromatic dispersion. Note that the attainable redshifts of the SC spectra,
which are associated with self-steepening of the ascending front of the trailing pulse,
greatly depend on the pump focusing condition: longer filament that is produced at
loose focusing of the pump beam favors enhanced, redshifted spectral broadening
(Jukna et al., 2014).

A qualitatively different temporal scenario applies in a nonlinear material with
anomalous GVD. Here the redshifted and blueshifted frequencies generated by self-
phase modulation of the ascending (leading) and descending (trailing) fronts of the
pulse, respectively, are pushed back to the peak of the pulse by material GVD,
forcing the pulse to compress. In that way, the interplay between self-focusing,
self-phase modulation, and anomalous GVD leads to a simultaneous compression
in spatial and temporal dimensions and produces a robust self-compressed three-
dimensional object, termed light bullet (Durand et al., 2013) that in turn favors
production of ultrabroadband, multiple octave-spanning SC spectrum, see, e.g.,
Silva et al. (2012), Garejev et al. (2017), and Chekalin et al. (2019).

12.3 Wide-Bandgap Dielectrics

Wide-bandgap dielectrics serve as excellent and experimentally proven nonlinear
materials for SC generation with pump wavelengths in the visible, near-, and mid-
infrared (Dubietis et al. 2017; Dubietis & Couairon, 2019). In particular, ample
experimental data are available for the near-infrared pump that is provided by
amplified Ti:sapphire (around 800 nm) and Yb-doped lasers (around 1030 nm),
where transparent materials possess normal GVD, so the pulse splitting-based SC
generation scenario generally applies.

Figure 12.1 summarizes the experimental data representing the shortwave
(blueshifted) SC cut-off wavelengths (defined at the 10−3 − 10−4 intensity level)
reported using femtosecond fundamental harmonic pulses from Ti:sapphire lasers
having a central wavelength of ∼ 800 nm for various solid-state dielectric materials:
lithium fluoride (LiF) (Kohl et al., 2013), calcium fluoride (CaF2), sapphire
(Al2O3), yttrium aluminum garnet (Y33Al5O12, YAG), potassium gadolinium
tungstate (KGd(WO4)2, KGW), yttrium vanadate (YVO4), and gadolinium
vanadate (GdVO4), all taken from Bradler et al. (2009), lithium strontium
hexafluoroaluminate (LiSrAlF6, LiSAF) (Suminiene et al., 2020), magnesium
fluoride (MgF2) (Tzankov et al., 2002), barium fluoride (BaF2) (Dharmadhikari
et al., 2014), fused silica (SiO2) (Fang & Kobayashi, 2003), gadolinium orthosilicate
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(Gd2SiO5, GSO), gallium gadolinium garnet (Gd3Ga5O12, GGG), lithium tantalate
(LiTaO3, LTO), and lutetium vanadate (LuVO4, LVO), all taken from Ryba et al.
(2014), Macalik et al. (2018) and diamond (Kardas et al., 2013). Also data
for popular dielectric crystals possessing second-order nonlinearity, potassium
dihydrogen phosphate (KDP) (Srinivas et al., 2005), beta barium borate (BBO)
(Suminas et al., 2017b), lithium niobate (LN) (Wang et al., 2013), and periodically
poled lithium tantalate PPLT (Zhao et al., 2018), are presented. Figure 12.1a

Fig. 12.1 (a) The bandgap dependence of the short-wavelength cut-off of supercontinuum spectra
produced with a Ti:sapphire laser in various wide-bandgap solid-state materials. The red dots
denote the shortwave absorption edge for a given material. Hollow circles stand for crystals
possessing second-order nonlinearity. (b) The same dependence expressed in terms of the spectral
blueshift
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depicts the data in terms of cut-off wavelength, which is compared to the shortwave
transparency edge of the material, while Fig. 12.1b illustrates the attained blueshifts
in terms of wavenumbers.

The data presented in Fig. 12.1 nicely illustrates the universal trend of supercon-
tinuum bandgap dependence, which suggests that the largest spectral broadening
and the largest spectral blueshifts in particular are attained in dielectric materials
with the largest energy bandgap (Brodeur & Chin, 1998). Note also how the trend of
shortwave cut-off of SC spectrum follows the trend of shortwave absorption edge.
Indeed, alkali metal fluorides, LiF, CaF2, MgF2, BaF2, and LiSAF, whose trans-
parency extends far into vacuum UV, produce SC spectra with cut-off wavelengths
located in the UV. Alkali metal fluorides are also well suited for SC generation with
shorter, visible, and UV pump wavelengths; however, these materials are prone to
long-lived color center formation and heat accumulation and hence suffer from rapid
optical degradation.

In contrast, materials with a moderate energy bandgap (< 8 eV) produce rather
modest spectral blueshifts, with cut-off wavelengths in the visible part of the
spectrum. Out of these, laser host crystals, sapphire and YAG, are recognized as
most reliable nonlinear materials for SC generation in the visible and near-infrared
spectral range (Bradler et al., 2009). Although the attainable spectral blueshifts
in these materials are smaller than in alkali metal fluorides, spectral broadening
is appreciable for many applications in ultrafast science. Moreover, sapphire and
YAG exhibit durable performance even at very high pulse repetition rates (Grigutis
et al., 2020). In particular, YAG crystal shows excellent performance with a variety
of pump wavelengths, where SC generation mechanisms based on either pulse
splitting (in the region of normal GVD) or pulse self-compression (in the region
of anomalous GVD) take place. The SC spectra in a YAG crystal exhibit an almost
constant cut-off wavelength (in the 470–490 nm range), regardless of the pumping
wavelength, which converts into a dramatic increase of the spectral blueshift versus
wavelength, as illustrated in Fig. 12.2. Here, the blueshift trend is compiled from
the experimental data measured with pump wavelengths in the visible, at 515 nm
(Bradler and Riedle, 2014), near-infrared: at, 775 nm, 1.3 μm and 1.6 μm (Bradler
et al., 2009), 800 nm (Kudarauskas et al., 2018), 1035 nm (Grigutis et al., 2020) and
mid-infrared: at 2.0 μm (Darginavicius et al., 2013), 2.15 μm (Fattahi et al., 2016),
2.3 μm (Garejev et al., 2017), and 3.1 μm (Silva et al., 2012).

12.4 Narrow-Bandgap Materials

The progress of femtosecond mid-infrared sources opens new perspectives in
SC generation. First, mid-infrared wavelengths give an access to the region of
anomalous GVD of wide-bandgap dielectric materials, where SC is produced via
pulse self-compression, yielding simultaneous generation of ultrabroadband spectra
and few optical cycle pulses. Second, a long carrier wavelength corresponds to a low
photon energy, extending the nomenclature of nonlinear materials that are suitable
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Fig. 12.2 Supercontinuum spectral blueshifts in a YAG crystal measured with various pump
wavelengths that fall into regions of normal and anomalous GVD of the material. A zero GVD
of the crystal at 1.6 μm is marked by a vertical dashed line

to achieve a considerable spectral broadening. In that regard, a variety of infrared
bulk materials, dielectric crystals with narrow energy bandgap, soft glasses, and
semiconductors, emerge as very attractive nonlinear media for SC generation. These
materials exhibit considerably wider infrared transparency windows and large to
huge cubic nonlinearities as compared to wide-bandgap dielectrics, as illustrated
in Fig. 12.3, which in turn imply remarkably low threshold energies for beam
filamentation and SC generation.

12.4.1 Soft Glasses

Non-silica glasses currently receive increasing attention as very promising nonlinear
media for SC generation, especially aiming at spectral broadening in the mid-
infrared spectral range. Spectral broadening from the visible up to 6 μm was
reported in tellurite glass using femtosecond pump pulses with a central wavelength
of 1.6 μm (Liao et al., 2013). Similar spectral broadening along with pulse
compression was reported with pump pulses at 2.05 μm (Bejot et al., 2016). More
recently, supercontinuum generation in tellurite glass was reported with picosecond
laser pulses at 1.064 μm (Zheng et al., 2021). Recent results on spectral broadening
in undoped and Pr-doped barium zinc borate oxyfluoride and bismuth zinc borate
glasses, whose energy bandgaps vary in the 3.42–5.69 eV range, suggest that these
materials are potentially interesting for SC generation (Neethish et al., 2021).

Due to broad transparency windows extending above 10 μm, a broad family of
chalcogenide glasses holds a great potential for SC generation in the mid-infrared
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Fig. 12.3 Nonlinear index of refraction, n2, versus the energy bandgap for various solid-state
materials. Red dots denote the nonlinear index of refraction for wide-bandgap dielectrics at 800
nm, and blue dots show the nonlinear index of refraction for narrow bandgap materials in the
wavelength range of 2–4 μm

spectral range. Notably, the linear and nonlinear refractive indexes, as well as resis-
tance to optical damage of chalcogenide glasses, could be varied in broad confines
by varying glass composition and exchanging the elemental materials (Wang et al.,
2014). The potential of SC generation using femtosecond mid-infrared pulses in
bulk chalcogenide glasses was first demonstrated almost a decade ago, reporting
on spectral broadening in the 2.5–7.5 μm range using pump pulses with a central
wavelength of 5.3 μm (Yu et al., 2013). SC spectra with remarkable mid-infrared
coverage from 2.5 to ∼11 μm were generated in As2S3 and GeS3 samples with a
pump wavelength of 4.8 μm nearly matching the zero GVD wavelengths of these
materials (Mouawad et al., 2015), see Fig. 12.4. Very similar, flat and broadband
infrared SC spectra were also reported in commercially available chalcogenide glass
samples of various composition, using 3.75–5.0 μm tunable femtosecond pump
pulses (Stingel et al., 2017). A more recent study demonstrated that a change of the
composition of chalcogenide glasses by introducing more polarizable elements (Se
instead of S and Te instead of S and Se) favorably modifies their optical properties
by increasing nonlinearity, extending the transmission window into far infrared,
and shifting the corresponding zero dispersion wavelengths farther into the infrared
region (Mouawad et al., 2018). Using 65 fs pump pulses with a carrier wavelength
of 4.5 μm, more than 2 octave-spanning SC spectra from 2.6 to 11 μm and 12 μm
were generated in GeSSe and GeSe samples, respectively, effectively extending the
transmission of these materials up to the far infrared region. Even broader SC spectra
with remarkable broadening into the far infrared (up to 16 μm) were produced in
TGG sample, using pump pulses with a carrier wavelength of 7.3 μm.
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Fig. 12.4 Supercontinuum spectra produced by filamentation of 65 fs, 4.8 μm pulses in 3.3-mm-
long samples of As2S3 and GeS3. The inset shows measured spectral transmission of the samples.
Reprinted from Mouawad et al. (2015) by permission from Springer Nature

12.4.2 Narrow Bandgap Dielectric Crystals

Narrow bandgap dielectric crystals with cubic symmetry, thallium bromoiodide
(KRS-5) and thallium chlorobromide (KRS-6), possess an attractive combination
of high nonlinearity and wide-infrared transparency range, which extends from the
visible well into the far infrared, making these materials very attractive alternatives
to soft glasses for SC generation in the mid-infrared spectral range. Almost two
octave-wide supercontinuum spectra spanning wavelength range from 1.5 μm to
more than 5.5 μm were produced in KRS-5 and KRS-6 samples of 6-mm thickness
by filamentation of 60 fs pulses with central wavelengths of 3.1 μm and 3.6 μm
(Marcinkeviciute et al., 2018). Long-term measurements revealed that KRS-5 is
more resistant to optical degradation than KRS-6, showing excellent reproducibility
of the SC spectrum for at least 2 hours at 1 kHz repetition rate. As the zero GVD
wavelength of KRS-5 is at 6.6 μm, much larger SC spectral bandwidths are expected
from filamentation of long-wavelength infrared pulses, whose wavelengths fall into
the range of anomalous GVD of the crystal. To this end, more than three-octave
supercontinuum spanning from 2 to 16 μm was generated by pumping KRS-5
crystal with two optical cycle (68 fs) pulses at 9.7 μm, produced by the technique
of intrapulse difference frequency generation (Liu et al., 2019), see Fig. 12.5.
More recently, SC spectra with very similar bandwidths were produced in a 5-
mm-long KRS-5 sample with pulses from a LGS crystal-based OPCPA system,
having a central wavelength of 9 μm, and yielding also more than three-fold self-
compression of the pump pulses from 145 to 45 fs (Qu et al., 2020).

Generation of more than octave-spanning SC spectra was reported in unpoled
polycrystalline strontium barium niobate (Sr0.61Ba0.39Nb2O6, SBN), which con-
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Fig. 12.5 The SC spectrum produced in KRS-5 crystal by filamentation of 2.4 μJ, 68 fs, 9.7 μm
pulses. The insets show the corresponding SC beam profile and the setup of SC generation,
respectively. Reprinted from Liu et al. (2019) by permission from the Optical Society of America

sists of birefringent needle-like randomly distributed ferroelectric domains, whose
widths vary between a few nanometers and a few micrometers and whose lengths
are of a few hundreds of micrometers, and has an energy bandgap of 3.4 eV.
The SC spectrum in the wavelength range of 1.0–3.32 μm was produced with
sub-100 nJ pump pulses having a central wavelength of 2.4 μm (Suminas et al.,
2020). Simultaneously with SC generation, polycrystalline SBN emits planar
second harmonic with an octave-spanning bandwidth due to non-zero second-order
nonlinearity and random quasi-phase matching. However, spectral broadening in
SBN to longer wavelengths is restricted by its infrared absorption edge at 5.5 μm.

12.4.3 Semiconductor Crystals

The feasibility of semiconductor materials for SC generation with picosecond laser
pulses in the mid-infrared spectral region was first considered in the mid-90s,
where spectral broadening of picosecond CO2 laser pulses at 9.3 μm in gallium
arsenide (GaAs), zinc selenide (ZnSe), and cadmium sulfide (CdS) crystals was
experimentally demonstrated (Corkum et al., 1985). In the era of femtosecond solid-
state lasers, the spectral broadening of 100 fs pulses having a central wavelength
of 5 μm in the 3.5–7 μm range was demonstrated in GaAs crystal (Ashihara &
Kawahara, 2009). Spectral broadening of a similar scale, in the 4–9 μm wavelength
range, was reported with 4.2–6.8 μm tunable pulses, also demonstrating post-
compression of spectrally broadened pulses at 6 μm down to sub-two optical cycle
duration (Lanin et al., 2014). Further studies on SC generation in this particular
material using pump wavelengths that fall into its anomalous GVD region (the zero
GVD wavelength of GaAs is at 6 μm) reported impressive spectral broadening into
the far infrared. The SC spectrum spanning the 2–20 μm range was produced in 67-
mm-long GaAs slab using 2.5 ps, 9.3 μm pump pulses from a CO2 laser (Pigeon
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et al., 2014). The SC spectrum in the 3 − 18 μm range was reported in a 5-mm-
long GaAs plate pumped by femtosecond laser pulses with a central wavelength of
7.9 μm (Lanin et al., 2015). A simultaneous pulse self-compression from 150 fs to
45 fs, corresponding to only 1.2 cycles of the field at 7.9 μm, was measured (Lanin
et al., 2015).

Since GaAs possesses second-order nonlinearity, in these experiments the crystal
orientation and pump beam polarization were intentionally chosen to suppress
the generation of second harmonic. In contrast, several other experiments make
use of Kerr-like nonlinearities arising from second-order cascading due to phase-
mismatched second harmonic generation. SC spectra covering the 1.6–7.0 μm
wavelength range and exceeding two octaves were measured in lithium thioindate
crystal (LiInS2, LIS) using 85 fs pump pulses with a central wavelength of 3.86 μm
that is slightly above the zero GVD point (3.5 μm) of the crystal and making use
of cascading-induced self-defocusing (Zhou & Bache, 2016). A similar approach
was exploited in chalcopyrite (ZnGeP2, ZGP) crystal, where 2.6–8.8 μm spanning
SC spectrum featuring a broad second harmonic peak was generated by pumping 2-
mm-long crystal with 140-fs pulses having a central wavelength of 4.1 μm (Seidel
et al., 2018).

Low-threshold SC generation was recently reported in crystalline silicon (Si).
Octave-spanning infrared SC spectra were produced by filamentation of femtosec-
ond mid-infrared pulses with carrier wavelengths in the range of 3.25–4.7 μm
in an undoped 6.4-mm-thick silicon sample (Marcinkeviciute et al., 2019). More
specifically, the broadest SC spectrum extending from 2.5 to 5.8 μm was recorded
with 106 fs, 4.7 μm pump pulses undergoing filamentation and a SC generation
threshold as low as 110 nJ was measured. Moreover, the recorded spatiotempo-
ral intensity distributions of SC-producing filaments clearly demonstrated pulse
splitting after the nonlinear focus, thereby confirming the universality of the SC
generation scenario based on pulse splitting in normally dispersive nonlinear media.
Finally, the results also confirmed the general assumption that propagation of very
short, femtosecond pulses in silicon is much less affected by the presence of free
carriers.

As compared to silicon, silicon carbide (SiC) has a larger energy bandgap (2.6
eV), hence the reduced nonlinear absorption in the near and mid-infrared. More
recently, smooth, more than octave-spanning supercontinuum spectra with fairly
stable short-wavelength cut-offs around 0.9 μm were produced in a 5-mm-thick 6H-
SiC sample with 1.2–2.4 μm tunable femtosecond pulses (Suminiene et al., 2021).
Figure 12.6a shows the SC spectra generated by filamentation of pulses with central
wavelengths of 1.7, 2.0, and 2.4 μm, which fall into the regions of normal, near zero,
and anomalous GVD of the crystal, respectively. Figure 12.6b shows the dynamics
of spectral broadening versus the pump pulse energy recorded with pump pulses
at 2.4 μm in more detail. In particular, an explosive spectral broadening at 150
nJ marks the threshold energy for SC generation, while a second burst of spectral
broadening at 225 nJ indicates the refocusing of the filament, which is accompanied
by well-pronounced spectral modulation. Below the SC generation threshold, a faint
but clearly distinguishable signal with a center wavelength of 1.2 μm is attributed to
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Fig. 12.6 (a) Supercontinuum spectra produced by filamentation of 90 fs pulses with central
wavelengths of 1.7 μm (red), 2.0 μm (blue), and 2.4 μm (black) in a 5-mm-long 6H-SiC sample.
(b) Spectral dynamics versus the pump pulse energy measured with pump pulses at 2.4 μm.
Reprinted from Suminiene et al. (2021) by permission from the Optical Society of America

phase-mismatched second harmonic generation, due to non-vanishing second-order
nonlinearity of the crystal.

12.4.4 Zinc-Blende Semiconductors

A particularly interesting case of SC generation in narrow bandgap materials refers
to filamentation in zinc-blende semiconductors, such as zinc sulfide (ZnS) and zinc
selenide (ZnSe), which are transparent from the visible to the far infrared and
exhibit large cubic nonlinearities and relatively high optical damage thresholds. The
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first experiments reported on ultrabroadband, multioctave, visible to mid-infrared-
spanning SC spectra in ZnS (Liang et al., 2015) and ZnSe (Mouawad et al., 2016)
crystals using few optical cycle pump pulses with carrier wavelengths of 2.1 and
5 μm, respectively.

However, the most intriguing features concerning nonlinear frequency conver-
sion in these materials arise from the combination of their polycrystalline structure
and large second-order nonlinearities owing to 4̄3m symmetry. Random quasi-
phase matching, stemming from the orientation disorder of tens-of-microns sized
crystallites, enables efficient frequency conversion via simultaneous second-order
nonlinear interactions (second harmonic, sum and difference frequency generation)
within very wide spectral range, which is essentially limited only by the material
transmittance window. The state of the art of modern growth technology allows for
adjustment of the average sizes and size distributions of crystallites in a desired way
to enhance frequency conversion of three-wave interactions (Chen & Gaume, 2019).

To this end, the generation of multiple even and odd harmonics was demonstrated
to efficiently accompany spectral broadening and SC generation produced by
filamentation of mid-infrared pulses in polycrystalline ZnSe (Archipovaite et al.,
2017; Suminas et al., 2017a, 2019; Werner et al., 2019; Marble et al., 2019) and
ZnS (Suminas et al., 2019) yielding remarkable spectral blueshifts that are limited
only by the short-wavelength absorption edge of the crystals: 0.5 μm in ZnSe and
0.4 μm in ZnS. Figure 12.7 shows even and odd harmonics-enhanced SC spectra
produced by filamentation of 3.6 μm, 60 fs pulses in polycrystalline ZnSe and ZnS
samples. In shorter samples of 2-mm thickness (gray dashed curves), the overall
spectrum is composed of a broadened spectrum around the carrier wavelength
and multiple broadband peaks that correspond to the individual harmonics. With
increased propagation length (longer samples, black solid curves), all the harmonics
spectra merge into a broadband and almost spectrally uniform SC radiation, whose
width corresponds to 3.3 optical octaves in ZnSe and 3.6 optical octaves in ZnS.
An even larger number of harmonics was detected using longer wavelength pump
pulses: even and odd harmonics up to the 10th order were measured in ZnS with
pump pulses at 4.6 μm (Suminas et al., 2019) and up to the 12th order in ZnSe
with pump pulses having a central wavelength of 7 μm (Marble et al., 2019). In
contrast, only very modest spectral broadening with just few generated harmonics
was observed in single ZnSe (Werner et al., 2019) and ZnTe (Suminas et al., 2019)
crystals.

The high efficiency of broadband frequency conversion in polycrystalline zinc-
blende materials, the effects of grain size, polarization and coherence properties
as well as the pulse temporal structure were investigated using realistic numerical
models (Kawamori et al., 2019; Gu et al., 2020, 2021). The numerical results
provide a comprehensive understanding of the properties of the upconverted light,
which is necessary for optimization of SC generation and pulse-compression setups
that employ polycrystalline materials. Numerical simulations also predicted that
light bullet formation via self-compression in filamentation regime down to a single
optical cycle and even less due to favorable interplay between self-phase modulation
and anomalous GVD and extreme self-steepening is feasible for pulses with central
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Fig. 12.7 Supercontinuum spectra in polycrystalline (a) ZnSe and (b) ZnS samples, produced by
filamentation of 60 fs, 3.6 μm pulses with an energy of 0.73 μJ. Dashed curves depict the SC
spectra in 2-mm-thick samples, while solid curves show SC spectra generated in 3-mm-thick ZnSe
and 4-mm-thick ZnS samples, respectively. Reprinted from Suminas et al. (2019) by permission
from the Optical Society of America

wavelengths in the ranges of 5–7 μm in ZnS (Li et al., 2017) and 6–10 μm in
ZnSe (Grynko et al., 2018). These impressive self-compression factors are yet to
be demonstrated in real experimental settings. To date, self-compression of 9 μm,
145 fs pulses down to 69 fs was experimentally achieved in ZnSe crystal (Qu et al.,
2020).

Finally, polycrystalline gain elements (Cr:ZnS and Cr:ZnSe) usefully combine
ultrafast laser capabilities with high nonlinearity and polycrystalline microstructure,
yielding efficient nonlinear frequency conversion and spectral broadening directly
in the ultrafast mid-infrared oscillators and amplifiers (Vasilyev et al., 2017). In
that regard, a more recent study demonstrated efficient polycrystalline Cr:ZnS
amplifier configured for simultaneous amplification, spectral broadening, generation
of harmonics, and compression of few optical cycle pulses (Vasilyev et al., 2019).
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12.5 Concluding Remarks

Figure 12.8 provides a graphical summary that illustrates the bandgap dependence
of SC generation in narrow bandgap solid-state materials, showing less regular
trend, which nevertheless preserves very similar character of dependence as wide-
bandgap dielectrics, shown in Fig. 12.1. A much larger scattering of data points
in the present case is in part due to scatter of pump wavelengths at which the

Fig. 12.8 (a) The bandgap dependence of supercontinuum short-wavelength cut-off in various
narrow bandgap solid-state materials assuming pump wavelengths in the 2.4–5 μm range. The
red dots denote the shortwave absorption edge for a given material. (b) The same dependence
expressed in terms of the spectral blueshift
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particular experiments were performed. More specifically, the SC spectra in Te-glass
(Bejot et al., 2016), SBN (Suminas et al., 2020), and SiC (Suminiene et al., 2021)
were produced using the pump wavelength of 2.4 μm, the measurements in KRS-
5, KRS-6 (Marcinkeviciute et al., 2018), ZnS, ZnSe, ZnTe (Suminas et al., 2019),
Si (Marcinkeviciute et al., 2019), and LIS (Zhou & Bache, 2016) were performed
with the pump wavelength of 3.6 μm, while the SC spectra in the remaining
materials, GeAsSe (Stingel et al., 2017), ZGP (Seidel et al., 2018), As2S3 (Mouawad
et al., 2015), and GaAs (Ashihara & Kawahara, 2009) were measured with pump
wavelengths of 3.75, 4.1, 4.8, and 5 μm, respectively. Note that polycrystalline ZnS
and ZnSe are the exceptions, clearly falling out of this general trend, since these
materials produce very broad even and odd harmonics-enhanced SC spectra due to
random quasi-phase matching, whose short-wavelength cut-offs coincide with their
transmission cut-off wavelengths, yielding huge spectral blueshifts (> 22000 and
> 17000 cm−1, respectively), which are outside the margins of Fig. 12.8b.

Summarizing the above results, narrow bandgap solid-state materials serve as
efficient nonlinear media for the generation of more than octave-spanning SC
spectra with near- and mid-IR driving wavelengths. Spectral broadening on the
short-wavelength side in narrow bandgap solid-state materials follows the general
trend of bandgap dependence, and the SC spectra produced in these materials are
entirely confined to infrared wavelengths, showing remarkable redshifted spectral
broadenings reaching the far infrared. Moreover, these materials possess very large
values of nonlinear refractive indexes that in turn impose very low filamentation and
SC generation thresholds with mid-IR driving wavelengths despite λ2 scaling of the
critical power for self-focusing.
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Budriūnas, R., Stanislauskas, T., Adamonis, J., Aleknavičius, A., Veitas, G., Gadonas, D., Balickas,
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Marcinkevičiūtė, A., Jukna, V., Šuminas, R., Garejev, N., Tamošauskas, G., & Dubietis, A. (2019).
Femtosecond filamentation and supercontinuum generation in bulk silicon. Optics Letters, 44,
1343–1346.

Mirov, S.B., Moskalev, I.S., Vasilyev, S., Smolski, V., Fedorov, V. V., Martyshkin, D., Peppers,
J., Mirov, M., Dergachev, A., & Gapontsev, V. (2018). Frontiers of mid-IR lasers based
on transition metal doped chalcogenides. IEEE Journal of Selected Topics in Quantum
Electronics, 24, 1601829.

Mouawad, O., Béjot, P., Billard, F., Mathey, P., Kibler, B., Désévédavy, F., Gadret, G., Jules, J.-
C., Faucher, O., & Smektala, F. (2015). Mid-infrared filamentation-induced supercontinuum in
As-S and an As-free Ge-S counterpart chalcogenide glasses. Applied Physics B, 121, 433–438.

Mouawad, O., Béjot, P., Billard, F., Mathey, P., Kibler, B., Désévédavy, F., Gadret, G., Jules, J.-C.,
Faucher, O., & Smektala, F. (2016). Filament induced visible-to-mid-IR supercontinuum in a
ZnSe crystal: toward multi-octave supercontinuum absorption spectroscopy. Optical Materials,
60, 355–358.

Mouawad, O., Béjot, P., Mathey, P., Froidevaux, P., Lemière, A., Billard, F., Kibler, B., Désévédavy,
F., Gadret, G., Jules, J.-C., Faucher, O., & Smektala, F. (2018). Expanding up to far-infrared
filamentation-induced supercontinuum spanning in chalcogenide glasses. Applied Physics B,
124, 182.

Neethish, M. M., Kumar, V. V. R. K., Nalam, S. A., Harsha, S. S., & Kiran, P. P. (2021).
Supercontinuum generation from Zinc Borate glasses: Bandgap vs Rare-earth doping. Optics
Letters, 46, 1201–1204.

Pigeon, J. J., Tochitsky, S. Ya., Gong, C., & Joshi, C. (2014). Supercontinuum generation from 2
to 20 μm in GaAs pumped by picosecond CO2 laser pulses. Optics Letters, 39, 3246–3249.

Popmintchev, T., Chen, M.-C., Popmintchev, D., Arpin, P., Brown, S., Ališauskas, S., Andriukaitis,
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Chapter 13
Chalcogenide Glass Fibers for Mid-IR
Supercontinuum Generation

Jonathan Hu and Curtis R. Menyuk

Abstract Chalcogenide fibers are natural candidates for infrared supercontinuum
sources. In this chapter, we describe mid-IR supercontinuum generation using step-
index fibers, tapered fibers, suspended-core fibers, and photonic crystal fibers,
double-clad fibers, polarization-maintaining fibers, and cascaded fibers. We also
discuss how computer simulations contribute to our understanding of mid-IR
supercontinuum generation. We describe the impact of nonlinearity and dispersion,
loss, materials, damage threshold, fabrication, and output power on chalcogenide
fibers that are used for mid-IR supercontinuum generation. It is the combination of
wide transmission range, strong nonlinear properties, high optical damage threshold,
and environmental stability that makes chalcogenide fibers an excellent system for
fiber-based mid-IR supercontinuum laser sources.

Keywords Chalcogenide glass · Glass materials · Mid-IR supercontinuum
generation · Spectral bandwidth · Step-index fibers · Tapered fibers ·
Suspended-core fibers · Photonic crystal fibers · Double-clad fibers ·
Polarization-maintaining fibers · Cascaded fibers · Numerical simulation ·
Damage threshold · Fabrication

13.1 Introduction

Supercontinuum generation light sources using dispersion and nonlinear effects
in silica optical fibers have many applications in fluorescence, microscopy, and
spectroscopy (Dudley et al., 2006). However, the upper wavelength that can be
obtained from supercontinuum generation using silica fibers is limited because silica

J. Hu (�)
Baylor University, Waco, TX, USA
e-mail: Jonathan_Hu@baylor.edu

C. R. Menyuk
University of Maryland Baltimore County, Baltimore, MD, USA
e-mail: menyuk@umbc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. R. Alfano (ed.), The Supercontinuum Laser Source,
https://doi.org/10.1007/978-3-031-06197-4_13

479

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06197-4_13&domain=pdf

 885 52970 a 885 52970
a
 
mailto:Jonathan_Hu@baylor.edu

 885 56845 a 885 56845
a
 
mailto:menyuk@umbc.edu

 -2016 61494 a -2016
61494 a
 
https://doi.org/10.1007/978-3-031-06197-4_13


480 J. Hu and C. R. Menyuk

fibers have high material loss above 2.4 μm, which limits the spectral generation
into the mid-infrared (IR). The mid-IR spectral region is particularly important,
because the fundamental molecular vibrational absorption bands exist in the mid-
IR region. The supercontinuum generation at mid-IR wavelengths requires fibers
with a transmission window in the mid-IR region. For this reason, the pursuit of
suitable host materials for generating light sources in the mid-IR spectral region
has been a research focus in recent years. Several non-silica glasses have attracted
growing interest as host materials for mid-IR fibers, including tellurite (Domachuk
et al., 2008; Liao et al., 2009), fluoride (Xia et al., 2006, 2009), and chalcogenide
(Eggleton et al., 2011) glasses. Among these candidates, chalcogenide glasses are
natural candidates for infrared supercontinuum sources due to their long wavelength
multiphoton absorption edge. Hence, they can transmit light out to 20μm, compared
to a transmission window of less than 5 μm for both fluoride and tellurite (Eggleton
et al., 2011; Shiryaev & Churbanov, 2013). Chalcogenide glasses contain chalcogen
elements sulfur (S), selenium (Se), and tellurium (Te) in combination with other
metalloid elements such as arsenic (As), antimony (sb), and germanium (Ge). Figure
13.1 (Tao et al., 2015) shows typical infrared transmission spectra for S, Se, and Te
chalcogenide, millimeter-thick bulk samples. Chalcogenide glasses also have strong
optical nonlinearities up to tens or hundreds of times greater than those of fluoride
and tellurite glasses, making them promising candidates for mid-IR supercontinuum
generation (Slusher et al., 2004; Petit et al., 2006; Sanghera et al., 2008).

The first supercontinuum generation in bulk borosilicate glass was reported by
Alfano and Shapiro in 1970 with a spectrum from 400 nm to 700 nm (Alfano &
Shapiro, 1970b, c). Later in 1970, they also observed supercontinuum generation
in liquid argon and solid krypton (Alfano & Shapiro, 1970a). In 1976, Lin and
Stolen reported the first supercontinuum generation in silica fiber (Lin & Stolen,

Fig. 13.1 Typical infrared transmission spectra of S, Se, and Te chalcogenide millimeter-thick
bulk samples. (Reproduced with permission from Tao et al., 2015)
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1976). They injected kilowatt-peak-power pulses from a nanosecond dye laser into
19.5 m of standard silica optical fiber to generate a supercontinuum over a spectral
range of 434–614 nm. The supercontinuum mechanism was attributed to cascaded
stimulated Raman scattering and self-phase modulation. In 1985, Corkum et al.
observed supercontinua spanning the range from 3 to 14 μm when CO2 laser light
was passed into GaAs, AgBr, ZnSe, and CdS crystals (Corkum et al., 1985). In 2005,
Shaw et al. demonstrated the first supercontinuum generation in chalcogenide fiber
(Shaw et al., 2005). They coupled laser light with a wavelength of 2.5 μm and a
pulse width of 100 fs into 1 meter of As-Se photonic crystal fiber with one air-hole
ring, which led to a supercontinuum spectrum that ranged from 2.1 μm to 3.2 μm.
Magi et al. demonstrated the first tapered chalcogenide fiber in 2007 (Magi et al.,
2007). The nonlinearity was estimated to be 62,000 times larger than in standard
silica single-mode fiber, owing to the 500 times larger nonlinear coefficient n2 and
almost 125 times smaller effective mode area (Magi et al., 2007). El-Amraoui et al.
demonstrated the first chalcogenide suspended-core fiber in 2010 (El-Amraoui et
al., 2010a). Since the initial investigations of mid-IR supercontinuum generation,
researchers have made extensive efforts to reduce fiber loss, design fibers with
near-zero flattened dispersion, shift the pump wavelength to the long wavelength
region, and decrease the fiber length to reduce the loss. Numerical simulations
have also demonstrated the potential of chalcogenide fibers for broad mid-IR
supercontinuum generation (Cheng et al., 2016a; Saini et al., 2015a; Kubat et al.,
2014a, b; Yuan, 2013). Supercontinuum generation has since been the subject of
numerous investigations in a wide variety of fibers and waveguides. Due to the
strong interest, there are several review papers on this topic (Dai et al., 2018; Wu et
al., 2018b; Eggleton et al., 2011; Zhou et al., 2021). Chalcogenide glass waveguides
are covered in another book chapter (Yeom et al., 2010). This chapter will focus the
mid-IR supercontinuum generation using chalcogenide glass fibers.

This chapter is organized as follows. Section 13.2 discusses supercontinuum
generation using different types of fibers, including step-index fibers, tapered fibers,
suspended-core fibers, photonic crystal fibers, double-clad fibers, polarization-
maintaining fibers, and cascaded fibers. Section 13.3 discusses theoretical work on
mid-IR supercontinuum generation. Section 13.4 discusses different aspects of mid-
IR supercontinuum generation including the impact of nonlinearity and dispersion,
loss, the choice of materials, the damage threshold, fabrication methods, and the
output power. Section 13.5 discusses future prospects.

13.2 Mid-IR Supercontinuum Generation in Chalcogenide
Fibers

Supercontinuum generation using chalcogenide fibers with a large bandwidth, high
brightness, and high degree of coherence has applications in spectroscopy, sensing,
biology, metrology, biomedical diagnostics, and spectral imaging (Wu et al., 2018b).
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Using chalcogenide glass increases the nonlinearity by up to three orders of
magnitude relative to silica tapered fiber, which reduces the power requirement for
supercontinuum generation (Hudson et al., 2012). This section discusses different
fiber types that are used for supercontinuum generation in the mid-IR region.
Figure 13.2 shows the output spectral range and the power as a function of the
publication year. The limits of the output spectrum are 20 dB from the peak of
the spectrum unless otherwise specified. We only show experiments for which the
output spectrum includes wavelengths that are higher than 2 μm. In Fig. 13.2b,
we use open circles to indicate the average output power of the supercontinuum
generation. Some publications only show the average input power. In this case, we
use solid dots to indicate the average input power. In some cases, we estimated the
average power using the pulse duration, peak power, and laser repetition rate that
are reported in the publication. We include different types of fibers, including step-
index fibers (Petersen et al., 2014; Zhang et al., 2015, 2016, 2019a; Eslami et al.,
2020; Wang et al., 2018a, 2019; Lemiere et al., 2019; Yao et al., 2016a, b; Luo et al.,
2017; Yu et al., 2015; Cheng et al., 2016a; Zhao et al., 2016; Kedenburg et al., 2015;
Granzow et al., 2011, 2013; Deng et al., 2016; Lemiere et al., 2021), tapered fibers
(Wang et al., 2017, 2018b; Rudy et al., 2013; Sun et al., 2015; Petersen et al., 2017;
Al-kadry et al., 2013; Shabahang et al., 2012), suspended-core fibers (Mouawad et
al., 2016; Yuan et al., 2019; Gao et al., 2011, 2013, 2014; Han et al., 2017; El-
Amraoui et al., 2010b; Wu et al., 2018a; Mouawad et al., 2014b; Moller et al., 2015;
Cheng et al., 2015, 2014, 2016b; Savelii et al., 2012), photonic crystal fibers (Shaw
et al., 2005; Petersen et al., 2018, 2019; Nguyen et al., 2020), double-clad fibers
(Jiao et al., 2019; Zhao et al., 2017; Nagasaka et al., 2017b, c; Xiao et al., 2020),
polarization-maintaining fibers (Ghosh et al., 2019; Ren et al., 2019; Jayasuriya et
al., 2019), and cascaded fibers (Gattass et al., 2012; Hudson et al., 2017; Petersen et
al., 2016; Yin et al., 2017b; Robichaud et al., 2016; Martinez et al., 2018; Woyessa
et al., 2021). Most of the experiments reported in Fig. 13.2 with a broad bandwidth
and a high output power used step-index fibers and cascaded fibers, which have
relatively large power handling capabilities. We now describe in more detail the
different fiber types for the mid-IR supercontinuum generation.

The subscript in the chalcogenide glass As40S60 and As40Se60 indicates the
molar percentage of the As, S, and Se elements (Zhang et al., 2020; Qiao et al.,
2011). Alternatively, As2S3 and As2Se3 have often been used to represent the
same ratio or percentage of the elements. Alternatively, As-S and As-Se have also
been used without the information regarding the percentages of the elements. In
this chapter, we will follow the original references that we cite in denoting the
chalcogenide glasses.

13.2.1 Step-Index Fibers

Step-index fibers have the simplest structure among the different types of fibers and
are well reported in Fig. 13.2. Their main advantage is that they have higher coupling
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Fig. 13.2 Experimental output spectral range (a) and average input or output power (b) vs. the
reported publication year. In (b), we use open circles to show the output average power of
the supercontinuum generation, and we use solid dots to show the input average power of the
supercontinuum generation if the output power is not stated in the publication. We include different
types of fibers, including step-index fibers, tapered fibers, suspended-core fibers, photonic crystal
fibers, double-clad fibers, polarization-maintaining fibers, and cascaded fibers

efficiency and lower fiber loss compared to other fiber types, like suspended-core
fibers or photonic crystal fibers. The optical attenuation in step-index fibers can
be much lower than 10 dB/km (Shiryaev & Churbanov, 2017; Churbanov et al.,
2011). The zero-dispersion wavelengths (ZDWs) for the As2S3 and As2Se3 material
dispersion are 5 μm and 7.4 μm, respectively (Petersen et al., 2014; Ebendorff-
Heidepriem, 2014; Dantanarayana et al., 2014). When the waveguide dispersion
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is increased by using a smaller core size, the ZDW including both materials and
waveguide dispersion shifts to a lower wavelength. However, further decreasing the
core size leads to two ZDWs. Red-shifted solitons are then limited to wavelengths
below the second ZDW region, due to cancellation of the self-frequency shift
(Skryabin et al., 2003; Cheng et al., 2016a). It is difficult to match the ZDW of the
fiber to the operating wavelength of existing fiber lasers. Hence, it is common to use
the output light sources in the mid-IR region from optical parametric amplifiers and
oscillators, which serve as an input pump source for the supercontinuum generation.

Instead of using chalcogenide glasses for both the core and cladding in a step-
index fiber, it is possible to use the pressure-filling technique to fill capillary fibers
with chalcogenide glass to form chalcogenide-silica step-index fibers (Granzow et
al., 2011). The index difference between the chalcogenide and silica leads to highly
nonlinear devices with strong optical confinement. The silica cladding provides a
robust sheath for the mechanically less stable chalcogenide glass and protects it from
atmospheric degradation (Granzow et al., 2011). The ZDW lies close to 1550 nm
(Granzow et al., 2011), which is a useful pump wavelength for erbium-doped fiber
lasers. The drawback is that the supercontinuum generation is mainly limited to
short wavelengths near 2 μm.

