
Accelerating FFT Using NEC SX-Aurora
Vector Engine

Pablo Vizcaino(B) , Filippo Mantovani , and Jesus Labarta

Barcelona Supercomputing Center, Barcelona, Spain
{pablo.vizcaino,filippo.mantovani,jesus.labarta}@bsc.es

Abstract. Novel architectures leveraging long and variable vector
lengths like the NEC SX-Aurora or the vector extension of RISCV are
appearing as promising solutions on the supercomputing market. These
architectures often require re-coding of scientific kernels. For example,
traditional implementations of algorithms for computing the fast Fourier
transform (FFT) cannot take full advantage of vector architectures. In
this paper, we present the implementation of FFT algorithms able to
leverage these novel architectures. We evaluate these codes on NEC SX-
Aurora, comparing them with the optimized NEC libraries. We present
the benefits and limitations of two approaches of RADIX-2 FFT vec-
tor implementations. We show that our approach makes better use of
the vector unit, reaching higher performance than the optimized NEC
library for FFT sizes under 64k elements. More generally, we prove the
importance of maximizing the vector length usage of the algorithm and
that adapting the algorithm to replace memory instructions with regis-
ter shuffling operations can boost the performance of FFT-like compu-
tational kernels.

1 Introduction

Accelerated computing is becoming more and more relevant in High-Performance
Computing (HPC). The limitation to the performance improvements imposed
by the slow-down of Moore’s law applied to general purpose CPUs has made
HPC architects looking for solutions that can complement the computational
power delivered by standard CPUs (i.e., accelerators). The most visible example
of this are GP-GPU based systems, that populate 3 places within the first 5
most powerful supercomputers in the world (Top500).

GP-GPUs, however are not the only approach to acceleration: the use of vec-
tor or SIMD extensions is becoming more and more relevant in HPC systems.
Beside the AVX-512 SIMD extension by Intel, we detect appearing on the mar-
ket the first CPU implementing the Arm SVE extension (Fujitsu A64FX, ranked
first in the Top500) and the NEC SX-Aurora vector engine, a discrete acceler-
ator leveraging vector CPUs able to operate with registers of up to 256 double
precision elements. On top of this market movements, we can not ignore the
RISC-V architecture which recently ratified v1.0 of the V-extension, boosting
vector computation from the academic world and the open-source community.
c© Springer Nature Switzerland AG 2022
R. Chaves et al. (Eds.): Euro-Par 2021, LNCS 13098, pp. 179–190, 2022.
https://doi.org/10.1007/978-3-031-06156-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06156-1_15&domain=pdf
http://orcid.org/0000-0002-9253-8275
http://orcid.org/0000-0003-3559-4825
http://orcid.org/0000-0002-7489-4727
https://doi.org/10.1007/978-3-031-06156-1_15

180 P. Vizcaino et al.

The efficient use of vector accelerators often require to adapt or rewrite clas-
sical algorithms to exploit their full computing power. In most cases, vendor spe-
cific libraries coupled with optimized compilers allow to port large HPC codes to
vector accelerators in a relatively smooth way. For portability reasons however,
scientists often look for open-source libraries including kernels already optimized
for specific architectures. The computation of the Fourier transformation using
the FFT algorithms is an example of a relevant HPC kernel extremely used by
the HPC community. For this reason we focused this paper on the design and
the evaluation of non-parallel vectorized FFT implementations.

The main contributions of this paper are: i) we developed four implementa-
tions of the FFT algorithms targeting large vector architectures; ii) we evaluate
our FFT codes on the NEC SX-Aurora accelerator, analyzing benefits and lim-
itations of its architecture with an in depth study of hardware counters; iii) we
compare our performance results with the vendor library distributed by NEC.

The remaining part of the paper is structured as follows: Sect. 2 compiles the
related work in the field of FFT implementations for HPC systems; Sect. 3 briefly
presents the NEC SX-Aurora accelerator; Sect. 4 analyzes the optimizations tar-
geting large vector architectures; Sect. 5 includes the measurements gathered on
NEC SX-Aurora; Sect. 6 closes the paper with general remarks and conclusions.

