
Towards an Efficient Sparse Storage
Format for the SpMM Kernel in GPUs

Renzo Marini, Ernesto Dufrechou(B) , and Pablo Ezzatti

Instituto de Computación (INCO), Facultad de Ingenieŕıa,
Universidad de la República, Montevideo, Uruguay

{rmarini,edufrechou,pezzatti}@fing.edu.uy

Abstract. The sparse matrix-matrix multiply kernel (SpMM) gained
significant interest in the last years due to its applications in data sci-
ence. In 2018, Zhang and Gruenwald [15] proposed the bitmap-based
sparse format bmSparse and described in detail the implementation of
the SpMM for Nvidia GPUs. The novel format is promising in terms
of performance and storage space. In this work, we re-implement the
algorithm following the authors’ guidelines, adding two new stages that
can benefit performance. The experiments performed using nine sparse
matrices of different sizes show significant accelerations with respect to
cuSparse’s CSR variant.

Keywords: Sparse matrix matrix multiplication · GPU · Sparse
format

1 Introduction

The era of big data has brought about a major paradigm shift and the emergence
of new problems in which the information is structured in large graphs. The
connection between graphs and sparse matrices (those in which the vast majority
of their coefficients are equal to zero) has been extensively studied and, because
of it, there are important efforts that propose to express graph problems in terms
of basic linear algebra operations on sparse matrices. These efforts have attracted
the interest of part of the academic community, historically concentrated on the
sparse matrix-vector product (SpMV) for its role in solving systems of linear
equations, to other operations such as the sparse matrix-sparse matrix product
(SpMM), which has important applications in data science. In particular, the
most frequent goal is to find algorithms, implementations, and storage formats
capable of running efficiently on parallel hardware.

In recent decades, the trend in computer architecture design has been to
incorporate multiple cores on the same chip [2]. As a consequence, the use
of throughput-oriented processors [7] to accelerate scientific applications has
increased. A paradigmatic example is GPUs, which have been used heavily in
the context of dense and sparse linear algebra for more than a decade, to the
point where efficient implementations are publicly available for most of the stan-
dard operations [3,6,13].
c© Springer Nature Switzerland AG 2022
R. Chaves et al. (Eds.): Euro-Par 2021, LNCS 13098, pp. 104–115, 2022.
https://doi.org/10.1007/978-3-031-06156-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06156-1_9&domain=pdf
http://orcid.org/0000-0003-4971-340X
http://orcid.org/0000-0002-2368-8907
https://doi.org/10.1007/978-3-031-06156-1_9

Towards an Efficient Sparse Storage Format for the SpMM Kernel in GPUs 105

Sparse Matrix Multiplication (SpMM) operates on two matrices stored in
a sparse storage format, that is, a format to avoid explicitly storing null coeffi-
cients. As the pattern of nonzero coefficients, and therefore the space necessary
to store the result of the operation, will depend on the interaction between the
nonzero coefficients of the operands, it must be estimated or calculated from
them, which gives the SpMM a higher level of complexity than the SpMV.

In 2018, Zhang and Gruenwald [15] introduced a sparse block format called
bmSparse, which adapts the bitmap indexing technique used in the context of
relational databases (and also for some of the early sparse formats). Although
the performance of similar formats has been studied in the context of SpMV [11],
the work mentioned is the first to do so with SpMM. The results obtained for
the (WebBase-1M) sparse matrix were promising, showing better performance
than the libraries CUSP [1] and bhSparse [12].

This work focuses on re-implementing the algorithm proposed in [15] incor-
porating modifications to improve its performance. Among the optimizations
considered, we explore the inclusion of two new stages. One avoids making the
product of those blocks that will result in a null block due to their pattern of
zeros (T4). The other computes the final storage space and output nonzero pat-
tern before the numerical multiplication stage (T9). The experimental evaluation
was carried out on a set of nine matrices from the SuiteSparse collection with
different characteristics, showing that the new stage T4 of the algorithm allows
significant savings in the execution time of the subsequent stages.