13.2.2 Tapered Fibers

Tapered fibers have been used in many applications, such as frequency conversion,
chemical sensing, and supercontinuum generation (Birks et al., 2000; Korposh et al.,
2019). The bandwidth of supercontinuum generation can be enhanced by tapering
a fiber to a small diameter. A smaller fiber diameter produces a smaller effective
area, which leads to a higher nonlinearity (Hudson et al., 2011). Additionally, it
is possible to tailor the dispersion along the fiber so that it changes from normal
to anomalous at the pump wavelength. Hence, it is possible to use a tapered fiber
with a shorter ZDW and a shorter pump wavelength than a standard fiber with a
longer ZDW since it is difficult to generate a high-power laser source at mid-IR
wavelengths. Due to the high nonlinearity, strong self-phase modulation usually
leads to a coherent supercontinuum spectrum (Saini et al., 2020; Marandi et al.,
2012). Highly coherent broadband supercontinuum generation from 1.5 to 8.3 μm
in tapered As-S chalcogenide fibers has been obtained using a 15-cm-long fiber with
a waist core diameter of 4.8 μm (Li et al., 2019).

Much research has been aimed at extending the supercontinuum spectrum into
the mid-IR region power by using chalcogenide tapered fibers (Li et al., 2019;
Wang et al., 2017). The energy loss in the transition region of tapered fibers due
to the decrease in fiber core size plays an important role in the effectiveness of
the supercontinuum generation. When the transition length is increased, a higher
transmission efficiency of light leads to a higher output power and a larger spectral
width (Wang et al., 2017). Figure 13.3a presents the measured output spectra from
tapered fibers with length of tapered region being 6.7, 7.6, 8.4, 9.2, and 10.5 mm
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Fig. 13.3 (a) The supercontinuum spectra that are generated using 12-cm-long As-S chalcogenide
tapered fibers when the length of the transition region varies from 6.7 to 10.5 mm. (b) Bandwidth
of the generated supercontinuum spectrum at 40 dB from the peak and the corresponding output
power as a function of the length of the transition region. (Reproduced with permission from Wang
et al., 2017)

(Wang et al., 2017). As the tapered region increases, a broader supercontinuum
spectrum is obtained. An ultrabroad and relatively flattened supercontinuum spec-
trum spanning from 1.4 to 7.2 μm at 40 dB from the peak has been obtained with
a tapered fiber length of 10.5 mm (Wang et al., 2017). The spectral broadening in
these tapered fibers was primarily attributable to the mutual interaction of self-phase
modulation, optical wave breaking, and four-wave mixing. Figure 13.3b shows the
bandwidth of the generated supercontinuum spectrum at 40 dB from the peak and
the corresponding output power as a function of the length of the transition region.
The output power increased from 0.6 to 1.1 mW, and the supercontinuum bandwidth
increased from 4.5 to 5.8 μm, as the length of transition region increased.

Fibers can be tapered down to a few micrometers or even nanometers. Hence,
tapered fibers usually have low mechanical strength in practical applications, and
polymer jackets have often been used to coat chalcogenide fibers for convenient
handing (Al-Kadry et al., 2015). A thick built-in polymer jacket improves the
fiber mechanical properties relative to bare chalcogenide fibers. The thermal
compatibility between the chalcogenide and the polymer makes it possible to taper
a fiber without first removing the polymer jacket, resulting in robust tapers that can
be more easily handled and manipulated (Shabahang et al., 2014).

13.2.3 Suspended-Core Fibers

Suspended-core fibers have the advantages that their dispersion can be adjusted over
a wide range and they can have large nonlinearity due to the variable core sizes
with a high index contrast between chalcogenide glass and air. Detailed theoretical
research has been carried out to study the dispersion with different core diameters
and bridge widths (Coscelli et al., 2015; Mi et al., 2017; Karim et al., 2018). Figure
13.4a shows the cross-section of Ge-Sb-Se suspended-core fibers that are fabricated
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Fig. 13.4 (a) Cross-section of Ge15Sb15Se70 suspended-core fibers that were fabricated with
varying gas pressure (Yuan et al., 2019). (b) The first reported chalcogenide suspended-core fiber
(El-Amraoui et al., 2010a). (c) AsSe2 fiber with a glass core with four holes and an As2S5 cladding
(Cheng et al., 2014). (d) A fiber with a chalcogenide solid core with six holes and a tellurite
cladding (Cheng et al., 2015; Petersen et al., 2014). (e) A chalcogenide suspended-core fiber with
a loss of 0.05 dB/m at 3.7 μm (Troles et al., 2010). (Reproduced with permission from Cheng et
al., 2014, 2015; El-Amraoui et al., 2010a; Troles et al., 2010; Yuan et al., 2019)

with different gas pressures and which have estimated ZDWs that vary from 3.3
to 5.6 μm (Yuan et al., 2019). The principal drawback of suspended-core fibers
for supercontinuum generation is their low power coupling efficiency, which limits
the output power from supercontinuum generation. In addition, the longitudinal
variation of the fiber leads to a relatively large loss due to the high index contrast
between chalcogenide glass and air. A typical loss is on the order of 1 dB/m or 0.1
dB/m in suspended-core fibers (Troles et al., 2010; Cheng et al., 2014, 2015; Yuan
et al., 2019; Fatome et al., 2011).

Figure 13.4b shows the first chalcogenide suspended-core fiber, which was
reported in 2010 (El-Amraoui et al., 2010a). It is also possible to combine the
concept of a suspended-core fiber and a step-index fiber. In one reported case, the
core was made from AsSe2 glass with four holes, and the cladding glass was made
from As2S5 glass, as shown in Fig. 13.4c (Cheng et al., 2014). Efficient chromatic
dispersion control was achieved. The ZDW of the fiber was 3380 nm. Broadband
mid-IR supercontinuum generation with the spectrum from 1256 to 5400 nm was
obtained with a peak power of 1337 kW at the wavelength of 3389 nm (Cheng et
al., 2014). Alternatively, a chalcogenide-tellurite hybrid suspended-core fiber was
designed and fabricated by the rod-in-tube drawing technique, as shown in Fig.
13.4d (Cheng et al., 2015). The solid core was made of chalcogenide glass with
a composition of Ge-Ga-Sb-S, and the cladding was made of tellurite glass with
a composition of 78TeO2-5ZnO-12Li2O-5Bi2O3 (mol%, TZLB) with six holes.
The ZDW of the fiber was shifted down to 2.37 μm due to the suspended-core
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fiber structure. Using 1-cm-long fiber, flattened and broadband supercontinuum
generation from 0.95 to 3.35 μm with the intensity fluctuation of only 6 dB was
obtained (Cheng et al., 2015). Figure 13.4e shows a chalcogenide suspended-core
fiber with a low loss of 0.05 dB/m at 3.7 μm (Troles et al., 2010).

Another consideration is the impact of optical aging in suspended-core fibers
or photonic crystal fibers on supercontinuum generation for long-term applications
in non-controlled atmosphere conditions (Mouawad et al., 2014a, c; Toupin et al.,
2014). A 2012 study (Gris-Sanchez & Knight, 2012) monitored the changes in
spectral attenuation over 16 weeks of exposure to a laboratory environment in silica
suspended-core fibers. Increased spectral attenuation was observed at 1364 nm and
at 1384 nm, which corresponds to O-H absorption bands in silica (Gris-Sanchez &
Knight, 2012). This increased spectral attenuation was attributed to the diffusion of
contaminants (i.e., O-H ) interacted with the glass (Gris-Sanchez & Knight, 2012).
Another study (Mouawad et al., 2016) using As2S3 suspended-core fibers directly
discussed the impact of aging on supercontinuum generation. When the fibers were
new, this study found that the mid-IR supercontinuum spectrum covered the 2 μm
spectral range from 3 to 5 μm. After aging several months, the supercontinuum
spectrum only covered a 1.2 μm spectral range from 3.2 to 4.4 μm.

13.2.4 Photonic Crystal Fiber

In order to obtain a broad mid-IR supercontinuum spectral output from a chalco-
genide glass fiber, it is necessary to design the fiber with a blue-shifted ZDW and
a small mode field area. Chalcogenide photonic crystal fibers (PCFs) (Ghosh et al.,
2019; Troles et al., 2010) are good candidates for supercontinuum generation since
they offer the possibility to significantly enhance the nonlinearity by making a small
effective mode area and the ability to tailor the material dispersion by adjusting
the waveguide dispersion design. The design flexibility has led to a large amount
of computational work to design chalcogenide PCFs for mid-IR supercontinuum
generation using triangular arrangements (Karim et al., 2017; Huang et al., 2020;
Saini et al., 2015b; Medjouri & Abed, 2019b; Ali et al., 2016; Khalifa et al., 2017;
Saghaei et al., 2015, 2016) and square arrangements (Chauhan et al., 2018, 2020)
of the holes. Experimental work that is based on these designs has also been carried
out (Petersen et al., 2019; Ghosh et al., 2019). Figure 13.5a shows a fabricated
chalcogenide PCF with two extra-large holes with a larger birefringence (Ghosh et
al., 2019). Figure 13.5b, c shows a tapered fiber at the input and waist, respectively,
with the same magnification (Petersen et al., 2017). The tapered PCF was able to
confine the light in a small mode area, generating a high nonlinearity and leading
to a supercontinuum spectrum between 1.0 and 11.5 μm (Petersen et al., 2017).
Due to the fabrication complexity, there are fewer experimental publications using
chalcogenide PCFs, compared to chalcogenide step-index fibers, tapered fibers, or
suspended-core fibers, as shown in Fig. 13.2.
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Fig. 13.5 (a) A polarization-maintaining PCF (Ghosh et al., 2019). A tapered PCF at the input
(b) and waist (c) with the same magnification (Petersen et al., 2017). (Reproduced with permission
from Ghosh et al., 2019; Petersen et al., 2017)

Using PCF with a single material compared to step-index fiber with a high
numerical aperture can alleviate the thermomechanical compatibility issue of differ-
ent glasses during taper fabrication, which avoids the problem of a thermal expan-
sion coefficient mismatch at the core/cladding interface. A comparison between
simulation and experiments shows that no significant hole collapse occurred during
tapering (Petersen et al., 2017).

13.2.5 Double-Clad Fibers

Double-clad fibers or W-type fibers have also been used for mid-IR supercontinuum
generation (Nagasaka et al., 2017a, b; Jiao et al., 2019; Saini et al., 2018; Singh
et al. 2020; Khamis et al., 2018). The dispersion can be better controlled than in
step-index fibers because of the additional structural flexibility that is added by the
additional layer (Wang et al., 2020). Additionally, double-clad fibers are easier to
make using the rod-in-tube method than is the case for other PCFs. Double-clad
fibers with As2Se3, AsSe2, and As2S5 glasses have been used to demonstrate mid-IR
supercontinuum from 2.3 to 13.8 μm (Nagasaka et al., 2017b) and 2.2 to 13.8 μm
(Nagasaka et al., 2017c). Glasses using different concentrations of Ge-As-Se-Te
with different indices have been used in the core, inner cladding, and outer cladding,
which leads to a supercontinuum spectrum from 1.0 to 10.5 μm (Xiao et al., 2020).

13.2.6 Polarization-Maintaining Fibers

Mid-IR supercontinuum generation was studied computationally in chalcogenide
fibers, taking into account both polarizations and the higher-order modes (Chen et
al., 2018; Khalifa et al., 2017). When coupling of the fundamental mode to the other
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modes occurs, the modeling indicates that the supercontinuum bandwidth in which
only a single polarization is taken into account appears substantially larger than the
supercontinuum bandwidth when both polarizations are taken into account (Kubat
& Bang, 2016).

Experimental studies of polarization-preserving supercontinuum generation in
the mid-IR region have also been carried out using a polarization-maintaining
chalcogenide PCF with two larger holes near the fiber core, as also shown in Fig.
13.5c (Petersen et al., 2017). Supercontinuum generation from 3.10 to 6.02 μm
has been demonstrated using a chalcogenide PCF with a high birefringence of
6.5 × 10–4 at 4.6 μm (Ghosh et al., 2019). A chalcogenide step-index fiber with
an elliptical core has also been fabricated with a birefringence of 2 × 10–2 at
11.5 μm, which leads to a supercontinuum spectrum that ranges from 2.5 to 8.5 μm
(Jayasuriya et al., 2019). Additionally, tuning the input polarization angle with
respect to the fiber axes affects the supercontinuum bandwidth, which has also been
confirmed by numerical simulations that use the coupled nonlinear Schrödinger
equation (Ghosh et al., 2019). Chalcogenide glass fibers with a rectangular core have
been used to generate a polarized mid-IR supercontinuum spectrum from 2.2 to 9.5
μm (Ren et al., 2019). Numerical analysis of this fiber indicates a high birefringence
of 8 × 10–3 at 4 μm.

13.2.7 Cascading Fibers

Most of the experimental work that we describe in this chapter has employed free-
space systems that use complex and expensive optical parametric amplifiers and
optical parametric oscillators as the pump systems. These systems are generally
unsuitable for practical applications due to their large size and sensitivity to environ-
mental vibration. Therefore, it is important in practical settings to use alignment-free
cascaded fiber systems to generate broadband supercontinuum sources with high-
power spectral densities. All fiber-based supercontinuum generation using optical
amplifiers or lasers has the advantages of having a much smaller size, a higher beam
quality, a lower weight, a low power consumption, and a more rugged packaging
(Gattass et al., 2012). Hence, all-fiber broadband mid-IR laser sources have the
potential to offer robust, compact, and low-cost solutions.

A typical all-fiber system has a seed laser, which is amplified in multiple stages
to produce a high-power mid-IR frequency source. Supercontinuum generation
using chalcogenide fibers is then used in the last stage. Mid-IR lasers can usually
be obtained from non-silica fibers that are doped with rare-earth ions. By doping
with Er3+, Ho3+, Pr3+, or Dy3+ ions, laser transitions in the mid-IR region have
been produced (Hu et al., 2015; Sanghera et al., 2009; Shaw et al., 2001, 2011;
Sojka et al., 2012). The output of ultrafast Ho3+-doped fiber laser operating at
2.9 μm has been launched into an As2Se3/As2S3 tapered fiber, which generated
a supercontinuum spectrum spanning from 1.8 to 9.5 μm with an average power
of more than 30 mW (Hudson et al., 2017). A high output of 565 mW has also
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been report using an all-fiber based supercontinuum source with emission covering
the wavelength range from 1.9 to 4.8 μm (Gattass et al., 2012; Shaw et al., 2011).
The laser source was based on a combination of silica commercial off-the-shelf
components and a chalcogenide-based nonlinear optical fiber. The output power can
also be increased by scaling the repetition rate (Gattass et al., 2012). Alternatively,
one can use a seed laser, which is Raman-shifted in highly nonlinear fibers to filter
a source in the mid-IR range (Yao et al., 2016a).

It is also possible to cascade supercontinuum sources, so that the fiber-based
supercontinuum from an initial stage serves as the pump source in the following
stage to further extend the spectral coverage. This cascading approach requires
that the first supercontinuum spectrum is in the anomalous dispersion region and
contains many solitons with femtosecond pulse duration and high peak powers. The
second fiber should have a high nonlinearity and a ZDW below the long wavelength
edge on the supercontinuum spectrum that is generated by the first fiber, so that
the solitons can continue their redshift and thus further increase the bandwidth
and wavelength edge of the supercontinuum generation. This cascading approach
was first proposed in a numerical simulation that used a cascaded ZBLAN and
chalcogenide fibers (Kubat et al., 2014b). The first stage using a ZBLAN fiber
generated a supercontinuum spectrum from 0.9 to 4.1 μm, which was further
broadened to supercontinuum from 0.9 to 9 μm in the second stage that used an
As2Se3 suspended-core fiber with a core diameter of 5 μm. The ZBLAN fiber was
chosen as the first fiber because of its high damage threshold, its ability to generate
supercontinuum radiation around 4 μm, and high output powers of tens of watts
(Yin et al., 2017a; Yang et al., 2014; Liu et al., 2014). After the initial proposal in
2014 (Kubat et al., 2014b), cascaded supercontinuum spectrum was experimentally
demonstrated in 2016 (Petersen et al., 2016). The first stage that consisted of a 5-
m-long ZBLAN fiber produced a long wavelength edge of 4.4 μm with a power
of 51.4 mW. The second stage that consisted of an As38Se62 suspended-core fiber
with a 4 μm core extended the supercontinuum spectrum to 7 μm with an output
power of 6.5 mW. In 2016, cascaded fibers were also demonstrated, in which the
first stage consisted of a 1-m-long ZrF4 fiber that was pumped with an Er-doped
ZrF4 fiber amplifier to generate a supercontinuum spectrum covering the range from
3.0 to 4.2 μm, which was then used to excite a low-loss As2Se3 step-index fiber,
whose output spectrum that range from 3 to 8 μm with an output power of 1.5
mW (Robichaud et al., 2016). Later in 2017, a thulium-doped fiber amplifier was
used to generate a supercontinuum spectrum from 2.0 to 4.2 μm in a 12-m-long
ZBLAN fiber, which was then used to excite an As2S3 step-index fiber, when they
generated supercontinuum spectrum from 2.0 to 5.0μm that spectrally flat within 10
dB with an output power of 57.6 mW (Yin et al., 2017b). In 2018, a supercontinuum
spectrum that was generated using three cascaded ZBLAN, As2S3, and As2Se3
fibers was demonstrated, as shown in Fig. 13.6a (Guo et al., 2018; Martinez et al.,
2018). The As2S3 fiber played an important role in the middle stage because of its
high-power handling capability. When the repetition rate of the pump was scaled
up to 800 kHz, the output of the cascaded fibers spanned a broadband spectrum
that ranged from 1.6 to 11 μm, as shown in Fig. 13.6b. The output power was 417



13 Chalcogenide Glass Fibers for Mid-IR Supercontinuum Generation 491

Fig. 13.6 (a) Setup of the cascading scheme for all-fiber supercontinuum generation. (b) Mea-
sured supercontinuum spectra using ZBLAN (black), AS2S3 (red), and As2Se3 (blue) fibers.
(Reproduced with permission from Martinez et al., 2018)

mW. The wide spectral range and high average power will be important for practical
applications. In 2021, three cascaded ZBLAN, As2S3, and As2Se3 fibers were used
to demonstrate a simple and power stable supercontinuum generation span from 1.5
to 10.5 μm (Woyessa et al., 2021). Stability measurements for 7 days with 8–9 h of
operation daily revealed an average power of 86.6 mW with a maximum fluctuation
from the average power that is within 1 mW, which underlines their suitability as
stable sources for industrial and field applications.

13.3 Theoretical Work

Supercontinuum generation uses the Kerr effect and the Raman effect, in combi-
nation with dispersion in optical fibers, to broaden the bandwidth of an optical
signal. In order to maximize the bandwidth of mid-IR supercontinuum generation
in the chalcogenide glass fibers, theoretical investigations have studied the physics
behind it by modeling the spectral broadening in nonlinear fibers. In simulations,
the generalized nonlinear Schrödinger equation (GNLS) (Hu et al., 2010b; Price et
al., 2007; Dudley et al., 2006) is used to model nonlinear pulse propagation in an
optical fiber
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where z is the distance along the fiber, t is the recorded time, and A is the electric
field envelope normalized so that |A|2 has units of power. We use IFT to indicate the
inverse Fourier transform, where � is the transform variable and the tilde indicates
the Fourier transform. The parameter ω0 is angular carrier frequency, β(ω0) is the
corresponding propagation constant, and a is the fiber loss. The quantity β1(ω0) is
the first derivative of β(ω0). While one often writes the GNLS with a Taylor series,
this calculation is usually done in practice using the inverse Fourier transform,
as shown in Eq. (13.1), unless the Taylor expansion only has two or three terms
(Dudley et al., 2006). The right-hand side accounts for the nonlinear generation (Hu
et al., 2010b). The parameter γ = n2ω0/(cAeff) is the Kerr coefficient, where n2 is
the nonlinear refractive index, c is the speed of light, and Aeff is the fiber’s effective
area. The nonlinear response function, R(t) = (1 – fR) δ(t) + fR hR(t), includes both
the Kerr (instantaneous) contribution proportional to δ(t) and the Raman (delayed)
contribution proportional to hR(t), where

∫
hR(t) = 1. The split-step Fourier method

is typically used to solve Eq. (13.1) (Sinkin et al., 2003). The refractive indices for
chalcogenide glasses can be obtained using a Sellmeier equation (Petersen et al.,
2017; Ma et al., 2013; Rodney et al., 1958; Coscelli et al., 2015; Dantanarayana et
al., 2014; Chaudhari et al., 2009). Raman response hR(t), fiber loss a, the material-
dependent parameter n2 and fR, and the geometry parameter Aeff must be determined
experimentally (Hu et al., 2010b; Slusher et al., 2004). Most of the parameters are
well known. Due to the measurement uncertainty, different values of fR have been
found in different literature. The values of 0.148 (Nagasaka et al., 2017a; Cheng et
al., 2016a, b), 0.1 (Hu et al., 2010b; Zhao et al., 2018; Ung & Skorobogatiy, 2010;
Ghosh et al., 2019), or 0.03 (Kubat et al., 2014a; Kohoutek et al., 2011) have been
used in the simulation for the parameter fR.

Simulations can be a great asset in support of experimental work. In particular,
simulations can determine the optimum fiber length. The spectral broadening
typically reaches a maximum shortly after reaching the waist section of the taper
(Petersen et al., 2017), after which the supercontinuum bandwidth and output power
are continuously diminished by fiber loss. Hence, one should choose a fiber length
that corresponds to this maximum. Numerical simulations with and without the
loss peaks due to impurities can also determine the impact of those loss peaks
(Savelii et al., 2012; Kubat et al., 2014a) and the benefits that can be obtained
by removing impurities and decreasing loss peaks. Simulations can also indicate
the degree of spectral coherence that can be obtained. Chalcogenide fibers with all-
normal dispersion have been studied to generate a mid-IR supercontinuum spectrum
with high coherence (Diouf et al., 2017; Karim et al., 2017; Liu et al., 2016a;
Medjouri & Abed, 2019a; Nguyen et al., 2020). In a 2016 work, coherence was
found to be sensitive to the modelled noise, polarization orientation, and the actual
tapering profile (Liu et al., 2016b). Experimental work using all-normal dispersion
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fiber has been done in which high coherence has been demonstrated (Yuan et al.,
2020; Zhang et al., 2019c; Jiao et al., 2019; Xing et al., 2018).

In many cases, simulations proposed new ideas that were later confirmed
by experiments. As previously described, cascaded supercontinuum generation
was first proposed in simulations (Kubat et al., 2014b). Follow-up experiments
confirmed this idea just 2–3 years later (Petersen et al., 2016; Yin et al., 2017b;
Robichaud et al., 2016). Simulations also studied mid-IR supercontinuum that is
produced by using a picosecond pulse as a pump in the anomalous region of As2Se3
chalcogenide PCF, along with an additional weak CW trigger that had 0.1% of the
pump power. The simulation showed that the bandwidth could be broadened when
the CW input is near the Raman gain peak. The strong Raman gain along with the
pump leads to four-wave mixing components that broaden the spectrum (Huang et
al., 2020). Corresponding experimental work has not yet been carried out.

The repetition rate of the input pulse source in many experiments is much
greater than the sampling rate of the optical spectrum analyzer. Hence, the output
supercontinuum spectrum actually consists of an ensemble average over many
pulse realizations in which the pump pulses that generate this ensemble can vary
significantly in their pulse durations, peak power, and noise-induced fluctuation
levels. Because supercontinuum generation is extremely sensitive to any changes in
the input pulse when the input pulse energy is large, a single-shot numerical simu-
lation will not yield an accurate representation of the experimental supercontinuum
spectrum, and it is necessary to use an ensemble average (Weiblen et al., 2010).
It has been shown that an ensemble with 5000 or fewer realizations is sufficient
to reproduce the experimentally expected spectral power density and bandwidth
(Weiblen et al., 2014). Smaller ensembles with 100 individual simulations and
random noise have also been used in the simulations (Zhao et al., 2018; Huang
et al., 2020; Liu et al., 2016b).

Due to the multiple design parameters including different hole diameters in
different layers, the potential of a wide variety of chalcogenide PCFs to generate
a broadband supercontinuum spectrum in the mid-IR region has been studied
numerically (Cheshmberah et al., 2020; Saghaei et al., 2015, 2016; Diouf et al.,
2019a, b; Chaitanya et al., 2016; Karim et al., 2015; Hu et al., 2010a; Li et al., 2014).
Computational work shows that an As2Se3-based chalcogenide-glass triangular-
core graded-index PCF can generate an ultra-broadband mid-IR spectrum spanning
a range from 2 to 15 μm (Saini et al., 2015a, b). Additional numerical results show
that using 3 μm laser pulse with 0.6 nJ energy and 50 fs duration in a Ge-Sb-Se
chalcogenide PCF with normal dispersion generates a highly coherent, ultra-flat, and
broadband supercontinuum spanning 1.86 to 5.35 μm with a spectral variation that
is less than 3 dB (Medjouri & Abed, 2019b). Borosilicate and As2S3 multimaterial
fibers have been proposed to yield a flat dispersion that extends from 1.8 to 8.0
μm (Kalra et al., 2018). A silica PCF with an As2S3 chalcogenide core region and
with a large nonlinear coefficient has been studied. This fiber was reported to have
a very low ZDW, and with a pump at 1.55 μm, it can generate a supercontinuum
spectrum from 1.0 to 3.1 μm (Ali et al., 2016). A highly nonlinear rectangular core
chalcogenide PCF has also been proposed (Chauhan et al., 2018, 2020).
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13.4 General Aspects of Mid-IR Supercontinuum Generation

There are many aspects of supercontinuum generation that are common to all fiber
types. In this section, we will discuss the impact of nonlinearity and dispersion, loss,
the choice of materials, the damage threshold, fabrication methods, and the output
power.

13.4.1 Nonlinearity and Dispersion

The process of supercontinuum generation is complicated, and it involves self-
phase modulation, cross-phase modulation, four-wave mixing, stimulated Raman
scattering, the modulational instability, and dispersive wave generation. Efficient
and broadband supercontinuum generation is obtained by pumping in the anomalous
dispersion regime close to the ZDW of the fiber (Petersen et al., 2014; Wang et al.,
2019). The impact of pump wavelength has been demonstrated by using a low-loss
18-cm-long suspended-core As38Se62 fiber with a ZDW of 3.5 μm. When the pump
is at 3.3 μm in the normal dispersion region, the supercontinuum spectrum ranges
from 1.5 to 6.3 μm. When the pump is 4.7 μm in the anomalous dispersion region,
the supercontinuum spectrum range from 1.7 to 7.5 μm (Moller et al., 2015).

When the input pulse is in the anomalous dispersion region of the fiber, a high-
intensity input pulse undergoes soliton fission, and the solitons then experience
a redshift due to the soliton self-frequency shift (SSFS). In addition, four-wave
mixing process can generate shorter or longer wavelengths, which can also generate
additional solitons, which then undergo a further SSFS (Hu et al., 2010b). It is
advantageous for the Stokes wavelength that is generated in the initial stage to be
as large as possible so that the final bandwidth is larger. Meanwhile, dispersive
waves are created at shorter wavelengths. As the solitons that are created shift
to longer wavelengths via the Raman effect, the dispersive waves at shorter
wavelengths maintain their positions relative to individual solitons due to soliton
trapping (Travers & Taylor, 2009; Gorbach & Skryabin, 2007a, b). The trapping
of the dispersive waves by the soliton leads to a continuous shift toward shorter
wavelengths. Trapping of dispersive waves by solitons is significantly enhanced in
tapered optical fibers as compared to untapered fibers (Travers & Taylor, 2009).
Consequently, the supercontinuum spectrum can be larger on both the long and short
wavelength sides of the pump. As the soliton power decreases while propagating
in the fiber, the SSFS effects weaken. A tapered fiber can be used to increase the
nonlinearity during the propagation (Hu et al., 2006, 2013).

A small core in chalcogenide glass fibers can lead to two ZDWs, which in turn
leads to the possibility that red-shifted solitons are limited by the second ZDW
(Cheng et al., 2016a; Hu et al., 2010b). However, when two ZDWs are present,
dispersive waves can be generated beyond the second ZDW (Petersen et al., 2017),
which further broadens the spectrum. In a 2014 work, the second ZDW actually
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allows for formation of mid-IR dispersive waves that were able to push the long
wavelength edge of spectrum out to 12.5 μm (Kubat et al., 2014a). On the other
hand, in a fiber with only one ZDW, the long wavelength edge of the spectrum was
limited to 10.7 μm (Kubat et al., 2014a).

It is usually difficult to fabricate a fiber with a smaller core and high waveguide
dispersion, which can lead to a higher transmission loss and a high insertion loss.
Power scaling and power handling with small-core structures are usually problem-
atic, especially with suspended-core fibers where the core is in effect thermally
isolated from the cladding by an air layer. Hence, the bulk of the reported work has
been done on fibers that have a larger core size and use a pump wavelength at normal
dispersion (Gattass et al., 2012). The process of supercontinuum generation in a
normal dispersion fiber relies on self-phase modulation, which leads to a symmetric
broadening of the spectrum. After propagation through some distance, the spectrum
can extend beyond the ZDW (Petersen et al., 2017), which then initiates soliton
formation and fission followed by the SSFS, similar to supercontinuum generation
when the dispersion is anomalous. Multiple stages of Raman gain in chalcogenide
fiber can also lead to a broadband supercontinuum spectrum (Gattass et al., 2012;
Kubat et al., 2014a). Each of the Raman peaks further experiences broadening with
parametric four-wave mixing, self-phase modulation, and cross-phase modulation,
which lead to smooth broad spectrum (Gattass et al., 2012; Yao et al., 2016a; Coen
et al., 2002). The Raman-induced broadening is then gradually overtaken by soliton-
based broadening. A 2020 study of the noise in supercontinuum generation showed
that the normal pumping scheme is also a promising approach to generate a high-
power broadband supercontinuum source for noise-sensitive applications such as
sensing (Eslami et al., 2020).

13.4.2 Loss

Supercontinuum generation is a nonlinear effect, which diminishes in effectiveness
as the optical power decreases. Hence, propagation loss has a negative impact
on the supercontinuum generation. There are several absorption bands from 2 to
20 μm, which correspond to residual O-H, As-O, Se-O, Ge-O, S-H, Se-H, and
S-O impurities in the glass (Cheng et al., 2016a; Savelii et al., 2012; Gattass
et al., 2012; Churbanov et al. 2011; Wang et al., 2018a; Theberge et al., 2014).
Numerical simulations with and without the loss peaks due to the impurities can
determine the impact of the loss peaks on the final supercontinuum spectrum. In
a 2012 experiment, supercontinuum generation using low-loss, highly nonlinear,
As2S3 chalcogenide fibers led to a supercontinuum spectrum that ranged from 1.0
to 3.2 μm. Corresponding numerical simulations showed that the supercontinuum
generation without O-H and S-H absorption peaks could be extended to 5.5μm, thus
confirming the dramatic limitation imposed by the O-H and S-H peaks (Savelii et
al., 2012). In another 2012 experiment, the large absorption peak around 4.1 μm due
to ppm-level hydrogen impurities that formed H-S bonds in the fiber impacted the
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experimental work when the pump wavelength was shorter than the H-S absorption
band (Gattass et al., 2012).

On the other hand, supercontinuum generation usually only uses fiber lengths of
a few centimeters, and the nonlinearity often occurs at a relatively short distance
with high peak power. With enough power below the wavelength of the absorption
peak, a Raman scattering can lead to energy leap-frogging over an absorption
band, so that the supercontinuum spectrum can continue to broaden. This power-
dependent “leap” over the absorption band is clearly seen in the power evolution
of the supercontinuum with different powers in (Gattass et al., 2012; Petersen et al.,
2014). The light can almost immediately be shifted away from the pump wavelength
and is therefore not affected by the loss peak (Petersen et al., 2014). In a 2014 work,
a comparison of simulation results with different loss profiles shows that the loss
profiles make a negligible difference (Kubat et al., 2014a). Hence, the O-H and
H2O absorption bands at 2.9 and 6.3 μm lead to a negligible degradation of the
supercontinuum spectrum.

13.4.3 Materials

Chalcogenide glasses are commonly based on S and Se associated with high phonon
energies. Different chalcogenide compositions such as Ge-As-Se, Ge-Sb-Se, and
Ge-As have exhibited ultra-broadband supercontinuum generation from 2 to 12
μm (Petersen et al., 2014; Zhang et al., 2016; Yu et al., 2015). Different material
compositions can increase the linear and nonlinear refractive index of chalcogenide
glass. The nonlinear refractive index of Ge-Sb-Se has been shown to increase
with the concentration of Sb (Chen et al., 2015) as well as Se (El-Amraoui et
al., 2010a). The multicomponent bulk GAP-Se chalcogenide glasses exhibit high
values of linear and nonlinear refractive indices while maintaining high, broadband
transparency and low optical losses at all infrared wavelengths (Goncalves et al.,
2018).

On the other hand, Te glasses have high linear and nonlinearity indices and have
lower phonon energies and result in wider optical windows compared to S and Se
(Danto et al., 2006; Zhao et al., 2016; Wilhelm et al., 2007; Yang et al., 2010).
An increase in the concentration of Te in Ge-As-Se-Te glasses has been shown
to increase glass nonlinearity (Cherukulappurath et al., 2004; Wang et al., 2019;
Mouawad et al., 2018). However, the metallic character of Te leads to a greater
tendency for crystallite formation, which prevents the production of low-loss optical
fibers due to scattering effects (Yang et al., 2010). This drawback can be alleviated
by substituting a small amount of Te with Se, which lowers the conductivity and
dramatically increases the resistance to crystallization while retaining a wide optical
window at long wavelengths, leading to Ge-As-Te-Se glass with a transmission
window between 5 and 12 μm (Yang et al., 2010). Te-based chalcogenide step-
index fiber has been fabricated and used for supercontinuum generation from 1.5 to
14 μm (Zhao et al., 2016).
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The replacement of highly toxic arsenic (As) with antimony (Sb) makes the
glasses more environmentally friendly, and Ge-Sb-Se glasses exhibit higher thermal
and mechanical durability (Ou et al., 2016). Furthermore, the optical nonlinearity
of Ge-Sb-Se glass is greater than that of Ge-As-Se because of the replacement
of As by the more metallic Sb (Dai et al., 2015). More importantly, the visible
damage occurs at a beam intensity of 3674 GW/cm2 for the Ge-Sb-Se glass, which
is much higher than the beam intensity of 1524 GW/cm2 for As2Se3 glass (Ou et al.,
2016). Additionally, an environment-friendly chalcogenide glass fiber with a Ge-Sb-
Se core and a Ge-Se cladding has been fabricated that generates a supercontinuum
spectrum from 2.2 to 12 μm with an output average power of 17 mW (Ghosh et al.,
2019).

It has also been shown that the nonlinearity of chalcogenide glasses can be
enhanced with copper (Cu) or silver (Ag) doping (Ogusu & Shinkawa, 2009). A
broad supercontinuum spectrum from 2.0 to 16.0 μm was successfully achieved
using a Ge-Te-AgI fiber with a double-clad fiber (Zhao et al., 2017).

13.4.4 Damage Threshold

Mid-IR laser-induced damage of chalcogenide glass is first initiated by the accu-
mulation of electrons and subsequently driven by thermal accumulation (You et al.,
2017). When Ge-As-S glasses were exposed to 216 fs pulses with repetition rates
of kilohertz to megahertz at 1030 nm, the laser damage threshold decreases with the
increasing repetition rate of the irradiation pulses (Zhang et al., 2019b). Tables of
damage threshold with different compositions can also be found in (Zhang et al.,
2017; 2019a). For example, an incident peak intensity at the fiber front face of 4.5
GW/cm2 can be used with a repetition rate of 10 MHz (Granzow et al., 2011). With
a lower repetition rate of 560 kHz, an incident peak intensity of 12 GW/cm2 can
be used (Shaw et al., 2011). In addition, the experimental demonstration of an input
power density of 1.07 GW/cm2 without fiber damage for ≤1.5 × 107 pulses was
close to the predicted threshold of about 3.0 GW/cm2 due to dielectric breakdown
at the surface (Sanghera & Aggarwal, 1999).

Glass with a higher average bond energy tends to have a higher damage threshold,
so that S-based chalcogenide glasses generally have a higher damage threshold than
do Se- and Te-based glasses (You et al., 2017). As Se is progressively replaced by
S, the damage threshold rises (Wang & Luther-Davies, 2013; You et al., 2017). The
optical damage thresholds of As2S3 and As2Se3 fibers were 2.9 and 2.8 GW/cm2,
respectively, for 2 ns pulses at a wavelength of 1.9 μm (Zhang et al., 2017). Among
sulfide glasses, those containing Ge have superior laser damage resistance because
of the relatively strong bond strength of Ge-S (Zhang et al., 2017, 2019a; Zhu et
al., 2018). The Ge-As-Se glass composition has superior damage threshold over the
more nonlinear As2Se3 glass due to its stability during fabrication, resistance to
crystallization, and higher transition temperature (Toupin et al., 2012; Petersen et
al., 2017).
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13.4.5 Fabrication

The stack and draw technique is the most common method for manufacturing silica
PCFs and has also been used to fabricate chalcogenide PCFs (Monro et al., 2000).
Small tubes are elongated into capillaries, which are then stacked in a hexagonal
lattice around a glass rod of an identical diameter. The stack is then introduced in a
jacket tube to be drawn into a PCF with a solid core. The diameters of the holes can
be adjusted by applying pressure in the holes.

The molding method to prepare chalcogenide PCFs uses a casting process
(Coulombier et al., 2010). A purified glass rod is heated until it is nearly liquid.
Then, the glass flows in a structured silica mold, which is quenched in air and
annealed. The silica mold can be removed with hydrofluoric acid. The chalcogenide-
glass preform is then drawn in a fiber-drawing tower. It is easier to prepare preforms
with different cross-section structures using the molding method than is the case
for the stack and draw method. However, the molding method cannot prepare PCFs
with different core and cladding compositions.

The drilling method refers to a mechanical drilling process, which is used for
preform fabrication, allowing the design of a wide range of microstructured optical
fibers (El-Amraoui et al., 2010b). The advantage of the drilling method is that it can
be used to prepare PCFs with complicated structures. However, the drilling method
can only be used to prepare short fiber preforms. In addition, the surface of the
drilled hole is very rough, leading to a high fiber loss.

Extrusion is the shaping of a glass melt under high temperature and high pressure
through a mold with simple or complex geometry (Seddon et al., 1998). The
extrusion method is the preferred method for preparing ultra-low-loss chalcogenide
PCFs with the advantages of reducing the manufacturing processing and enabling
the extrusion of a variety of structures. The hole surface is smoother than is possible
with the drilling method.

13.4.6 Output Power

It has been shown that using a pump wavelength in the mid-IR region generally
leads to a wider spectrum than when the pump wavelength is shorter. The output
power of supercontinuum generation is typically on the order of milliwatts or even
microwatts, due to the low repetition rate of the pump. Besides simply increasing
the peak power of the pump pulses, effort has been paid to increase the output power
by increasing the repetition rate of the pump, which in one case has led to 550 mW
of the output power (Kedenburg et al., 2015). The increase of the repetition rate with
the same peak power may reduce the risk of optical damage. On the other hand, one
can also increase the pulse duration to a nanosecond with a relatively low repetition
rate of 100 kHz, which leads to an output power of 143 mW (Yao et al., 2016b). The
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combination of these two techniques with a long pulse duration of 40 ps and a large
repetition rate of 10 MHz led to a power of 565 mW (Gattass et al., 2012).

Overcoming the trade-off between the spectral bandwidth and average output
power from chalcogenide fiber-based mid-IR supercontinuum sources is one of the
major roadblocks toward practical application of the technology. Tapering of large-
mode-area chalcogenide PCFs has been used to study this trade-off (Petersen et al.,
2017). By pumping the tapered fibers at 4 μm using a megahertz optical parametric
generation source and choosing different lengths of the untapered fiber segments,
the output could be tailored for either a broadest spectrum that ranges from 1.0 to
11.5 μm with an average output power of 35.4 mW or a high output power of 57.3
mW with a spectrum that ranges from 1.0 to 8.0 μm (Petersen et al., 2017).

13.5 Future Perspectives

Despite over 15 years of effort on mid-IR supercontinuum generation and the
achievement of hundreds of milliwatts of output power in current experimental
work, the output powers of supercontinuum sources generated from chalcogenide
fibers still must be improved to reach one watt. Generally, efficient and broadband
supercontinuum generation was obtained by pumping in the anomalous dispersion
regime close to the ZDW of the fiber. Because bulk As2Se3 and As2S3 glasses have
a ZDW of ∼7.4 μm and 5 μm, respectively, it is challenging to fabricate fibers with
a ZDW that matches commercially available high-peak-power lasers or building
new high-peak-power lasers that match the ZDW of chalcogenide fiber. Currently,
no commercial fiber lasers can generate ultra-short pulses at wavelengths beyond 4
μm. The development of fiber lasers (Hu et al., 2015; Shaw et al., 2001; Sojka et
al., 2012) at longer wavelengths has the potential to increase the output power of
supercontinuum generation.

