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Preface

The International European Conference on Parallel and Distributed Computing
(Euro-Par) is an annual, international conference in Europe, which covers all aspects of
parallel and distributed processing. These range from theory to practice, from small to
the largest parallel and distributed systems and infrastructures, from fundamental
computational problems to full-fledged applications. It also covers architecture, com-
piler, language, and interface design and implementation, as well as tools, support
infrastructures, and application performance aspects.

The Euro-Par conference is complemented by a workshop program, where work-
shops dedicated to more specialized themes, to cross-cutting issues, and to upcoming
trends and paradigms can be easily and conveniently organized. In addition to work-
shops, the first edition of the Euro-Par PhD Symposium was also organized at the
Euro-Par 2021 conference, with the aim at gathering PhD students in broadly defined
areas related to parallel and distributed processing.

The 27th Euro-Par Workshops and PhD Symposium were held in Portugal during
August 30–31, 2021, following the well-established format of its predecessors. The
events were organized with the support of INESC-ID and Instituto Superior Técnico
(Técnico Lisboa) – the Faculty of Engineering of the University of Lisbon. Although
Euro-Par 2021 had been planned to take place in Lisbon, Portugal, it was organized as
a virtual conference, as a result of the COVID-19 pandemic.

Overall, eleven workshop proposals were submitted. The following seven work-
shops were co-located with the Euro-Par 2021 edition, namely:

1. Workshop on Data Locality (COLOC)
2. Workshop on Algorithms, Models and Tools for Parallel Computing on Hetero-

geneous Platforms (HeteroPar)
3. Workshop on Future Perspectives of Decentralized Applications (FPDAPP)
4. Workshop on Resiliency in High Performance Computing in Clouds, Grids, and

Clusters (Resilience)
5. Workshop on Parallel Programming Models in High-Performance Cloud (ParaMo)
6. Workshop on Large Scale Distributed Virtual Environments (LSDVE 2021)
7. Workshop on Asynchronous Many-Task systems for Exascale (AMTE)

After a careful revision process, and from a total of 67 submitted workshop papers,
39 papers were accepted, resulting on an acceptance rate of 58%. Each workshop had
an independent program committee, which was responsible for selecting the papers.
The workshop papers received more than three reviews per paper on average.

The Euro-Par PhD Symposium received 12 submissions from 10 countries, with
each submission reviewed by at least three technical program committee members
of the Euro-Par PhD Symposium. After the thorough peer-reviewing process, 10
submissions were accepted for presentation at the Euro-Par 2021 PhD Symposium,
which are also included as extended abstracts in these proceedings.



In addition to the technical program, we had the pleasure of hosting two keynotes
held by:

– Chuck Yoo, Korea University, South Korea
– Attila Kertesz, University of Szeged, Hungary

This volume contains the papers and extended abstracts presented at Euro-Par 2021
Workshops and PhD Symposium, divided into 8 track sections (corresponding to each
of the workshops and PhD Symposium).

The success of the Euro-Par Workshops and PhD Symposium depends on the work
of many individuals and organizations. We therefore thank all the organizers and
reviewers for the time and effort that they invested. We would also like to express our
gratitude to the members of the Euro-Par 2021 Organizing Committee and the local
staff. Lastly, we thank all participants, panelists, and keynote speakers of the Euro-Par
Workshops and PhD Symposium for their contribution to a productive meeting. It was
a pleasure to organize and host the Euro-Par Workshops and PhD Symposium 2021 in
Lisbon.

August 2021 Ricardo Chaves
Dora B. Heras
Aleksandar Ilic

Didem Unat
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COLOC – 5th Workshop on Data
Locality



5th Workshop on Data Locality (COLOC)

Workshop Description

With increasing heterogeneity in both computational devices and memory organization
in high performance computing platforms, movement of data between devices and
layers of memory have become a critical challenge for science and engineering users of
these platforms. Imminent arrival of exascale platforms has brought these concerns to
the forefront. The objective of this workshop was to understand the impact of
abstractions and tools that have been around for some time and have seen some
adoption.

The different areas or research interest include, but are not limited to:

– Modeling node topology
– Modeling network and communication
– Performance analysis of application to understand affinity
– Affinity metrics
– Runtime support for extracting affinity from application
– Code analysis in order to understand communication pattern
– Algorithm to improve locality
– Language, abstraction and compiler support for data locality
– Data structure and library support to better manage memory access
– Runtime-system and dynamic locality management
– System-scale locality optimization
– Validating locality optimization at thread or process level
– Memory management
– Locality management in large-scale application
– Impact of Locality to scientific applications

We have received 5 submissions and we have accepted 4. All 4 of them are
published in these proceedings. The workshop also featured two invited talks: Data-
Centric Python – Productivity, portability and all with high performance! by Torsten
Hoefler of ETH Switzerland, and ECP: Data Analytics and Optimization Applications
On Accelerator-Based Systems by William E. Hart of Sandia National Laboratory and
a Leader of the Exascale Computing Project, U.S.A.

The workshop also featured a panel at the end with an open floor discussion format.
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Locality-Aware Scheduling
of Independent Tasks for Runtime

Systems

Maxime Gonthier1(B), Loris Marchal1(B), and Samuel Thibault2(B)

1 LIP, CNRS, ENS de Lyon, Inria & Université Claude-Bernard Lyon 1, Lyon, France
{maxime.gonthier,loris.marchal}@ens-lyon.fr

2 LaBRI, University of Bordeaux, CNRS, Inria Bordeaux - Sud-Ouest,
Talence, France

samuel.thibault@u-bordeaux.fr

Abstract. A now-classical way of meeting the increasing demand for
computing speed by HPC applications is the use of GPUs and/or other
accelerators. Such accelerators have their own memory, which is usually
quite limited, and are connected to the main memory through a bus with
bounded bandwidth. Thus, particular care should be devoted to data
locality in order to avoid unnecessary data movements. Task-based run-
time schedulers have emerged as a convenient and efficient way to use
such heterogeneous platforms. When processing an application, the sched-
uler has the knowledge of all tasks available for processing on a GPU,
as well as their input data dependencies. Hence, it is able to order tasks
and prefetch their input data in the GPU memory (after possibly evict-
ing some previously-loaded data), while aiming at minimizing data move-
ments, so as to reduce the total processing time. In this paper, we focus
on how to schedule tasks that share some of their input data (but are oth-
erwise independent) on a GPU. We provide a formal model of the prob-
lem, exhibit an optimal eviction strategy, and show that ordering tasks to
minimize data movement is NP-complete. We review and adapt existing
ordering strategies to this problem, and propose a new one based on task
aggregation. These strategies have been implemented in the StarPU run-
time system. We present their performance on tasks from tiled 2D and 3D
matrix products. We present their performance on tasks from tiled 2D, 3D
matrix products. Our experiments demonstrate that using our new strat-
egy together with the optimal eviction policy reduces the amount of data
movement as well as the total processing time.

Keywords: Memory-aware scheduling · Eviction policy · Tasks
sharing data · Runtime systems

1 Introduction

High-performance computing applications, such as physical simulations, molec-
ular modeling or weather and climate forecasting, have an increasing demand in
c© Springer Nature Switzerland AG 2022
R. Chaves et al. (Eds.): Euro-Par 2021, LNCS 13098, pp. 5–16, 2022.
https://doi.org/10.1007/978-3-031-06156-1_1
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computer power to reach better accuracy. Recently, this demand has been met
by extensively using GPUs, as they provide large additional performance for a
relatively low energy budget. Programming the resulting heterogeneous architec-
ture which merges regular CPUs with GPUs is a very complex task, as one needs
to handle load balancing together with data movements and task affinity (tasks
have strongly different speedups on GPUs). A deep trend which has emerged
to cope with this new complexity is using task-based programming models and
task-based runtimes such as PaRSEC [4] or StarPU [2]. These runtimes aim at
scheduling scientific applications, expressed as directed acyclic graphs (DAGs)
of tasks, onto distributed heterogeneous platforms, made of several nodes con-
taining different computing cores.

Data movement is an important problem to consider when scheduling tasks on
GPUs, as those have a limited memory as well as a limited bandwidth to read/write
data from/tothemainmemoryof thesystem.Thus, it is crucial tocarefullyorderthe
tasks that have to be processed on GPUs so as to increase data reuse and minimize
the amount of data that needs to be transferred. It is also important to schedule
the transfers soon enough (prefetch) so that data transfers can be overlapped with
computations and all tasks can start without delay. We focus in this paper on the
problem of scheduling a set of tasks on one GPU with limited memory,
wheretaskssharesomeoftheirinputdatabutareotherwiseindependent.
More precisely, we want to determine the order in which tasks must be processed to
optimize for locality, as well as when their input must be loaded/evicted into/from
memory. Our objective is to minimize the total amount of data transferred to the
GPUs for the processing of all tasks with a constraint on the memory size. We start
focusingonindependenttaskssharinginputdatabecausewhenusingusualdynamic
runtime schedulers, the scheduler is exposedatagiven time toa fairly large subset of
tasks which are independent of each others. This is in particular the case with linear
algebra workflows, such as the matrix multiplication or Cholesky decomposition:
except possibly at the very beginning or very end of the computation, a large set
of tasks is available for scheduling. Thus, solving the optimization problem for the
currently available tasks can lead to a large reduction in data transfers and hence
a performance increase.

Because of space limitation, the complete review of related work is devoted
to the extended version of the paper [8]. In this paper, we make the following
contributions:

– We provide a formal model of the optimization problem, and prove the prob-
lem to be NP-complete. We derive an optimal eviction policy by adapting
Belady’s rule for cache management (Sect. 2).

– We review and adapt three heuristic algorithms from the literature for this
problem, and propose a new one based on gathering tasks with similar data
patterns into packages (Sect. 3).

– We implement all four heuristics into the StarPU runtime and study the
performance (amount of data transfers and total processing time) obtained
on both 2D and 3D blocked matrix multiplications (Sect. 4). Overall, our
evaluation shows that our heuristic generally surpasses previous strategies, in
particular in the most constrained situations.
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Note that while we focus our experimental validation on GPUs, the optimiza-
tion problem studied in this paper is not specific to the use of such accelerators:
it appears as soon as tasks sharing data must be processed on a system with
limited memory and bandwidth. For example, it is also relevant for a computer
made of several CPUs with restricted shared memory, and limited bandwidth
for the communication between memory and disk.