The rest of the work is structured as follows. In Sect. 2, the main concepts
about the sparse matrix multiplication operation are summarized. Then, in
Sect. 3, the details of the SpMM kernel implementation using the bmSparse
storage format are studied. Later, we present the main proposals in Sect. 4. The
experimental evaluation of our proposals on a set of sparse matrices follows.
Finally, the main conclusions drawn during the work and the lines of future
work to be developed are presented in Sect. 6.

2 Sparse Matrix Multiplication (SpMM)

Sparse matrix multiplication (SpMM) is a very useful operation in various con-
texts of linear algebra and graph analysis, with applications such as solvers for
algebraic multigrid methods (AMG) [8], triangle counting [4] and breadth-first
search (BFS) with multiple sources [9]. Algorithm 1 presents a pseudocode of
the row-wise SpMM method presented by [10]. In the case of other typical
operations on sparse structures, such as SpMV, a common strategy to improve
performance is to exploit prior knowledge about the sparse matrix’s sparse pat-
tern to minimize memory operations on global memory [14]. However, SpMM
adds additional difficulties since the computational complexity of the problem
does not depend solely on the nonzero structure of the separate inputs but on
how they interact with each other. On the other hand, in most applications,
the SpMM is usually executed only once for each pair of matrices. Therefore,

106 R. Marini et al.

the optimization techniques that are based on analyzing the nonzero patterns
are less effective than in the case of the SpMV, which is usually part of the
innermost loop of iterative solvers.

Algorithm 1: SpMM proposed by [10]
1: for ai∗ ∈ A do
2: for aij ∈ ai∗ and aij �= 0 do
3: for bjk ∈ bj∗ and bjk �= 0 do
4: value = aij ∗ bjk
5: if cik /∈ ci∗ then
6: cik = 0
7: end if
8: cik = cik + value
9: end for

10: end for
11: end for

The particularities above determine that the major design decisions to con-
sider are how to partition the work to be done between different processing units
(in the parallel case).

2.1 The bmSparse Storage Format

The bmSparse format represents sparse matrices using 8 × 8 blocks and the
following data structures:

– keys: An array of integers (uint64 t) represents the position of a block in the
block array. The first 32 bits encode the row number, while the last 32 bits
encode the column number. The keys appear ordered by row and then by
column. The choice of uint64 t to represent the keys makes it possible to
represent arrays of up to 232 blocks of columns and rows. For smaller arrays,
memory usage could be reduced by modifying the format to allow 32 bits to
represent keys.

– bmps: An array of integers (uint64 t) that stores in position i, a bitmap
associated with the block in position keys[i]. Each element of the block is
mapped to one bit of the bitmap. The bit is zero if the block element is null
and one otherwise.

– values: Array with the nonzero values of the array ordered by rows and then
by column.

– offsets: Array with the start position of each block in values.

3 The SpMM with bmSPARSE

Given two input matrices, A and B, stored in bmSparse format, the multiplica-
tion algorithm for this format performs two principal tasks. First, it has to build

Towards an Efficient Sparse Storage Format for the SpMM Kernel in GPUs 107

task list that determines which pairs of blocks of A and B must be multiplied
and added to a block of the resulting matrix C. The task list can be seen as a
list of (i, j, k) tuples, named tasks, obtained from the rule:

Cik =
∑

j
Aij × Bjk. (1)

Once the task list is formed, the algorithm has to process the tasks and
construct the output structure. The original algorithm [15] is divided into 7
stages, which are identified as T1...7.

The stages T1, T2 and T3 are in charge of creating the task list. Assuming
that A keys[n] stores the key (i, j), the task list is considered as the union of the
sets t′n, n ∈ [0, size(A keys)), of all the tuples in which the key (i, j) of A keys
participates. If B rowj = {x | x ∈ B keys ∧ row(x) = j} is defined as the set of
keys in row j from B, t′n can be formally expressed as:

t′n = { (i, j, k) | A keys[n] = (i, j) ∧ ∃x ∈ B rowj : col(x) = k}. (2)

Note that in the Definition 2, the tasks are represented as tuples of coordi-
nates (i, j, k). However, if (i, j) = A keys[n] and (j, k) = B keys[m], the tasks
can also be represented by the tuple of positions (n,m). In Eq. (3) the set tn is
defined, which uses the representation of tasks as tuple of positions. There is a
one-to-one correspondence between the elements of t′n and tn.

tn = { (n,m) | A keys[n] = (i, j) ∧ B keys[m] ∈ B rowj} (3)

We based our implementation on the latter representation, while [15] is based
on the former. The main advantage of defining the task list as the union of sets
tn is that these sets can be easily calculated thanks to the characteristics of the
format. On the one hand, observe that the second component of the tn tasks
represents positions of the same row of blocks in matrix B.

