
Porting Sparse Linear Algebra
to Intel GPUs

Yuhsiang M. Tsai1(B) , Terry Cojean1 , and Hartwig Anzt1,2

1 Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
{yu-hsiang.tsai,terry.cojean,hartwig.anzt}@kit.edu

2 University of Tennessee, Knoxville, TN 37996, USA

Abstract. With discrete Intel GPUs entering the high performance
computing landscape, there is an urgent need for production-ready soft-
ware stacks for these platforms. In this paper, we report how we prepare
the Ginkgo math library for Intel GPUs by developing a kernel backed
based on the DPC++ programming environment. We discuss concep-
tual differences to the CUDA and HIP programming models and describe
workflows for simplified code conversion. We benchmark advanced sparse
linear algebra routines utilizing the converted kernels to assess the effi-
ciency of the DPC++ backend in the hardware-specific performance
bounds. We compare the performance of basic building blocks against
routines providing the same functionality that ship with Intel’s oneMKL
vendor library.

Keywords: oneAPI · Intel GPUs · Ginkgo · Math library · SpMV

1 Introduction

In the past, Intel GPUs were primarily available as an integrated component
of Intel consumer-grade CPU architectures. With the announcement that the
Aurora Supercomputer will be composed of general purpose Intel CPUs com-
plemented by discrete Intel GPUs, it becomes clear that Intel has committed
to enter the arena of discrete high performance GPUs. Compared to integrated
GPUs, discrete GPUs are usually not exclusively intended to accelerate graphics,
but they are designed to also deliver computational power that can be used, e.g.,
for scientific computations. To enable the programmers to use Intel GPUs, Intel
has teamed up with partners from academia and industry to create the oneAPI
ecosystem, a platform for C++ developers to develop code in the DPC++ lan-
guage, based on the SYCL language, that can be executed on any Intel device,
including CPUs, GPUs, and FPGAs. As application scientists are in need of high
performance math functionality for Intel GPUs, we develop a DPC++ backend
for the Ginkgo open source math library that enables to run both basic linear
algebra building blocks and complex algorithms like iterative Krylov solvers on
Intel’s GPUs. Up to our knowledge, we are the first to present the functionality
and performance of an open source math library on Intel discrete GPUs.
c© Springer Nature Switzerland AG 2022
R. Chaves et al. (Eds.): Euro-Par 2021, LNCS 13098, pp. 57–68, 2022.
https://doi.org/10.1007/978-3-031-06156-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06156-1_5&domain=pdf
http://orcid.org/0000-0001-5229-3739
http://orcid.org/0000-0002-1560-921X
http://orcid.org/0000-0003-2177-952X
https://doi.org/10.1007/978-3-031-06156-1_5


58 Y. M. Tsai et al.

In this paper, we describe the process of preparing Ginkgo for Intel’s GPUs
by first providing an overview of the Ginkgo library design in Sect. 2 and intro-
ducing the oneAPI ecosystem and the DPC++ programming model in Sect. 3.
The core of the paper is Sect. 4, where we discuss some differences between the
CUDA/HIP programming environment and the oneAPI environment, detail how
we reflect these particularities in the development of the DPC++ backend, and
report how we developed a small framework for converting CUDA kernel code to
DPC++ equivalents. In Sect. 5, we evaluate the performance of Ginkgo on dif-
ferent Intel GPU generations: we initially benchmark both the Intel generation
9 and 12 GPUs in terms of feasible bandwidth and peak performance to derive a
roofline model, then evaluate the performance of Ginkgo’s SpMV kernels (also
in comparison to Intel’s oneMKL library), and finally assess the performance
of Ginkgo’s Krylov solvers. We conclude with a summary of the porting effort
and performance evaluation in Sect. 6.

Fig. 1. The Ginkgo library design overview.