2 Problem Modeling and Complexity

We consider the problem of scheduling independent tasks on one GPU with
memory size M. As proposed in previous work [9], tasks sharing their input
data can be modeled as a bipartite graph G = (T ∪ D, E). The vertices of this
graph are on one side the tasks T = {T1, . . . , Tm} and on the other side the
data D = {D1, . . . , Dn}. An edge connects a task Ti and a data Dj if task Ti

requires Dj as input data. For the sake of simplicity, we denote by D(Ti) =
{Dj s.t. (Ti,Dj) ∈ E} the set of input data for task Ti. We here consider that
all data have the same size. The GPU is equipped with a memory of limited size,
which may contain at most M data simultaneously. During the processing of a
task Ti, all its inputs D(Ti) must be in memory.

For the sake of simplicity, we here do not consider the data output of tasks.
In the case of linear algebra for instance, the output data is most often much
smaller than the input data and can be transferred concurrently with data input.
Data output is then not the driving constraint for efficient execution. Our model
could however easily be extended to integrate task output.

All m tasks must be processed. Our goal is to determine in which order to
process them, and when each data must be loaded or evicted, in order to
minimize the amount of data movement. More formally, we denote by σ
the order in which tasks are processed, and by V(t) the set of data to be evicted
from the memory before the processing of task Tσ(t). A schedule is made of m
steps, each step being composed of the following three stages (in this order):

1. All data in V(t) are evicted (unloaded) from the memory;
2. The input data in D(Tσ(t)) that are not yet in memory are loaded;
3. Task Tσ(t) is processed.

An example is shown in Fig. 1. This example illustrates that input data are
loaded in memory as late as possible: loading them earlier would be pointless and
possibly trigger more data movements. In real computing systems, a pre-fetch is
usually designed to load data a bit earlier so as to avoid waiting for unavailable
data, however, for the sake of simplicity, we do not consider this in our model: if
needed, we may simply book part of our memory for the pre-fetch mechanism.

Using the previous definition, we define the live data L(t) as the data in
memory during the computation of Tσ(t), which can be defined recursively:

L(t) =

{
D(Tσ(1)) if t = 1
L(t) = (L(t − 1)\V(t)) ∪ D(Tσ(t)) otherwise
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Fig. 1. Example with 5 tasks and 6 data, with a memory holding at most M = 3 data.
The graph of input data dependencies is shown on the left. The schedule on the right
corresponds to processing the tasks in the natural order with the following eviction
policy: V(1) = V(2) = ∅, V(3) = {1}, V(4) = {2}, V(5) = {3, 4}. This results in 7 loads
(only D1 is loaded twice).

Our memory limitation can then be expressed as |L(t)| ≤ M for each step
t = 1, . . . ,m. Our objective is to minimize the amount of data movement, i.e., to
minimize the number of load operations: we consider that data are not modified
so no store operation occurs when evicting a data from the memory. Assuming
that no input data used at step t is evicted right before the processing (V(t) ∩
D(Tσ(t)) = ∅), the number of loads can be computed as follows:

#Loads(σ,V) =
∑

t

∣∣∣D (
Tσ(t)

) \L(t)
∣∣∣

There is no reason for a scheduling policy to evict some data from memory if
there is still room for new input data. We call thrifty scheduler such a strategy,
formalized by the following constraints: if V(t) �= ∅, then |L(t)| = M . For this
class of schedulers, the number of loads can be computed more easily: as soon
as the memory is full, the number of loads is equal to the number of evictions.
That is, for the regular case when not all data fit in memory (n > M), we have:

#Loads(σ,V) = M +
∑

t

|V(t)|

Our optimization problem is stated below:

Definition 1 (MinLoadsForTasksSharingData). For a given set of tasks T
sharing data in D according to D, what is the task order σ and the eviction policy
V that minimizes the number of loads #Loads?

A solution to this optimization problem consists in two parts: the order σ
of the tasks and the eviction policy V. Note that when each task requests a
single data, finding an efficient eviction policy corresponds to the classical cache
management policy problem. When the full sequence of data requests is known,
the optimal policy consists in evicting the data whose next use is the furthest in
the future. This is the well-known Belady MIN replacement policy [3]. We prove
in the following theorem that this rule can be extended to our problem, with
tasks requiring multiple data (see proof in the extended version of the paper [8]).
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Theorem 1. We consider a task schedule σ for a MinLoadsForTasks-

SharingData problem. We denote by MIN the thrifty eviction policy that
always evicts a data whose next use in σ is the latest (breaking ties arbitrar-
ily). MIN reaches an optimal performance, i.e., for any eviction policy V,

#Loads(σ,MIN ) ≤ #Loads(σ,V).

For cache management, Belady’s rule has little practical impact, as the
stream of future requests is generally unknown; simple online policies such as
LRU (Least Recently Used [7]) are generally used. However in our case, the full
set of tasks is available at the beginning. Hence, we can take advantage of this
optimal offline eviction policy. Thanks to the previous result, we can restrict our
problem to finding the optimal task order σ. Unfortunately, this problem is NP-
complete. The proof, available in [8], consists in a reduction from the cutwidth
minimization problem on graphs.

Theorem 2. Given a set of tasks T sharing data in D according to D and an
integer B, finding a task order σ such that #Loads(σ,MIN ) ≤ B is NP-complete.

3 Algorithms

We present here several heuristics to solve the MinLoadsForTasksSharing-

Data optimization problem. Two of them are adapted from the literature
(Reverse-Cuthill-McKee and Maximum Spanning Tree), one of them is the actual
dynamic strategy from the StarPU runtime (Deque Model Data Aware Ready)
and we finally propose a new strategy: Hierarchical Fair Packing.

Reverse-Cuthill-McKee (RCM). We have seen above that our problem is close to
the cutwidth minimization problem, known to be NP-complete. This motivates
the use of the Cuthill-McKee algorithm, which concentrates on a close metric:
the bandwidth of a graph. It permutes a sparse matrix into a band matrix so
that all elements are close to the diagonal [6]. If the resulting bandwidth is k,
it means that vertices sharing an edge are not more than k edges away. We
apply this algorithm on the graph of tasks GT = (T, ET , wT ) where there is
an edge (Ti, Tj) if tasks Ti and Tj share some data, and where wT (Ti, Tj) is
the number of such shared data. If the bandwidth of the graph is not larger
than k, this means in our problem that any task Ti processed at time t has all
its “neighbours” tasks (tasks sharing some data with Ti) processed in the time
interval [t − k; t + k]. Hence, if k is low, this leads to a very good data locality.
Reversing the obtained order is known to improve the performance of the Cuthill-
McKee algorithm, which we also notice in our experiments. The straightforward
adaptation of the Reverse-Cuthill-McKee algorithm to our model is available in
the extended version [8].

Maximum Spanning Tree (MST). Yoo et al. [10] proposed another heuristic to
order tasks sharing data to improve data locality. They first build a Maximum
Spanning Tree in the graph GT using Prim’s algorithm and then order the
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Algorithm 1. Hierarchical Fair Packing heuristic
1: Let Pi ← [Ti] for i = 1 . . .m and P = {P1, . . . , Pm}
2: SizeLimit ← true, MaxSizeReached ← false,
3: while |P| > 1 do
4: while (MaxSizeReached = false or SizeLimit = false) and |P| > 1 do
5: MaxSizeReached ← true
6: for all packages Pi with the smallest number of tasks do
7: Find a package Pj such that |D(Pi) ∩ D(Pj)| is maximal
8: if weight(Pi ∪ Pj) ≤ M or SizeLimit = false then
9: Merge Pi and Pj (append Pj at then end of Pi and remove Pj from P)

10: MaxSizeReached ← false
11: end if
12: end for
13: end while
14: SizeLimit ← false
15: end while
16: Return the only package in P

vertices according to their order of inclusion in the spanning tree. By selecting
the incident edge with largest weight, they increase the data reuse between the
current scheduled tasks and the next one to process. The direct adaption of the
Maximum Spanning Tree to our model algorithm is described in the extended
version [8].

Deque Model Data Aware Ready (DMDAR). DMDA or “Deque Model Data
Aware” is a dynamic scheduling heuristic designed to schedule tasks on hetero-
geneous processing units in the StarPU runtime. It takes data transfer time
into account and schedules tasks where their completion times is expected to
be minimal [1] (also called tmdp). We focus here on a variant, DMDAR, which
additionally uses a ready strategy at runtime, to favor tasks whose data has
already been loaded into memory. If at some point the next task Ti planned for
execution requires some data which is not yet loaded in the GPU memory, then
it looks further in the list of scheduled tasks. If it finds a task Tj that needs to
load strictly less data than task Ti, it will first opportunistically compute that
task Tj (see the extended version for details [8]). In our context with a single
processing unit, DMDAR is reduced to selecting the next task with this strategy.
DMDAR is a dynamic scheduler that relies on the actual state of the memory,
it thus depends on the eviction policy, which is the LRU policy.

Hierarchical Fair Packing (HFP). HFP builds packages (denoted P1, P2, ...) of
tasks, which are stored as lists of tasks, forming a partition of T. To do so,
it gathers tasks that share the most input data. By extension, we denote by
D(Pk) the set of inputs of all tasks in Pk. We aim at building the smallest
number of packages so that the inputs of all tasks in each package fit in memory:
D(Pk) ≤ M . The intuition is that once the data D(Pk) are loaded, all tasks in
the package can be processed without any additional data movement. We have
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Fig. 2. Flipping packages to improve HFP. Here we assume that the pair of sub-
packages (P end

i , P end
j ) is the one with the most shared input data, so that only Pj

is reversed before merging packages.

proven that building the minimum number of packages is NP-complete [8], hence
we rely on a greedy heuristic to build them, described in Algorithm1. We start
with packages containing a single task. Then we consider all packages with fewest
tasks and try to merge each of them with another package with whom it shares
the most input data. When it is not possible to merge packages without exceeding
the M bound any more, we perform a second step where we gather packages in
the same way but ignore the M bound on the input size. The intuition is to
create meta-packages that express the data affinity between packages already
built. Note that we do not modify the order of tasks within packages when
merging them, hence keeping the good data locality inside packages. Eventually,
the last remaining package after all merges is the list of tasks for the schedule.

We note Δ = maxi |D(Ti)| the maximal number of data for any task. For
linear algebra applications, it is most often a very small constant number. The
worst-case complexity of HFP (detailed in the extended version [8]) is O(m3Δ2).

Improving HFP with Package Flipping. A concern appears in the second step
of HFP (when we merge packages without taking care of the M bound): if Pi

is merged with Pj , the merged package contains the tasks of Pi followed by the
ones of Pj . However, the last tasks of Pi might have very little shared data with
the first tasks of Pj , leading to poor data reuse when starting Pj . Hence, for each
package Pi, we consider two sub-packages P start

i and P end
i containing the first

and last tasks so that the weight of their input data is smaller than M but their
cardinal is maximal, as illustrated on Fig. 2. Then, we count the common input
data of each pair: (P start

i , P start
j ), (P start

i , P end
j ), (P end

i , P start
j ), (P end

i , P end
j ).