In stage T5 the task list is ordered so that tasks associated with the same
output block are contiguous. Using the representation of tasks as tuples of coor-
dinates (i, j, k), the above is equivalent to ordering according to (i, k). Because
the task list array uses another representation of tasks, to determine the relative
order between two items a conversion is done before comparing them.

The T6 stage is in charge of determining which blocks of the resulting matrix
will be non-null, which corresponds to the keys array of the format bmSparse. To
achieve this, the task list array is interpreted as an array of tasks represented
as (i, j, k).

Stage T7 processes the tasks to generate the resulting blocks. Processing a
task involves building a dense version of the input blocks, performing the mul-
tiplication, and adding the partial block of results to the corresponding output
block.

In stage T8, the array of values generated in stage T7 is taken as input, and a
new array is created that contains only the non-null values of the original array.
Relative orders remain.

Most of the implementation was performed using primitives from the Thrust
API, with the exception of T7 that required developing specific CUDA kernels.

108 R. Marini et al.

4 Main Extensions

In addition to the variants made to the steps defined in [15], In this work, two
new stages are proposed, T4 and T9 with the aim of improving performance,
saving work in other stages.

Different versions of the algorithm are generated by including these stages,
each one associated with a different sequence of stages. Valid sequences are
represented by paths in the directed graph of Fig. 1. The layout followed by [15]
is comparable to the one specified in the previous section, that is, T1,2,3,5,6,7,8.

Fig. 1. Possible execution paths.

4.1 T4: Null-Task Filtering

The result of executing a task is the product of two blocks, which will then be
added to one of the blocks of the resulting matrix. If the bitmap of that product
is null, that task will not affect the result of the SpMM and could be ignored.
In [15], the bitmap of a task is calculated in stage T7, once the product of the
blocks has already been made. However, the bitmap of the product of two blocks
can be obtained using only the bitmaps of those blocks, without the need for
floating-point operations. Stage T4 consists of calculating the bitmaps of each
task, and eliminating from the task list those that do not contribute to the values
of the resulting matrix. It is an optional stage in the sense that the correctness
of the algorithm does not depend on it. The motivation for this step is to achieve
higher performance in the later stages.

The filtering of tasks is performed using the primitive thrust::remove if, which
takes as input the array of tasks and a functor that determines if the bitmap
that would be obtained when executing the task is null.

The functor implementation iterates over each dimension of the resulting
bitmap, checking for possible intersections between the bits in each row of A
and the corresponding column of B. The function returns false if a non-null bit
is found.

4.2 T9: Calculate C Bitmaps Based on A and B’s Bitmaps

The stage T9 computes the array of bitmaps of the resulting matrix using the
input matrices’ bitmaps.

Towards an Efficient Sparse Storage Format for the SpMM Kernel in GPUs 109

For this purpose, the first step is to define an iterator of type thrust::make
transform iterator to generate the bitmap resulting from executing a task with
the incoming bitmaps. To calculate the output bit (i, k), the associated functor
iterates over the dimension j of both input bitmaps. When determining which
bit should be in 1 in each bitmap, it starts with a bitmap with 1 in the first
position (0x8000000000000000) and shifts it to the right according to the row
and column number. In case both corresponding bits are in 1, the results are
accumulated in the result bitmap by a bitwise or, as shown in Listing 1.1.

Listing 1.1. Computation of the task bitmap.