PCFs have played an important role in supercontinuum generation at mid-IR
wavelengths. However, a major disadvantage of using PCFs with air capillaries is
the large diffusion surface of the glass, leading to an accumulation of O-H defects
from atmospheric water vapor. One approach to avoid this difficulty is to seal the
fiber with a solid endcap immediately after drawing (Petersen et al., 2017), which
has the added benefit of allowing the post-processing of the end facets with anti-
reflection coatings or nanoimprinted motheye structures to further improve the
damage threshold and output power. The maximum total transmission of a nano-
imprinted uniform fiber was increased by 27.9% relative to the non-imprinted fiber,
and the average power above 3.5 μm was increased by up to 60.2% (Petersen et al.,
2019).

Impurities have limited the bandwidth of supercontinuum generation (Gattass
et al., 2012). While it is possible to boost the power to overcome the limit of
the bandwidth set by impurities (Gattass et al., 2012), reducing the losses by
reducing the impurities is a preferred long-term solution. There are known processes
for reducing the level of impurities in chalcogenide fibers with low attenuation
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loss (Nguyen et al., 2002; Shiryaev & Churbanov, 2014, 2017; Churbanov, 1992;
Churbanov et al., 2011). A combination of increased power and better purification
should significantly improve the bandwidth of supercontinuum generation.

All-fiber mid-IR supercontinuum generation based on chalcogenide fibers
appears promising for many industrial and environmental applications. On one
hand, it is necessary to increase the average pump power that is injected into
chalcogenide fibers by adjusting the repetition rate and pulse duration of the seed
sources. On the other hand, the propagation losses of the all-fiber systems need
to be further reduced. A large portion of the system loss are still from the high
Fresnel reflection at the end faces of chalcogenide fibers, due to lens focusing, butt-
coupling, and splicing (Dai et al., 2018). However, fusion splicing of silica with
ZBLAN fibers or chalcogenide fibers for the purpose of all-fiber supercontinuum
generation has been successfully demonstrated to significantly reduce the losses
(Okamoto et al., 2011; Thapa et al., 2015; Yin et al., 2016, 2017a). All-fiber
approaches for supercontinuum sources with high average output powers have great
potential to increase the robustness and reliability mid-IR supercontinuum sources
for applications.
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Chapter 14
Quantum Mechanical Theory
and Treatment of NLS Equations for
Supercontinuum Generation

M. A. Bolorizadeh and A. Safaei Bezgabadi

Abstract The supercontinuum light generated in an appropriate dielectric such as a
highly nonlinear dispersive fiber is described quantum mechanically. A Lagrangian
is introduced to describe the propagation of light in an inhomogeneous, dispersive,
and anisotropic dielectric. Proper creation and annihilation operators are introduced
to define the linear part of the Hamiltonian, while the nonlinear term(s) of the
Hamiltonian are defined in terms of these operators. As an example, the devised
quantum theory is applied to the pulse propagation through an optical fiber. A
coupled stochastic nonlinear Schrödinger equation (NLSE) type is obtained via the
coherent positive-P representation in order to describe pulse propagation through
the optical fiber. This approach is finally applied to the pulse propagation along
a photonic crystal fiber when the response function of the medium is taken into
account. The coupled stochastic generalized NLSE provided the quantum treatment
of the supercontinuum light source. In addition to the coupling form of the equations
and the stochastic terms, the main difference between the coupled stochastic
equations and its classical form (i.e., GNLSE) is an additional term which has no
counterpart in classical form. This additional term is brought about by commutation
relations, which holds for creation and annihilation operators. This coupled quantum
stochastic equation predicts squeezing in the region of anomalous dispersion,
and the fluctuation can be reduced in the vicinity of the formed solitons in the
supercontinuum generation process. Also, these equations can be used to study the
soliton self-frequency shift quantum mechanically. Here, the coupled equation is
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simulated in the mean case. The quantum treatment of supercontinuum generation
is essential for the high-intensity short-width pulses which are best described as
photons.

Keywords Supercontinuum generation · Third-order dispersion · Ostrogradsky’s
theorem · Generalized nonlinear Schrödinger equation (GNLSE) · Stochastic
GNLSE · Quantum soliton · Soliton fission · Fluctuation · Stochastic field ·
Stochastic variable

14.1 Introduction

Supercontinuum light sources have influenced the advancement of science and
technology due to their widespread applications (Agrawal, 2012; Alfano, 2016;
Alfano & Shapiro, 1970; Cumberland et al., 2008; Dudley & Genty, 2013; Dudley
& Taylor, 2010; Fujimoto, 2003; Li et al., 2021; Venck et al., 2020, Vengris et al.,
2019). However, a supercontinuum source exhibits unstable spectrum which affects
their common use. The supercontinuum sources exhibit up to 50% fluctuation in
their time-dependent profile depending on the initial photon intensity (Corwin et
al., 2003; Dudley & Genty, 2013; Gonzalo et al., 2018; Wetzel et al., 2012). This
fluctuation is partially dependent on the imperfect structure of fiber or dielectric
media. Nonetheless, the fluctuation in the supercontinuum generation, SCG, has
quantum origin as well (Corwin et al., 2003; Dudley & Genty, 2013; Gonzalo
et al., 2018; Wetzel et al., 2012; Safaei Bezgabadi & Bolorizadeh, 2022). The
quantum fluctuation in supercontinuum was studied semi-classically by Corwin
et al. (2003), who introduced methodologically an additional term to the classical
nonlinear Schrödinger equation. Controlling the supercontinuum source fluctuation
is an important issue, yet. However, many researchers are working on different
aspects of this fluctuation.

The main goal of this chapter is to describe the supercontinuum generation
in a dielectric, such as an optical fiber, quantum mechanically. Here, initially, a
Lagrangian is defined for the nonlinear propagation of light in an inhomogeneous,
dispersive, and anisotropic dielectric, specifically an optical fiber. Then, the propa-
gating fields are quantized by imposing the standard commutation relations. In the
next step, the Hamiltonian is written in terms of creation and annihilation operators.
As an example, the present theory is applied for pulse propagation through a
simple optical fiber. Making use of the obtained Hamiltonian and the positive-P
representation (Drummond & Gardiner, 1980; Drummond et al., 1981), the coupled
stochastic nonlinear Schrödinger equation (NLSE) is obtained to describe the pulse
propagation along the fiber. In addition, the quantum noise present in this process
could be treated by these coupled equations (Drummond & Hillery, 2014). Also, by
using these coupled equations, the equations for noise in the vicinity of the input
soliton are obtained which they describe soliton squeezing. Finally, this approach is
used for pulse propagation along a photonic crystal fiber when the retarded response
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function of the medium is considered, and a coupled stochastic generalized NLSE
is presented for quantum treatment of the SCG process. The obtained results for
the quantum model are simulated in the mean case. The simulation results for
quantum model are compared with the simulation results of the classical model.
As a methodological standpoint in order to verify the presented quantum model, the
simulation results for quantum model are compared with the experimental ones.

14.2 Quantum Theory for Pulse Propagation in a Dielectric

The quantum treatment of field propagation inside a dielectric becomes more impor-
tant when the electromagnetic field should be described as photons, specifically
for quantum photonics technologies (Dechoum et al., 2016; Drummond, 1990;
Drummond & Corney, 2001; Drummond & Hillery, 2014; Drummond & Opanchuk,
2020; Drummond et al., 1993; Carter, 1995; Corona et al., 2011; Grangier et al.,
1998; Sun et al., 2019; Yao, 1997). In this section, a detailed study of quantum
field propagation through a dielectric is presented when dispersion is included up
to the third order. The third-order dispersion coefficient was neglected in earlier
quantum treatments of the pulse propagation through a dielectric in the literature.
Due to the critical role of the third-order dispersion coefficient (Alfano, 2016) on
optical phenomena, especially when the second-order dispersion coefficient is zero
or infinitesimal, it is essential to include the third-order dispersion coefficient.

Firstly, a proper canonical Lagrangian is introduced which results in Maxwell’s
equations and the classical energy. Secondly, a constrained quantization approach
(Faddeev & Jackiw, 1988; Gitman & Tyutin, 1990) is applied by using Ostrograd-
sky’s theorem (Woodard, 2007) for higher-order field derivatives in the Lagrangian.
Finally, a Hamiltonian is derived in terms of properly defined annihilation and
creation operators. The resulted annihilation and creation operators are used to
obtain the quantum fields that describe electromagnetic waves propagation inside a
chosen dielectric in this work. The number operator defines the number of photon-
polariton pairs in the dielectric. Additionally, the creation and annihilation operators
were used to describe the nonlinearity of pulse propagation in a medium by adding
the proper perturbation terms. In the next section, the present quantum theory will
be applied to a simple optical fiber when a light signal is propagating along it. This
theory has the ability to add the higher-order dispersions and higher nonlinear terms
into the governing equations, e.g., to describe supercontinuum generation process.

14.2.1 Classical Energy and the Equation of Motion

It is necessary to define an appropriate canonical Lagrangian to establish a theory for
quantization of the pulse propagation along a dielectric. The resulted Hamiltonian
and the equations of motion should, respectively, be equal to the classical energy and
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Maxwell’s equations for the propagation of light in a dielectric when the dispersion
terms up to the third-order dispersion are included. The usual definitions that have
also been implemented by Drummond and Hillery (Drummond, 1990; Drummond
& Hillery, 2014; Hillery, 2009) are used here. One can write the energy density for
electromagnetic radiation as:

H =
∫ t

−∞

[

E
(
t ′, x
) · ∂D

(
t ′, x
)

∂t ′
+ H

(
t ′, x
) · ∂B

(
t ′, x
)

∂t ′

]

dt ′ = He + Hm

(14.1)

where He and Hm are, respectively, the energy density due to the electric and the
magnetic fields. The Fourier transform of the fields (e.g., electric field):

E (t, x) =
∫ ∞

−∞
eiωtE (ω, x) dω, (14.2)

could be replaced in Eq. (14.1). The conditions:

E (t, x) = E∗ (t, x) , (14.3a)

E (−ω, x) = E∗ (ω, x) (14.3b)

and

ε (−ω, x) = ε∗ (ω, x) (14.3c)

hold as the fields are real. One can rewrite E(t, x) · ∂D(t, x)/∂t in terms of the product
of two Fourier integrals as:

E (t, x) · ∂D (t, x)
∂t

= i

∫ ∞

−∞
dω′
∫ ∞

−∞
dωei(ω−ω′)tωE∗ (ω′, x

) · ε (ω)
...E
(
ω, x

)
.

(14.4)

A similar argument can be applied to the magnetic part of the energy, which results
in:

H (t, x) · ∂B (t, x)
∂t

= i

μ

∫ ∞

−∞
dω′
∫ ∞

−∞
dωei(ω−ω′)tωB∗ (ω′, x

) · B(ω, x).
(14.5)

Note that the difference between the electric filed energy, Eq. (14.4), and the
corresponding relation for the magnetic field, Eq. (14.5), is that the magnetic per-
meability is assumed to be independent of frequency, while the electric permeability
is frequency dependent. The frequency integral of Eq. (14.4) is split into two equal
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terms, and −ω is substituted for ω in one of the terms. Then, Eq. (14.4) and
Eq. (14.5) are substituted into Eq. (14.1). Finally, by integrating the resulting Eq.
(14.1) over time and assuming all the local fields and stored energies are initially
zero at t = − ∞, one finds the energy density as:

H =
∫ ∞

−∞
dω′
∫ ∞

−∞
dωei(ω−ω′)t

{

E∗ (ω′, x
) ·
[
ωε (ω, x)− ω′ε

(
ω′, x

)]

2 (ω − ω′)
...E (ω, x)

+ 1

μ
ωB∗ (ω′, x

) · B (ω, x)
}

.

(14.6)

Assuming a narrowband field at frequency, ω0, there are significant contributions
to the integral, Eq. (14.6), at ω = ω

′ + δω ≈ ± ω0. Note that for small values of
δω, the relation:

[
ωε (ω, x)− ω′ε(ω′, x)

]

(ω − ω′)
≈ ∂

∂ω
(ωε (ω, x))

∣
∣
∣
∣
ω�ω′

(14.7)

holds. If ∂(ωε(ω, x))/∂ω varies slowly over the field bandwidth, the time-averaged
“linear energy” for the monochromatic pulse propagation at frequency ω through a
dielectric is obtained as:

HL =
∫
d3x

[
1

2
E∗ (t, x) ·

(
∂ (ωε (ω, x))

∂ω

)

∼constant

...E
(
t, x
)

+ 1

2μ
|B (t, x)|2

]

(14.8)

which can be written in terms of displacement fields as:

HL =
∫
d3x

[
1

2
D∗(t, x

) ·
(

η (ω, x)− ω
∂

∂ω
η (ω, x)

)

∼constant

...D
(
t, x
)+ 1

2μ
|B (t, x)|2

]

(14.9)

for:

η (ω, x) = (ε (ω, x))−1. (14.10)

Detailed derivation of Equation (14.9) from (14.8) is given in the Appendix.
For a charge free media, one can make use of a dual potential function

(Drummond & Hillery, 2014; Drummond, 1990; Hillery, 2009), �, to define the
electric displacement and magnetic fields, respectively, as:

D (t, x) = ∇ × � (t, x) (14.11)
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and:

B (t, x) = μ�̇ (t, x) (14.12)

for:

� (t, x) =
ν=N∑

ν=−N
�ν (t, x) (14.13)

where 2N + 1 narrowband field numbers (mode numbers), ν, are included in the
field. The gauge used, here, is different from the usual Coulomb gauge as the dual
potential, �(t, x) or �ν(t, x), is different from the vector potential. Note that the
condition [�ν(t, x)]∗ = �−ν(t, x) should hold to have real dual function. Expansion
of η(ω, x) up to the third order in the Taylor series near the narrow-field frequency,
ων , leads to:

η (ω, x) ≈ ην (ω
ν, x)+ (ω − ων)η

(1)
ν (ων, x)+ 1

2 (ω − ων)2η
(2)
ν (ων, x)

+ 1
6 (ω − ων)3η

(3)
ν (ων, x)+O

(
(ω − ων)4

)

(14.14)

where:

η(i)ν
(
ων, x

) = di

dωi
ην

(
ω, x

)∣∣
∣
∣
ω=ων

. (14.15)

Rewriting Eq. (14.14) as:

η (ω, x) ≈ ην (x)+ ωη′
ν (x)+ 1

2
ω2η′′

ν (x)+ 1

6
ω3η′′′

ν (x)+O
((
ω − ων

)4)

(14.16)

where ην(x), η′
ν (x), η′′

ν (x) and η′′′
ν (x) are, respectively, defined as:

ην (x) = ην
(
ων, x

)− ωνη(1)ν
(
ων, x

)+ 1

2

(
ων
)2

η(2)ν
(
ων, x

)− 1

6

(
ων
)3

η(3)ν
(
ων, x

)
,

(14.17a)

η′
ν (x) = η(1)ν

(
ων, x

)− ωνη(2)ν
(
ων, x

)+ 1

2

(
ων
)2

η(3)ν
(
ων, x

)
, (14.17b)

η′′
ν (x) = η(2)ν

(
ων, x

)− ωνη(3)ν
(
ων, x

)
(14.17c)

and:

η′′′
ν (x) = η(3)ν

(
ων, x

)
. (14.17d)
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Note that the quantities ην(x), η′
ν (x), η′′

ν (x), and η′′′
ν (x) are not derivatives of

one another. Substituting η(ω, x) from Eq. (14.16) into Eq. (14.9), the time averaged
“linear energy” takes the form of:

HL =
∫
d3x

{
1

2
D∗ (t, x) ·

(

ην (x)− 1

2
ω2η′′

ν (x)− 1

3
ω3η′′′

ν (x)
) .
.
.D (t, x)+ 1

2μ
|B (t, x)|2

}

.

(14.18)

The higher-order terms of expansion (14.14) are neglected with respect to the
second-order (if nonzero) and the third-order terms in many applications of optical
fibers. Hence, expansion (14.18) is valid for nearly all applications which is free
from term η′

ν (x).
Inserting definitions 14.11, 14.12, and 14.13 into Eq. (14.18), one arrives at:

HL = 1
12

N∑

ν′=−N

N∑

ν=−N
∫
d3x

{(
∇ × �−ν′

(t, x)
)

· (6ην (x)− 3ω2η′′
ν (x)

−2ω3η′′′
ν (x)

) ... (∇ × �ν (t, x)) + 6μ
(
�̇

−ν′
(t, x) · �̇

ν
(t, x)

)}
.

(14.19)

Then, taking Fourier transform of Eq. (14.19) and assuming a narrow pulse of
frequencies ων, one has:

HL = 1
12

N∑

ν′=−N

N∑

ν=−N
∫
d3x

∫
dων

′ ∫
dων

{[

6
(
∇ × �−ν′) · ην (x)

.

.

.
(∇ × �ν

)

−3
(
∇ × �−ν′) · (ων)2η′′

ν (x)
.
.
.
(∇ × �ν

)− 2
(
∇ × �−ν′) · (ων)3η′′′

ν (x)
.
.
.
(∇ × �ν

)
]

+6μ

(

�̇
−ν′ · �̇

ν
)}

e
i
(
ων−ων′

)
t

(14.20)

where the frequency and the position vector dependence of the dual potential
function are omitted to shorten Eq. (14.20). Applying the superposition principle
and the slowly varying envelope approximation (Drummond, 1990; Drummond &
Hillery, 2014; Hillery, 2009) over narrowband field numbers -N to N, the average
linear energy for a wideband field could be expressed in terms of the local fields and
their time derivatives at the frequency ων . Substituting ±i�̇±ν

for ων�±ν , keeping
the symmetry in terms of the field vector derivatives and orthogonality of modes,
the inverse Fourier transform of Eq. (14.20) will result in:

HL = 1
12

N∑

ν=−N
∫
d3x

⎧
⎨

⎩

⎡

⎣6
(∇ × �−ν) · ην

(
x
)..
.
(∇ × �ν

)− 3
(∇ × �̇

−ν) · η′′
ν

(
x
)..
.
(∇ × �̇

ν)

+ i
(∇ × �̇

−ν) · η′′′
ν

(
x
)..
.
(∇ × �̈

ν)− i
(∇ × �̈

−ν) · η′′′
ν

(
x
)..
.
(∇ × �̇

ν)
⎤

⎦+ 6μ
(
�̇

−ν · �̇
ν)
⎫
⎬

⎭
.

(14.21)
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The nonlinear features of pulse propagation in dielectrics are included in the
nonlinear part of the energy as perturbations (Drummond, 1990; Drummond &
Hillery, 2014). In practice, the medium’s response functions are frequency depen-
dent (Alfano, 2016; Boyd, 2008). However, when the response time is relatively fast,
the frequency dependence of the medium’s nonlinear response function is neglected.
In the supercontinuum generation process, the medium’s response function is
retarded (Agrawal, 2012; Dudley & Taylor, 2010).

Here, Maxwell’s equations are the equations of motion for the pulse propagation
through a dielectric. ∇ · D = 0 and ∇ × H = ∂D/∂t are satisfied by definitions
(14.11) and (14.12), respectively. Also, it is understood that the dual potential must
be a transverse field as ∇ · B = 0. So the main equation of motion is:

∇ × E (t, x) = −∂B (t, x) /∂t, (14.22a)

where E could be generally given by (Alfano, 2016; Boyd, 2008; Drummond &
Hillery, 2014):

E (t, x) =
∑

n>0

[∫ ∞
0

ηn (τ1, . . . , τn, x)
.
.
.
(
D (t − τ1, x)⊗ · · · ⊗ D

(
t − τn, x

))
dτ1 · · · dτn

]

(14.22b)

and ηn is the nth-order nonlinear response of the medium. It should be noted that η

in Eq. (14.14) is the linear response of the medium, and, therefore, it is equal to η1.
However, the quantities ηn are assumed to be independent of frequency when n > 1.

By implementing Hillery’s method (2009) and using the nonlinear polarization
term in Maxwell’s equations (Alfano, 2016; Boyd, 2008), the nonlinear part of
energy is obtained as:

HNL =
∑

n>1

1

n+ 1

∫
D (t, x) · ηn (x)

...D (t, x)⊗ · · · ⊗ D (t, x) d3x, (14.23)

where in terms of the dual functions, it is written as:

HNL =
∑

n>1

N∑

ν=−N

∑

ν1,··· ,νn

1

n+ 1

∫
∇ × �−ν (t, x) · ηn (x)

.

.

.
(∇ × �ν1 (t, x)

)⊗ · · · ⊗ (∇ × �νn (t, x)
)
d3x.

(14.24)

Finally, the total energy can be written as:

H = HL +HNL. (14.25)
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The equation of motion (14.22a) for the present system is written in terms of dual
potential for a mode number, ν, as:

−μ�̈
ν
(t, x) = ∇ ×

{

ην (x)
...
[∇ × �ν (t, x)

]+ iη′
ν (x)

...
[
∇ × �̇

ν
(t, x)

]

− 1
2η′′
ν (x)

...
[
∇ × �̈

ν
(t, x)

]
− i

6η′′′
ν (x)

...
[
∇ ×

...
�
ν
(t, x)

]

+ ∑
n>1

∑

ν;ν1,··· ,νn
ηn (x)

...
[
(∇ × �ν1 (t, x))⊗ · · · ⊗ (∇ × �νn (t, x))

]
}

(14.26)

by applying the slowly varying envelope approximation which is demonstrated
in the Appendix. Here, the slowly varying envelope approximation requires that
e−iωντ�ν (t − τ, x) is treated as a slowly varying envelope function of τ , and it
can be expanded in a Taylor series near τ = 0. Generally, a term proportional to
η′
ν (x) does not appear in the linear dispersive energy, i.e., Eq. (14.18). However, a

term proportional to η′
ν (x) appears in the wave equation as a result of changes in

phase velocity due to dispersion. Note that when the terms proportional to η′′′
ν (x) are

neglected, Eqs. (14.18, 14.19, 14.20, 14.21, 14.22a, 14.22b, 14.23, 14.24, 14.25, and
14.26) are similar to the corresponding equations in reference (Drummond, 1990).

14.2.2 Canonical Lagrangian and Hamiltonian Functions

To establish a quantum theory for the pulse propagation through a nonlinear
dispersive dielectric in the presence of third-order dispersion (Drummond, 1990;
Drummond & Hillery, 2014), a canonical Lagrangian leading to the equation
of motion (14.26) and the classical energy (14.25) should be defined based on
Ostrogradsky’s theorem (Woodard, 2007). Due to the presence of third-order
dispersion, the defined Lagrangian contains higher-order time derivatives. For the
pulse propagation through a dielectric when the third-order dispersion is included,
the Euler-Lagrange equation for the jth component of the dual potential, �ν , is
written as:

∂L

∂�νj
− ∂t

(
∂L

∂�̇νj

)

− ∂k

⎛

⎝ ∂L

∂
(
∂k�

ν
j

)

⎞

⎠+ ∂t ∂k

⎛

⎝ ∂L

∂
(
∂k�̇

ν
j

)

⎞

⎠− ∂t ∂t ∂k

⎛

⎝ ∂L

∂
(
∂k�̈

ν
j

)

⎞

⎠ = 0 (14.27)

where L is Lagrangian density and k represents the space coordinates x, y, or z.
Note that the summation rule is applied to k. For the present system, a proper form
for the linear and nonlinear parts of the Lagrangian density will be:
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LL = 1
2

ν=N∑
ν=−N

⎡

⎣− (∇ × �−ν) · ην (x)
.
.
. (∇ × �ν )− 1

2

(
∇ × �̇

−ν) · η′′
ν (x)

.

.

.
(
∇ × �̇

ν
)

− i
2

⎛

⎝
(∇ × �−ν) · η′

ν (x)
.
.
.
(
∇ × �̇

ν
)

− (∇ × �ν ) · η′
ν (x)

.

.

.
(
∇ × �̇

−ν)
⎞

⎠

+ i
6

⎛

⎝
(
∇ × �̈

−ν) · η′′′
ν (x)

.

.

.
(
∇ × �̇

ν
)

−
(
∇ × �̈

ν
)

· η′′′
ν (x)

.

.

.
(
∇ × �̇

−ν)
⎞

⎠+ μ
(
�̇

−ν · �̇
ν
)
⎤

⎦

(14.28)

and:

LNL = −
∑

n>1

∑

ν;ν1,··· ,νn

1

n+ 1

(∇ × �−ν (t, x)
) · ηn (x)

.

.

.
[(∇ × �ν1 (t, x)

)⊗ · · · ⊗ (∇ × �νn (t, x)
)]

(14.29)

where the total Lagrangian can be written as:

L =
∫
(
LL +LNL

)
d3x. (14.30)

Detailed derivation of the resulted equation of motion and the Hamiltonian,
which are, respectively, equal to Equation (14.26) and Equation (14.25), are
described in the Appendix. The linear part of the Lagrangian density, Eq. (14.28),
is implemented to quantize the propagation of electromagnetic field through a
nonlinear dispersive dielectric. As the Lagrangian density (14.28) is a function of
higher-order time derivatives of the field, one should implement Ostrogradsky’s
theorem (Woodard, 2007) for higher-order scalar fields. Here, according to Ostro-
gradsky’s theorem, there are two canonical coordinates qν and Qν corresponding to
�ν and �̇

ν
. These canonical coordinates and their canonical momenta construct a

canonical space. The canonical momenta:

�ν = 1

2

[

∇ ×
(

− i

2

(∇ × �−ν) · η′
ν (x)− 1

2

(∇ × �̇
−ν) · η′′

ν (x)+ i

6

(∇ × �̈
−ν) · η′′′

ν (x)
)

+ μ�̇
−ν
]

(14.31)

and:

�ν = − i

12
∇ ×

((
∇ × �̈

−ν) · η′′′
ν (x)

)
(14.32)

correspond respectively to canonical coordinates qν and Qν or �ν and �̇
ν
. By

neglecting the third-order dispersion term, η′′′
ν (x), the linear Lagrangian agrees with

Eq. (3.117) in reference (Drummond & Hillery, 2014).
In summary, the results obtained by implementing the total Lagrangian agree in

both dynamics and energy with the results obtained from Maxwell’s equations and
Poynting’s theorem for slowly varying envelope functions. So, the total Lagrangian,
describing the field propagation through a medium with a combination of dispersion,
nonlinearity, and inhomogeneity, is unique as one can derive the correct equation of
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motion and the Hamiltonian. Additionally, the linear Lagrangian density (14.28)
describes the system in the framework of a local field theory of a linear dispersive
medium. The first and the last terms of the linear Lagrangian density and the
linear Hamiltonian resemble a massless boson, while the remaining terms indicate
dispersive correction.

14.2.3 Field Quantization

For the present system, Dirac’s commutation relations for the components of vector
operators �νand �ν are:

[
�νj (t, x) ,�

ν
j ′
(
t, x′)] = i�δj,j ′δ⊥

(
x − x′) . (14.33)

Similar commutation relations hold between �̇
ν

and �ν . Since the dual potentials
and their canonical momenta are transverse, the commutation relations (14.33) are
transverse. Equation (14.33) expresses that the present system is a constrained
system (Faddeev & Jackiw, 1988; Gitman & Tyutin, 1990) because no standard
commutation relation holds. To extend the common approach of quantization to this
constrained quantization, it is necessary to construct the appropriate form of the
Dirac commutation relations for new coordinates. Thus, the dual potential functions
are expanded in terms of spatial modes as:

�ν (t, x) = 1√
V

∑

k,α

λνk,α(t) êk,α e
ik·x (14.34)

to rephrase the constraint, where the expansion coefficients are the new coordinates,
λνk,α . By inserting expansion (14.34) into Eq. (14.28), the linear part of Lagrangian
is obtained as:

LL = 1
2

ν=N∑
ν=−N

∑

k′,α′

∑

k,α

{
−
(
λνk′,α′

)∗
M
(1)ν
(k′,α′)(k,α)λ

ν
k,α − i

[(
λνk′,α′

)∗
M
(2)ν
(k′,α′)(k,α)λ̇

ν
k,α

−
(
λ̇νk′,α′

)∗
M
(2)ν
(k′,α′)(k,α)λ

ν
k,α

]
+
(
λ̇νk′,α′

)∗
M
(3)ν
(k′,α′)(k,α)λ̇

ν
k,α

+i
[(
λ̈νk′,α′

)∗
M
(4)ν
(k′,α′)(k,α)λ̇

ν
k,α −

(
λ̇νk′,α′

)∗
M
(4)ν
(k′,α′)(k,α)λ̈

ν
k,α

]}

(14.35)

where:

M
(1)ν
(k′,α′)(k,α) = 1

V

∫
d3x

(
k′ × ê∗

k′,α′
)

· ην (x)
...
(
k × êk,α

)
ei(k−k′)·x, (14.36a)

M
(2)ν
(k′,α′)(k,α) = 1

2V

∫
d3x

(
k′ × ê∗

k′,α′
)

· η′
ν (x)

...
(
k × êk,α

)
ei(k−k′)·x, (14.36b)
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M
(3)ν
(k′,α′)(k,α) =

⎡

⎣μê∗
k′,α′ · êk,αδk′,k − 1

2V

∫
d3x

(
k′ × ê∗

k′,α′
)

· η′′
ν (x)

.

.

.
(
k × êk,α

)
ei(k−k′)·x

⎤

⎦

(14.36c)

and:

M
(4)ν
(k′,α′)(k,α) = 1

6V

∫
d3x

(
k′ × ê∗

k′,α′
)

· η′′′
ν (x)

...
(
k × êk,α

)
ei(k−k′)·x.

(14.36d)

See the detailed derivation of Equation (14.35) and the coming results, Equation
14.37, in the Appendix. It is important to note that when the medium exhibits losses
due to scattering or absorption, they appear as complex values in elements of ην(x).
In turn, these losses appear in matrices M. The M matrices will be diagonal when the
response tensor of the medium is isotropic and homogeneous. The linear Lagrangian
(14.35) is re-written as:

LL =
ν=N∑
ν=0

{
−(λν)†M(1)νλν − i

[
(λν)†M(2)ν λ̇ν − (λ̇ν)†M(2)νλν

]

+(λ̇ν)†M(3)ν λ̇ν + i
[(
λ̈ν
)†
M(4)ν λ̇ν − (λ̇ν)†M(4)ν λ̈ν

]} (14.37)

by omitting the summations over (k, α, k’, α’) and the corresponding indices for
simplicity. In order to rephrase the constraint and obtain standard commutation
relations, the new canonical momenta corresponding to the new set of coordinates
are derived as:

πν = ∂LL

∂λ̇ν
− ∂LL

∂λ̈ν
=
[
−i(λν)†M(2)ν + (λ̇ν)†M(3)ν + 2i

(
λ̈ν
)†
M(4)ν

]
,

(14.38a)

(
πν
)† = iM(2)νλν +M(3)ν λ̇ν − 2iM(4)ν λ̈ν, (14.38b)

σν = ∂LL

∂λ̈ν
= −i(λ̇ν)†M(4)ν (14.38c)

and:

(
σν
)† = σν† = iM(4)ν λ̇ν . (14.38d)

Here, Ostrogradsky’s theorem is applied again in order to obtain canonical
momenta (14.38) from the Lagrangian density (14.28) where the Ostrogradsky
choices for canonical coordinates are λν ≡ qν and λ̇ν ≡ Qν . One must impose the
standard commutation relations between the canonical coordinates and momenta,
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to quantize the fields for the current problem. These relations no longer have
transversality restrictions as compared with the operators �ν and �ν (or �̇

ν
and

�ν). The commutation relations between coordinates and momenta can be simply
written as:

[
qνk,α, π

ν
k′,α′
]

= i�δk,k′δα,α′ (14.39a)

and:
[
Qν

k,α, σ
ν
k′,α′
]

= i�δk,k′δα,α′ . (14.39b)

It is straightforward to find the linear part of the Hamiltonian in terms of the new
canonical coordinates and momenta as:

HL =
N∑

ν=0

(
qν†M(1)νqν + πνQν +Qν†πν† −Qν†M(3)νQν + iqν†M(2)νQν − iQν†M(2)νqν

)
.

(14.40)

New canonical coordinate:

q̃ν = Aν · qν + Bν ·Qν + Cν · πν† +Dν · σν†, (14.41a)

and momentum:

p̃ν = qν† · Eν +Qν† · Fν + πν ·Gν + σν ·Kν, (14.41b)

are defined to write the Hamiltonian (14.40) in a simpler form, where Aν to Kν (i.e.;
Aν, Bν, Cν, Dν, Eν, Fν, Gν and Kν) are arbitrary invertible complex matrices. The
coordinate and momentum, (14.41), obey the standard commutation relation. Thus,
the conditions:

Aν · Cν† + Bν ·Dν† = Cν · Aν† +Dν · Bν†, (14.42a)

Eν† ·Gν + Fν† ·Kν = Gν† · Eν +Kν† · Fν (14.42b)

and:

Aν ·Gν + Bν ·Kν − Cν · Eν −Dν · Fν = 1 (14.42c)

hold for the coefficients defined by Eqs. (14.41). Nonetheless, the Hamiltonian
(14.40) is written in terms of the defined coordinate and momentum operators as:
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HL =
N∑

ν=0

(
q̃ν† ·�ν · q̃ν + p̃ν · ϒν · p̃ν† + i q̃ν† ·�ν · p̃ν† − ip̃ν · (�ν)† · q̃ν

)
,

(14.43)

where �ν , ϒν , and �ν are the frequency matrices. Equating the two forms of the
Hamiltonian, (14.40) and (14.43), six equations in addition to equations (14.42)
relating the frequency matrices and the arbitrary invertible complex matrices Aν to
Kν are derived. Therefore, the unknown matrices (the frequency matrices and the
matrices Aν to Kν) can be determined. The reader is referred to Appendix for the
details of derivation of relations for the matrices Aν to Kν.

Using boson creation and annihilation operators, the linear part of the Hamilto-
nian is re-expanded. The operators aν and bν are defined as annihilation operators,
while (aν)† and (bν)† are creation operators. These operators are defined as column
vectors:

aν = 1√
2�

{

Wν · q̃ν + i
[(
Wν
)†]−1 · (p̃ν)†

}

(14.44)

and:

(
bν
)† = 1√

2�

{

Wν · q̃ν − i
[(
Wν
)†]−1 · (p̃ν)†

}

(14.45)

where the transformation matrix Wν is an invertible complex matrix to be defined.
Commutation relations for elements of these operators are:

[

aνi ,
(
aνj
)†
]

=
[

bνi ,
(
bνj
)†
]

= δij (14.46)

and:
[
aνi , a

ν
j

]
=
[
bνi ,b

ν
j

]
=
[

aνi ,
(
bνj
)†
]

=
[(
aνi
)†
,bνj
]

= 0. (14.47)

Now, the Hamiltonian (14.43) is written in terms of the creation and the
annihilation operators as:

HL = �

N∑

ν=0

(
aν
)† ·�ν · aν + �

N∑

ν=1

(
bν
)† ·�−ν · bν (14.48)

where �±ν is defined as frequency matrices and the relations:

1

2

(
Wν
)−1 · (�+ν +�−ν) ·

((
Wν
)†)−1 = ϒν, (14.49a)

1

2

(
Wν
)† · (�+ν −�−ν) ·

((
Wν
)†)−1 = �ν (14.49b)
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and:

1

2

(
Wν
)† · (�+ν +�−ν) ·Wν = �ν (14.49c)

hold by equating the two forms of the Hamiltonians (14.43) and (14.48) while
neglecting zero-point energy. The relation:

�ν = (Wν
)† · (Wν

) · ϒν · (Wν
)† · (Wν

)
(14.50)

holds for the matrices Wν by eliminating �±ν in Eqs. (14.49). It could be shown
that Eq. (14.48) holds when Wν is the solution to the matrix Eq. (14.50). The
corresponding frequency matrices are found as:

�±ν =
[

Wν · ϒν ±
((
Wν
)†)−1 ·�ν

]

· (Wν
)†
. (14.51)

In general, the resultant Hamiltonian is not diagonal as the M(1)ν to M(4)ν matrices
are not diagonal. The matrices �±ν are diagonalized to obtain the frequency bands
as:

[
Uν ·�±ν · (Uν)−1

]

nm
= ω±ν

n δnm. (14.52)

The final form of the Hamiltonian is:

HL = �

N∑

ν=0

∑

n=0

ω+ν
n

(
ãνn
)† · ãνn + �

N∑

ν=1

∑

n=0

ω−ν
n

(
b̃νn
)† · b̃νn, (14.53)

where:

ãνn = Uν · aνn (14.54)

and:

b̃νn = Uν · bνn. (14.55)

The Hamiltonian (14.53) is diagonal operator leading to normal and anomalous
modes corresponding to operators ãν and b̃ν . The operators in Eq. (14.53) indicate
the number of photon-polariton pairs of the system. Note that the quantities M(1)ν

to M(3)ν, defined by Eqs. (14.36), change when the third-order dispersion is absent
and M(4)ν is zero.
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The nonlinear term in the total Hamiltonian is:

HNL = 1

4

∫
D (t, x) · η3 (x)

...D (t, x)D (t, x)D (t, x) d3x (14.56)

when only the third-order nonlinear term of Eq. (14.24) is taken into account. This
nonlinear part of the Hamiltonian is found in terms of annihilation and creation
operators where displacement field is written in terms of these two operators. The
theory developed here could properly quantize the electromagnetic radiation in a
three-dimensional dielectric, where the third-order nonlinear term is effective. When
an optical soliton propagates along a dielectric waveguide, there are fluctuations in
the vicinity of the soliton (Drummond & Hillery, 2014; Safaei Bezgabadi et al.,
2019, 2020a and 2020b) depending on the intensity of the soliton.

The present quantization scheme is a fundamental basis for squeezing the soliton
fluctuations. Drummond applied a model to squeeze the fluctuations for soliton
propagation along an optical fiber when the dispersion is expanded up to the second
order. In a more realistic view, the third-order dispersion has a vital role for pulse
propagation along optical fibers. Therefore, this section provides a basic theory for
pulse propagation when the third-order dispersion is included. The method devised
here is capable of being extended to higher-order dispersions and also enables one
to study quantum aspects of noise in dielectrics, especially fibers (Drummond &
Hillery; 2014; Safaei Bezgabadi et al., 2018, 2020a). Generally, quantum treatment
of pulse propagation through dielectric waveguides is essential for light propagation
along photonic chips used in quantum simulations, quantum sensing, and quantum
communications experiments.

14.3 Application of the Present Quantum Theory
to an Optical Fiber

In this section, the field propagation along an optical fiber, i.e., a cylindrical optical
waveguide, is presented making use of the theory established in the previous section.
This field is assumed to be a polarized single-frequency plane wave, i.e. a single
transverse mode ν, while the longitudinal mode components have discrete wave
numbers k ranging from –kmin to kmax. For an optical fiber, it is assumed a cylindrical
waveguide whose axis lies along the z-axis. Making use of the dual potential as
described by Eq. (14.13) and the Maxwell’s equation (14.22a) for the usual case of
η(ω, x) ≡ η(ω), one could derive the wave equation. The wave equation for the dual
potential is:

∇2�ν (ω, x)+ με̃ω2�ν (ω, x) = 0 (14.57)

where ε̃ is the permittivity of the medium and the relation:
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με̃ω2 ≡ μ

⎛

⎝
ε1 0 0
0 ε2 0
0 0 ε3

⎞

⎠ω2 = κ21, (14.58)

holds. It is also assumed that the three εs are equal. The polarized dual potential is
defined as:

�ν (t, x) = �ν⊥einϕ�ν (t, z) (14.59)

where:

�ν⊥ = ρ̂gν (ρ)+ ϕ̂f ν (ρ) . (14.60)

One can show that the functions fν(ρ) and gν(ρ) are Bessel functions satisfying the
differential equation:

1

ρ

d

dρ

(

ρ
dF
(
kρρ
)

dρ

)

+
(

k2
ρ − n2

ρ2

)

F
(
kρρ
) = 0 (14.61)

where κ2 = k2
ρ + k2. The boundary conditions lead to the quantized values for kρ ,

k
(m)
ρ . Each transverse mode, ν, stands for n and m, and mode -ν corresponds to -n

and m.
The displacement vector and the magnetic fields, respectively, are:

Dν (t, x) = einϕ∂z�
ν (t, z)�ν⊥ × ẑ + ανeinϕ�ν (t, z) ẑ = einϕ

(
∂z�

ν (t, z) gν (ρ) ϕ̂

−∂z�ν
(
t, z
)
f ν (ρ) ρ̂ + αν (ρ)�ν

(
t, z
)
ẑ
)
. (14.62)

and:

Bν (t, x) = μ�̇
ν
(t, x) = μ

(
ρ̂gν (ρ)+ ϕ̂f ν (ρ)

)
einϕ�̇ν (t, z) . (14.63)

where:

αν (ρ) = 1

ρ

[
∂ρρf

ν (ρ)− ingν (ρ)
]
. (14.64)

One could assume the solution to gν(ρ) to be:

(14.65)

where is a normalization factor.
The gauge condition, ∇ · �(t, x) = 0, for the dual potential, leads to:

ρ
dgν (ρ)

dρ
+ gν (ρ)+ inf ν (ρ) = 0 (14.66)
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where the final form for fν(ρ) is:

f v i in
k

n
n n

m

n

1
1r rr kmrr

v v
(14.67)

In order to find , the condition:

∫ ∞

0
dρ

∫ 2π

0
dϕρ

(
f−ν (ρ) f ν (ρ)+ g−ν (ρ) gν (ρ)

) = 1. (14.68)

should be satisfied.
It is assumed that the response tensor for the medium is homogeneous and

isotropic (ην(x) = ην) and that the first nonzero nonlinear term corresponds to η3
(centro-symmetric media). The linear part of the Lagrangian density (Eq. (14.28))
and the Hamiltonian (Eq. (14.21)) can be, respectively, simplified to:

LL = 1
2

ν=N∑
ν=−N

∫ {[−ην
[
∂z�

−ν (t, z)∂z�ν
(
t, z
)+ Yν�−ν (t, z)�ν (t, z)]

− i
2 η

′
ν

[
∂z�

−ν (t, z)∂z�̇ν
(
t, z
)+ Yν�−ν (t, z)�̇ν (t, z)− ∂z�

ν
(
t, z
)
∂z�̇

−ν (t, z)− Yν�ν
(
t, z
)
�̇−ν (t, z)]

+ i
6 η

′′′
ν

[
∂z�̈

−ν (t, z)∂z�̇ν
(
t, z
)+ Yν�̈−ν (t, z)�̇ν (t, z)− ∂z�̈

ν
(
t, z
)
∂z�̇

−ν (t, z)− Yν�̈ν
(
t, z
)
�̇−ν (t, z)]

− 1
2 η

′′
ν

[
∂z�̇

−ν (t, z)∂z�̇ν
(
t, z
)+ Yν�̇−ν (t, z)�̇ν (t, z)]

]
+ μ

(
�̇−ν (t, z)�̇ν (t, z))

}
dz

(14.69)

and:

HL = 1
2

ν=N∑
ν=−N

∫ {[
ην
(
∂z�

−ν (t, z)∂z�ν
(
t, z
)+ Yν�−ν (t, z)�ν (t, z))

+ i
6 η

′′′
ν

[
∂z�̈

−ν (t, z)∂z�̇ν
(
t, z
)+ Yν�̈−ν (t, z)�̇ν (t, z)− ∂z�̈

ν
(
t, z
)
∂z�̇

−ν (t, z)− Yν�̈ν
(
t, z
)
�̇−ν (t, z)]

− 1
2 η

′′
ν

[
∂z�̇

−ν (t, z)∂z�̇ν
(
t, z
)+ Yν�̇−ν (t, z)�̇ν (t, z)]

]
+ μ

(
�̇−ν (t, z)�̇ν (t, z))

}
dz

(14.70)

where:

Yν = 2π
∫ ∞

0

[
1

ρ

((
dρf ν/dρ

)(
dρf−ν/dρ)+ n2gνg−ν + ing−ν (dρf ν/dρ)− ingν

(
dρf−ν/dρ)

)]

dρ.