2 Ginkgo Design

Ginkgo [1] is a GPU-focused cross-platform math library focusing on sparse
linear algebra. The library design is guided by combining ecosystem extensi-
bility with heavy, architecture-specific kernel optimization using the platform-
native languages CUDA (NVIDIA GPUs), HIP (AMD GPUs), or OpenMP
(Intel/AMD/ARM multicore) [2]. The software development cycle ensures
production-quality code by featuring unit testing, automated configuration and
installation, Doxygen code documentation, as well as continuous integration and
continuous benchmarking framework. Ginkgo provides a comprehensive set of
sparse BLAS operations, iterative solvers including many Krylov methods, stan-
dard and advanced preconditioning techniques, and cutting-edge mixed precision
methods.

A high-level overview of Ginkgo’s software architecture is visualized in
Fig. 1. The library design collects all classes and generic algorithm skeletons in



Porting Sparse Linear Algebra to Intel GPUs 59

the “core” library which, however, is useless without the driver kernels available
in the “omp”, “cuda”, “hip”, and “reference” backends. We note that “refer-
ence” contains sequential CPU kernels used to validate the correctness of the
algorithms and as the reference implementation for the unit tests realized using
the googletest framework. We note that the “cuda” and “hip” backends are very
similar in kernel design, so we have “shared” kernels that are identical for the
NVIDIA and AMD GPUs up to kernel configuration parameters [6]. Extending
Ginkgo’s scope to support Intel GPUs via the DPC++ language, we add the
“dpcpp” backend containing corresponding kernels in DPC++.

3 The oneAPI Programming Ecosystem

oneAPI1 is an open and free programming ecosystem that aims at providing
portability across a wide range of hardware platforms from different architecture
generations and vendors. The oneAPI software stack is structured with the new
DPC++ programming language at its core, accompanied by several libraries to
ease parallel application programming.

DPC++ is a community-driven (open-source) language based on the ISO
C++ and Khronos’ SYCL standards. The concept of DPC++ is to enhance the
SYCL [4] ecosystem with several additions that aim at improving the perfor-
mance on modern hardware, improving usability, and simplifying the porting
of classical CUDA code to the DPC++ language. Two relevant features origi-
nally introduced by the DPC++ ecosystem now also integrated into the SYCL
standard are2: 1) a new subgroup concept that can be used inside kernels. This
concept is equivalent to CUDA warps (or SIMD on CPUs) and allows optimized
routines such as subgroup-based shuffles. In the Ginkgo library, we make exten-
sive use of this capability to boost performance. 2) a new Unified Shared Memory
(USM) model which provides new malloc host and malloc device operations
to allocate memory which can either be accessed both by host or device or respec-
tively accessed by a device only. Additionally, the new SYCL queue extensions
facilitates the porting of CUDA code as well as memory control. Indeed, in pure
SYCL, memory copies are entirely asynchronous and hidden from the user, since
the SYCL programming model is based on tasking with automatic discovery of
task dependencies.

Another important aspect of oneAPI and DPC++ is that they adopt plat-
form portability as the central design concept. Already the fact that DPC++
is based on SYCL (which leverages the OpenCL’s runtime and SPIRV’s inter-
mediate kernel representation) provides portability to a variety of hardware. On
top of this, DPC++ develops a plugin API that allows to develop new back-
ends and switch dynamically between them3. Currently, DPC++ supports the
standard OpenCL backend, a new Level Zero backend which is the backend of
1 https://spec.oneApi.com/versions/latest/index.html.
2 These extensions are now part of the SYCL 2020 Specification: https://www.

khronos.org/news/press/khronos-releases-sycl-2020-final-specification.
3 https://intel.github.io/llvm-docs/PluginInterface.html.

https://spec.oneApi.com/versions/latest/index.html
https://www.khronos.org/news/press/khronos-releases-sycl-2020-final-specification
https://www.khronos.org/news/press/khronos-releases-sycl-2020-final-specification
https://intel.github.io/llvm-docs/PluginInterface.html


60 Y. M. Tsai et al.

choice for Intel hardware4, and an experimental CUDA backend for targeting
CUDA-enabled GPUs. As our goal is to provide high performance sparse linear
algebra functionality on Intel GPUs, we focus on the Intel Level Zero backend
of DPC++.