#define F 0x8000000000000000 ;
. . .
u i n t 64 t r e s u l t = 0 ;
for (int i = 0 ; i < 8 ; i++)

for (int k = 0 ; k < 8 ; k++)
for (int j = 0 ; j < 8 ; j++) {

const bool A b i t s e t = A bmp & (F >> (i ∗ 8 + j)) ;
const bool B b i t s e t = B bmp & (F >> (j ∗ 8 + k)) ;
i f (A b i t s e t && B b i t s e t) r e s u l t |= F >> (i ∗ 8 + k) ;

}

Once we have all the bitmaps associated with the block multiplications,
thrust::reduce by key is used to perform a bitwise or between the bitmaps of
the same output block. Computing the output bitmaps beforehand eliminates
the need of the T8 (compression) stage. However, since only the positions of the
nonzero elements, and not their values, are taken into account, it is possible that
some of the elements turn out to be null and some explicit zeros end up being
stored.

5 Experimental Evaluation

This section makes an experimental evaluation of different variants of the SpMM
algorithm based on bmSparse described previously.

5.1 Platform Setup and Test Cases

All testing is done on a system comprised of an Intel i7-9750H@2.60 GHz CPU
and an NVIDIA GeForce GTX 1660 Ti GPU, Turing architecture. GPU pro-
gramming is done using CUDA 10.2, and the associated Thrust [3] parallel algo-
rithms library.

Square sparse matrices obtained from the SuiteSparse Matrix Collection [5]
are used, identified with a number from 1 to 9. The matrices used store single-
precision floating-point numbers (floats). The characteristics of each matrix are
presented in Table 1.

Performance measured by runtime is compared to that of the cuSPARSE [3]
library, also part of the CUDA Toolkit.

110 R. Marini et al.

Table 1. Main characteristics of the matrices used. Arrays 1–3 have dimension close
to 104, matrices 4–6 have dimension close to 105 and the remainder to 106.

Name Id. Blocks NNZ Dimension

cryg10000 1 8613 49699 10000

Goodwin 030 2 20728 312814 10142

ted A unscaled 3 13761 424587 10605

Goodwin 095 4 203725 3226066 100037

matrix 9 5 148928 2121550 103430

hcircuit 6 90082 513072 105676

webbase-1M 7 550761 3105536 1000005

t2em 8 572656 4590832 921632

atmosmodd 9 1410884 8814880 1270432

5.2 SpMM Algorithm Performance

We start the analysis by discussing the execution time of each stage. Table 2
details the base implementation (Vbase) runtimes by multiplying each matrix by
itself, broken down according to the stages of the method.

Table 2. Execution time (in µs) of multiplying sparse matrices using the base variant of
the SpMM algorithm based on bmSparse. Arrays are assumed to be in device memory,
that is, transfer time is not included.

Stage Runtime by matrix

1 2 3 4 5 6 7 8 9

T1 53 58 56 731 185 391 693 1084 2000

T2 39 43 41 269 172 110 251 436 1858

T3 202 536 339 1808 1668 1255 3788 2122 6238

T5 318 1201 642 10355 8994 6906 25392 8505 42552

T6 303 419 308 2284 2493 2130 5985 2515 7020

T7 397 2036 965 19477 20618 17313 55158 19693 77953

T8 58 1264 2659 14121 857 2238 46206 3155 5662

Total 1370 5557 5010 49045 34987 30343 137473 37510 143283

In this implementation, the T1 stage calls the primitive thrust::reduce by key
on the array of keys, so it is expected that the duration of T1 depends mostly
on the size of that array, which corresponds to the third column of Table 1.
This hypothesis can be corroborated from Tables 1 and 2, where the duration
of T1 can be observed to increase with the number of blocks. Something similar
happens in stage T2, where the vector B count is accessed for each element of
A keys.

Towards an Efficient Sparse Storage Format for the SpMM Kernel in GPUs 111

The main goal of stage T3 is to create the array task list, Therefore, the
times of T3 should depend mainly on the number of tasks that are part of the
task list. This hypothesis can be corroborated in Fig. 2, which shows a linear
dependence between the number of tasks and execution times.

Fig. 2. Execution time (in µs) of T3 stage as a function of the number of tasks in the
task list.