(14.71)

Similar to the definition (14.34), the scalar field�ν(t, z) is defined in terms of the
canonical coordinates λνk(t) as:

�ν (t, z) =
(

1/
√
L
)∑

k
λνk(t)e

ikz. (14.72)

where L is the length of the optical fiber. Therefore, the linear part of the Lagrangian
for the field propagation along the optical fiber can be written as:

(14.73a)
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where and , making use of Equation (14.28). The
Lagrangian (14.73a) will be:

(14.73b)

where λ−ν
−k ≡ (

λνk

)†, λ̇−ν
−k ≡ (

λ̇νk

)†
and λ̈−ν

−k ≡ (
λ̈νk

)†
. It is assumed earlier that

a single transverse mode ν for mode numbers n and m are considered, so the
summation over ν in Eq. (14.73b) is dropped for the rest of this section.

The canonical momenta associated with λk ≡ λνk , λ†
k ≡ (

λνk

)†, λ̇k ≡ λ̇νk and

λ̇
†
k ≡ (λ̇νk

)†
are:

(14.74)

(14.75)

(14.76)

and:
(14.77)

respectively, when Ostrogradsky’s theorem (Woodard, 2007) is implemented. The
canonical coordinates are qk, q†

k , Qk, and Q†
k which are equal to λk, λ†

k , λ̇k , and λ̇†
k ,

respectively. Similarly, the linear part of the Hamiltonian, HL, for field propagation
along optical fibers is written as Eq. (14.40). Here, the M matrices defined by
Equations (14.36) are diagonal, and they are obtained as:

(14.78a)

(14.78b)

(14.78c)

and:

(14.78d)
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Note should be added that a careful comparison between the dual potential defined
by Eq. (14.34) and the dual potential of a system with discrete modes, similar to our
example, is needed to find the correct M matrices.

In order to use the Hamiltonian (14.43), the frequency matrices (�ν , ϒν , and
�ν) and the arbitrary invertible complex matrices Aν to Kν must be determined. For
the present simple example, these matrices are reduced to complex numbers. By
using the six obtained relations and conditions (14.42), these complex numbers can
be obtained.
Similar to operators given by Eqs. (14.41), new canonical coordinates, q̃νk , and
momenta, p̃νk , are defined as:

q̃νk = Aνk · qνk + Bνk ·Qν
k + Cνk · πνk † +Dνk · σνk † (14.79)

and:

p̃νk = qνk
† · Eνk +Qν

k
† · Fνk + πνk ·Gνk + σνk ·Kν

k . (14.80)

In this one-dimensional example, the field is quantized when operators q̃νk and p̃νk
obey the commutation relation:

[
q̃νk , p̃

ν
k′
] = i�δk,k′ . (14.81)

Operators defined by Eqs. (14.44) and (14.45) are, respectively, given as:

aνk = 1√
2�

{
Wν
k · q̃νk + i

[(
Wν
k

)∗]−1 · (p̃νk
)†} (14.82)

and:

(
bνk
)† = 1√

2�

{
Wν
k · q̃νk − i

[(
Wν
k

)∗]−1 · (p̃νk
)†} (14.83)

where Wν
k is generally a complex number. The creation operator

(
aνk

)† and
the annihilation operator bνk are likewise defined. Therefore, the linear part of
Hamiltonian is:

HL = �

∑

k

ω+ν(k)
(
aνk
)†
aνk + �

∑

k

ω−ν(k)
(
bνk
)†
bνk (14.84)

while ω(k) is the solution to equations:

ω±ν(k) = ∣∣Wν
k

∣
∣2ϒν ±�ν (14.85)

where Wν
k is given as:

∣
∣Wν

k

∣
∣4 = �ν

ϒν
. (14.86)
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In order to calculate the nonlinear parts of the Hamiltonian, Eq. (14.56), it is
essential to obtain �νk (or equivalently λνk ). It is straightforward to find the equation
of motion as:

ϑνk λ̇
ν
k + υνk λ

ν
k =

√
�

2
ςνk a

ν
k (t)+

√
�

2
ξνk
(
bνk (t)

)† (14.87)

where:

ςνk =
[(
Gνk
)∗(
Wν
k

)−1 + iCνk
(
Wν
k

)∗]
, (14.88)

ξνk =
[(
Gνk
)∗(
Wν
k

)−1 − iCνk
(
Wν
k

)∗]
, (14.89)

υνk = Aνk
(
Gνk
)∗ − Cνk

(
Eνk
)∗ (14.90)

and:

ϑνk =
[
Bνk
(
Gνk
)∗ + iDνk

(
Gνk
)∗
M(4)ν − Cνk

(
Fνk
)∗ − iCνk

(
Kν
k

)∗
M(4)ν

]
. (14.91)

Note that the Ostrogradsky’s choices for canonical coordinates are qν ≡ λν and
Qν ≡ λ̇ν .

According to the Heisenberg equation of motion, the operators aνk (t) and
(
bνk (t)

)†

evolve as aνk (t) = aνk (0)e
−i ω+ν (k)t and

(
bνk (t)

)† = (bνk (0)
)†
ei ω

−ν (k)t , respectively.
The solution to Eq. (14.87) can be straightforwardly given as:

λνk(t) = (λνk(0)− C2 − C3
)
e−C1 t + C2e

−i ω+ν (k)t + C3e
i ω−ν (k)t (14.92)

where:

C1 = υνk

ϑνk
, (14.93)

C2 =
√
�/2ςνk[

υνk − i ω+ν(k)ϑνk
]aνk (0) (14.94)

and:

C3 =
√
�/2ξνk[

υνk + i ω−ν(k)ϑνk
]
(
bνk (0)

)†
. (14.95)

In most optical waveguides, especially those used for SCG, C1 is a relatively
large positive number as C1 ∝ ∣

∣η′′
ν/η

′′′
ν

∣
∣, so that the first term in the right side of

Eq. (14.92) can be neglected compared with other terms. In addition, the third term
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should be dropped as it corresponds to the anomalous modes (non-physical modes)
defined by the operators bνk and

(
bνk

)†. The reader is referred to (Drummond, 1990)
for detailed discussion on the anomalous modes. Therefore, Eq. (14.92) will be:

λνk(t) ≈
√
�/2ςνk[

υνk − i ω+ν(k)ϑνk
]aνk (0)e

−i ω+ν (k)t . (14.96)

Making use of the scalar field,�ν(t, z), defined by Eq. (14.72), one can rewrite it
for the mode ν in terms of the annihilation operator aνk :

(14.97a)

where:

(14.97b)

It is assumed a single transverse mode ν; thus, the displacement vector is:

D (x, t) = Dν (x, t)+ D−ν (x, t) . (14.98)

Making use of Eqs. (14.97a) and (14.62), one has:

(14.99)

where:
Zνk = ik

[
-ρ̂f ν (ρ)+ gν (ρ) ϕ̂

]+ αν (ρ) ẑ. (14.100)

The formalism introduced in this section can describe the propagation of quan-
tum fields in nonlinear dispersive optical fibers. Assuming the field wavenumber and
frequency to be near k0 and ω = ω(k0), respectively, the slowly varying quantum
photon-polariton field is defined as (Drummond & Hillery, 2014; Safaei et al.,
2018):

ψ (z, t) = 1√
L

∑

k

ei(k−k0)zak(t) (14.101)

to describe the field propagation along an optical fiber with nonlinearity η3.
Ignoring the smearing effect for all practical purposes, the commutation relation

for these fields can be expressed as:

[
ψ (z, t) , ψ† (z′, t ′

)] = δ
(
z− z′

)
δ
(
t − t ′

)
, (14.102)
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which is applicable for temporally ultrashort fields. Inverting the relation between
ak and ψ(z, t) yields:

ak(t) = 1√
L

∫
ψ (z, t) e−i(k−k0)zdz. (14.103)

One can insert Eq. (14.103) into Eq. (14.84) to express the Hamiltonian in terms of
ψ(z, t). Here, the first term of Eq. (14.84), i.e., normal solution, is taken into account.
Thus, the linear part of Hamiltonian can be written as:

HL = �

∑

k

ω(k)a†
k
ak = �

L

∫
dz

∫
dz′
⎛

⎝
∑

k

ω(k)ei(k−k0)
(
z−z′)

⎞

⎠ψ† (z, t) ψ
(
z′, t
)
. (14.104)

Expanding ω(k) near k0 as:

ω(k) = ω (k0)+ (k − k0) ω
′ + 1

2
(k − k0)

2ω′′ + 1

6
(k − k0)

3ω′′′ + . . . ,

(14.105)

where ω′ (= dω/dk|k=k0

)
, ω′′ (= d2ω/dk2|k=k0

)
, and ω′′′ (= d3ω/dk3|k=k0

)
are

the group velocity and the first and second derivatives of group velocity, respec-
tively. The expression in the parenthesis in Eq. (14.104) becomes:

1

L

∑

k

ω(k)ei(k−k0)(z−z′) ∼= 1

L

∑

k

[

ω (k0)+ ω′ (k − k0)+ 1

2
ω′′(k − k0)

2

+1

6
ω′′′(k − k0)

3
]

ei(k−k0)(z−z′)

(14.106)
where the operator form is written as:

1
L

∑

k

ω(k)ei(k−k0)(z−z′) ∼= 1
L

∑

k

[
ω (k0)+ i

2ω
′ (∂z′ − ∂z

)+ 1
2ω

′′∂z∂z′ + i
12ω

′′′
(
∂z
(
∂z′
)2 − (∂z)

2∂z′
)]
ei(k−k0)(z−z′)

∼=
[
ω (k0)+ i

2ω
′ (∂z′ − ∂z

)+ 1
2ω

′′∂z∂z′ + i
12ω

′′′
(
∂z
(
∂z′
)2 − (∂z)

2∂z′
)]
δ
(
z− z′

)
.

(14.107)

The linear part of Hamiltonian is, therefore, given by:

HL = �

∫ [

ω (k0) ψ
†ψ + i

2
ω′
(

ψ† ∂ψ

∂z
− ψ̂

∂ψ†

∂z

)

+ 1

2
ω′′ ∂ψ†

∂z

∂ψ

∂z

+ i

12
ω′′′
(
∂ψ†

∂z

(
∂2ψ

∂z2

)

−
(
∂2ψ†

∂z2

)
∂ψ

∂z

)]

dz,

(14.108)

where the argument of the photon-polariton field has been eliminated for simplicity.
The nonlinear part of the Hamiltonian is given by:
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HNL = 1

4

∫
d3x η3 · (D (t, x))4, (14.109)

for:

(14.110)

Therefore, the nonlinear part of the Hamiltonian can be approximated as:

(14.111)

Hence, keeping the slowly varying terms, one obtains:

(14.112)

where:

θν =
∫ r0

0

∫ 2π

0

[
1

3

(
αναν − k2

0�ν⊥ · �ν⊥
) (
α−να−ν − k2

0�−ν
⊥ · �−ν

⊥
)

+ 2

3

(
k2

0�ν⊥ · �−ν
⊥ + ανα−ν)2

]

ρdρdϕ.

(14.113)

There are terms proportional to ψ†ψ , ψ†, and/or ψ in the nonlinear part of the
Hamiltonian (Eq. (14.112)), which is usually called simple terms as they could be
interpreted similar to the term of the linear Hamiltonian (Eq. (14.108)). Therefore,
they do not show any nonlinear effect.

The total Hamiltonian and field operator is expressed in the interaction picture
as:

HI = e−iht/�Heiht/� (14.114)

and:

ψI = e−iht/�ψeiht/� (14.115)

where h is defined as:

h = �

∫
dz ω (k0) ψ

†ψ. (14.116)

A new frame is defined that moves at the group velocity (Z = z − ω
′
t).

One obtains the following equation of motion in this frame from the interaction
Hamiltonian:

i
∂ψI

∂t
= −ω

′′

2

∂2ψI

∂Z2 − i
ω′′′

6

∂3ψI

∂Z3 + gψ
†
I ψ

2
I , (14.117)
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where
4

2 4 2
3 kg (3 k 4h q)( ) 1 ( )v v . Equation (14.117) is an operator form of the

nonlinear Schrödinger equation taking the third-order dispersion term into account.
There is another operator equation, the equation of motion for ψ†

I , which is coupled

to Eq. (14.117) by transforming ψI → ψ
†
I and i → − i.

Depending on the optical fiber characteristics, the signs of g (nonlinear param-
eter) and ω′′ (group velocity dispersion) can be positive or negative. Taking into
account their signs, one can form the quantum solitons and study their interactions
in the presence of the third-order dispersion term. Note that the terms proportional
to (ψ†)2ψ2 in Eq. (14.111) lead to the last term in Eq. (14.117). The terms of the
orderψ†ψ in Eq. (14.111), which have been omitted, would lead to a linear term and
have no nonlinear effect on the operator form of the nonlinear Schrödinger equation,
Eq. (14.117) or equivalently Eq. (14.118). These terms just change ω(k0) in the first
term of Eq. (14.108), so the nonlinear term of Equations (14.117) and (14.118) is
not affected by them.

To solve the coupled operator equation, Eq. (14.117) is written as common
partial differential equations. The positive-P representation method is followed
here (Drummond & Gardiner, 1980; Drummond & Hillery, 2014). The Glauber-
Sudarshan P representation (Glauber, 1963; Sudarshan, 1963) is not used here, as it
leads to a Fokker-Planck equation with non-positive definite diffusion coefficients.
By using the positive-P representation in the master equation, one can arrive
at the coupled stochastic partial differential equation (Carter, 1995; Drummond
& Gardiner, 1980; Drummond & Hillery, 2014; Drummond & Corney, 2001;
Drummond & Carter, 1987):

∂

∂z
&I (T , z) =

(

− iω′′
2ω′3

∂2

∂T 2
+ ω′′′

6ω′4
∂3

∂T 3

)

&I (T , z)− i
(
g/ω′) &I+ (T , z) &I 2 (T , z)

+ (ig/ω′)1/2ζ (T , z)&I (T , z) (14.118a)

and:

∂

∂z
&I

+ (T , z) =
(
iω′′
2ω′3

∂2

∂T 2
+ ω′′′

6ω′4
∂3

∂T 3

)

&I
+ (T , z)+ i

(
g/ω′) &I (T , z) &I+2

(T , z)

+ (−ig/ω′)1/2ζ+ (T , z)&I+ (T , z) (14.118b)

for the functions &I(T, z) and &I
+(T, z), respectively, which are related to the

creation and annihilation operators. The fields ζ (T, z) and ζ+(T, z) are Gaussian
stochastic fields with correlation relations:

〈
ζ (T1, z1) ζ

(
T2, z2

)〉
= δ (z1 − z2) δ (T1 − T2) , (14.119)

〈
ζ+ (T1, z1) ζ

+(T2, z2

)〉
= δ (z1 − z2) δ (T1 − T2) , (14.120)
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and:
〈
ζ (T1, z1) ζ

+(T2, z2

)〉
= 0. (14.121)

The origin of stochastic partial differential equations (14.118) for the functions
&I(T, z) and&+

I (T , z) comes from the positive-P representation. Making use of the
positive-P representation, the Fokker-Planck equation with positive semi-definite
diffusion coefficients amounts to an equivalent Ito stochastic differential equation,
Equations (14.118) (Carter, 1995; Drummond & Corney, 2001; Drummond &
Carter, 1987, Koleden & Platen, 1992; Sauer, 2013). &I(T, z) and &+

I (T , z) are
not complex conjugates of one another except in the mean case (Koleden & Platen,
1992; Sauer, 2013).

Equations (14.118) govern the quantum treatment of pulse propagation in an
optical fiber in the presence of the third-order dispersion term (β3 = ω′′′/ω′4).
To increase the bit rate in optical communication systems, a light source (a
laser) is usually employed close to the zero dispersion wavelength (ZDW) of

optical fibers,

(

β2 = ω′′/ω′3
∣
∣
∣
ω0

= 0 i.e. ω′′ = 0

)

, where β3 plays an important

role (Agrawal, 2012). Thus, Equations (14.118) provide the quantum treatment of
pulse propagation in this situation.

The quantum noise near the propagating solitons is simulated using the linearized
fluctuation equation (Drummond & Carter, 1987) for the propagating soliton as:

∂

∂z
δ& (T , z) =

(

− iω′′
2ω′3

∂2

∂T 2
+ ω′′′

6ω′4
∂3

∂T 3
+ 4igψ2

0 (T )

)

δ& (T , z)

+ 2igψ2
0 (T )δ&

+ (T , z)+ (ig)1/2ψ0(T )ζ (T , z) (14.122)

where &(T, z) = ψ0(T, z) + δ&(T, z) and ψ0(T, z) = 〈&(T, z)〉. Recall that Eq.
(14.122) together with the equation obtained by using the transformation & → &+,
i → − i, and ζ → ζ+ forms a set of coupled equations.

Here, ψ0 is the classical solution to the generalized first-order approxima-
tion of the nonlinear Schrödinger equation. The function ψ0 corresponds to a
classical coherent input state at z = 0, which has a form of ψ0 (T , z = 0) =√
P0 sech (T /T0), where P0 and T0 are, respectively, the peak power and width of

the input pulse launched into an optical fiber.
To find the solutions to Eqs. 14.118 and 14.122, numerical algorithms can be

applied to solve these stochastic partial differential equations (Sauer, 2013; Dennis
et al., 2013). One could assume that the input solitonic pulse ψ0(T, 0) is launched
into an optical fiber in which the dispersion length

(
LD = T 2

0 / |β2|
)
, third-order

dispersion length ( L′
D = T 3

0 / |β3|), and nonlinear length (LNL = ω
′
/gP0) are

approximately equal, LD ≈ L′
D ≈ LNL. Figure 14.1 shows the evolution of the

intensity of the travelling solitonic pulse along the optical fiber. The soliton intensity
evolution and the soliton amplitude fluctuations at the center are shown in Figs.
14.2 and 14.3, respectively. The central intensity evolution of the propagated soliton
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Fig. 14.1 The normalized intensity of the propagated soliton along the optical fiber (Noted that
normalized time, τ, is τ = T/T0)

Fig. 14.2 The intensity evolution of the propagated soliton at center (τ = 0) versus the length of
the optical fiber

has been obtained from Eq. 14.118, while the soliton’s amplitude fluctuation at its
central peak is deduced from Eq. 14.122. Due to the present simulation results, it
is understood that the propagated soliton suffers from quantum noise, and there are
fluctuations in the vicinity of the soliton. These fluctuations should be taken into
consideration in the future quantum technologies (Vinh et al., 2021).
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Fig. 14.3 Soliton amplitude noise at the center (τ = 0) as a function of the optical fiber’s length

14.4 Quantum Model for Supercontinuum Generation
Process

In Sect. 14.2, the propagation of electromagnetic field was quantized when the third-
order dispersion term was present. The method discussed in Sect. 14.2 was applied
to an optical fiber, when the electromagnetic field was travelling along it in Sect.
14.3. The method introduced could be applied to higher dispersive terms if needed.
The process by which a high-intensity light pulse is launched into a dispersive
dielectric; the extreme frequency broadening is observed due to dispersive and
nonlinear effects, known as supercontinuum generation. Both experimental and
theoretical studies performed by several groups indicate the formation of the
supercontinuum light in a dielectric, e.g., optical fiber. A comprehensive study of
this process was published by Dudley et al. (2006) based on classical models. In
this section, the quantum treatment of SCG by pulse propagation in the presence of
the higher-order dispersion terms, retarded response of the medium, and the third-
order susceptibility is focused (Safaei Bezgabadi & Bolorizadeh, 2022).

Generation of noise in a dielectric used to generate supercontinuum light source
is the main cause of instability in it and, therefore, reducing its applicability in indus-
try. Depending on the parameters of the input pulse, the generated supercontinuum
noise could cause up to 50% fluctuation in the temporal intensity profile of output
pulse (Corwin et al., 2003; Dudley & Genty, 2013; Gonzalo et al., 2018; Wetzel et
al., 2012). The fundamental part of this noise has its root in quantum noise, which is
inherent in the nonlinear process leading to the generated continuum light. Corwin
and coworkers measured the noise and provided a model describing it (Corwin et



14 Quantum Mechanical Theory and Treatment of NLS Equations for. . . 541

al., 2003). Their model, which is called a semi-classical model, adds a noise term
into the generalized nonlinear Schrödinger equation (GNLSE). The term added to
GNLSE, by Corwin and coworkers (2003), is a quantum noise, which has been
phenomenologically a sound term to be added to the classical GNLSE. Real-time
measurements of optical noise showed long-tailed statistics in the spectral intensity
of a generated supercontinuum light (Wetzel et al., 2012; Närhi et al., 2016).
Gonzalo and coworkers (2018) were able to reduce noise fluctuation in all-normal
dispersion supercontinuum sources. However, the instability of the supercontinuum
light due to the noise is still an open question.

It is intended to devise a quantum mechanical model to treat the SCG in a dielec-
tric using the positive-P representation (Safaei Bezgabadi & Bolorizadeh, 2022).
This model describes the soliton self-frequency shift, nonetheless, and the noise
associated with solitons in a dielectric. The quantum treatment of supercontinuum
is essential for the development of quantum communication, quantum computers,
and spectroscopy. The higher-order solitons split into lower order and fundamental
ones due to the soliton interactions, the third order dispersion effect, the Raman
effect, and the self-steepening phenomenon. A powerful quantum theory is needed
to explain all these effects.

The usual model for a centrosymmetric fiber (photonic crystal fiber (PCF)) is
chosen where the first nonlinear term to be included is the third-order nonlinear
susceptibility, which is not instantaneous in all practical applications (for details, see
Ref. (Alfano, 2016; Agrawal, 2012)). The proper canonical Lagrangian leading to
the correct Hamiltonian and to the Maxwell’s equations as the Hamilton’s equation
of motion was devised earlier. The Hamiltonian is:

H =
∑

k

�ω(k)a†
kak − η3

4

∫ (

D2 (t, x)
∫ t

−∞
R
(
t ′
)
D2 (t − t ′, x

)
dt ′
)

d3x

(14.123)

where R(t), ak, D, and η3 are, respectively, the response function of the medium, the
mode operators, the electric displacement operator, and the third-order nonlinear
response of the medium. The first term in Eq. (14.123) was derived earlier, by
the approach presented in the previous sections, which included the higher-order
dispersion terms. The interaction picture is assumed, Eq. (14.114), and the spatial
dependence is discretized making use of the expansion (14.105) near k0.

Due to the discrete nature of the longitudinal mode spacing (�k = 2π /L) in an
optical fiber of length L, the local operators are defined as (Drummond & Carter,
1987):

α* �
(
2N ′ + 1

)−1/2∑n=N ′
n=−N ′an exp

(
2πni*/

(
2N ′ + 1

))
, (14.124)

where spatial z-dependence, (z ≡ *�z), is discrete and the steps of�z = L/(2N’ + 1)
are arranged along the optical fiber from * = − N’ to +N’. The local operators
satisfy the harmonic oscillator commutation relations (Drummond & Carter, 1987).
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As discussed earlier, the quantum mechanical treatment of the SCG process is
done making use of the positive-P representation, the method developed by Drum-
mond (Drummond & Hillery, 2014; Drummond & Carter, 1987). The definition
(Drummond & Hillery, 2014; Drummond & Carter, 1987):

|θ(t)〉 〈θ(t)| =
∫
P
(
t;α,α+) |α〉 〈(α+)∗∣∣

〈(
α+)∗|α〉 d

2αd2α† (14.125)

is the starting point where |α〉 and α* are the coherent state of total field and
the eigenvalue for the local operator α*, respectively. In addition, �θ (t)〉 is the
total wave function for the interaction Hamiltonian, while P(t; α, α+) develops in
time according to a Fokker-Planck equation with positive semi-definite diffusion
coefficient. The Fokker-Planck equation amounts to an equivalent equation of
motion for appropriate stochastic variables α(t) and α+(t):

∂α*
∂t

= i

(

χαα*

[∫ t
−∞R

(
t ′
)
α*

+ (t − t ′
)
α*
(
t − t ′

)
dt ′
]

+χαα*+α*
[∫ t

−∞R
(
t ′
)
α*
(
t − t ′

)
dt ′
]

−∑
*′
ω**′α*′

)

+ (2iχα)1/2α* ξ*(t)

(14.126a)

and:

∂α*
+

∂t
= −i

(

χαα*
+ [∫ t−∞R

(
t ′
)
α*

+ (t − t ′
)
α*
(
t − t ′

)
dt ′
]

+χαα*+α*
[∫ t

−∞R
(
t ′
)
α*

+ (t − t ′
)
dt ′
]

−∑
*′
ω**′α*′+

)

+ (−2iχα)1/2α*
+ ξ*

+(t)

(14.126b)

where:

ω**′ =�ωδ**′ +
∑

n

(
2N ′ + 1

)−1
[

(n�k)ω′ + 1

2
(n�k)2ω′′ + 1

6
(n�k)3ω′′′

]

× exp

[
2πni

2N ′ + 1

(
*− *′

)
]

(14.127)

and:

χα = 3ε0�
(
ω′k0

)2

8ε2�V
χ(3). (14.128)

Here, ξ*(t) and ξ+
* (t) are real Gaussian stochastic functions. The correlation rela-

tions
〈
ξ* (t1) ξ

+
*′ (t2)

〉 = 0 and 〈ξ* (t1) ξ*′ (t2)〉 = 〈
ξ+
* (t1) ξ

+
*′ (t2)

〉 = δ**′δ (t1 − t2)

are valid for the functions ξ*(t) and ξ+
* (t). Note, firstly that the rotating wave
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approximation is used to calculate the integral term of the Hamiltonian (14.123)
and secondly α* and α+

* are not exactly complex conjugate to each other as the
positive-P representation is used. The stochastic field, �, is defined as (Drummond
& Carter, 1987):

�(z) ∼= lim
�z→0

(α*)

(
ω′

�z

)1/2

(14.129)

in the limit�z → 0, at the location z = *�z. As the continuum representation is now
used, the discrete stochastic terms are replaced by Gaussian stochastic fields ξ (T, z)
and ξ+(T, z), with correlation relations similar to Eq. (14.119) to Eq. (14.121).

In addition to the quantum noise, one may include additional fluctuations due to
variations in the refractive index, which would result in a set of correlation relation
different from those of Eq. (14.119) to Eq. (14.121). However, these fluctuations are
ignored for the ideal photonic system or the photonic crystal fibers. Making use of
the transformation (T = t − z/ω

′
), the problem is solved in a new frame moving

at a velocity equal to the group velocity. Now, a wavenumber dependent nonlinear
parameter, χ�, is defined which is similar to χα . For all practical cases, it can be
expanded as:

χ� = χ� (k0)+ (k − k0) χ
′
� + · · · , (14.130)

where χ ′
� = dχ�/dk|k=k0

.
Finally, the full stochastic equation governing the SCG for the field �(T,z) is

obtained as:

∂

∂z
� (T , z) =

(

− iω′′

2ω′3
∂2

∂T 2
+ ω′′′

6ω′4
∂3

∂T 3
+ · · ·

)

�(T , z)+ i

(

χ� + iχ ′
�

∂

∂T

)

& (T , z)

+ (iχ�)
1/2ξ (T , z)� (T , z) , (14.131)

where:

& (T , z) =�(T , z)
[∫ T

−∞
R
(
T ′) �+(T − T ′, z

)
�
(
T − T ′, z

)
dT ′
]

+�+ (T , z)� (T , z)
[∫ T

−∞
R
(
T ′) �

(
T − T ′, z

)
dT ′
]

. (14.132)

There is also a coupled equation to Eq. (14.131) by transforming � → �+,
i → − i and ξ → ξ

+
, which in the mean case it is the complex conjugate of Eq.

(14.131). Equation (14.131) can be regarded as the fundamental result of the present
work. Equation (14.131) and its coupled equation for�+(T, z) form a set of coupled
generalized nonlinear Schrödinger equations for the quantum treatment of the SCG
in fibers (e.g., PCF). Here, the stochastic terms introduce fluctuations originated
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from quantum noise. In addition to the coupling form of the two equations, the
main difference between the coupled quantum-stochastic equations and its classical
form is the term proportional to

∫ T
−∞R

(
T ′)�

(
T − T ′, z

)
dT ′ in Eq. (14.131)

which has no counterpart in classical form. This additional term is brought about
by commutation relations, which holds for creation and annihilation operators.
Indeed, this term appears when one obtains the Fokker-Planck equation (from
master equation) by using Hamiltonian (14.123). Also, note that the quantity χ�
introduced here for the quantum case is half its value for the classical form.

In the instantaneous medium response limit, R(T) is replaced by delta function
where the quantity defined by Eq. (14.132) takes the form:

& (T , z) = 2�+ (T , z) �2 (T , z) . (14.133)

Therefore, the coupled quantum-stochastic equation leads to the well-known
coupled stochastic nonlinear Schrödinger equation (Drummond & Hillery, 2014;
Drummond & Carter, 1987) which resulted from the Fokker-Planck equation
(Drummond & Hillery, 2014) or the results of the previous section (Eq. 14.118).
Hence, Eq. (14.131) gives a rigorous basis for earlier results (Drummond & Carter,
1987) for instantaneous medium response. Also, if one does not apply the nature
of the commutation relation, the resulted equation of motion (master equation)
from Hamiltonian (14.123) leads to the classical generalized nonlinear Schrödinger
equation (Alfano, 2016; Dudley et al., 2006; Dudley & Taylor, 2010). There are
self-phase modulation and cross-phase modulation, which are the side effect of Kerr
effect and four wave mixing due to nonzero value for the χ�. Also, the stimulated
Raman scattering and self-steepening are discussed assuming the retarded response
function, R(T), and the dispersive nature ofχ�.

The coupled quantum-stochastic equations will have soliton solutions, called
quantum solitons. There are many works in the literature to study quantum solitons
(Drummond & Hillery, 2014; Drummond et al., 1993; Yao, 1997; Vinh et al.,
2021), but these solitons have not studied in SCG process, and in these works,
the higher-order dispersion coefficients were not included. If these solitons are
not a fundamental one, they split into the lower order and fundamental ones after
propagating inside the optical fiber, which is known as soliton fission. In some
applications of the supercontinuum generation (e.g., quantitative experiments), it
is necessary to squeeze the quantum noise in the vicinity of these solitons. The
linearized fluctuation equation to study quantum noise will be:

∂
∂z
δ� (T , z) =

(
− iω"

2ω′3
∂2

∂T 2 + ω"′

6ω′4
∂3

∂T 3

)
δ� (T , z)+ iχ�

(∫ T
−∞R

(
T ′)φ2

0

(
T − T ′) dT ′

)
δ� (T , z)

+ iχ�φ0(T )
(∫ T

−∞R
(
T ′)φ0

(
T − T ′) dT ′

)
δ� (T , z)+ iχ�φ

2
0 (T )

∫ T
−∞R

(
T ′) δ�

(
T − T ′, z

)
dT ′

+ iχ�φ0(T )
∫ T

−∞R
(
T ′)φ0

(
T − T ′) δ�

(
T − T ′, z

)
dT ′ + iχ�φ0(T )δ�

+ (T , z)
∫ T

−∞R
(
T ′)

φ0
(
T − T ′) dT ′ + iχ�φ0(T )

∫ T
−∞R

(
T ′)φ0

(
T − T ′) δ�+ (T − T ′, z

)
dT ′ + (iχ�)

1/2φ0(T )ξ (T , z) .

(14.134)
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where φ0(T, z) = 〈�(T, z)〉 and �(T, z) = φ0(T, z) + δ�(T, z). Equation (14.134)
together with the equation obtained by transforming � → �+, i → − i, and ξ →
ξ

+
forms a new set of coupled equations to be called the coupled quantum-stochastic

noise equations.
Here, φ0 can be considered as a mean case solution to the coupled gener-

alized nonlinear Schrödinger equations for the quantum treatment of SCG (Eq.
14.131). The function φ0 at z = 0 corresponds to a classical coherent input state,
which, in resemblance to the classical case, can be treated as φ0 (T , z = 0) =√
P0 sech (T /T0), where P0 and T0 are, respectively, peak power and width of the

input pulse which is launched into the photonic crystal fiber.
In summary, a quantum description of SCG of highly nonlinear pulse propagation

in an optical fiber is established. This theory leads to a coupled quantum-stochastic
generalized nonlinear Schrödinger equation. In addition to the coupling term, the
second term in Eq. (14.132) is not present in the classical generalized nonlinear
Schrödinger equation for the description of SCG. The reason behind this difference
is the commutation relation that holds for the stochastic fields of the master equation,
leading to the Fokker-Planck equation.

Making use of a stochastic field, the quantum noise source was included in
the governing equation. Subsequently, the coupled linearized fluctuation equation
is obtained by implementing the proper definition for squeezed quantum solitons
(Drummond & Carter, 1987). One argues that the resultant squeezing for the
normal dispersion regime is different from the resultant squeezing for the anomalous
dispersion regime. In order to arrive at this prediction, it is necessary to solve the
coupled linearized fluctuation equation numerically. The equations, obtained here,
could be used to study non-optical systems involving the retarded response, when
the Hamiltonian (14.123) holds.

Applying the fourth-order Runge-Kutta algorithm and employing the quantum
formalism, Eq. (14.131), the supercontinuum generation in photonic crystal fibers
under the mean case can be studied where � and �+ are complex conjugates to
each other. Note that the expectation value of the last term in Eq. (14.131) is zero
under mean case (Drummond & Hillery, 2014; Drummond & Carter, 1987). A PCF
and incoming light parameters assumed by Dudley et al. (2006) were used in the
experimental results of Corwin and coworkers (2003) which is compared with the
results of the present quantum mechanical model as shown in Fig. 14.4. A pulse
of a 0.9 nJ energy at ultrashort width was used to measure the supercontinuum
spectrum between 400 and 1400 nm as shown in Fig. 14.4 (Corwin et al., 2003).
The present quantum model for the generation of SCG is plotted in Fig. 14.4 for
comparison with the experimental results, where the two agree. The peak of solitons
in the experimental results agrees with the quantum mechanical model. The results
of the quantum and classical models for the retarded nonlinear response condition
are shown in Fig. 14.5. The input pulse of 10 kW peak power and 28.4 fs width at
835 nm was chosen in this work. Due to the additional term in Eq. (14.131), which
is absent in the classical GNLSE, there are differences between the two results for
the SCG. Note that the higher dispersion terms and retarded response of the medium
were not included in the work reported in 2016 (Safaei Bezgabadi & Bolorizadeh,
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Fig. 14.4 A comparison between the present simulation of SCG (the blue line) in the fiber and the
experimental results of Corwin et al. (2003) (the red line)

Fig. 14.5 Simulation results for the quantum mechanical (a and b) and classical treatment (c and
d) of SCG along the first 15 cm of a PCF fiber. Photons generated at wavelengths from 400 nm
(a) to 1450 nm in a quantum treatment and (c) to 1350 nm in a classical treatment of SCG. Time
development of the input pulse is shown in (b) and (d) with respect to the delayed pulse in a
quantum and classical models, respectively

2016), and therefore the results do not show the soliton self-frequency shift and
soliton fission present in this work as shown in Fig. 14.5. The resulting simulation
of the SCG is shown by Fig. 14.5a, b for the quantum model, while similar data
is provided in Fig. 14.5c, d for the classical model. The difference between the two
results, classical and quantum treatments, arises due to the presence of the additional
term. One can compare the spectral broadening of a pulse inside the optical fiber
by the two methods as shown in Fig. 14.6. Comparing the results of the classical
treatment of the SCG in a specific PCF shown by Figs. 14.5c, d and 14.6b and the
quantum results presented in Figs. 14.5a, b and 14.6a show that not only the spectral
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Fig. 14.6 The generated wavelengths at the output of a 15 cm PCF in (a) quantum mechanical
and (b) classical calculations for the input pulse of 10 kW power and 28.4 fs pulse width at 835nm

broadening increases in the quantum treatment but also that the generated frequency
combs are closer and richer. In Fig. 14.5b, the quantum mechanical model predicts
longer delay for the formed soliton as compared with the classical result of Fig.
14.5d. However, the two models predict the soliton fission to occur at about the
same travel distance of the pulse along the optical fiber. Figure 14.6a indicates that
the peak intensity of soliton pulse calculated by the present quantum model is at
1300 nm which fits well with the experimental results of Corwin and coworkers
(2003) shown in Fig. 14.4, while the classical result, Fig. 14.6b, shows that the
peak of soliton pulse is at 1220 nm. As shown in Fig. 14.6b, the simulation of the
supercontinuum spectrum in the classical model reaches the background level at
wavelengths 1400 nm, while both experimental data and quantum results extend
beyond this wavelength.

As described earlier, the additional term in Eq. (14.132) originated from the
non-commutative nature of the creation and the annihilation operators defined in
obtaining the Fokker-Planck equation. This term changes the evolution of the optical
pulse inside an optical fiber, which causes the difference in the simulation results
between the two treatments. In reality, this term alters how the nonlinear part would
affect the broadening of the pulse and generation of new frequencies. As an example,
the soliton evolves according to the interplay between the third-order dispersion
term, the Raman scattering term, and the self-steepening term. Thus, the evolution
of solitons is predicted differently in the quantum treatment as compared with the
classical model.

In an experimental work, the resolution of the spectrometer should be less than
1 nm, in order to be able to show deeper details of the SCG. We therefore suggest
a more detailed and precise experimental work needed in this field to be able
to understand the deeper physics behind the nonlinear effects in dielectrics and,
especially, fibers. This is essential in order to understand and to reduce the noise
and, most important, the quantum noise.

In the following, the quantum mechanical treatment results are compared with
the classical ones for different peak powers and pulse widths. Figure 14.7 indicates
that when the peak power is low, such as 1 kW, and the pulse width is large, 10
ps, the two models lead, approximately, to similar results. Note that the quantum
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Fig. 14.7 The propagation of light pulses at 1 kW, low power, and large width of 1 ps and 10 ps are
compared for both classical and quantum mechanical models. Inset shows details of the spectrum
in a region of the spectrum

mechanical description of wave and particles is the same and leads to the wave
packet descriptions of both. When the width of a light pulse is small, it represents
a small particle which makes the quantum treatment essential. It is interesting
that the two results, classical and quantum models, deviate as the width of input
pulse changes from 10 ps to 1 ps. The classical results are closer to the quantum
mechanical model at the pulse width of 10 ps as compared with the 1 ps ones.
This study shows how important is the quantum nature of pulse for short width. In
practice, the nonlinear terms do not have significant contributions on the generation
of pulses of new wavelengths at such peak powers and pulse widths. However, the
quantum mechanical treatment of the pulse propagation along dielectrics or optical
fibers is still indispensable, because this approach is applicable to study quantum
solitons and to reduce the fluctuations in the vicinity of these solitons. From a
quantum mechanical point of view, a soliton is considered as a collection of particles
traveling together in a medium.

