l‘)

Check for
updates

FleCSI 2.0: The Flexible Computational
Science Infrastructure Project

Ben Bergen!®™) | Irina Demeshko!(™) Charles Ferenbaugh'®, Davis Herring?(®)
Li-Ta Lo!, Julien Loiseau', Navamita Ray', and Andrew Reisner!

L Applied Computer Science Group (CCS-7), Los Alamos National Laboratory,
Los Alamos, NM 87545, USA
{bergen, irina,cferenbaugh,ollie, jloiseau,nray, areisner}@lanl .gov
2 Lagrangian Codes Group (XCP-1), Los Alamos National Laboratory,
Los Alamos, NM 87545, USA

herring@lanl.gov

Abstract. The FleCSI 2.0 programming system supports multiphysics
application development through a runtime abstraction layer, and by
providing core topology types that can be customized for specific numeri-
cal methods. The abstraction layer provides a single-source programming
interface for distributed and shared-memory data parallelism through
task and kernel execution, and has been demonstrated to introduce vir-
tually no runtime overhead. FleCSI’s core topology types represent a rich
set of basic data structures that can be specialized to create application-
facing interfaces for a variety of different physics packages. Using the
FleCSI control and data models, it is straightforward to compose mul-
tiple packages to create full multiphysics applications. When used with
a task-based backend, FleCSI offers extended runtime analysis that can
increase task concurrency, facilitate load balancing, and allow for porta-
bility across heterogeneous computing architectures.

Keywords: Multiphysics - Computational science - Applied
mathematics - Task-based runtimes - Heterogeneity - Performance
portability - Accelerators

1 Introduction

FleCSI is a C++ framework designed to support multiphysics application devel-
opment through a runtime abstraction layer and a collection of useful topology
and data types. Many of these capabilities take the form of class and function
templates whose behavior is customized by application-specific functions and
data and policy types. The abstraction layer insulates developers from underlying
complexity, while providing a single-source, integrated programming model that
is mapped on top of different low-level backends. FleCSI introduces a functional
programming model with runtime, control, execution, and data abstractions that
are consistent both with MPI [11] and with state-of-the-art, task-based backends
© Springer Nature Switzerland AG 2022

R. Chaves et al. (Eds.): Euro-Par 2021, LNCS 13098, pp. 480-495, 2022.
https://doi.org/10.1007/978-3-031-06156-1_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06156-1_38&domain=pdf
https://doi.org/10.1007/978-3-031-06156-1_38

FleCSI 2.0: The Flexible Computational Science Infrastructure Project 481

such as Legion [3] and HPX [14]. When configured with one of the task-based
backends, FleCSI provides dynamic scheduling of data and task placement for
increased concurrency and application performance.

1.1 Structure

This paper describes the main features and goals of the FleCSI 2.0 program-
ming system. It provides an overview and examples of the programming model
and its components. These are explained in Sect.2. Brief descriptions of the
core topology types are given in Sect. 3. In Sect. 4, two sample applications that
use FleCSI 2.0, Model for Prediction Across Scales (MPAS) and FleCSPH are
discussed. Some performance results regarding runtime overhead of the abstrac-
tion layer are presented in Sect. 4.3, with concluding remarks and future work
in Sect. 5.

1.2 Related Work

FleCSI is a unified runtime in the sense that it supports a single interface for
programming both the distributed and shared-memory components of modern
computing systems. Two similarly unified programming systems are Uintah [12]
and the Multi-Processor Computing runtime (MPC) [17].

Like FleCSI, Uintah uses a task-based runtime for distributed-memory exe-
cution. However, Uintah’s task concurrency must be explicitly scheduled by the
user. MPC transparently enables shared-memory support with MPI through
an MPI+X programming model. A significant feature of MPC is its ability to
run MPI processes inside of threads. This approach can reduce message latency
(memcpy of messages), and requires fewer communication endpoints. The pri-
mary advantage of FleCSI over these systems is that, under FleCSI, tasks and
data can be dynamically mapped to compute resources (when using a task-based
backend), while Uintah and MPC both employ a static mapping aligned with
the runtime processes, i.e., ranks.

2 Programming Model

The FleCSI 2.0 programming model provides explicit runtime, control, data, and
execution models that are designed to provide users with a rich environment for
application development on state-of-the-art heterogeneous system architectures.
These are described in the following sections.

2.1 Runtime Model

The runtime model is how you control the FleCSI runtime system itself. The
basic interface includes the functions: initialize, start, and finalize. These
are abstractions of the underlying runtime interfaces, e.g., Legion, MPI, HPX,
and Kokkos [9], whereby the correct combination of start-up, execution, and

482 B. Bergen et al.

shut-down processes will be invoked, depending on the configuration of FleCSI.
The runtime model also provides support for creating command-line options, a
logging utility called flog, and a timing and profiling interface to Caliper [6].

