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Cardinal Stefan Wyszyński University, Warsaw, Poland

{j.gasior,f.seredynski}@uksw.edu.pl

Abstract. We consider the problem of profit optimization for cloud bro-
kerage service in the IaaS environment. We replace this optimization prob-
lem with a game-theoretic approach where players tend to achieve a solu-
tion by reaching a Nash equilibrium. We propose a fully distributed algo-
rithm based on applying the Spatial Prisoner’s Dilemma (SPD) game and
a phenomenon of collective behavior of players participating in the game
composed of two classes of automata-based agents - Cellular Automata
(CA) and Learning Automata (LA). We introduce dynamic strategies like
local profit sharing, mutation, and competition, which stimulate the evo-
lutionary process of developing collective behavior among players to max-
imize their profit margin. We present the results of an experimental study
showing the emergence of collective behavior in such systems.

Keywords: Collective behavior · Multi-agent systems · Spatial
prisoner’s dilemma game · Cellular automata · Infrastructure as a
service

1 Introduction

Cloud Computing (CC) is a term used with increasing frequency in the past few
years, as its popularity continues to grow. They can reduce the cost and com-
plexity of owning and operating computers and networks. In an Infrastructure-
as-a-Service (IaaS) cloud, this is achieved by using Virtual Machines (VMs),
which can be dynamically assigned to the resources according to the demand
and availability, as well as a possibility of consolidating several such VMs into
the same virtual server.

As a result, an IaaS system can offer such on-demand computational services
at a low cost. Cloud users usually pay for the usage (counted by the number
of instance-hours incurred) in a pay-as-you-go model and are therefore freed
from the prohibitive upfront investment on infrastructure, which is usually over-
provisioned to accommodate peak demands [13].

Users may be charged in several different ways to access such resources. For
example, it could be either a long-term reservation or a quick on-demand lease
[13]. In long-term reservations, customers pay a fee to reserve a certain amount of
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computing resources for a period of one or several years. Then, they get charged
extra for actually using the resource. While the extra payment may be lower
than comparable on-demand service, it may not be desirable for each customer
to pay for the more extended reservation period if their workload is relatively
light or unpredictable [3].

One of the answers to this problem is cloud service brokering [4], a model
in which a trusted third party matches the needs of customers with services of
cloud providers. Typically, brokers’ service is to find the best deals among a
set of clouds that best fit the user requirements. Brokers consider the price and
many other factors, such as privacy and security issues, Service Level Agreements
(SLAs), performance, and they might offer solutions integrating services from
multiple service providers [8].

In this paper, we analyze a game-theoretic approach to consider a problem of
multi-broker job allocation and scheduling, aiming to optimize the brokers’ profit
while maintaining a Quality of Service (QoS) level acceptable to the customer.
We propose a fully distributed approach based on converting this optimization
problem into a game-theoretic one, where brokers representing users’ demands
will search for a solution in the form of a Nash equilibrium. For this purpose
we will use a variant of SPD game proposed by [5] in the context of Cellular
Automata (CA) space.

The remainder of this paper is organized as follows. In the next section,
works related to the subject of our study are discussed. Section 3 describes the
proposed Cloud Computing (CC) system model and defines the scheduling prob-
lem. Section 4 demonstrates the performance metrics, the input parameters, and
the experimental results. Finally, Sect. 5 concludes the paper.

2 State of the Art

A multi-objective approach to the cloud brokering problem was recently pro-
posed in [7], where authors provide a dichotomic approach to minimize the cost
of service and a second - negatively correlated - objective. The novelty of the
approach lies in considering services that can be sold in bundles, in which a set
of services is sold together for a lower price than the sum of individual services’
prices. In [6], the authors introduced a brokering system for scientific workflows,
which optimizes a multi-criteria problem using an aggregated objective func-
tion. The brokering part of the system selects the length of the service period to
minimize VMs lease cost.

The idea of broker exploitation of pricing model was also studied in [13]
and solved using approximate dynamic programming. The theoretical study of
users’ requests aggregation under a concave cost function assumption and Ran-
domized Online Stack-Centric Scheduling Algorithm (ROSA) was proposed in
[14]. In their paper, authors proved the lower bound of the proposed solution’s
competitive ratio and evaluated its performance with trace-driven simulation
using Google cluster data.