4 Porting to the DPC++ Ecosystem

Though porting Ginkgo to a new hardware ecosystem requires acknowledg-
ing the hardware-specific characteristics, the Ginkgo design exposed in Sect. 2
induces a general porting workflow: 1) As a first step, core library infrastructure
needs to be ported manually. This includes the Ginkgo Executor which allows
transparent and automatic memory management as well as the execution of ker-
nels on different devices. Another example of manual porting in this preparatory
step is the cooperative group and other shared kernel helper interfaces used for
writing portable kernels and simplify advanced operations. 2) A set of scripts can
be used to generate non-working definitions of all kernels for the new backend.
The completion of this step creates a compilable backend for the new hardware
ecosystem. 3) For an initial kernel implementation, we rely whenever possible on
existing tools to facilitate the automatic porting of kernel implementations from
one language to the target language, doing only manual fixes when appropriate.
The successful completion of this step provides a working backend. 4) Finally,
we analyze and validate the observed performance for the ported kernels. Often,
simple kernels already provide competitive performance, but advanced kernels
require either manual tuning or algorithmic adaptation to reach the hardware
limits.

In this section, we concentrate on step 3) of this workflow and parts of step 1).
These steps which we detail now are the more library agnostic aspect of the port-
ing workflow and our lessons learned can be of practical use to other libraries.
In addition, step 4) is a more complex effort and some portions of the library
have been tuned, such as the Ginkgo SpMV kernels, and their performance
will be showcased in Sect. 5. To facilitate the porting in step 3), we can rely on
the Intel “DPC++ Compatibility Tool” (DPCT), which converts CUDA code
into compilable DPC++ code. DPCT is not expected to automatically gener-
ate a DPC++ “production-ready” executable code, but “ready-to-compilation”
and it requires the developer’s attention and effort in fixing conversion issues
and tuning it to reach performance goals. However, with oneAPI still being in
its early stages, DPCT still has some flaws and failures, and we develop a cus-
tomized porting workflow using the DPC++ Compatibility Tool at its core, but
embedding it into a framework that weakens some DPCT prerequisites and pre-
vents incorrect code conversion. In general, DPCT requires not only knowledge
of the functionality of a to-be-converted kernel, but also knowledge of the com-
plete library and its design. This requirement is hard to fulfill in practice, as for
complex libraries, the dependency analysis may exceed the DPCT capabilities.
Additionally, many libraries do not aim at converting all code to DPC++, but
4 https://spec.oneApi.com/level-zero/latest/core/INTRO.html.

https://spec.oneApi.com/level-zero/latest/core/INTRO.html


Porting Sparse Linear Algebra to Intel GPUs 61

Fig. 2. Summary of the workflow used to port the cooperative groups functionality
and isolating effort such that we get the correct converted DPC++ codes.

only a subset to enable the dedicated execution of specific kernels on DPC++-
enabled accelerators. Thus, we employ a strategy where we first isolate kernels
we want to convert and then re-integrate them into the library.

Isolated Kernel Modification. DPCT converts all files related to the target
file containing any CUDA code that are in the target (sub)folders. To prevent
DPCT from converting files that we do not want to be converted, we have to
artificially restrict the conversion to the target files. We achieve this by copying
the target files into a temporary folder and considering the rest of the Ginkgo
software as a system library. After the successful conversion of the target file,
we copy the file back to the correct destination in the new DPC++ submodule.
By isolating the target files, we indeed avoid additional changes and unexpected
errors, but we also lose the DPCT ability to transform CUDA kernel index-
ing into the DPC++ nd item<3> equivalent. As a workaround, we copy simple
headers to the working directory containing the thread id computation helper
functions of the CUDA code such that DPCT can recognize them and transform
them into the DPC++ equivalent. For those complicated kernels, DPCT fails in
the kernel conversion, and we need a fake interface that enables DPCT to apply
the code conversion for nd item<3>.

