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Abstract. Distributed Stream Processing is a valuable paradigm for
reliably processing vast amounts of data at high throughput rates with
low end-to-end latencies. Most systems of this type offer a fine-grained
level of control to parallelize the computation of individual tasks within
a streaming job. Adjusting the parallelism of tasks has a direct impact
on the overall level of throughput a job can provide as well as the amount
of resources required to provide an adequate level of service. However,
finding optimal parallelism configurations that fall within the expected
Quality of Service requirements is no small feat to accomplish.

In this paper we present Rafiki, an approach to automatically deter-
mine optimal parallelism configurations for Distributed Stream Pro-
cessing jobs. Here we conduct a number of proactive profiling runs to
gather information about the processing capacities of individual tasks,
thereby making the selection of specific utilization targets possible.
Understanding the capacity information enables users to adequately pro-
vision resources so that streaming jobs can deliver the desired level of
service at a reduced operational cost with predictable recovery times. We
implemented Rafiki prototypically together with Apache Flink where we
demonstrate its usefulness experimentally.

Keywords: Distributed Stream Processing · Capacity planning ·
Resource optimization · Quality of Service · Parallelization · Profiling ·
Performance modeling

1 Introduction

Distributed Stream Processing (DSP) enables the processing of large volumes
of unbounded streams of data with high throughput rates and low end-to-end
latencies. Streams of data are generated in a growing number of contexts includ-
ing IoT sensor networks, social media, and online transactions [5,9]. In order to
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meet Quality of Service (QoS) requirements regarding performance and avail-
ability, DSP systems must be configured and allocated a sufficient amount of
resources to provide an adequate level of service. Determining configurations,
how many resources to allocate to a DSP system, and what levels of throughput
those resources and configurations can provide is challenging. Finding optimal
configurations is typically time-consuming and requires expert-level knowledge
of the DSP system and streaming job [1,10]. However, uncovering this informa-
tion is important for all users of these systems, and providing an approach that
automates and speeds up this process is necessary.

In the stream processing model, a series of tasks are performed on a stream
of data, and each item in the data stream is processed by a task as soon as it
becomes available [5]. Given an infinitely large stream of data, tasks will pro-
cess as many items as possible using the available resources. To increase overall
throughput and reduce end-to-end latency, the computation of tasks in DSP jobs
can be run in parallel. Because each task performs a different function and can
therefore process a different maximum number of messages per second, one of the
most important configurations to adjust to match available resources to stream
processing workloads is the number of parallel computations, or parallelism, of
tasks.

By gaining insights into the capacity of a DSP job on a fine-grained level,
resource allocation can be better optimized and QoS requirements can be more
easily met. Finding optimal parallelism configurations and the capacity of a DSP
job is often used for dynamic autoscaling. These reactive approaches typically
profile running jobs and automatically rescale tasks when certain thresholds are
reached [6]. Though useful for running applications, there is value in proactively
profiling a DSP job in order to understand task-level capacity and set utilization
targets.

In this paper we present Rafiki, an approach which automatically deter-
mines the processing capacities of individual tasks for any selected streaming
job. Rafiki takes advantage of cloud computing, OS-level virtualization, and
container orchestration technologies to deploy duplicate DSP pipelines and test
their maximum capacity under realistic conditions. By running a series of proac-
tive profiling runs, Rafiki finds optimal parallelism configurations at a task level
and reports the maximum throughput possible for those configurations. With the
insights gained from the profiling runs, a user can allocate sufficient resources to
a DSP job in order to reach utilization targets, which allows for a more accurate
estimation of recovery times as well as the identification and removal of perfor-
mance bottlenecks. Additionally, our method provides an interface for monitor-
ing the capacity utilization for any targeted job after profiling runs have been
completed. We provide a prototype and evaluate its effectiveness experimentally
with two DSP jobs.