Aazam [2] proposed a dynamic broker, which predicts users’ behavior based
on the so-called relinquish probability, i.e., the likelihood that the user will cease
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to use the requested services. The study also involves an advanced refund mech-
anism based on multiple criteria. It is further extended to the Amazon cloud
model and includes historical record integration in [1].

Similarly, in [10], the authors introduced an adaptive learning system that
allows the analysis of the sequence of negotiation offers received by the broker for
effectively learning the opponent’s behavior over several stages of the negotiation
process. They formulated this issue as the multi-stage Markov decision prob-
lem to suggest the broker with appropriate counter-offer tactics. Authors claim
their solution can outperform the existing fixed behavioral learning schemes and
maximize the utility value and success rate of negotiating parties without any
break-offs.

Closer to our work, in [3] authors analyzed the scenario of user cost min-
imization in mobile cloud computing (MCC) networks, where multiple coop-
erative brokers assign cloud resources to mobile users. The work investigated
two classes of cloud reservation strategies, i.e., a competitive strategy and a
compete-then-cooperate strategy as a performance bound, showing that notice-
able cooperative gains can be achieved over the pure competition in markets
with only a few brokers. In contrast, the cooperative gain becomes marginal in
more crowded markets.

A similar combinatorial auction-based algorithm was proposed in [9]. Authors
aimed to solve the optimization problem where cloud users submit their require-
ments, and in turn, vendors submit their offers containing the price, QoS, and
their prepared sets of resources. Results for procurement cost and scalability on
a large number of cloud vendors were verified using various standard distribution
benchmarks, including random, uniform, decay, and CATS.

3 Multi-objective Scheduling in Cloud Environment

3.1 Cloud Brokering Model

We assume that the Cloud Service Provider (CSP) offers abundant computing
capacity at any given time. The Cloud Resource Broker (CRB) purchases com-
putational resource from IaaS provider and has to pay for the resource cost. For
the purpose of this paper we follow the specification of Compute Optimized VM
series provided by Amazon EC2 and shown in Table 11. Broker then offers to
sell a set of VM instances M1,M2, ...,Mm, specified by several characteristics,
including a number of cores P (Mi), memory M(Mi), storage space S(Mi) and
cost per hour CB(Mi).

Cloud Service Users (CSUs) (U1, U2, ..., Un) submit to the broker their work-
flow applications Jj

k for execution. Each application is the set of n tasks or jobs.
Users are expected to pay appropriate fees to the broker dependent on the SLA
requested. Job (denoted as Jj

k) is jth job produced (and owned) by user Uk. Jk

stands for the set of all jobs produced by user Uk, while nk = |Jk| is the number of

1 The price is for Linux Instances (EU Frankfurt) with full upfront payment on 1-year
term reservation as of July, 2021.
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Table 1. Compute Optimized Dedicated VM Instances in Amazon EC2.

vCPU Memory (GiB) Price (Reserved) Price (On-demand)

c4.large 2 3.75 $0.074 $0.114

c4.xlarge 4 7.5 $0.146 $0.227

c4.2xlarge 8 15 $0.293 $0.454

c4.4xlarge 16 30 $0.586 $0.909

c4.8xlarge 36 60 $1.173 $1.817

such jobs. Each task has varied parameters defined as a tuple <rj
k, sizej

k, tjk, dj
k>,

specifying its release dates rj
k ≥ 0; its size 1 ≤ sizej

k ≤ mm, that is referred to
as its processor requirements or degree of parallelism; its workload tjk and a
deadline dj

k.
The broker’s cost function CB(Mi) is dependent on both the prices of

reserved cloud resource instances and on-demand instances (as defined in
Table 1). The cloud broker is capable of leveraging the pricing gap between
reserved (CR) and on-demand (COD) instances to reduce the expenses of all
the users. To attract customers, CRBs should charge for a VM lease less than
the on-demand pricing (COD) offered by the cloud provider. In order to ensure
a reasonable profit for the broker, we assume that the broker’s asking price
CB(Mi) will be 25% lower than the on-demand price requested by the cloud
provider.

We consider the multi-broker resource scheduling problem for IaaS clouds,
where multiple customers may submit their job requests to a broker at random
instants with a random workload that should be fulfilled before a specified dead-
line. We assume that the inter-arrival times for job requests are arbitrary. If the
broker cannot accommodate the request to finish execution before the specified
deadline, it must either use a larger VM instance offering more processing capac-
ity or buy additional on-demand instances to fulfill the customer’s request. Both
solutions account for a negative impact on the broker’s profit [8].