14.5 Conclusion

In summary, a higher-order Lagrangian has been introduced for the field propagation
in an inhomogeneous, dispersive, and anisotropic dielectric in Sect. 14.2, specifi-
cally an optical fiber. By establishing a quantum theory, the propagating fields are
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quantized by imposing the Dirac commutation relations. The Hamiltonian is then
written in terms of proper creation and annihilation operators. In Sect. 14.3, the
quantum theory is applied to study pulse propagation inside a conventional optical
fiber where the coupled stochastic NLSE is resulted as the governing equation. By
using this coupled stochastic NLSE, propagation of quantum soliton in the presence
of higher-order dispersion can be described, and the quantum noise in the vicinity
of the soliton can be reduced.

As it is essential to study SCG quantum mechanically, this approach is applied
for ultrashort pulse propagation along a nonlinear media when the retarded response
function of the medium should be taken into account. Here, the quantum theory for
the SCG process is presented, and it has included the terms with the significant
contributions involved in the supercontinuum generation a nonlinear media, specif-
ically the PCFs. Besides the obtained coupled stochastic equation for the quantum
treatment of the SCG, the source of significant difference is the additional term
which has no classical resemblance and roots in the non-commutative nature of
the creation and the annihilation operators defined in obtaining the Fokker-Planck
equation. The result of the quantum treatment, as compared with the experimental
results, indicates conformity between theory and experiment (Corwin et al., 2003).
The generated supercontinuum spectrums for the quantum mechanical and the
classical treatments are studied for different peak powers and widths of the input
pulse. It is concluded that the pulses of fs width behave as particles and described
best by quantum models. In conclusion, the quantum theoretical treatments of light
pulses passing through a nonlinear media describes the supercontinuum generation
process closer to the experimental data as compared with classical models.

There are different types of noise involved in supercontinuum light, or generally
in the propagation of electromagnetic waves in a nonlinear media, which are related
to absorption, gain, Raman effects, and the quantum mechanical noise that could be
described by stochastic equations. The noise involved in Raman effects has quantum
origin, and it is present in a vacuum state (Corwin et al., 2003) due to spontaneous
Raman effects. A semi-classical model of noise, due to the propagation of light
pulses in fibers devised by Corwin and coworkers (2003), is based on adding this
kind of noise to the GNLSE. However, the second-order nonlinear term was not
included which is the source of the Raman noise. Nonetheless, this noise exists and
should be included in the quantum theory of the field propagation in dielectric media
(Corwin et al., 2003). In the present work, in order to reduce the fluctuations near
solitons, one has to make use of Eq. (14.134) instead of Eq. (14.131), a process that
is referred to as linearization (Safaei et al., 2018). However, it should be noted that
the linearization is handled for squeezed photons, and, therefore, Eq. (14.134) is
not valid for long-distance travel of light pulses even for an instantaneous nonlinear
response. It is important to add the quantum noise involved in Raman effects to
Eq. (14.131), to correctly reduce the quantum noises in the vicinity of the solitons,
which were formed during the SCG process. New experimental work based on real-
time measurement, similar to those of Närhi and coworkers (2016) and Wetzel and
coworkers (2012) at 1550 nm pulses, is needed to study the SCG and all noises
involved. Detailed understanding of the physics of ultrashort light pulses needs more
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experimental works and their comparison with the present quantum theory of pulse
propagation, specifically in fiber applications. Nonetheless, the medium response
function and/or the parameters involved in it (such as Raman parameters and Raman
delayed factor) could be different when a light pulse should be modeled quantum
mechanically.

Appendix

Derivation of Eqs. (14.9) from (14.8) in this Chapter
Starting with the definition of displacement vector and its relation with the electric
field as:

D (t, x) = ε (ω, x)
...E (t, x) , (A.1)

one can rewrite it as:

E (t, x) = η (ω, x)
...D (t, x) , (A.2)

where η−1(ω, x) = ε(ω, x). Therefore, Eq. (14.8) is rewritten as:

HL =
∫
d3x

[
1

2
D∗ (t, x)

.

.

.η (ω, x) ·
(
∂
(
ωη−1 (ω, x)

)

∂ω

)

∼constant

· η (ω, x)
.
.
.D (t, x)+ 1

2μ
|B (t, x)|2

]

.

(A.3)

One can simplify the frequency dependent factor of the first term in the integrand of
equation (A.3) as:

η (ω, x) ·
(
∂
(
ωη−1 (ω, x)

)

∂ω

)

∼constant

· η (ω, x) = η (ω, x)− ω
∂

∂ω
η (ω, x) ,

(A.4)

which results in Eq. (14.9) in the chapter.

Derivation of Eq. 14.26, Starting from Maxwell’s Equations
Let’s start with the Maxwell equation (14.22a) from the manuscript. Substituting
the dual potential for magnetic field from Equation (14.12), one arrives at:

−μ�̈ (t, x) = ∇ × E (t, x) . (A.5)

Rewriting Equation (14.22b) for the electric field as:
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E (t, x) =
∫ ∞

0
η1 (τ, x)

...D (t − τ, x) dτ

+
∑

n>1

[∫ ∞
0

ηn (τ1, . . . , τn, x)
...D (t − τ1, x)⊗ · · · ⊗ D (t − τn, x) dτ1 . . . dτn

]

.

(A.6)

and substituting into (A.5), one concludes:

−μ�̈ (t, x) =∇ ×
[∫ ∞

0
η1 (τ, x)

.

.

.D (t − τ, x) dτ

]

+ ∇ ×
⎡

⎣
∑

n>1

∫ ∞
0

ηn (τ1, . . . , τn, x)
.
.
.D (t − τ1, x)⊗ · · · ⊗ D (t − τn, x) dτ1 . . . dτn

⎤

⎦

(A.7)

for the equation of motion. Making use of the dual potential for displacement vector,
Eq. (14.12) in the chapter, Eq. (A.7) could be written as:

−μ�̈ (t, x) =∇ ×
∫ ∞

0
η1 (τ, x)

...∇ × � (t − τ, x) dτ

+
∑

n>1

∇ ×
∫ ∞

0
ηn (x)

...∇ × � (t, x)⊗ · · · ⊗ ∇ × � (t, x) dτ1 . . . dτn,

(A.8)

where it is assumed that ηn(x) for n > 1 to be independent of frequency. Substituting
expansion (14.13) for the dual potential into Eq. (A.8), one arrives at:

−μ
ν=N∑
ν=−N

�̈
ν
(t, x) =

ν=N∑
ν=−N

∇ × ∫∞
0 η1 (τ1, x)

...∇ × �ν (t − τ1, x) dτ1

+ ∑

n>1

∑

ν;ν1,··· ,νn
∇ ×

(

ηn (x)
...∇ × �ν1 (t, x)⊗ · · · ⊗ ∇ × �νn (t, x)

)

(A.9a)

where the equation of motion for mode ν is:

−μ�̈
ν
(t, x) = ∇ × ∫∞

0 η1 (τ, x)
...∇ × �ν (t − τ, x) dτ

+ ∑

n>1

∑

ν;ν1,ν2,··· ,νn
∇ ×

(

ηn (x)
...∇ × �ν1 (t, x )⊗ · · · ⊗ ∇ × �νn( t, x)

)

.

(A.9b)
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Note the parameters of summation
∑

ν;ν1,ν2,··· ,νn
stands for summation over all

frequency modes other than mode ν. Additionally, the quantity η1(τ , x) will be
written as ην(τ , x). Inserting eiω

ντ e−iωντ = 1 into the integrand of Eq. (A.9b),
one has:

−μ�̈
ν
(t, x) =∇ ×

{∫ ∞

0
ην (τ, x) e

iωντ
...
[
∇ × e−iωντ�ν (x, t − τ)

]
dτ

+
∑

n>1

∑

ν1,··· ,νn(ν)
ηn (x)

...∇ × �ν1
(
t, x
)⊗ · · · ⊗ ∇ × �νn

(
t, x
)
⎫
⎬

⎭
.

(A.10)

The quantity e−iωντ�ν (x, t − τ) is expanded into a Taylor series in terms of τ up
to the third order as:

e−iωντ�ν (x, t − τ) ≈ �ν (x, t)− τ
[
�̇
ν
(x, t)+ iων�ν

(
x, t
)]

+ 1
2τ

2
[
�̈
ν
(x, t)+ 2iων�̇

ν
(
x, t
)
−(ων)2�ν

(
x, t
)]

+ 1
6τ

3 [· · · ] ,

(A.11)

where slowly varying envelope approximation is applied. Equation (A.11) is
rewritten as:

e−iωντ�ν (x, t − τ) ≈ �ν (x, t)
[
1 − iωντ − 1

2τ
2(ων)2 + · · ·

]

+ �̇
ν
(x, t)

[−τ + iτ 2ων + · · · ]+ �̈
ν
(x, t)

[
1
2τ

2 + · · ·
]

+
...
�
ν
(x, t) [· · · ] .

(A.12)

Now, Eq. (A.12) is replaced into the first term in the relation (A.10), and integrated
over τ, the result will be:

∇ ×
{∫ ∞

0
dτ

[

1 − iωντ − 1

2
τ2(ων

)2 + · · ·
]

eiω
ντην (x, τ )

.

.

.
[∇ × �ν(t)

]
}

= ∇ ×
[

ην (x)
.
.
.
(∇ × �ν (x, t)

)
]

. (A.13a)

Similar arguments could be used for other terms of Eq. (A.11b), where one gets:

∇ ×
{∫ ∞

0
dτ
[
−τ − iτ2ων + · · ·

]
eiω

ντην (x, τ )
.
.
.
[
∇ × �̇

ν
(t)
]
}

= ∇ ×
[

iη′
ν (x)

.

.

.
[
∇ × �̈

ν
(x, t)

]
]

(A.13b)
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and:

∇ ×
{∫ ∞

0
dτ

[
1

2
τ2 + · · ·

]

eiω
ντην (x, τ )

.

.

.
[
∇ × �̇

ν
(t)
]
}

= ∇ ×
[

− 1

2
η′′
ν (x)

.

.

.
[
∇ × �̇

ν
(x, t)

]
]

.

(A.13c)

Therefore, by substituting results (A.13) into Eq. (A.10), the equation of motion will
be:

-μ�̈
ν
(t, x) = ∇ ×

⎧
⎨

⎩
ην (x)

.

.

.
[∇ × �ν (x, t)

]+ iη′
ν (x)

.

.

.
[
∇ × �̇

ν
(x, t)

]
− 1

2 η′′
ν (x)

.

.

.
[
∇ × �̈

ν
(x, t)

]

− i
6 η′′′

ν (x)
.
.
.
[
∇ ×

...
�
ν
(x, t)

]
+ ∑

n>1

∑

ν;ν1,··· ,νn
ηn (x)

.

.

. (∇ × �ν1 (x, t))⊗ · · · ⊗ (∇ × �νn (x, t))

⎫
⎬

⎭
.

(A.14)

Lagrangian Method to Derive Eqs. 14.25 and 14.26
Here, the equation of motion and the Hamiltonian will be derived making use of the
Lagrangian density (14.28), which will, respectively, be equal to Equation (14.26)
and Equation (14.25). When the Lagrangian densityL is a function of �ν , �̇

ν
, and

�̈
ν
, the Euler-Lagrange equation is:

∂L

∂�νj
− ∂t

(
∂L

∂�̇νj

)

− ∂k

⎛

⎝ ∂L

∂
(
∂k�

ν
j

)

⎞

⎠+ ∂t∂k

⎛

⎝ ∂L

∂
(
∂k�̇

ν
j

)

⎞

⎠

− ∂t∂t ∂k

⎛

⎝ ∂L

∂
(
∂k�̈

ν
j

)

⎞

⎠ = 0 (A.15)

where k represents the space coordinates x, y, and z and double k means summation
over it. For an arbitrary vector w, the transverse derivatives with respect to the
components of vector � have the property:

∂k
∂

∂∂k�x
(∇ × �) · w = −(∇ × w)x. (A.16)

It is assumed that in Eq. (A.16), the vector � stands for either �ν or �−ν or their
time derivative. For the present system, a general form of the Lagrangian density is
defined as:
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L = 1
2

ν=N∑
ν=−N

⎡

⎣a
(∇ × �−ν (t, x)

) · ην (x)
.
.
. (∇ × �ν (t, x)) + b

(∇ × �−ν (t, x)
) · η′

ν (x)
.
.
.
(
∇ × �̇

ν
(t, x)

)

+ c
(
∇ × �̇

−ν
(t, x)

)
· η′
ν (x)

.

.

. (∇ × �ν (t, x))+ d
(
∇ × �̇

−ν
(t, x)

)
· η′′
ν (x)

.

.

.
(
∇ × �̇

ν
(t, x)

)

+ e
(
∇ × �̈

−ν
(t, x)

)
· η′′′
ν (x)

.

.

.
(
∇ × �̇

ν
(t, x)

)
+ f

(
∇ × �̇

−ν
(t, x)

)
· η′′′
ν (x)

.

.

.
(
∇ × �̈

ν
(t, x)

)

+ μ
(
�̇

−ν
(t, x) · �̇

ν
(
t, x
))

+ 2g
∑

n>1

∑

ν1,...,νn

1
n+1

(∇ × �−ν (t, x)
) · ηn (x)

.

.

.
[
(∇ × �ν1 (x, t)) · · · (∇ × �νn (x, t))

]

(A.17)

where coefficients a to g are to be determined by comparing the equation of
motion and the Hamiltonian resulting from the Lagrangian density, Equation (A.17),
with Equations 14.26 and 14.25 forming the chapter, respectively. Making use of
Equation (A.16), the terms in Equation (A.15) are written as:

∂L

∂�−ν
j

= 0, (A.18)

−
(
∂L

∂�̇−ν
j

)

= −1

2
μ�̇

ν

j (t, x) , (A.19)

−∂k
(

∂L
∂
(
∂k�

−ν
j

)

)

= 1
2 a

{

∇ ×
[

ην (x)
.
.
. (∇ × �ν (t, x))

]}

j

+ 1
2 b

{

∇ ×
[

η′
ν (x)

.

.

.
(
∇ × �̇

ν
(t, x)

)
]}

j

+
{

g
∑

n>1

∑

ν;ν1,··· ,νn
∇ ×

[

ηn (x)
.
.
. (∇ × �ν1 (x, t)) . . . (∇ × �νn (x, t))

]}

j

,

(A.20)

∂k

(
∂L

∂
(
∂k�̇

−ν
j

)

)

= − 1
2 c

⎧
⎨

⎩
∇ ×

⎡

⎣η′
ν (x)

.

.

. (∇ × �ν (t, x))

⎤

⎦

⎫
⎬

⎭
j

− 1
2 d

⎧
⎨

⎩
∇ ×

⎡

⎣η′′
ν (x)

.

.

.
(
∇ × �̇

ν
(t, x)

)
⎤

⎦

⎫
⎬

⎭
j

− 1
2f

⎧
⎨

⎩
∇ ×

⎡

⎣η′′′
ν (x)

.

.

.
(
∇ × �̈

ν
(t, x)

)
⎤

⎦

⎫
⎬

⎭
j

(A.21)

and:

−∂k
⎛

⎝ ∂L

∂
(
∂k�̈

−ν
j

)

⎞

⎠ = 1

2
e

{

∇ ×
[

η′′′
ν (x)

...
(
∇ × �̇

ν
(t, x)

)]}

j

. (A.22)

Substituting the results (A.18, A.19, A.20, A.21, and A.22) into Euler-Lagrange
equation, Eq. (A.15), each component of the equation of motion will be:
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−μ�̈
ν
j (t, x) = (c − b)

{

∇ ×
[

η′
ν (x)

.

.

.
(
∇ × �̇

ν
(t, x)

)
]}

j

− a

{

∇ ×
[

ην (x)
.
.
.
(∇ × �ν (t, x)

)
]}

j

+ d

{

∇ ×
[

η′′
ν (x)

.

.

.
(
∇ × �̈

ν
(t, x)

)
]}

j

+ (e − f )

{

∇ ×
[

η′′′
ν (x)

.

.

.
(
∇ ×

...
�
ν
(t, x)

)
]}

j

−
{

g
∑

n>1

∑

ν;ν1,··· ,νn
∇ ×

[

ηn (x)
.
.
.
(∇ × �ν1 (x, t)

)
. . .
(∇ × �νn (x, t)

)
]}

j

(A.23)

where the equation of motion will be:

−μ�̈
ν
(t, x) = ∇ ×

⎧
⎨

⎩
−aην (x)

.

.

.
[∇ × �ν (t, x)

]+ (c − b)η′
ν (x)

.

.

.
[
∇ × �̇

ν
(t, x)

]
+ dη′′

ν (x)
.
.
.
[
∇ × �̈

ν
(t, x)

]

+ (e − f )η′′′
ν (x)

.

.

.
[
∇ ×

...
�
ν
(t, x)

]
− g

∑

n>1

∑

ν;ν1,··· ,νn
ηn (x)

.

.

.
[(∇ × �ν1 (t, x)

)⊗ · · · ⊗ (∇ × �νn (t, x)
)]
⎫
⎬

⎭
.

(A.24)

Comparing (A.24) with Eq. (14.26) in the chapter, the relations:

a = −1, e − f = − i

6
, c − b = i, d = −1

2
and g = −1 (A.25)

are found for the parameters a to g in Eq. (A.17).
According to Ostrogradsky’s theorem, when the Lagrangian density is a function

of �ν , �̇
ν
, �̈

ν
, �−ν , �̇

−ν
, and �̈

−ν
, there are four canonical coordinates and

momenta. Therefore, the canonical momenta are obtained by the definitions:

�−ν
j =

(
∂L

∂�̇−ν
j

)

− ∂k

⎛

⎝ ∂L

∂
(
∂k�̇

−ν
j

)

⎞

⎠+ ∂t∂k

⎛

⎝ ∂L

∂
(
∂k�̈

−ν
j

)

⎞

⎠ (A.26)

and:

+−ν
j = −∂k

⎛

⎝ ∂L

∂
(
∂k�̈

−ν
j

)

⎞

⎠ . (A.27)

Substituting relations (A.19), (A.21), and (A.22) into definitions (A.26) and (A.27),
the components of canonical momenta for the canonical coordinates �−ν and �̇

−ν

are found as:

�−ν
j

= 1
2μ�̇

ν
j (t, x)+ 1

2 c

{

∇ ×
[

η′
ν (x)

.

.

.
(∇ × �ν (t, x)

)
]}

j

+ 1
2d

{

∇ ×
[

η′′
ν (x)

.

.

.
(
∇ × �̇

ν
(t, x)

)
]}

j

+ 1
2 (f − e)

{

∇ ×
[

η′′′
ν (x)

.

.

.
(
∇ × �̈

ν
(t, x)

)
]}

j

(A.28)
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and:

+−ν
j = 1

2
e

{

∇ ×
[

η′′′
ν (x)

...
(
∇ × �̇

ν
(t, x)

)]}

j

. (A.29)

Therefore, the canonical momenta associated with the canonical coordinates�−ν ,
�̇

−ν
, �ν , and �̇

ν
are:

�−ν =∑
j

�−ν
j êj = 1

2μ�̇
ν
(t, x)+ 1

2c∇ ×
[

η′
ν (x)

... (∇ × �ν (t, x))

+ 1
2d η′′

ν (x)
...
(
∇ × �̇

ν
(t, x)

)
+ 1

2 (f − e) η′′′
ν (x)

...
(
∇ × �̈

ν
(t, x)

)]

,

(A.30)

�−ν =
∑

j

+−ν
j êj = 1

2
∇ ×

[

eη′′′
ν (x)

...
(
∇ × �̇

ν
(t, x)

)]

, (A.31)

�ν =∑
j

�νj êj = 1
2μ�̇

−ν
(t, x)+ 1

2∇ × [b (∇ × �−ν (t, x)
) · η′

ν (x)

+ d
(
∇ × �̇

−ν
(t, x)

)
· η′′
ν (x)+ (e − f )

(
∇ × �̈

−ν
(t, x)

)
· η′′′
ν (x)

]

(A.32)

and:

�ν =
∑

j

+νj êj = 1

2
∇ ×

[
f
(
∇ × �̇

−ν
(t, x)

)
· η′′′
ν (x)

]
, (A.33)

respectively.
Making use of the definition for Hamiltonian as:

H =
[
ν=N∑

ν=−N

∫
d3x

(
�ν · �̇

ν + �−ν · �̇
−ν + �ν · �̈

ν + �−ν · �̈
−ν)
]

−
∫
d3xL

(A.34)

in the Euler-Lagrange formalism, integrating some of the terms by parts as:
∫
d3x V1 · (∇ × V2) =

∫
d3x V2 · (∇ × V1) (A.35)

with the fact that the fields vanish at infinity, one finds the Hamiltonian to be:
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H = 1
2

ν=N∑
ν=−N

∫
⎧
⎨

⎩

⎡

⎣−a (∇ × �−ν (t, x)) · ην (x)
.
.
.
(∇ × �ν (t, x)

)+ d
(
∇ × �̇

−ν
(t, x)

)
· η′′
ν (x)

.

.

.
(
∇ × �̇

ν
(t, x)

)

+ (e − f )
(
∇ × �̈

−ν
(t, x)

)
· η′′′
ν (x)

.

.

.
(
∇ × �̇

ν
(t, x)

)
+ (f − e)

(
∇ × �̇

−ν
(t, x)

)
· η′′′
ν (x)

.

.

.
(
∇ × �̈

ν
(t, x)

)
⎤

⎦

+μ
(
�̇

−ν
(t, x) · �̇ν

(
t, x
))

− 2g
∑

n>1

∑

ν1,...,νn

1
n+1

(∇ × �ν (t, x)
) · ηn (x)

.

.

.
[(∇ × �ν1 (x, t)

) · · · (∇ × �νn (x, t)
)]
⎫
⎬

⎭
d3x.

.

(A.36)

Again, comparing the parameters in (A.36) with the Hamiltonian (14.25) in the
chapter which are similar to the parameters (A.25) and assuming the symmetry in
the Lagrangian density, the final parameters will be:

a = −1, b = − i

2
, c = i

2
, d = −1

2
, e = − i

12
, f = i

12
, and g = −1.

(A.37)

In summary, the results obtained implementing the Lagrangian density A.17
agree both in dynamics and energy with the results obtained from Maxwell
equations and Poynting’s theorem for slowly varying envelope functions. Thus, the
Lagrangian density (A.17) describes the system in the framework of a local field
theory of a nonlinear dispersive medium. By using the scaler coefficients, A.37,
and separating the Lagrangian density A.17 into the linear and nonlinear parts, Eqs.
14.28 and 14.29 of the chapter are yielded. In addition, Eqs. 14.25, 14.26, 14.31,
and 14.32 are also obtained by implementing the coefficients A.37 into A.36, A.24,
A.32, and A.33, respectively.

Derivation of Eqs. 14.35, 14.36, and 14.37
Starting with Equation 14.34 from the manuscript and the fact that (�ν(t, x))∗

= �−ν(t, x), it is concluded that:

(
λνk,α(t)

)∗ê∗
k,α = λ−ν

-k,α(t)ê-k,α. (A.38a)

Thus:

(
λνk,α(t)

)∗ = −(−1)αλ−ν
-k,α(t) (A.38b)

and:

ê∗
k,α = −(−1)α ê-k,α. (A.39)
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By simple algebra, it can be shown that:

∇ × �ν (t, x) = i√
V

∑

k,α

λνk,α(t)e
ik·xk × êk,α (A.40)

and:

∇ × �−ν (t, x) = −i√
V

∑

k,α

(
λνk,α(t)

)∗
e−ik·xk × ê∗

k,α. (A.41)

Substituting (A.40) and (A.41) into the linear part of Lagrangian density (14.28)
in the chapter, one arrives at the linear part of the Lagrangian as:

LL = 1
2V

ν=N∑
ν=−N

∑

k′,α′

∑

k,α

∫
d3x

{[

−
(
λνk′,α′ (t)

)∗ (
k′ × ê∗

k′,α′
)

· ην (x)
.
.
.
(
k × êk,α

)
λνk,α(t)+ i

2

(
λ̇νk′,α′ (t)

)∗

(
k × êk,α

) · η′
ν (x)

.

.

.
(
k′ × ê∗

k′,α′
)
λνk,α(t)− i

2

(
λνk′,α′ (t)

)∗ (
k′ × ê∗

k′,α′
)

· η′
ν (x)

.

.

.
(
k × êk,α

)
λ̇νk,α(t)

+ i
6

(
λ̈νk′,α′ (t)

)∗ (
k′ × ê∗

k′,α′
)

· η′′′
ν (x)

.

.

.
(
k × êk,α

)
λ̇νk,α(t)− i

6

(
λ̇νk′,α′ (t)

)∗ (
k × êk,α

) · η′′′
ν (x)

.

.

.
(
k′ × ê∗

k′,α′
)
λ̈νk,α(t)+ μ

(
λ̇νk′,α′ (t)

)∗
ê∗
k′,α′ · êk,α λ̇νk,α(t)− 1

2

(
λ̇νk′,α′ (t)

)∗ (
k′ × ê∗

k′,α′
)

·η′′
ν (x)

.

.

.
(
k × êk,α

)
λ̇νk,α(t)

]

ei(k−k′)·x
}

.

(A.42)

Defining the quantities:

M
(1)ν
(k′,α′)(k,α) = 1

V

∫
d3x

(
k′ × ê∗

k′,α′
)

· ην (x)
...
(
k × êk,α

)
ei(k−k′)·x, (A.43)

M
(2)ν
(k′,α′)(k,α) = 1

2V

∫
d3x

(
k′ × ê∗

k′,α′
)

· η′
ν (x)

...
(
k × êk,α

)
ei(k−k′)·x, (A.44)

M
(2′)ν
(k,α)(k′,α′) = 1

2V

∫
d3x

(
k × êk,α

) · η′
ν (x)

...
(
k′ × ê∗

k′,α′
)
ei(k−k′)·x = M

(2)ν∗
(k,α)(k′,α′),

(A.45)

M
(3)ν
(k′,α′)(k,α) = 1

V

∫
d3x

{
μê∗

k′,α′ · êk,α − 1
2

(
k′ × ê∗

k′,α′
)

· η′′
ν (x) · (k × êk,α

)}
ei(k−k′)·x

=
[

μê∗
k′,α′ · êk,αδk′,k − 1

2V

∫
d3x

(
k′ × ê∗

k′,α′
)

· η′′
ν (x)

.

.

.
(
k × êk,α

)
ei(k−k′)·x

]

,

(A.46)

M
(4)ν
(k′,α′)(k,α) = 1

6V

∫
d3x

(
k′ × ê∗

k′,α′
)

· η′′′
ν (x)

...
(
k × êk,α

)
ei(k−k′)·x (A.47)
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and:

M
(4′)ν
(k,α)(k′,α′) = 1

6V

∫
d3x

(
k × êk,α

) · η′′′
ν (x)

...
(
k′ × ê∗

k′,α′
)
ei(k−k′)·x = M

(4)ν∗
(k′,α′)(k,α),

(A.48)

the Lagrangian (A.42) will be simplified as:

LL = 1
2

ν=N∑
ν=−N

∑

k′,α′

∑

k,α

[
−
(
λνk′,α′ (t)

)∗
M
(1)ν
(k′,α′)(k,α) λ

ν
k,α(t)− i

(
λνk′,α′ (t)

)∗
M
(2)ν
(k′,α′)(k,α)λ̇

ν
k,α(t)

+ i
(
λ̇νk′,α′ (t)

)∗
M
(2′)ν
(k,α)(k′,α′)λ

ν
k,α(t)+

(
λ̇νk′,α′ (t)

)∗
M
(3)ν
(k′,α′)(k,α)λ̇

ν
k,α(t)

+ i
(
λ̈νk′,α′ (t)

)∗
M
(4)ν
(k′,α′)(k,α)λ̇

ν
k,α(t) −i

(
λ̇νk′,α′ (t)

)∗
M
(4′)ν
(k,α)(k′,α′)λ̈

ν
k,α(t)

]
.

(A.49)

It is necessary to discuss the quantities M, specifically for definitions (A.47) and
(A.48). Starting with Eq. (A.48), one arrives at:

M
(4′)ν
(k,α)(k′,α′) → 1

6V

∫
d3x

(−k × ê-k,α
) · η′′′

ν (x)
...
(
−k′ × ê∗

-k′,α′
)
e−i(k−k′)·x

= 1
6V

∫
d3x

(
k × ê-k,α

) · η′′′
ν (x)

...
(
k′ × ê∗

-k′,α′
)
e−i(k−k′)·x.

(A.50)

where k and k’ are changed into −k and −k’, respectively. Now making use of the
relation (A.39), one concludes that:

M
(4′)ν
(k,α)(k′,α′) → 1

6V

∫
d3x

(
k × ê∗

k,α

) · η′′′
ν (x)

...
(
k′ × êk′,α′

)
e−i(k−k′)·x.

(A.51)

Another change into Eq. (A.51), i.e., interchanging k with k’, leads to:

M
(4′)ν
(k,α)(k′,α′)

(k,α)↔(k′,α′)→ 1

6V

∫
d3x

(
k′ × ê∗

k′,α′
)

· η′′′
ν (x)

.

.

.
(
k × êk,α

)
ei(k−k′)·x = M

(4)ν
(k′,α′)(k,α).

(A.52)

A similar argument holds for definition (A.44), which results in:

M
(2′)ν
(k,α)(k′,α′) → M

(2)ν
(k′,α′)(k,α). (A.53)
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Therefore, the Lagrangian will be simplified as:

LL = 1
2

ν=N∑
ν=−N

∑

k′,α′

∑

k,α

{
−
(
λνk′,α′

)∗
M
(1)ν
(k′,α′)(k,α)λ

ν
k,α−i

[(
λνk′,α′

)∗
M
(2)ν
(k′,α′)(k,α)λ̇

ν
k,α

−
(
λ̇νk′,α′

)∗
M
(2)ν
(k′,α′)(k,α)λ

ν
k,α

]
+
(
λ̇νk′,α′

)∗
M
(3)ν
(k′,α′)(k,α)λ̇

ν
k,α

+i
[(
λ̈νk′,α′

)∗
M
(4)ν
(k′,α′)(k,α)λ̇

ν
k,α −

(
λ̇νk′,α′

)∗
M
(4)ν
(k′,α′)(k,α)λ̈

ν
k,α

]}

which is the same as Eq. 14.35 in the chapter. Eq. 14.37 in the chapter is resulted
by removing the indices k, k’, α, and α’ for simplicity. Additionally, the limits of
ν have changed from –N to N to 0 to N. It should be noted that the negative values
of ν are taken into account by removing the factor ½ into 1/(1 + δν, 0). However,
the factor 1/(1 + δν, 0) has been neglected for the simplicity of the equations as it
affects only the first term.

Derivation of Relations Between the Parameters in Equations (14.41)
In order to find the Hamiltonian (14.40) for the optical fiber, new set of canonical
coordinates and momenta are defined by Equations (14.41) in the chapter. In order
to quantize the system, standard Dirac’s commutation relations:

[
q̃ν , q̃ν

′†
]

= 0, (A.54)

[
p̃ν†, p̃ν

′] = 0 (A.55)

and:
[
q̃ν , p̃ν

′] = i�1δν,ν′ . (A.56)

should hold between the new canonical coordinates q̃ν and p̃ν to arrive at the
relations (14.42a), (14.42b), and (14.42c), respectively. Note that the commutation
relations for quantities X and Y are related to the Poisson’s bracket as:

[X, Y ] = i�
∑

i=1

{
∂X

∂qi

∂Y

∂pi
− ∂X

∂pi

∂Y

∂qi

}

(A.57)

where qi and pi are also coordinates qν , Qν , qν†, and Qν† and their corresponding
momenta.

Substituting Equations (14.41) for the canonical coordinates and momenta
in Equation 14.43 and comparing it with the Hamiltonian 14.40, following six
equations:

Aν† ·�ν · Aν + Eν · ϒν · Eν† + iAν† ·�ν · Eν† − iEν ·�ν† · Aν = M(1)ν

(A.58)
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[
Aν† ·�ν − iEν ·�ν†

]
·
[
Bν + iDν ·M(4)ν

]

+
[
Eν · ϒν + iAν† ·�ν

]
·
[
Fν† + iKν† ·M(4)ν

]
= iM(2)ν,

(A.59)

Aν† ·�ν · Cν + Eν · ϒν ·Gν† + iAν† ·�ν ·Gν† − iEν ·�ν† · Cν = 0,
(A.60)

[
Bν† − iM(4)ν ·Dν†

] · [�ν · Bν + i�ν ·Dν ·M(4)ν + i�ν · Fν† −�ν ·Kν† ·M(4)ν
]+

[
Fν − iM(4)ν ·Kν

] · [ϒν · Fν† + iϒν ·Kν† ·M(4)ν − i�ν† · Bν +�ν† ·Dν ·M(4)ν
] = −M(3)ν

(A.61)

[
Bν† − iM(4)ν ·Dν†

]
·
[
�ν · Cν + i�ν ·Gν†

]
+
[
Fν − iM(4)ν ·Kν

]
·
[
ϒν ·Gν† − i�ν† · Cν

]
= 1

(A.62)

and:

Cν† ·�ν · Cν +Gν · ϒν ·Gν† + iCν† ·�ν ·Gν† − iGν ·�ν† · Cν = 0.
(A.63)

will be resulted. These six relations in addition to the relations (14.42) are used to
find the frequency matrices and the matrix parameters Aν to Kν, which are needed
to define coordinates q̃ν and p̃ν .
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Chapter 15
All-Solid Soft Glass Photonic Crystal
Fibers for Coherent Supercontinuum
Generation

Mariusz Klimczak, Dariusz Pysz, Ryszard Stępień, and Ryszard Buczyński

Abstract Material dispersion of soft glasses simplifies fiber designing for com-
patibility with femtosecond fiber lasers, while their high nonlinearity facilitates
efficient broadening. We review fiber dispersion and birefringence engineering
using the all-solid glass approach and relate different physical fiber geometries to
supercontinuum spectro-temporal characteristics recorded using cross-correlation
frequency-resolved optical gating.

Keywords Supercontinuum · Soft glasses · All-solid glass microstructured
fibers · Silicate fibers · Tellurite fibers · Chromatic dispersion engineering ·
All-normal dispersion · Birefringence · Noise · Coherence · Spectrograms ·
Frequency-resolved optical gating · Cross-correlation frequency-resolved optical
gating

15.1 Introduction

The photonic crystal fiber has reigned supreme in the field of supercontinuum
generation since its first demonstration in this application by Ranka et al. (2000).
The critical advantage, which this type of fiber provided to nonlinear optics over
the classic, step-index fibers, is that by changing the arrangement of micron-scale
air-holes surrounding the solid glass core, the chromatic dispersion profile could
be designed to match the pumping laser wavelength (Reeves et al., 2003). This
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opened much broader dispersion design flexibility, that the mature chemical vapor
deposition technology for step-index fiber preforms fabrication.

The first supercontinuum generation experiments involved green picosecond
pump pulses and bulk glasses and crystals, in which spectral broadening has been
attributed to four-wave mixing and self-phase modulation (Alfano & Shapiro,
1970a, b). Currently, the most widespread scenario, which has found its way to
commercial supercontinuum devices as well, is the one where a positively sloped
chromatic dispersion profile crosses zero at a wavelength slightly blue-shifted from
the central pump laser wavelength – thus the pumping occurs at a wavelength of
anomalous chromatic dispersion of the fiber, where soliton propagation is supported
(Agrawal, 2007). Depending on the pump pulse time duration, the nonlinear
dynamics of supercontinuum formation begin with soliton fission and self-phase
modulation, in the case of femtosecond pump pulses, or from modulation instability
breakup of the injected laser pulses in the case of picosecond-scale and longer
pump pulses (Dudley et al., 2006). Supercontinuum spectral coverage achievable
by commercial state-of-the-art apparatus is limited practically by the effective
transmission window of the silica glass, but at the cost of significant decoherence
due to amplification of noise (Dudley & Coen, 2002). Notwithstanding, under
specific conditions, including the initial pulse durations well below 50 fs and a
specially designed chromatic dispersion profile, coherence is maintained in soliton-
driven supercontinuum generation enabling single-cycle pulse synthesis (Krauss et
al., 2010; Sell et al., 2009).

An entirely alternative approach in designing fibers for nonlinear optics appli-
cations involves exclusion of soliton dynamics altogether by engineering the
chromatic dispersion profile in such a way that it maintains normal values over
all wavelengths of interest (Heidt, 2010). Suppression of soliton dynamics in
all-normal dispersion supercontinuum generation increases the threshold for mod-
ulation instability-driven decoherence by a factor of 50 (Heidt et al., 2017), but
it comes at a price. Octave-spanning bandwidths require femtosecond pump pulse
durations at reasonable peak power levels in the tens of kW range. Chap. 6 provides
an in-depth overview of the self-phase modulation and optical wave-breaking
dynamics, coherence preservation, and noise performance of all-normal dispersion
supercontinuum in photonic crystal fibers based on the silica glass technology.
Material dispersion of fused silica provides very convenient means to designing
of normally dispersive photonic crystal fibers compatible with femtosecond lasers
exploiting, e.g., the Ti/sapphire technology and especially the robust Yb3+-doped
fiber lasers, which means all-normal dispersion fibers designed for pumping with
laser pulses centered around wavelengths of 800 nm or 1030 nm. Compensation of
silica material dispersion in an air-hole lattice design of a microstructured fiber over
longer wavelengths in the near-infrared, and specifically for the fiber’s compatibility
with mode-locked Er3+-fiber lasers, is challenging (although not impossible, as
shown in Chap. 6). Another drawback of silica glass is its transmission window
limitation, which excludes extending of supercontinuum spectral coverage into
mid-infrared wavelengths. These reasons prompted the dynamic development of
non-silica, soft glass fibers for nonlinear optics (Price et al., 2012). Importantly,
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some soft glass compositions, e.g., tellurite or fluoride glasses, combine mid-
infrared transmission with the compatibility with pumping at wavelengths available
from robust lasers. This enabled multioctave supercontinuum generation extending
into the mid-infrared, under near-infrared pumping centered either at c.a. 1.5 μm or
2.0 μm (Domachuk et al., 2008; Nguyen et al., 2020; Qin et al., 2009; Xia et al.,
2006). Chalcogenide glass fibers very often do not share this conveniency, requiring
mid-infrared laser pumping, but the achievable supercontinuum spectral coverage
can be spectacular, reaching out into the mid-infrared well in excess of 10 μm
(Petersen et al., 2014). The relative difficulty in the development of microstructured
fluoride glass fibers and thus in their dispersion shaping held back the exploiting
of their excellent short-wavelength transmission for supercontinuum generation. In
the recent years, microstructured fluoride fibers have been achieved either by the
extrusion or by stack-and-draw techniques, and in particular, the latter enabled fiber
supercontinuum generation in the ultraviolet (Ebendorff-Heidepriem et al., 2008;
Jiang et al., 2015).

Among other advantages of different soft glasses is the feasibility of designing
all-normal chromatic dispersion profiles in photonic crystal fibers, e.g., using
various heavy-metal oxide soft glasses, such as the lead-silicate, boron silicate, or
tellurite glasses (Cimek et al., 2016). Additionally, the nonlinear refractive index of
most of these materials is one or two orders of magnitude higher than that of silica
or even more in the case of chalcogenide glasses (Cimek et al., 2017). Their usually
low melting point, compared to silica, excludes direct fusion splicing with silica
fibers, which is admittedly a disadvantage, however not impossible to work around
as demonstrated by different concatenation approaches in cascaded supercontinuum
sources (Venck et al., 2020). The strength of soft glass fiber technology is within
its feasibility of rapid fiber prototyping. Even more important is that soft glass
properties, both optical and thermomechanical, can be adjusted by modification of
their chemical composition, i.e., doping, quite straightforwardly and significantly
simpler than in the case of silica glass.

In this chapter, we provide an overview on the development and supercontin-
uum generation performance of heavy-metal oxide-based soft glass fibers with
engineered, all-normal dispersion profiles. The wavelength range of interest in our
discussion is the long-wave near-infrared, including the gain bands of modern Er3+-
and Tm3+-doped ultrafast fiber lasers and amplifiers.

The main advantage – as well as a limitation in a way – of the air-hole lattice pho-
tonic crystal fiber designing – is that the glass material dispersion is compensated
by waveguide dispersion related to the arrangement of air-holes in the photonic
cladding. An extension of this concept has been proposed by Feng and coauthors
who used two thermally matched soft glasses with a refractive index contrast, in
what can be called an all-solid glass photonic crystal fiber (Feng et al., 2013). In
Sect. 15.2 of this chapter, we describe application of this approach to the designing
of flattened, all-normal dispersion characteristics in various all-solid soft glass
photonic crystal fibers developed for operation specifically with mode-locked Er3+-
doped fiber lasers. The discussion encompasses shaping of linear characteristics
and goes on to the selection of soft glasses in context of their nonlinear response,
and in Sect. 15.3 it continues to the demonstration of supercontinuum generation



568 M. Klimczak et al.

performance in context of trade-offs between the flatness of the dispersion profile
and the nonlinearity strength.

Section 15.4 is devoted to introduction of intentional birefringence aimed at
providing polarization holding functionality in the discussed fibers. Two variants
of the all-solid lattice modifications are explored, and the achievable birefringence,
supercontinuum generation performance, and its polarization extinction ratio are
compared. An alternative in the form of an air-hole lattice, highly nonlinear, and
birefringent tellurite glass photonic crystal fiber is described as a possible future, as
well.