We identify the pair with most common input data and selectively reverse the
packages so that tasks in this pair of sub-packages are scheduled consecutively
in the resulting package.

Optimal Eviction Policy. Lastly, we make another improvement to HFP: it
is equipped with the optimal eviction policy adapted from Belady’s rule (see
Lemma 1). To make it compatible with dynamic runtimes, such as the StarPU

runtime used in our experiments, we use a dynamic version of the eviction pol-
icy: whenever the runtime needs to evict some data, we choose the one whose
next usage is the latest.

HFP’s packing and package flipping allows it to be applicable and have good
performance with other classes of problem such as the Cholesky factorization or
random tasks graphs.
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4 Experimental Evaluation

We present below a subset of the experimental evaluation conducted to compare
the strategy presented above.1 We refer the interested reader to the extended
version of the paper [8] for a more thorough discussion of these results, as well
as experiments on other datasets (Cholesky and randomized 2D multiplication
tasks sets). We used cuBLAS 10.2 GPU kernels with single precision.

4.1 Settings

All strategies mentioned above have been implemented in the StarPU runtime
system [2]. This allows us to test them on a variety of applications expressed as
sets of tasks. We performed both real experiments on a tesla V100 GPU as well as
simulations using the ability to run StarPU code over the SimGrid simulator [5]
to test our strategies in various experimental conditions. The use of simulation
is motivated both by the fidelity of the simulated results as well as the saving
of energy consumption. Even on the actual GPU, we have divided the original
12000 MB/s PCI bandwidth by two (by generating traffic between the CPU
memory and another GPU) to represent the bandwidth share typically available
for a given GPU in a multi-GPU platform. We have limited the GPU memory
to 500 MB in order to better distinguish the performance of different strategies
even on small datasets. The scheduling algorithms receive the whole set of tasks
of the application in a natural order (row by row for a matrix multiplication for
instance), then output this same set of tasks in a new order, which is used in
StarPU to process tasks on the GPU. We measure the obtained performance
(in GFlop/s) as well as the total volume of data transferred between CPU and
GPU. When measuring GFlop/s, the cost of computing the MST, RCM, and
HFP heuristics is not considered, to only observe their benefit as a first approach.

We use two sets of tasks for these experiments (see [8] for more datasets).

Square 2D Matrix Multiplication. To compute C = A × B in parallel,
each task corresponds to the multiplication of one block-row of A per one
block-column of B. Input data are thus the rows of A and columns of B.

Square 3D Matrix Multiplication. All matrices (A, B, C) are tiled, and
the computation of each tile of C is decomposed into multiple tasks, each of
which requires one tile of A and one tile of B. Each tile of C is also used as
input for all tasks on this tile but the first one.

We use the four scheduling heuristics presented above, together with Eager,
a scheduler that processes tasks in the natural order (i.e. row major for matrix
multiplications) as a baseline. Unless specified otherwise, for HFP we enable
all of the Ready dynamic task reordering of DMDAR (see Sect. 3), the package
flipping (called flip on the plots), and Belady’s optimal eviction policy (called
Belady on the plots). We also show results when enabling only one of them.

1 The code used to reproducibly obtain the results of this paper is available at https://
gitlab.inria.fr/starpu/locality-aware-scheduling/-/tree/coloc2021.

https://gitlab.inria.fr/starpu/locality-aware-scheduling/-/tree/coloc2021
https://gitlab.inria.fr/starpu/locality-aware-scheduling/-/tree/coloc2021
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4.2 Results on the 2D Matrix Multiplication

On Fig. 3, we plot the performance of each scheduling heuristic when varying
either the size of the problem, or conversely the size of the available memory. On
these graphs, the dotted horizontal black line represents the maximum GFlop/s
(12557) that the GPU can achieve when processing elementary matrix product
(without I/Os) and is our asymptotic goal. The red dotted vertical line denotes
the situation when the GPU memory can fit exactly only one of the two input
matrices, and the orange line denotes the situation when it can accommodate
both input matrices.
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Fig. 3. Performance on the 2D matrix multiplication.

The Eager, MST and RCM heuristics switch to pathological behavior at the
red line. Indeed, they tend to process tasks along the rows of C. This allows us
to reuse the same block-row of matrix A for tasks that compute tiles of the same
row of C, but requires reloading the whole matrix B for each new block-row of
A, which is a well-known pathological case of the LRU eviction policy.

DMDAR does not suffer from this pathological case because its Ready strat-
egy allows it to rather process tasks that need the block-column of B already in
memory instead of reloading the whole matrix.

The HFP heuristic gets performance very close to ideal. Indeed, it tends to
gather tasks that compute a square part of C that require parts of A and B,
that can fit in memory size M . This allows us to execute a lot of tasks with
very few data to load. On Fig. 3a which shows native execution measurements,
we notice that, with larger working sets, the cost of our implementation of the
Belady rule brings significant overhead. On other figures which show simulated
execution, this overhead is not included, which allows to observe its benefit. Here
are the percentage of improvement of HFP with only Ready and flip over the
other heuristics, averaged on the nine points:
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Reference Eager MST RCM DMDAR HFP only flip HFP only ready

Improvement 51.5% 25.6% 26.0% 8.3% 1.9% −0.2%

Figure 3b shows the dual view of Fig. 3a: the working set is now set to 422MB
and we simulate varying amounts of available GPU memory. The measurements
at 500 MB on Fig. 3b are the same as the measurements at 422 MB on Fig. 3a.
We can observe the same results as on Fig. 3a but reversed: when the available
memory is smaller than the working set, heuristics get pathological behavior.
Since we strongly reduce the amount of available memory, we get a more restric-
tive situation, and the Ready task selection provides a large improvement here.
The Belady rule or package flipping alone do not provide the same amount of
improvement.

4.3 Results on the 3D Matrix Multiplication

On Fig. 4, we plot the performance and amount of data transfers for all heuristics
on the 3D matrix multiplication. On this set of tasks, matrix C now plays a role
in affinities, which is why we added a vertical green dotted line to denote the
situation when all A, B, and C matrices fit in memory. On Fig. 4b, the black
dotted line represents the maximum number of transfers that can be done during
the minimum time for computation (given by the bound on the GFlop/s), thus
the hard limitation induced by the PCI bus bandwidth: a heuristic exceeding
this amount necessarily requires more than the optimal time for computation.
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Fig. 4. Results on 3D matrix multiplication on SimGrid: GPU memory size fixed to
500 MB, varying working set size.

MST keeps ordering tasks along the rows of C, and thus still gets pathological
performance when memory can not fit matrix B. This is confirmed on Fig. 4b:
the number of loads gets dramatically high. RCM and DMDAR, however, do not
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have the same problem. RCM (resp. DMDAR) computes tasks along columns
(resp. rows) of C but alternates between tasks of a few consecutive columns
(resp. rows). This allows them to improve data reuse: Fig. 4b shows that they
exhibit a limited number of transfers, even with a large working set.

HFP keeps gathering tasks forming a square part of C, which provides better
locality. Here are the percentages of average improvement of HFP over the other
heuristics:

Reference
algorithm

Eager MST RCM DMDAR HFP
only flip

HFP only
ready

HFP only
Belady

Improvement 79.4% 48.1% 16.2% 11.0% 2.0% 1.9% 2.7%

As the 3D matrix multiplication already exhibits a better data locality than
the 2D multiplication, the differences in performance between heuristics is less
pronounced than on Fig. 3a, but HFP is still better on average. It is worth
noticing that HFP without the Belady rule gets higher performance than RCM
and DMDAR, even if it triggers a larger number of transfers. The latter heuristics
indeed tend to periodically require a sudden burst of data loads, while HFP tends
to require loads that are nicely distributed over time, and thus well overlapped
with computation. We however notice that HFP without Ready gets a number of
transfers very close to the PCI bus limit in the 3014 MB working set case, which
translates into lower performance. We can also see on Fig. 4b that the Belady
rule significantly reduces the quantity of data transfers.

5 Conclusion and Future Work

To take the best performance out of GPUs, it is crucial to avoid moving data
as much as possible. We provided in this paper a formalization of the prob-
lem of ordering independent tasks sharing input data in order to minimize the
amount of data transfers, and showed that this problem is NP-complete. We also
exhibited an optimal eviction scheme, based on Belady’s rule. We adapted three
heuristics for the ordering problem, based on the state of the art, and compared
them with a new algorithm gathering tasks with similar input data into packages
of increasing size, called HFP. We also present an improvement of HFP based
on package flipping. All four ordering strategies have been implemented in the
StarPU runtime and tested on various sets of tasks. In all cases, the proposed
HFP heuristic provides significant speedups. For instance, it allows on average a
8.3% (resp. 11%) improvement over the most advanced StarPU scheduler for 2D
(resp. 3D) matrix multiplication. HFP is very relevant and obtains important
speedups particularly in the case when the memory is very constrained com-
pared to the size of the total working set. The Belady rule reduces drastically the
number of data transfers. Without this rule, HFP may entail much more data
transfers than other heuristics, but achieves better performance, which shows
that HFP is also good at distributing data transfer over time to increase trans-
fer/computation overlap. Studying this final problem (minimizing computation
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time with overlap) is one of our future directions. We also plan to focus on the
very beginning of the execution, where it is crucial to first schedule tasks with
few input data. Optimizing the implementation of Belady’s rule and adapting it
to the Ready dynamic task reordering will allow to integrate it in native execu-
tions. On a longer term, we want to tackle the general case with tasks not only
sharing input data, but also with inter-task dependencies, as well as targeting
multi-GPU platforms, for which our approach with packages seems particularly
well suited.
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Abstract. Java streams enable an easy-to-use functional-like program-
ming style that transparently supports parallel execution. This paper
presents an approach that improves the performance of stream-based
Java applications. The approach enables the effective usage of Java for
HPC applications, due to data locality improvements (i.e., support for
efficient data layouts), without losing the object-oriented view of data in
the code. The approach extends the Java collections API to hide addi-
tional details concerning the data layout, enabling the transparent use
of more memory-friendly data layouts. The enhanced Java Collection
API enables an easy adaptation of existing Java codes making those
Java codes suitable for HPC. Performance results show that improving
the data locality can provide a two-fold performance gain in sequential
stream applications, which translated into a similar gain over parallel
stream implementations. Moreover, the performance is comparable to
similar C implementations using OpenMP.

Keywords: Java parallel streams · Data layout · Data locality

1 Introduction

The development of high-performance applications requires the exploitation of
parallelism and efficient data access. Programming languages should now support
the exploitation of parallelism and efficient data storage, promoting data locality
to deliver high performance. Data storage is also essential to exploit all the
potential of modern processing units (e.g., vector processing). Traditionally, to
improve performance, the developer introduces the optimisations in the domain
code, making the code less abstract and dependent on the execution platform.