Fake Interface - Workaround for Cooperative Groups. While DPC++
provides a subgroup interface featuring shuffle operations, this interface is dif-
ferent from CUDA’s cooperative group design as it requires the subgroup size
as a function attribute and does not allow for different subgroup sizes in the



62 Y. M. Tsai et al.

same global group. As Ginkgo implementations aim at executing close to the
hardware-induced limits, we make heavy use of cooperative group operations.
Based on the DPC++ subgroup interface, we implement our own DPC++ coop-
erative group interface. Specifically, to remove the need for an additional function
attribute, we add the item ct1 function argument into the group constructor. As
the remaining function arguments are identical to the CUDA cooperative group
function arguments, we therewith achieve a high level of interface similarity. This
workflow resolves the porting not only for the cooperative group functionality
but also other custom kernels replacing the automated DPCPP conversion.

A notable difference to CUDA is that DPC++ does not support subgroup
vote functions like “ballot”, or other group mask operations yet. To emulate
this functionality, we need to use a subgroup reduction provided by oneAPI to
emulate these vote functions in a subgroup setting. This lack of native support
may affect the performance of kernels relying on these subgroup operations. We
visualize in Fig. 2 the workflow we use to port code making use of the cooperative
group functionality via four steps:

1. Origin: We prepare an alias to the cooperative group function such that
DPCT does not catch the keyword. We create this alias in a fake cooper-
ative group header we only use during the porting process.

2. Adding Interface: As explained previously, we isolate the files to prevent
DPCT from changing other files. We also add the simple interface includ-
ing threadIdx.x and make use of the alias function. For the conversion
to succeed, it is required to return the same type as the original CUDA
type, which we need to extract from the CUDA cooperative group function
this thread block.

3. DPCT: Apply DPCT on the previously prepared files. Adding threadIdx.x
indexing to the function allows DPCT to generate the nd item<3> indexing.

4. Recovering: During this step, we change the related cooperative group func-
tions and headers to the actual DPC++ equivalent. We implement a complete
header file that ports all the cooperative group functionality to DPC++.

In Fig. 3, the final result of the porting workflow on a toy example with
cooperative groups. For the small example code in Fig. 3a, if we do not isolate the
code, DPCT will throw an error like Fig. 3b once encountering the cooperative
group keyword. A manual implementation of the cooperative group equivalent
kernel is shown in Fig. 3c. Our porting workflow generates the code shown in
Fig. 3d, which is almost identical to the original CUDA code Fig. 3a.

Pushing for Backend Similarity. To simplify the maintenance of the
platform-portable Ginkgo library, our customized porting workflow uses some
abstraction to make the DPC++ code in this first version look more similar
to CUDA/HIP code. We note that this design choice is reflecting that Ginkgo
was originally designed as a GPU-centric sparse linear algebra library using
the CUDA programming language and CUDA design patterns for implementing
GPU kernels and that the developers of Ginkgo are currently used to design-
ing GPU kernels in CUDA. However, this may not be preferred by developers



Porting Sparse Linear Algebra to Intel GPUs 63

(a) CUDA cooperative group example (b) DPCT conversion reports an error

(c) Manual DPC++ subgroup
implementation. The main difference

from CUDA are in orange

(d) The result converted by our
porting script

Fig. 3. The cooperative group example

used to programming in task-based languages, and it may also narrow down the
tasking power of the SYCL language. We may thus decide at a later point to
move closer to the SYCL programming style, which is possible given Ginkgo’s
strict decoupling between algorithms and hardware backends. For now, we aim
for a high level of code similarity by not only adding the customized cooperative
group interface previously discussed, but also adding a dim3 implementation
layer for DPC++ kernel launches that uses the same parameters and parameter
order as CUDA and HIP. We simply reverse the dim3 in the interface layer.

One fundamental difference remaining between the CUDA or HIP ecosystems
and DPC++ is that the latter handles the static and dynamic memory alloca-
tion in the main component. CUDA and HIP handle the allocation of static
shared memory inside the kernel and the allocation of dynamic shared memory
in the kernel launch parameters. Another difference is the kernel invocation syn-
tax since DPC++ relies on a hierarchy of calls first to a queue, then a parallel
instantiation. For consistency, we add another layer that abstracts the combina-
tion of DPC++ memory allocation and DPC++ kernel invocation away from
the user. This enables a similar interface for CUDA, HIP, and DPC++ kernels
for the main component, and shared memory allocations can be perceived as a
kernel feature, see Fig. 4. In Fig. 4, the right purple block (additional layer call)
has the same structure as the left gray block (cuda kernel call). The enhanced
porting script not only handles the kernel conversion but also the addition of
the intermediate layer.