Although the number of tasks is the variable that best predicts the duration
of T3, this information is typically not available before doing the multiplication.
However, this duration could be estimated using the number of blocks and the
dimension of an array. On the one hand, the more blocks, the more likely tasks
will be formed between pairs of them. On the other hand, as the dimension
increases, there are more possible positions for the blocks, which decreases the
probability that they will form a task. This explains why, with a few exceptions,
the T3 times increase with the number of blocks.

In stages T5, T6 and T7 a similar pattern is repeated between the execution
times of each matrix, since the task list is also processed in these stages.

5.3 Impact of Executing T4

Table 3 shows the runtimes corresponding to each stage of the variant that
includes stage T4 (VT4). Comparing the results with Table 2, it can be observed
that, despite the extra cost of including the T4 stage, the overall performance
does not deteriorate in any of the evaluated cases, obtaining execution time
reductions of up to 40%.

Table 4 details, for each matrix, the number of tasks that are part of the
task list vector, built in stage T3, and the percentage of tasks that are later
discarded at stage T4. It can be observed that for the selected set of matrices,
the number of tasks eliminated varies significantly and that these can represent
a high percentage of the tasks generated in T3.

From Fig. 3, it can be seen that in stages T5, T6 and T7, a linear reduction
in execution time is obtained with respect to the amount of discarded tasks.

112 R. Marini et al.

Table 3. Execution time (in µs) of multiplying sparse matrices using the VT4 variant.
Arrays are assumed to be in device memory, that is, transfer time is not included.

Stage Runtime by matrix

1 2 3 4 5 6 7 8 9

T1 53 58 56 731 185 391 693 1084 2000

T2 39 43 41 269 172 110 251 436 1858

T3 202 536 339 1808 1668 1255 3788 2122 6238

T4 42 91 58 592 492 385 1310 603 2249

T5 167 1080 630 8947 7141 4199 14626 7944 33276

T6 174 397 303 2106 1997 1391 3519 2387 6002

T7 257 1731 949 16711 15938 10648 31330 17783 61583

T8 57 1619 2635 17340 1017 3254 50965 4998 7945

Total 991 5555 5011 48504 28610 21633 106482 37357 121151

Table 4. Amount of tasks generated in T3 and percentage of tasks eliminated in
stage T4.

Matrix # tasks % removed tasks

1 59512 36,3

2 346798 14,4

3 153486 1,6

4 3369528 13,4

5 3205366 20,0

6 2231426 38,5

7 7540274 42,6

8 2851764 7,8

9 12556668 22,1

Fig. 3. Percentage of time reduction of stages T5, T6 and T7 based on the percentage
of tasks eliminated in stage T4

Towards an Efficient Sparse Storage Format for the SpMM Kernel in GPUs 113

On the other hand, and regarding the performance of the stage T4 itself, it
can be corroborated from the data in the Tables 3 and 4, that the execution
times depend primarily on the size of the task list, as it happens in the T3 stage.

5.4 Impact of Executing T9

To answer whether it is convenient to perform (our variant of) the calcula-
tion of the array of bitmaps and offsets before the multiplication, Table 5 com-
pares a variant that incorporates the previous calculation of the output bitmaps
(VT4&T9) with the version VT4. In this table, it can be seen that the time of the
T7 stage for the VT4&T9 version is less than that of the VT4 version in all cases.
The main reason is that, in the first case, the calculation of the output offsets
and bitmaps array is considered part of T9, while in the second, it is considered
part of T7. However, when comparing the total time of both versions, the inverse
relationship occurs. This is because stage T8 in VT4 runs in less time than stage
T9 in VT4&T9. In the implementation used by VT4&T9, almost 90% the runtime
of stage T9 is spent executing the functor that generates bitmaps from tasks.
This was easily verified replacing the functor by a trivial one in an informal
experiment.

Table 5. Average duration (in µs) of the stages after T6 in the VT4 and VT4&T9

variants. The last two rows show the sum of the times of the mentioned stages.