Section 15.5 of this chapter focuses on spectro-temporal characterization of
supercontinuum pulses generated in the discussed soft glass fibers. While the
nonlinear dynamics, coherence properties, and performance of coherent supercon-
tinuum generation in normally dispersive waveguides have been well described, data
obtained in physical measurements of actual pulse shapes of this supercontinuum is
rare. Our discussion includes results on recording of octave-spanning, near-infrared
group delay profiles of coherent, all-normal dispersion supercontinuum using cross-
correlation frequency-resolved optical gating (Trebino, 2012). Obtained data is
reconstructed numerically using nonlinear propagation simulations, in which the
input condition is not limited solely to ideal, Gaussian models of mode-locked pump
laser pulses. Simulations where the pump pulse idealization is assumed at input are
confronted with numerical results obtained for input condition comprising full-field
information on the physical pulses of a femtosecond Er3+-fiber laser used in the
experiments. The spectral and temporal fine structures in physical supercontinuum
pulses are reproduced in this way with remarkable accuracy. This enables tracing
back specific features of the supercontinuum pulses in the spectral and time domains
to distortions of the pump pulse, as well as to specific characteristics of the fiber
designs, such as birefringence. These results provide a new perspective on the
shaping of coherent supercontinuum generation in fiber-based systems, from the
point of view of both the fiber design and the laser system used for pumping.

15.2 Chromatic Dispersion Engineering in All-Solid Soft
Glass Structured Fibers

Supercontinuum light pulses with multioctave-spanning spectra are routinely
obtained in fibers with a zero-dispersion wavelength, but the usual soliton-driven
dynamics are prone to modulation instability decoherence. An all-normal chromatic
dispersion fiber under femtosecond laser pumping can be used to deliver coherent
and full-octave-spanning supercontinuum pulses, as discussed in Chap. 6. Ideally,
this requires engineered, flattened chromatic dispersion profile of the fiber, which
is challenging to achieve due to material properties of glasses at near-infrared
wavelengths, at which robust mode-locked fiber-based lasers operate. It is the
material dispersion of the fiber glass which has to be compensated by the waveguide
dispersion in a fiber design, regardless if the fiber layout is a classic step-index
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fiber or an air-hole lattice microstructured fiber, because material dispersion of air
can be reasonably assumed as wavelength-independent. Introduction of gasses or
liquids into the photonic lattice air-holes partly solves the challenge of dispersion
engineering, but at a significant cost of handling convenience and robustness
(Cassataro et al., 2017; Kedenburg et al., 2015). Another solution is possible,
and it involves making use of the all-solid glass photonic crystal fiber design,
in which the air-holes in the photonic lattice are filled with a thermally matched
glass with a different refractive index, than the lattice glass. Compared to the
“classic” air-hole photonic crystal fibers, the all-solid glass ones can be shaped
with extended dispersion engineering freedom, by enabling not only manipulation
of the waveguide contribution into the chromatic dispersion but also to influence
it through the material dispersion of the employed glasses, analogically to the
gas- or liquid-filled air-hole lattice fibers. At the same time, an all-solid glass
microstructured fiber not only does not sacrifice robustness but gains the advantage
in mechanical sturdiness with its structure devoid of air-holes. A photonic crystal
fiber with an all-solid glass layout has been demonstrated for the first time by Feng
and coauthors (Feng et al., 2013). Design and development of an all-solid structured
fiber requires at least two glasses with different refractive indices. However, the
thermal properties of both these materials should be matched as close as possible.
It is critical to assure similar values of the thermal expansion coefficients and the
characteristic temperatures. Fibers, drawn using the all-solid glass approach and
designed specifically for coherent, pulse-preserving supercontinuum generation,
were first reported by Buczyński et al. (2012; Martynkien et al., 2014), and this
was followed by demonstration of supercontinuum generation in a later work
(Klimczak et al., 2014, 2016a). The fibers had a solid, high refractive index glass
core surrounded by a honeycomb lattice made of the same glass and with its air-
holes filled with inclusions made of a low refractive index glass. Typical scanning
electron microscope images of the developed fiber structures are shown in Fig. 15.1.

The initial implementation of this type of fiber, shown in Fig. 15.1a – fiber series
label used in literature: “NL21” (Klimczak et al., 2014, 2016a) – involved use of
a lead oxide glass with the vendor label F2 (Schott) and an in-house developed
boron-silicate glass labeled NC21a. The latter glass composition is SiO2, 56.84;
B2O3, 23.19; Al2O3, 0.61; Li2O, 6.23; Na2O, 9.51; and K2O, 3.63. Refractive
index values measured for each of the glasses at a wavelength of 1550 nm are
n = 1.59487 in the case of Schott F2 glass and n = 1.51130 for the boron-silicate
NC21a glass; thus, the fiber made from these materials can support total internal
reflection guiding if the core is composed of F2 glass. Glass transition temperatures
for these glasses are Tg = 434 ◦C and Tg NC21a = 492 ◦C, respectively, for the lead
oxide F2 glass and the boron-silicate NC21a glass. Thermal expansion coefficients
are α+20/+300◦C = 9.2 × 10−6/K for the F2 and α+20/+300◦C = 8.7 × 10−6/K
for the NC21a. This set of parameters is sufficiently matched to enable joint
thermal processing, i.e., drawing into an optical fiber from stacked glass canes
and capillaries. The hexagonal shape of the structure is acquired during drawing
at a fiber drawing tower. Nonlinear refractive indices, measured at a wavelength of
1064 nm using the z-scan method are, n2 = 2.9 × 10−20 m2/W for the F2 glass
and n2 = 1.1 × 10−20 m2/W for the NC21a glass (Lorenc et al., 2008), which is
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Fig. 15.1 Scanning electron microscope images of all-solid soft glass microstructured fibers with
engineered normal chromatic dispersion: (a) the NL21 series fiber – core and hexagonal lattice
(light color) is made of Schott F2 glass, and lattice inclusions and the surrounding tube are an in-
house boron-silicate glass; (b) the NL38 series fibers – Schott SF6 in the core and lattice, Schott F2
in the inclusions and the surrounding tube. (Adapted with permission from Klimczak et al. (2016a)
©The Optical Society)

comparable to the value obtained earlier for fused silica, n2 = 2.7 × 10−20 m2/W
at 1550 nm (Kato et al., 1995). The nonlinear response of the fiber can be further
improved from the material side, by replacing the F2 glass with a different lead
oxide glass under the vendor label SF6 (Schott). The nonlinear refractive index
measured at a wavelength of 1550 nm for this glass is n2 = 21.0 × 10−20 m2/W
(Kalashnikov et al., 2007). The SF6 has glass transition temperature of Tg = 423 ◦C,
and its thermal expansion coefficient is α+20/+300◦C = 9.0 × 10−6/K making it
almost a perfect match for F2 for fiber drawing. Linear refractive index of the SF6
glass, measured at 1550 nm wavelength, is n = 1.764133. This also determines
total internal reflection as the guiding mechanism in a fiber geometry shown in Fig.
15.1b, where SF6 glass forms the core and the cladding honeycomb lattice, while
F2 fills the lattice inclusions and surrounds the entire photonic lattice structure. In
the literature, a label “NL38” is used for this fiber (Klimczak et al., 2016a, 2017).

Designing of these fiber structures involves establishing geometric parameters,
such as the core diameter (i.e., diameter of a circle inscribed in the center, high-
index glass hexagon of the photonic lattice), as well as the inclusion size d and
the lattice constant �, which are used together to define the relative inclusion
size d/�. Aim of the designing is the normal chromatic dispersion characteristic
over the wavelengths of interest, which would specifically cover the three major
fiber-based amplifier systems, beginning with Yb3+-doped fibers, through Er3+-
doped fibers, up to Tm3+-doped fibers. Since optical fibers commonly have strong
normal chromatic dispersion at visible and short-wave near-infrared wavelengths,
the challenge is assuring normal dispersion at wavelengths where standard step-
index fibers have anomalous dispersion, especially at the Tm3+/Ho3+ gain bands
of 1800–2200 nm. Typical chromatic dispersion profiles computed for geometric
parameters of the photonic lattice, which are technologically feasible, are shown
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Fig. 15.2 Chromatic dispersion profiles and effective mode areas computed using numerical
simulations for the all-solid soft glass microstructured fibers of NL21 and NL38 series and
geometric parameters set in the fiber designing. (Adapted with permission from Klimczak et al.
(2017) ©CLP Publishing)

Table 15.1 Geometric parameters of all-solid soft glass microstructured fibers designed for
normal chromatic dispersion profile in the long-wave near-infrared

Outer diameter (μm) Core size (μm) Inclusion size d (μm) Relative inclusion size d/�

NL21 series
C2 155.0 2.46 2.3 0.90
C3 148.4 2.46 2.2 0.90
C4 142.8 2.46 2.16 0.89
NL38 series
C1 126.0 2.36 1.30 0.79
C2 132.5 2.53 1.39 0.77
C3 132.6 2.49 1.33 0.77
C4 135.4 2.44 1.38 0.77

in Fig. 15.2, and the corresponding fiber dimensions assumed in calculations are
gathered in Table 15.1.

The main feature of all-normal chromatic dispersion characteristics feasible with
the all-solid soft glass photonic lattice approach is the flattened “saddle” section
extending roughly from the wavelength of 1000 nm to 2800 nm. It is to be noted
that the long-wavelength edge of this range is conventional and related to the glass
transmission cutoff. The short-wavelength edge is critically related to the blue-
shifted edge of spectrum in femtosecond supercontinuum generation (as explained
in Chap. 6 as well as in the following section of this chapter). Shape of the “saddle”
section and specifically its flatness, for both used glass pair combinations, depends
on parameters of the lattice: the larger the core diameter and lattice inclusion
relative size, the flatter is the “saddle.” For example, for the NL21C2 fiber, it is
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within ±10 ps/nm/km over wavelengths from 1500 nm to around 2000 nm. The
“saddle” flatness facilitates high efficiency of the optical wave breaking forming the
spectral wings of the normal-dispersion supercontinuum, due to low time offset of
the four-wave mixing components, but it is to be noted that this fiber’s effective
mode area at a wavelength of 2200 nm already exceeds 10 μm2. Because of the
nonlinear coefficient of the fiber γ scales with the reciprocal of the effective mode
area, there is a trade-off between the dispersion characteristic flatness and the
effective nonlinearity in case of all fibers summarized in Table 15.1. In other words,
increasing the core diameter flatness spectrally extends the dispersion “saddle,”
but it also increases the effective mode area, which decreases nonlinearity. This
is shown in Fig. 15.2, where effective mode area for the NL21 series fibers at a
wavelength of 2000 nm is around 8 μm2, while for the NL38 series, it is around
5 μm2 at the same wavelength. At the same time, the flatness of the dispersion
characteristic of the NL38 series fibers is ±25 ps/nm/km over 1500 nm to 2000 nm
wavelengths. The following section discusses how these parameters correspond
to coherent supercontinuum generation performance under pumping with different
femtosecond laser systems.

15.3 Supercontinuum Generation in All-Solid Soft Glass
Structured Fibers

Technological processes of fiber drawing confirmed the feasibility of obtaining
broadband, flattened chromatic dispersion profiles in fibers designed and fabricated
using the all-solid glass photonic lattice approach, as well as of the applicability
of these structures in efficient coherent supercontinuum generation. Literature
on supercontinuum generation in these fibers includes results obtained under
femtosecond pumping centered around wavelengths of 1560 nm (Klimczak et al.,
2014) and around 2000 nm (Klimczak et al., 2016a, 2019), as well as on detailed
characterization using dispersive Fourier transformation (Klimczak et al., 2016b)
or, later, using cross-correlation frequency-resolved optical gating (Rampur et al.,
2020) as well. The initial fiber series for these experiments was directly based on
the NL21 design discussed in the preceding section. A family of five fibers has been
drawn within a range of geometrical parameters including varied core diameter,
photonic cladding size and its pitch, and relative inclusion size. These parameters
are listed in Table 15.2. Chromatic dispersion of the fibers has been verified over
a range of wavelengths from around 900 nm up to 1700 nm, and obtained spectral
characteristics are shown in Fig. 15.3. Confronting of the geometrical parameters
in Table 15.2 with these dispersion profiles reveals that decreasing of the overall
lattice size results in increment of the absolute value of dispersion, i.e., brings the
“saddle” plateau closer to the zero dispersion, and it red-shifts the local maximum
of the dispersion profile (Martynkien et al., 2014). Supercontinuum generation
spectra obtained with these fibers pumped from an optical parametric chirped-pulse
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Table 15.2 Geometric parameters of the NL21 series fibers used for octave-spanning all-normal
dispersion supercontinuum generation

NL21 series Outer Lattice Core Inclusion

fiber no. diam. (μm) diagonal (μm) diam. (μm) size d (μm) d/�

B1 143.0 35.61 2.43 2.15 0.91
B2 140.3 35.06 2.40 2.13 0.91
B3 136.6 34.65 2.37 2.11 0.91
B4 131.0 33.33 2.25 1.99 0.91
B5 128.8 31.55 2.13 1.93 0.91

Source: Klimczak et al. (2014)

Fig. 15.3 Measured chromatic dispersion profiles in a series of NL21-type all-solid soft glass, all-
normal dispersion photonic crystal fibers and supercontinuum generation spectra obtained in these
fibers under femtosecond pumping from a chirped-pulse optical parametric amplifier, pump pulses
centered around 1560 nm, pulse duration was 50 fs. (Adapted with permission from Klimczak et
al. (2014). ©The Optical Society)

amplifier tuned to a center wavelength of 1560 nm and delivering around 50 fs
pulses are shown in Fig. 15.3. The widest of the spectra spans from 900 nm up
to 2300 nm, effectively covering the amplification bands of all three major fiber
amplifiers, i.e., the Yb3+-doped, Er3+-doped, and Tm3+-doped fiber amplifiers. The
spectra have been achieved in up to a dozen of cm long fiber samples, a length which
already had been a convenience of handling, rather than necessity at such short
pump pulse durations. Nearly tabletop flat shape of the spectra is disturbed only
by a peak around the center pump wavelength, which is related to the residual of
the pump radiation propagating in the photonic cladding. This part of pump energy
does not contribute directly to the nonlinear broadening process but has been related
to decoherence mechanisms under longer pump pulse durations (Klimczak et al.,
2016b).

The fiber designs based on the all-solid silicate soft glass compositions have
the advantage of being in principle compatible with either 1560 nm pumping or
the 2000 nm pumping. This is because the numerically predicted zero-dispersion
wavelength falls well beyond the wavelength of 2800 nm, which is the practical
transmission limit of these soft glasses. In contrast to that, pumping around the
wavelength of 1000 nm or shorter is impractical with these structures, due to strong
and sloped normal dispersion in this spectral range – thus in context of pumping at
wavelengths characteristic to Yb3+-doped systems, these fibers are uncompetitive
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to pure silica designs discussed in detail in Chap. 6. The 2000 nm wavelength is
interesting, because for once it is available from the emerging Tm3+ and Ho3+
doped fiber-based mode-locked lasers and amplifiers and, secondly, it provides the
opportunity to demonstrate and validate the role of dispersion of nonlinearity in
specialty photonic crystal fiber designs for supercontinuum generation (Kibler et
al., 2005). With this specifically in mind, the NL21 and NL38 series fibers have
been used in supercontinuum generation experiments with an optical parametric
chirped-pulse amplifier as pump source (Klimczak, Siwicki, et al., 2016a). Central
pump wavelength was tuned to 2160 nm and pulse duration was 60 fs. Both
fibers enabled spectral broadening in excess of an octave, but the recorded spectra
exhibited noticeable differences in width and reach of their sidebands, shown in
Fig. 15.4. Most significantly, the NL21 series fibers provided favorable conditions
for development of the blue-shifted spectral wing, with virtually no broadening on
the red-shifted side of the central pump wavelength. Supercontinuum generation
at the red-shifted side of the pump wavelength continued in the NL38 fiber up
to its transmission cutoff around 2800 nm. The NL38 series fiber also proved
more resistant to optical power damage and was pumped stronger than the NL21
series fiber (average pump powers shown in Fig. 15.4 for each supercontinuum
trace), but comparable results as those shown for the NL38 fiber were obtainable

Fig. 15.4 (a) Calculated wavelength-dependent effective mode area profiles and (b) measured and
computed chromatic dispersion characteristic of NL21 and NL38 series all-solid soft glass photonic
crystal fibers; (c–d) measured supercontinuum spectra in both fiber series under femtosecond
pumping centered around 2000 nm; average pump powers shown above respective traces. (Adapted
with permission from Klimczak et al., 2016a. ©The Optical Society)
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at incident average power levels shown for the NL21 fiber. These differences
in supercontinuum generation efficiency can be explained directly in relation to
the trade-off between the dispersion flatness, assured by the NL21 structure, and
the nonlinearity advantage of the NL38 fiber – standing out especially in the
spectral broadening results obtained over the 2000–2800 nm wavelengths in both
fibers. Fiber attenuation was ruled out as a sole decisive factor (Klimczak et al.,
2016a). Figure 15.4 again shows the computed effective mode areas and chromatic
dispersion profiles of the two types of fibers. The refractive index difference between
the glasses of the NL38 fiber (�n = 0.169263 at the wavelength of 1550 nm) is
two times higher than between the glasses in the NL21 lattice (�n = 0.08357 at
1550 nm), and the NL38 fiber has just above half of the effective mode area of
the NL21 fiber at a wavelength of 2000 nm. The stronger mode confinement in the
NL38 fiber, compared to NL21 fiber, provides for continuously strong nonlinear
response and thus spectral broadening up to the transmission limit of the fiber.
The flatter chromatic dispersion profiles at the blue-shifted edge of supercontinuum
spectra in the NL21 fiber (compared to the NL38 fiber), on the other hand,
contribute to favorable optical wave-breaking conditions at the short-wavelength
part of spectrum, where mode confinement in both fibers is comparable. Thus,
moderately better blue-shifted broadening performance was recorded in the NL21
fiber, compared to NL38.

An important context of the nonlinear performance in these specialty fibers, as
of yet omitted in the discussion here, is the optical pumping conditions. Results
discussed to this point were obtained with powerful and complex pump systems,
delivering MW-range peak powers and 50–60 fs pulses, albeit at kHz repetition
rate. This is a critical parameter – and a disadvantage for ultrafast photonics
applications where the coherent, broadband pulses are delivered as seed signals
in fiber amplifiers. For once, the demonstrated supercontinuum signals combine
many advantageous properties – they originate from a single mode-locked laser
source; thus, when used to seed, for example, two amplifiers simultaneously, no
extra synchronization electronics would be necessary. Furthermore, simultaneous
coverage of the Yb3+-doped fiber and Tm3+-doped fiber gain bands (which are
separated by roughly an octave) in an ultrafast system opens potentially disrupting
opportunities for all-fiber few-cycle laser pulse synthesis. The downside is that using
a powerful but complex optical parametric chirped-pulse amplifier system as a pump
source defeats the fiber robustness advantage to begin with, and even for a feasibility
study, the kHz repetition rate is not enough to seed an ultrafast fiber amplifier, which
is normally continuous-wave pumped. Compact, chirped-pulse amplification, fiber-
based lasers and amplifiers, delivering roughly 100 fs pulses at MHz repetition rates,
would be a handy substitute, but their robustness and relative simplicity come at the
cost of peak power, which in the cases of the available Er3+ or Tm3+ systems is
in the kW range, and pulse energies are often few to a dozen nJ. Supercontinuum
generation performance with these lasers as pumps to the fibers discussed in this
chapter cannot be directly compared to scenarios, where a complex, MW peak
power system is used for pumping. The primary difference is that the strongly sloped
chromatic dispersion at the blue-shifted edge of supercontinuum spectra around
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900–1000 nm wavelengths becomes a bottleneck, which cannot be compensated
neither by the limited kW peak power nor by the nJ pulse energy available
from a fiber-based mode-locked pump laser. All-normal dispersion supercontinuum
spectra, recorded for the NL21 series or the NL38 series fibers, reach at the short-
wavelength side as far as 1100 nm, which is insufficient to cover the Yb3+ fiber
amplifier gain band simultaneously with the Er3+ or Tm3+ amplifiers. Moreover,
nonlinear response of the NL21 series fibers is not strong enough to enable an optical
wave-breaking sideband broad enough to cover the entire Tm3+ amplifier gain band
under such pumping conditions. If we compare the nonlinear coefficients of the two
fiber series, i.e., the NL21 and NL38, we note that there is a factor of around 16
difference between them, as shown in Table 15.3, for the center pump wavelength
of 1560 nm. With such an advantage, despite the less favorable dispersion profile
of the NL38 (stronger, sloped normal dispersion compared to the NL21), it is the
NL38 series fiber which enabled spectral broadening up to almost 2200 nm using a
robust, fiber-based femtosecond laser delivering pump pulses just below 100 fs with
just 3.5 nJ energy. This supercontinuum signal has been successfully applied as seed
in an ultrafast fiber amplifier system implementing a Tm3++Ho3+ co-doped fiber
under continuous-wave pumping (Heidt et al., 2020). This implementation allowed
recompression of amplified output pulses down to 66 fs with excellent relative
intensity noise characteristics.

Results with silicate soft glass fibers discussed using the two examples in this
chapter are by no means exhaustive in terms of how much broadening can be
achieved from low-energy, 100-fs-long driving pulses centered around the Er3+
or Tm3+ wavelengths. However, the simple confrontation between a fiber with
modest nonlinearity and nearly tabletop flat dispersion profile (NL21 series) with
one that sacrifices dispersion flatness for the “raw power” of nonlinear response
(NL38 series) provides some clues on what the next step could be in extending
supercontinuum spectrum toward the mid-infrared wavelengths. Data in Table 15.3
and supercontinuum spectra, generated using Er3+-doped fiber-based femtosecond
laser (3.5 nJ, 90-fs-long pulses), include yet another fiber, which follows the direc-
tion of scaling nonlinearity. The design, labeled in literature as NL47 (Klimczak et
al., 2019), was drawn using a highly nonlinear tellurite glass. Chemical composition
of this particular glass was 65TeO2 28WO3 7(Na2O + Nb2O5), (Stępień et al.,
2011) and its nonlinear refractive index, measured at a wavelength of 1064 nm,
is 51.0 × 10−20 m2/W (Cimek et al., 2017). This glass has twice as high nonlinear
refractive index as that of the SF6 glass (Table 15.3). The fiber geometry features
a regular air-hole lattice with two rings of air-holes with different diameters.
Variation of air-hole diameters in the lattice’s subsequent rings extends dispersion
engineering freedom significantly. This particular designing approach has been
proposed and demonstrated with silica photonic crystal fibers by Saitoh et al. (2003).
The disadvantage of its application to tellurite glasses is related to maintaining of a
regular lattice comprising various air-hole diameters across many rings of a structure
stacked from a technologically challenging material. In addition to that, the air-
hole structure suffers from somewhat inferior heat dissipation than an all-solid glass
microstructured fiber. This makes the NL47 design susceptible to laser damage.
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Notwithstanding, the benefit of high nonlinearity and the potential of extending the
fiber’s transmission toward the mid-infrared part of spectrum, due to the application
of the mid-infrared capable tellurite glass, have driven continuous research yielding
demonstrations of microstructured fibers made of highly nonlinear tellurite glasses
using the all-glassy lattice, as well (Nguyen et al., 2020). The important advantage
of these implementations is that they enable reaching the mid-infrared wavelengths,
while at the same time their chromatic dispersion profiles can still be engineered for
compatibility with near-infrared wavelength pumping.

The final question on further improvement of the soft glass microstructured fiber
relates to modifications of the designs in such ways, as to introduce intentional
birefringence in order to determine – ideally – linear polarization state of the
generated coherent supercontinuum light. This context of soft glass photonic crystal
fiber engineering is discussed in the following section of this chapter.

15.4 Introduction of Birefringence

Unintentional form birefringence of about 10−5 in an optical fiber, caused, e.g.,
by built-in stresses or external factors (i.e., bending), already facilitates nonlinear
as well as linear coupling of the polarization mode components, which in turn
amplify quantum noise and can lead to decoherence of ultrashort laser pulses.
Polarization modulation instability is one example of the nonlinear processes,
which have been related to decoherence in all-normal dispersion supercontinuum
generation (Liu et al., 2015). In contrast to that, intentional birefringence in a
nonlinear microstructured fiber, combined with aligning of the input femtosecond
laser pulse polarization to one of the fiber’s principal axes, allowed for suppression
of these noise-amplifying nonlinear processes. Later work explored the concept
of supercontinuum noise control by microstructure design and specifically by
birefringence control in nonlinear photonic crystal fibers in detail, as discussed in
Chap. 6. Introduction of birefringence to nonlinear structured fibers with engineered
normal dispersion is crucial in fiber-based ultrafast fiber amplifiers. Not only does
it facilitate noise suppression but contributes to simplification of the entire setup,
because a determined state of polarization of a broadband, coherent supercontinuum
seed signal in such an amplifier eliminates polarization controllers (Heidt et al.,
2020; Rampur et al., 2019).

Soft glass structured fiber engineering allows for rapid fiber prototyping. The
possibility of manipulation of optical and thermal properties of glasses by changes
of their chemical compositions is a special advantage in context of developing
structures with unique characteristics. The two designs of all-solid soft glass fibers
with all-normal chromatic dispersion profiles, discussed in the previous sections in
this chapter, can be redesigned into birefringent variants without scarifying their
advantages for efficient, coherent femtosecond supercontinuum generation.

In this type of hexagonal photonic lattice, birefringence can be introduced
in two ways. Stress areas can be designed in the fiber layout resembling the

http://doi.org/10.1007/978-3-031-06197-4_6
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classic Panda or bow-tie fibers. In the context of microstructured fibers and the
fibers designed specifically for coherent supercontinuum generation, this approach
has been exploited in fibers compatible with 1030 nm femtosecond pumping
(Liu et al., 2015). The stress zones facilitate change of the refractive index in
the structure’s transverse plane. In an alternative way, high birefringence can be
achieved by introducing air-holes on each side of the fiber core. Thus, the guided
mode experiences defined optical axes with dramatically different refractive indices
(Anuszkiewicz et al., 2013). This particular design is however somewhat impractical
with the type of structures discussed so far, because of the intricate role of the
hexagonal all-solid glass lattice in shaping of the chromatic dispersion (Martynkien
et al., 2014). An elliptical deformation of the fiber structure, for example a lateral
squeeze along one of the axes, can be considered as an alternative means of inducing
birefringence in these fibers.

The two realized intentionally birefringent variants of the all-solid soft glass
microstructured fibers discussed in the previous sections are shown in SEM images
in Fig. 15.6. The NL46 series fiber features an elliptical deformation of the photonic
lattice, while the NL48 series fiber is modified mainly by introduction of a bow-tie
stress areas around the lattice. Both fiber types were designed using silicate glasses
F2 and SF6, analogically to the NL38 series fibers described earlier.

In contrast to the NL38 series though, the modified fiber lattices have reduced
number of lattice rings in the photonic cladding, in order to increase the impact
of index-modifying structure alterations on the fiber core. In case of the NL46
fiber, the number of lattice rings is reduced to 5. The lateral squeeze in the final
fiber was obtained by stacking two large tubes, with inner diameter comparable
to the diagonal of the photonic lattice stack, along one of the diagonals of the
lattice, just outside of its perimeter. During fiber drawing, these air-holes were
subsequently collapsed resulting in ellipticity of the fiber microstructure. The final
fiber dimensions are 2.7 μm × 1.9 μm of the elliptical core and 25.8 μm × 16.3 μm
of the squeezed-lattice diagonals, and its lattice constant is � = 2 μm.

The bow-tie NL48 series fiber variant had less intrusive modification of the
lattice, in which the number of rings was reduced from 7 to 6, compared to the
initial NL38 design. Core size in this fiber had dimensions of 2.5 μm × 2.0 μm, and
the cladding lattice diagonals (excluding the stress zones) were 25 μm × 19 μm.
The lattice constant was � = 1.7 μm. In addition to the F2 and SF6 glasses,
used here in the same roles as in the NL38 and NL46 series fibers, this design
included a third glass type used for the bow-tie stress elements. At the structural
preform level, these areas were stacked from individual rods made of a custom
lead-silicate glass. Its chemical composition was (compound, mol.%) SiO2, 70.17;
PbO, 15.55; Na2O, 8.08; K2O, 6.07; and As2O3, 0.13 and was designed to obtain
significantly higher thermal expansion coefficient compared to the F2 and SF6
glasses (Dobrakowski et al., 2019). The relevant parameters, such as the glass
transition temperatures and thermal expansion coefficients of the glasses comprising
the NL48 fiber microstructure, are compared in Table 15.4.

Both fiber series were characterized for their chromatic dispersion, birefringence,
and supercontinuum generation performance under pumping in similar conditions
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Table 15.4 Glass transition temperatures and thermal expansion coefficients of soft glasses in the
NL48 series fiber microstructure

Glass

Glass
transition
temperature
Tg (◦C)

Thermal expansion coefficient
α20, 300◦C (1/K)

Schott SF6 423 9.0·10−6

Schott F2 431 9.2·10−6

Stress zones glass for NL48 series fiber 417 10.5·10−6 Dobrakowski et al. (2019)

Fig. 15.5 Femtosecond supercontinuum generation in three series of all-solid glass and air-hole
regular lattice soft glass fibers under pumping with a compact, mode-locked fiber-based laser –
center wavelength 1560 nm, pump pulse energy 3.5 nJ, pulse duration 90 fs, 100 MHz repetition
rate. (Adapted with permission from Klimczak et al. (2019) ©The Optical Society)

as in the case of the NL21, NL38, and NL47 fiber comparison, shown in the
previous section in Fig. 15.5. Dispersion characteristics, measured for each of
the polarization axes of the birefringent fiber variants using an unbalanced Mach-
Zehnder interferometer, have easily sloped concave profiles in the normal range of
values – a zero-dispersion wavelength can be theoretically established, e.g., using
a finite element method-based mode solver, but it would be located well outside of
the fiber’s physical transmission window in the mid-infrared. Dispersion profiles
measured for physical fibers are shown in Fig. 15.6. While differences between
the two orthogonally polarized components of the fundamental mode in any given
fiber are negligible from supercontinuum generation point of view, it is not as
much so when dispersion profiles are compared between the two fiber variants. The
squeezed-lattice NL46 fiber has dispersion with lower absolute values, and peak
of the normal dispersion profile plateau red-shifted in comparison with the NL48
series, bow-tie fiber variant. Measured group birefringence characteristics (obtained
using the standard crossed polarizer method) for each of the fibers, shown in Fig.
15.6 as well, are very similar and, importantly, reach reasonable level between
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Fig. 15.6 Scanning electron microscope images of all-solid soft glass, all-normal dispersion,
birefringent microstructured fibers of the NL46 and NL48 series. Measured chromatic dispersion
profiles and group birefringence characteristics. (Adapted with permission from Dobrakowski et
al. (2019) ©IOP Publishing)

5 × 10−4 and 10 × 10−4 over much of the Tm3+ gain band in the wavelength range
around 1900–2200 nm. At wavelengths around 1400 nm and shorter, birefringence
takes very low values, consequences of which are discussed in the following section.
With comparable mode fields, it can be concluded that the benefit of the lower
absolute dispersion favors the NL46 series fiber in context of supercontinuum
generation performance. This finds confirmation in supercontinuum generation
experiments, in which each of the fibers (10-cm-long samples) was used along
with 3.5 nJ mode-locked laser pumping (less than 100-fs-long pulses), centered
at a wavelength of 1560 nm, from an Er-doped fiber-based system, the same as
the one used to obtain results shown in Fig. 15.5. The broadened output spectrum,
shown in Fig. 15.7, obtained under such moderate pump levels, reaches out to
roughly 2200 nm in case of the NL46 series fiber, inheriting the width and flatness
of an all-normal dispersion supercontinuum demonstrated earlier with the all-solid
glass NL38 photonic crystal fiber shown in Fig. 15.5. The NL46 birefringent
fiber adds the advantage of a 10 dB polarization extinction ratio (PER), which is
impossible with the original NL38 series fiber. The squeezed-lattice NL46 fiber
variant has been successfully implemented as seed signal source in an ultralow
noise Tm3+ fiber amplifier. This system enabled amplification of 100-fs-long pulses
with exceptionally low relative intensity noise (RIN) of 0.047% over a bandwidth
from 10 Hz to 10 MHz, which was practically unchanged from the RIN level of
the Er3+-doped fiber-based femtosecond laser driving the coherent supercontinuum
generation in the NL46 fiber (Rampur et al., 2019). The NL48 bow-tie series fiber
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Fig. 15.7 Measured supercontinuum spectra in two types of birefringent, all-solid soft glass, all-
normal dispersion microstructured fibers of the NL46 and NL48 series

underperformed in supercontinuum generation compared to the squeezed-lattice
NL46, with the supercontinuum extending up to the wavelength of around 2000 nm.
This also proved insufficient to effectively seed the ultrafast Tm-fiber amplifier
system in the experiment described by authors in Ref. (Rampur et al., 2019). The
direct reason behind the inferior supercontinuum performance of the bow-tie is that
the stronger normal dispersion – with comparable nonlinearity to the NL46 variant –
is explained by less favorable supercontinuum generation conditions due to shorter
temporal overlaps between the central, self-phase modulation components and the
trailing and leading parts of the normal-dispersion broadened pulse (Heidt, 2010).

Further improvement of the discussed results, in terms of both polarized super-
continuum bandwidth obtainable with a robust mode-locked laser pump and the
achievable PER, is possible with the soft glass platform. As in the previous section,
an interesting alternative can be found using tellurite glasses and a hexagonal, air-
hole dual-ring lattice design. Physically realized fiber is shown in Fig. 15.8, along
with measured chromatic dispersion profiles and group birefringence characteristics
(Shreesha et al., 2020). The design is a variant of the NL47 fiber discussed in the
previous section, drawn from a tellurite glass of identical composition and with very
similar geometric dimensions: the core diameter (inscribed circle) is 2.3 μm, the
photonic cladding diameter (inscribed circle) is 20 μm, and the air-hole diameters
are 0.5 μm and 1.0 μm in the inner and outer rings, respectively. The NL47 design
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Fig. 15.8 Scanning electron microscope image of air-hole lattice all-normal dispersion, birefrin-
gent microstructured fiber of the NL51 series – highly nonlinear tellurite glass design. Measured
chromatic dispersion profiles and group birefringence characteristics of the fiber

was modified by introducing two larger air-holes, around 1.7 μm in diameter, on
each side of the core. The measured group birefringence, shown in Fig. 15.8,
crosses zero around the wavelength of 1700 nm, but across the Tm3+ gain band
between 1800 nm and 2100 nm, it is between 5 × 10−3 and 10 × 10−3, an order of
magnitude more than in the NL46 and NL47 silicate glass fiber designs. Chromatic
dispersion profiles (Fig. 15.8) have stronger absolute values across the Er3+ and
Tm3+ active ion gain bands, compared to the base, regular lattice tellurite glass fiber
design labeled NL47, and also vary strongly between the two orthogonally polarized
mode components. Combined with high nonlinearity of the glass, the fiber enabled
efficient normal-dispersion supercontinuum generation (pump conditions identical
to all previously discussed fiber designs and recorded spectral characteristics are
shown in Fig. 15.9). As consequence of the stronger normal dispersion of one
of the polarization components, the supercontinuum widths vary, and only one of
the polarization components reaches near to the wavelength of 2300 nm with the
red-shifted supercontinuum edge. PER at 20 dB level was also recorded across
the entire red-shifted wing of the supercontinuum spectrum, completely covering
both the Tm3+ and Tm3++Ho3+ co-doped gain bands, which makes this fiber
an attractive seed signal source alternative for a system reported, e.g., by authors
in (Heidt et al., 2020). It is very worth noting that the field of tellurite glass
structured fibers, although undeniably more challenging technologically than the
silicate soft glass fibers or silica fibers, is gaining momentum in ultrafast and
nonlinear fiber optics for their compatibility with efficient and robust erbium and
thulium fiber-based mode-locked lasers, as well as for their potential of extending
transmission and supercontinuum spectrum into the mid-infrared (Nguyen et al.,
2020). Despite the technological hurdles related to fabrication of these fibers, the
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Fig. 15.9 Coherent supercontinuum generation for linearly polarized seed signals for 2 μm
ultrafast fiber amplifiers, spectra obtained in NL51 series fibers under pumping with 100 fs, 3.5
nJ pulses centered around the wavelength of 1560 nm from a fiber-based, 100 MHz ultrafast laser

discussed examples prove its fabrication feasibility even in the case of complex
cladding lattice designs. Yet another advantage is the multicomponent composition
of the glass itself. It offers inhomogeneous ligand surrounding for the optically
active dopants, including especially the Tm3+ ions, which contributes to wide
broadening of the gain band. This enabled, e.g., “two color” operation of Tm3+-
doped tellurite glass fiber amplifiers, as demonstrated by authors in (Muravyev et
al., 2018). Combining this with the high Kerr nonlinearity and the potential for
transparency across the visible, near- and mid-infrared wavelengths sums up to an
array of properties very promising for future applications.

15.5 Temporal Structure of Coherent Supercontinuum
in Soft Glass Microstructured Fibers

Coherent supercontinuum generation in all-normal dispersion fibers is thoroughly
described in literature including contexts like mechanics of the involved nonlinear
processes, coherence, and noise performance (Finot et al., 2008; Genier et al.,
2019; Heidt et al., 2017). This is in contrast to availability of experimental data
on spectro-temporal characteristics of coherent supercontinuum generation in all-
normal chromatic dispersion fibers, which is generally scarce (Okamura et al.,
2015; Szczepanek et al., 2016). Mathematical models of nonlinear propagation
in fibers, based on the generalized nonlinear Schrödinger equation (GNLSE), are
known for accurate reconstruction of the basic dynamics, spectral width, and the
shape of spectral envelope of supercontinuum pulses obtained in such conditions.
These numerical reconstructions are in majority based on the assumption of an
ideal Gaussian or hyperbolic secant pulse shape of the pump pulses used for
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supercontinuum generation. In contrast to that, femtosecond pulses emitted by
mode-locked lasers most often exhibit complex spectro-temporal structures, which
are far from their mathematical idealizations. It should be underlined that analysis
of experimental data from spectro-temporal measurements in ultrafast optics has
served to broaden understanding of solitonic supercontinuum formation and has
been exploited in very diverse settings, including, for example, coherent anti-Stokes
Raman scattering spectroscopy (Dudley et al., 2002; Shen et al., 2018).

The ultrashort durations in the single picosecond range of all-normal dispersion
broadened supercontinuum pulses, readily obtainable from nonlinear propagation
simulations, are well below the rise and fall times of the fastest analog-to-
digital converters, which makes direct measurements impractical. Second, har-
monic frequency-resolved optical gating (FORG) and its cross-correlation variant
(XFROG) enable overcoming of this limitation (Gu et al., 2002; Trebino, 2012).
Both techniques are routinely applied in extending of characterization of super-
continuum pulses over to the time domain (Dudley et al., 2002; Okamura et al.,
2015; Szczepanek et al., 2016). Since both FROG and XFROG are essentially
measurements of intensity, the phase information is lost and obtaining of the full-
field information requires application of a phase-retrieval algorithm, for example,
the generalized projections, which is very suitable for use with pulses from
mode-locked lasers (DeLong & Trebino, 1994; Trebino, 2012). Results of FROG
characterization and full-field information retrieval performed this way for laser
pulses used to pump supercontinuum generation in fibers discussed in this chapter
are shown in Fig. 15.10. Retrieved pulse duration is around 75 fs, and spectral full
width at half maximum is around 90 nm. The retrieved spectrogram reproduces
experimental data with error less than 2 × 10−3. The pulse profile shows pre- and
post-pulses at an intensity level of around 10% of the central part of the pulse, as
well as a pedestal extending over ±500 ps around the pulse peak.

Reconstruction of supercontinuum pulses can be executed in a similar way but
is more demanding due to their even greater complexity compared to the driving
laser pulses. Implementation of the time-domain ptychography for recording and
analysis of such pulses comes as an alternative (Spangenberg et al., 2015). It brings a
powerful advantage by resolving supercontinuum pulse fine structure on timescales
significantly shorter than the femtosecond laser pump pulse duration and can be
considered a general recommendation for complex pulse retrieval (Heidt et al.,
2016; Rampur et al., 2020).

All-normal dispersion femtosecond fiber supercontinuum is recognized for
its spectral flatness and uniform pulse shape, which stems from its self-phase
modulation and optical wave-breaking dynamics, dominating under a broad range
of modern mode-locked laser operational parameters (Heidt et al., 2017). Somewhat
in contrast to this common presumption, the XFROG measurements reveal their sig-
nificant fine structuring, not only in the straightforwardly accessible spectral domain
but in the timescale as well, which is shown in Fig. 15.11a. The particular example
concerns supercontinuum obtained in the squeezed-lattice, birefringent NL46 series
fiber. The supercontinuum was driven by pulses shown in Fig. 15.10. The pulse
profiles shown have been recorded for a Menlo C-fiber HP mode-locked laser
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Fig. 15.10 Frequency-resolved optical gating measurements of spectro-temporal structure of
femtosecond laser pulses from a mode-locked Er3+-doped fiber-based laser (3.5 nJ, centered at
1560 nm, 100 MHz pulse repetition): (a) measured group delay profile, (b) pulse retrieval result
obtained using a general projections algorithm, (c, d) retrieved pulse spectrum and temporal profile
along with phase profiles. (Adapted with permission from Rampur et al. (2020). ©The Optical
Society)

operating at a central wavelength of around 1560 nm (Menlo Systems, Germany).
The shape of recorded group delay profile confirms nonlinear broadening dynamics
typical to the all-normal dispersion fibers under these pumping conditions, i.e., a
central self-phase modulation range accompanied by two optical wave-breaking
sidebands. The temporal integrity of the pulse is preserved during broadening.
Pulse duration at the output of a 10-cm-long fiber sample is around 4 ps. It can
further be observed that the chirp of the pulses is positive and practically linear over
wavelengths from around 1300 nm to 2100 nm.