This model will be extended in a future feature release to provide a richer
set of options to allow more precise placement of processes and memory allo-
cations in order to address the performance challenges of running on modern,
heterogeneous architectures that have deep, complex memory hierarchies, and
which require exploitation of processor-memory affinities to achieve the best
throughput.

2.2 Control Model

The FleCSI control model is how the overall execution structure of a FleCSI-
based program is defined. FleCSI provides a core control type that can be cus-
tomized with specialization-defined control points (the skeleton of the applica-
tion structure). Application developers register actions under the control points,
which may have dependencies on each other. FleCSI sorts the actions under a
control point to create a runtime program order. Along with tasks and kernels
(parts of the execution model), the control model forms an execution hierarchy
with the following relationships:

— Control Points: Identify the high-level stages of the application. The exe-
cution order of the control points is statically defined. Cycles may be defined
over any subset of the control points. The control points form a control-flow
graph (CFG).

— Actions: Registered under control points. Any two actions under a single
control point may have a dependency defined between them. The actions
under a single control point form a directed acyclic graph (DAG). Actions
allow composition of contributed packages. Actions are always executed in
a sequential program order defined by: 1.) the order of the control points,
and then 2.) the topologically sorted order of the DAG of actions under each
control point.

— Tasks: Executed from inside of an action. Task launch may be single or
index. Tasks operate on data that are logically distributed over a partitioned
address space. Dependency analysis (Legion backend only) allows tasks to be
executed concurrently by the runtime. A given point task may be executed
on any runtime process on any address space (Legion backend only).

— Kernels: Executed from inside of a task. Kernels execute data-parallel oper-
ations over a local address space. Memory consistency of kernel execution is
explicit (relazed-consistency).

This model replaces the normal hard-coded execution structure of an appli-
cation, instead providing a well-defined, extensible mechanism that can easily
be verified and visualized. Figure 1 shows output from a FleCSI-based program
using the command-line argument --control-model.

FleCSI 2.0: The Flexible Computational Science Infrastructure Project 483

The primary advantage of this app-
roach is that FleCSI-based applica-
tions can add new actions to any of the
DAGs in the model, with associated
dependencies, without requiring mod-
ification to the core application code.
Because of FleCSI’s data model (dis-
cussed in Sect.2.3) these new actions
will fold seamlessly into the existing
control structure, allowing extensibil-
ity and experimentation.

Control Point 1

tcycle

Control Point 4

Fig. 1. Example FleCSI control model.
2.3 Data Model

Because FleCSI tasks may be executed on any memory space, all the applica-
tion’s data must be managed by the runtime so that a copy of it may be made
available in that memory space and any changes propagated to the next task
needing it. (Global variables may also be used, but only for information that
is constant across and throughout the simulation, since which process executes
which task is arbitrary.) The FleCSI data model closely follows the Legion model,
but with some simplifications and elaborations described in the following sub-
sections. Legion provides a data model based on associative arrays called regions
whose multi-index keys are called index points. The domain of keys is called an
index space, which may have an arbitrary shape but for performance reasons is
often hyperrectangular.

A region is a collective object whose storage is typically distributed across
multiple memory spaces. A partition is a collection of subsets of an index space
(or a region based on it) that may be mapped separately; the collection is indexed
with integer colors, and each subset is called a subspace. Multiple unrelated
partitions of a single region may exist; it is often the case that the subsets in
each are disjoint, that their union is the entire region, or both. In particular,
tasks that operate on disjoint subsets can write to them in parallel; read-only
access to subsets that overlap those from different partitions can be used to
automatically transfer data between sequences of such tasks.

Each region has some number of fields defined on it of various types. Legion
specifies a type only as a number of bytes and, optionally, a set of serialization
functions to marshal heap allocations between memory spaces. Each field is
available throughout the index space, but memory is allocated only for the field-
subspace pairs that are actually used.

FleCSI organizes multiple related regions, e.g., the cells and vertices of a
mesh, into topologies. Since FleCSI does not use the Legion feature of creating
multiple regions from the same index space, the term “index space” is used in
the user interface to describe a selector among the regions for a topology. Each
topology type is defined as a specialization of one of the core topology types
defined by FleCSI that specifies a number of properties like the dimensionality
of a mesh or which kinds of connectivity information to store explicitly.

484 B. Bergen et al.

Extended Index Space. To allow most tasks to treat its local application data
as a traditional, contiguous array, FleCSI stores application data on a particular
sort of two-dimensional index space based on rows. Each such Extended Index
Space is typically partitioned into subsets that are prefixes of each row, such that
each color is the index of a (partial) row. The prefixes need not all be the same
length, and the partitions can be recreated with different lengths: the underlying
index space has a very large number of columns, most of which are never realized
in memory. If Legion is in use, it automatically copies the contents of a row that
has grown into a prefix of any new allocation. Otherwise, the restricted form of
index spaces significantly simplifies the implementation of a backend based on
another runtime, e.g., HPX.