64 Y. M. Tsai et al.

Fig. 4. Hierarchical view of usual CUDA (left) and DPC++ (right) kernel call and
parameters. Wrapping the hardware-specific kernels into an intermediate layer enables
consistency in the kernel invocation across all backends.

5 Performance Assessment of Ginkgo’s DPC++ Backend

Experiment Setup. In this paper, we consider two Intel GPUs: the generation
9 (Gen9) integrated GPU UHD Graphics P630 with a theoretical bandwidth of
41.6 GB/s and the generation 12 Intel R© Iris R© Xe Max discrete GPU (Gen12)5

which features 96 execution units and a theoretical bandwidth of 68 GB/s. To
better assess the performance of either GPUs, we include in our analysis the
performance we can achieve in bandwidth tests, performance tests, and sparse
linear algebra kernels. We note that the Gen12 architecture lacks native support
for IEEE 754 double precision arithmetic, and can only emulate double precision
arithmetic with significantly lower performance. Given that native support for
double precision arithmetic is expected for future Intel GPUs and using the dou-
ble precision emulation would artificially degrade the performance results while
not providing insight whether Ginkgo’s algorithms are suitable for Intel GPUs,
we use single precision arithmetic in all performance evaluation on the Gen12
architecture6. The DPC++ version we use in all experiments is Intel oneAPI
DPC++ Compiler 2021.1 (2020.10.0.1113). All experiments were conducted on
hardware that is part of the Intel DevCloud.

Bandwidth Tests and Experimental Performance Roofline. Initially, we
evaluate the two GPUs in terms of architecture-specific performance bounds.
For that purpose, we use the BabelStream [3] benchmark to evaluate the peak
bandwidth, and the mixbench [5] benchmark to evaluate the arithmetic per-
formance. In the upper part of Fig. 5, we visualize the bandwidth we achieve
for different memory-intense operations. On both architectures, the Dot kernel
requiring a global synchronization achieves lower bandwidth than the other ker-
nels. We furthermore note that the Gen12 architecture achieves for large array

5 https://ark.intel.com/content/www/us/en/ark/products/211013/intel-iris-xe-max-
graphics-96-eu.html.

6 Ginkgo is designed to compile for IEEE 754 double precision, single precision, double
precision complex, and single precision complex arithmetic.

https://ark.intel.com/content/www/us/en/ark/products/211013/intel-iris-xe-max-graphics-96-eu.html
https://ark.intel.com/content/www/us/en/ark/products/211013/intel-iris-xe-max-graphics-96-eu.html


Porting Sparse Linear Algebra to Intel GPUs 65

Fig. 5. Top: Bandwidth analysis on the Intel Gen9 (left) and the Gen12 (right) GPUs
using double and single precision values, respectively. Bottom: Experimental perfor-
mance roofline for the Gen9 (left) and Gen12 (right) GPUs.

sizes about 58 GB/s and the Gen9 achieves 37 GB/s. The experimental roofline
visualized in the lower part of Fig. 5 reveals that the Gen9 architecture achieves
about 105 GFLOP/s, 430 GFLOP/s, and 810 GFLOP/s for IEEE double pre-
cision, single precision, and half precision arithmetic, respectively. The Gen12
architecture does not provide native support for IEEE double precision, and the
double precision emulation achieves only 8 GFLOP/s. On the other hand, the
Gen12 architecture achieves 2.2 TFLOP/s and 4.0 TFLOP/s for single precision
and half precision floating point operations.

Fig. 6. SpMV kernel performance for Ginkgo and Intel’s oneMKL library on Gen9
(left) and Gen12 (right) using double and single precision, respectively.



66 Y. M. Tsai et al.

Fig. 7. Performance evaluation of Ginkgo’s Krylov solvers on Intel’s Gen9 (left) and
Gen12 (right) GPUs.