The remainder of this paper is organized as follows. In Sect. 2 we explain our
approach. In Sect. 3 we outline Rafiki’s design and evaluate our approach with
two DSP jobs. We conclude with related work in Sect. 4 and a brief conclusion
in Sect. 5.
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2 Approach

In order to measure task-level capacity and apply the gained insights to a given
DSP job, we propose Rafiki, a three-step solution. First, a set of profiling runs
are iteratively executed with increasing and optimal parallelism configurations
to obtain maximum capacities across the different tasks. Second, the capacity
information for all tasks is deduced based on the metrics gathered from the pro-
filing runs of the tested parallelism configurations. Third, the gathered capacity
information is applied to a running job to target a specific utilization. Addition-
ally, real-time insights are provided into the potential effects of changing task
parallelisms in an interactive dashboard. An overview can be seen in Fig. 1. We
have implemented this approach to validate it and promote its usability.1

Fig. 1. Overview of the architecture and interactions

2.1 Profiling Runs

The main goal of this step is to calculate the maximum capacity for each task at a
given level of parallelism. We achieve this by executing a set of brief profiling runs
while stressing the system’s processing capacity in every iteration. By ensuring
a sufficient amount of messages are available to be consumed, we can flood the
entire pipeline to detect tasks that are unable to process messages at the rate
they are received. These tasks cause backpressure and indicate the maximum
processing capacity of the task at the current parallelism configuration. In each

1 https://github.com/ciklista/rafiki.

https://github.com/ciklista/rafiki
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run, the essential idea is to detect tasks that are the bottleneck given the current
configuration and increase their parallelism in the next iteration.

A set of profiling runs is always started with all tasks having a parallelism
of one. We then subsequently increase the parallelism of certain tasks, one at
a time, until no more bottlenecks can be enforced, or a user-defined maximum
parallelism has been reached. With each profiling run, we take advantage of
cloud computing and container orchestration technologies to deploy duplicate
DSP jobs with increasing parallelism configurations that read from the same
Apache Kafka source. Messages are replayed from the same offset to ensure that
each experiment iteration receives the same message sequence.

Fig. 2. Profiling run loop

Figure 2 illustrates the experiment loop as well as the decision process of
which task parallelism to increase for the next iteration. After a run has suc-
cessfully completed and metrics have been collected, we check if backpressure
was detected on any task throughout the run. If this was not the case, we can
assume none of the tasks reached its maximum capacity and no bottleneck was
found within the system. In this case, we increase the parallelism on the source
task, allowing messages to be consumed at a larger rate. This process is repeated
until backpressure is found on any task. Once that happens, we can then deduce
which task parallelism needs to be increased in order to resolve this bottleneck.
If backpressure is reported for a single task, the subsequent task is not able
to consume messages at the same rate at which they are produced. Following
this reasoning, we therefore increase the parallelism of the task following the
task that experienced backpressure. If we see multiple tasks experiencing back-
pressure, we will increase parallelism on the task subsequent to the last task
that experienced backpressure, in the order of the data flow. We repeat this
process until increasing the parallelism of a certain task would exceed the pre-
defined maximum allowed parallelism. This upper bound is set by the user and
is derived from financial or host system constraints.

2.2 Deducing Capacity

After each profiling run, throughput and backpressure metrics are collected and
used to define the maximum throughput of individual tasks. Based on observed
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backpressure, we can deduce different types of information for any task x with
any task parallelism configuration y as shown in Table 1. Rafiki assumes, that
all tasks are isolated and that parallel instances of an operator are similar, i.e.
receive a similar share of messages, and that the underlying system operates
without failures.

Table 1. Capacity assumptions for task x at parallelism y

Case Task x− 1 under
backpressure

Task x under
backpressure

Assumption

1 ✓ ✗ Throughput is
maximum capacity

2 ✗ ✓ Throughput is lower
bound for capacity

3 ✗ ✗ Throughput is lower
bound for capacity

4 ✓ ✓ Throughput is lower
bound for capacity

One additional special case is a source task, as it does not have a preceding
task to monitor in order to determine its capacity. There are two approaches to
solving this issue. First, one could identify a metric that follows the concept of
backpressure in the system generating the input stream of the DSP job. Alter-
natively, one could simply aggregate capacity information across all runs for
a given parallelism configuration of the source task. By design of the profiling
runs, this provides a lower bound for the given configuration. Further, under
the assumption of infinite messages at the time of a profiling run, maximum
capacity for source tasks is defined as the capacity observed when none of the
tasks experienced backpressure. It can then be assumed, that the source task
operated at its maximum capacity.