The spectrum and the time profile are both substantially modulated, and the
origin of these experimentally observed structures can be explained with the use
of numerical simulations based on the GNLSE. A scalar (single mode) version
of the equation can be employed, because the NL46 series fiber is polarization-
maintaining and reasonable accuracy can be expected if only a single polarization
component of the generated supercontinuum pulses is considered. Importantly,
the computational part of the analysis has to be performed in two ways. Firstly,
the full-field information on the complex pump pulse amplitude is input as the
GNLSE starting condition. Simulation result for this scenario is shown in Fig.
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Fig. 15.11 Group delay profiles of supercontinuum pulses obtained in a short sample of NL46
series fiber: (a) measured profile, (b) simulated profile taking full amplitude and phase of the
measured femtosecond pump pulse (75 fs, 3.5 nJ, centered at 1560 nm), and (c) simulated profile
taking a temporally filtered pump pulse without side peaks or pedestal. The projected axes show
the retrieved or simulated pulse spectra and temporal profiles in linear scale. The insets in (b) and
(c) show the pump pulse shapes taken in the simulations. (Adapted with permission from Rampur
et al. (2020). ©The Optical Society)

15.11b, and what is striking is the remarkable accuracy of this reconstruction of
the measured data on physical supercontinuum pulses. For example, the shortest
temporal features in both measured and simulated data sets are located at time delays
of roughly 1 ps, which is expanded in the insets in Fig. 15.11a and in Fig. 15.11b.
These beating oscillations are caused by temporally overlapping supercontinuum
spectral components with a long and spectrally narrow spike around a wavelength of
1530 nm. The GNLSE simulation including the full-field information on the pump
pulse allows tracking it back to the unconverted low-level pedestal of the pump pulse
(Rampur et al., 2020). This is supported by the beat frequency of this oscillation,
which can be determined from the group delay trace in Fig. 15.11 and is equal to 40
THz.

The second part of the numerical simulations should take an ideal Gaussian pump
pulse as the starting condition. Here it was simply the pump pulse profile retrieved
from the FROG data in Fig. 15.10, with the side peaks and the pedestal filtered out,
as shown in the inset in Fig. 15.11c. While the general shape of the spectrogram,
i.e., its curvature and spectral and temporal extent, is similar to the physical data, all
the fine spectro-temporal structuring is missing. Confrontation of simulation results
in Fig. 15.11b – with the full-field information on the initial pulse – and in Fig.
15.11c, where the initial pulse was ideally Gaussian, provides clear evidence that
the nonideal pulse shapes of femtosecond lasers are traceable to fine temporal and
spectral structuring of coherent supercontinuum pulses.

Interestingly, a feature negligible at first, which is located in the XFROG mea-
sured trace around the wavelength of 1400 nm and stretched between the first and the
second picosecond of delay behind the pulse center, has not been reproduced by the
GNLSE simulation including full-field data of the driving laser pulse. This feature
is however repeatable in measurement and was reproducible with time-domain
ptychography (Rampur et al., 2020). Explanation of its origin is aided by XFROG
characterization of the remaining all-normal dispersion microstructured fibers in the
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Fig. 15.12 Measured group delay profiles of supercontinuum pulses obtained in short samples of
(a) NL48 series polarization-maintaining fiber and (b) NL38 series non-polarization-maintaining
fiber; the spectral projection displays the spectrum retrieved by the e-PIE compared to an
independent OSA measurement in linear scale. The temporal projection displays the marginal of
the group delays and the intensity and retrieved phase. Pump: 75 fs, 3.5 nJ, centered at 1560 nm.
(Adapted with permission from Rampur et al. (2020). ©The Optical Society)

lead-silicate soft glass family, including specifically the bow-tie birefringent variant
NL48 and the non-polarization-maintaining base structure NL38. Corresponding
group delay traces measured for supercontinuum pulses from these fibers with
XFROG are shown in Fig. 15.12. The pumping conditions were identical to the
analysis performed with the squeezed-lattice NL46 series fiber.

In the case of the polarization-maintaining NL48 series fiber, the group delay
profile is characterized with a nearly perfect linear chirp, which is generally
attractive for ultrafast amplifier seeding. The pulse extends in the time domain over
around 6 ps, compared with 4 ps obtained for the same sample length (10 cm) of the
NL46 series fiber. This is explained by the stronger normal dispersion of the bow-tie
NL48 series fiber, in comparison with the squeezed-lattice NL46 series fiber. Both
the modulation and temporal beating effects related to the pump pulse structure are
clearly visible.

Group delay profile of supercontinuum generated in the non-polarization-
maintaining NL38 series fiber shows several important differences. Partial
similarities to the birefringent fiber variants include however nearly linear chirp,
excluding the blue-shifted sideband, which slopes with increasing delay due to
the shape of the fiber dispersion profile. Spectral and temporal structuring is also
present. As opposed to clearly defined spectrograms obtained for supercontinuum
from the two birefringent fibers, here the edges of the spectrogram are blurred
and exhibit noisy contours. The main pulse is accompanied by weak features
around the wavelengths of 1400 nm and 1600 nm at delays of −2 ps and + 2 ps,
respectively. The noisy contour and the features separated from the main pulse are
not readily observable in the spectrograms recorded for the two birefringent fiber
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variants, which delivered polarized supercontinuum pulses. Unintentional, weak
birefringence has been assigned to onset of polarization modulational instability
(PMI) decoherence in all-normal dispersion supercontinuum generation and to
amplification of quantum noise during the process (Gonzalo et al., 2018; Millot et
al., 1998). Finally, in order to explain the appearance of a similar feature around
the 1400 nm wavelength in the spectrogram of the polarization-maintaining NL46
fiber, one has to recall the fiber’s birefringence characteristic, shown in Fig. 15.6
in the preceding section. Birefringence around this wavelength nears zero, and for
this reason, the nonlinear dynamics are prone to PMI. Notably, a similar low-level
feature around the 1600 nm wavelength and at +2 ps delay, recorded for the NL38
fiber, is missing in the spectrogram of the NL46, where its birefringence reaches
2.5 × 10−4. This further supports assignment of these separated features to the
onset of PMI.

15.6 Conclusions

The highlight of the chapter is that the all-normal dispersion, coherent super-
continuum generation concept can benefit from broad design flexibility offered
by soft glasses, when its spectral extension into the long-wave near-infrared is
considered. The key advantage of multicomponent soft glasses – the easy adaptation
of chemical composition for designed thermal, mechanical, and optical properties
enables matching of glass transition temperatures down to �Tg = 11 ◦C and
thermal expansion coefficient down to �α+20/+300◦C = 0.2 × 10−6/K at the same
time providing a refractive index contrast of �n = 0.169263 – opens a route to
designing highly nonlinear fibers with flattened normal dispersion profiles over
their entire transmission windows. Currently, soft glasses allowing these design
specifications are commercially available (Schott F2 and SF6), while the all-
solid glass microstructure greatly simplifies fiber drawing procedure and facilitates
reproducibility. Using this approach, all-normal dispersion photonic crystal fibers
with nonlinear coefficients exceeding 200 W−1 km−1 are readily achievable. This is
sufficient for generation of an octave-spanning supercontinuum with pumping from
mode-locked Er-fiber lasers delivering 100 fs pulses with peak power below 50 kW
and less than 5 nJ of energy. Spectral coverage of such coherent, broadband pulses
is wide enough to simultaneously seed Er3+ and Tm3+ or Tm3++Ho3+ ultrafast
fiber amplifiers for intriguing prospects of high-quality, ultrashort pulse synthesis
using fully fiberized platforms. The long-wavelength arm of such a hypothetical
system has already been demonstrated with a Tm3++Ho3+ co-doped fiber amplifier
system (Heidt et al., 2020), seeded by coherent supercontinuum obtained from the
NL38 series fibers described in this chapter. The Tm3++Ho3+ co-doped systems
are attractive, because they have the broadest gain band out of all the mature
fiber amplifiers containing the Yb3+, Er3+, or Tm3+ dopant ions and can be
recompressed close to the transform limit using single mode fibers. Furthermore
the 2 μm wavelength band is very attractive for ultrashort pulse amplification,
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for its spectral closeness to the mid-infrared wavelength band and its biochemical
sensing applications, as well as for a factor of 4 higher intensity threshold for
detrimental transverse mode instability phenomena compared to the Yb3+-doped
systems (Gaida et al., 2018).

This particular application of the non-polarization-maintaining fiber of the NL38
series has revealed the first clues to polarization modulational instabilities limiting
the already excellent noise performance of the reported Tm3++Ho3+ fiber amplifier
(Heidt et al., 2020). This called for overcoming of the PMI-related decoherence,
onset of which took place during the broadening in a non-polarization-maintaining
soft glass fiber and was subsequently amplified in the Tm3++Ho3+ amplifier. The
fast prototyping inherent to the soft glass platform and straightforward introduction
of fiber preform modifications of the all-solid glass photonic crystal fiber supports
the development of intentionally birefringent fiber variants. Polarization extinction
ratio of 10 dB in the generated supercontinuum has proven sufficient for further
limiting of relative intensity noise in a Tm3+ ultrafast fiber amplifier seeded by this
supercontinuum signal, down to levels observed for the state-of-the-art femtosecond
Er-fiber laser front-end (Rampur et al., 2019). Such performance characteristics
are a promising perspective for the work on fiber-based wavelength-division
multiplexed ultrashort pulse amplification systems. Worth noting is that this track
record does not exhaust the potential of heavy-metal oxide soft glasses for specialty
fiber optics. In each of the fiber variants, i.e., non-polarization-maintaining NL38
series and the two intentionally birefringent versions, an air-hole lattice photonic
crystal fiber drawn from a highly nonlinear tellurite glass was discussed as a
potential alternative (Klimczak et al., 2019; Shreesha et al., 2020). While admittedly
lacking the advantage of straightforward fabrication and mechanical sturdiness of
their all-solid glass counterparts, these two tellurite fibers exceeded the silicate
designs in nonlinearity and birefringence (the NL51 series fiber) and consequently
outperformed them in supercontinuum bandwidth and polarization extinction ratio
(the birefringent variant NL51). Additionally, tellurite glasses possess the potential
for access to the mid-infrared wavelengths. Thus, it would be very interesting to see
the future dynamics of development and the contribution of this fiber technology in
the field of ultrafast fiberized lasers and amplifiers.

In concluding remarks, it is fitting to point out that measurements using advanced
ultrashort pulse diagnostics, applied to characterization of supercontinuum pulses
from the discussed fibers, confirmed all of the earlier numerical predictions of
coherent supercontinuum pulse profiles. What is however of special value is that the
combination of XFROG measurements, ptychography pulse retrieval algorithms,
and nonlinear propagation simulations based on the full-field information on the
pump pulses offered a much deeper perspective on the coherent supercontinuum
generation in fibers than the basic simulations assuming purely Gaussian (or
hyperbolic secant) pump pulse idealizations. Comparison of minutiae features
observed in spectrograms measured for pulses from polarization-maintaining and
non-polarization-maintaining fiber variants, such as pulse contour details and trail-
ing or leading features separated from the main, preserved supercontinuum pulse,
enabled identification of noise amplification related to polarization modulational
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instability. This demonstrated with clarity the advantage of the birefringent fiber
designs in generation of coherent supercontinuum. In addition to that, confrontation
of nonlinear propagation simulations assuming either physical, full-field data on
the initial pulses or pulses with the technical distortions filtered out (pre- and post-
pulses and a pedestal) provided the evidence necessary for tracing back the complex
spectral and temporal structuring of the supercontinuum pulses to the femtosecond
laser pulses used for pumping. These analyses are indeed of curiosity-driven value
but are not without a practical dimension in the future development of light sources
with unprecedented stability and pulse quality.
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K., Paździor, A., Mergo, P., Martynkien, T., Feurer, T., Klimczak, M., & Heidt, A. M. (2020).
Temporal fine structure of all-normal dispersion fiber supercontinuum pulses caused by non-
ideal pump pulse shapes. Optics Express, 28, 16579.



594 M. Klimczak et al.

Ranka, J. K., Windeler, R. S., & Stentz, A. J. (2000). Visible continuum generation in air-silica
microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 25, 25.

Reeves, W. H., Skryabin, D. V., Biancalana, F., Knight, J. C., Russell, P. S. J., Omenetto, F.
G., Efimov, A., & Taylor, A. J. (2003). Transformation and control of ultra-short pulses in
dispersion-engineered photonic crystal fibres. Nature, 424, 511.

Saitoh, K., Koshiba, M., Hasegawa, T., & Sasaoka, E. (2003). Chromatic dispersion control in
photonic crystal fibers: Application to ultra-flattened dispersion. Optics Express, 11, 843.

Sell, A., Krauss, G., Scheu, R., Huber, R., & Leitenstorfer, A. (2009). 8-fs pulses from a compact
Er:Fiber system: Quantitative modeling and experimental implementation. Optics Express, 17,
1070.

Shen, Y., Voronin, A. A., Zheltikov, A. M., O’Connor, S. P., Yakovlev, V. V., Sokolov, A. V.,
& Scully, M. O. (2018). Picosecond supercontinuum generation in large mode area photonic
crystal fibers for coherent anti-stokes Raman scattering microspectroscopy. Scientific Reports,
8, 9526.

Shreesha, R. D. S., Karpate, T., Ghosh, A. N., Klimczak, M., Pysz, D., Buczynski, R., Billet,
C., Bang, O., Dudley, J. M., & Sylvestre, T. (2020). Real-time noise measurement in
supercontinuum generation in PM and non-PM ANDi tellurite fibers. Conference on Lasers
and Electro-Optics OSA Technical Digest (Optical Society of America, 2020), paper STh3P.4.

Siwicki, B., Kasztelanic, R., Klimczak, M., Cimek, J., Pysz, D., Stępień, R., & Buczyński, R.
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Chapter 16
Supercontinuum Generation
in Birefringent All Normal Dispersion
Fibers

Geng Wang, Stephen A. Boppart, and Haohua Tu

Abstract Supercontinuum generation using ultrafast pulses and nonlinear optical
fibers has produced numerous broadband sources and enabled disparate applica-
tions. To ensure high spectral coherence, investigators have taken the advantage
of birefringent all normal fibers and/or operating regimes that the supercontinuum
is exclusively generated in a normal dispersion regime of birefringent fibers.
(For additional information on all normal dispersion effects for supercontinuum
generation, see Chap. 6 by Alexander M. Heidt).

Keywords Supercontinuum generation · Spectral coherence · Photonic crystal
fibers · Normal dispersion · Birefringence · Polarization-maintaining · Relative
intensity noise · Pulse compression · Wave-breaking

16.1 Introduction

Alfano and Shapiro discovered the supercontinuum generation in bulk materials
(Alfano & Shapiro, 1970). White-light generation by the combination of a photonic
crystal fiber (PCF) and an oscillator-type ultrafast laser was reported later (Ranka
et al., 2000) and has since initiated the so-called supercontinuum (SC) revolution
(Dudley & Taylor, 2009). Before this revolution, SC was typically generated in a
conventional fiber with its full bandwidth falling into a normal dispersion regime
of the fiber, so that the fiber functioned like an all normal dispersion (ANDi) fiber.
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Fig. 16.1 (a) Dispersion engineering of typical ZDW PCFs. (b) Dispersion engineering of DFDD-
ANDi-PCFs. (c) Comparison of supercontinuum generation in a DFDD-ANDi-PCF and a ZDW
PCF

This was a natural condition dictated by the available laser sources and nonlinear
fibers. Although pulse compression down to 6 fs (i.e., broad coherent bandwidth)
was attained (Fork et al., 1987), the complicated source laser (low repetition-rate
amplifier) limited the widespread application of the resulting SC.

After the revolution, SC was typically generated in a zero-dispersion wavelength
(ZDW) PCF with its bandwidth falling into both normal and anomalous regimes of
the fiber (i.e., ZDW lies within SC spectrum). The powerful dispersion engineering
of PCFs [Fig. 16.1a] shifts the ZDW of the fiber close to the wavelength of a
standard mode-locked (femtosecond or picosecond) source laser, leading to this
widely accessible SC dominated by soliton dynamics. Unfortunately, the pulse
compressibility (or coherence) of the SC is generally poor due to the intrinsic noise
of the soliton dynamics (Dudley et al., 2006). The nonlinear frequency generation
of a PCF having a ZDW of λZDW can be broadly classified into three operating
regimes:

(1) λZDW < < λpump, soliton-Cherenkov-radiation regime. In this regime, the pump
pulses transfer their energy into discrete bands of solitons and Cherenkov
radiation(s), so that no spectrally uniform SC is generated (Tu & Boppart,
2009).

(2) λZDW ≈ λpump, incoherent SC generation regime. This regime has generated the
broadest SC via soliton excitation and has received the most attention. However,
the coherence of the SC is often suboptimal (Dudley et al., 2006).

(3) λZDW > > λpump, coherent SC generation regime. This regime produces
relatively narrow bandwidth SC mainly through self-phase modulation (SPM).
However, the generated SC has full coherence (Dudley et al., 2006), which has
been demonstrated by pulse compression (Südmeyer et al., 2003; McConnell &
Riis, 2004).

Then, the concept of dispersion engineering of PCFs [Fig. 16.1b] (Chow et al.,
2006; Heidt, 2010; Tu et al., 2010; Hooper et al., 2011), which was suggested
by earlier studies on conventional circular fibers (Mori et al., 1997; Nishizawa &
Takayanagi, 2007) and the PCFs with two closely spaced ZDWs (Falk et al., 2005;
Tse et al., 2006; Hartung et al., 2011), was considered as a method to generate
soliton-free coherent SC. The engineered PCF has a flattened convex profile of
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normal dispersion with a distinct minimum-dispersion wavelength (MDW) but
no ZDW. It was therefore termed as a dispersion-flattened dispersion-decreased
all normal dispersion (DFDD-ANDi) fiber (Tu & Boppart, 2013). The interest
in DFDD-ANDi-PCFs was driven by the need of a practical fiber SC source
with full coherence across all the frequency components of the SC. Broadband
coherent sources are indispensable in coherent nonlinear microscopy (Silberberg,
2009; Marks & Boppart, 2004), frequency metrology (Udem et al., 2002), nonlinear
frequency conversion/amplification, ultrashort pulse generation, and other coher-
ently controlled applications. This trend reflected a shift of focus for dispersion
engineering from pursuing the broadest SC generation to preserving the coherence
of SC generation.

Because only the SC generation in a normal dispersion region of the fiber is
guaranteed to be coherent, it is fair to compare the performance of the optimized
DFDD-ANDi-PCF with that of the ZDW PCF operated in the third regime (λZDW
> > λp) [Fig. 16.1c]. Due to the sloped dispersion profile of the ZDW PCF, the λZDW
of the fiber must be placed at a longer wavelength than the red edge of the intended
SC. Thus, an undesirably large dispersion occurs at λpump to adversely influence the
spectral broadening [Fig. 16.1c]. This observation clearly illustrates the advantage
of the DFDD-ANDi-PCF over the conventional ZDW PCF in broadband coherent
SC generation.

Despite the progress along this line of research, the noticeable effect of the
birefringence of the DFDD-ANDi-PCFs on the SC generation (Tu et al., 2010;
Wang et al., 2007) was completely ignored. This birefringence is widely present
in nonlinear non-polarization-maintaining fibers with a typical core size of 2 μm,
presumably due to the structural symmetry breaks introduced in the fiber drawing
process (Tu et al., 2012). The intrinsic form-birefringence was found to be on the
order of 10−5 and to profoundly affect the SC generation in a wide variety of
nonlinear PCFs (Tu et al., 2012). The weak unintentional birefringence not only
negatively affects the controllability and long-term stability of the ANDi fiber SC
generation (Tu et al., 2012; Domingue & Bartels, 2013) but also fundamentally
limits the application of this technology when full spectral coherence or a low-
noise polarized source is required. Fortunately, this hidden intrinsic noise and
the accompanied spectral decoherence can be effectively suppressed by using a
polarization-maintaining (PM) ANDi fiber with a large intentional birefringence
(>10−4).

16.2 Quantified Supercontinuum Generation in Birefringent
All Normal Fibers

Theoretically, the scalar generalized nonlinear Schrödinger eq. (S-GNLSE) is used
to quantitatively predict the spectral-temporal properties of fiber continuum pulses
under a non-depolarization condition (Agrawal, 2001; Hori et al., 2004; Dudley
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et al., 2006; Hult, 2007; Heidt, 2009; Tu et al., 2010; Liu et al., 2016), i.e.,
with polarized fiber output from polarized pump input. However, due to the weak
unintentional form-birefringence (B = 1 × 10−6 – 5 × 10−5) intrinsic in these
nonlinear fibers, a complete understanding of the corresponding SC generation
must rely on the coupled generalized nonlinear Schrödinger eq. (C-GNLSE) that
takes account of the birefringence (Agrawal, 2001; Coen et al., 2002; Zhu &
Brown, 2004; Tianprateep et al., 2005; Tu et al., 2012), rather than the S-GNLSE
that ignores this effect. Conventional simulations based on the S-GNLSE fail to
reproduce the prominent observed features of the SC generation in a short piece
of DFDD-ANDi-PCF, but these features can be qualitatively or semiquantitatively
understood by the C-GNLSE (Tu, 2012). The nonlinear polarization effects induced
by the birefringence significantly distort the otherwise simple spectrotemporal
field of the SC pulses. Also, the local random variation of the linear and circular
birefringence may further complicate the rigorous theoretical modeling to guide the
pulse compression and may be responsible for the discrepancy between the observed
SC spectra and the simulated spectra (Tu et al., 2012).

Experiments have been consistent with theoretical predictions. Under a wide
range of fiber lengths and incident powers, the spectrum of SC generated from non-
birefringent or weakly birefringent PCFs was found to depend sensitively on the
polarization of the incident laser pulses (Tu et al., 2010). Changing the polarization
direction of the incident laser beam did not change the power of the continuum
but noticeably varied the spectrum of the continuum, particularly at high incident
powers. Also, the continuum was rather unpolarized, particularly at long fiber
lengths and high incident powers.

The birefringence of the fiber can be measured by a cutback method (Tu et al.,
2010), which can quantify the periodicity of the polarization pattern of the fiber
output, i.e., the beat length. To evaluate the extent of possible polarization-mode
depolarization, the polarizer can be oriented along the same principal axis at the
exit end of the fiber to measure the output power P‖ and along its orthogonal axis to
measure the output power P⊥. The extent of the depolarization is then represented
by P⊥ / (P⊥ + P‖). The experiment indicated the beneficial effect of a large linear
birefringence to delay the nonlinear polarization-mode depolarization onset (Tu et
al., 2010).

Because the nonlinear polarization-mode depolarization will limit the bandwidth
of the broadband coherent optical source, the most straightforward method to
implement a coherent broadband source should avoid the non-birefringent DFDD-
ANDiF with a guiding core of circular, hexagonal, or other types of high-order
rotational symmetry (Steel et al., 2001). Rather, a certain degree of asymmetry
should be intentionally introduced to the DFDD-ANDi-PCF to attain a linear
modal birefringence of >2 × 10−5. Therefore, a PM DFDD-ANDi-PCF is one
promising candidate to develop a practical coherent fiber SC laser with a highly
polarized output. In addition, the smooth spectral phase of SC pulses permits simple
transform-limited pulse compression based on noniterative pulse compression by
applying a phase mask to theoretically quantified SCs (Tu et al., 2012).
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16.3 Polarization Noise and Related Spectral Decoherence
in All Normal Dispersion Fiber Supercontinuum
Generation

The SC generated exclusively in the normal dispersion regime of a nonlinear
fiber is widely believed to possess low optical noise and high spectral coherence
(Liu et al., 2015). The DFDD-ANDi fibers have been motivated by this belief to
construct a general-purpose broadband coherent optical source. However, a large
short-term polarization noise is identified in this type of SC generation that has
been masked by the total-intensity measurement in the past. This short-term noise
will affect the generation of coherent SC. It can be easily detected by filtering
the SC with a linear polarizer (Liu et al., 2015) before polarized relative intensity
noise (RIN) measurements (Nishizawa & Takayanagi, 2007) [Fig. 16.2]. Also, the
spectral decoherence can be measured by pulse compressibility assessment (Hooper
et al., 2011; Tu et al., 2012). Importantly, the observed short-term (>1 MHz) RIN
noise (Nishizawa & Takayanagi, 2007) can be discriminated against long-term
(<100 Hz) instability (Domingue & Bartels, 2013), because the former corresponds
to the intrinsic (quantum) broadband noise component due to input shot noise
and spontaneous Raman scattering, whereas the latter corresponds to the large-
amplitude noise component at low frequencies arising from technical noise (Dudley
et al., 2006).

For the DFDD-ANDi fiber SC generation, the existence of the short-term
polarization noise redistributes the SC pulse energy pulse-by-pulse along the slow
and fast axes but conserves the total pulse energy. However, a more complex
situation is encountered in the depolarized hybrid anomalous-normal dispersion
(HANDi) fiber SC generation, wherein the observed noise is a mixture of the total-
intensity noise and polarization noise while the total pulse energy is not conserved.
The total-intensity noise is specific to the HANDi fiber SC generation and can

Fig. 16.2 (a) Spectrum of SC generation in a non-PM DFDD-ANDi-PCF. (b) Observed polariza-
tion noise of this SC either filtered by linear polarization or without the filtering
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be simply explained through rogue-wavelike characteristics (Liu et al., 2015).
Specifically, a generated SC pulse is mostly “median” so that its long-wavelength
edge solitons undergo average redshifts, resulting in a normal energy loss to the
pulse. This pulse-to-pulse energy fluctuation is more pronounced in a longer fiber
where the disparity of the redshifts is enlarged (Dudley et al., 2008), leading to the
observed buildup of total-intensity noise along the fiber.

The polarization noise may arise from the amplification of the input shot noise
that distributes photons along two orthonormal polarizations, since the simulated
SC generation above an output power threshold is sensitive to (instable against) the
input polarization (Tu et al., 2012). Fortunately, this hidden intrinsic noise and the
accompanied spectral decoherence can be effectively suppressed by using a PM
ANDi fiber (Liu et al., 2015). In order to build a broadband coherent fiber SC
laser, the combination of a laser with ANDi fiber SC generation from a PM fiber
seems to be the optimal strategy. The coherence-disrupting total-intensity noise
is avoided by the ANDi fiber SC generation free of the rogue behavior, and the
coherence-disrupting polarization noise can be eliminated by the PM fiber with
large intentional linear birefringence. It has been shown experimentally that the
PM ANDi fiber significantly improves the coherent bandwidth (780–1300 nm) and
output spectral power (~1 mW/nm) over its non-PM predecessor (Liu et al., 2015).

A later study (Gonzalo et al., 2018) employed the C-GNLSE to investigate the
coherence and noise of the SC generated in a standard ANDi fiber and explained
the mechanism of polarization noise in the weakly birefringent fiber pumped
with femtosecond pulses. The result further verified that a well-controlled input
polarization would be required for coherent SC generation from PM ANDi fibers.
Also, they tested the maximum pump pulse length for low-noise SC operation in
which optical wave-breaking (see below) is fully used to generate the broadest
possible spectrum.

16.4 Wave-Breaking-Extended Fiber Supercontinuum
Generation

Optical wave-breaking (WB) is a well-documented effect that dramatically distorts
the temporal and spectral properties of a short optical pulse propagating along a nor-
mally dispersive optical fiber (Anderson et al., 1992; Rothenberg & Grischkowsky,
1989; Tomlinson et al., 1985). It can be equivalently induced by increasing the
coupling power of the input pulses or the fiber length of pulse propagation (Finot et
al., 2008).

Because the SPM spectral fringes are asymmetrically broadened toward the high
frequency, this effect produces an optical shock that precedes WB, evidenced by the
temporal oscillations immediately following the trailing edge. These oscillations
reflect the interference between the short-wavelength components of the pulse,
leading to the short-wavelength tail in the pulse spectrum through four-wave mixing
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(Anderson et al., 1992; Rothenberg & Grischkowsky, 1989; Tomlinson et al., 1985).
At elevated coupling powers, the oscillations following the trailing edge strengthen
so that the short-wavelength tail develops into an intense sidelobe. By a similar
mechanism, WB occurs on the steepened leading edge of the pulse to produce the
long-wavelength tail in the pulse spectrum. In general, WB is responsible for the
emerging spectral tail at the short- or long-wavelength end of the SC, while the
self-steepening (Agrawal, 2011) is responsible for the earlier onset of the short-
wavelength tail and the biased spectral extension of WB toward the high-frequency
(short-wavelength) end (Liu et al., 2012).

This effect has conventionally been avoided (Anderson et al., 1993) in fiber SC-
based pulse compression because the accumulated frequency chirp of the output
pulse cannot be fully compensated by a standard prism (or grating) pair (Tomlinson
et al., 1984, 1985). However, this limitation is not intrinsic if a 4f pulse shaper
(Tomlinson et al., 1984) is employed to remove both the linear and nonlinear chirps
of the SC pulse (Metzger et al., 2011; Tu et al., 2012; Demmler et al., 2011). When
the SC is generated beyond the WB limit by using a larger input pulse energy and/or
a longer fiber length (Finot et al., 2008), the spectral edges of the SPM-extended
SC are further extended by WB through four-wave mixing (Anderson et al., 1992;
Heidt, 2010; Heidt et al., 2011; Rothenberg & Grischkowsky, 1989; Tomlinson et
al., 1985). Thus, the resulting WB-extended SC (i.e., above the WB limit) may lead
to a shorter pulse at a higher compression ratio (Heidt, 2010; Heidt et al., 2011) by
avoiding the limiting factor of nonlinear depolarization (Tu et al., 2012).

By using the 4f pulse shaper and operating under fully developed WB, a
short compressed pulse width (6.4 fs) and a high compression ratio (28×) were
simultaneously achieved (Liu et al., 2012), which greatly improves the performance
(9.6 fs at a compression ratio of 24×) reported in a similar study operated in a
WB-free regime (Tu et al., 2010, 2012). Therefore, WB is not an intrinsic barrier
for high-quality pulse compression, and the SC generation beyond the WB limit
is beneficial for pulse compression, with both a short pulse width and a high
compression ratio. A later study (Castelló-Lurbe & Silvestre, 2015) numerically
obtained coherent octave-spanning mid-infrared SC generation at telecommunica-
tion wavelengths from a silicon waveguide in a normal dispersion regime. The large
spectral broadening relied on nonlinear processes beyond WB and departed from
common SC produced in a solitonic regime.

16.5 Recent Progress and Application of Supercontinuum
in Birefringent All Normal Fibers

By coupling pulses (1041 nm, 220 fs, 80 MHz) from a Yb:KYW laser (femtoTRAIN
IC model-Z, High Q Laser) into a 21 cm custom-made PM PCF (NL-1050-NEG-
PM-FUD, NKT Photonics, Mode field diameter @1064 nm: 2.2 ± 0.5 μm) along
the slow axis of the fiber, Tu et al. (2016) generated a broadband SC spectrum (780–
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1320 nm) that enabled high-quality multiphoton imaging of unstained biological
samples. To suppress the variation of the spectrum due to environmental changes,
the linear birefringence of the fiber was designed to be approximately 4.2 × 10−4,
ensuring small (<0.5%) nonlinear depolarization along the fast axis of the fiber.
Throughout a 1-year test period, this spectrum and the corresponding spectral
phase were reproducibly measured in daily operations. The results demonstrated
reliable spectral phase stability of this source and reproducible output power and
polarization without either the short-term quantum-noise instability or the long-
term birefringence-induced instability. In order to compress broad-bandwidth SC
pulses generated in an ANDi-PCF, Dwapanyin et al. demonstrated the improved
efficiency of i2PIE over MIIPS based on time-domain ptychography (Dwapanyin
et al., 2020). In this work, a tunable femtosecond titanium-sapphire laser (Spectra-
Physics Tsunami) with a 13 nm bandwidth centered at 800 nm with 12.5 nJ energy
pulses (80 MHz) was used to pump an experimental PM ANDi-PCF (NL-1050-PM-
NEG, NKT Photonics) to create a broadband SC spanning from 720 to 840 nm.

High peak-power coherent SC generation has been the focus for some studies.
Using a low-nonlinearity fiber and pulses from a nonlinear fiber amplifier seeded by
a mode-locked Yb-doped fiber oscillator, S. R. Domingue and R. A. Bartels (2015)
generated 19-fs pulses centered at 1065 nm with 11.5 nJ of pulse energy (700 mW
average power) based on a high-efficiency pulse shaper and a Plössl lens with up to
80% transmission efficiency. Because small-core PM nonlinear fibers (solid core
and cladding) are limited in availability and have a low damage threshold, this
study employed a widely available, all normal dispersion, polarization-maintaining
fiber with a 10-μm core and a short fiber length (<15 cm) to minimize deleterious
nonlinear effects and to eliminate fiber damage while still producing pulse band-
widths well beyond the Yb gain bandwidth limit. Anomalous dispersion fibers were
not used because they limit the pulse energy to soliton numbers of ∼10 (<1 nJ
pulses) for coherent SC generation. By using a large mode-area fiber (PM-LMA-
15, NKT Photonics, Denmark, Mode field diameter @1064 nm: 12.6 ± 1.5 μm) to
avoid photodamage to the fiber itself and an industrial laser (10.2 MHz, femtoTrain,
Spectra-Physics, Santa Clara, USA), You and Tu et al. (2018) generated a coherent
broadband SC (865–1210 nm) with high peak power. The 1110 ± 30 nm band of the
SC was selected by amplitude shaping in the pulse shaper for multiphoton imaging,
and the average power of this band after the pulse shaper was able to reach 100 mW.

To expand the spectral coverage of coherent SC generation, Tarnowski et al.
(2017) demonstrated a polarized all normal dispersion SC spanning beyond 2.5 μm
based on 70 fs pump pulses and a birefringent silica microstructured fiber with a
germanium doped core and very small air channels in the microstructured cladding.
The output reached the furthest ever generated into the mid-infrared wavelengths in
all normal dispersion silica fibers. This study also identified the asymmetry between
propagation in both polarization axes and showed that pumping along a slow fiber
axis is beneficial for a higher degree of polarization. In addition, the numerical
simulations based on C-GNLSE showed good agreement with experimental spectra
and addressed the long-wavelength limit of the silica all normal dispersion SC.
Another study (Dobrakowski et al., 2018) used relatively sturdy silicate soft glasses
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to develop a weakly birefringent (10−4) PM ANDi-PCF with normal dispersion
across its entire transmission window, which was compatible with 1560 nm
femtosecond lasers.

A long-standing issue in coherent SC generation is the difficulty in generating a
SC robustly maintained in one polarization state across its entire spectrum. Because
the polarization state of SC generated in straight PCFs varies over its spectrum due
to random fluctuations in weak linear birefringence, coupling between orthogonally
polarized components is induced by modulational instability and the vectoral nature
of soliton fission. Using a helically twisted, circularly birefringent (10−6), solid-
core PCF created by spinning a linearly birefringent fiber preform during the draw,
Sopalla et al. (2019) experimentally generated a broadband circularly polarized SC
(350–1750 nm) across its entire spectrum. The SC shared the same polarization
state as the pump and showed no sign of depolarization. A numerical study of the
polarization properties of the SC generated in twisted and untwisted PCFs was also
carried out based on C-GNLSE, yielding results that were in good agreement with
the experimental results.

The spectral coherence is intrinsically linked to polarization noise. Using the
polarization-resolved vector extension of the generalized nonlinear Schrödinger
equation, Feehan et al. (2020) conducted a further numerical investigation on the
noise-related polarization dynamics in normal dispersion fibers and found that the
pulse coherence starting from its leading edge was degraded when the influence
of Raman amplification surpassed that of the coherent self-phase modulation and
optical WB processes, i.e., when dispersion was high or when a long fiber or
pump pulse duration was used. Moreover, this process was found to have no
power threshold for a given polarization group velocity mismatch and is maximized
when the weaker polarization component has a higher group velocity. In addition,
the polarization noise is reduced (but not fully prevented) when the high energy
component propagates along the low index axis of the fiber. This effect is different
from other birefringence-dependent effects (Tu et al., 2012) which also lead to
decoherence and destabilization of the polarization in ANDi SC generation (Liu
et al., 2015).

16.6 Conclusion and Outlook

The development of supercontinuum generation in birefringent all normal disper-
sion fibers parallels its counterpart in non-birefringent and/or anomalous dispersion
fibers. The underlying mechanisms have been revealed by numerous studies over
the last few decades, and a relatively comprehensive understanding of the related
nonlinear optical effects has been gained. Future studies are expected to balance
various trade-offs in coherent supercontinuum generation, such as broad spectral
coverage, high spectral coherence or low optical noise across all wavelengths, high
average and/or peak power, good single-mode spatial profile of the fiber, and the
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absence of long-term photodamage to the fiber. It is possible that the optimal
combination of these aspects would depend on a given application (e.g., multiphoton
microscopy). With more efforts on specialty fiber fabrication and laser source
engineering, it is reasonable to assume that high peak-power broadband coherent
supercontinuum sources will be available commercially for specific biological and
biomedical applications.
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Chapter 17
Ultra-Supercontinuum Generation
and Higher Harmonic Generation
from Intense Ultrafast Laser Pulses
in Various States of Matter

Shah Faisal Mazhar and Robert R. Alfano

Abstract In this chapter, we discuss the generation of coherent ultrawide spectral
bands from DC to XUV and X-ray beams using intense femtosecond pulses
in various states of matter for various applications such as microscopes. The
mechanisms responsible for the ultra-supercontinuum (USC) and higher harmonic
generation (HHG) arise from the temporal response of the nonlinear susceptibilities
produced from the Kerr effect from various types of motion such as electron
cloud distortion, molecular redistribution, ionization, plasma formation, rotation,
and vibration of molecules in solids, liquids, and gases.

The slower molecular response to n2 and n4 from molecular and orientation
motion which follows the envelope of the optical field of the laser gives rise to
extreme broadening without HHG. The resulting spectra extend symmetrically on
both the Stokes and anti-Stokes sides resulting in ultrawide supercontinuum from
XUV on the anti-Stokes to the IR, RF, to DC on the Stokes side covering most of
the electromagnetic spectrum.

The instantaneous fast response of n2 and n4 at the optical laser frequency of
carrier-envelope phase at ω0 results in odd HHG and spectral broadening about each
harmonic on the anti-Stokes side of the pump pulse. CS2 and the rare noble gas
material are used to simulate USC and HHG spectra and compared with existing
experimental spectra. The cutoff frequencies and attosecond pulse produced from
HHG are explained from the fast Kerr n2 model.

The theoretical simulations presented in this chapter on SC, USC, and HHG are
generated from SPM and ESPM using the Kerr index n2 and are compared with
the existing experimental work performed and to be untaken in solids, liquids, and
gases.
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Keywords Pulse envelope · Carrier-envelope phase · Self-phase modulation ·
Kerr effect · Nonlinear refractive index · n2 · Spectral broadening · White-light
generation · Ultra-supercontinuum · Higher harmonic generation · Femtosecond
laser · Extreme intensity · Material response times · Electron cloud distortion ·
Ionization · Plasma formation · Molecular redistribution · Rotational motion ·
Vibrational motion

17.1 Introduction

Significant advances in understanding the underlying properties of materials in the
fields of physics, chemistry, biology, and material sciences have been made since
the development of the laser in the early 1960s. Over the years, the duration of
the laser pulses became shorter initially from nanosecond to picosecond, followed
by femtoseconds, and now entering the regime of attoseconds (see the Chap. 8 by
Chang) and soon into the zeptosecond era and even more extremely intense beams
toward 1022 W/m2 as described recently by Mourou (2021). The use of these intense
ultrafast laser pulses has opened a new era of optical science and nonlinear optics
where phenomena of altering the frequencies of the laser sources have produced
numerous light sources for a variety of applications in areas like metrology, imaging,
time-resolved spectroscopy, computing, and communications.

