
Data Management Model to Program
Irregular Compute Kernels on FPGA:

Application to Heterogeneous Distributed
System

Erwan Lenormand1(B) , Thierry Goubier1 , Löıc Cudennec2 ,
and Henri-Pierre Charles3

1 Université Paris-Saclay, CEA, LIST, 91191 Gif-sur-Yvette, France
{erwan.lenormand,thierry.goubier}@cea.fr

2 DGA Mâıtrise de l’Information, BP 7, 35998 Rennes, France
loic.cudennec@intradef.gouv.fr

3 Univ Grenoble-Alpes, CEA, LIST, 38000 Grenoble, France
henri-pierre.charles@cea.fr

Abstract. This paper presents a data management model targeting het-
erogeneous distributed systems integrating reconfigurable accelerators.
The purpose of this model is to reduce the complexity of developing
applications with multidimensional sparse data structures. It relies on
a shared memory paradigm, which is convenient for parallel program-
ming of irregular applications. The distributed data, sliced in chunks,
are managed by a Software-Distributed Shared Memory (S-DSM). The
integration of reconfigurable accelerators in this S-DSM, by breaking the
master-slave model, allows devices to initiate access to chunks in order
to accept data-dependent accesses. We use chunk partitioning of multi-
dimensional sparse data structures, such as sparse matrices and unstruc-
tured meshes, to access them as a continuous data stream. This model
enables to regularize memory accesses of irregular applications, to avoid
the transfer of unnecessary data by providing fine-grained data access,
and to efficiently hide data access latencies by implicitly overlaying the
transferred data flow with the processed data flow.

We have used two case studies to validate the proposed data manage-
ment model: General Sparse Matrix-Matrix Multiplication (SpGEMM)
and Shallow Water Equations (SWE) over an unstructured mesh. The
results obtained show that the proposed model efficiently hides the data
access latencies by reaching computation speeds close to those of an ideal
case (i.e. without latency).

Keywords: Distributed shared memory · Field programmable gate
array · Irregular application

This work was supported by the LEXIS project, funded by the EU’s Horizon 2020
research and innovation programme (2014–2020) under grant agreement no. 825532.

c© Springer Nature Switzerland AG 2022
R. Chaves et al. (Eds.): Euro-Par 2021, LNCS 13098, pp. 91–103, 2022.
https://doi.org/10.1007/978-3-031-06156-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06156-1_8&domain=pdf
http://orcid.org/0000-0002-7383-6285
http://orcid.org/0000-0003-0872-4567
http://orcid.org/0000-0002-6476-4574
http://orcid.org/0000-0002-0119-0446
https://doi.org/10.1007/978-3-031-06156-1_8


92 E. Lenormand et al.

1 Introduction

As a response to the power wall problem, High Performance Computing (HPC)
systems heterogeneity is gradually increasing. Part of this heterogeneity comes
from the association of processors with co-processors, mainly GPUs. These latter
allow the execution of computational-intensive portions of applications, called
compute kernels, with high FLOP/W efficiency. However, as illustrated by the
efficiency on the High Performance Conjugate Gradient (HPCG) benchmark [11],
these systems achieve only a fraction of their theoretical peak performance and
do not show efficiency gains from their heterogeneity for irregular applications.
This poor performance is due on one hand, to the random data access pat-
terns generated by these applications, and on the other hand, to the complexity
of porting irregular compute kernels to GPUs. Thanks to their reconfigurable
architecture, Field-programmable gate arrays (FPGAs) are particularly suitable
for processing irregular compute kernels [7]. The attractiveness of FPGAs for
HPC systems is growing by means of their increasing computing power and the
improvement of High Level Synthesis (HLS) tools. However, porting irregular
compute kernels to FPGA remains a challenging task, because random data
access patterns limit the abilities of HLS tools. Thus, designers must deal with
low-level kernel design, optimization of data structures for FPGA memory sys-
tems and orchestration of distributed data transfers.