2.3 Utilization Targeting

After successfully completing the profiling runs, the maximum, or at least a
lower bound for the maximum, number of messages that a task can process at
a specific parallelism has been recorded in the database. With this throughput
table we can monitor a running job and deduce the current capacity to achieve a
target utilization. A DSP job should typically be run at a percentage of the max-
imum capacity in order to be able to recover from failures that will likely occur
over the lifespan of a long-running job. Effective DSP systems use fault toler-
ance mechanisms such as checkpointing to periodically create consistent states to
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recover from in case a failure occurs. Upon failure, messages since the last saved
state must be reprocessed in addition to the messages that continue to arrive.
Targeting a specific utilization allows a DSP system enough processing capac-
ity to be able to recover from failure. For example, a job processing incoming
messages at 100% has no additional capacity for recovery, but a job running at
70% of the maximum capacity has 30% processing capacity for recovery. Having
insights into the processing capacity and target utilization also make it possible
to estimate recovery times. It is crucial that the running job we monitor is the
same as the job we run our experiments with since the capacity depends on the
implementation.

3 Evaluation

In this section, we show through experiments that using Rafiki is both practical
and beneficial for obtaining the task-level capacity information of DSP jobs.

3.1 Prototype Implementation

To evaluate our approach, we implemented Rafiki prototypically to work with
Apache Flink. The prototype consists of three main components, a Java appli-
cation, a database, and a web UI. All components ship as docker containers.
The core is a Java Spring Boot application that triggers the profiling runs. It
publishes an API that can start the execution of jobs on a remote DSP system
and supervises the profiling loop. After completing a profiling run, it records and
stores the metrics in a PostgreSQL database.

The web UI, depicted in Fig. 3, is a React application that enables a user to
upload a custom Java executable to Flink and to set parameters relevant for the
profiling runs such as the highest level of parallelism. The web UI calls the APIs
exposed by the Java application. Once results are available, the web UI allows
for real-time monitoring of a running job and applies the capacity information
to single tasks of that job, indicating current capacity via color codes. The web
UI also features a sandbox mode that enables users to simulate a different level
of parallelism on their job and observe changes in capacity.

3.2 Experiment Setup

Profiling runs were conducted on the Google Cloud Platform2 in a three node
Kubernetes [14] cluster using the Google Kubernetes Engine.3 Hardware and
software specifications are shown in Table 2. Flink was deployed natively in
Kubernetes with HDFS [12] being used for the storage of Flink checkpoints.
All streaming jobs were configured to consume messages from the Kafka [7]
streaming platform. Based on the cluster setup, a maximum parallelism of six

2 https://cloud.google.com/.
3 https://cloud.google.com/kubernetes-engine.

https://cloud.google.com/
https://cloud.google.com/kubernetes-engine
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Fig. 3. Rafiki UI. Task-level capacity is indicated via different colors. (Color figure
online)

was used. The duration of a profiling run iteration was set to two minutes to
allow enough time for messages to accumulate and be processed in windowing
periods. Each job was profiled with four successive runs with the mean being
used for the evaluation.

Table 2. Cluster specifications

Resource Details

OS Ubuntu 18.04

CPU 4 vCPU

Memory 16 GB RAM

Software Java v1.11, Flink v1.12, Kafka v2.6, ZooKeeper
v3.6, Redis v5.0, Prometheus v2.25, Docker v19.3,
Kubernetes v1.18, HDFS v2.8

3.3 DSP Jobs

Rafiki was tested with two DSP jobs, the Yahoo Streaming Benchmark [2] and
an IoT Vehicles Experiment [3]. Source code for both jobs can be found in the
Rafiki repository.4 The Yahoo Streaming Benchmark is an advertising analytics
use case that counts how many times ads from an ad campaign were viewed in
a given time window. In the benchmark, ad campaigns with corresponding ad
events are synthetically generated at a constant rate. The stream processing job
then deserializes events from Kafka, filters them based on an ad type, matches
the ad id to a campaign id, and counts how many times ads from a campaign
4 https://github.com/ciklista/rafiki.

https://github.com/ciklista/rafiki
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were viewed in a 10-s window. The IoT Vehicles Experiment is an IoT traffic
sensor use case that detects speeding vehicles. The experiment uses pregenerated
vehicle data that includes the positional data of the vehicles. The data stream is
filtered based on certain points of interest and then collected in a window. The
vehicle speed is calculated based on the window time and the update interval
of the vehicles. Vehicles that exceed a predefined speed are then reported to a
different Kafka sink.

(a) Yahoo Streaming Benchmark

(b) IoT Vehicles Experiment

Fig. 4. Profiling results of experiments conducted with our two DSP jobs. For each
job, task, and task parallelism, we report the average maximum throughput and the
corresponding standard deviation across all conducted runs. For most tasks, it can be
observed that the influence of the task parallelism on the maximum throughput is fairly
linear.

