
High Performance Computing with Java
Streams

Rui Silva and João L. Sobral(B)

Centro Algoritmi, Universidade do Minho, Braga, Portugal
{ruisilva,jls}@di.uminho.pt

Abstract. Java streams enable an easy-to-use functional-like program-
ming style that transparently supports parallel execution. This paper
presents an approach that improves the performance of stream-based
Java applications. The approach enables the effective usage of Java for
HPC applications, due to data locality improvements (i.e., support for
efficient data layouts), without losing the object-oriented view of data in
the code. The approach extends the Java collections API to hide addi-
tional details concerning the data layout, enabling the transparent use
of more memory-friendly data layouts. The enhanced Java Collection
API enables an easy adaptation of existing Java codes making those
Java codes suitable for HPC. Performance results show that improving
the data locality can provide a two-fold performance gain in sequential
stream applications, which translated into a similar gain over parallel
stream implementations. Moreover, the performance is comparable to
similar C implementations using OpenMP.

Keywords: Java parallel streams · Data layout · Data locality

1 Introduction

The development of high-performance applications requires the exploitation of
parallelism and efficient data access. Programming languages should now support
the exploitation of parallelism and efficient data storage, promoting data locality
to deliver high performance. Data storage is also essential to exploit all the
potential of modern processing units (e.g., vector processing). Traditionally, to
improve performance, the developer introduces the optimisations in the domain
code, making the code less abstract and dependent on the execution platform.

The Java language brings the write once run anywhere philosophy: the same
program can run on any system that supports a Java Virtual Machine. Java
8 introduced the Stream API [1], which enables easy-to-use parallelism over
Java collections (e.g., data-parallel processing). Unfortunately, the Java object
model compromises the suitability of the Java stream-based processing for High
Performance Computing (HPC). The main limitation is the lack of data locality
in Java collections (including arrays of objects). Java collections are implemented
with pointers to objects (e.g., an ArrayList is stored as an Array of Pointers
(AoP) to objects). This is a consequence of using type erasure [2] to implement
c© Springer Nature Switzerland AG 2022
R. Chaves et al. (Eds.): Euro-Par 2021, LNCS 13098, pp. 17–28, 2022.
https://doi.org/10.1007/978-3-031-06156-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06156-1_2&domain=pdf
http://orcid.org/0000-0003-2573-7650
http://orcid.org/0000-0002-1512-1126
https://doi.org/10.1007/978-3-031-06156-1_2


18 R. Silva and J. L. Sobral

generic collections in order to avoid code bloat. With type erasure, a single
collection implementation can be used for all concrete types, since the collection
only needs to store pointers to [generic] objects. The AoP-based storage is also
convenient to implement many object-oriented features, like polymorphism.

The AoP-based implementation of Java collections has negative consequences
for HPC, namely: 1) additional memory references are required to access object
fields; 2) entities in collections might not be stored in contiguous memory (no
spatial locality); 3) object headers and memory alignment waste space in mem-
ory (object headers are required for JVM runtime checks). These result in a
higher number of instructions (memory accesses) and lower data locality, which
decreases the performance due to stronger impact of the memory bottleneck.

The data locality can be improved by using a layout with higher data locality,
by storing object collections as a Structure of Arrays (SoA). However, in this
case, the programmer must “give up” of the Java object-oriented view of data
(e.g., using raw arrays of data). Moreover the programmer might be forced to
drop the usage of the Java collections API (and consequently, the Stream API).
Additionally, it is not feasible to use SoA layouts on the wide base of existing
Java code, since a huge code refactoring effort would be necessary.

The research challenge addressed in this paper is how to improve the data
locality of Java collections in order to make the Java stream API more suitable
for HPC, without dropping the object-oriented view of data collections (i.e.,
preserving compatibility with the stream API and with the Java object model).
Specifically, how to transparently support more efficient data layouts (e.g., SoA
layouts) in Java stream-based parallel processing.

2 Java Stream API

The Stream interface (left of Fig. 1) provides methods to process a data stream,
namely: 1) forEach: performs an operation on each element of the data stream;
2) filter : generates a new stream with a subset of the original stream and 3)
reductions, such as count, that returns the number of elements in a stream. The
Collection interface is the root of all Java collections and was enriched in Java 8
with the stream default method that returns a stream view of a collection. Thus,
conceptually, stream-based processing is supported over all Java collections.