The Java language brings the write once run anywhere philosophy: the same
program can run on any system that supports a Java Virtual Machine. Java
8 introduced the Stream API [1], which enables easy-to-use parallelism over
Java collections (e.g., data-parallel processing). Unfortunately, the Java object
model compromises the suitability of the Java stream-based processing for High
Performance Computing (HPC). The main limitation is the lack of data locality
in Java collections (including arrays of objects). Java collections are implemented
with pointers to objects (e.g., an ArrayList is stored as an Array of Pointers
(AoP) to objects). This is a consequence of using type erasure [2] to implement
c© Springer Nature Switzerland AG 2022
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generic collections in order to avoid code bloat. With type erasure, a single
collection implementation can be used for all concrete types, since the collection
only needs to store pointers to [generic] objects. The AoP-based storage is also
convenient to implement many object-oriented features, like polymorphism.

The AoP-based implementation of Java collections has negative consequences
for HPC, namely: 1) additional memory references are required to access object
fields; 2) entities in collections might not be stored in contiguous memory (no
spatial locality); 3) object headers and memory alignment waste space in mem-
ory (object headers are required for JVM runtime checks). These result in a
higher number of instructions (memory accesses) and lower data locality, which
decreases the performance due to stronger impact of the memory bottleneck.

The data locality can be improved by using a layout with higher data locality,
by storing object collections as a Structure of Arrays (SoA). However, in this
case, the programmer must “give up” of the Java object-oriented view of data
(e.g., using raw arrays of data). Moreover the programmer might be forced to
drop the usage of the Java collections API (and consequently, the Stream API).
Additionally, it is not feasible to use SoA layouts on the wide base of existing
Java code, since a huge code refactoring effort would be necessary.

The research challenge addressed in this paper is how to improve the data
locality of Java collections in order to make the Java stream API more suitable
for HPC, without dropping the object-oriented view of data collections (i.e.,
preserving compatibility with the stream API and with the Java object model).
Specifically, how to transparently support more efficient data layouts (e.g., SoA
layouts) in Java stream-based parallel processing.

2 Java Stream API

The Stream interface (left of Fig. 1) provides methods to process a data stream,
namely: 1) forEach: performs an operation on each element of the data stream;
2) filter : generates a new stream with a subset of the original stream and 3)
reductions, such as count, that returns the number of elements in a stream. The
Collection interface is the root of all Java collections and was enriched in Java 8
with the stream default method that returns a stream view of a collection. Thus,
conceptually, stream-based processing is supported over all Java collections.

Fig. 1. Java collections and stream API
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A parallel stream enables parallel processing over the objects in a collection.
Thus, the introduction of the stream API enabled the specification of explicit
data-parallel processing over the wide range of Java collections. In particular,
the List interface (bottom of Fig. 1) extends the Collection interface, providing
a set of default methods for stream-based parallel processing over index-based
collections (e.g., the ArrayList implements List interface).

The stream API relies on well-defined collection interfaces, making it possi-
ble to provide new collection implementations that comply to the stream API,
avoiding the need to reimplement a parallel computing infrastructure. This is
the key point in the context of the presented work, since user-provided collec-
tion implementations can use the Java stream API and fully exploit the parallel
processing stream infrastructure.

Java collections rely on the Iterable and Iterator interfaces (see right side of
Fig. 1) to hide the implementation details of collections. The classes implement-
ing the Collection interface must also implement the Iterable interface, which
provides a method to return an Iterator. User-provided collections must imple-
ment a collection interface and the Iterable/Iterator interfaces to take advantage
of the Java stream API.

The most commonly used data structure in Java, according to the study in [7],
is the ArrayList, whose implementation is based on the AoP data layout. Figure 2
illustrates the data layout of an ArrayList of objects of a class Particle. The array
of pointers itself requires a header (at least 16 bytes) and there is also a header
on each object (at least 12 bytes). This layout has three main problems: i) there
is a pointer de-refencing to access each object, which introduces an additional
memory access per element; ii) object headers and object alignment introduce
a significative memory space for small objects, which might saturate the faster
levels of cache on modern processing units (e.g., the small L1 cache); iii) objects
referenced by those pointers might not be in consecutive memory addresses (i.e.,
weak locality of reference). The locality of references can be improved by sorting
objects in memory (e.g., a modified JVM implementation was presented in [9]
that performs object sorting during garbage collecting), but the problems i) and
ii) still remain. The AoP layout is not well-suited for HPC due to its pointer-
based nature and is not compatible with vectorisation, but it can abstract from
the details about the object pointed-to making it well-suited to implement object
models. For instance, it supports inheritance (e.g., a collection can hold pointers

Fig. 2. Java collections data layout example
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to objects from different classes that implement same [sub]type), pointers to
generic objects can be used in method calls, etc.

One alternative is the use of an Array of Structures (AoS) layout where
data entities are stored on consecutive memory addresses. Wimmer et al. [12]
modified a JVM implementation for this purpose, which automatically inlines
object fields by placing the parent and children in consecutive memory places
and by replacing memory accesses by address arithmetic. They concluded that
an automatic AoP to AoS transformation at JVM level requires a global data
flow analysis, since Java byte-codes for accessing array elements have no static
type information (i.e., they suffer from type erasure due to its AoP nature).
The AoS layout is more memory-friendly than AoP making it more suitable
for HPC but it is still not effective for vectorisation [3] (requires scatter and
gather operations). Moreover, the Java object model is more difficult to support
in the AoS layout (e.g., inheritance) and it requires low-level workarounds since
Java has no support for pointers and, consequently, has limited support for this
layout. Therefore, the AoS layout is not an attractive solution for HPC in Java.

The most effective layout for HPC is a Structure of Arrays (SoA), since it
is also essential to enable efficient vectorisation. In this layout a collection is
backed by multiple arrays, one for each data field. However, this layout drops
the object-oriented view of the data, presenting several challenges to support the
Java object model, namely, how to support objects and method calls on these
objects, inheritance, etc. The main advantage of this work is to support the Java
object model when using the more memory-friendly SoA layout.

There are some Java-based approaches that avoid the AoP layout problem for
arrays of primitive types [4,5], but they do not support collections of structured
data types (e.g., a transparent SoA layout for generic object collections). More-
over, these are not drop-in replacements for Java collections, since the generic
Java interfaces (e.g., the List interface) are not supported. As a consequence
they are not compatible with the stream infra-structure. The work presented in
this paper supports the SoA layout for collections of complex data types and
provides a drop-in replacement for Java collections, supporting the stream inter-
face. Thus, the Java stream parallel processing infra-structure becomes available
for HPC programmers.

3 Gaspar Stream-Based API and Implementation

The Gaspar framework [10] provides multiple mechanisms to improve data local-
ity, namely, it encapsulates the data entities into framework provided collections
that support efficient data layouts. The contribution of this paper is to show how
to make the Gaspar data API compatible with the Java stream API, in order
to: i) use the stream parallel processing infra-structure over Gaspar collections;
ii) improve data locality of stream-based applications by using the Gaspar sup-
ported locality optimisations and iii) ensure compatibility with the Java API
(including the object model).
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3.1 Stream-Based Gaspar API

The Java collections API (i.e., Fig. 1) can hide details of the collection represen-
tation (e.g., the internal usage of an array or linked-list). However, it can expose
details of the object layout, so it cannot hide a change in a collection layout from
an AoP to a SoA. The Gaspar data API can hide additional details concerning
the data representation, including the concrete data layout. The key difference
to the Java API is that data entities should be represented using interfaces with
getter and setter methods for each data property.

The left side of Fig. 3 presents an example of a Particle interface with PX,
PY and PZ properties. The code on the right illustrates the Gaspar API usage
to get the position (x, y, and z) of a particle. The key difference to the Java API
is the usage of getter methods in lines 5–7.

The Gaspar API was extended to provide compatibility with Java collections
and streams, by extending the framework collections the implement the Java
List interface. This opens the door to the usage of Gaspar collections in Java
applications that rely that interface: only an update to the usage of getter and
setter methods is required, something that well-designed code probably already
includes. The Gaspar collections now also implement the Java Iterable/Iterator
interfaces, which were already used in the example of Fig. 3.

Parallel processing can now be transparently explored using parallel streams.
This enables the usage of the stream parallel processing infra-structure, instead
of the built-in Gaspar parallel maps. Figure 4 illustrates the usage of the forEach
method on a collection of Particles to call the move method on each particle
in parallel. This uses a lambda function define the operation to apply to each
stream element.

3.2 Design and Implementation

The Gaspar API was designed for HPC and to support most features of the
Java object model, some of which are difficult to support when using SoA or
AoS layouts as a backend of object collections. This is a consequence of using
an object model relying on AoP data layouts. For instance, in the Java model,
objects are always passed by reference.

Fig. 3. Gaspar API usage example (Particle example). The code on the left defines the
particle interface and the code on the right in an example of the Gaspar API usage
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Fig. 4. Example of parallel streams: col is a Gaspar collection (gCollection<Particle>)
that implements the interface List<Particle>. The method move of class particle can
be called, in parallel, on all particles in the stream

Fig. 5. Particle force computation example in Gaspar API, Java AoP and SoA

Figure 5 illustrates the code of several data layouts for a collection of Particles
using a code snippet from the MD case study. The Gaspar API (left of the figure)
is used for all layouts, but plain Java requires different codes for AoP and SoA
layouts (e.g., the AoP layout is from the JGF MD benchmark [11]). This example
illustrates the complexity of using the efficient SoA layout in Java streams:

1. Entities and methods. The force method computes the force between two
particles. In the AoP layout, the class Particle represents an entity from the
domain and that entity defines a method force. In a SoA implementation
there is no particle entity in the code (only array of properties, such as the
x array), so the force method must be declared outside of the Particle class.
This has a huge impact when using Java streams since there is no object
Particle (e.g., it is not possible write the example of Fig. 4, which calls the
move method on each particle of a collection).

2. Object references. The method force receives another Particle as an argument.
In the AoP layout this is implemented by simply passing a pointer to another
object. In the SoA layout the integer index of each particle should be used
instead. Moreover, if the force is an external method that receives two parti-
cles, it will also require access to the Particles data. An alternative would be
to “construct” a particle from the SoA data, when required, but it could lead
to additional overhead and cannot be used in cases where the original particle
is updated, since in the Java model objects are always passed by reference.
This layout also makes the support for Java iterators complex since the next
method should return a reference to an object in the collection (which might
be updated). Providing support for Java iterators is fundamental to use the
Stream API.