3.4 Results

Rafiki tested on average 25 configurations for the Yahoo Streaming Benchmark
and 17 configurations for the IoT Vehicles Experiment on each run. The results
depicted in Fig. 4 show the highest measured throughput for each level of par-
allelism. Cases where throughput was not recorded indicate that the task could
adequately handle the overall throughput at a lower parallelism, and that overall
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throughput was limited by another task. With a maximum parallelism of 6, each
task shows a linear increase in processing capacity with additional task paral-
lelism. Despite slight variance across runs, repeated profiling experiments found
the same bottlenecks and generally tested configurations in the same order. We
therefore conclude that Rafiki proved its ability to measure task-level capacity
and identify bottlenecks that would benefit most from increased parallelism.

Table 3. Validation results

Job # Messages Estimated
processing time

Average real
processing time

Average
deviation

Yahoo
Streaming
Benchmark

51.8 M 398.7 s 445.3 s −10.31%

IoT Vehicles
Experiment

56 M 625.8 s 594 s 5.38%

To validate the measured capacity results, we compared the predicted pro-
cessing time against the actual processing time, as seen in Table 3. To do this, we
accumulated messages in Kafka and measured the time needed to process these
messages. We then compared our estimated processing time with the actual pro-
cessing time. Rafiki underestimated the maximum processing capacity in the
Yahoo Streaming Benchmark by 5–14% with an average of 10% and overesti-
mated the maximum processing capacity in the IoT Vehicles Experiment by
3–6% with an average of 5%.

3.5 Discussion

Rafiki was implemented to deduce information about task-level capacity in order
to make it possible to monitor and reach utilization targets. While the results
for the IoT Vehicles Experiment also show the same relation, we cannot observe
as high of a capacity gain per parallelism as in the Yahoo Streaming Benchmark
experiment. Although we can still use the capacity information to set a utilization
target, the results indicate that the limiting factor for this job is likely not the
parallelism. While Rafiki is able to reveal such bottlenecks, it cannot show its
source.

The current implementation of Rafiki is limited by a few aspects. External
factors such as failing nodes or a bottleneck in the underlying network are not
detectable by Rafiki and would alter the results. This issue could be solved in
future iterations by extending the range of collected metrics to include these
factors and for Rafiki to react to the events. Another limitation is jobs that
have multiple sources. If Rafiki does not detect backpressure in the system, it
would increase the parallelism for all the sources, likely resulting in a higher
parallelism than needed for a subset of the sources. This issue could also be
solved by extending our approach.
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4 Related Work

Our approach is inspired by previous work in DSP capacity planning. Related
work that assesses the maximum capacity of a DSP system typically uses analyti-
cal models to predict capacity or profiling techniques to monitor actual capacity
in a running system. Profiling-based approaches have been shown to be more
accurate. Roy et al. use both analytical modeling and profiling to find the
capacity of distributed systems [11]. They find that the accuracy of their mod-
els decrease as system activity increases. Bilal and Canini [1] argue that using
analytical modeling to predict throughput and latency reduces the accuracy of
results as assumptions must be simplified to create models and these models
must be regularly updated to reflect changing environmental conditions.

Kalavri et al. [6] use task processing rates to create a model to automatically
scale a DSP job according to the current workload. Theirs is a reactive profiling-
based approach that works on running systems. Rafiki, by contrast, uses parallel
profiling runs to determine the capacity information of a chosen DSP job so that
utilization targets can be easily set by a user for different throughput rates thus
ensuring any QoS requirements are met.

In [8], the authors propose a prototype called Flink-ER which represents the
DSP execution graph as a flow network. Here each task has a capacity and a
flow representing the maximum message processing rate and current processing
rate respectively. Flink-ER uses graph theory and partitions to identify perfor-
mance bottlenecks, using network bandwidth and latency as the basic capacity
measurement.

To automate finding optimal parameters in DSP systems, Bilal and Canini [1]
propose a framework that compares the results of various optimization algo-
rithms. Their profiling-based approach focuses on minimizing latency while pro-
viding a minimum level of throughput to obtain realistic results.

Tang and Gedik [13] use an estimation of each task’s CPU utilization to gen-
erally measure capacity at a task level. The tasks with the highest CPU utiliza-
tion are identified as bottlenecks and are allocated more resources. After increas-
ing the parallelism of the bottleneck task, it is then tested to see if the throughput
increased. In contrast, Rafiki directly identifies bottleneck tasks using backpres-
sure metrics.