2 Related Work

FFT is a kernel of paramount importance in several algorithms of scientific com-
puting. Therefore, a large body of research about FFT optimization on many
architectures has been published in the last decades. The key reference pub-
lications used as background for our implementations are the book of E. Chu
et al. [4], the paper of M. C. Pease [10] and the paper of P. N. Swarztrauber [11].

More recently, the research community is focusing on developing efficient
FFT implementations targeting emerging architectures with different degrees of
parallelism, e.g., high number of cores and long SIMD or vector units. Chow
et al. [3] report their effort in taking advantage of the IBM Cell BE for the com-
putation of large FFTs; Anderson et al. [1] make use of FPGAs for accelerating
3D FFTs; Wang et al. [13] present an FFT optimization for Armv8 architec-
tures; Malkovsky et al. [9] evaluate FFTs on heterogeneous HPC compute nodes
including GP-GPUs. Most of those studies are limited to up to 8-elements SIMD
units in CPUs or high thread-level parallelism in GPUs while the implementa-
tions proposed in our paper are targeting wider vector units.

D. Bailey [2] and Paul N. Swarztrauber [11] studied various FFT algorithms,
including Pease’s and Stockham’s, for the firsts vector computers which were
limited by their inefficiency accessing non continuous data. The algorithms they
propose have a minimum vector length of

√
N at best, which is lower than our

algorithm’s N
8 . Moreover, our implementations propose an exploitation of the

data locality in the many vector registers that the SX-Aurora has, reducing the
accesses to the main memory.

Furthermore, our method extends the approach of Franchetti et al. [5] since
we explore larger FFT sizes as well as double precision data types.

Accelerating FFT Using NEC SX-Aurora Vector Engine 181

Promising results for acceleration with the NEC SX-Aurora accelerator have
been shown for SpMV in [6] and for spectral element method for fluid dynamics
in [7]. We extend those evaluation efforts of NEC’ accelerator with FFT. This
paper continues the work done in the thesis from Pablo Vizcaino Serrano [12].

3 Hardware Platform: The NEC SX-Aurora

We implemented and evaluated our FFT codes targeting the NEC SX-Aurora
VE (VE), the latest NEC’s long vector architecture which combines SIMD and
pipelining. Vector units and vector registers use a 32 × 64-bit wide SIMD front
in an 8-cycles deep pipeline resulting in a maximum vector length of 256×64-bit
elements or 512 × 32-bit elements. The VE10B processor used for this publica-
tion was presented at the IEEE HotChips 2018 [14], and the first performance
evaluation was described in the same year [8].

Each of the 8 VE cores consists of a scalar processing unit (SPU) and a vector
processing unit (VPU) and is connected to a shared last level cache (LLC) of
16 MB. Three fused multiply-add vector units deliver a peak performance of
269 GLFOPS (double precision) per core at 1.4 GHz. The peak performance of
the used VE variant is 2.15 TFLOPS delivering a byte/FLOP ratio of 0.56.

Vector Engines are integrated as PCIe cards into their host machines. Pro-
grammers can use languages like C, C++, Fortran, and parallelize with MPI as
well as OpenMP, while accelerator code can still use almost any Linux system
call transparently. The proprietary compilers from NEC support automatic vec-
torization aided by directives. They are capable of using most features of the
extensive vector engine ISA1 from high-level languages loop constructs. For the
work presented in this paper, we employed the open-source LLVM-VE project2,
which supports intrinsics allowing tight control over VE features to operate with
complex numbers, control vector registers, and LLC cache affinity.

4 Implementation

There exist multiple algorithms for the computation of the FFT, each with its
benefits and disadvantages from the computational point of view. In this paper,
we focus on a subset of algorithms, those that are denominated RADIX-2. Con-
sidering an FFT with N being the number of transformed elements, a RADIX-2
FFT requires N to be a power of two and divides the required computation in
log2(N) phases. FFT algorithms are also split into in-place and out-of-place, with
the latest requiring an additional buffer alongside the input and output arrays.
All implementations proposed in this paper are out-of-place since our objective
is an efficient vectorization and not a reduced memory footprint. Moreover, some
FFT algorithms require a permutation of the resulting elements and others are
self-sorting. In this paper we study both approaches.