From a global system perspective, an appealing design objective is to find
the allocation strategy for all brokers’ submissions that minimizes all requests’
average cost by cooperatively deciding on the reservation and task outsourcing
strategies of all the brokers.

However, different brokers may be run by different organizations and may
be selfish and only willing to maximize their profits. In other words, there is
no incentive for the brokers to cooperate if the resulting profit is not higher
compared with that achievable through pure competition [3].
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4 A Game-Theoretic Approach to IaaS Multi-broker
Scheduling

To mitigate this issue, we introduce an agent-based game-theoretic distributed
scheduling scheme. We consider a two-dimensional CA lattice of the size n × m.
Each cell of the CA has a Moore neighborhood of radius r and a rule, which
depends on its neighborhood state. Each cell of a 2D CA will be considered an
agent (player) participating in the SPD game [5]. Each player (a cell of CA) has
two possible actions: C (cooperate) and D (defect).The payoff function of the
game is given in Table 2.

Table 2. Payoff function of a row player participating in the SPD game.

Player’s action Opponent’s action

Cooperate (C) Defect (D)

Cooperate (C) R = 1 S = 0

Defect (D) T = b P = a

Each player associated with a given cell plays a game with each of his eight
neighbors in a single round, collecting their total score. After a q number of
rounds (iterations of CA), each cell (agent) of CA can change its rule (strategy).
We assume that considered 2D CA is a non-uniform CA, with one of the following
rules: all-C (always cooperate), all-D (always defect), and k-D (cooperate until
no more than k (0 ≤ k ≤ 7) neighbors defect).

A player may change his current strategy into another by comparing his
total score collected during q rounds with his neighbors’ scores. He selects as
his new strategy the best performing neighbor’s strategy, i.e., the player whose
total collected score is the highest. This new strategy is used by a cell (player)
to change its current state, and the value of the state is used in games during
the following q rounds of interaction.

It is worth to notice that choosing the action D by all players corresponds
to the Nash equilibrium (NE) point. Looking from the point of view of players’
global collective behavior, this average total payoff of all players in NE point is
low. Instead, we would expect the players to choose the action C, which provides
the highest value of the average total payoff of all players equal to 1. For this
instance of the game, it is the maximal value of a possible average total payoff
of all players, and it will be achieved when all players decide to select the action
C. We are interested in studying conditions when such behavior of players in
iterated games is achievable.
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4.1 CA–Based Players

We will be using CA–based agents as the first type of participant in the game.
CAs are spatially and temporally discrete computational systems initially pro-
posed by Ulam and von Neumann and today are a powerful tool used in computer
science and natural science to solve problems and model different phenomena.

When a cell (i, j) is considered a CA-based player, it will be assumed that it
is a part of the 2D array, and at a given discrete moment t, each cell is either in
state C or D. The state’s value is used by CA–based player as an action with
an opponent player. For each cell, a local neighborhood is defined. Because we
employ a 2D finite space, a cyclic boundary condition is applied.

In discrete moments, CA–based players will select new actions according to
local rules (also called strategies or transition functions) assigned to them, which
will change the states of the corresponding cells. We will be using several rules,
among which one of them will be initially randomly assigned to each CA cell, so
we deal with a non-uniform CA.

We will consider two types of CA–based players. To cells of the first type, one
of the following rules: all–C, all–D, and k–D will be assigned. The second type
of CA–based player uses probabilistic CA. To cells of this type, the following
rule will be assigned: cooperate with probability pcoop or defect with probability
1 − pcoop, where pcoop is some predefined value.

It is worth to notice that the considered 2D CA differs from a classical CA,
where rules assigned to cells do not change during evolving CA in time. A CA
with the possibility of changing its rules is called a second-order CA. In opposite
to a classical CA, a second-order CA has the potential to solve various optimiza-
tion problems.

4.2 LA–Based Players

We will also employ a deterministic ε–LA as the second group of players in
the considered game. The ε–LA has d = 2 actions and acts in a deterministic
environment c = (c1, c2, ..., c2∗d), where ck stands for a reward defined by the
payoff function from Table 2 obtained for its action and action of his opponent
(CA or LA–based player) from the Moore neighborhood. It also has a memory
of length h and a reinforcement learning algorithm that selects a new action. In
our case, C and D are actions of an automaton, and they are associated with
states of the array cells occupied by LA–based players.