3. Compositions of objects. In object-oriented applications it is common to define
objects as being composed of other objects (e.g., a particle might be composed
by three objects: position, velocity and force). This is trivially supported in
AoP layouts by using pointers to other objects. In the SoA layout these
compositions can be manually implemented by using a single structure of
arrays for all object fields.
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Implementation Overview. The Gaspar API relies on the gCollection and
gIterator interfaces, which now also support the Stream API (e.g., List and Itera-
tor), implementing the necessary methods as default methods. As a consequence,
gCollections can now be used in the Java stream processing infra-structure.

The development of an application in the Gaspar framework starts with a
specification of a diagram similar to an UML domain model (e.g., yellow box
in Fig. 6), where programmers specify the properties of each domain entity (i.e.,
their getter and setter methods and other relevant properties) as well as the rela-
tionship among them (aggregations). The Gaspar framework provides a visual
tool (eclipse plug-in) to support this step.

Fig. 6. Gaspar API and implementation overview

A second tool generates the
concrete implementations for
the AoP and SoA layouts, based
on the provided domain model.
Figure 6 includes the gener-
ated classes for the SoA lay-
out. The class gCollectionPar-
ticleSoA implements the inter-
face gCollection<Particle>
(note that the gCollection inter-
face extends the List inter-
face) with the SoA layout
and the class gIteratorParti-
cleSoA implements both Par-
ticle and gIterator<Particle>
interfaces. In this implementa-
tion strategy the gIterator acts
as a proxy to the actual Particle
implementation, enabling the gIterator to also behave as a Particle, and to be
used where an object of type Particle is expected. This allows the use of Particle
entities in the base program, which could also include methods (e.g., Particle
move method of Fig. 4) and the use of object references (a gIterator can be used
as method parameter, copied, etc.). One feature of the developed tool is the
ability “to flatten” aggregations defined in the domain model when generating
the SoA representation. This enables the efficient support of composite objects
in the stream API.

4 Evaluation

The benchmarks presented in this section were collected on a Linux machine with
24-cores (two Xeon E5-2695v2 processors) running Cent OS 6.3. The presented
performance results are the median of 5 executions, after one warmup execution.
The Java results use the OpenJDK 13.0.2 and C results use the GNU g++ 8.2.0.
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4.1 Low Level Evaluation: DAXPY

The widely used DAXPY function adds two vectors: Y += alfa * X. This case
study evaluates the overhead of accessing the elements of a collection, as well
as the feasibility of the automatic JVM vectorisation. The DAXPY is an easy-
to-vectorise case study, however, it requires two iterators, one for each vector,
which might degrade the performance and disable the automatic vectorisation.

Figure 7 shows the pseudo-code of three coding alternatives: 1) a traditional
index-based approach to access each vector; 2) Java iterators and a single col-
lection to store both X and Y vectors (the my2Double object stores both x and
y elements1) and 3) stream-based interface with a lambda function.

Fig. 7. DAXPY implementation alternatives

Table 1 compares the JVM effectiveness to optimise alternatives in Fig. 7:

– The table rows are the three ways of accessing elements of the collection:
i) index-based (first approach in Fig. 7); ii) external-iterator based (second
approach); and iii) internal-iterator based (stream-based, third approach).

– The table columns are four alternatives to store X and Y vectors: i) using
one or two collections (first and second columns); ii) using an AoP or a SoA
layout; and iii) using the Gaspar Stream-compatible collections and iterators.

– The value in each cell is the number of instructions to compute each element
of Y. The cells in bold are the cases where the JVM successfully vectorised
the code2, resulting in a lower number of instructions. The table also indicates
the unrolling degree of the generated code (number in parenthesis).

1 The use of a single collection for both x and y elements is mandatory, since streams
require a single iterator for accessing all the elements (i.e., for internal iteration).

2 Vectorisation was confirmed by inspection of the assembly generated.
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Table 1. Instructions/element and vectorisation results on the DAXPY case study

Java AoP Java AoP Gaspar AoP Gaspar SoA

(2 col) (1 col) (1 col) (1 col)

Index-based 20.0 (1×) 12.5 (4×) 8.3 (4×) 1.3 (4×)

Iterators (external) 44.0 (1×) 14.5 (4×) 10.1 (4×) 1.3 (4×)

Streams (internal) N/A 12.3 (4×) 9.8 (4×) 1.3 (4×)

Using two different collections (1st column) introduces high overhead, espe-
cially when using iterators. A single collection reduces the instruction count and
makes it possible to use the Java stream API. The Gaspar AoP layout (3nd col-
umn) provides additional reductions on the number of instructions due to more
efficient collection management (the compiler removes the type-checking of the
elements in the collections, because those elements are created all at once). The
Gaspar SoA implementations enable the vectorisation in all cases, including the
implementation that uses the stream API. On the other hand, versions using
AoP layouts are never vectorised, as expected, due to the usage of pointers.

The Fig. 8 shows the relative performance for vectors with 25M elements.
Using two collections delivers the worst performance, due to less data local-
ity (X and Y elements are different objects), resulting in more memory loads,
misses, etc. The stream interface has a small performance penalty relative to
index/iterator versions. Gaspar implementations provide a gain of around 2.5×
when using the SoA layout: the Java compiler was able to optimise the stream-
based code to the level of index-based/iterators. The graph on the right of
Fig. 8 presents the relative performance of parallel streams and the most effi-
cient C+OpenMP implementation (a parallel loop over raw arrays of X and
Y elements, that is also automatically vectorised). The Java parallel streams
implementation provides a 2× speed-up, a low gain for a 24-core machine. The
Gaspar AoP implementation is slightly better (3× improvement), but the Gas-
par SoA parallel stream provides a speed-up of 6× (note that part of this gain
is due to better data locality), which is pretty close to the efficient C+OpenMP
implementation (6.5× gain).

Fig. 8. DAXPY performance: sequential execution at the left and parallel at right.
Performance results are relative to the base Java AoP layout with a single collection
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4.2 Evaluation of Java Code: JECoLi

The Java Evolutionary Computation Library (JECoLi) [6,8], is a highly config-
urable Java framework, with a large number of classes that implement algorithms
and data representation alternatives used in that domain. The JECoLi frame-
work comes with a large set of case studies that were all updated to use Gaspar
collections (e.g., using gCollections where a List is expected). This case study
illustrates how the Gaspar framework avoided a huge refactoring work in order
to take advantage of the SoA Layout in the large JECoLi code base.

Fig. 9. Changes made to the CountOnes case study: Java Boolean was replaced by the
Gaspar gBoolean interface and the introduction of the getValue getter method

Fig. 10. JECoLi performance

The results presented in this section are
for the CountOnesEATest problem that is the
case study with the largest data size (and
most time-consuming). The CountOnes opti-
misation example creates 10 random solu-
tions, each one with 10000 gnomes that can
be true (1) or false (0). The optimal solution
is the one with all gnomes set to true.

The Fig. 9 illustrates the small impact
of the changes required in the CountOne-
sEATest. The original ILinearRepresenta-
tion<Boolean> interface was internally implemented as an ArrayList, imply-
ing the usage of an inefficient AoP representation. To overcome that bottleneck
the internal ArrayList<Boolean> was replaced by a gCollection<gBoolean>
(gBoolean is the framework Boolean interface with the corresponding setter and
getter methods). The code in Fig. 9 show the result of this change: the use of
the gBoolean interface and the getter method. This quick change to use the
Gaspar API allows generating a SoA representation. Figure 10 compares the
performance of various implementations (the base line is the original JECoLi
implementation, i.e., Java AoP with index-based iterations). The execution time
slightly increases when using the framework data API with an AoP representa-
tion. This can be explained by an additional overhead of using gBoolean instead
of the built-in Java Boolean, but it enables the usage of a SoA layout which
improves the performance (a gain of around 1.7×).
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4.3 High-Level Evaluation: MD

The third case study is a molecular dynamics simulation, based on the code from
the MD benchmark from the JGF Suite [11], which performs a simulation of the
behavior of Argon atoms (i.e., Argon particles). The JGF code uses an AoP of
particle objects, where each particle has nine properties: position, velocity and
a force in 3D space (see Fig. 2). The original benchmark was refactored to use
stream-based processing, but the third newton law optimisation (symmetry of
forces) was removed from the code to use a simple map parallelism pattern. This
case study shows how the proposed approach can provide huge improvements
delivering a highly scalable parallel application. A sketch of the code of this
case study was already presented (i.e., Fig. 3 and 5). The domain model of this
case study was developed using the Gaspar API, which enables the framework
to generate the collection representation, making it easier to assess the perfor-
mance implications of several implementation decisions. Figure 11 summarises
the performance results for a problem size of 500000 particles.

Fig. 11. MD performance: left: sequential execution time; right: parallel versions

In this case study, the stream AoP implementation is used as the baseline for
performance comparison, instead of the original JGF AoP index-based imple-
mentation, since it is the fastest sequential version (it is faster due to additional
virtual machine optimisations). The Gaspar AoP stream implementation intro-
duces a slight overhead, but the Gaspar SoA implementation provides a speed-
up of 1.8× over the base stream AoP implementation. The Java parallel stream
execution provides a speedup of 20× and the Gaspar SoA parallel stream imple-
mentation provides a self-speed-up of 22×. This speed-up is closer to the ideal
since the SoA version has better data locality. Overall, the Gaspar SoA imple-
mentation gets a performance gain of 42× over the base reference (stream AoP),
which is ever faster than C+OpenMP (the C version uses the SoA layout and
a parallel loop to compute the forces among particles). The slight advantage of
Java is due to the NUMA-aware allocation which is used by default. A fine-tuned
C implementation, using the thread binding feature of OpenMP 4.0 was able to
get a speed-up of 43.2×, slightly faster than Java, but this fine-tuning does not
introduce performance gains in other case studies.
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5 Conclusion and Future Work

The Gaspar framework improves the performance of stream-based Java applica-
tions by transparently using SoA layouts for object collections. The framework
supports the Java object model making it possible to use the more efficient
SoA layout almost transparently, in way similar to the built-in AoP Java layout.
This enables a more high-level, object-oriented, view of the data. The alternative
would be to drop the high-level view and use arrays of object properties. More-
over, the Gaspar framework provides a cost-effective way of improving the data
locality of existing Java applications, making those applications better suited
for HPC. Performance results show that SoA layouts improve performance by
using a better memory footprint and enables automatic vectorisation on modern
JVM. Future work includes support for more advanced features of Java, such as
polymorphism and support for irregular data structures (e.g., graphs).
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Abstract. Several recent rank one systems in the Top500 include many-
core chips with complex memory systems, including intermediate levels
of memory, multiple memory channels, and explicit affinity of specific
memory channels to specific sub-blocks of cores. Creating codes to utilize
these features efficiently is thus a significant challenge. This paper uses
Intel’s Knights Landing (KNL) processor as a testbed, as it includes
both intermediate memory and multiple architectural knobs to adjust
affinity. This paper also uses a 2D Fast Fourier Transform (FFT) as a
test case to explore what combination of architectural and algorithmic
techniques are of most benefit. Several codes are used, including state-of-
the-art FFT codes FFTW and MKL, along with two additional simple
parallel 2D FFT codes exploring explicit options. The conclusions are
that intermediate memory does provide a significant boost, that there
are architectural modes in the memory subsystem that are better suited
to FFT than others.