1 https://www.hpc.nec/documents/guide/pdfs/Aurora ISA guide.pdf.
2 https://sx-aurora-dev.github.io/velintrin.html.

https://www.hpc.nec/documents/guide/pdfs/Aurora_ISA_guide.pdf
https://sx-aurora-dev.github.io/velintrin.html

182 P. Vizcaino et al.

All implementations in this paper are designed for complex double-precision
data. The visual representations of the algorithms shown in this paper are sim-
plified, presenting only the real component because the computation of the imag-
inary component is conceptually equivalent to its real counterpart.

For the FFT calculation, we often refer to twiddle factors. W is the set of the
twiddle factors, which are complex exponents computed as tf(k,N) = e

−2πik
N ,

with k ∈ {0, N − 1}.

4.1 Pease FFT

The first implementation with the potential to be efficiently vectorized is the
FFT algorithm developed by Marshall C. Pease [10]. In terms of arithmetic
operations, each phase of a naive Pease’s FFT implementation requires N/2
additions, N/2 subtractions, and N/2 multiplications. One important downside
of Pease’s algorithm is the permutation requirement at the end of the last phase.
Modern vector ISA offer instructions to load and store scattered data, but they
are typically less efficient than those that operate on contiguous or constant-
strided data.

Pease’s algorithms is characterized by a constant geometry, that means that
the same elements are operated in each of the log2(N) phases. More specifically,
the first half of the N elements operate with the second half of each phase. This
leads to a potential N/2 elements that can be operated at the same time (i.e.,
vector length of N/2). Once a phase has been calculated, the vector registers
no longer hold the first and second half of the N elements, so they must be
shuffled. Due to the lack of instructions to perform this rearrangement on vector
registers, this operation could be done storing all the elements in memory and
loading them again in the correct order.

To mitigate the slowdown introduced by the need of accessing the mem-
ory in each phase, we propose an implementation of the Pease algorithm that
distributes the N elements in eight registers instead of two. Sacrificing some
potential vector length and using a precise distribution, this allows us for the
computation of three phases before having to reorder the elements in memory.

A visualization of this technique is shown in the right of Fig. 1. This imple-
mentation is named 8-Pease in the rest of the paper. It uses a potential vector
length of N/8 and only accesses memory every three phases while still needing
the data permutation at the final stage of the algorithm. The downside of having
an upper limit on the vector length of N/8 instead of N/2 is supressed for large
FFT sizes where N/8 is larger than the maximum vector length (256).

In Fig. 1 we also show that the twiddle factors are different in each phase;
therefore, our first approach is to pre-compute them for each phase and to load
them as the algorithm advances. The reason to not compute the twiddle factors
during the execution is that they require the cosine operation, which is not
present in the vector instruction set. Therefore, one needs to scalar compute
them, store them in memory and load them in vector registers.

Accelerating FFT Using NEC SX-Aurora Vector Engine 183

Fig. 1. 8-Pease vectorization for N = 16. (Color figure online)

The pseudocode of the 8-Pease implementation is given in Algorithm 1.

Algorithm 1. 8-Pease pseudocode
1: procedure fft 8Pease(Arr)
2: for p ∈ [1 : 3 : log2(N)] do
3: reg {0, 1..7} r ← v ld(&real(Arr[{0, N/8..7 ∗ N/8}]))
4: reg {0, 1..7} i ← v ld(&imag(Arr[{0, N/8..7 ∗ N/8}]))
5: 3x4 PairOperation()
6: if p < log2(N) then
7: v st strideds(res {0, 1..7} r, &real(Arr[{0, 1..7}], 8)])
8: v st strideds(res {0, 1..7} i, &imag(Arr[{0, 1..7}], 8)])
9: else

10: vindex ← v load(&indexes[0])
11: v st scatters(res {0, 1..7} r, real(Arr), vindex + {0, N/8..7 ∗ N/8})
12: v st scatters(res {0, 1..7} i, imag(Arr), vindex + {0, N/8..7 ∗ N/8})

Note that unlike Fig. 1, the pseudocode shows the operation of the real and
imaginary parts. The vector loads, the PairOperations and the stores have been
grouped for simplicity. The dark red elements from Fig. 1 are loaded in reg1, the
light reds in reg2, etc. The function 3x4 PairOperation is equivalent to executing
the function in Algorithm 2 for 3 phases with 4 PairOperations each. All vector
instructions operate on N/8 vector elements. In reality, NEC limits the vector
length to 256 elements, requiring our code to compute the phases in various
iterations.

