
Understanding the Effect of Task
Granularity on Execution Time

in Asynchronous Many-Task Runtime
Systems

Shahrzad Shirzad1(B) , R. Tohid1 , Alireza Kheirkhahan1 ,
Bibek Wagle2 , and Hartmut Kaiser1

1 Louisiana State University, Baton Rouge, LA, USA
{sshirz1,akheir1}@lsu.edu, hkaiser@cct.lsu.edu

2 The STE||AR Group, Baton Rouge, USA
bibek@alumni.lsu.edu

Abstract. Task granularity is a key factor in determining the perfor-
mance of asynchronous many-task (AMT) runtime systems. The over-
head of scheduling an excessive number of tasks with smaller granularities
causes performance degradation, while creating a few larger tasks leads
to starvation and therefore under-utilization of resources. In this paper,
we developed an analytical model of the execution time of an applica-
tion with balanced parallel for-loops in terms of grain size, and number
of cores. The parameters of this model mostly depend on the runtime
and the architecture. We introduce an approach to suggest a range of
possible grain sizes to achieve the best performance based on the pro-
posed model. To the best of our knowledge, our analytical model is the
first to explain the relationship between the execution time in terms of
grain size, runtime, and physical characteristics of the machine in an
asynchronous runtime system.

Keywords: Task granularity · Analytical model · AMTs · HPX

1 Introduction

Achieving exascale computing relies on computing environments with complex
architectures, deeper memory hierarchies, heterogeneous hardware and complex
networks [7]. Asynchronous many-task (AMT) models and their corresponding
runtimes are the solution to keep application developers safe from the upcoming
architectures by mitigating exascale difficulties to runtime level [3]. New runtime
systems rely on lightweight threads to avoid expensive context switching. There-
fore, the cost of thread creation is relatively low, e.g., HPX threads are created in a
few cycles. However, if millions of lightweight threads are created so each carry out
a small task of a few cycles, then the overhead of task creation will be significant.
On the other hand, if only a few tasks carry out the entire execution, resources
c© Springer Nature Switzerland AG 2022
R. Chaves et al. (Eds.): Euro-Par 2021, LNCS 13098, pp. 456–467, 2022.
https://doi.org/10.1007/978-3-031-06156-1_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06156-1_36&domain=pdf
http://orcid.org/0000-0001-9496-8044
http://orcid.org/0000-0001-7776-0380
http://orcid.org/0000-0002-4624-4647
http://orcid.org/0000-0001-6619-7115
http://orcid.org/0000-0002-8712-2806
https://doi.org/10.1007/978-3-031-06156-1_36

Understanding the Effect of Task Granularity on Execution Time in AMTs 457

will most likely not be utilized to the full extent. Therefore, the amount of work
assigned to each task, grain size, requires meticulous analyses.

We have developed a model by carefully studying the relationship between
the total execution time and the grain size. Based on the analytical model, we
recommend a range of grain sizes that would lead us to lowest possible execu-
tion times. The model depends on two mostly architecture-specific parameters.
Identifying these parameters on one system would then help us to improve the
performance of other similar balanced for-loop applications on the same system.

The contribution of this work includes:

– Developing an analytical model to predict the total execution time of a bal-
anced parallel for-loop. To our knowledge, this is the first analytical model in
terms of both grain size and number of cores.

– A method has been offered to estimate the range of grain sizes to achieve
minimum execution time for a particular number of cores.

– Building a microbenchmark on top of HPX to evaluate the model. The data
collected through this microbenchmark is used to estimate model parameters
on each machine architecture. The obtained parameters could then be utilized
to predict the optimum range of grain sizes for minimum execution time, and
consequently improve the performance of any other balanced parallel for-loop
application executed on the same system.

2 Background

This section provides a brief overview of the concepts and technologies that are
building blocks of this work.