Keywords: Multilevel memory · FFT · Cache-oblivious · Buffering ·
Affinity

1 Introduction

Processor chips are trending towards increased numbers of cores to increase the
achievable flops/s. For many applications, increasing the number of cores creates
a higher demand for memory bandwidth. Modern chips increase bandwidth by
adding more channels to conventional memory and, in many cases, by adding
a new class of memory that may lie in between main memory and the highest
cache level. Today, this Intermediate Memory (IM) is frequently in the form
of 3D stacks of DRAM chips, each with multiple channels to the processor chip.

Creating a cache coherent memory system that scales to a number of cores
and memory channels is a challenging task. When a core initiates a memory
access, the processor has to determine if the data is resident in another cache.
If so, the processor routes the value from the core currently holding the data
to the core requesting the data. When accessing data not already in a cache,
the processor has to determine which memory channel contains the data and
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then routes the data to the requesting core. Researchers have studied ways to
maintain cache coherence in manycore systems [1,7,8].

The standard cache coherency protocols are a snoopy protocol and directory
protocol. Snoopy protocols operate communicate a cache modifying value to
all cores. The cores then snoop to see if the change is relevant to their data.
Directory protocols rely on a “directory” structure. A directory keeps track of
which cache currently has the data. There can be multiple directories or “home
agents,” each one responsible for maintaining coherence for a different portion
of memory.

In many applications, the key to effective use of the memory hierarchy is
efficient memory affinity : the mapping of data to memory controllers. Linux
decides the affinity of memory using a first-touch policy, meaning Linux places
pages on memory channels based on the first core to access it. A first-touch policy
thus enforces an affinity of cores to memory channels. A typical memory affinity
groups cores and memory channels based on proximity. Creating groups of cores
and assigning them to memory channels that limit the distance accesses need
go, given they are on the group’s designated memory controller. These groups
are referred to as Non-Uniform Memory Access (NUMA) domains. Application
designers often create codes that minimize accesses across NUMA domains.

There are at least two types of affinity: logical memory affinity and physical
memory affinity. Logical affinity is the relationship between home agents and the
logical address spaces - the mapping between cache directory and logical memory.
Physical affinity is the relationship between cache directories and the physical
address spaces - the mapping between home agents and memory controllers. The
KNL makes an interesting test-bed because users can adjust both affinities via
setting “clustering modes.”

This work explores how the memory affinities in the KNL affect the per-
formance of Fast Fourier Transform (FFT). We run four different FFT codes:
one written to be architecture-agnostic but self-tuning (FFTW), one designed
explicitly for the KNL architecture (MKL), one that performs thread-buffering,
and one designed to be “cache-oblivious”. Cache-oblivious means it is agnostic
to the cache parameters but still has an asymptotic optimal number of cache
misses. We adapt the last two to use IM.

The goal of this paper is thus three-fold: first, demonstrate how functional is
IM to a real problem (FFT), second, understand how codes can utilize IM effi-
ciently without introducing architecture-specific optimizations, and finally give
insight into which of the cluster modes offered by the KNL are of most value. We
also analyze the impact that size and shape have on FFT strategies’ effectiveness
to utilize IM. Together such information should be helpful in architecting future
systems that can use IM effectively with relatively simple codes.

The organization of this paper is as follows. Section 2 discusses the base-
line architecture we assumed and some details of the implementation. Section 3
reviews the nature of an FFT, and two popular FFT codes used as reference
points. Section 4 describes what a cache oblivious algorithm is and our imple-
mentation of a cache oblivious algorithm. Section 5 describes our thread buffer-
ing algorithm. Section 6 discusses the experimental setup. Section 7 describes the
results. Section 8 discusses related work. Section 9 concludes.
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2 Architectural Background

Many-core machines are beginning to include IM layers to the memory hierarchy
to match the increasing bandwidth demand. Often high-bandwidth IMs have
limited capacity, resulting in them being implemented alongside a larger main
memory.

Implementing an IM is most beneficial when the problem size is larger then
the IM. If the problem fits entirely in the IM, the main memory is obsolete and
all data can be stored on IM. IM acting as a cache allows programs to utilize IM
without redesigning the code. It also requires data evictions and replacements
to be communicated between the memory banks. However, on the KNL there
are many cases where configuring IM as a cache actually lowers performance.

Architechtures with IM are still emerging, and the most effective memory
structure is uncertain. Memory systems have used various strategies to map
different sections of logical address space to a processor’s physical memory ports
and how to distribute directory information about such mappings among the
cores. Comparing these strategies is complex, especially across chips.

Our baseline system for testing uses Intel’s PHI 7250 (a.k.a. “Knight’s Land-
ing” (KNL)) as its processor. This chip has 34 “tiles” each of which contains two
physical cores, a 1 MB shared L2, and a “Caching Home Agent” (CHA) that
serves as a directory for coherency traffic in some part of the address space [13].
Each of the physical cores is capable of supporting four hyperthreads. A 2D mesh
connects the 68 cores, with a subdivision of tiles into four “quadrants.” The cores
can also be divided into two hemispheres. There are two memory controllers and
six conventional DDR4 ports (three per controller) to provide roughly 96 GB of
storage with 90 GB/s of bandwidth.

The KNL also has a configurable IM called MCDRAM implemented with
eight 3D stacks of DRAM chips, each with 2 GB capacity and a separate port
into the processor chip. Two such ports are physically close to each quadrant of
the chip. The behavior of the MCDRAM is adjusted in the BIOS at boot time
and can act as an extension to the main memory (“flat mode”), a large L3 cache
(“cache mode”), or a hybrid. The aggregate MCDRAM has roughly 16 GB of
storage and provides approximately 400 GB/s bandwidth.

Given a large number of cores and memory ports, how does a load/store that
misses all on-chip caches make its way to the appropriate physical memory port
while also performing cache coherency checks? First, the KNL allows at boot
time several different “clustering modes” for defining how CHAs are associated
with physical MCDRAM ports. Coupled with this are options as to how to
associate different logical memory pages to a particular CHA.

Figure 1 demonstrates the available clustering modes on the KNL. Figure 2
illustrates how the clustering mode affects how logical memory maps to memory
controllers, as well as CHAs to memory controllers. In Fig. 2, CHAs and core
groups with the same color mean the core group sends requests directly to those
CHAs. Memory controllers and portions of the logical address space that are the
same color mean that the memory controller is responsible for that portion of
the logical address space. In all modes, the CHAs communicate to ensure cache
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coherency. There is a potential for collision when CHAs are passing messages. A
CHA can only pass so many messages in a single cycle, creating the possibility
of network congestion.

The simplest mode is “all-to-all” (A2A), where the physical CHAs map-
ping different partitions have no relationship to the nearest physical IM port
connected to the associated physical memory. It appears that in this mode, the
relationship between logical pages and controlling CHAs is one-to-one but uncon-
strained. Thus a reference to two sequential pages of IM may end up going to
two different CHAs almost anywhere on the chip. In this case, an L2 cache miss,
tag directory probe, and data access could be on opposite sides of the chip. This
option has the downside of memory requests having to traverse many CHAs
before reaching the memory controller. The advantage is that it reduces the
probability of collisions when many cores are accessing memory simultaneously.

In contrast, “Quadrant mode” ensures data is in the same quadrant as the
CHA managing it. Sequential pages in logical memory are striped across the
quadrants, increasing the memory controllers’ utilization. Each page is stored
inside a quadrant, with the following pages being stored in a different quadrant.
The downside is a strided access pattern could have all accesses go to the same
memory controller, resulting in contention.

The “Hemisphere mode” is similar but divides the memory ports in half
rather than quarters. However, it appears that two sequential pages in logical
space may still be in two different quadrants/hemispheres of the chip.

“Subnuma Clustering Four (SNC-4)” is similar to Quadrant mode in that
a CHA only handles requests to memory controllers in its quadrant. The dis-
tinction from Quadrant mode is that in SNC-4 mode each quadrant acts as a
separate NUMA node. SNC-4 aggregates logical memory in each quadrant to
act as a contiguous partition of the address space. Thus if all cores in a quad-
rant work on the same data, no memory reference to the shared partition will
cross a quadrant boundary. For example, this would allow four MPI ranks to
run essentially independent of each other, at least in memory access traffic. In
SNC-4, the memory controllers in each quadrant operate on a contiguous block
of memory. Localized memory operations are more efficient, but accesses across
the quadrants are expensive. For example, streaming a large block of data in
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Fig. 2. Examples of directory and logical memory layout in three clustering modes

another quadrant creates a high amount of traffic and increases the chance for
accesses to interfere with each other. SNC-4 is effective if the programmer is
aware of memory affinity in the program and localizes data accesses.

“Subnuma Clustering Two (SNC-2)” is similar but where the CHAs controls
half the logical memory space in the physical half closest to the memory ports
holding the associated physical memory [16].

Two other many-core chips used in TOP500 systems with similar proper-
ties are the A64FX and SW26010. Both have the equivalent of 4 quadrants.
The A64FX has 12 cores and eight channels to a separate HBM per quadrant.
Each quadrant in the A64FX has a local memory channel but maintains cache
coherency. A64FX has not adjustable clustering mode and most closely resem-
bles the KNL in SNC-4 mode. The SW26010 has a scratchpad IM for each of its
256 compute cores and a DDR3 channel for each quadrant of 64.

3 Fast Fourier Transforms

Fast Fourier Transforms (FFT) have a non-unit stride access pattern inherent in
the algorithm [15]. The access pattern of FFT computations are challenging for
cache prefetchers to predict. Thus the memory system plays an important role of
FFT-based codes. Our work focuses on 2D FFTs, which take an N×M complex
matrix as the input and produces an N×M complex matrix as the output. A
typical algorithm uses a pencil decomposition i.e., it computes a series of 1D
FFTs or “pencils.” We first compute a 1D FFTs of each column, and then 1D
FFTs of each row, i.e., M pencils of size N, then N pencils of size M. The matrices
are stored in row-major order and we transpose the input matrix to keep pencils
contiguous when necessary.