The function PairOperation() in Algorithm 2 takes advantage of fused opera-
tions to calculate the complex multiplication. Remember that the multiplication

184 P. Vizcaino et al.

Algorithm 2. PairOperation pseudocode
1: procedure PairOperation(reg1 r, reg1 i, reg2 r, reg2 i)
2: res1 {r, i} ← reg1 {r, i} + reg2 {r, i}
3: res2 {r, i} ← (reg1 {r, i} − reg2 {r, i}) ∗ W {r, i}
4: return res1 {r, i}, res2 {r, i}

of two complex numbers, (a + b · i) · (c + d · i) = (e + f · i) normally requires
7 operations: e = a · c − b · d, and f = a · d + b · c. We can group operations to
have 2 multiplications and 2 fused operations (operations calculated with a sin-
gle instruction are encapsulated using parenthesis): t1 = (a · c), and t2 = (a · d),
so that e = (t1 − b · d) and f = (t2 + b · c).

Looking at Fig. 1, it can be noted that there are only N/2 different twid-
dle factors (W0,W1,...WN/2−1). More precisely, the number of different twiddle
factors to be used in each phase is half compared to the previous one.

The repetition of the twiddle factors across the FFT brings three important
observations: i) we are wasting memory since we were storing all of them for
each phase; ii) we are missing potential cache locality; iii) for advanced phases,
we could access a single twiddle factor per register and then replicate it. In each
batch of three phases in 8-Pease, the twiddle factor of the second phase are
identical for half the registers, and in the third one they are identical for all
registers. This means that for the three phases, we only load 7 twiddle factor
registers instead of 12.

Finally, another implementation of the Pease algorithm is proposed. Even
with the twiddle factor access optimization, it still represents a slowdown.

To implement this optimization, we use gather vector instructions to load the
twiddle factors. In reality, gather instructions offer a more general functionality
than what we require since they are meant to load sparse data, while we need
strided chunks of data. However, since no ad hoc instructions exist for our case,
we decided to implement this version using gather instructions. In NEC archi-
tecture, gather operations require a vector with absolute addresses to index the
memory. We use two registers, one holding the constant relative indexes that are
reused and another temporarily holding the absolute indexes after adding the
offset. A graphical representation of the use of gather operation is provided in
Fig. 2, with its code equivalent in Algorithm 3. This implementation is named
8-Pease-gt in the rest of the paper.

Algorithm 3. Gather access to twiddle factors pictured on Fig. 2.
1: vr indexes = vel vseq vl(V L); � 0, 1, 2, 3, ...
2: indexes = vel vand vsvl((0x1), indexes, V L); � 0, 0, 2, 2, ...
3: indexes = vel vsll vvsl(indexes, 3, V L); � 0, 0, 8, 8, ...
4: indexes = vel vaddul vsvl(addr, indexes, V L); � 0xA000, 0xA000, 0xA008, ...
5: vr W = vel vgt vvssvl(index, N/8, V L);

Accelerating FFT Using NEC SX-Aurora Vector Engine 185

Fig. 2. Example of the proposed accesses to twiddle factors using gather operations

4.2 Stockham FFT

The other algorithm that has been studied for vectorization is Stockham’s algo-
rithm [11]. While the algorithm is still RADIX-2 and out-of-place, it has two
main differences with Pease’s algorithm. The first one is that it is a self-sorting
algorithm, so it does not require a permutation at the last phase. The second
difference is that Stockham’s algorithm does not have constant geometry like
Pease’s. This complicates the algorithm and its vectorization, limiting the max-
imum vector length depending on the phase.

Using the same approach as with 8-Pease, we can divide the N elements of
each phase into eight vector registers to compute three phases before rearranging
the elements in memory.

Due to the self-sorting nature of the algorithm, the process of storing and
loading the elements changes for every three phases. With p being the phase
where the loads occurs, the stores on p + 3 consist of vector length

2p groups of
2p consecutive elements. Since an instruction that writes several consecutive
elements before jumping a fixed stride does not exist in NEC’s architecture, we
have two options in the implementation. We can limit the vector length of the
problematic phases to be equal to the size of the groups, 2p. Since inside a group
all the twiddle factors have the same value, we could use a broadcast operation
to load them. The downside of this option is that for phases 3–5 and 6–8 this
means limiting the vector length to 8 and 64. With SX-Aurora’s maximum vector
length of 256, this limit implies not taking full advantage of the vectorization
potential.