2.1 HPX

HPX[11] is a C++ runtime system for parallel and distributed applications. HPX
provides users with lightweight user-level threads with fast context switching
[12]. When a thread is blocked, the scheduler picks up another one from the
ready queue in order to hide latency, avoid starvation and therefore improve the
utilization of the computation resources [12].

2.1.1 Execution Model
HPX’s execution model mainly holds four factors responsible for performance
degradation in parallel applications: Starvation, Latency, Overheads, and Wait-
ing (also known as contention) [10].

Starvation refers to the situation where there is not enough work to keep
the computing resources busy- this could be due to an insufficient total amount
of work available, or unbalanced distribution of work among resources [12].

Latency is the time distance, usually measured in processor clock, between
requesting and accessing remote data or services [4].

458 S. Shirzad et al.

Overhead refers to the effort taken to manage parallel resources and actions
on the critical path but are not necessarily needed by the application itself [12].

Waiting is the contention over shared physical or logical resources when one
or more threads try to access the same resource and all get blocked [4].

Table 1. Table of notations

Parameter Definition Parameter Definition

N Number of cores tseq Sequential execution time

nt Total number of tasks created ti Execute time of one iteration

ps Total amount of work n Number of loop iterations

M Number of utilized cores cs Chunk size

tmax Execution time of wmax g Grain size

wmax Maximum amount of work assigned to
a single core

2.2 Analytical Modeling of Parallel Programs

The performance of a parallel program mostly depends on its underlying algo-
rithm and the architecture it is run on [5]. Amdahl’s law [2], Equation (1), shows
that there is a limit on maximum speed-up achievable in a parallel application.
This limit is imposed by the sequential fraction of the program denoted by σ.

S(p) =
p

1 + σ(p − 1)
(1)

Gunther [9] extends Amdahl’s law by incorporating effects of three factors: con-
currency, contention, and coherency, as shown in Eq. 2.

S(p) =
p

1 + σ(p − 1) + κp(p − 1)
(2)

In this equation, known as the Universal Scalability Law (USL), concurrency
(p) represents the linear speed-up in the absence of interactions among parallel
processors, contention (σ) represents the serialization effect of shared writable
data, and finally coherency or data consistency (κ) represents the cost imposed
for keeping shared writable data consistent [9].

Several models have been proposed to model scalability, including the Geo-
metric model [9], and the Quadratic model [8]. These models are mainly non-
physical, and not applicable for large number of processors [8].

3 Methodology

In this section we provide an overview of the methodology used to analyze the
effect of grain size, i.e., the workload of each runtime thread, on the execution
time in AMT runtime systems. Table 1 shows the notations used throughout this

Understanding the Effect of Task Granularity on Execution Time in AMTs 459

section. It should be noted that the amount of work could be measured in terms
of execution time or floating point operations depending on the application.
Chunk size is defined as the number of iterations included in one task, while
grain size is the amount of work contained in a task and is executed by a single
user-level thread.

The total execution time is then defined as the maximum of the execution
times of each individual core. In general this is the amount of time it takes for
the core with maximum amount of work to finish execution of its task. Here the
maximum expected amount of work to be assigned to a core is denoted as wmax,
and the time it takes to execute this amount of work as tmax.

With this assumption, the key factors contributing to the execution time are,
the overhead of scheduling tasks on the core with maximum amount of work, the
time it takes to run wmax amount of work, denoted with tmax, and the number
of cores executing the work(M). Depending on the amount of work available,
either all N cores or less than N cores will be performing the work.

Equation (3) shows the expected formula in its simplest form.

execution time = toverhead + tmax (3)

toverhead represents the penalty that has to be paid for running the program in
parallel. We hold two major factors accountable for this overhead.

The first factor is the overhead of scheduling the tasks. Although this over-
head is negligible for a small number of tasks, it becomes significant as the
number of created tasks becomes larger.

In the ideal case, when nt tasks are created,
⌈

nt

N

⌉
of them would be scheduled

on the core with the maximum amount of work. If we represent the overhead
of scheduling one task on a core with α, then α

⌈
nt

N

⌉
would be the scheduling

overhead associated with
⌈

nt

N

⌉
tasks.

