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Abstract. Kernel Fusion is a widely applicable optimization for numer-
ical libraries on heterogeneous systems. However, most automated sys-
tems capable of performing the optimization require changes to software
development practices, through language extensions or constraints on
software organization and compilation. This makes such techniques inap-
plicable for preexisting software in a language like OpenCL.

This work introduces an implementation of kernel fusion that can be
deployed fully within the defined role of the OpenCL library implemen-
tation. This means that programmers with no explicit intervention, or
even precompiled OpenCL applications, could utilize the optimization.
Despite the lack of explicit programmer effort, our compiler was able to
deliver an average of 12.3% speedup over a range of applicable bench-
marks on a target CPU platform.
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1 Introduction

Good software design practices and good software performance practices are
sometimes in tension. One tension exists between the desire for software porta-
bility and the optimization opportunities available when the target architecture
is known ahead of time to the developer. OpenCL was designed to address this
tension by deferring code generation of accelerator machine code until applica-
tion execution, allowing each accelerator vendor to build appropriate optimiza-
tions into the compiler for that particular accelerator. Another common tension
is between the design principle of modularity and the optimization opportunities
enabled by interprocedural optimization. Function encapsulation allows useful
units of code to be reused in a variety of different contexts. However, in any
particular use case, performance would likely benefit from optimizations taking
into account the particular mixture of functions used in that circumstance.

Recent efforts have turned towards generative frameworks where the host
application explicitly constructs, at run-time, a complete description of the com-
putation to be performed on the accelerator [2,2,13,14]. Such strategies are effec-
tive, but require applications to be rewritten for the newly developed language.
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In this work, we show how it is possible to implement inter-kernel optimiza-
tions entirely behind the OpenCL API. This strategy enables legacy software
written with OpenCL C or already compiled into SPIR IR to take advantage
of inter-kernel optimizations such as kernel fusion. While the extent of those
optimizations can be limited by the information hidden by the narrow API,
we find that in many examples, there is sufficient information for substantial
performance improvements.

In this paper, we describe how the asynchronous nature of the OpenCL API
can be exploited to perform inter-kernel optimizations without explicit inter-
vention from the application programmer. Sections 2 and 3 cover the technical
details of the opportunity and exploitation, respectively, of inter-kernel informa-
tion in an OpenCL compiler through the OpenCL API. Section 4 show perfor-
mance results demonstrating the impact of kernel fusion implemented with this
strategy on a variety of applications. We conclude with a summary of related
work in Sect. 5 and some final remarks in Sect. 6.

2 Background

While OpenCL is a widely supported standard, few implementations are avail-
able in open source. Portable OpenCL (POCL [8]) is one such actively supported
open-source framework, so we will present our work in the context of that infras-
tructure. The POCL system is capable of executing OpenCL workloads on CPUs
and supported GPUs with the main branch, and has been customized to a vari-
ety of other targets. This means that the architecture of POCL is likely to be
representative of other OpenCL implementations as well, as many features are
required by the OpenCL specification itself, as well as the constraints of discrete
accelerators.

Fig. 1. POCL compilation chain.

The POCL implementation is divided into two layers, the host and device
layer. The Host layer implements the portion of the OpenCL runtime that runs
synchronously with the host application code. For our purposes, we will focus on
the kernel compilation and execution portions of the system. The Host layer of
the compiler comprises generic LLVM passes and optimization and is agnostic of
the target hardware. The device layers include target specific implementations
such as LLVM codegen and resource management that ensures proper sharing
and synchronization of memory. The Fig. 1 shows the compilation path with
POCL framework.

The POCL compiler uses clang as its frontend to generate LLVM IR or Stan-
dard Portable Intermediate Representation (SPIR [10]). POCL then proceeds by
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linking and inlining a target-specific builtin function library to the kernel. While
targeting GPUs, POCL directly lowers the input OpenCL source code into SPIR
code to target assembly code, as the GPU hardware and driver will manage the
parallel work-item execution. The regions between barriers, will be executed by
all work items before proceeding to the next region, are generated by the parallel
region formation passes in POCL. For CPUs, POCL performs thread coarsening,
instantiating explicit loops over work-item indexes within a work-group for those
regions. POCL then adds target-specific optimizations such as vectorization and
unrolling parallel regions. In the end, what was an LLVM-IR representation of
the work of a single work-item becomes an LLVM-IR function encapsulating the
computation of an entire work-group.