If we do not want to limit the vector length, we can store values with a
scatter operation and load twiddle factors with a gather. The initial interest in
using the Stockham algorithm was removing this type of memory operations,
so adding them again may seem counterproductive, even though the pattern
of Stockham’s scatter operations contain consecutive elements while Pease’s is
sparser. This difference is represented in a simplified example diagram in Fig. 3.

Regardless, using these long-latency instructions at the end of these special
phases outperforms having up to 32 times more instructions during three phases
when limiting the vector length to 8, so the final implementation uses scatters.

In terms of twiddle factors, we use the gather instruction that is also present
in 8-Pease-gt and we name this new implementation 8-Stockham-gt.

A simplified pseudocode of this alternative is shown in Algorithm 4.

186 P. Vizcaino et al.

Fig. 3. Simplified example of the scatter operations used in Pease and Stockham’s
algorithms, with a vector length of 8 elements.

Algorithm 4. 8-Stockham pseudocode
1: procedure fft 8Stockham(Arr)
2: reg {0, 1..7} r ← v ld(&real(Arr[{0, N/8..7 ∗ N/8}]))
3: reg {0, 1..7} i ← v ld(&imag(Arr[{0, N/8..7 ∗ N/8}]))
4: 3x4 PairOperation()
5: v st strideds(res {0, 1..7} r, &real(Arr[{0, 1..7}]), 8)
6: v st strideds(res {0, 1..7} i, &imag(Arr[{0, 1..7}]), 8)
7: gsize = 8
8: for p ∈ [4 : 3 : log2(N)] do
9: reg {0, 1..7} r ← v ld(&real(Arr[{0, N/8, ..., 7 ∗ N/8}]))

10: reg {0, 1..7} i ← v ld(&imag(Arr[{0, N/8, ..., 7 ∗ N/8}]))
11: if gsize < VL then
12: gatherW ()
13: 3x4 PairOperation()
14: vindex ← v load(&indexes[0])
15: v st scatter(res {0, 1..7} r, real(Arr), vindex + {0, gsize..7 ∗ gsize})
16: v st scatter(res {0, 1..7} i, imag(Arr), vindex + {0, gsize..7 ∗ gsize})
17: else
18: broadcastW ()
19: 3x4 PairOperation()
20: v st(res {0, 1..7} r, &real(Arr[{0, N/8, ..., 7 ∗ N/8}]))
21: v st(res {0, 1..7} i, &imag(Arr[{0, N/8, ..., 7 ∗ N/8}]))

22: gsize = gsize ∗ 8

5 Evaluation

In this section we study the performance of our implementations in the vector
accelerator from NEC, the SX-Aurora. We measure the real time used to com-
pute the FFT, including the communication to the accelerator and other system
interferences. The pre-computation is disregarded because it can be used for
multiple FFT of the same size.

NEC has optimized math libraries called NEC Library Collection (NLC)3.
Our usage of NLC is limited to aslfftw, a vectorized FFT whose interface is com-
patible with fftw. We have compared the performance of the proposed implemen-
tations in Sect. 4 with aslfftw, computing it as a speedup to a scalar (i.e., without
vector instructions) fftw, compiled with NEC’s compiler ncc.

3 https://www.hpc.nec/documents/sdk/SDK NLC/UsersGuide/main/en/.

https://www.hpc.nec/documents/sdk/SDK_NLC/UsersGuide/main/en/

Accelerating FFT Using NEC SX-Aurora Vector Engine 187

Fig. 4. Speedup in NEC of the proposed vectorized FFT implementations and aslfftw.

We see in Fig. 4 how our implementations outperform aslfftw until an FFT
size of 65536 elements. From that point on, aslfftw doubles the performance of
our Pease’s implementations, while 8-Stockham-gt only underperforms aslffw by
less than 10%. In our best case, we reach 17% of the peak performance of one VE
node. It is also notable that while 8-Pease-gt was designed to improve 8-Pease,
it obtained a lower performance.