To address this issue, we propose a data management model for irregular
compute kernels targeting heterogeneous distributed systems with reconfigurable
accelerators. The latter is based on a shared-memory provided by a Software-
Distributed Shared Memory (S-DSM). The application datasets are sliced in
chunks managed by the S-DSM. The integration of reconfigurable accelerators
in the S-DSM allows devices to initiate accesses to chunks. In this way, all the
processing units can make fine-grained random data accesses. This unified data
access model simplifies programming and meets the needs of irregular applica-
tions. By abstracting the data structure, chunk partitioning enables to prefetch
the data as streams of chunks. This prefetching should make it possible to hide
high data access latencies by implicitly overlaying the transferred data flow with
the processed data flow. The efficiency of the proposed data management model
relies on its ability to hide latencies. To assess this efficiency, we have used two
case studies: General Sparse Matrix-Matrix Multiplication (SpGEMM) and a
tsunami simulation code. These two applications generate a lot of irregular mem-
ory accesses, which are complex to optimize because they are data-dependent.

The paper is organized as follows: Sect. 2 presents the data management
model, Sect. 3 describes the experiments conducted to validate the model, Sect. 4
gives some references on related work, finally, Sect. 5 concludes this paper.

2 Data Management Model

Shared memory is a convenient programming paradigm to develop multi-
threaded applications, which randomly access data. Software-Distributed Shared



Data Management Model to Program Irregular Compute Kernels on FPGA 93

Memory can be used to aggregate distributed physical memories into a shared
logical space. In this work, we consider a S-DSM for heterogeneous micro-server
that has been proposed in previous work [5]. The latter is organized as a semi-
structured super-peer network, where a set of clients are connected to a peer-
to-peer network of servers. Clients execute the user code and servers manage
the shared data and related metadata. The integration of reconfigurable accel-
erators in the S-DSM enables compute kernels to initiate access to distributed
data. Obviously, this way to access the data can lead to high access latencies. To
deal with this problem, the data management model aims to hide data access
latencies by overlaying the transferred data flow with the processed data flow.
This relies on the ability to access data as continuous streams. To do this we use
chunks, a common object in computer science, whose concept is to use metadata
to describe the data stored in it. Chunks are the atomic piece of data managed
by the S-DSM. Each one has an unique identifier (chunk ID) and their maxi-
mum size can be set by the application. We use them to represent irregular data
structures, as they are convenient objects for data management in distributed
systems and their metadata allow to abstract the stored data. From the point of
view of the compute kernels, the role of the S-DSM is to transparently provide
the data and metadata corresponding to chunk ID. By partitioning the data
structures according to the access granularity of the applications, data streams
can be generated from sequences of chunk ID. Adapting the size of chunks to the
granularity of access allows to avoid the transfer of unnecessary data. We have
chosen two data structures widely used in irregular applications to illustrate the
data management model: sparse matrix and unstructured meshes.

Sparse Linear Algebra consists in performing linear operations on matrices
(or vectors) for which the majority of the elements are equal to zero. Sparse
matrices are compressed to reduce their memory footprint and to accelerate
access to their nonzero elements. The compressed sparse row format (CSR),
shown in Fig. 1b, is one of the most used sparse matrix representations. The
column indices and the values of elements are stored in row-major order in the
arrays Col and Val. RP [i] indicates the position of the first element of row i in
the arrays and the operation RP [i+1]−RP [i] is equal to the number of elements
in the row. As shown in Fig. 1c, we have adapted the CSR format to the use of
chunks. We colocalize the value and the column index of an element to form a
pair. The set of pairs representing a row is stored in a chunk. Then we use chunks

0 0 A0,2 0

0 A1,1 0 A1,3

0 0 0 0

A3,0 0 0 0

(a) Dense format.

Val A0,2 A1,1 A1,3 A3,0

Col 2 1 3 0

RP 0 1 3 3 4

(b) CSR format.