The second factor is the overhead due to contention and coherency based on
USL. Equation (4) shows how USL models the effect of the overheads due to
contention(σ) and coherency(κ) in the overall execution time t, with sequential
execution time of tseq, on N cores, when tseq

N is the expected execution time on
N cores in ideal case when the mentioned overheads are not present.

speedup =
tseq

t
=

N

1 + σ(N − 1) + κN(N − 1)
⇒

t =
tseq

N
+ σ(N − 1)

tseq

N
+ κN(N − 1)

tseq

N

(4)

Based on Eq. (4), the term σ(N −1)tseq represents the overhead observed due to
contention, and κN(N − 1)tseq is the overhead caused by coherency, assuming
tseq is the ideal execution time in this problem.

We need to keep in mind that there are cases where there is not enough work
for all the cores to execute, causing the mentioned overheads to be a factor of
the cores that are actually performing the work and not just all the available
cores. For this reason, we adjust Eq. (4) by changing the total number of cores
(N) to the number of cores that are actually being utilized (M).

460 S. Shirzad et al.

Assuming that we are running our application on N cores, with a grain size
equal to g, nt tasks are being created, and M cores are being utilized. If nt < N ,
M would be equal to nt, otherwise M = N .

Equation (3) is then converted into:

execution time = α
⌈nt

N

⌉
+ σ(M − 1)tmax + κM(M − 1)tmax + tmax.

(5)
For a balanced parallel for-loop, when N = 1 all the work will be assigned to
the only available core, resulting in wmax = ps. When N > 1, in the general
case at most

⌈
nt

N

⌉
tasks would be assigned to a core. Therefore, a grain size of

g would result in a maximum amount of work of g
⌈

nt

N

⌉
being assigned to one

core, causing wmax = g
⌈

nt

N

⌉
.

Also tmax, the time to execute wmax amount of work, can be estimated as
tmax = tseq

wmax

ps
, where tseq is the time it takes to run the total amount of work,

ps, sequentially. Equation (5) is then simplified into Eq. (6).

execution time = α
⌈nt

N

⌉
+ tseq

wmax

ps
(1 + σ(M − 1) + κM(M − 1))

(6)
We refer to (6) as our analytical model in the next sections.

3.1 Model Evaluation

In order to evaluate the model, we developed a simple parallel for-loop
microbenchmark1. We refer to it as the for-loop microbenchmark. Each iteration
consists of a while loop that makes sure the iteration lasts a certain amount of
time (ti). By setting ti = 1μsec, and changing the number of iterations n, and
chunk size cs, we can see how the execution time changes when the microbench-
mark is executed on different number of cores.

Having defined ps as the total amount of work that has to be performed, for
this microbenchmark, ps = ti × n. Since ti = 1μsec, then ps = n. On the other
hand, for this specific problem wmax = tmax, and tseq = ps.

The microbenchmark was then executed with different number of cores(N),
number of iterations(n), and chunk sizes (cs). For each n, cs is changed from 1
to n in logarithmic scale. Each of these runs was executed on 1, 2, 3, ..., 8 cores.

Using the collected data points for each problem size (ps), the opti-
mize.curve fit package from scipy library in Python was used to fit our model to
the collected data. Figure 1 shows the prediction results from the fitted model
and the original data for ps = 100000, on 8 cores.

The relative error of the prediction is calculated for each problem size based
on Eq. (7), where pk is the predicted value of the sample k, tk is the true measured
value, and K is the total number of samples.