After compilation, when the application enqueues a kernel launch, the POCL
compiler puts this command into its command queue to be sent to the asyn-
chronously operating Device-runtime layer. For a CPU target, the device layer
of the runtime manages the worker thread pool for parallel execution. The run-
time dispatches work units to that worker pool when a kernel launch command is
read from the queue. Even though some devices, such as the parallel cores of the
host CPU itself, are capable of executing synchronously, the OpenCL standard
mandates asynchrony between the host and device sides of the command queue.
This design is beneficial for many systems, and can be exploited by our system
to take advantage of the fact that kernels do not need to be eagerly executed
when queued.

3 Kernel Fusion

In kernel fusion [2,3], we merge the code from multiple kernels to execute the code
together as a single kernel. This process is expected to improve memory local-
ity and can enable further instruction optimizations that only become apparent
when optimizing the code across multiple kernels. In this section we describe our
kernel fusion method. One of the salient features of our kernel-fusion framework
is that our can perform kernel fusion even in the presence of loop-carried depen-
dencies across multiple kernels if the compiler can determine the dependence to
be bounded and deterministic.

Our entire fusion process is divided into two branches:

– BRANCH A: Which deals with total fusion. Here the participating kernels
are either independent (i.e. they do not share I/O buffers) or there is no inter-
work-item dependency. In such cases, the work of a given work-item in the
first kernel can be immediately followed by the work of the work-item with
the same index in the subsequent kernel, with no change in the computed
results. The framework merges the kernels directly without any changes in
kernel code or scheduling. The fusion framework makes use of the default
POCL asynchronous scheduling.

– BRANCH B: deals with kernels with a non-zero loop-carry dependence.
POCL kernels imply a global memory barrier in between them. This normally
ensures all dependencies across the kernels are met. Our fusion framework
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must ensure that the dependent work-items (or iterations) in the latter kernel
are executed after all work-items from the former kernel on which they depend
have been executed. The framework transforms the kernel code of the former
kernel to merge the latest dependent iteration (for i-th iteration of the second
kernel) of the kernel the i-th iteration of the latter kernel. The fused kernel,
in such situation, mimics software pipelining in traditional loop fusion. In
such cases, a few iterations of the predecessor kernel is executed before the
merged kernel is executed, similar to how a software-pipelined loop may need
to execute some startup iterations. Likewise, some of the work-items of the
successor kernels will need to be executed after the merged kernel is executed.
The number of iterations of the individual kernels and merged kernel executed
will depend on scheduling and work-group sizes. In such cases, we transform
the scheduling code to use work groups as large as possible to reduce the
number of iterations of individual kernels executed. The framework reject
the kernels as fusion candidates if a transformation to meet the dependencies
cannot be applied.

Algorithm 1. Kernel Fusion algorithm. The merged kernel list will contain
the merged kernel along with the dependent iterations of individual kernels.
We modify the LAUNCH function of the baseline POCL to check for inter-
iteration dependency between the cached kernels.
1: procedure Launch(stack) � Launches with mergeable kernels in the stack
2: merged kernel ← empty
3: carried dependency ← none � Holds the dependency of merged kernel
4: arg list ← empty � Holds the argument list of merged kernel
5: for each kernel in stack do
6: kernel args ← get kernel arguments(kernel)
7: kernel dependency ← calculate dependency(kernel)
8: if carried dependency = none then
9: updated kernel ← kernel

10: else
11: updated kernel ← update kernel(kernel, carried dependency)
12: end if
13: merge kernels(merged kernel, updated kernel, argList)
14: update carried dependency(carried dependency, kernel dependency)
15: update argList(argList, kernel args)
16: end for
17: end procedure

Figure 2 describes our fusion framework. Our fusion framework extends from
the compilation which handles the code transformation and merged kernel cre-
ation. The scheduling section requires some additional support to ensure the
dependent iterations of individual kernels are executed for loop-carry dependent
fusion. This scheduling is not used for total fusion to reduce the overhead in
scheduling.
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Fig. 2. The workflow of our fusion framework. The framework has two sections. The
compilation section which handles the code transformation and merged kernel creation
and the scheduling section which realizes the iteration scheduling for individual kernels
and the merged kernel to handle the loop carry dependencies.