Fig. 1. Java collections and stream API



High Performance Computing with Java Streams 19

A parallel stream enables parallel processing over the objects in a collection.
Thus, the introduction of the stream API enabled the specification of explicit
data-parallel processing over the wide range of Java collections. In particular,
the List interface (bottom of Fig. 1) extends the Collection interface, providing
a set of default methods for stream-based parallel processing over index-based
collections (e.g., the ArrayList implements List interface).

The stream API relies on well-defined collection interfaces, making it possi-
ble to provide new collection implementations that comply to the stream API,
avoiding the need to reimplement a parallel computing infrastructure. This is
the key point in the context of the presented work, since user-provided collec-
tion implementations can use the Java stream API and fully exploit the parallel
processing stream infrastructure.

Java collections rely on the Iterable and Iterator interfaces (see right side of
Fig. 1) to hide the implementation details of collections. The classes implement-
ing the Collection interface must also implement the Iterable interface, which
provides a method to return an Iterator. User-provided collections must imple-
ment a collection interface and the Iterable/Iterator interfaces to take advantage
of the Java stream API.

The most commonly used data structure in Java, according to the study in [7],
is the ArrayList, whose implementation is based on the AoP data layout. Figure 2
illustrates the data layout of an ArrayList of objects of a class Particle. The array
of pointers itself requires a header (at least 16 bytes) and there is also a header
on each object (at least 12 bytes). This layout has three main problems: i) there
is a pointer de-refencing to access each object, which introduces an additional
memory access per element; ii) object headers and object alignment introduce
a significative memory space for small objects, which might saturate the faster
levels of cache on modern processing units (e.g., the small L1 cache); iii) objects
referenced by those pointers might not be in consecutive memory addresses (i.e.,
weak locality of reference). The locality of references can be improved by sorting
objects in memory (e.g., a modified JVM implementation was presented in [9]
that performs object sorting during garbage collecting), but the problems i) and
ii) still remain. The AoP layout is not well-suited for HPC due to its pointer-
based nature and is not compatible with vectorisation, but it can abstract from
the details about the object pointed-to making it well-suited to implement object
models. For instance, it supports inheritance (e.g., a collection can hold pointers

Fig. 2. Java collections data layout example



20 R. Silva and J. L. Sobral

to objects from different classes that implement same [sub]type), pointers to
generic objects can be used in method calls, etc.

One alternative is the use of an Array of Structures (AoS) layout where
data entities are stored on consecutive memory addresses. Wimmer et al. [12]
modified a JVM implementation for this purpose, which automatically inlines
object fields by placing the parent and children in consecutive memory places
and by replacing memory accesses by address arithmetic. They concluded that
an automatic AoP to AoS transformation at JVM level requires a global data
flow analysis, since Java byte-codes for accessing array elements have no static
type information (i.e., they suffer from type erasure due to its AoP nature).
The AoS layout is more memory-friendly than AoP making it more suitable
for HPC but it is still not effective for vectorisation [3] (requires scatter and
gather operations). Moreover, the Java object model is more difficult to support
in the AoS layout (e.g., inheritance) and it requires low-level workarounds since
Java has no support for pointers and, consequently, has limited support for this
layout. Therefore, the AoS layout is not an attractive solution for HPC in Java.

The most effective layout for HPC is a Structure of Arrays (SoA), since it
is also essential to enable efficient vectorisation. In this layout a collection is
backed by multiple arrays, one for each data field. However, this layout drops
the object-oriented view of the data, presenting several challenges to support the
Java object model, namely, how to support objects and method calls on these
objects, inheritance, etc. The main advantage of this work is to support the Java
object model when using the more memory-friendly SoA layout.

There are some Java-based approaches that avoid the AoP layout problem for
arrays of primitive types [4,5], but they do not support collections of structured
data types (e.g., a transparent SoA layout for generic object collections). More-
over, these are not drop-in replacements for Java collections, since the generic
Java interfaces (e.g., the List interface) are not supported. As a consequence
they are not compatible with the stream infra-structure. The work presented in
this paper supports the SoA layout for collections of complex data types and
provides a drop-in replacement for Java collections, supporting the stream inter-
face. Thus, the Java stream parallel processing infra-structure becomes available
for HPC programmers.

3 Gaspar Stream-Based API and Implementation

The Gaspar framework [10] provides multiple mechanisms to improve data local-
ity, namely, it encapsulates the data entities into framework provided collections
that support efficient data layouts. The contribution of this paper is to show how
to make the Gaspar data API compatible with the Java stream API, in order
to: i) use the stream parallel processing infra-structure over Gaspar collections;
ii) improve data locality of stream-based applications by using the Gaspar sup-
ported locality optimisations and iii) ensure compatibility with the Java API
(including the object model).