For certain topologies, e.g., an unstructured mesh, each row comprises ezclu-
sive, shared, and ghost index points: the field values at each ghost point are
copies of those at a particular shared point specified by a copy plan created
by such a topology. Whenever ghost values are required by a task, FleCSI per-
forms the copies specified in the plan if the shared values have been changed
since the previous copy. This copying is explicit from the perspective of the run-
time but implicit from the perspective of the author of the relevant tasks. Other
topologies, e.g., a set of particles, have more dynamic communication patterns;
temporarily copying data into a special buffer field implements these copies in
terms of an ordinary copy plan for the buffers.

Accessors. Fields are registered by creating objects of a field definition type,
parameterized on the data type as well as the type of the topology, prior to ini-
tializing FleCSI. Every instance of the nominated topology type is then equipped
with that field, although since each has its own partitions memory is not in gen-
eral allocated for all of them.

Since the runtime must in general move field data to make it available to a
task, ordinary pointers to it are available only inside a task. These are wrapped
into accessors which provide one of several interfaces for the field values and
specify the privileges required by a task. Outside a task, an opaque field reference
is used instead that nominates a field definition and a topology instance. When
a field reference is passed as an argument to a task that declares a compatible
accessor as a parameter, the runtime provides a pointer to the relevant array in
the task’s memory space to use for the parameter.

FleCSI’s operation may be described as a distributed version of the C++
memory allocation expression new T[n]: T is specified by the field definition, n
is specified by the topology, and the resulting pointer eventually appears as the
task parameter.

Layouts. While FleCSI’s model for index spaces is simpler and more restricted
than the Legion model, its model for data types is more complicated. In addition
to restricting accessors to using the type specified in a field definition, FleCSI
provides several layouts for representing non-trivial objects. The element types
used with a layout must themselves be bitwise-copyable; for efficiency, FleCSI
does not use mechanisms like Legion’s serialization interface for transfer between
memory spaces.

FleCSI 2.0: The Flexible Computational Science Infrastructure Project 485

The default layout is dense, which is simply a one-dimensional array of the
specified type T. The special case of a single element, useful for metadata per-
taining to one color of a topology, is provided for convenience. The ragged layout
emulates a std::vector<T> at each index point. The sparse layout emulates a
std: :map<std::size_t,T> at each index point. The particle layout stores an
unordered collection of T objects with efficient insertion, removal, and iteration;
it is similar to the “bucket array” data structure, albeit with a single bucket.

All of these are implemented recursively in terms of one or more simpler
accessors, with a raw accessor that manages uninitialized memory (rather than
objects) as the base case. The field definitions follow the same structure, auto-
matically registering fields necessary for storing metadata like the sizes of indi-
vidual ragged arrays. Ragged and sparse fields require support from the topology
for allocating memory for the array elements, which is provided centrally for all
but the simplest topologies.

Topology Instances. Application developers create a topology instance with
the assistance of a topology slot, which allows the specialization to contribute to
the topology’s initialization and allows the client to defer it (so that slots can
be declared statically if desired). A topology instance is created from a coloring
which describes the memory layout required and is constructed using its own slot
that automatically utilizes an MPI task (Sect.2.4), as is commonly required for
initialization from external data sources. Listing 1.1 illustrates the typical process
of initializing a topology with these types given a specialization Sect. 3.1.

Listing 1.1. Topology initialization

1 topology::cslot color;

2 topology::slot topo;

3

4 void setup_color () {

5 // May be distributed rather than duplicated:
6 auto data = load (” file name”);

7 color.allocate (data.header (), data.body());
8 }

9

10 void setup-topology () {

11 topo.allocate (color.get ());

12}

A topology slot may also be passed to a task with a topology accessor as
a parameter. Such an accessor uses internal fields established by the topology
to interpret the contents of flat arrays in terms of its logical structure. Much
like accessors for dynamic layouts like ragged, these are implemented in terms
of accessors for those structural fields. Field indices are typically supplied by a
topology accessor as “strong typedef” objects to reduce the chance of miscon-
struing them as pertaining to another index space. Flat arrays can be interpreted

486 B. Bergen et al.

as

having multiple dimensions through the use of a limited implementation of

mdspan as proposed for C+-+23 [7].

2.4 Execution Model

FleCSI has two mechanisms for expressing work: tasks and kernels. Tasks operate

on

data distributed to one or more address spaces, and use data privileges to

maintain memory consistency. Kernels operate on data in a single address space,
but require explicit barriers to ensure consistency. This is generally referred to
as a relaxed-consistency memory model.