In Fig. 5 we show the number of total instructions and vector instructions
with respect to aslfftw. NEC’s implementation executes many more instructions
than our implementations, with sizes up to 65536. From that point, we execute
more instructions than aslfftw, except for the total instructions of 8-Stockham-gt.

Fig. 5. Total (left) and vector (right) instructions with respect to aslfftw.

Figure 5 also shows us that 8-Pease-gt executes approximately 10% more
instructions than 8-Pease. This is due to the gather instruction using absolute
addresses in NEC, requiring additional operations to modify the indexes before
the gathers.

To better understand the difference in instructions, we have to consider the
number of elements being operated with each vector instruction. In Table 1 we
display the average vector length used by the implementations, with greener
colors indicating a higher vector length.

188 P. Vizcaino et al.

Table 1. Average vector length in elements for different FFT sizes and implementa-
tions.

We show that our proposed implementations are able to use the maximum
vector length, 256 64-bit elements, with smaller problem sizes than aslfftw. This
implies a better usage of the vector unit and a reduction in instructions since
each is doing more operations.

A pair of relevant counters to understand the performance of the implementa-
tions is vec arith cyc and vec load cyc, which count the cycles spent in arithmetic
vector instructions and load vector instructions respectively.

Fig. 6. Vec arith (left) and load (right) cycles of our implementations wrto. aslfftw.

In Fig. 6 we see the number of cycles used by arithmetic and load vector
instructions with respect to aslfftw. There is a difference of 25%–70% in arith-
metic cycles for larger FFT sizes. The finer grain of using a small vector length of
aslfftw can allow it to be more precise with arithmetic optimizations, but the sig-
nificant disparity in large sizes suggests a core difference in the FFT algorithm.
In FFT computation, the number of floating-point operations is related to the
used RADIX. These results suggest that aslfftw is using a different RADIX for
bigger transforms.

A much larger difference is present in load vector cycles. We find a notable
spike in the cycles spent by our Pease’s algorithm in size 65536, taking 4 times
more cycles loading vector elements. This is the exact size where alsfftw starts to
outperform our implementations. We would also like to study the vector cycles
spent in store operations, but these cycles are not mapped in any hardware
counter present in the architecture.

To study if the increment in vector load cycles of our Pease’s implementa-
tions is due to loading more elements or due to slower loads, in Fig. 7 we show
how many vector elements are being loaded per each cycle spent in vector load

Accelerating FFT Using NEC SX-Aurora Vector Engine 189

instructions, as a metric of “efficiency” of the vector loads. We also show the
vector load cache hit ratio of the implementations, since it can be related with
slower loads.

Fig. 7. Vec. load elements per vec. load cycle (left) and hit ratio (right)

We see that from size 65536 onwards aslfftw has greater vector load efficiency
than our Pease’s implementations, loading three times more elements per load
cycle.

8-Pease-gt and 8-Stockham-gt present a nearly identical hit ratio, and they
load the same number of elements from memory. Considering that the vector load
efficiency is not lowered for 8-Stockham-gt, we can suggest that the difference in
the efficiencies between implementations is caused by an unfavorable memory
access pattern inherent to Pease’s algorithm, presumably related to the scatter
operations executed at the last phase of the implementation. We also note in
the left plot of Fig. 7 that the usage of the gather instruction in 8-Pease-gt does
not accomplish its intended results since it lowers the efficiency of vector load
instructions with respect to 8-Pease instead of improving it. The theoretically
better memory access of 8-Pease-gt is reflected in the cache hit-ratio, when
comparing it to 8-Pease.

6 Conclusions

Our implementations of the FFT for the NEC SX-Aurora show an efficient usage
of the vector engine, overtaking the highly optimized proprietary vendor imple-
mentation found in NEC Libary Collection for FFT sizes up to 65536 elements.
We achieve 20× speedup for sizes under 1024 compared to NEC’s FFT, and
2× speedup up to 65536 elements. We also discussed the performance of vec-
tor memory gather operations in our implementations, finding that optimizing
memory accesses do not pay of because of their long latency.

We compared two algorithms for the FFT computation, Pease’s and Stock-
ham’s. We found that for vectorized codes, the complex permutations needed by
Pease’s impact negatively the performance, notably with large FFT sizes. We
argue in favour of more specific register shuffling and memory accessing vector
instructions. We evinced the importance of avoiding memory instructions that
FFT computation often requires, even if this implies more vector registers or
reducing the vector length.