High Performance Computing with Java Streams 21

3.1 Stream-Based Gaspar API

The Java collections API (i.e., Fig. 1) can hide details of the collection represen-
tation (e.g., the internal usage of an array or linked-list). However, it can expose
details of the object layout, so it cannot hide a change in a collection layout from
an AoP to a SoA. The Gaspar data API can hide additional details concerning
the data representation, including the concrete data layout. The key difference
to the Java API is that data entities should be represented using interfaces with
getter and setter methods for each data property.

The left side of Fig. 3 presents an example of a Particle interface with PX,
PY and PZ properties. The code on the right illustrates the Gaspar API usage
to get the position (x, y, and z) of a particle. The key difference to the Java API
is the usage of getter methods in lines 5–7.

The Gaspar API was extended to provide compatibility with Java collections
and streams, by extending the framework collections the implement the Java
List interface. This opens the door to the usage of Gaspar collections in Java
applications that rely that interface: only an update to the usage of getter and
setter methods is required, something that well-designed code probably already
includes. The Gaspar collections now also implement the Java Iterable/Iterator
interfaces, which were already used in the example of Fig. 3.

Parallel processing can now be transparently explored using parallel streams.
This enables the usage of the stream parallel processing infra-structure, instead
of the built-in Gaspar parallel maps. Figure 4 illustrates the usage of the forEach
method on a collection of Particles to call the move method on each particle
in parallel. This uses a lambda function define the operation to apply to each
stream element.

3.2 Design and Implementation

The Gaspar API was designed for HPC and to support most features of the
Java object model, some of which are difficult to support when using SoA or
AoS layouts as a backend of object collections. This is a consequence of using
an object model relying on AoP data layouts. For instance, in the Java model,
objects are always passed by reference.

Fig. 3. Gaspar API usage example (Particle example). The code on the left defines the
particle interface and the code on the right in an example of the Gaspar API usage



22 R. Silva and J. L. Sobral

Fig. 4. Example of parallel streams: col is a Gaspar collection (gCollection<Particle>)
that implements the interface List<Particle>. The method move of class particle can
be called, in parallel, on all particles in the stream

Fig. 5. Particle force computation example in Gaspar API, Java AoP and SoA

Figure 5 illustrates the code of several data layouts for a collection of Particles
using a code snippet from the MD case study. The Gaspar API (left of the figure)
is used for all layouts, but plain Java requires different codes for AoP and SoA
layouts (e.g., the AoP layout is from the JGF MD benchmark [11]). This example
illustrates the complexity of using the efficient SoA layout in Java streams:

1. Entities and methods. The force method computes the force between two
particles. In the AoP layout, the class Particle represents an entity from the
domain and that entity defines a method force. In a SoA implementation
there is no particle entity in the code (only array of properties, such as the
x array), so the force method must be declared outside of the Particle class.
This has a huge impact when using Java streams since there is no object
Particle (e.g., it is not possible write the example of Fig. 4, which calls the
move method on each particle of a collection).

2. Object references. The method force receives another Particle as an argument.
In the AoP layout this is implemented by simply passing a pointer to another
object. In the SoA layout the integer index of each particle should be used
instead. Moreover, if the force is an external method that receives two parti-
cles, it will also require access to the Particles data. An alternative would be
to “construct” a particle from the SoA data, when required, but it could lead
to additional overhead and cannot be used in cases where the original particle
is updated, since in the Java model objects are always passed by reference.
This layout also makes the support for Java iterators complex since the next
method should return a reference to an object in the collection (which might
be updated). Providing support for Java iterators is fundamental to use the
Stream API.

3. Compositions of objects. In object-oriented applications it is common to define
objects as being composed of other objects (e.g., a particle might be composed
by three objects: position, velocity and force). This is trivially supported in
AoP layouts by using pointers to other objects. In the SoA layout these
compositions can be manually implemented by using a single structure of
arrays for all object fields.



High Performance Computing with Java Streams 23

Implementation Overview. The Gaspar API relies on the gCollection and
gIterator interfaces, which now also support the Stream API (e.g., List and Itera-
tor), implementing the necessary methods as default methods. As a consequence,
gCollections can now be used in the Java stream processing infra-structure.

The development of an application in the Gaspar framework starts with a
specification of a diagram similar to an UML domain model (e.g., yellow box
in Fig. 6), where programmers specify the properties of each domain entity (i.e.,
their getter and setter methods and other relevant properties) as well as the rela-
tionship among them (aggregations). The Gaspar framework provides a visual
tool (eclipse plug-in) to support this step.