Whenever ε–LA generates action, and its opponent from a neighborhood
selects an action, the local environment (payoff function) sends it a payoff in
a deterministic way. The objective of a reinforcement learning algorithm repre-
sented by ε–LA is to maximize its payoff in an environment where it operates.

The automaton remembers its last h actions and corresponding payoffs from
the last h moments. As the next action ε–LA chooses its best action from the
last h games (rounds) with the probability 1 − ε (0 < ε ≤ 1), and with the
probability ε/d any of its d actions.
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4.3 Sharing, Mutation and Competition Mechanisms in the Game

In this paper, we are more interested in incorporating the global goal of the
system into the local interests of individual brokers. In the following, we assume
that action (C) is considered an equivalent of the cooperation in a classic PD
game and denotes a situation where brokers are willing to share their unused
allocation slots within their VMs while receiving a partial payment from other
brokers. On the other hand, action (D) means that the broker declines to par-
ticipate in resource sharing, which is considered an equivalent of the defection
(D) in a classic PD game.

To study a possibility of the emergence of global collective behavior of players
in the sense of the second class of the collective behavior classification [11] we
introduce additional mechanisms of local interaction between players, which can
be potentially spread or dismissed during the evolution.

The first mechanism is a competition, where after a q rounds (iterations),
each agent compares its total payoff with its neighbors’ total payoffs. If a more
successful player exists in the neighborhood, this player replaces their own rule
with the most successful one. This mechanism converts a classical CA into the
second–order CA, which can adapt in time. When both players are CA-based
players, a rule of a given player is replaced by a rule of the most successful
players, and the value of the sharing tag is copied. If both players are LA–based
players, then replacing happens only if the best player differs in at least one value
of such parameters as h, ε, or a sharing tag. If one player is a CA-based player
and the other one is an LA-based player, then a player of the most successful
class replaces a given player.

The second mechanism used is a mutation of system parameters. With some
predefined value of probability, a CA–based agent of the first type can change the
currently assigned strategy (rule) to one of the two other strategies. Similarly,
a CA–based agent of the second type can increase/decrease its probability of
cooperation. Also, parameters h and ε of LA–based agents can be a subject of
mutation.

The third mechanism called an Income Sharing Mechanism (ISM) provides
a possibility of sharing payoffs between players. It is assumed that each player
has a tag indicating whether he wishes (on) or not (off ) to share his payoff
with players from the neighborhood who also wish to share. Before starting the
iterated game, each player turns on its tag with a predefined probability psharing.
Due to the competition mechanism, rules with tags containing information about
willingness to share incomes can be potentially spread or dismissed during the
system’s evolution.

5 Experimental Analysis and Performance Evaluation

In this section, we evaluate the performance of the considered classes of agents
and introduced mechanisms of interactions (mutation, competition, sharing) and
their impact on the emergence of cooperative behavior between brokers and their
overall performance.
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Optimal parameters for the SPD game were adapted from our earlier paper
[12] and are as follows. A 2D array of the size of 4 × 4 cells (players) was used,
with an initial state C or D (player action) set with the probability equal to 0.5.
Initially, the rule k–D was assigned (if applied) to CA cells with probability 0.7,
and the remaining three rules (all–C, all–D, probabilistic CA) with probability
0.1. When k–D was applied, k was randomly selected from the range 0–7. If the
competition mechanism is turned on, updating the array cells (by a winner in a
local neighborhood) is conducted after each iteration (q = 1). Parameters of the
payoff function were set to a = 0.3 and b = 1.4, respectively. We incorporate these
settings into the proposed scheduler to find a job allocation schedule maximizing
the broker’s income and minimizing the need for procuring additional resources
on-demand.

We conduct simulations using the Google cluster trace data, which has been
widely employed to perform cloud computing-related simulations. From the
above dataset, we generate sample workload batches in the range of 1000–10000
jobs. The experimental scenarios are encoded as follows: {Agent, N,M}, where
Agent denotes the type of employed automata, N - number of brokers and M
- number of VM instances, i.e., {CA, 4, 10} denotes scenario employing N = 4
brokers in the system with M = 10 VM instances and CA–based players.