Relative error =
1
K

K∑

k=1

|1 − pk

tk
| (7)

1 https://gist.github.com/shahrzad/b81e1eb252880aca48528d2de0bd1d10.

https://gist.github.com/shahrzad/b81e1eb252880aca48528d2de0bd1d10

Understanding the Effect of Task Granularity on Execution Time in AMTs 461

As discussed earlier, for a specific runtime system, the model parameters
α and σ mostly depend on the system architecture and are expected to be
constant for different problem sizes as long as they are executed on the same
machine. Therefore, we suggest relying on the data collected from one problem
size to find parameters α and σ. For this purpose, for problem sizes of 10000,
100000, 1000000, 10000000, 100000000, we used the parameters identified based
on the data collected from one specific problem size, to estimate the execution
time in terms of grain size and measure the relative error for the same problem
size(Fig. 2a) and all other problem sizes(Fig. 2b).

Using the data collected for ps = 10000 to estimate the model parameters
generates higher prediction error on other problem sizes, but for other problem
sizes we don’t see a considerable change in prediction error. Since larger problem
sizes require more data to be collected to cover the whole spectrum of grain
sizes, ps = 100000 was selected as a reasonable problem size to estimate the
model parameters. Fitting our model to all the 512 data points collected for
ps = 100000, resulted in model parameters α = 2.42 and σ = 0.025.

We suggest to run the for-loop microbenchmark on the desired system to run
our parallel application on, for ps = 100000, to estimate α and σ. Plugging the
estimated parameters into Equation (6) would create the analytical model to be
used for other balanced parallel for-loop applications executed on the same system.

Our experiments were run on a node consisting of two Intel(R) Xeon E5-2450
CPUs clocked at 2.1 GHZ amounting to a total of 16 cores and 48 GB RAM. Hyper-
threading was turned off for the experiment. The versions of HPX used was 1.5.0.

3.2 Identifying the Optimal Range of Grain Size

The graph of execution time in terms of grain size in logarithmic scale, denoted
as the bathtub curve, can be divided into three regions. We refer to these regions
as the left side, the right side, and the flat regions of the graph. Figure 3 shows
an example of the flat region of the execution time graph versus grain size in
both linear and logarithmic scales. As it can be observed, the flat region contains
a very small range of grain sizes.

Fig. 1. The results of predicting the execution time based on the proposed model
through curve fitting vs the real data for ps = 100000, for 8 cores.

462 S. Shirzad et al.

(a) (b)

Fig. 2. The relative error of fitting the measured data for different problem sizes on
(a) the same problem size and (b) other problem sizes, calculated for each number of
cores.

3.2.1 Left Side of the Graph
In Equation (6), for small grain sizes the first term(α

⌈
nt

N

⌉
) is the dominant

factor while the second term(tseq
wmax

ps
(1 + σ(M − 1))) roughly stays constant.

Likewise, for large grain sizes the second factor is the dominant factor.
In order to find the lower-bound of the range for which the execution time

stays constant, we can assume that the second factor is constant in that region.
Also, we can change N to M , knowing that our concern is on the left side of
the graph, where nt is definitely greater than the number of cores. Taking the
derivative of the function based on the grain size leads to:

∂execution time

∂g
=

α

N

∂nt

∂g
=

α

N

∂(ps

g)

∂g
=

α

N
ps

−1
g2

. (8)

From (8), it can be observed that for the left side of the graph, the rate of change
is negative, and it decreases as the grain size increases. Here we are looking for
the value of the grain size for which the rate of change becomes very small (we
introduce a threshold λb, where 0 < λb � 1, for this purpose).

α

N
ps

1
g2

≤ λb ⇒ g ≥
√

α
N ps

λb

(9)

(a) (b)

Fig. 3. The results of running the for-loop microbenchmark with ps = 100000, on 8
cores in (a) logarithmic scale, and (b) linear scale.

Understanding the Effect of Task Granularity on Execution Time in AMTs 463

Equation (9) can also be represented as shown in (10). This representation shows
that when the ratio of the time it takes to execute one task to the total overhead
of scheduling nt tasks on N core, is greater than a threshold, we will end up in
the flat region of the graph, close to the left side.