(2,A0,2)

(1,A1,1) (3,A1,3)

(0,A3,0)

ID count

0

1

3

1

2

1

(c) Chunk-based CSR format

Fig. 1. Matrix representation.



94 E. Lenormand et al.

(a) Hilbert space-filling curve over the
mesh.

1

2 3

4

5

6

7
8

9

10
11

12

13
14

15
16

17

Chunk 1 Chunk 2

Chunk 3

Chunk 4

Chunk 5

Chunk 6Chunk 7

Chunk 8

Chunk 9

(b) Chunk partitioning of the mesh with
chunks of two elements.

Fig. 2. Reordering and partitioning of a 2D unstructured mesh.

metadata to indicate the number of elements per row. This structure reduces the
number of memory accesses required to read or write a matrix row. It can be
easily adapted to another compressed format (e.g. compressed sparse column
format). Reading or writing a matrix involves to request access to each row and
to request the transfer of rows data between the memory and the compute kernel.
Decoupling the access request and the transfer request allows the prefetching of
the data into the FPGA memory and thus hides the access latency. Considering
that the kernel is developed as a pipeline of stages, which are separated by
FIFOs, then the prefetching speed is implicitly limited by the size of the FIFOs.
This prevents the FPGA memory from being overloaded due to too early data
prefetching. In an ideal case prefetching speed corresponds to the speed of data
consumption of the following stages in the pipeline.

Many HPC applications of Finite Element Method (FEM) work on unstruc-
tured meshes with triangular elements in 2D and tetrahedral elements in 3D.
Typical kernels on such unstructured meshes proceed by mesh updates - updat-
ing all elements, nodes or edges of the mesh according to a function of neighbour-
hood values, applying a convolution or stencil and hence following indirections
to both iterate over the mesh and to access neighbourhood information. Conse-
quently, the topology of the mesh and indexing of data has a significant impact on
data access locality and therefore application performance. Space-filling curves
(SFC) allow to improve data access locality of the mesh [2]. We use this tech-
nique to do an efficient chunk partitioning of the mesh. As shown in Fig. 2a, a
SFC is drawn in the geometric space of the mesh. Vertices are indexed according
the order in which they meet the curve. As illustrated in Fig. 2b, we apply a basic
partitioning along the curve, which consists in grouping the values of nodes of
consecutive indices in chunks of constant size. The elements are numbered in
order of the smallest index of their vertices. By following the path of the curve,
most of the data of the mesh could be accessed through a sliding window, whose
size would not be dependent of the mesh size. Thus, traversal of the mesh would



Data Management Model to Program Irregular Compute Kernels on FPGA 95

be done through a continuous flow of data, where the majority of chunks would
be accessed only once. Only the data of the elements located at the junction
zones between the different spaces of the curve would not be accessible through
the window. By following the curve, it is possible to identify the corresponding
chunks. In this way, a chunk ID sequence corresponding to these data can be
generated. We use these observations to design kernels iterating over unstruc-
tured meshes. The sliding window is implemented with an addressable FIFO.
Buffers are used to access data not accessible through the sliding window.

3 Data Management Model Validation

To validate the proposed data management model and assess its ability to hide
data access latencies, we have conducted experiments with a simulation tool.
This tool makes it possible to evaluate the performance of the system from
high level modeling without requiring a full FPGA synthesis. The experiments
focused on sparse matrix-matrix multiplication and a tsunami simulation code.