Jobs were then scheduled by independent brokering agents (in the range N =
{2, 4, 8, 16}) on cloud infrastructure containing M = 10, 20, 30, and 40 reserved
VM instances using a fast Minimum Time Maximum Profit list heuristic [8] and
a proposed game-theoretic space-sharing scheme.

We analyze two different performance metrics. First, the Scheduling Success
rate, which denotes the ratio of completed job requests, i.e., without the need to
procure additional on-demand resources. Similarly to [8], we do not count such
events as SLA violations. In such cases, a broker will be forced to cover additional
lease costs implying lower profits. The second analyzed metric is the aggregate
profit improvement resulting from cooperation and multiplexing of job requests
between individual brokers. Table 3 reports the average improvement over the
results achieved using a simple list scheduling heuristic.

Let us start with a comparison between CA and LA–based agents. In most
cases, LA–based players achieve better results than their CA–based counterparts.
It might be because CA-based players do not have learning abilities, and the
value of the average payoff is a result of the initial settings. In contrast to CA,
LA–based players are aware of their environment, they can learn and adapt, and
the average payoff depends upon a given memory size and the ε–value.

We can also notice that, as the congestion increases, the profit improve-
ment decreases, i.e., the additional lease costs arise as the demand for resources
increases. We also observe that ISM’s benefits have a more significant impact
on larger systems with a higher number of available VMs. As can be seen, the
profit improvements increase on average by 8.6% points as the number of VM
instances increases from 10 to 40. This means that cooperation is more beneficial
in less crowded scenarios, while the benefit is only marginal if the number of job
requests is high compared to a number of available VMs instances.
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Table 3. Averaged Scheduling Success Rate and Profit Improvement results for mul-
tiple scheduling scenarios computed with SPD Scheduler (using Income Sharing and
Mutation mechanisms) and Minimum Time Maximum Profit list heuristic.

Problem instance Scheduling success rate [%] Profit improvement [%]

MinTMaxP SPD-ISM SPD-Mut MinTMaxP SPD-ISM SPD-Mut

{CA, 2, 10} 86.35 89.24 86.89 5.31 5.78 5.41

{CA, 4, 20} 89.78 91.31 91.85 7.51 8.52 7.89

{CA, 8, 30} 91.24 92.21 90.74 9.11 9.52 8.89

{CA, 16, 40} 92.45 93.56 91.56 12.41 13.75 13.24

{LA, 2, 10} 89.54 90.78 90.41 5.81 6.07 5.84

{LA, 4, 20} 91.44 91.65 90.97 9.44 9.26 9.91

{LA, 8, 30} 90.84 91.35 91.57 10.11 10.86 10.31

{LA, 16, 40} 93.33 93.55 92.89 13.58 13.76 14.57

{CA+LA, 2, 10} 89.98 90.14 89.74 5.75 6.23 5.89

{CA+LA, 4, 20} 91.24 92.45 91.45 8.42 8.89 8.74

{CA+LA, 8, 30} 92.98 93.78 92.48 8.11 9.89 9.94

{CA+LA, 16, 40} 95.54 95.75 96.87 14.41 15.37 16.22

This could also be attributed to the higher ratio of deadline violations in
smaller-scale experiments. In such cases, due to a larger number of job requests,
resource sharing between the brokers become less profitable due to the increasing
number of additional on-demand leases required to meet the SLA requested by
the customers.

6 Conclusion and Future Work

We have presented a theoretical framework to study the behavior of heteroge-
neous multi–agent systems composed of two classes of automata–based agents:
CA and LA agents operating in an environment described in terms of a spatial
PD game. This framework was defined to solve global optimization tasks in a
distributed way by agents’ collective behavior.

We incorporated this framework into the paradigm of a multi-broker job
allocation scenario within the IaaS architecture to use the competition among the
entities involved in the scheduling process to converge towards Nash equilibrium.
It allowed us to account for often contradicting interests of the clients within
the CC system without any centralized control and introduced several desirable
properties such as adaptation and self-organization.

A set of conducted experiments has shown that these proposed solutions
are promising building blocks that enable the emergence of global collective
behavior in heterogeneous multi-agent systems. Conditions of the emergence of
such systems’ global behavior may depend on several additional parameters, and
these issues will be a subject of our future work.
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