α

N

ps

g

1
g

≤ λb ⇒ g
α
N nt

≥ 1
λb

(10)

3.2.2 Right Side of the Graph
At the right side of the graph, the overhead of creating the tasks is negligible,
since only a few tasks are being created and the associated overhead is not
significant compared to the execution time. On this side, wmax and consequently
tmax are the dominant factors. In general we can estimate wmax with g

⌈
nt

N

⌉
.

There are grain sizes for which
⌈

nt

N

⌉
is the same, but wmax would be different.

For all the values of g that create the same
⌈

nt

N

⌉
, as g increases, the difference

between wmax and ps

N increases. This means that for a range of grain sizes with
the same value of

⌈
nt

N

⌉
, as we get closer to the end of the range, we are observing

that a much bigger amount of work is assigned to the core with the maximum
amount of work, which would result in a higher execution time.

In the general case, if we denote
⌈

nt

N

⌉
as k, then:

k − 1 <
nt

N
=

⌈
ps

g

⌉

N
≤ k ⇒ (k − 1)N <

ps

g
≤ kN. (11)

If k = 1, then, 0 < ps

g ≤ N and therefore ps

N ≤ g ≤ ps. Otherwise, when k > 1
the following equation can be deduced.

ps

kN
≤ g <

ps

(k − 1)N (12)

Since
⌈

nt

N

⌉
= k, and wmax = g

⌈
nt

N

⌉
= gk, we can conclude for k > 1:

0 ≤ wmax − ps

N
<

1
k − 1

ps

N
. (13)

And for k = 1, wmax = g, nt ≤ N , therefore ps

N ≤ g ≤ ps.

0 ≤ wmax − ps

N
= g − ps

N
≤ (N − 1)

ps

N
(14)

We define a new parameter imbalance ratio as (wmax − ps

N)/ps

N . Consequently,
⎧
⎨

⎩

0 ≤ imbalance ratio ≤ N − 1 for k = 1

0 ≤ imbalance ratio <
1

k − 1
for k > 1

(15)

Equation (15) shows that as the number of created tasks increases, while the
number of tasks per core is the same, the imbalance factor decreases.

464 S. Shirzad et al.

Fig. 4. The imbalance ratio calculated for different grain sizes for ps = 10000, on 8
cores. At the area between each two green lines k =

⌈
nt
N

⌉
is constant.

Figure 4 shows how imbalance ratio changes for different grain sizes for ps =
10000, on 8 cores. Each of the regions between two dashed green lines correspond
to a specific value for k =

⌈
nt

N

⌉
.

At each of the regions with k > 1,
⌈

nt

N

⌉
= k, imbalance ratio starts from

0 and approaches 1
k−1 at the end of the region. When k = 1, imbalance ratio

increases linearly starting from 0 and reaching the maximum of N − 1 when
g = ps. As we move to larger grain sizes,

⌈
nt

N

⌉
decreases. We define a threshold,

λs (0 < λs < 1), so that for imbalance ratios smaller than this threshold,
the imbalance effect is not considered significant. Our goal would then become
finding the maximum grain size that would generate a reasonable imbalance
(imbalance ratio ≤ λs), to make sure we should stay in the flat region of the
bathtub curve of execution time against grain size.

Equation (14) states that for grain sizes greater than ps

N , imbalance ratio
increases linearly with grain size from 0 to N − 1. While for grain sizes smaller
than ps, the maximum imbalance ratio depends on k =

⌈
nt

N

⌉
. To ensure imbal-

ance ratio is smaller than or equal to a threshold (λs), first we search the grain
sizes smaller than ps

N . Since 0 < λs < 1, and k ≥ 2 in this region, there exists a
k such that 1

k−1 ≤ λs.
If there exists a kmin, for which imbalance ratio < 1

kmin−1 , where 1
kmin−1 ≤

λs, then ∀k < kmin, maximum value of imbalance ratio would be greater than
λs. To find the grain size that creates maximum imbalance ratio of λs:

imbalance ratio ≤ λs ⇒ 1
k − 1

≤ λs ⇒ kmin =
⌈
1 +

1
λs

⌉
+ 1 (16)

Based on Equation (13), g < ps

(kmin−1)N , and therefore:

gmax =
ps

(kmin − 1)N
− 1 =

ps

(1 +
⌈

1
λs

⌉
)N (17)

If g < gmax, we can ensure that imbalance ratio never exceeds λs. Since we
already found a match at grain sizes smaller than ps

N , checking the rest of grain
sizes would not be necessary.