3.1 Simulation Methodology

To conduct the experiments, we have chosen to use a simulation tool that we
have developed [12]. The objective was to evaluate the performance of the sys-
tem from a high-level modeling. The behavioral description of the kernels is
modeled in C++. The irregularity of the applications we are studying and the
distributed nature of the system we are targeting imply high and variable data
access latencies. Thus, the main objective of this tool is to evaluate the effects
of latency on the ability to speed up compute kernels using our data manage-
ment model. Performance evaluation is based on the generation of data access
latencies relating to the activity of the compute kernel. The tool uses a hybrid
method: the activity of the compute kernel is generated by a simulation engine
and latencies are produced by measuring the real latencies of S-DSM requests
executed on the physical architecture, in order to produce faithful latencies. The
simulation engine and the S-DSM server can be run on different nodes. This
makes it possible to study different topologies associated with different latency
profiles. In the rest of the section three topologies are used: No Latency which
corresponds to the ideal case where all the data is stored in the FPGA memory,
Local which corresponds to the case where the FPGA is connected by a local
bus to the node running the S-DSM server and storing the data, and Remote
which corresponds to the case where the FPGA and the S-DSM server are on
two different nodes and are connected through an Ethernet network. Local node
latencies are medium (383µs for a read request and 207µs for a write request)
and remote node latencies are high (1311µs for read and 533µs for write). We
have used a Xilinx Virtex VC707 as a reference FPGA to set up the simulation
engine. Thus, the clock frequency was set to 200 MHz and the theoretical peak
memory bandwidth between the DDR and compute kernels was 12.8 Gb/s. The
simulation being non-deterministic, the results presented are the median values
of 10 runs.



96 E. Lenormand et al.

Request
Ai &Ci

Read
Ai

Request
Bk0,:

Ai,k0

Read
Bk0,:

Compute
Ai,k0 ×Bk0,:

PE0

Request
Bk1,:

Ai,k1
Read
Bk1,:

Compute
Ai,k1 ×Bk1,:

PE1

Request
Bk2,:

Ai,k2
Read
Bk2,:

Compute
Ai,k2 ×Bk2,:

PE2

Ci

Cpi,:

Cpi,:

Cpi,:

Write
Ci

Fig. 3. Dataflow of the SpGEMM compute kernel using 3 PEs.

3.2 Case Study 1: General Sparse Matrix-Matrix Multiplication

SpGEMM is widely used to study acceleration methods for sparse linear alge-
bra. This application generates irregular memory access patterns that makes
it complex to optimize, with usually a low efficiency in terms of floating point
operations per unit of time. We have designed the compute kernel by using
the row-wise sparse matrix-matrix multiplication algorithm formulated by Gus-
tavson [10]. Thanks to the row-wise traversal of the matrices, this algorithm is
well suited to dataflow processing and is quite straightforward to parallelize. As
illustrated in Fig. 3, to parallelize the computations, the kernel is implemented
with several processing elements (PEs). The first stages of the kernel access the
nonzero elements of the first input matrix and distribute them to the PEs. Each
PE multiplies the elements received by the corresponding rows of the second
input matrix. Finally, the last stages sum the partial results computed by the
PEs and write the result matrix. The indices and the values of the matrix are
encoded with 4 bytes (Single precision computations).

As the arithmetic intensity of SpGEMM is strongly data-dependent, we have
chosen matrices, presented in Table 1, with varying sizes, densities and patterns.
Thus, the experiments allow to evaluate the capacity of the data management
model to adapt to irregularity. In order to limit the simulation time, the memory
footprints of the matrices are smaller than a FPGA DRAM. To reproduce a
situation where the capacity of the accelerator memory requires to transfer the
data during the execution, we have adapted the simulated memory capacity
accordingly to the dataset. Thus, the accelerator memory has been configured
with 65536 locations of 1 kib (64 Mib). For each matrix, we have defined the
theoretical peak computation speed by considering the processing time as the
size of data transferred between the memory and the compute kernel divided by

Table 1. Square matrices, from [6], used for simulations. NNZ and density refer to the
source matrix. The memory footprint includes the three operand matrices.