In our fusion compilation section the compiler follows a lazy loading policy.
The compiler maintains a kernel buffer (KB) which will contain the kernels
whose execution has been deferred so that fusion opportunities can be identified.
When the first kernel received, it is directly moved from the command queue
to the KB. For each additional kernel received, it is compared to the kernels
already in the KB to determine whether the new kernel could be fused with the
deferred kernels. If so, the fusion is performed, and the results of the fusion are
put back in the KB in place of the kernels that were fused, potentially capable of
being fused again with subsequent kernels. If not, or if a synchronization event
is detected, all deferred and fused kernels are immediately executed with the
appropriate scheduler.

To determine whether fusion is possible, for each new kernel, the compiler
checks if there is a loop carry dependency with the previous kernels in the
KB. The compiler also checks for the total number of iterations/work-items.
If the total number of iterations are different, it considers the two kernels as non
mergeable. Otherwise, if the kernels are fully independent (i.e. I/O buffers of the
previous kernels is different from the I/O of the new kernels) or if there is no
loop-carry dependency, the compiler will perform total fusion. In such cases, the
compiler merges the incoming kernel with the existing kernel in the KB. The
new merged kernel replaces the existing kernel in the KB. As the framework
is able to achieve total fusion, the framework only schedules the merged ker-
nel in the execution buffer. The merged kernel will be using the default POCL
scheduling and the work-groups.
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Branch B shows the path taken while merging kernels with a constant loop
carry dependency. In such cases, the framework will not be able to do a complete
fusion of the kernels. The compiler will find an upper bound for the loop-carry
dependency distance and make the necessary transformation to the predecessor
kernels before merging. The last dependent iteration of the predecessor kernel
is merged with the iteration of the incoming kernel. The compiler will main-
tain all the individual kernels along with the merged kernel in the execution
buffer. The compiler will also maintain the relative loop-carry dependence list
for each kernel in the execution queue. The run-time module of Branch B will
execute the dependent iterations of the independent kernels before it starts exe-
cuting the merged kernel in the work group. The actual dependent-iterations
will be contingent on the number of work-groups created. As more work-groups
are created, the more fragmented the scheduling becomes and more individ-
ual dependent iterations needs to be executed. The default POCL scheduling
for pthreads is dynamic with scheduling chunk size determined by the function
min(32, N/num threads) where N stands for max iterations and num threads
gives the total number of parallel threads. This limits the number for iterations
executed in a work-group to 32. We need the size of the work-group to be as large
as possible so that we execute the fewest individual iterations. Consequently, we
use

(N −max loop dependence)/num threads (1)

as our work-group size. Here max loop dependence stands for the maximum loop
carry dependence across all merged kernels.

3.1 Loop Carry Dependent Fusion

Figure 3 explains the three stages involved in loop carry dependency fusion. The
example contains three kernels (K1,K2 and K3). Every iteration of K2 has a
loop carry dependency of a single iteration over K1, and K3 has a loop carry
dependency of one iteration over K2 The first stage in compilation involves
identification of these dependencies using LLVM [6,11] analysis passes. Once
the dependency is determined to be static, in the second stage the compiler
transforms Kernel K1 to satisfy the dependency with K2 by simply updat-
ing the iterators used in the kernel. The compiler then merges the transformed
kernel K1‘ with K2 to create a temporary merged kernel K12. In the next iter-
ation K12 is transformed to satisfy the dependency with K3 before creating the
final merged kernel K123. We maintain individual Kernels (K1,K2,K3) and the
merged kernel K123 in the execution queue.