Stage Versión Runtime by matrix

1 2 3 4 5 6 7 8 9

T7 VT4 260 1730 952 16793 15985 10635 31320 17782 60671

VT4&T9 226 1650 887 16099 14094 9381 28287 16105 53778

T8 VT4 76 225 222 1304 2399 1995 5464 2452 6727

T9 VT4&T9 233 1002 621 8301 5723 3521 10750 5957 21081

Total VT4 336 1955 1174 18097 18384 12630 36784 20234 67398

VT4&T9 459 2652 1508 24400 19818 12902 39038 22062 74860

Since the T4 stage performs a job similar to that of T9, a possible improvement
is to calculate the bitmaps of those tasks that are non-null in the T4 stage. In
this way, the T9 stage would only be in charge of reducing the bitmaps of the
tasks that correspond to the same C block. As future work, it is interesting to
study this change and possible optimizations to the functor that calculates the
bitmaps of each task.

Comparison with CuSPARSE. Table 6 compares the execution times of the
VT4 variant based on the bmSparse format and the implementation for the CSR
format included in cuSparse. It is observed that VT4 has a better performance
in all matrices except the first one, where there is a small difference that favors
cuSparse. The matrix with the most significant difference is matrix 5, where the
execution time of cuSparse is approximately 5× longer than that of bmSparse.

114 R. Marini et al.

Table 6. Execution times (in µs) of the VT4 variant based on bmSparse and the
implementation of cuSparse based on CSR. In both cases, values of type float and
input arrays previously loaded into device memory are assumed.

Matrix

1 2 3 4 5 6 7 8 9

Time cuSPARSE 882 3998 5841 46555 140496 22113 455073 48310 202372

Time bmSPARSE 991 5555 5011 48504 28610 21633 106482 37357 121151

Relative perf. 0.89× 0.72× 1.17× 0.96× 4.91× 1.02× 4.27× 1.29× 1.67×

6 Concluding Remarks

The SpMM is a sparse matrix operation that has interesting applications in data
science. The bmSparse format, presented by Zhang and Gruenwald [15], is a novel
bitmap-based sparse format, specially conceived to achieve high performance
for the SpMM in throughput-oriented processors such as GPUs. The use of
bitmaps effectively addresses one of the main challenges of the SpMM, which
is to determine the nonzero pattern of the output matrix from the two input
matrices, and the preliminary results presented by the authors are promising.

We have re-implemented the algorithm based on the directions of [15] and
proposed two new stages that can improve its performance. T4 stage removes
unnecessary tasks from the task list based on the bitmaps of the blocks of A
and B that form each task. The experimental results on a set of nine sparse
matrices from the SuiteSparse Matrix Collection show that the savings on the
time of subsequent stages greatly compensate for the addition of T4, achieving
interesting runtime reductions. The addition of T9, which computes the resulting
bitmaps from the bitmaps of A and B blocks, did not result in a performance
gain, although several possible optimizations to this stage were identified. The
variant that includes T4 (VT4) is superior to cuSparse in 6 out of 9 test cases
and achieves up to 5× runtime reduction.

We intend to fine-tune each stage of the algorithm for future work, concen-
trating on optimizing the most time-consuming stages. We are also interested in
adapting the implementation to harness GPUs equipped with Tensor Cores.

Acknowledgment. This work is partially funded by the ANII-MPI project Effi-
cient computational methods for numerical linear algebra on heterogeneus architec-
tures. Additionally, the authors thank PEDECIBA Informática and the University of
the Republic, Uruguay.

References

1. Bell, N., Garland, M.: Cusp: generic parallel algorithms for sparse matrix and
graph computations (2012). http://cusp-library.googlecode.com. Version 0.3.0

2. Blake, G., Dreslinski, R.G., Mudge, T.: A survey of multicore processors. IEEE Sig-
nal Process. Mag. 26(6), 26–37 (2009). https://doi.org/10.1109/MSP.2009.934110

http://cusp-library.googlecode.com
https://doi.org/10.1109/MSP.2009.934110

Towards an Efficient Sparse Storage Format for the SpMM Kernel in GPUs 115

3. cuSPARSE: CUDA Toolkit Documentation. https://docs.nvidia.com/cuda/
cusparse/index.html