Name Row NNZ Density (%) Memory footprint Peak GFLOP/s

consph 83334 6010480 0.087 294Mb 2.99

cop20k A 121192 2624331 0.018 182Mb 2.52

F2 71505 5294285 0.10 383Mb 2.93

m t1 97578 9753570 0.10 427Mb 3.07

s3dkt3m2 90449 3753461 0.046 134Mb 2.94



Data Management Model to Program Irregular Compute Kernels on FPGA 97

(a) Computation speed in GFLOP/s
(higher is better). The horizontal lines are
the theoretical peak computation speeds.

(b) Memory controller activity (occu-
pancy percentage). Close to 100% means
saturation.

Fig. 4. Performance according to the number of processing elements (PEs).

the FPGA memory bandwidth. These are represented by the horizontal black
bars on Fig. 4a and Fig. 5.

Fig. 5. Computation speed in GFLOP/s
according the system topology (higher is
better). The horizontal lines are the theo-
retical peak computation speeds.

For the first experiment, we var-
ied the parallelism level of the compute
kernel by implementing between 4 and
64 PEs on the local node. Figure 4a
shows the computation speed obtained
for this experiment. This shows that
the increase in parallelism makes it
possible to speed up computations, up
to 16 PEs. The speed up obtained
between 16 PEs and 32 PEs is low
(between 1.04 and 1.22) or even neg-
ative. Between 32 and 64 PEs the
speed ud is always negative. This effi-
ciency limitation means that the PEs
are under-exploited due to an insuffi-
cient supply of data (data starvation).
The latter can be explained either by a
data starvation in FPGA memory (due
to excessive latencies), or by a FPGA

memory bandwidth bottleneck. Figure 4b illustrates the occupancy rate of the
FPGA memory controller. These results show that the controller is saturated for
the configuration with 16 PEs. This information highlights that the FPGA mem-
ory bandwidth is the bottleneck for this kernel. This bandwidth limit is also one
of the explanations for the nonlinear speed up between the configurations with 4
PEs and 16 PEs. The second experiment aimed to study the impact of topology on



98 E. Lenormand et al.

performance. For this we have used a configuration with 16 PEs, able to saturate
the memory controller on the local node. The results obtained are illustrated in
Fig. 5. It shows that for the matrices consph, F2 and m t1 the performance gap
with the ideal case for the local node (between 1% and 2%) and the remote node
(between 2% and 6%) is very low. This small performance gap is mainly explained
by the time to load the first data required to reach the nominal mode of the kernel.
This shows the ability of the data management model to hide data access laten-
cies. For the matrices cop20k A and s3dkt3m2, the performance gap is larger, but
remains relatively small, respectively 38% and 6% for local node and 54% and 32%
for remote node. For these two latter, the performance gap with the theoretical
peak is also the largest, even for the ideal case. These results highlight a correla-
tion between data density and the ability to speed up computations. Indeed, for
the most sparse matrices, the memory accesses at row granularity do not use all
the width of the data bus. Therefore, sparsity amplifies the effect of memory band-
width bottleneck. Moreover, the more the rows are sparse, more processing time
is short. This limits the ability to overlay the processing flow with the data trans-
fer flow. For the matrix cop20k A, the low arithmetic intensity per row limits the
ability to hide data access latencies.

3.3 Case Study 2: Shallow Water Equation

The Shallow Water Equations (SWE) are hyperbolic partial differential equa-
tions that describe a layer of fluid below a pressure surface. They can be solved
with FEM. The code under study is the TsunAWI simulation code, a production
code that implements the SWE with inundation, and whose results are used in
the Indonesia Tsunami Early Warning System (InaTEWS), and under real-time
constraints in the LEXIS European project [8]. The base data structure is a 2D
unstructured mesh. This code has been optimized for performance, especially
concerning the mesh ordering [9]. In this code, we have designed a kernel to
speed up the calculation of the gradient, one of the operations of the tsunami
simulation code. This operation is an interpolation of the sea surface height
via barycentric coordinates. The barycentric coordinates are precomputed for
each vertex element. The processing of an element requires five floating point
operations, resulting in a low FLOP/byte ratio. The kernel is implemented with
several independent processing elements (PEs). Each PE process a different part

Table 2. Characteristics of the set of meshes used for the experiments.