0 O Ui Wi

—
W= OO

to

Listing 1.2. Single-Source Execution

const field <double >::definition <topology ,
topology :: entities > values;

void init_field (topology ::accessor<ro> t,
field <double >::accessor<rw> f) {
forall(e, t.entities()) {
f(e) = 1.0; // dummy initialization
};

}

void setup_field () {
execute<init_field >(topo, values(topo));
}

Listing 1.2 shows a continuation of Listing 1.1 that uses the execute method
invoke a task (line 12). There are several things to observe about this code

example:

Tasks are invoked using the execute function. FleCSI also provides the
reduce, and test functions. Invocations of reduce capture the task return
value in a future, which can be queried like f.get () to retrieve the reduced
value (distributed-memory). The test function executes a task as a reduc-
tion and returns the sum of the point task returns, i.e., a value of zero means
success.

Privileges on accessors passed to the task, e.g., the rw in field<double>::
accessor<rw> (line 5), determine the memory consistency operations that
will be performed on the respective data upon the next task invocation. Valid
privileges are na (no access), ro (read-only), wo (write-only), and rw (read-
write). The privilege na can be used to defer consistency updates.

The forall invocation (line 6) executes the loop body in shared-memory,
data-parallel over the specified iterator, e.g., t.entities (), potentially han-
dling any data motion that is required to move data to the correct address
space. Depending on the backend runtimes used, this code example can seam-
lessly execute a task in distributed-memory, data parallel over a collection of

FleCSI 2.0: The Flexible Computational Science Infrastructure Project 487

nodes, and in shared-memory, data parallel on attached GPU devices on each
node.

3 Core Topologies

Each core topology type supports a number of numerical methods with similar
data requirements. FleCSI itself implements these types in terms of internal
facilities that are not themselves exposed to clients. In contrast, FleCSI defines
only the few specializations used by those facilities; others may be defined by
applications or by libraries of specializations that are themselves suitably generic.

For example, consider the data representations for the following methods:
particle-in-cell (PIC), molecular dynamics (MD), material point method (MPM),
smoothed-particle hydrodynamics (SPH), and Monte Carlo. These methods are
all based on particles, but they vary as to whether interactions between the par-
ticles are direct or are mediated by fields stored on a mesh. Here, only MD and
SPH feature direct interactions; such methods typically need ghost particles to
calculate them, as well as efficient neighbor lookups. The topo: :ntree topol-
ogy (Sect.3.4) supports these methods, organizing the particles into an octree
for an O(logN) nearest-neighbor search.

For the non-interacting particle methods considered here, a primary concern
in parallel implementations is to identify active particles in the local memory
space, and to efficiently move particles between memory spaces. The topo: :set
topology (Sect.3.5) supports these methods, organizing the particles using the
particle layout (Sect.2.3) for an O(1) step to the next active particle (using a
low-complexity jump-counting pattern skipfield data structure) [4,5].

Other combinations are possible. For example, many MD codes reduce search
complexity by imposing a Cartesian mesh on the domain with the mesh incre-
ments set to some cutoff metric. The particles for each cell in this approach
can be stored in a ragged field (Sect.2.3) defined on an topo::narray topol-
ogy (Sect. 3.3).

In addition to allowing specialization of the core types, FleCSI’s data model
also allows easy composition of topologies into more complex types. Consider
the design of a data structure to support block-structured adaptive mesh refine-
ment (AMR). The topo: :ntree topology is well-suited for tracking refinement
because of its fast neighbor lookup. This can be combined with a specialization
of topo: :narray to provide a structured mesh interface at each node of the tree.
Field data registered at the nodes can be viewed using util: :mdspan.

The primary take-away from this section should be that the FleCSI core
topology types and layouts provide data structure support for a wide variety
of applied methods, which can be composed to support complex, multi-physics
applications development. Table 2 in Appendix A provides some suggested appli-
cations of the core types for common numerical methods.

488 B. Bergen et al.

3.1 Specialization Structure

The notion of a specialization is formalized in the FleCSI class structure with the
topo: :specialization type, as shown in Listing 1.3. The specialization serves
both as a policy for the core topology and as an interface for the application; its
general structure is the same for all of the FleCSI core topologies, although the
specific details are different for each.

Listing 1.3. Specialization Structure

1 struct my_-topo : topo::specialization <topo::topology, my_topo> {
2

3 enum index_space {vertices, integration };

4

5 template<class B>

6 struct interface : B {

7 // Iterator over an Index Space

8 template<index_space IndexSpace>

9 auto entities () {/* ... =/}

10

11 // Iterator over entities at an entity

12 template<index_-space To, index_space From>

13 auto entities (topo::id<From> from) const {/* ... =/ }
14 }s

15

16 }; // struct my_topo

All FleCSI topology types define iterators over the entities of the topology,
with relational types, e.g., topo: :unstructured, and topo: :ntree, also defining
sub-entity iterators.