Fig. 6. Gaspar API and implementation overview

A second tool generates the
concrete implementations for
the AoP and SoA layouts, based
on the provided domain model.
Figure 6 includes the gener-
ated classes for the SoA lay-
out. The class gCollectionPar-
ticleSoA implements the inter-
face gCollection<Particle>
(note that the gCollection inter-
face extends the List inter-
face) with the SoA layout
and the class gIteratorParti-
cleSoA implements both Par-
ticle and gIterator<Particle>
interfaces. In this implementa-
tion strategy the gIterator acts
as a proxy to the actual Particle
implementation, enabling the gIterator to also behave as a Particle, and to be
used where an object of type Particle is expected. This allows the use of Particle
entities in the base program, which could also include methods (e.g., Particle
move method of Fig. 4) and the use of object references (a gIterator can be used
as method parameter, copied, etc.). One feature of the developed tool is the
ability “to flatten” aggregations defined in the domain model when generating
the SoA representation. This enables the efficient support of composite objects
in the stream API.

4 Evaluation

The benchmarks presented in this section were collected on a Linux machine with
24-cores (two Xeon E5-2695v2 processors) running Cent OS 6.3. The presented
performance results are the median of 5 executions, after one warmup execution.
The Java results use the OpenJDK 13.0.2 and C results use the GNU g++ 8.2.0.



24 R. Silva and J. L. Sobral

4.1 Low Level Evaluation: DAXPY

The widely used DAXPY function adds two vectors: Y += alfa * X. This case
study evaluates the overhead of accessing the elements of a collection, as well
as the feasibility of the automatic JVM vectorisation. The DAXPY is an easy-
to-vectorise case study, however, it requires two iterators, one for each vector,
which might degrade the performance and disable the automatic vectorisation.

Figure 7 shows the pseudo-code of three coding alternatives: 1) a traditional
index-based approach to access each vector; 2) Java iterators and a single col-
lection to store both X and Y vectors (the my2Double object stores both x and
y elements1) and 3) stream-based interface with a lambda function.

Fig. 7. DAXPY implementation alternatives

Table 1 compares the JVM effectiveness to optimise alternatives in Fig. 7:

– The table rows are the three ways of accessing elements of the collection:
i) index-based (first approach in Fig. 7); ii) external-iterator based (second
approach); and iii) internal-iterator based (stream-based, third approach).

– The table columns are four alternatives to store X and Y vectors: i) using
one or two collections (first and second columns); ii) using an AoP or a SoA
layout; and iii) using the Gaspar Stream-compatible collections and iterators.

– The value in each cell is the number of instructions to compute each element
of Y. The cells in bold are the cases where the JVM successfully vectorised
the code2, resulting in a lower number of instructions. The table also indicates
the unrolling degree of the generated code (number in parenthesis).

1 The use of a single collection for both x and y elements is mandatory, since streams
require a single iterator for accessing all the elements (i.e., for internal iteration).

2 Vectorisation was confirmed by inspection of the assembly generated.



High Performance Computing with Java Streams 25

Table 1. Instructions/element and vectorisation results on the DAXPY case study

Java AoP Java AoP Gaspar AoP Gaspar SoA

(2 col) (1 col) (1 col) (1 col)

Index-based 20.0 (1×) 12.5 (4×) 8.3 (4×) 1.3 (4×)

Iterators (external) 44.0 (1×) 14.5 (4×) 10.1 (4×) 1.3 (4×)

Streams (internal) N/A 12.3 (4×) 9.8 (4×) 1.3 (4×)

Using two different collections (1st column) introduces high overhead, espe-
cially when using iterators. A single collection reduces the instruction count and
makes it possible to use the Java stream API. The Gaspar AoP layout (3nd col-
umn) provides additional reductions on the number of instructions due to more
efficient collection management (the compiler removes the type-checking of the
elements in the collections, because those elements are created all at once). The
Gaspar SoA implementations enable the vectorisation in all cases, including the
implementation that uses the stream API. On the other hand, versions using
AoP layouts are never vectorised, as expected, due to the usage of pointers.