Region Name # Elements # Vertices Memory footprint

Indian ocean Padang C 460 119 231 586 14Mb

Padang F 2 470 345 1 242 653 74Mb

Pacific ocean Coquibo C 3 396 755 1 709 506 102Mb

Coquimbo F 9 762 027 4 887 927 293Mb

Mediterranean Sea Mediterranean 9 917 645 4 999 404 298Mb



Data Management Model to Program Irregular Compute Kernels on FPGA 99

(a) Computation speed in MElements/s
(higher is better).

(b) Memory controller activity (occu-
pancy percentage). Gray bars correspond
to the loading time of the first data.

Fig. 6. Performance according to the number of processing elements (PEs).

of the mesh. The size of the sliding window is 1024 words. For the experiments,
we have used five meshes presented in Table 2. The FPGA memory have been
configured with 32 Mib. This was defined according to the maximum number of
processing elements implemented (16 PEs), in order to allow each PE to prefetch
up to 512 chunks of 1 kib per stream of data. Considering the memory footprint
of each mesh and the maximum memory bandwidth of the FPGA, the theoreti-
cal peak computation speed is approximately 426 MElements/s for all meshes.

(a) Computation speed in MElements/s
(higher is better).

(b) Memory controller activity (occu-
pancy percentage). Gray bars correspond
to the loading time of the first chunks.

Fig. 7. Performance according the system topology.



100 E. Lenormand et al.

The first experiment aimed to study the speed up efficiency of the kernel
according the parallelism level. To do this, the kernel has been implemented
with 1 to 16 PEs. The computation speeds obtained are represented in Fig. 6a.
It shows that the speed up gain sharply decreases beyond 2 PEs. The occupancy
rate of the memory controller illustrated in the Fig. 6b provides a better under-
standing of these results. In this figure, the colored bars represent the percentage
of time the controller is active, the gray bars correspond to the loading time of
the first chunks as a percentage of simulation time, and the space between the
colored bars and the gray bars represents the part of time during which the con-
troller could have been used more. For the four largest meshes the results show
a saturation of the memory controller for configurations with 4 PEs or more. We
conclude that the bandwidth of the FPGA memory limits the performance scal-
ing of the kernel. From 2 PEs onward, the controller occupancy rate is too high
to efficiently speed up the processing by increasing the parallelism. Additionally,
the smaller the mesh, the more the loading time of the first chunks represents
a significant part of the total processing time, which reduces the computation
speed.

For the second experiment, we have evaluated the kernel performance accord-
ing to the topology with 4 PEs. Figure 7a and 7b respectively illustrate the
computation speed obtained and the associated occupancy rate of the memory
controller. These results show that increasing data access latency reduces com-
putation speed and highlight a correlation between the size of the mesh and the
slowdown. As shown in Fig. 7b, this effect can be explained by the proportion
of the processing time spent to load the first chunks. For large datasets process-
ing on the local node, where the load time is the least impacting, processing
speeds almost reach those of the ideal case. For the remote node, where the read
access latency is three times greater than on the local node, the slowing down
of the computation speed is relatively low for the three largest meshes (from
10% to 17%). Finally, the performance of the No Latency configuration is close
to the theoretical peak computation speed. The gap is due to the inability to
access all nodes from the sliding window, which requires reading several times
some chunks. Thus, we conclude that this mesh traversal method is almost ideal,
given how small that gap is.