In scheduling stage, the framework divide the iterations equally among all
threads. Each thread will have its own iteration queue which will contain all
kernels. Each will execute the dependent iterations of Kernels K1 and K2 for the
iterations allocated to the thread. Once the dependents iterations are executed
the allocated merged kernel iterations are scheduled.
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Fig. 3. Loop carry dependency Fusion. In Stage 1, we identify these dependency and if
the value is deterministic we mark the kernels for fusion. In Stage 2, we try to merge the
larges non-dependent chunks of Kernels K1, K2 and K3 to create a new merged kernel
K123. In stage 3, scheduling For each thread i We will run all dependent iterations of
Kernel K1 and K2 before executing the chunk of merged Kernel K123.

3.2 Other Implementation Details

We have implemented our framework on top of POCL version 1.5. POCL has
defined a set of optimizations such as barrier removal and autovectorization [7,8]
for OpenCL kernels. Our Merge module is inserted before the these passes.

The overhead of analysis and code generation would substantially increase
the apparent execution time of a set of kernels, given the relative complexity
of the operations. However, many applications will regularly execute the same
sequence of kernels with the same data dependencies, rather than shut down
and start up the OpenCL environment for every new buffer. This is particularly
applicable for applications processing consecutive frames of a video or a batch
of images in a machine learning inference query. To take advantage of this, the
first time a kernel is fused in the system, the fused kernel is cached and re-
referenced when the same kernels with the same dependencies are seen again.
This significantly decreases the effective cost of our transformations, but does not
complete eliminate the runtime checking needed to verify the buffer dependencies
between kernels in the queue every time.

We find that the default scheduling algorithm of POCL introduces a lot
of fragmentation, which is counterproductive to the kernel merge. As a result,
we were observing a lot of overhead in scheduling the kernels multiple times.
We overcome this issue by introducing a new low-overhead scheduling based on
the number of parallel threads (Function 1). This will also keep the number of
iterations of individual kernels executed to minimum and we can extract more
performance from the merged kernels. However, in such cases we are trading off
the advantages of dynamic scheduling.
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4 Results

In this section we discuss the efficacy of our fusion framework on POCL version
1.5. We demonstrate the efficacy of our fusion framework in the CPU backend of
POCL. However, our framework can be easily ported to other OpenCL supported
devices as only the scheduling module of the framework is device-specific.

Table 1. List of benchmarks used for evaluation, taken from a sampling of image
processing operations.

Name (key) Description No of kernels

Before fusion After fusion

Image Negatives (ImN) Takes the negative of input image

and performs jitter operation on it

3 2

Image Enhancement (ImE) Enhance the input image using

brightening and non max

suppression filter

2 1

Intensity Transformation

(Int)

Reduce the brightness of image,

corrects it and modifies the color

3 1

Log Transformation Log Log transform followed by

grey-scaling the image and finally

binarization of the image

4 1

Spatial Filtering (SpF) It is a edge detection algorithm

that uses convolutional filter

4 2

RGB2YUV (R2Y) Converts an RGB image in

interleaved format to a YUV

image in interleaved format

3 1

HueContrastCrop (Con) Modifies the input image color

and crops it

3 1

Morphological Transforms

(MT)

Dilate and erode a part of image 3 1

Gaussian (Gau) Applying Gaussian Filter to the

image

3 1

Canny Edge Detector (Can) Applying Canny Edge detector

algorithm on image

8 1

Image Transformation (ImT) Apply log transformation on

input image and convert them to

single-channel grayscale. Performs

binarization and crop the input

image

4 2

We have tested our framework with a set of image processing benchmarks.
Table 1 describes the set of benchmarks we have used for testing. In R2Y bench-
mark we do not have inter-iteration dependency across kernels. So we are able
to do complete fusion for R2Y.

Our test machine is build with 16 GB RAM and AMD Ryzen 5 3600x with
6 cores and 12 threads. We used LLVM version 9 with Ubuntu 18.04. Table 2
provides the execution time of baseline POCL and POCL with kernel fusion in
seconds. We observe an average improvement of 12.30% in overall execution time
over the set of benchmarks.