3.2 topo::unstructured

The topo: :unstructured topology provides a graph-like data structure, suitable
for defining unstructured meshes. Specializations can define an arbitrary num-
ber of entity types and can control what connectivity information is stored (as
opposed to what must be computed), allowing flexibility in memory vs compute
complexity. Coloring utilities are provided with a mesh definition abstraction
for scalable distribution of input meshes. In addition to the standard entity, and
sub-entity iterators, topo: :unstructured allows users to define custom iterators
using entity lists, which are useful for tracking, e.g., domain boundary interfaces.

3.3 topo::narray

The topo::narray topology is an n-dimensional array data structure, with
support for arbitrary halo and boundary depths, and optional periodicity in
each axis. Halo dependencies optionally include diagonal connections. Listing 1.4
shows an example of a two-dimensional, Cartesian mesh interface created using
topo: :narray.

FleCSI 2.0: The Flexible Computational Science Infrastructure Project 489

Listing 1.4. Cartesian Mesh Example using topo: :narray

1 void poisson::task::smooth(mesh:: accessor<ro> m,

2 field <double >::accessor<rw, ro> ua,

3 field <double >::accessor<ro, ro> fa) {

4 auto u = m.mdspan<mesh:: vertices >(ua);

5 auto f = m.mdspan<mesh:: vertices >(fa);

6 const auto dxdy = m.dxdy ();

7 const auto dx-over-dy = m.xdelta() / m.ydelta ();
8 const auto dy-over.dx = m.ydelta() / m.xdelta();

9 const auto factor = 1.0 / (2 x (dx-over_-dy + dy-over_-dx));
10

11 for (auto j : m.vertices<mesh::y_axis>()) {

12 for (auto 1 : m.vertices<mesh:: x_axis >()) {

13 u[j][i] = factor =

14 (dxdy = f[j][1i] +

15 dy_over_dx * (u[j][i + 1] + ul[j][i — 1]) +
16 dx_over-dy = (ulj + 1][i] + u[j — 1][i]));
17 }

18 }

19 }

3.4 topo::ntree

The topo: :ntree topology provides special 1, 2, or 3 dimensional hashed tree
support, e.g., n = 3 = a hashed octree, based on the Barnes—Hut approximation
[2] with a hashing strategy derived from Warren & Salmon [22]. Particle dis-
tribution is supported using a naive coloring of a sorted Morton (Z-Order), or
Hilbert space-filling curve [1].

FleCSI provides several iterator patterns for accessing and modifying the tree.
In particular, direct entity and node access, and both Depth-First Search (DFS)
and Breadth-First Search (BFS) traversals are supported, with DFS support for
postorder, preorder, reverse postorder, and reverse preorder variants. Users can
also develop custom traversals using sub-entity or sub-node iterators. Listing 1.5
provides examples of DFS and BFS traversal iterators.

Listing 1.5. N'Tree Iterator Example

// Depth—First Traversal with reverse preorder
for (auto n : t.dfs<reverse_preorder >()) { /+ ... =/ }

// Breadth—First Traversal
for(auto n : t.bfs()) { /+ ... =/ }

Tk W N~

As with other FleCSI topology types, topo: :ntree supports field definition
using the FleCSI data model (Sect.2.3) and implicit dependency consistency
through accessor permissions. Neighbor interactions are controlled by the user’s
specialization through rules that define node-node, entity-entity, and node-entity
interactions. Using these rules, the runtime automatically retrieves dependencies

490 B. Bergen et al.

from other colors as needed. The tree can be re-sorted and re-distributed as
needed to track particle evolution.

3.5 topo::set

The topo: :set topology is designed to support non-interacting particle meth-
ods, i.e., those that do not have direct particle-particle interactions, using the
particle layout discussed in Sect.2.3. The topology extends the basic iterators
and distributed-memory support of the underlying layout with customizable
interfaces for coloring and binning particles, and specialized accessors that can
be used to track local particles as they evolve, potentially leaving their origi-
nal color, with or without path-dependent trajectories. The topo: :set topology
is dependent in FleCSI’s nomenclature because individual particles are colored
according to their relationship to an independent topology, e.g., a distributed
mesh.

4 Sample Applications

To demonstrate the use of FleCSI in implementing simulation codes, two appli-
cations are described representing disparate FleCSI topologies. In addition to
covering multiple FleCSI topologies, these applications demonstrate the imple-
mentation of important numerical methods relevant to many simulation codes. A
simple investigation of abstraction overhead in the context of these applications
is used to verify its minimal impact on application performance.