3.4 Discussion

The experiments have evaluated a data management model where accelerator
tasks initiate access to distributed data. The experimental scenario used was
the most disadvantageous, as the FPGA memory was empty at startup and
all data had to be transferred during runtime. The results showed that thanks
to prefetching, the programming model can efficiently hide the latencies of dis-
tributed data access. Nevertheless, this efficiency depends on the workload of the
compute kernel. In practice, the observed workloads are huge. The size of the
sparse matrices used in scientific applications can exceed ten gigabytes. The size
of the complete datasets used for the tsunami simulation are at least ten times
larger than the data subset used for the calculation of the gradient only. For the



Data Management Model to Program Irregular Compute Kernels on FPGA 101

complete simulation each element of the mesh involves a hundred floating opera-
tion per iteration. Thus, the processing time of the largest meshes on a high end
processor can exceed several hours, and this motivates to distribute the process-
ing to an heterogeneous system with FPGAs. This work shows that an S-DSM
can simplify the distributed data management thanks to chunk partitioning and
that the presented data management model solves the data access latency issue.
Experiments have shown how in this model an FPGA can be supplied with data.
As each accelerator is master of its access to data, this model can be extended
to a distributed system integrating several FPGAs.

4 Related Work

Prior work have been done to provide shared memory for distributed systems
with accelerators. Willendberg et al. [16] have proposed an FPGA communi-
cation infrastructure compatible to GASNet. This enables processing elements
implemented on an FPGA to initiate remote direct memory access to remote
FPGAs. Unicorn [4] provides a distributed shared memory (DSM) for CPU-
GPU clusters. This is achieved with transactional semantics and deferred bulk
data synchronization. StarPU [1] uses a DSM to manage data replication for het-
erogeneous distributed systems, but this DSM is not directly exposed to users.
Recent work has studied chunk partitioning applied to sparse matrix for accel-
eration of sparse linear algebra. Winter et al. [17] have proposed an adaptive
chunk-based SpGEMM for GPU. This approach uses chunks to store the par-
tial results of multiplication, then uses the chunk metadata for the merge stage.
Rubensson and Rudberg [13] have proposed the Chunks and Tasks program-
ming model for parallelization of irregular applications. In this model, matrices
are represented by sparse quatrees of chunks. MatRaptor [15] and REAP [14]
uses a chunk-based CSR format adaptation and the row-wise product to imple-
ment SpGEMM kernel on FPGA. Barrio et al. [3] have proposed an unstructured
mesh sorting algorithm to enabling stream processing for finite element method
applications. This algorithm was applied to study the acceleration of scientific
codes on CPU-FPGA platform.

5 Conclusion

Increasing the energy efficiency of HPC systems has become a major issue.
Thanks to their reconfigurable architecture, FPGAs could increase power effi-
ciency for HPC applications with irregular compute kernels. However, due to
their complexity of use, FPGAs are underemployed in HPC systems. In this
paper we have proposed a data management model for irregular compute kernel
acceleration on FPGA integrated in distributed system. This model relies on a
S-DSM to allow accelerators to initiate access to distributed data and on chunk
partitioning to abstract the irregular structure of the datasets. We have shown
how this data management model could be applied to compute kernels of sparse
linear algebra and finite element method. We have conducted experiments with



102 E. Lenormand et al.

a hybrid simulation tool, which exploits the physical system to provide accurate
data. These experiments have shown that the data management model enables
to efficiently hide high data access latencies. Finally, experiments have shown
that memory bandwidth is a bottleneck. This phenomenon is normal since the
studied applications are memory bound. High Memory Bandwidth (HBM) tech-
nologies as available on current and future FPGAs should help to remove this
bottleneck and improving performance of compute kernels.