SpMV Performance Analysis. An important routine in sparse linear algebra
is the Sparse Matrix Vector product (SpMV). This kernel reflects how a
discretized linear operator acts on a vector, and therewith plays the central role
in the iterative solution of linear problems and eigenvalue problems. We consider
two sparse matrix formats: 1) the “COOrdinate format” (COO) that stores all
nonzero entries of the matrix along with their column- and row-indices, and
the “Compressed Sparse Row” (CSR) format that further reduces the memory
footprint of the COO format by replacing the row-indices with pointers to the
first element in each row of a row-sorted COO matrix. We focus on these popular
matrix formats not only because of their widespread use, but also because Intel’s
oneMKL library provides an optimized CSR-SpMV routine for Intel GPUs.

In Fig. 6, we visualize the performance of the CSR and COO SpMV ker-
nels of the Ginkgo library along with the performance of the CSR SpMV
kernel from the oneAPI library. Each dot represents the performance achieved
for one of the test matrices of the Suite Sparse Matrix Collection. Ginkgo’s
CSR reaches up to 4 GFlop/s for several problems using double precision arith-
metic, oneMKL CSR up to 3 GFlop/s similarly to Ginkgo’s COO format.
For Gen12, Ginkgo’s CSR reaches up to 14 GFlop/s, oneMKL 13 GFlop/s
and Ginkgo’s COO 10 GFlop/s. These results highlight that Ginkgo’s for-
mats CSR and COO are at least competitive with the oneMKL CSR on both
Gen9 and Gen127. The achieved performance in terms of percentage of peak
bandwidth are exposed in Fig. 8.

Krylov Solver Performance Analysis. We now turn to advanced numerical
algorithms typical to scientific simulation codes. The Krylov solvers we consider –
CG, BiCGSTAB, CGS, FCG, and GMRES – are all iterative methods popular for
solving large sparse linear systems. They all have the SpMV kernel as the central
building block, and we use Ginkgo’s COO SpMV kernel and test matrices from
the Suite Sparse Matrix Collection that are orthogonal in their characteristics
and origin. We run the solver experiment for 1,000 solver iterations after a warm-
up phase. In Fig. 7, we visualize the performance of the Krylov solvers on the

7 At the point of writing, oneMKL does not provide a COO implementation and CSR
can only operate on shared memory on the Gen12 architecture.



Porting Sparse Linear Algebra to Intel GPUs 67

AMD RadeonVII GPU NVIDIA V100 GPU

Intel Gen9 letnIUPG Gen12 GPU

Fig. 8. SpMV performance relative to the hardware bounds on various GPUs.

Gen9 architecture (left) and Gen12 architecture (right). On the Gen9, the
performance varies between 1.5 GFLOP/s and 2.5 GFLOP/s. We notice that
the performance differences in-between the solvers are quite small compared
to the performance differences for the distinct problems. Running Ginkgo’s
Krylov solvers in single precision on the Gen12 architecture, we achieve between
5 GFLOP/s and 9 GFLOP/s for the distinct systems. We note that all Krylov
solvers based on short recurrences (BiCGSTAB, CG, CGS, FCG) are very similar
in terms of performance, while GMRES usually achieves lower performance. This
highlights that the kernels of GMRES require specific tuning.

Platform Portability. Finally, we evaluate the hardware efficiency of the
Ginkgo DPC++ backend compared to the other backends. For that, we focus
on the relative performance the functionality achieves on GPUs from AMD,
NVIDIA, and Intel, taking the theoretical performance limits reported in the
GPU specifications as the baseline. This approach reflects the aspect that the
GPUs differ significantly in their performance characteristics, and that Intel’s
oneAPI ecosystem and GPU architectures are still under active development
and have not yet reached the maturity level of other GPU computing ecosys-
tems. At the same time, reporting the performance relative to the theoretical
limits allows us to both quantify the suitability of Ginkgo’s algorithms and
to estimate the performance we can expect for Ginkgo’s functionality when
scaling up the GPU performance. In Fig. 8 we report the relative performance of
different SpMV kernels on AMD Radeon VII (“hip” backend), NVIDIA V100
(“cuda” backend), and Intel Gen9 and Gen12 GPUs (both “dpcpp” backend).
As expected, the achieved bandwidth heavily depends on the SpMV kernel and