4.1 MPAS-0O-FleCSI

MPAS-0-F1eCSI is an FleCSI-based implementation of models from MPAS
(Model for Prediction Across Scales) [19]. It is part of the CANGA project,
that aims at investigating task-based approaches for Earth System Models
to achieve maximum performance and better manage architectural and scien-
tific complexity. Currently, several simulation applications are developed on the
MPAS-0-F1eCSI framework, including the shallow water core. The shallow water
core of MPAS-0- F1eCSI implements the numerical scheme from [20] to solve the
nonlinear shallow water equations using a C-grid finite-volume discretization on
Variable-resolution Spherical Voronoi Tessellations (SCVTs) [13]. The unstruc-
tured topology is used to support SCVTs for MPAS-0-F1eCSI with mesh files
read using HDF5 (Fig. 5).

4.2 FleCSPH

FleCSPH [15] is a multiphysics Smoothed Particle Hydrodynamics (SPH) sim-
ulation code, using the FleCSI 2.0 topo::ntree topology, allowing efficient
computation of bulk transport and long-range interactions (Fig.6). FleCSPH
is a capable simulation application, including initial data generators, particle

FleCSI 2.0: The Flexible Computational Science Infrastructure Project 491

relaxation with external potentials, weighted Voronoi tessellations (WVT) and
artificial pressure method (APM), flexible boundary conditions, and complexity
reduction using Fast Multipole Method (FMM) (up to 4th order). Angular and
linear momentum are conserved using a novel FMM algorithm.

With a primary focus on astrophysics, FleCSPH also includes support for
gravitational waveform extraction and gravitational radiation reaction, and both
analytic and tabulated equation of state (FOS) calculations. The application
is easily extended to support new features and user-specific problem setups.
Standard HDF5 formats based on Hbpart are used for input and output.

4.3 Abstraction Overhead

Through extensions of its underlying runtime models, FleCSI provides various
usability and portability benefits. Leveraging Legion and Kokkos, FleCSI enables
applications to be run on diverse hardware and in a heterogeneous environment.
Additionally, FleCSI provides type checking and iterators for tasks facilitating
increased usability. To be effective, however, the cost of such abstractions must
not significantly impact the performance of applications.

The shallow water core from MPAS-0-F1eCSI is used to investigate abstrac-
tion overheads of FleCSI execution and data structures. To this end, we first
consider a vector triad from stream [16] (see Algorithm 1).

Algorithm 1. Vector Triad
1. fori=1,...,N do

2: A[i] = B[i] + C[i] = D[]
3: end for

This provides a baseline for performance investigation as an expectation for
performance is easily obtained on a computation relevant to the memory bound
nature of second order finite-volume calculations.

Figure 2 shows performance of the vector triad computed over cells in an
MPAS mesh on a Power 9 CPU. The FleCSI line shows the vector triad imple-
mented in a FleCSI task using FleCSI fields, iterators (forall abstraction using
Kokkos with the OpenMP [8] backend), and accessors on the MPAS specializa-
tion of topo: :unstructured. The OpenMP line shows the vector triad imple-
mented in OpenMP using sizes consistent with the number of cells in the given
MPAS mesh. Figure 2 demonstrates relatively small overhead when compared to
OpenMP.

Figure 3 shows performance of the vector triad on a Volta GPU. The FleCSI
line shows the performance of the vector triad implemented in a FleCSI task
using the forall abstraction with the MPAS unstructured topology specializa-
tion. The Kokkos line shows performance of the vector triad using Kokkos with
sizes consistent to the number of cells in the corresponding MPAS mesh. Figure 3
shows the abstraction overhead is largest for small mesh sizes with the highest
variability.

492 B. Bergen et al.

E
= 100
2
g 754
£ 504
fant
254 —e— OpenMP
o FleCSI
2 1 6 3 10
Cores

Fig.2. Vector triad over 64 million
cells in an MPAS mesh on Power 9
CPU.

)

h

S
T

o0
©
b

(GB/s)
E
T <

Performance

=1

=

S
T

— Kokkos
FleCSI

-
T

0 1 3 4

2
Input Size (GB)

Fig. 3. Vector triad over cells in an
MPAS mesh on Volta. Error bars show
variation over ten runs

—
)

—

®

Time (s)
- o

o

Fig. 4. Shallow water core task execution and runtime overhead.

Figure 4 shows the run time of tasks in the time integration loop of the shallow
water core in MPAS-0-F1eCSI. The FleCSI overhead associated with these tasks
is shown above each bar.

Overall, the FleCSI overhead associated with these tasks is insignificant rel-
ative to the run time of the task.