Kernel Fusion in OpenCL 199

Table 2. Execution time of various benchmarks in baseline POCL and POCL with
kernel fusion in seconds.

Benchmark Baseline POCL in s Fused kernels in s

ImN 3.85 3.04

ImE 0.10 0.12

Int 17.59 16.64

Log 3.68 3.28

SpF 1.38 1.25

R2Y 2.94 1.65

Con 3.38 3.35

MT 4.08 4.20

Gau 1.50 1.11

Can 6.93 5.21

Fig. 4. Percentage improvement of our fusion compiler when compared to POCL
baseline.

Figure 4 shows the percentage improvement in execution time for fusion
framework over the baseline POCL. Some benchmarks show significant improve-
ments, such as the R2Y benchmark where complete kernel fusion is possible,
resulting in a 44% improvement in execution time. We can also see the overhead
of our framework show in benchmarks with little potential from fusion and short
kernels, such as the ImE benchmark. As a result of the additional overhead, we
see a 20% increase in execution time for ImE. We can also the that kernel fusion
is typically a memory locality optimization, so arithmetic-intensive benchmarks
such as Int see little performance improvement. Other benchmarks generally
saw improvements, with the magnitude of those improvements varying with the
amount of kernel fusion opportunity and potential benefit, and the fixed over-
head relative to the execution time of each individual kernel.
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5 Related Works

Kernel Fusion is a widely known and extensively employed technique to improve
execution time and reduce power consumption [1–3,12,15,17]. In [15] authors
explain a kernel fusion framework for independent kernels in GPU to improve
the power consumption. [2] explains a framework to automatically fuse GPU
OpenCL kernels for Stan Math Library, using language extensions to drive the
fusion optimizations. The framework was able to achieve performance compara-
ble to the hand tuned fusion kernels. In [17] authors explain a runtime frame-
work which will decide which kernel merges would result in faster code. The
learning framework is based on the number of branches executed by each kernel
which is especially costly in streaming processors such as GPUs. The OpenCL
fusion described in [3] explains a framework to perform kernel fusion in CPUs
where they explain data fusion for flow dependent kernels. In this work we have
mostly concentrated on the data fusion with inter loop dependencies, however
our framework can handle non dependent kernels. There has been a few compiler
driven works for GPU devices [1,3–5], for SYCL cross-platform framework [12]
for CUDA supported devices [1,4] to improve the performance across the kernels

In our work we are introducing a framework to transform loop carry depen-
dent kernels to perform aggressive fusion in CPU. There have been some works
which rely on scheduling [9,16] and avoid static kernel fusion to improve the per-
formance and/or energy consumption. In [9], the authors describe three different
concurrent execution of multiple kernels. The inner thread execution method is
similar to the total fusion we elaborate as every thread in the warp executes the
corresponding iteration of kernels. In [16] the authors introduces a framework
to preempt a kernel at thread-block level to allow simultaneous execution of
multiple kernels.

6 Conclusion

In this paper we described our kernel fusion framework in POCL. If the input
kernels has no inter-loop dependencies, our framework performs a total fusion.
When there is inter-loop dependencies our framework divides the input kernels to
dependent iterations and independent iterations. The framework then transforms
the independent iterations and fuses the kernels. The scheduling part of our
framework executes the dependent iterations of the individual kernels before
executing the fused kernel. We compared the performance of our kernel fusion
framework and we observed an overall execution time improvement of 12.30%
over the baseline POCL implementation. In future we want to optimize our
fused kernel by eliminating the intermediate buffers which were primarily used to
transfer data from one kernel to the next kernel in the baseline implementation.
We would also want to implement compiler flags that a user could invoke to
override the default behavior of the compiler, if the user can predict that kernel
fusion is possible but detrimental. The will ensure that the users can weigh in
to reduce the chances of the overhead dominating the gains of kernel fusion.
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(eds.) Euro-Par 2015. LNCS, vol. 9233, pp. 675–686. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48096-0 52
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