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put.: Pract. Exp. 23(2), 187–198 (2011)

2. Bader, M.: Space-Filling Curves: An Introduction with Applications in Scientific
Computing, vol. 9. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-31046-1

3. Barrio, P., Carreras, C., López, J.A., Robles, Ó., Jevtic, R., Sierra, R.: Memory
optimization in FPGA-accelerated scientific codes based on unstructured meshes.
J. Syst. Archit. 60(7), 579–591 (2014)

4. Beri, T., Bansal, S., Kumar, S.: The unicorn runtime: efficient distributed shared
memory programming for hybrid CPU-GPU clusters. IEEE Trans. Parallel Distrib.
Syst. 28(5), 1518–1534 (2017)

5. Cudennec, L.: Software-distributed shared memory over heterogeneous micro-
server architecture. In: Euro-Par 2017: Parallel Processing Workshops (2017)

6. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans.
Math. Softw. 38(1), 1:1–1:25 (2011)

7. Escobar, F.A., Chang, X., Valderrama, C.: Suitability analysis of FPGAs for het-
erogeneous platforms in HPC. IEEE Trans. Parallel Distrib. Syst. 27(2), 600–612
(2016)

8. Goubier, T., et al.: Real-time model of computation over HPC/cloud orchestration
- the LEXIS approach. In: Barolli, L., Poniszewska-Maranda, A., Enokido, T. (eds.)
CISIS 2020. AISC, vol. 1194, pp. 255–266. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-50454-0 24

9. Goubier, T., Rakowsky, N., Harig, S.: Fast tsunami simulations for a real-time
emergency response flow. In: 2020 IEEE/ACM HPC for Urgent Decision Making,
UrgentHPC@SC 2020, pp. 21–26. IEEE (2020)

10. Gustavson, F.G.: Two fast algorithms for sparse matrices: multiplication and per-
muted transposition. ACM Trans. Math. Softw. 4(3), 250–269 (1978)

11. High-Performance Conjugate Gradient (HPCG) Benchmark results, November
2020. https://www.top500.org/lists/hpcg/list/2020/11/

12. Lenormand, E., Goubier, T., Cudennec, L., Charles, H.P.: A combined fast/cycle
accurate simulation tool for reconfigurable accelerator evaluation: application to
distributed data management. In: 2020 International Workshop on Rapid System
Prototyping (RSP) (2020)

13. Rubensson, E.H., Rudberg, E.: Chunks and tasks: a programming model for par-
allelization of dynamic algorithms. Parallel Comput. 40(7), 328–343 (2014)

14. Soltaniyeh, M., Martin, R.P., Nagarakatte, S.: Synergistic CPU-FPGA acceleration
of sparse linear algebra. CoRR abs/2004.13907 (2020)

https://doi.org/10.1007/978-3-642-31046-1
https://doi.org/10.1007/978-3-642-31046-1
https://doi.org/10.1007/978-3-030-50454-0_24
https://doi.org/10.1007/978-3-030-50454-0_24
https://www.top500.org/lists/hpcg/list/2020/11/


Data Management Model to Program Irregular Compute Kernels on FPGA 103

15. Srivastava, N.K., Jin, H., Liu, J., Albonesi, D.H., Zhang, Z.: MatRaptor: a sparse-
sparse matrix multiplication accelerator based on row-wise product. In: 53rd
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO, pp.
766–780. IEEE (2020)

16. Willenberg, R., Chow, P.: A remote memory access infrastructure for global address
space programming models in FPGAs. In: Proceedings of the ACM/SIGDA Inter-
national Symposium on Field Programmable Gate Arrays, pp. 211–220. ACM
(2013)

17. Winter, M., Mlakar, D., Zayer, R., Seidel, H.P., Steinberger, M.: Adaptive sparse
matrix-matrix multiplication on the GPU. In: Proceedings of the 24th Symposium
on Principles and Practice of Parallel Programming, pp. 68–81. ACM (2019)


	Data Management Model to Program Irregular Compute Kernels on FPGA: Application to Heterogeneous Distributed System
	1 Introduction
	2 Data Management Model
	3 Data Management Model Validation
	3.1 Simulation Methodology
	3.2 Case Study 1: General Sparse Matrix-Matrix Multiplication
	3.3 Case Study 2: Shallow Water Equation
	3.4 Discussion

	4 Related Work
	5 Conclusion
	References