4. Davis, T.A.: Graph algorithms via suitesparse: graphblas: triangle counting and k-
truss. In: 2018 IEEE High Performance extreme Computing Conference (HPEC),
pp. 1–6 (2018). https://doi.org/10.1109/HPEC.2018.8547538

5. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans.
Math. Softw. 38(1), 1–25 (2011). https://doi.org/10.1145/2049662.2049663

6. Dufrechou, E., Ezzatti, P., Quintana-Ort́ı, E.S.: Selecting optimal SpMV realiza-
tions for GPUs via machine learning. Int. J. High Perform. Comput. Appl. 35(3),
254–267 (2021). https://doi.org/10.1177/1094342021990738

7. Garland, M., Kirk, D.B.: Understanding throughput-oriented architectures. Com-
mun. ACM 53(11), 58–66 (2010). https://doi.org/10.1145/1839676.1839694

8. Georgii, J., Westermann, R.: A streaming approach for sparse matrix products and
its application in Galerkin multigrid methods. Electron. Trans. Numer. Anal. 37,
3–5 (2010)

9. Gilbert, J.R., Reinhardt, S., Shah, V.B.: High-performance graph algorithms from
parallel sparse matrices. In: K̊agström, B., Elmroth, E., Dongarra, J., Waśniewski,
J. (eds.) PARA 2006. LNCS, vol. 4699, pp. 260–269. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75755-9 32

10. Gustavson, F.G.: Two fast algorithms for sparse matrices: multiplication and per-
muted transposition. ACM Trans. Math. Softw. 4(3), 250–269 (1978). https://doi.
org/10.1145/355791.355796

11. Kannan, R.: Efficient sparse matrix multiple-vector multiplication using a
bitmapped format. In: 20th Annual International Conference on High Performance
Computing, pp. 286–294 (2013). https://doi.org/10.1109/HiPC.2013.6799135

12. Liu, W., Vinter, B.: A framework for general sparse matrix-matrix multiplication
on GPUs and heterogeneous processors. J. Parallel Distrib. Comput. 85(C), 47–61
(2015). https://doi.org/10.1016/j.jpdc.2015.06.010

13. Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune dense linear algebra. In:
SC 2008: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, pp.
1–11 (2008). https://doi.org/10.1109/SC.2008.5214359

14. Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimization
of sparse matrix-vector multiplication on emerging multicore platforms. In: SC
2007: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, pp.
1–12 (2007). https://doi.org/10.1145/1362622.1362674

15. Zhang, J., Gruenwald, L.: Regularizing irregularity: bitmap-based and portable
sparse matrix multiplication for graph data on GPUs. In: Proceedings of the 1st
ACM SIGMOD Joint International Workshop on Graph Data Management Experi-
ences & Systems (GRADES) and Network Data Analytics (NDA). GRADES-NDA
2018. Association for Computing Machinery, New York (2018). https://doi.org/10.
1145/3210259.3210263

https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://doi.org/10.1109/HPEC.2018.8547538
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1177/1094342021990738
https://doi.org/10.1145/1839676.1839694
https://doi.org/10.1007/978-3-540-75755-9_32
https://doi.org/10.1145/355791.355796
https://doi.org/10.1145/355791.355796
https://doi.org/10.1109/HiPC.2013.6799135
https://doi.org/10.1016/j.jpdc.2015.06.010
https://doi.org/10.1109/SC.2008.5214359
https://doi.org/10.1145/1362622.1362674
https://doi.org/10.1145/3210259.3210263
https://doi.org/10.1145/3210259.3210263

	Towards an Efficient Sparse Storage Format for the SpMM Kernel in GPUs
	1 Introduction
	2 Sparse Matrix Multiplication (SpMM)
	2.1 The bmSparse Storage Format

	3 The SpMM with bmSPARSE
	4 Main Extensions
	4.1 T4: Null-Task Filtering
	4.2 T9 : Calculate C Bitmaps Based on A and B's Bitmaps

	5 Experimental Evaluation
	5.1 Platform Setup and Test Cases
	5.2 SpMM Algorithm Performance
	5.3 Impact of Executing T4
	5.4 Impact of Executing T9

	6 Concluding Remarks
	References