A 1D FFT of size N has a complexity of O(Nlog2(N)). Likewise, the complex-
ity of a 2D FFT is O(NMlog2(NM)). Note that NM is the size of the matrix
in complex points, i.e., the problem size. For this work, we put the dimensions
in terms of a ratio r such that M=N*r making the computational complexity
O(N2r log2(N2r)). By keeping the problem size constant, the number of flops
is unchanged, but by changing r we see a change in the overall performance,
which we attribute to the memory access patterns. We examine ratios ranging
from r = 1/512 (tall/skinny) to r = 512 (short/fat).
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For the KNL, we use as a baseline two respected multi-dimensional FFT
codes, MKL and FFTW. The FFTW3 library adapts to the hardware on which
it is running [11]. During a preliminary phase, FFTW looks at the problem size,
vector capabilities, and the number of available threads. Using this information
FFTW measures the performance of a variety of FFT algorithms before choosing
the most efficient strategy represented by what they refer to as “plans.” Plans
can be precomputed and saved for reuse, or calculated at run-time. FFTW plans
are hardware agnostic but can make use of vector units if compiled correctly.
The planning phase is often time-consuming, but can provide speedup if multiple
FFTs of the same size reuse the same plan. Using IM is not an option the planner
explores. Experiments with FFTW on the KNL have to either treat MCDRAM
as main memory (with the matrix preloaded into it and the result going back to
it), or another layer of cache.

The FFTW library is memory affinity unaware, meaning when invoking the
planner with a first-touch policy, it does not attempt different memory affinities.
The planner uses as input a specified memory allocation, allowing the user to
provide a memory affinity before invoking the planner. We have seen no infor-
mation suggesting FFTW is NUMA-aware.

In contrast Intel developed the MKL library to specifically target Intel pro-
cessors and utilize all available features. The MKL FFT routines support the
same interface as FFTW, allowing FFT applications to be easily ported to MKL.
Options exist in the MKL library to leverage MCDRAM but based on the per-
formance we have observed, we do not believe MKL manages the IM at runtime.

4 Cache Oblivious Programming

For the third of our codes, we use the established technique of cache-oblivious
algorithms. Frigo et al. introduced such algorithms [12] and others have imple-
mented cache-oblivious algorithms on real systems [6,17]. Cache-oblivious algo-
rithms often use a divide-and-conquer strategy. Most cache-oblivious algorithms
have recursive calls breaking the problem into parts and solve in a depth-first
manner. The base case is typically a problem so small that solving it is trivial.
The recursion ensures effective use of cache because two trivial solutions are pro-
duced at the bottom level and then reused in subsequent recombination steps. As
computation gets higher in the recursion tree, the size of the working set grows.
The lower levels of recursion make efficient use of the cache without awareness of
the cache size. Once the recursion reaches a point where the problem no longer
fits in the cache, the cache is no longer used efficiently.

To prove the algorithms are optimal a ideal cache model is used which
assumes the cache will make optimal decisions on replacement choices. The ideal
cache is assumed to be tall (large capacity with short cache lines) and fully
associative with an optimal offline replacement strategy that always makes an
optimal choice, i.e., the data accessed furthest in the future is chosen to be
replaced. A typical L1 cache found in a processor will often approximate “ideal”
behavior in many applications.
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Researchers have updated the cache-oblivious model to more closely resemble
modern architectures. They extended the sequential cache-oblivious work with
multicore cache-oblivious algorithms [6,9]. Cache oblivious research was later
extended to include dynamically sized caches in cache adaptive algorithms
[2–5]. The multithreaded CO work assumes caches are non-interfering, or more
precisely, data accesses from one processor does not force data to be evicted from
another cache. When threads operate independently on separate regions of mem-
ory, this assumption is realistic. When moving to manycore machines, coherency
and data sharing has to be considered to represent performance accurately.
Manycore processors with a large shared IM cache results in each core having a
dynamically sized local cache. Using IM as a cache leads to contention among
threads, permitting the amount of cache available to each thread dynamic. In
our work, creating cache-adaptive algorithms benefits performance because cache
size will naturally vary.

The original cache-oblivious FFT code was introduced by Frigo in [12]. The
algorithm computed a 1D FFT of size n by viewing the 1D input into a matrix of
size n1 and n2 such that n1 ∗n2 = n. Frigo’s strategy chooses n1 = 2�log2(n)� and
n2 = 2�log2(n)�. The 1D input is transposed into a n2 ∗n1 matrix. Then n2 FFTs
of size n1, are computed, and each element is multiplied by a twiddle factor. The
matrix is transposed again, then we compute n1 FFTs of size n2. The FFT is
solved through recursion until the subproblem is just a single element. Finally
the matrix is transposed again to put the output in correct order.

In our work, we focus on solving 2D FFTs. We solve pencils of the columns,
then rows. We perform transposes to make the pencil contiguous in memory.
We use a similar approach to Frigo’s cache-oblivious algorithm to solve the 1D
FFT; with the slight modification, we choose n1 = 64 and solve the subproblems
invoking MKL. By choosing n1 to be small, we avoid a great deal of the overhead
of recursion and still increase cache locality.

5 Thread-Level Buffering

Thread buffering assumes two memories, a large, slower “main memory” and
smaller IM memory that provides a bandwidth improvement. The idea is based
on conventional buffering techniques where the input is broken into chunks
approximately the size of the fast memory. A single chunk is moved into fast
memory at a time. The subproblem in fast memory is computed and then moved
back to main memory. Once all the chunks have been computed, the chunked
solutions are merged to produce a final result. A similar strategy has been imple-
mented successful on multicore processors in the work of Popovici et al. [14].
Popovici achieves speedup of 1.2–3× speedup over FFTW and MKL by utilizing
some of the threads to perform ‘soft DMA’ operations.

Our fourth FFT code is specially written to use explicit thread level buffering
to compute a FFT. To do this we divide threads into compute threads and copy
threads. Each compute thread is given three buffers that are the size of the
largest dimension of the 2D FFT. There are three buffers per thread to overlap
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computation with data movement. While one buffer is being computed on, one
of the others is copied out, and the other has data copied in. Each copy thread
is assigned to specific compute threads. The copy threads are placed in the same
tile as the compute thread they manage, but on a separate physical core. In
this work we chose a one-to-one ratio of copy threads to compute threads. The
copy threads perform non-temporal accesses so they do not interfere with the
compute threads. While a compute thread is operating on a block, the copy
thread is able to move out the last block and bring in the next block. If the copy
threads do not transport data quickly enough the compute thread idles, waiting
for the copy to finish. We chose a one-to-one ratio because one thread the copy
operations could be completed before the computation.

We use both implicit and explicit copying of data into IM. Implicit copying
refers to putting IM in cache mode and having copy threads act as soft DMA
devices by accessing the data they want to move into IM. In explicit copying, the
copy threads directly move data into IM. The disadvantage of explicit copying is
that it requires two memory accesses to perform the copy (a load and a store for
each data element). Implicit copying requires loading a single address of memory
and relies on the hardware/OS to efficiently move data into IM, but performs
poorly if the accessed data set is too large, resulting in thrashing in the cache.

6 Methodology

Our experiments compare four codes: MKL, FFTW, Cache Oblivious (CO),
and thread buffering (TB). We run all codes with 64 threads, except the thread-
buffering code, which has 128 threads. We run in 5 cluster modes (SNC-2, SNC-4,
A2A, Quad, Hemi) with the MCDRAM in flat and cache mode. The CO, MKL,
and FFTW codes do not use the MCDRAM in flat mode, so those options are
not run. We run 5 ratios (1/512, 1/8, 1, 8, 512) with 4 problem sizes for each
ratio. All problems use dimensions that are a power of two, and for each ratio
we ran problem sizes with (6.71E7, 2.68E8, 1.07E9, 4.29E9) complex numbers,
except the ratio 1 which used (3.35E7, 1.34E8, 5.37E8, 2.15E9). The 1× ratio
used different problem sizes due to the limitations of powers of two.

We run the thread buffering code in three forms, flat mode with buffers in
IM, flat mode with buffer in main memory, and cache mode with the buffers also
in memory. The TB code runs with the KMP AFFINITY variable set to balanced
with 64 compute and 64 copy threads. Copy threads are placed on the same core
as the compute threads they manage. We run MKL version 2020.0.166 using
the FFTW interface. We create plans using the FFTW-ESTIMATE flag. We do not
include the planning time in our measurement of the run time analysis.

7 Results

We compare the execution time of the different FFT algorithms in quadrant
mode in Fig. 3. To keep the chart readable, we only include the largest problem
sizes we ran at each ratio. The “thread-buffering IM” strategy runs in flat mode
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Fig. 5. Speedup of FFT codes relative to A2A flat. Each chart represents a separate
ratio. The rectangle in the top left approximates the shape of the input matrix

with the buffers allocated to MCDRAM. The rest of the lines are runs with
MCDRAM in cache mode. MKL performs best in quadrant mode on square
problems, with a relative speedup of roughly 4× over the cache-oblivious algo-
rithm. These speedups vary in magnitude with smaller problem sizes of the same
ratio, but the general trend shows the CO algorithm performs at its best at large
problem sizes. The cache-oblivious strategy appears to perform slightly better
than the thread buffering, with a performance difference of 1–1.5×.

We show a similar chart for FFT in hemisphere mode in Fig. 4. Performance
in this mode is more consistent than for quadrant mode, but quadrant mode
has better performance in many cases. MKL computes a square problem in
hemisphere mode up to four times faster than the cache-oblivious algorithm.
MKL is roughly 2× faster than cache-oblivious FFT code for the 512 ratio cache
mode. The square ratio has a smaller problem size, hence the lower execution
time.

Figure 5 shows the speedup of each code relative to A2A flat mode at five
different ratios. The figure shows the variance of the codes across different clus-
tering modes and ratios. The biggest performance gain MCDRAM gives our
FFT computations is quadrant mode ran on a square problem. Quadrant mode
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exhibit generally the best performance of all the clustering modes. In a few cases
and algorithms, the hemisphere algorithm performs the best.

For square FFTs, MKL gains roughly 2.5× speedup from utilizing the IM
in quadrant mode and 2.3× in hemisphere mode. At nonsquare ratios, IM is
consistently beneficial in hemisphere mode, with MKL having speedups of from
1.3×–2.5×. MKL in SNC-4 cache and SNC-2 cache has improved performance
square ratios with a steady decrease in performance at larger ratios, particularly
SNC-4 cache.