68 Y. M. Tsai et al.

the characteristics of the test matrix. Overall, the performance figures indicate
that the SpMV kernels achieve about 90% of peak bandwidth on V100 and
Gen12, and about 60–70% of peak bandwidth on RadeonVII and Gen9. On
all hardware, Ginkgo’s SpMV kernels are competitive to the vendor libraries,
indicating the validity of the library design and demonstrating good performance
portability.

6 Summary and Outlook

We have prepared the Ginkgo open source math library for Intel GPUs by devel-
oping a DPC++ backend. We presented strategies that are practical to accom-
modate the design differences between CUDA/HIP and the oneAPI ecosystem.
We also evaluated the efficiency of Ginkgo’s functionality in terms of translating
hardware performance into algorithm performance and comparing basic building
blocks against equivalent kernels shipping with Intel’s oneMKL library. In this
performance evaluation, we demonstrated that Ginkgo’s kernels are competi-
tive to Intel’s oneMKL library, and that Ginkgo’s advanced math functionality
is readily available to run on Intel GPUs. While the oneAPI ecosystem itself aims
for providing portability to GPUs from other vendors, we have acknowledge that
this is currently not possible, and we thus have to postpone the evaluation of
Ginkgo’s DPC++ backend on AMD and NVIDIA platforms.

References

1. Anzt, H., et al.: Ginkgo: a high performance numerical linear algebra library. J.
Open Source Softw. 5(52), 2260 (2020). https://doi.org/10.21105/joss.02260

2. Cojean, T., Tsai, Y.H.M., Anzt, H.: Ginkgo - a math library designed for plat-
form portability (2020). https://www.sciencedirect.com/science/article/abs/pii/
S0167819122000096

3. Deakin, T., Price, J., Martineau, M., McIntosh-Smith, S.: Evaluating attainable
memory bandwidth of parallel programming models via babelstream. Int. J. Com-
put. Sci. Eng. 17, 247–262 (2017)

4. Keryell, R., Reyes, R., Howes, L.: Khronos SYCL for OpenCL: a tutorial. In: Pro-
ceedings of the 3rd International Workshop on OpenCL, IWOCL 2015. Associa-
tion for Computing Machinery, New York (2015). https://doi.org/10.1145/2791321.
2791345

5. Konstantinidis, E., Cotronis, Y.: A quantitative roofline model for GPU kernel per-
formance estimation using micro-benchmarks and hardware metric profiling. J. Par-
allel Distrib. Comput. 107, 37–56 (2017). https://doi.org/10.1016/j.jpdc.2017.04.
002

6. Tsai, Y.M., Cojean, T., Ribizel, T., Anzt, H.: Preparing Ginkgo for AMD GPUs –
a testimonial on porting CUDA code to HIP. In: Balis, B., et al. (eds.) Euro-Par
2020. LNCS, vol. 12480, pp. 109–121. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-71593-9 9

https://doi.org/10.21105/joss.02260
https://www.sciencedirect.com/science/article/abs/pii/S0167819122000096
https://www.sciencedirect.com/science/article/abs/pii/S0167819122000096
https://doi.org/10.1145/2791321.2791345
https://doi.org/10.1145/2791321.2791345
https://doi.org/10.1016/j.jpdc.2017.04.002
https://doi.org/10.1016/j.jpdc.2017.04.002
https://doi.org/10.1007/978-3-030-71593-9_9
https://doi.org/10.1007/978-3-030-71593-9_9

	Porting Sparse Linear Algebra to Intel GPUs
	1 Introduction
	2 Ginkgo Design
	3 The oneAPI Programming Ecosystem
	4 Porting to the DPC++ Ecosystem
	5 Performance Assessment of Ginkgo's DPC++ Backend
	6 Summary and Outlook
	References