Compared to the electrons and quasiparticles, light offers salient properties
of coherence, polarization, wavefront, and wavelength. James Clark Maxwell’s
electromagnetic theory is based on combining fundamental laws of electricity and
magnetism in 1847 which are still in use to describe electromagnetic waves. The
fundamental equation describing an electromagnetic wave can be described by:

E(t) = E0 (t) e ˆcos (ωLt − kz + ϕ (t)) (17.1)

where the electric field envelope amplitude is E0(t)= E0e
− t2

T 2 , the polarization is
ê, the propagation constant is k = nωL

c , T is the exponential time, and the pump
angular frequency is denoted as ωL = ω0. The carrier-envelope phase (CEP) φ(t)is
given by:

φ (t) = ωLt − nωL

c
z + ϕ (t) (17.2)

where ϕ(t) is the phase offset. The intensity of the laser pulse is given by:

I (t) = I 0e
−4 ln2t2/τp

2
, (17.3)

where τ pis the FWHM of the pulse,

τp = T
√
2 ln2, (17.4)

http://doi.org/10.1007/978-3-031-06197-4_8
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and �υ τ p= 0.441 for a Gaussian beam without chirp.
The key part of the phase of E(t) is the time-dependent index of refraction n(t)

of the materials. The Kerr index n2 depends on several underlying mechanisms (see
Shen, Y. Chap. 1 and Alfano, 1970a) arising from electronic and molecular motions
(Alfano & Shapiro, 1973). The index becomes:

n2 =
∑

i
n2i, (17.5)

where i arises from various motions:

n2i = (electronic cloud)+ (molecular redistribution)+ (ionization)

+ (plasma f ormation)+ (rotation)+ (vibration)+ . . . .

(17.6)

These fall into temporal classes of ultrafast, fast, slow, and very slow where:

n2 = n2 (ultraf ast;∼ 50 as)+ n2

(
f ast;∼ 10−13s

)

+n2 (slow;∼ 1 − 10 ps)+ n2 (very slow;> 100 ps) . (17.7)

The underlying processes associated with Kerr index n2 can be revealed and
studied in two ways: in angular frequency n2(ω) and temporal n2(t) domains by
way of Rayleigh wing light scattering I(ω) in ω space and the temporal domain
from the optical Kerr effect, nonlinear optical polarization of I(t), and the generation
of new frequencies in conical emission. These processes are connected by Fourier
transformations.

The light can be modulated in amplitude (amplitude modulation, AM) and phase
(frequency modulation, FM). The electric field E(t) for the laser pulse is depicted
in Fig. 17.1 for the envelope of bell shape and carrier phase in time with the offset
ϕ = 0 for CEP. These two properties can give rise to modulations from the envelope
and from the phase which will lead to changes in the index of refraction from Kerr
processes in materials to produce spectral broadening depending on the response
time of the Kerr index n2.

James Kerr in 1875 first observed the Kerr effect using the DC electric field
(Kerr, 1875) to change the index of refraction via n2. Later in 1956, Buckingham
proposed a higher frequency AC Kerr effect. He suggested an optical Kerr effect
using intense polarized light traveling through an optical isotropic medium in the
material, and the material becomes temporally anisotropic (Buckingham, 1956).
Buckingham was limited to using the electric field of lamps which had an electric
field on the order of 27.5 V/cm and suggested if only he had a high light source on
the order of 105 W/cm2 to produce an optical Kerr effect. Four years later, the laser
appeared but was not utilized until 1969 when Duguay demonstrated optical Kerr
effect using picosecond pulses in CS2 (Duguay, 1969).

http://doi.org/10.1007/978-3-031-06197-4_1
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Fig. 17.1 Cosine-like electric field of light pulse from Eq. 17.1 for 5 fs for phase offset = 0.
USC is generated primarily from the pulse envelope and slow n2, and HHG and SC are primarily
generated from the pulse envelope and carrier-envelope phase from the fast n2

Buckingham extended the DC Kerr’s idea to instantaneous response n(t) of the
Kerr index of the molecules from the applied electric field in terms of the modulating
refractive index over time. He introduced the optical Kerr effect as an analog to DC
and AC Kerr gate from the change in refractive index, n from E, as:

n = n0 + n2E
2. (17.8)

The response time of the Kerr effect (τr) can be instantaneous following the
optical cycles arising from the direct distortion of electron cloud response time
about 50 attoseconds and from averaging the slower molecular motion <n(t) > which
follows the envelope of the optical field. A slower response from other mechanisms
can alter the index of refraction. Here the key mechanism to give rise to the
ultra-spectral broadening and higher harmonic generation (HHG) occurs from the
electronic and molecular fast motions (see Eqs. 17.5, 17.6, and 17.7).

For a slow response, n(t) = < n(t)> can be taken as an average over many cycles
so that cos2φ (t) = 1

2 . The response time of the materials will determine the type of
modulation from the optical cycles and envelope. The index of refraction n can be
altered by the temporal response of the electric field which was first introduced
by Buckingham. For an ultrafast temporal response to the optical cycles of the
material on the order of sub-femtoseconds, the Kerr index of refraction becomes
instantaneous.

The response time of the material gives rise to the type of nonlinearity from
the Kerr effect. Using a picosecond laser developed in late 1967, a major advance
occurred when Duguay in 1969 realized this experimentally by extending the
traditional DC/AC Kerr and theoretically proposed optical Kerr effect (Duguay,
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1969) processes into the optical regime where E is the optical field on the order
of about 107 V/cm from a 10 ps laser pulse, and it now is called the optical Kerr
gate using CS2 liquid which has a large n2 and n4with a slow optical response time
of 1.8 ps from rotation and fast response of 160 fs (Kalpouzos, 1987).

Bloembergen and Shen expanded nonlinear polarization in 1964 (Bloembergen
& Shen, 1964) in terms of a Taylor power series of nonlinear susceptibilities χn in
laser electric field which is given by:

P = χ1E + χ2E2 + χ3E3 + χ4E4 + χ5E5 + . . . . (17.9)

For isotropic media such as liquid, gases, glasses, and rare gas atoms,
χ2 = χ4 = 0, where χ1 → n0, χ2 → n1, χ3 → n2, χ5 → n4. For materials
at extreme laser intensity, higher order terms such as n4 become active with n2 for
spectral broadening. Besse (2015) showed the relationship among χ (3) and χ (5) on
n2 and n4 for CS2 which are given by:

n2 = 3
4

χ (3) (ω)

n0
2ε0c

, (17.10)

n4 = 1

(2n0ε0c)
2

(
5χ (5) (ω)

n0
− 9
[
χ (3) (ω)

]2

8n0
3

)

. (17.11)

where c is the speed of light and ε0 is the vacuum permittivity. For CS2, n4 is
positive for wavelengths of 532 nm and 1064 nm and negative for wavelengths of
800 nm and 920 nm due to the difference between χ (3) and χ (5). At 3wL resonance,
(χ 3)2>χ5 charging sign of n4 to be negative from Eq. 17.11.

One of the most startling and colorful nonlinear phenomena was discovered by
Alfano and Shapiro in 1970 using 532 nm 5 ps ultrafast laser pulses to generate the
white-light generation spanning the entire visible spectrum over 10,000 cm−1. It is
now called the supercontinuum. The mechanism has been attributed to self-phase
modulation (SPM) and self-focusing from the Kerr index n2 on various crystals,
liquids, and glasses, including liquefied and solidified rare gases (Alfano & Shapiro,
1970a, b, c; 1972). They showed that the electronic mechanism for SPM is important
in all materials and dominates all other processes in some materials, e.g., even
in rare noble liquid argon and liquid and solid krypton. To fit the experimental
observation of the white-light continuum, one needed sub-picosecond pulses within
a 5 ps pulse. Depending on the pulse duration and the material, one can get a full
conversion or partial conversion of the laser pulse on the order of 0.01 to the white-
light continuum.

This chapter focuses on the simulation of the generation of two nonlinear
processes based on the response time of the medium with extremely intense
femtosecond laser pulses. One is the slow picosecond and fast femtosecond
response following only the envelope of the laser’s electric field which leads to
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the supercontinuum generation without HHG, and the other is the ultrafast response
following both the envelope and the carrier-envelope phase of the laser’s electric
field which leads to the HHG with spectral broadening around each of the harmonic.
The attosecond pulses can arise from Kerr model locking, and cutoff frequencies can
be determined below 500 eV to depend directly on the pump optical frequency of
the intense fs laser.

The index of refraction n(t) has two forms:

1. For the slow response, the index becomes:

〈n〉 = n0 + 1
2
n2[E0 (t)]

2, (17.12)

which causes self-phase modulation (SPM) for slow temporal response to E0(t) –
the envelope’s temporal shape such as Gaussian and other symmetrical and distorted
pulse shapes.

2. For the instantaneous response following the electric field envelope and the
optical cycle of the phase φ(t), the index becomes:

n (t) = n0 + n2

[

E0e
− t2

T 2 cosφ (t)

]2
, (17.13)

which causes electronic self-phase modulation (ESPM) for fast electron cloud
temporal response and molecular redistribution temporal response to E(t).

One of the highest n2 materials, CS2 liquid was selected with its large nonlinear
index and fast molecular response time of 1.8 ps for rotational and 160 fs for
molecular redistribution as compared to the electron cloud distortion part to
demonstrate the ultra-supercontinuum broadening with an extreme laser beam with
n2 and n4. Materials with ultrafast electronic response time are the rare gas atoms
from their spherical shape in the gaseous, liquid, and solid forms and other solid
materials like ZnO, MgO, GaSe, GaAs, sapphire (Al2O3) crystal, MgO, and MoS2
to produce supercontinuum and HHG from ESPM. A faster-condensed matter
sample is the different glasses such as silica and chalcogenides with the response
time in the femtosecond scale. The underlying mechanism of the nonlinear index of
refraction can arise from electronic, rotation, libration, and vibration motions. CS2
demonstrates the largest nonlinear index from the rotation mechanism, and high
index n0. χ5 arises for dispersion-less semiconductor media in six photon processes.

Both a slow pulse in the picosecond and a fast pulse in femtosecond following the
envelope (SPM) result in total symmetrical conversion to spectral broadening from
the laser from a Gaussian pulse. For example, a slow pulse of 4 ps could have a full
conversion of the pulse from self-phase modulation (SPM) with a smaller spectral
bandwidth of the order of a few 100 cm−1. A faster pulse-like 100 fs or bursts of sub-
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Fig. 17.2 Schematic mode for intensity of ESPM and HHG from envelope and phase of electric
field E(t) from temporal response to Kerr index n2 for fs intense laser pulses

ps pulses could have a full conversion with a much wider bandwidth of 10,000 cm−1

for the supercontinuum. On the other hand, when the nonlinear index n(t) follows
both envelope and phase from the electronic self-phase modulation (ESPM) for a
fast fs pulse of 100 fs or ps pulses, the laser is not fully converted to the continuum
by about a factor of 10−2. The spectrum shows a large laser spike at ω0 with a
lower supercontinuum about 10−2 conversion efficiency surrounding the laser beam
followed by the generation of higher harmonics about 10−5 conversion efficiency
(see Fig. 17.2).

The conversion to HHG is presented by Comby (2019) for HHG in argon gas
where they showed for a 50 W pulses at 1030 nm with 135 fs pulse duration
from ytterbium-doped fiber amplifiers (YDFA), and the HHG conversion efficiency
ranged from about 10−8 from the pump laser resulting 0.5 μW of HHG (see Fig.
17.5 from Comby, 2019) and higher conversion for the third harmonic of 1030 nm
for 10−4 conversion efficiency up to a few mW of HHG. For plasma generation from
n2 mechanism, the broadening is not symmetrical having more anti-Stokes from the
ionization process (Bloembergen, 1973).

ESPM → n(t) → HHG + SC,where n(t) is instantaneous index of refraction.

SPM →< n(t) >→ SC + USC,where < n(t) > is the average index of refraction

over several optical cycle.
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17.2 Details on USC and HHG from SPM and ESPM

The remaining part of this chapter will describe the spectral broadening and HHG
based on the response time of the nonlinear index of refraction given by Eqs. 17.12
and 17.13.

We have divided this section into two parts: part 1 describes SPM from the
envelope producing extreme spectral broadening called the ultra-supercontinuum
(USC), and part 2 describes ESPM from both carrier phase and envelope which
results in higher harmonic generation (HHG).

17.2.1 Part 1: Ultra-Supercontinuum (USC) from the Average
Response of the n2

In part 1, we discuss the spectral broadening caused by the slow response to the
envelope at extreme intensities which will include both the first nonlinear index n2
followed by the additional term caused by higher intensity to activate the effect of
n4.

The outcome of the spectral broadening from the envelope due to n2 and
n4 causes ultra-spectral broadening which can span the entire electromagnetic
spectrum from X-rays, XUV, UV, visible, and NIR to THz with electronic and
vibrational spectral lines from gases and condensed matter. The Kerr nonlinear index
of refraction in the slow varying approximation (SVA) for the envelope of the ps
and fs laser pulses arises from n2I and n4I2 at extremely high laser pulse intensity
≥2×1014 W/m2 to produce ultra-supercontinuum (USC). For a Gaussian beam,
SPM is symmetrical to the laser frequency which will be simulated, discussed, and
analyzed in a later section (see Figs. 17.3, 17.4, 17.5, 17.6, 17.7, and 17.8).

The spectral broadening caused by the average index of refraction <n(t) > fol-
lowing the envelope of the electric field including n2 and n4 reveals the ultra-
supercontinuum without HHG. The average refractive index follows the slowly
varying envelope including n2 and n4 part where the index of refraction is averaged
over many optical cycles and becomes:

< n (t) >= n0 + n2I + n4I
2, (17.14)

where I = E0(t)2 which follows the envelope to produce ultra-super broadening.
The phase from Eq. 17.2 becomes:

φ (t) = ωLt −
(
n0 + n2I + n4I

2)ωL

c
z, (17.15)

which becomes modulated by its own light intensity I(t) via n2 and n4. The new
frequency is:
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Fig. 17.3 CS2 spectrum of SPM at I0 = 1 × 1014 W/m2 with central wavelength at 532 nm

Ω (t) = dφ (t)
dt

= ωL −
(

0 + n2
dI

dt
+ n4

dI2

dt

)
ωLz

c
. (17.16)

The outgoing electric field becomes modulated as:

E (t) = E0e
− t2

T 2 e
−i
(
ωLt−<n(t)>ωL

c z
)

+ c.c. (17.17)

To produce SPM induced spectra via n2 and n4, Eqs. 17.14 and 17.15 are used
and using fast Fourier transform (FFT) of E(t) (into Eq. 17.17) are transformed to
obtain E(ω) and power spectra S (ω) = c

4π |E (ω)|2.
The simulated ultra-supercontinuum (USC) spectra from the envelope approx-

imation are shown in Figs. 17.3, 17.4, 17.5, and 17.6 for intensities from 1014 to
1015 W/m2, n2, and n4 for CS2. The SPM spectra are simulated using the laser
beam of 532 nm for 50 fs pulse where n0 = 1.64, n2 = 1.5 × 10−18 m2/W, and
n4 = 1.2 × 10−32 m4/W2 traveling through z = 1 cm distance of CS2 in Figs. 17.3
and 17.4 with the different initial intensity of I0 = 1 × 1014 W/m2 (see Fig. 17.3)
and I0 = 2 × 1015 W/m2 (see Fig. 17.4). Each graph of Figs. 17.3, 17.4, 17.5, and
17.6 shows the SPM spectrum with the combined combination of n2 and n4 at the
top, contribution of the only n2 at the middle, and contribution of the only n4 at the
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Fig. 17.4 CS2 spectrum of SPM at I0 = 2 × 1014 W/m2 with central wavelength at 532 nm

bottom. The frequencies in Figs. 17.3, 17.4, 17.5, 17.6, 17.7 and 17.8 are presented
as the multiples of the initial frequency (ω0) as ω

ω0
.

Figure 17.3 shows symmetrical and completely converted spectral broadening
around ω0 for the Stokes and anti-Stokes frequencies going from 0.6ω0 to 1.4ω0
for the intensity of 1014 W/m2. The salient spectral feature displayed in Fig. 17.4
shows the frequency extends from 2ω0 to 0 for higher intensity of 2 × 1014 W/m2

spanning from DC to 2ω0. For higher intensity, the spectrum extends to the negative
frequencies which are discussed in detail by Alfano et al. (2022).

The nonlinear refractive index n4 becomes negative in CS2 at 800 nm due to the
χ3 resonance. Kong (2009) experimentally measured n2 = 2.1 × 10−19 m2/W and
n4 = −2 × 10−35 m4/W2 for 800 nm at the intensity I0 = 1.36 × 1015 W/m2 (or
1.36 GW/cm−2). To demonstrate the effect of the negative refractive index of SC,
a spectrum is produced using Kong’s measurements (see Fig. 17.5), and another
spectrum is produced for 532 nm at I0 = 2 × 1014 W/m2 with the negative n4
(see Fig. 17.6) to compare with the effect of positive n4 in Fig. 17.3. From Besse
(2015), n4 is positive at 532 nm and 1064 nm and negative at 800 nm due to the χ3

resonance. The negative n4 refractive index in both Figs. 17.5 and 17.6 shows the
interference between the positive n2 and the negative n4. Because of the interference,
the combined SPM spectrum span becomes much smaller than the other spectra. At
800 nm, the contribution of the negative n4 is much smaller and affects much less
on the contribution of n2 to produce the whole SPM spectrum (see Fig. 17.5). To see
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Fig. 17.5 CS2 spectrum of SPM at I0 = 1.36 × 1015 W/m2 with central wavelength at 800 nm
(with negative n4)

the side-by-side comparison, an imaginary spectrum is produced assuming the n4 is
negative at 532 nm while keeping all values the same (see Fig. 17.6). The negative
n4 produces the interference with the positive n2 and produces a much smaller SPM
spectrum compared to the counterpart (see Fig. 17.4).

As the pump intensity I0 becomes larger, the contribution of the nonlinear index
from n4 (n4|I0|2 ~ 0.012 for I0 = 1 × 1015 W/m2) becomes larger than n2I0 term,
and n4 term dominates on the production of the SPM (see Figs. 17.3 and 17.4 top
and bottom). For higher intensities such as in Figs. 17.7 and 17.8, the SPM structure
goes beyond 2ω0 resulting in an enhanced broadening that can be described as
the “enhanced ultra-supercontinuum” (EUSC). Figure 17.7 stimulated SC extends
from zero direct current (DC) region – near zero to 50 eV into extreme ultraviolet
(EUV). It is possible to enter the X-ray and Gama regions with higher intensities
on order 1021 W/m2 (with a laser beam of 5 mJ with 50 fs at 1KHz repetition rate
to spot size of 10 μm to about 1017 W/cm2). The electronic resonances do not
affect the frequency broadening, but the absorptions curve holes in the spectrum
(Alfano, 1974). More extensive simulations are given in the recent study on ultra-
supercontinuum and enhanced ultra-supercontinuum by Alfano (2022).

Figures 17.7 and 17.8 show the energy of the photons showing the positive
frequency portion of SC frequency extending from the DC region at ω0 = 0 to
extreme ultraviolet (EUV) region (1–100 nm) covering most of EM spectrum. For
I0 = 1 × 1015 W/m2 (see Fig. 17.7), the USC extends up to 25 nm/49.6 eV (~20
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Fig. 17.6 CS2 spectrum of SPM at I0 = 2 × 1014 W/m2 with central wavelength at 532 nm (with
negative n4)

Fig. 17.7 CS2 spectrum of SPM in terms of photon energy in eV from DC frequency to EUV at
I0 = 1 × 1015 W/m2 with central wavelength at 532 nm
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Fig. 17.8 CS2 spectrum of SPM in terms of photon energy in eV from DC frequency to EUV at
I0 = 1 × 1016 W/m2 with central wavelength at 532 nm

ω0). A very interesting USC spectrum can be observed when the effect of n4 comes
close to n0 (1.2 ~ 1.4) for higher intensity, I0 = 1 × 1016 W/m2 (see Fig. 17.8).
For such spectrum, the EUSC extends up to 9 nm/135 eV (~ 60 ω0), and after a
9 nm peak, a trail of low-intensity peaks continues beyond 2000 eV into the soft X-
ray region. These low-intensity peaks might be hard to detect by the detector while
detecting EUSC peaks. Such EUSC generation up to the EUV is both predicted in
helium atoms and observed in argon atoms.

17.2.2 Part 2: Higher Harmonic Generation (HHG)
and Supercontinuum (SC) Due to the Instantaneous
Response of the n2

In part 2, we will discuss HHG with spectral broadening caused by the instanta-
neous response to the phase and the envelope at extreme intensities arising from
ESPM in which we included only n2. In this part, we simulate the spectra and
compare them with experimental data using the ansatz in which the index of
refraction n(t) follows the instantaneous temporal response of the nonlinear index
from both the optical phase and the envelope which causes HHG and spectral
broadening. In this model, the simulated HHG shows the characteristic fingerprints
(decreasing harmonics generation followed by a plateau to descending HHG signals
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to the cutoff frequency using the method of the stationary phase on ESPM) of HHG
observed experimentally and is driven coherently by the primary laser beam.

Over the past 29 years, there has been extensive experimental observation, from
pioneers like Corkum (1993) and others, on generating the odd harmonics spectra
into the XUV and the production of attosecond pulse from rare gases using extreme
ultrafast laser beams. Theoretical models have been explained based on the three-
step semiclassical and quantum-mechanical theoretical model (Lewenstein, 1994).
Not to be too critical, this model relies on tunneling, acceleration, and return to the
parent ion in the generation of HHG. As stated by Prof. Kjeld Eikema from Witte
at ARCNL, Advanced Research Center for Nanolithography (ARCNL) focuses on
fundamental physics and chemistry (Johnson, 2022) “despite the brutal process
where an electron is ‘ripped off’ an atom and then slammed back to generate new
light. Because the whole process is tightly linked to the phase of the fundamental
wave, both spatially and temporally, you get really nice laser-like beams out of it,
and incredible timing precision of the generated new electromagnetic waves. It’s
really a wonderful tool that enables things like precision spectroscopy, attosecond
science, and imaging at extreme-ultraviolet wavelengths” (Johnson, 2022). The
HHG produced attosecond pulse has been used for the applications like probing,
and the notion of generating attosecond pulses using Fourier synthesis has been
speculated by implementing high harmonic generation to mimic the mode-locked
laser mechanism.

We introduce an ansatz that the index n follows the optical cycle of the phase, not
the envelope (Alfano, 2021). This electronic self-phase modulation (ESPM) model
(Alfano, 1970a, 1972, 2022) is more fundamental than the slow varying envelope
approximation (SVEA) of nonlinear approximation and nonlinear Schrödinger
equation (NLSE) from Maxwell equation where the envelope is followed. These
approximations break down for electron cloud response of n2 where the response
time is to the carrier-envelope phase (CEP) on the optical cycle response. We have
extended the pioneering research of John Kerr (1875) and Buckingham (1956) on
the traditional DC and AC electronic voltage switching device to modulate and alter
the polarization of light based on the rapid response of organic liquids to the applied
electric field E to pair of electrodes. The original Kerr gates are based on the index
of refraction that becomes electric field E dependent:

n (t) = n0 + n2{E (t)}2, (17.18)

where n0 is the index of refraction, n2 is the nonlinear index, and E is the electric
field (can be DC or AC). The index of refraction n arises from the underlying
electronic state transition from among all states available from virtual and real as per
quantum processes. So, the ansatz assumption given for n and nonlinear counterpart
is more fundamental than that derived from a wave equation approximation.

In the Kerr effect, the material behaves optically as though it were a uniaxial
crystal in which the electric field of the laser acts as an optic axis. The major
mechanisms responsible for inducing birefringence can arise from distortion of
electron clouds, rotations of molecules, and disturbance of molecular motion. The
optical Kerr gate has been used extensively as an ultrafast optical gate. While
propagating, an intense optical pulse changes the index of refraction by causing
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the direct distortion of the electron cloud and the molecular motion. The change in
index leads to spectral broadening from self-phase modulation (SPM).

The electronic distortion mechanism (Alfano & Shapiro, 1970a) arises from
quantum transitions and is present in all condensed and gas material, a fact
consistent with the experimental observation of SPM spectra in all samples studied
under intense ultrafast laser excitation.

Two main theories were expounded to explain the HHG process: a complex
phenomenological nonmathematical explanation for high ultrafast pulse interaction
proposed by Corkum (1993) first followed by many other semiclassically by a three-
step model and a quantum-mechanically Schrodinger dipole E.r approximation
approach by Lewenstein (1994). The cutoff energy of HHG was related to IP + 3UP,
the ionization (IP), and potential (UP) energy to remove electrons for a single
electron model. This model has been explained as follows: ionization of electron,
the high-intensity laser field (1014 to 1016 W/cm2); the electron tunnels through the
electric potential barrier; acceleration of the free electron, the free electron generated
by tunneling with a zero initial velocity is accelerated away from the parent ion
by the driven field; then finally, the electron is driven back to the parent ion.
These explain the three regions of odd high harmonics (HH): decreasing harmonics,
plateau, and cutoff. However, this process lacks basic physical insight for new
materials, and a better mathematical and theoretical explanation is needed. So, the
ansatz based on the ESPM model was developed from a nonlinear index arising
from intense ultrafast E-field, and this index responds to the optical cycles of the
carrier-envelope phase (CEP). Such instantaneous response is quantum-mechanical
because n2 for noble gases responds from the electron cloud, which is faster than
150 attoseconds, the Bohr orbital time to about 30 attoseconds.

An alternative ansatz theoretical model to Lewenstein’s is presented in support
of the ESPM direct-electron cloud distortion model of SPM for n2 from χ3 to give
rise to odd HH. The HHG modes generation leads to locking in-phase of these N
modes to generate attosecond pulses by Kerr mode-locking in rare noble gas atoms,
like argon (Ar), krypton (Kr), nitrogen (N2), and oxygen (O2) in gaseous, liquid, and
condensed states of matter. These materials can be placed in a hollow microfiber to
enhance the interaction length.

After an intense light beam propagates a distance z into the material, the electric
field is distorted in the CEP and has the form:

E (t) = E0e
− t2

T 2 cos [φ (t)] , (17.19)

where T = τp√
2ln2

, τp is the full width half maximum (FWHM) of the pulse, and the
modulated instantaneous phase of CEP under the envelope is given by:

φ (t) = ω0

{

t − n (t) z

c

}

+ ϕ, (17.20)
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where ω0 is the central angular frequency of the laser, n(t) is the refractive index, z
is the propagating distance, and ϕ is the offset phase. The offset CEP phase is set
to be zero for the cosine-like pulse which drives HHG modes. Following Alfano
(1970a, 1972) and Buckingham (1956) without averaging over cycles, the general
form for the Kerr effect (Eq. 17.18) is given by the nonlinear refractive index with
quadratic field dependence and the response time τ which is:

n (t) = n0 +
∫ t

−∞

∫ t

−∞
f
(
t ′, t ′′)E

(
t − t ′)E

(
t − t ′′) dt ′dt ′′, (17.21)

where n0 is the ordinary index, E the electric field and,

f
(
t ′, t ′′) =

(n2

τ

)
e− t ′

τ δ
(
t − t ′′) , (17.22)

where n2 is the nonlinear index. Equation 17.21 may be simplified to:

n (t) = n0 +
(n2

τ

) ∫ t

−∞
e− (t−t ′)

τ E2 (t ′) dt ′. (17.23)

The pure electronic mechanism of n2 for rare noble gases like Ar, Kr, and Ne
involves no translation of nuclei or rotation of atomic cluster and is expected to
have relaxation response time much less than the optical period (<< 1

ω0
), faster than

150 attoseconds on the order of zeptosecond scale. For this case, the index n(t)

responses to E(t) at optical frequencies. Hence the weighting function ( 1
τ
)e−

(t−t ′)
τ

may be replaced by δ(t − t
′
). Following Eq. 17.18 for the Kerr effect, the electronic

response of the nonlinear index becomes:

n (t) = n0 + n2

[

E0e
− t2

T 2 cosφ (t)

]2
, (17.24)

which represents the instantaneous response of the index of refraction. Equation
17.24 is the ansatz that has been used before in the form of n by luminaries like Kerr
and Buckingham. The ansatz n(t) follows the modulation optical cycles of the phase
of E. The instantaneous response is used to follow the optical cycle rather than the
envelope of the CEP without time averaging.

This ansatz is a good assumption since the outcome as shown in the electronic
SPM leads to experimentally observed three regimes of HHG, and cutoff frequency
can be calculated based on this ansatz using the method of stationary phase for noble
rare molecules like argon and krypton. The fact that n follows the optical cycle
of the phase, not the envelope, is more fundamental than slow varying envelope
approximation (SVEA) of nonlinear approximation and nonlinear Schrödinger
equation NLSE from Maxwell equation where the envelope is followed. These
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approximations break down for electronic response of n2 where the response to
optical cycle modulation.

Substituting Eq. 17.24 into Eqs. 17.19 and 17.20, the electric field E(t) becomes
electronic self-phase modulated at z and is given by:

E (t) = E0e
− t2

T 2 cos
[

ω0

(
t − n0z

c

)
− βe

− 2t2

T 2 cos2
(
ω0

(
t − n0z

c

))]

,

(17.25)

where β = n2E0
2
(
ω0z
c

)
. From Eq. 17.25, E(t) results in Bessel function expansion

resulting in odd harmonics and spectral broadening. In addition, from Eq. 17.25,
the electronic self-phase modulated spectral E(ω) is obtained by the fast Fourier
transform (FFT) technique resulting in odd harmonics from the cosine of a cosine
squared function. The spectral density of the phase-modulated light is:

S (ω) = c

4π
|E (ω)|2, (17.26)

where E(ω) is the Fourier transform of E(t) which is shown in Figs. 17.9 and 17.10
showing the three characteristic features of the odd HHG with the cutoff frequency.

Figures 17.9 and 17.10 show the spectral amplitude vs. wavenumber with the
higher harmonic modes and the first HHG mode for different pulse energies,
respectively. The spectra consist of a set of odd higher harmonics, and each of them
is broadened because of the self-phase modulation of each harmonic. The outcome
from ESPM is a supercontinuum background superimposed with the sharp HHG
which was experimentally observed.

Figure 17.10 shows HHG after doubling the incident beam energy of Fig. 17.9.
The same result can be achieved by doubling the propagation distance as well. The
electronic SPM n2 model shows the three regions observed in HHG. Both figures
show the same HHG structure of three phases with the plateau and cutoff regions
like that has been experimentally observed in solid argon, krypton, and others.

A self-phase modulation about ω0 is shown in Figs. 17.9 and 17.10 for a
500 nm, 80 fs input beam with the pulse energy of 6.5 mJ and 13 mJ, respectively,
with a beam radius of 20 μm. The spectra calculated for argon (n0 = 1 and
n2 = 2.5 × 10−19 cm2/W) from Eqs. 17.25 and 17.26 show odd harmonic peaks
up to N (see Figs. 17.9 and 17.10) arising from electronic self-phase n2. The N
harmonic peaks are separated by 2ω0.

17.2.2.1 Attosecond Pulses from HHG from Kerr Mode-Locking

These N HHG pulses can be coherently driven by an optical pump field via the Kerr
effect by an aperture. Several odd N for the Fourier transform bandwidth pulse τp
from a 500 nm and 50 fs beam gives more than 31 HH peaks (see Figs. 17.9 and
17.10). These odd HHG appears like a mode-locked laser train except the modes are
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Fig. 17.9 Spectral amplitudes of electric filed after propagation of 6.5 mJ pulse through 0.5 mm
thickness of argon gas. The bottom plot shows the spectral amplitude of the first harmonics
(zoomed area of the upper plot)

not separated by c
2Lbut by 2ω0 and using the relation:

E (ω) =
N∑

n=0

δ (ω − ω2n+1) e
−i(ω2n+1t+φ); (17.27)

summing over odd n from 1 to N, where φ is an arbitrary number. The Kerr mode-
locking occurs from these deltas like HHG peak which is driven by an intense
laser pulse. The phases are locked by the Kerr index n2 with the aperture and/or
beam confinement to give attosecond pulse from the transform limited of Gaussian
relation:

τp = 0.4
N (2ω0)

, (17.28)

for N = 31 coupled modes driven by the intense pump beam, and the Kerr mode-
locking from n2 gives τp of 20 attoseconds.
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Fig. 17.10 Spectral amplitudes of electric filed after propagation of 13 mJ pulse through 0.5 mm
thickness of argon gas. The bottom plot shows the spectral amplitude of the first harmonics
(zoomed area of the upper plot). The same plot can be obtained with a pulse energy of 6.5 mJ
and double propagation distance (1 mm)

In the case of the rare gas molecule that possesses spherical symmetry, a pure
electronic mechanism for the nonlinear index n2 involves no translation of nuclei,
libration, or rotation of atomic clusters and is expected to have a relaxation time
much less than the optical period. Buckingham and coworkers elaborate on induced
dipole moment from nonlinear hyperpolarization arising from electronic distortion
of the inert atom which occurs from intense electric fields.

Figure 17.11 shows the fifth harmonic pattern like Figs. 17.9 and 17.10.
Compared to the first harmonic, the central frequency of the fifth harmonic has
almost one-fourth of the intensity. Although both have a similar spectral SPM broad
sideband structure with spectral oscillations about the fifth harmonic, these spectral
patterns about HH should be observed as the fingerprint of electronic n2 SPM.

We give an example of the HHG in different materials supporting the ESPM
model. Figure 17.12 compares the simulated plots of S(ω) using Eqs. 17.25 and
17.26 for HHG in solid argon and krypton with experimental values using adjustable
parameters. Figure 17.12 shows the comparison between the experimental result of
HHG found by Ndabashimiye’s group (2016; see Fig. 17.12a) and the theoretical
spectrum obtained from the ESPM model for solid argon (Ar) (see Fig. 17.12b) and
solid krypton (Kr) (see Fig. 17.12c) using the same parameters. Only the intensity is
optimized to fit the theoretical spectrum with the experimental result. Figure 17.12
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Fig. 17.11 Spectral amplitude of fifth harmonic (ω = 11ω0)

Fig. 17.12 Comparison between (a) the experimental result of HHG in solid Ar and solid Kr
(Ndabashimiye, 2016) where the red spectrum is from 16 TWcm−2 and the blue spectrum is from
26 TWcm−2 and (b) the theoretical prediction (Alfano, 2021) of HHG from the ESPM model in
(b) solid Ar and (c) solid Kr after fitting the beam intensity
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shows the simulated HHG (see Figs. 17.12b, c) from ESPM with the same HHG
structure with decreasing harmonics, the plateau, and cutoff regions which have
been experimentally observed in solid argon and krypton (see Fig. 17.12a).

17.2.2.2 Cutoff Frequency ωc of HHG

To find the cutoff frequency ωmax for HHG according to the ESPM theory, we use
the method of stationary phase. The frequency spectrum of the beam propagating
through a medium with the spherical atoms/molecules like rare gas molecules of Ar
and Kr that give the electronic response to the optical cycle the propagating E(t)
beam can be described by Fourier transform as:

E (ω) = Re
2π

∫ +∞

−∞
E0 (t) e

−i
(
ωLt− ωLnz

c

)

eiωtdt, (17.29)

where z is the propagating distance into the medium, ωL is the laser angular
frequency, and E0(t) is the time-dependent envelope of the propagating electronic
field of the beam, and the refractive index n can be found from Eq. 17.24. Combining
Eq. 17.29 with Eq. 17.24 will give:

E (ω) = Re
2π

e
in0ωLz

c

∫ +∞

−∞
E0 (t) e

i

⎛

⎝(ω−ωL)t+ ωLz

c

⎡

⎣n2

(

E0e
− t2

T 2 cosωLt

)2⎤

⎦

⎞

⎠

dt .

(17.30)

The integral at Eq. 17.30 is the like integral used by the method of stationary
phase (Kelvin, 1887) as:

f (x) =
∫ β

α

g (t) eixh(t)dt, (17.31)

which can be approximately evaluated by the method of stationary phase for h(t).
Equations 17.30 and 17.31 will give:

h (t) = (ω − ωL) t + ωLz

c

[

n2

(

E0e
− t2

T 2 cosωLt

)2]

. (17.32)

The first derivation of h(t) is given by:

h′ (t) = (ω − ωL)+ ωLz

c
n2I 0

[

e
− 2t2

T 2

(

− 4t

T 2

)

cos2ωLt + e
− 2t2

T 2 (2cosωLt) (−ωLsinωLt)

]

.

(17.33)
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For method of stationary phase, ḣ(t) = 0 will yield the frequency extend in time:

(ω − ωL) = ωLz

c
n2I 0e

− 2t2

T 2

[(
4t

T 2

)

cos2ωLt + ωLsin2ωLt

]

. (17.34)

At maximum values, cos2ωLt = 1 and sin2ωLt =1, putting such values at
maximum in Eq. 17.34 will give:

(ω − ωL)max = ωLz

c
n2I 0e

− 2t2

T 2

[
4t

T 2 + ωL

]

. (17.35)

At the critical point t = 0, Eq. 17.35 for maximum HHG extent becomes:

(ω − ωL)max =
[ωL

c
n2I 0z

]
ωL ∝ I 0ωL

2. (17.36)

Using ωL
c

= 2π
λ

, where c = speed of light in vacuum, Eq. 17.36 can be written as:

(ω − ωL)max =
[
2π
λ

n2I 0z

]

ωL. (17.37)

The cutoff frequency of the HHG (ω − ωL)max depends on n2, the intensity I0, z,
and ωL

2.
For example, when a 500 nm beam with the pulse energy of 6.5 mJ goes through

0.5 mm in argon (n0 = 1, n2 = 2.5 × 10−19 cm2/W, I0 = 2.6 × 1016 W/cm2) gas, the
cutoff frequency of the higher harmonics from Eq. 17.37 would be:

(ω − ωL)max ≈ 41 ωL. (17.38)

Thus, a simple equation for the cutoff frequency for HHG generation can be
analytically produced from ESPM theory using the method of the stationary phase.
It depends on physical n2, ωL, z, and peak intensity rather than IP and UP.

Figure 17.13 shows the energy S(ω) example of HHG using FFT of E(t) for argon
with parameters above showing the cutoff. We have developed a simple maximum
HHG cutoff frequency for material using electronic nonlinear index n2 and physical
properties and parameters of laser intensity, angular frequency, and thickness of
material z.

The cutoff frequency above contradicts the common HHG cutoff energy shown
in the past approximately as IP + 2UP where Ip is the ionization energy and Up is
ponderomotive energy (varies as IL

ωL
2 ) which is related to the kinetic energy of the

electron. Extending the kinetic energy term given by Corkum and others, one finds
that the 2UP

ωL
2z2

ve2 (ve is the velocity of the electron) is eliminating the ωL
2 in UP term.

So, the classical theory does not have a λ2 dependency unless the higher terms are
considered. In fact, the semiclassical theory of Corkum (1993) and the quantum-
mechanical theory of Lewenstein (1994) do not take a nonlinear optical response



17 Ultra-Supercontinuum Generation and Higher Harmonic Generation. . . 631

Fig. 17.13 Argon spectrum from ESPM at I0 = 2.6 × 1016 W/cm2 with central wavelength at
500 nm

(n2) of the media and the parameters of the carrier-envelope phase of the electric
field of the pulse into account.

Notice the cutoff energy from the method of steepest descent for ESPM
generating the HHG spectrum varies with frequency and inversely on the pump
wavelength. This result is in contrast with the three-step quantum-mechanical model
for HHG. Our results are consistent with Gordon and Kartner for cutoff HHG energy
below 500 eV. For HHG beyond 2 keV, the reverse happens for the optical pump
frequency for HHG continua toward gamma rays (Gordon, 2005).

17.3 Applications of the Supercontinuum with USC
and HHG

Currently, supercontinuum has been used as enabling technology in diverse appli-
cations in chemistry and biology in time-resolved spectroscopy, accurate frequency
comb clocks, nonlinear optical spectroscopy, biomedical imaging, communications,
computation, and microscopy using the visible and NIR range. With the advent of
the USC and HHG, supercontinuum enters a new era spanning the entire Maxwell
electromagnetic spectrum and offers a new paradigm in the development of compact
UV to X-ray microscope to study the nanoscale science and the development of new
computer chips.

USC and HHG in the UV X-ray microscope system can be used to explore bio-
logical for biomedical applications to image genes, the nucleus of cell components,
nucleotides, and proteins to understand the most fundamental process in bio and
nature by imaging on sub-nm and nm scale.
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17.4 Conclusion

The generation of a coherent ultrawide spectral band from DC to XUV and X-
ray beams using intense optical femtosecond pulses in various states of matter was
simulated using two different temporal responses for the nonlinear Kerr index: slow
(fs and ps) and ultrafast (as and fs).

In the simulation, we find that for the slow nonlinear index of refraction (<n(t)>),
the envelope of the optical pulse gives rise to wide spectral broadening from
SPM (noted as the SC, USC, and EUSC) which can span from DC to X-rays at
extreme intensities (>1014 W/m2). For the ultrafast nonlinear index of refraction
(n(t)), following both envelope and phase of the optical laser pulse gives rise
to spectral broadening and HHG spanning from the visible range to X-rays for
extreme intensities (>1015 W/cm2). The underlying temporal mechanisms for the
Kerr effect arise from various types of motion: electron cloud distortion, molecular
redistribution, ionization, plasma formation, rotation, and vibration of molecules in
solids, liquids, and gases. CS2 and the rare gas material are used to simulate USC
and HHG spectra and compared with existing experimental spectra. These SPM
and ESPM models will hold for Kerr media in different states of matter in particular
solids. The cutoff frequencies of HHG varying as ω0 and attosecond pulse produced
from HHG are explained from the fast Kerr n2 model.

Further research may take the effect of chirp and different CEP (carrier-envelope
phase) offsets of the pulse such as sine-like pulse where ϕ = π

2 into account and
can be expanded to include both fast electronics (n2,F) and slow molecular (n2,S)
responses. The USC and HHG will be at the heart of a future compact UV X-ray
microscope.
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