The Fig. 8 shows the relative performance for vectors with 25M elements.
Using two collections delivers the worst performance, due to less data local-
ity (X and Y elements are different objects), resulting in more memory loads,
misses, etc. The stream interface has a small performance penalty relative to
index/iterator versions. Gaspar implementations provide a gain of around 2.5×
when using the SoA layout: the Java compiler was able to optimise the stream-
based code to the level of index-based/iterators. The graph on the right of
Fig. 8 presents the relative performance of parallel streams and the most effi-
cient C+OpenMP implementation (a parallel loop over raw arrays of X and
Y elements, that is also automatically vectorised). The Java parallel streams
implementation provides a 2× speed-up, a low gain for a 24-core machine. The
Gaspar AoP implementation is slightly better (3× improvement), but the Gas-
par SoA parallel stream provides a speed-up of 6× (note that part of this gain
is due to better data locality), which is pretty close to the efficient C+OpenMP
implementation (6.5× gain).

Fig. 8. DAXPY performance: sequential execution at the left and parallel at right.
Performance results are relative to the base Java AoP layout with a single collection



26 R. Silva and J. L. Sobral

4.2 Evaluation of Java Code: JECoLi

The Java Evolutionary Computation Library (JECoLi) [6,8], is a highly config-
urable Java framework, with a large number of classes that implement algorithms
and data representation alternatives used in that domain. The JECoLi frame-
work comes with a large set of case studies that were all updated to use Gaspar
collections (e.g., using gCollections where a List is expected). This case study
illustrates how the Gaspar framework avoided a huge refactoring work in order
to take advantage of the SoA Layout in the large JECoLi code base.

Fig. 9. Changes made to the CountOnes case study: Java Boolean was replaced by the
Gaspar gBoolean interface and the introduction of the getValue getter method

Fig. 10. JECoLi performance

The results presented in this section are
for the CountOnesEATest problem that is the
case study with the largest data size (and
most time-consuming). The CountOnes opti-
misation example creates 10 random solu-
tions, each one with 10000 gnomes that can
be true (1) or false (0). The optimal solution
is the one with all gnomes set to true.

The Fig. 9 illustrates the small impact
of the changes required in the CountOne-
sEATest. The original ILinearRepresenta-
tion<Boolean> interface was internally implemented as an ArrayList, imply-
ing the usage of an inefficient AoP representation. To overcome that bottleneck
the internal ArrayList<Boolean> was replaced by a gCollection<gBoolean>
(gBoolean is the framework Boolean interface with the corresponding setter and
getter methods). The code in Fig. 9 show the result of this change: the use of
the gBoolean interface and the getter method. This quick change to use the
Gaspar API allows generating a SoA representation. Figure 10 compares the
performance of various implementations (the base line is the original JECoLi
implementation, i.e., Java AoP with index-based iterations). The execution time
slightly increases when using the framework data API with an AoP representa-
tion. This can be explained by an additional overhead of using gBoolean instead
of the built-in Java Boolean, but it enables the usage of a SoA layout which
improves the performance (a gain of around 1.7×).



High Performance Computing with Java Streams 27

4.3 High-Level Evaluation: MD

The third case study is a molecular dynamics simulation, based on the code from
the MD benchmark from the JGF Suite [11], which performs a simulation of the
behavior of Argon atoms (i.e., Argon particles). The JGF code uses an AoP of
particle objects, where each particle has nine properties: position, velocity and
a force in 3D space (see Fig. 2). The original benchmark was refactored to use
stream-based processing, but the third newton law optimisation (symmetry of
forces) was removed from the code to use a simple map parallelism pattern. This
case study shows how the proposed approach can provide huge improvements
delivering a highly scalable parallel application. A sketch of the code of this
case study was already presented (i.e., Fig. 3 and 5). The domain model of this
case study was developed using the Gaspar API, which enables the framework
to generate the collection representation, making it easier to assess the perfor-
mance implications of several implementation decisions. Figure 11 summarises
the performance results for a problem size of 500000 particles.

Fig. 11. MD performance: left: sequential execution time; right: parallel versions

In this case study, the stream AoP implementation is used as the baseline for
performance comparison, instead of the original JGF AoP index-based imple-
mentation, since it is the fastest sequential version (it is faster due to additional
virtual machine optimisations). The Gaspar AoP stream implementation intro-
duces a slight overhead, but the Gaspar SoA implementation provides a speed-
up of 1.8× over the base stream AoP implementation. The Java parallel stream
execution provides a speedup of 20× and the Gaspar SoA parallel stream imple-
mentation provides a self-speed-up of 22×. This speed-up is closer to the ideal
since the SoA version has better data locality. Overall, the Gaspar SoA imple-
mentation gets a performance gain of 42× over the base reference (stream AoP),
which is ever faster than C+OpenMP (the C version uses the SoA layout and
a parallel loop to compute the forces among particles). The slight advantage of
Java is due to the NUMA-aware allocation which is used by default. A fine-tuned
C implementation, using the thread binding feature of OpenMP 4.0 was able to
get a speed-up of 43.2×, slightly faster than Java, but this fine-tuning does not
introduce performance gains in other case studies.