5 Conclusions and Future Work

FleCSI 2.0 offers many improvements, and extended capabilities over the origi-
nal FleCSI 1.4 release, including a completely C++17-compliant interface, new
topology types, more flexible topology instance control, better support for scal-
able topology colorings, a composable internal interface for developing and imple-
menting new topology types, full implementation of FleCSI’s explicit program-
ming model components, arbitrary launch domain support for M-to-N color
to process mappings (execution model only), improved profiling utilities, and a
fully serializable logging utility (FLOG) that can aid in code development and
debugging.

A future minor release of FleCSI 2.0 will add support for arbitrary data
mappings, using color maps to extend the capability provided by our current
M-to-N execution model. This will enable straightforward implementations of

FleCSI 2.0: The Flexible Computational Science Infrastructure Project 493

complex mapping algorithms, e.g., parallel rendezvous [18]. Future work will also
include refinement and integration of a previously-developed model for multi-
material representations, additional topology support (In particular, support for
K-D Trees.), a new interface for controlling tuneables in conjunction with several
custom mappers targeting upcoming DOE supercomputers, e.g., Crossroads [10]
and El Capitan [21], and improved scalability and performance.

Acknowledgments. FleCSI 2.0 is the culmination of several years of research and
development, with many important contributors. We would like to acknowledge the
following individuals for direct code contributions:

Table 1. Direct Code Contributors to FleCSI

Dani Barrack Marc Charest Scot Halverson
Christoph Junghans Sumathi Lakshmiranganatha Jonas Lippuner
Nick Moss Robert Pavel Jonathan Pieterila Graham
Galen Shipman Lukas Spies Martin Staley
Karen Tsai John Wohlbier Wei Wu

The initial design and development of FleCSI was funded under the Advanced Tech-
nology Development and Mitigation (ATDM) subprogram of LANL’s ASC program
(NNSA/DOE). This work would not have been possible without close collaborations
with the Legion and HPX teams, and the Ristra Project (part of ATDM). We would
also like to acknowledge the leadership of the Ristra project: Aimee Hungerford, and
David Daniel. The FleCSI project and the Darwin compute cluster are both funded
by the Computational Systems and Software Environments (CSSE) subprogram of
LANL’s ASC program (NNSA/DOE).

FleCSI website: https://flecsi.org.
Source code and issue tracking: https://github.com/flecsi/flecsi.
This work is approved for unlimited release: LA-UR-21-25604

A Topology Applications

As mentioned in Sect. 3, this table gives some suggestions for the particular
numerical methods that can be implemented with the various FleCSI core topol-
ogy types. This list is meant only as an example, and is by no means exhaustive.

Table 2. Suggested FleCSI Topology Applications

Applied Method Core Topologies
Lagrangian Hydrodynamics topo: :unstructured, topo::narray
Eulerian Hydrodynamics topo: :narray, topo: :ntree
Smoothed-Particle Hydrodynamics topo: :ntree

Finite Element Method topo: :unstructured, topo::narray
Finite Volume Method topo: :unstructured, topo::narray
Discontinuous Galerkin topo: :unstructured, topo::narray
Material-Point Method topo: :set
Particle-In-Cell topo: :set

Monte Carlo (particle coloring) topo: :ntree

Monte Carlo (mesh coloring) topo: :set

https://flecsi.org
https://github.com/flecsi/flecsi

494

B. Bergen et al.

B Sample Figures
Fig.5. Example of MPAS mesh used Fig. 6. Simulation of a neutron star
to setup a standard shallow water test merger disk outflow using FleCSPH.

case from [23].

References

1.

Bader, M.: Space-Filling Curves: An Introduction with Applications in Scientific
Computing. Springer, Cham (2012)

. Barnes, J.E., Hut, P.: A hierarchical O(n-log-n) force calculation algorithm. Nature

324, 446 (1986)

Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, SC 2012,
Washington, DC, USA. IEEE Computer Society Press (2012)

Bentley, M.: The high complexity jump-counting pattern (2019). https://www.
plflib.org. Accessed 10 June 2021

Bentley, M.: The low complexity jump-counting pattern (2019). https://www.
plflib.org. Accessed 10 June 2021

Boehme, D.; et al.: Caliper: performance introspection for HPC software stacks.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2016, pp. 550-560 (2016). https://doi.org/
10.1109/SC.2016.46

Technical Committee in-progress C+-+23 (2021). https://isocpp.org/std/the-
standard. Accessed 14 June 2021

Dagum, L., Menon, R.: OpenMP: an industry-standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46-55 (1998). https://doi.org/10.
1109/99.660313

. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore perfor-

mance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202-3216 (2014). https://doi.org/10.1016/j.jpdc.2014.07.
003. Domain-Specific Languages and High-Level Frameworks for High-Performance
Computing

https://www.plflib.org
https://www.plflib.org
https://www.plflib.org
https://www.plflib.org
https://doi.org/10.1109/SC.2016.46
https://doi.org/10.1109/SC.2016.46
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