Understanding the Effect of Task Granularity on Execution Time in AMTs 465

(a) (b)

Fig. 5. (a)The identified range of grain sizes for ps = 100000000 on 8 cores, with
λb = 0.01 and λs = 0.1. The gray dashed line represents the grain size where work is
equally divided among the cores, ps

N
. (b) The effect of λb and λs on the borders of the

identified region for minimum execution time.

3.3 Identifying the Range of Grain Sizes for Minimum Execution
Time

In the previous section, we introduced a method to identify the lower-bound
and upper-bound of grain sizes for which we expect to observe the minimum
execution time. Integrating Eq. (9) and Eq. (17) suggests the following range for
minimum execution time, Where 0 ≤ λs ≤ 1, and λb, λs � 1:

√
(α

N)ps

λb
≤ g ≤ ps

(1 +
⌈

1
λs

⌉
)N

. (18)

Here λb indicates the slope of the graph at the left side of the graph where over-
head of tasks is the dominant factor. Grain sizes smaller than

√
((α

N)ps)/λb

would create a slope of more than λb. As for λs, a grain size greater than
ps

(1+� 1
λs

�)N could generate an imbalance ratio of greater than λs.

3.4 Locating the Flat Region of the Execution Time vs Grain Size
Graph for the For-Loop Microbenchmark

In this section we used Eq. (18) to identify the flat region of the execution time
vs grain size graph for the parallel for-loop microbenchmark. For this purpose,
we set both λb and λs to 0.1.

In Fig. 5a the identified region for minimum execution time is shown in green,
for ps = 10000000, executed on 8 cores.

Selecting a greater value for λb would move the left border of the region
to left, for a larger acceptable slope of change of execution time in terms of
grain size. On the other hand, selecting a smaller value for λs would result in
shifting the right border of the region to left, imposing a higher restriction on
imbalance ratio, as shown in Fig. 5b. λb and λs could be selected depending on

466 S. Shirzad et al.

how strict one wants to be in terms of slope of changes and imbalance ratio. In
the meanwhile, based on our experiments we suggest λb = 0.01 and λs = 0.1 as
reasonable values for

4 Related Work

Akhmetova et al. [1] utilized a system emulator to study the effect of task gran-
ularity in system performance. They also provide an algorithm to automatically
aggregate tasks into larger tasks based on the calculated task granularity in order
to improve the performance.

Grubel et al. also study the effect of the task size on performance of HPX
applications[6]. They suggest using a number of performance metrics in order to
identify the optimum grain size to improve the adaptivity at runtime.

In [13], the authors use thresholds to decide on whether to inline a task or
not at runtime. The imposed threshold for task inlining on a specific architecture
then converts into the problem to what portion of the execution time of the task
should be spent for scheduling the task, so that it would be worth to be executed
as a separate task. This is in compliance with our findings in this paper for λb,
as shown in Eq. (10), where we suggest in order to land in the flat region of
the execution time versus grain size graph, the ratio of the grain size over the
scheduling overhead of one task on one core should be greater than the given
threshold.

5 Conclusions and Future Work

In this paper we discussed the importance of task granularity on the achievable
performance in AMTs. We offered an analytical model for execution time of
a parallel application with a balanced for-loop, in terms of grain size and the
number of cores. A for-loop microbenchmark was developed to validate this
model and, a method has been provided to estimate the range of grain sizes to
achieve the minimum execution time. At the next step, we suggested that we can
use the developed for-loop microbenchmark with a fixed problem size to find the
model parameters of a runtime system on a specific architecture. The identified
parameters can then build the analytical model for arbitrary balanced parallel
for-loop applications on the same machine.