Stela [15] identifies bottleneck tasks based on their input and output rate
to dynamically scale individual tasks of a DSP system up or down. Congestion
is found when the input rate of the data stream is higher than the number of
messages that can be processed. This measure of capacity is used by Rafiki,
however, it is obtained as a metric directly from backpressure metrics. Stela is
an online, reactive application, while Rafiki duplicates configurations pipelines
in parallel and intentionally overloads the system to find bottlenecks.

Our overall approach borrows from Chiron [4]. Chiron uses a profiling-based
approach to measure the capacity of DSP jobs with QoS requirements to find
optimal checkpoint intervals. OS-virtualization, container orchestration, and IaC
methods are used to deploy isolated and duplicated pipelines with varying check-
point interval configurations. In order to test the maximum capacity and increase
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the number of events processed by the DSP job, events are read from an earlier
timestamp. All duplicate pipelines read from the same Kafka topic to increase
accuracy [4]. Chiron builds on Timon [3], which tests alternate DSP configura-
tions by deploying parallel pipelines that read from production data streams.

5 Conclusion

Finding optimal parallelism configurations for DSP jobs and determining the
maximum throughput those configurations can provide is no easy feat. In this
paper we proposed Rafiki, an automated approach for finding optimal configu-
rations and gaining insights into the task-level capacity of a DSP job. A number
of proactive profiling runs are conducted where Rafiki uncovers capacity infor-
mation for individual tasks. This capacity information is collected and makes
the process of allocating sufficient resources to meet QoS requirements easier
for users. It can be used to estimate recovery times through selecting specific
utilization targets, thus helping to create more efficient and reliable DSP jobs.
Rafiki was tested experimentally using two DSP jobs and found to accurately
measure capacity within an average of 5–10%. Rafiki offers increased usability by
providing a web UI that allows for real-time capacity monitoring and experiment
evaluation. Future work could enhance and build upon the proposed solution in
a number of ways. Though tested prototypically with Apache Flink, the concepts
of task parallelism and bottlenecks in stream processing pipelines are common
across most DPS systems. Mapping these abstractions to different systems would
increase Rafiki’s versatility. Bottlenecks could also be defined by metrics other
than backpressure, such as processing rates, latency, or CPU utilization.

Acknowledgment. This work has been supported through grants by the German
Ministry for Education and Research (BMBF) as BIFOLD (funding mark 01IS18025A)
and WaterGridSense 4.0 (funding mark 02WIK1475D).

References

1. Bilal, M., Canini, M.: Towards automatic parameter tuning of stream processing
systems. In: SoCC 2017, pp. 189–200. Association for Computing Machinery, New
York, NY, USA (2017)

2. Chintapalli, S., et al.: Benchmarking streaming computation engines: storm, flink
and spark streaming. In: IPDPSW. IEEE (2016)

3. Geldenhuys, M.K., Thamsen, L., Gontarska, K.K., Lorenz, F., Kao, O.: Effectively
testing system configurations of critical IoT analytics pipelines. In: Baru, C., et al.
(eds.) Big Data, pp. 4157–4162. IEEE (2019)

4. Geldenhuys, M.K., Thamsen, L., Kao, O.: Chiron: optimizing fault tolerance in
QoS-aware distributed stream processing jobs. In: Wu, X., et al. (eds.) Big Data,
pp. 434–440. IEEE (2020)

5. Isah, H., Abughofa, T., Mahfuz, S., Ajerla, D., Zulkernine, F.H., Khan, S.: A survey
of distributed data stream processing frameworks. IEEE Access 7, 154300–154316
(2019)



Rafiki: Task-Level Capacity Planning 363

6. Kalavri, V., Liagouris, J., Hoffmann, M., Dimitrova, D., Forshaw, M., Roscoe, T.:
Three steps is all you need: fast, accurate, automatic scaling decisions for dis-
tributed streaming dataflows. In: OSDI, pp. 783–798. USENIX Association, Carls-
bad, CA (2018)

7. Kreps, J.: Kafka: a distributed messaging system for log processing (2011)
8. Li, Z., et al.: Flink-ER: an elastic resource-scheduling strategy for processing fluc-

tuating mobile stream data on flink. Mob. Inf. Syst. 2020, 5351824:1–5351824:17
(2020)

9. Nasiri, H., Nasehi, S., Goudarzi, M.: Evaluation of distributed stream processing
frameworks for IoT applications in smart cities. J. Big Data 6, 52 (2019)
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