FleCSI 2.0: The Flexible Computational Science Infrastructure Project 495

The Alliance for Computing at Extreme Scale (ACES): Crossroads: a critical ele-
ment for improved predictive capability (2021). https://www.lanl.gov/projects/
crossroads. Accessed 14 June 2021

Message Passing Interface Forum: MPI: a message-passing interface standard.
Technical report, USA (1994)

Holmen, J.K., Sahasrabudhe, D., Berzins, M.: A heterogeneous MPI+ PPL task
scheduling approach for asynchronous many-task runtime systems. In: Proceed-
ings of the Practice and Experience in Advanced Research Computing 2021 on
Sustainability, Success and Impact (PEARC21). ACM (2021)

Ju, L., Ringler, T., Gunzburger, M.: Voronoi tessellations and their application
to climate and global modeling. In: Lauritzen, P., Jablonowski, C., Taylor, M.,
Nair, R. (eds.) Numerical Techniques for Global Atmospheric Models. LNCSE,
vol. 80, pp. 313-342. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-11640-7_10

Kaiser, H., Brodowicz, M., Sterling, T.: Parallex an advanced parallel execution
model for scaling-impaired applications. In: 2009 International Conference on Par-
allel Processing Workshops, pp. 394-401 (2009). https://doi.org/10.1109/ICPPW.
2009.14

Loiseau, J., et al.: FleCSPH: the next generation fleCSIble parallel computational
infrastructure for smoothed particle hydrodynamics. SoftwareX 12, 100602 (2020)
McCalpin, J.D.: Memory bandwidth and machine balance in current high perfor-
mance computers. In: IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pp. 19-25, December 1995

Pérache, M., Carribault, P., Jourdren, H.: MPC-MPI: an MPI implementation
reducing the overall memory consumption. In: Ropo, M., Westerholm, J., Don-
garra, J. (eds.) EuroPVM/MPI 2009. LNCS, vol. 5759, pp. 94-103. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-03770-2_16

Plimpton, S.J., Hendrickson, B., Stewart, J.R.: A parallel rendezvous algorithm for
interpolation between multiple grids. J. Parallel Distrib. Comput. 64(2), 266-276
(2004). https://doi.org/10.1016/j.jpdc.2003.11.006

Ringler, T., Petersen, M., Higdon, R.L., Jacobsen, D., Jones, P.W., Maltrud, M.:
A multi-resolution approach to global ocean modeling. Ocean Model. 69, 211-232
(2013)

Ringler, T.D., Thuburn, J., Klemp, J.B., Skamarock, W.C.: A unified approach
to energy conservation and potential vorticity dynamics for arbitrarily-structured
c-grids. J. Comput. Phys. 229(9), 3065-3090 (2010)

Thomas, J.: LINI and HPE to partner with AMD on El Capitan, projected
as world’s fastest supercomputer (2021). https://www.lnl.gov/news/llnl-and-
hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer. Accessed 06
June 2021

Warren, M.S., Salmon, J.K.: A parallel hashed oct-tree n-body algorithm. In: Pro-
ceedings of the 1993 ACM/IEEE Conference on Supercomputing, Supercomputing
1993, pp. 12-21. ACM, New York (1993). https://doi.org/10.1145/169627.169640
Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N.: A stan-
dard test set for numerical approximations to the shallow water equations in spher-
ical geometry. J. Comput. Phys. 102(1), 211-224 (1992)

https://www.lanl.gov/projects/crossroads
https://www.lanl.gov/projects/crossroads
https://doi.org/10.1007/978-3-642-11640-7_10
https://doi.org/10.1007/978-3-642-11640-7_10
https://doi.org/10.1109/ICPPW.2009.14
https://doi.org/10.1109/ICPPW.2009.14
https://doi.org/10.1007/978-3-642-03770-2_16
https://doi.org/10.1016/j.jpdc.2003.11.006
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer
https://doi.org/10.1145/169627.169640

	FleCSI 2.0: The Flexible Computational Science Infrastructure Project
	1 Introduction
	1.1 Structure
	1.2 Related Work

	2 Programming Model
	2.1 Runtime Model
	2.2 Control Model
	2.3 Data Model
	2.4 Execution Model

	3 Core Topologies
	3.1 Specialization Structure
	3.2 topo::unstructured
	3.3 topo::narray
	3.4 topo::ntree
	3.5 topo::set

	4 Sample Applications
	4.1 MPAS-O-FleCSI
	4.2 FleCSPH
	4.3 Abstraction Overhead

	5 Conclusions and Future Work
	A Topology Applications
	B Sample Figures
	References