190 P. Vizcaino et al.

We also highlight two main weaknesses of our proposed implementations
for larger FFT sizes when comparing them with NEC’s implementation: i)
both Pease and Stockham implementations spend ∼25% more cycles execut-
ing floating-point operations, suggesting the need to explore different RADIX
FFT algorithms. ii) Pease’s implementation has a lower vector load efficiency.

We leave for future work the parallelization of our implementations, the
exploration of different RADIX FFT algorithms and the evaluation on other
vector architectures.

References

1. Anderson, M., Brodowicz, M., Swany, M., Sterling, T.: Accelerating the 3-D FFT
using a heterogeneous FPGA architecture. In: Heras, D.B., Bougé, L. (eds.) Euro-
Par 2017. LNCS, vol. 10659, pp. 653–663. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-75178-8 52

2. Bailey, D.: A high-performance FFT algorithm for vector supercomputers. Int. J.
High Perform. Comput. Appl. 2, 82–87 (1987)

3. Chow, A.C., Fossum, G.C., Brokenshire, D.A.: A programming example: large FFT
on the cell broadband engine. Glob. Signal Process. Expo (GSPx) (2005)

4. Chu, E., George, A.: Inside the FFT Black Box: Serial and Parallel Fast Fourier
Transform Algorithms. CRC Press, Boca Raton (1999)

5. Franchetti, F., Puschel, M.: SIMD vectorization of non-two-power sized FFTs. In:
2007 IEEE International Conference on Acoustics, Speech and Signal Processing -
ICASSP 2007, vol. 2, pp. II-17–II-20, April 2007

6. Gómez Crespo, C., et al.: Optimizing sparse matrix-vector multiplication in NEC
SX-Aurora vector engine. In: Proceedings of the 26th Symposium on Principles
and Practice of Parallel Programming (2021, accepted)

7. Jansson, N.: Spectral Element simulations on the NEC SX-Aurora TSUBASA.
In: The International Conference on High Performance Computing in Asia-Pacific
Region, pp. 32–39, January 2021

8. Komatsu, K., et al.: Performance Evaluation of a Vector Supercomputer SX-Aurora
TSUBASA. In: SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 685–696, November 2018

9. Malkovsky, S.I., et al.: Evaluating the performance of FFT library implementations
on modern hybrid computing systems. J. Supercomput. 77(8), 8326–8354 (2021).
https://doi.org/10.1007/s11227-020-03591-6

10. Pease, M.C.: An adaptation of the fast fourier transform for parallel processing. J.
ACM (JACM) 15(2), 252–264 (1968)

11. Swarztrauber, P.N.: FFT algorithms for vector computers. Parallel Comput. 1(1),
45–63 (1984)

12. Vizcaino Serrano, P.: Evaluación y optimización de algoritmos fast fourier trans-
form en SX-Aurora NEC (2020)

13. Wang, Q., Li, D., Huang, X., Shen, S., Mei, S., Liu, J.: Optimizing FFT-based
convolution on ARMv8 multi-core CPUs. In: Malawski, M., Rzadca, K. (eds.)
Euro-Par 2020. LNCS, vol. 12247, pp. 248–262. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-57675-2 16

14. Yamada, Y., Momose, S.: Vector engine processor of NEC’s brand-new supercom-
puter SX-Aurora TSUBASA. In: Proceedings of A Symposium on High Perfor-
mance Chips, Hot Chips, vol. 30, pp. 19–21 (2018)

https://doi.org/10.1007/978-3-319-75178-8_52
https://doi.org/10.1007/978-3-319-75178-8_52
https://doi.org/10.1007/s11227-020-03591-6
https://doi.org/10.1007/978-3-030-57675-2_16
https://doi.org/10.1007/978-3-030-57675-2_16

	Accelerating FFT Using NEC SX-Aurora Vector Engine
	1 Introduction
	2 Related Work
	3 Hardware Platform: The NEC SX-Aurora
	4 Implementation
	4.1 Pease FFT
	4.2 Stockham FFT

	5 Evaluation
	6 Conclusions
	References