28 R. Silva and J. L. Sobral

5 Conclusion and Future Work

The Gaspar framework improves the performance of stream-based Java applica-
tions by transparently using SoA layouts for object collections. The framework
supports the Java object model making it possible to use the more efficient
SoA layout almost transparently, in way similar to the built-in AoP Java layout.
This enables a more high-level, object-oriented, view of the data. The alternative
would be to drop the high-level view and use arrays of object properties. More-
over, the Gaspar framework provides a cost-effective way of improving the data
locality of existing Java applications, making those applications better suited
for HPC. Performance results show that SoA layouts improve performance by
using a better memory footprint and enables automatic vectorisation on modern
JVM. Future work includes support for more advanced features of Java, such as
polymorphism and support for irregular data structures (e.g., graphs).

Acknowledgements. This work has been supported by FCT - Fundação para a
Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. The
evaluation used the computing infra-structure of the project Search-ON2: Revitaliza-
tion of HPC infrastructure of UMinho, (NORTE-07-0162-FEDER-000086), co-funded
by the North Portugal Regional Operational Programme (ON.2-O Novo Norte), under
the National Strategic Reference Framework (NSRF), through the European Regional
Development Fund (ERDF).

References

1. https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
2. https://docs.oracle.com/javase/tutorial/java/generics/erasure.html
3. https://www.intel.com/content/dam/develop/external/us/en/documents/31848-

compilerautovectorizationguide-703156.pdf
4. https://bitbucket.org/trove4j/trove/src/master/
5. https://labs.carrotsearch.com/hppc.html
6. https://github.com/jecoli
7. Costa, D., Andrzejak, A., Seboek, J., Lo, D.: Empirical study of usage and perfor-

mance of Java collections. In: International Conference on Performance Engineer-
ing, ICPE 2017, pp. 389–400 (2017). https://doi.org/10.1145/3030207.3030221

8. Evangelista, P., Maia, P., Rocha, M.: Implementing metaheuristic optimization
algorithms with JECoLi. In: International Conference on Intelligent Systems
Design and Applications, pp. 505–510 (2009). https://doi.org/10.1109/ISDA.2009.
161

9. Hirzel, M.: Data layouts for object-oriented programs. In: International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS 2007, pp.
265–276 (2007). https://doi.org/10.1145/1254882.1254915

10. Silva, R., Sobral, J.L.: Gaspar data-centric framework. In: Dutra, I., Camacho, R.,
Barbosa, J., Marques, O. (eds.) VECPAR 2016. LNCS, vol. 10150, pp. 234–247.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61982-8 21

11. Smith, L.A., Bull, J.M., Obdrzálek, J.: A parallel Java Grande benchmark suite.
In: Supercomputing, SC 2001 (2001). https://doi.org/10.1145/582034.582042

12. Wimmer, C., Mössenböck, H.: Automatic array inlining in Java virtual machines.
In: International Symposium on Code Generation and Optimization, CGO 2008,
pp. 14–23 (2008). https://doi.org/10.1145/1356058.1356061

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/tutorial/java/generics/erasure.html
https://www.intel.com/content/dam/develop/external/us/en/documents/31848-compilerautovectorizationguide-703156.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/31848-compilerautovectorizationguide-703156.pdf
https://bitbucket.org/trove4j/trove/src/master/
https://labs.carrotsearch.com/hppc.html
https://github.com/jecoli
https://doi.org/10.1145/3030207.3030221
https://doi.org/10.1109/ISDA.2009.161
https://doi.org/10.1109/ISDA.2009.161
https://doi.org/10.1145/1254882.1254915
https://doi.org/10.1007/978-3-319-61982-8_21
https://doi.org/10.1145/582034.582042
https://doi.org/10.1145/1356058.1356061

	High Performance Computing with Java Streams
	1 Introduction
	2 Java Stream API
	3 Gaspar Stream-Based API and Implementation
	3.1 Stream-Based Gaspar API
	3.2 Design and Implementation

	4 Evaluation
	4.1 Low Level Evaluation: DAXPY
	4.2 Evaluation of Java Code: JECoLi
	4.3 High-Level Evaluation: MD

	5 Conclusion and Future Work
	References