For simplification and due to the nature of the for-loop microbenchmark we
based our work on, we had ignored the κ parameter in USL model. For future
work, we would like to study the effect of this parameter on both execution time
and the upper-bound for the identified range.

Acknowledgment. The authors are grateful for the support of this work by the
LSU Center for Computation & Technology and by the DTIC project: Phylanx
Engine Enhancement and Visualizations Development (Contract Number: FA8075-14-
D-0002/0007).

Understanding the Effect of Task Granularity on Execution Time in AMTs 467

References

1. Akhmetova, D., Kestor, G., Gioiosa, R., Markidis, S., Laure, E.: On the applica-
tion task granularity and the interplay with the scheduling overhead in many-core
shared memory systems. In: 2015 IEEE International Conference on Cluster Com-
puting, pp. 428–437. IEEE (2015)

2. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the Spring Joint Computer Conference,
18–20 April 1967, pp. 483–485. ACM (1967)

3. Bennett, J., et al.: Asynchronous many-task runtime system analysis and assess-
ment for next generation platforms. US Department of Energy, Sandia National
Laboratories Report, Rep. no. SAND2015-8312 (2015)

4. Gao, G.R., Sterling, T., Stevens, R., Hereld, M., Zhu, W.: Parallex: a study of a new
parallel computation model. In: 2007 IEEE International Parallel and Distributed
Processing Symposium, pp. 1–6. IEEE (2007)

5. Grama, A., Kumar, V., Gupta, A., Karypis, G.: Introduction to Parallel Comput-
ing. Pearson Education, Boston (2003)

6. Grubel, P., Kaiser, H., Cook, J., Serio, A.: The performance implication of task
size for applications on the HPX runtime system. In: 2015 IEEE International
Conference on Cluster Computing, pp. 682–689. IEEE (2015)

7. Grubel, P., Kaiser, H., Huck, K., Cook, J.: Using intrinsic performance counters
to assess efficiency in task-based parallel applications. In: 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 1692–
1701. IEEE (2016)

8. Gunther, N.J.: The practical performance analyst. iuniverse. com inc. Lincoln,
Nebraska (2000)

9. Gunther, N.J.: What is Guerrilla Capacity Planning? Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-31010-5 1

10. Kaiser, H., Brodowicz, M., Sterling, T.: Parallex an advanced parallel execution
model for scaling-impaired applications. In: 2009 International Conference on Par-
allel Processing Workshops, pp. 394–401. IEEE (2009)

11. Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: HPX: a task based
programming model in a global address space. In: Proceedings of the 8th Interna-
tional Conference on Partitioned Global Address Space Programming Models, p.
6. ACM (2014)

12. Kulkarni, A., Lumsdaine, A.: A comparative study of asynchronous many-tasking
runtimes: Cilk, charm++, parallex and am++. arXiv preprint arXiv:1904.00518
(2019)

13. Wagle, B., Monil, M.A.H., Huck, K., Malony, A.D., Serio, A., Kaiser, H.: Runtime
adaptive task inlining on asynchronous multitasking runtime systems. In: Proceed-
ings of the 48th International Conference on Parallel Processing, pp. 1–10 (2019)

https://doi.org/10.1007/978-3-540-31010-5_1
http://arxiv.org/abs/1904.00518

	Understanding the Effect of Task Granularity on Execution Time in Asynchronous Many-Task Runtime Systems
	1 Introduction
	2 Background
	2.1 HPX
	2.2 Analytical Modeling of Parallel Programs

	3 Methodology
	3.1 Model Evaluation
	3.2 Identifying the Optimal Range of Grain Size
	3.3 Identifying the Range of Grain Sizes for Minimum Execution Time
	3.4 Locating the Flat Region of the Execution Time vs Grain Size Graph for the For-Loop Microbenchmark

	4 Related Work
	5 Conclusions and Future Work
	References