The cache-oblivious algorithm benefits from MCDRAM acting as a cache in
almost all of the clustering modes. MCDRAM does not improve the performance
of the CO FFT on the 512 and 1/512 ratios in quadrant mode and square ratio
in SNC-2. The cache-oblivious does not vary widely between clustering modes,
suggesting the code is portable to other architectures with IM. In hemisphere
mode, utilizing the IM cache improved the performance of the CO algorithm by
1.4×–1.6× across all the ratios.

The thread-level buffering algorithm consistently gains performance manag-
ing the IM memory explicitly, particularly in A2A, quadrant, and hemisphere
mode. Copy threads moving data into IM buffers increases the overall band-
width utilization and improves performance. The effectiveness of copy threads
demonstrates that FFT is a bandwidth-limited problem. The thread-level buffer-
ing strategy does not appear effective in SNC-2 or SNC-4 mode, even with the
buffers allocated to IM. We ensure the buffers are in the same quadrant as
the threads utilizing them, but the incoming data copied could reside in any
quadrant. The thread-level buffering algorithm in hemisphere mode gains perfor-
mance of roughly 1.2×–1.4×. Since most of the increased bandwidth utilization
comes from the copy threads, thread-level buffering does not exhibit the same
performance gains the other strategies do.

8 Related Work

Popovici et al. [14] improves 2D and 3D FFTs by repurposing cores/threads as
soft direct memory access (DMA) engines, with an improvement of up to 1.3×
over MKL and FFTW. They utilize a highly efficient 1D algorithm to perform
the ‘pencil’ computations, and focus on improving performance on FFTs on
nodes with significant main memories. They note that for the processors they
tested, FFTW/MKL achieved at most 47% of the peak FLOPs. In comparison,
the highest performance we have seen from the KNL is roughly 13% of peak.

The Locality Aware Roofline Model [10] builds a roofline model that applies
to NUMA machines, especially the KNL. They identify three main bottlenecks
in memory accesses in a NUMA memory system: congestion, contention, and
remote access. Congestion is when many data requests simultaneously go through
a single CHA, delaying the data requests. Congestion occurs when many cores
are accessing a single memory bank. The memory bank can only process a certain
number of requests simultaneously, resulting in delayed responses. Each of the
bottlenecks delays the overall memory requests of a system. They also discuss a
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method to create additional roofs based on the KNL hardware and the memory
access patterns of the problem. They use a series of simple kernels to explore the
variations in performance on the KNL. Often in manycore memory hierarchies,
the available bandwidth fluctuates with problem size and algorithm. We relate
this to our work because varying the problem size and ratio of an FFT naturally
leads to these bottlenecks. It is often difficult to tell if/which of these bottlenecks
is happening without carefully observing performance.

Cache adaptive algorithms are not aware of the size of the cache just like
cache oblivious algorithms, with the distinction they remain optimal even if
the cache size changes dynamically. This distinction comes up in a variety of
situations, but in our work it occurs when multiple threads are contesting a
shared cache. Shared caches have to be considered very differently than private
caches, and being cache oblivious is not sufficient to state an algorithm is cache
adaptive [5].

9 Conclusion

We provided a detailed explanation of the different clustering modes available to
the KNL. We demonstrate how the clustering mode impacts the performance of a
2D FFT using many different sizes, shapes, and algorithms. All of the algorithms
gain performance when utilizing IM in one mode or another. Whether or not an
algorithm effectively utilizes the IM varies with the clustering mode. Many of
the algorithms we ran have excellent speedup with the IM in quadrant mode on
square ratios but perform poorly on non-square ratios. Hemisphere consistently
benefits from the IM configured as a cache across all ratios.

The exact reason hemisphere mostly outperforms quadrant mode is unclear,
although we have some ideas. Often FFTs have powers-of-two strided memory
accesses, which causes makes accessing memory problematic. One typical exam-
ple is every access mapping to the same cache set, reducing the effective cache
size. We suspect a large enough stride will result in subsequent accesses to map
to the same CHA. Note that the KNL has 34 CHAs, so two quadrants will have
eight CHAs, the other two will have nine. The quadrants with eight CHAs may
have implications for strides that are a power of two. In future work, we plan to
do a more investigative analysis of how striding affects CHAs.

We implemented thread-level buffering and cache-oblivious FFT codes that
have competitive performance with highly optimized codes. Both our FFT codes
contain no architecture-specific optimizations. Both of these algorithms benefit
from the IM across all the ratios. Our results show the most effective clustering
mode to compute a square FFTs is quadrant, and hemisphere for non-square
problems. When computing both square and non-square FFTs, the best strat-
egy is to run in the hemisphere as the quadrant tends to be more erratic in
performance. Our thread buffering algorithm is an effective strategy to use the
IM in flat mode, which no other existing FFT codes does, to our knowledge.
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Abstract. Communication among devices in multi-GPU systems plays
an important role in terms of performance and scalability. In order to
optimize an application, programmers need to know the type and amount
of the communication happening among GPUs. Although there are prior
works to gather this information in MPI applications on distributed sys-
tems and multi-threaded applications on shared memory systems, there
is no tool that identifies communication among GPUs. Our prior work,
ComScribe, presents a point-to-point (P2P) communication detection
tool for GPUs sharing a common host. In this work, we extend Com-

Scribe to identify communication among GPUs for collective and P2P
communication primitives in NVIDIA’s NCCL library. In addition to
P2P communications, collective communications are commonly used in
HPC and AI workloads thus it is important to monitor the induced
data movement due to collectives. Our tool extracts the size and the
frequency of data transfers in an application and visualizes them as a
communication matrix. To demonstrate the tool in action, we present
communication matrices and some statistics for two applications coming
from machine translation and image classification domains.

Keywords: Inter-GPU communication · Multi-GPUs · Profiling

1 Introduction

Nowadays, multi-GPU systems are commonly employed for parallel applications
either to reduce execution time or to enable processing a large amount of data.
In a multi-GPU application, there are many alternative ways for devices to
communicate, thus choosing the right communication type can become a critical
performance contributor. In convolutional neural networks (CNNs), for instance,
while data and spatial parallelism based implementations may perform gradient
exchange at the end of each iteration, filter and channel parallelism based imple-
mentations may require multiple collective communication calls at each layer
[11], resulting different performance behaviour and scalability. Hence, identifying
the type and size of the communication among GPUs can guide the programmer
in many aspects for performance optimization.
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Broadly speaking, communication on a multi-processor system can be catego-
rized into two types: P2P communication between two processors (e.g., GPUs) or
collective communication among multiple processors. For P2P communication,
CUDA API offers various data transfer schemes to the programmer by utiliz-
ing Unified Virtual Addressing (UVA), Zero-copy Memory and Unified Mem-
ory paradigms. For collective communication, NVIDIA offers NCCL [21] library
which provides efficient and topology-aware collectives. Collective primitives are
used in various parallel algorithms that require collective work done by a group
of processors. For example, many deep learning applications require data to
be distributed in many processors and share the gradients among themselves,
typically with an All-Reduce collective. Hence, deep learning frameworks such
as PyTorch, Tensorflow and MxNet have already integrated NCCL into their
frameworks to perform collective calls [21].

Communication monitoring among GPUs can help reason about scalabil-
ity issues and performance divergence between different implementations of the
same application, and guide the programmer to utilize the interconnects for bet-
ter performance. For instance, if a single GPU application is scaled up to multiple
GPUs, it may follow a master-slave communication pattern, which would under-
utilize the GPU interconnects. Because of the aforementioned reasons, identi-
fying the volume of communication for different communication patterns offer
avenues to improve performance and tune software for scalability.

To the best of our knowledge, there is no communication monitoring tool
for NCCL collective communication primitives in multi-GPU systems. Previous
work on communication monitoring includes identification of MPI collectives on
distributed systems such as EZTrace [28]. EZTrace can identify explicit P2P
communication functions that CUDA offers such as cudaMemcpy but it cannot
identify Unified Memory, Zero-Copy memory and NCCL collective communi-
cation primitives. Similarly, NVIDIA’s profiler nvprof [18] cannot provide any
information about data transfers in NCCL primitives because data movement
in NCCL is not based on cudaMemcpy API. Nsight Systems [19], a system-wide
performance analysis tool by NVIDIA, visualizes the timeline of collective calls
together with other kernel information but does not present overall picture of the
data movement. Moreover, it does not provide any visual or machine readable
data on the amount of data movement between GPU pairs.

This work extends ComScribe [1], a tool that can monitor, identify, and
quantify different types of communication among GPU devices, to support collec-
tive communication primitives. ComScribe can extract communication-related
activities in an application and generate a communication matrix that shows the
amount of data movement between GPU-GPU or GPU-CPU pairs. It leverages
the NVIDIA’s profiling tool nvprof to monitor P2P communication. However,
a significantly different approach is required to monitor collective communica-
tions because nvprof is not capable of providing any information about NCCL
collectives. Our extension to the ComScribe tool overcomes this limitation and
works in three steps: First, we preload the NCCL library with extra functionality
for logging the data transfers. Second, we collect GPU-GPU memory transfer
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information during the execution. Finally, we perform post-processing to quan-
tify communication among GPUs and generate the communication matrices.
Our contributions are summarized below:

– We extend ComScribe to provide a more complete coverage of the communi-
cation types and monitor data transfers between GPUs during the execution
of collective communication primitives.

– We present communication statistics and communication matrices for a
machine translation and an image classification applications to demonstrate
how ComScribe can be used for explaining different implementations of data
parallelism.

– The extensions are incorporated in ComScribe, which is available at
https://github.com/ParCoreLab/ComScribe.

The rest of the paper is organized as follows. In Sect. 2, we discuss the pre-
vious work on P2P communication monitoring with ComScribe and introduce
NVIDIA Collective Communication Library (NCCL). It also explains all NCCL
collective communication primitives. In Sect. 3, we discuss the design and imple-
mentation of collective communication monitoring. Section 4 shows the results
on selected applications. Section 5 describes the related work. Section 6 presents
our conclusions.

2 Background

In this section, we first introduce the previous work on point-to-point commu-
nication monitoring with ComScribe. Then, we discuss the collective commu-
nication primitives supported by the NCCL.

2.1 Point-to-Point Communication Monitoring with ComScribe

ComScribe was originally developed to identify P2P communication of host-
device and device-device pairs for various data transfer types offered by CUDA
APIs. It supports the monitoring of explicit data transfers such as cudaMemcpy as
well as implicit data transfers such as Zero-Copy Memory and Unified Memory.
It is implemented on top of NVIDIA’s profiling tool nvprof, which can generate
intra-node P2P communication information together with computation-related
information in a machine readable format. Once the necessary profiling data is
generated, ComScribe extracts the relevant information and generates commu-
nication matrices.

Host-Device Communication. In CUDA programming, a memory trans-
fer between a host and a device can be realized in two ways: explicit trans-
fer and implicit transfer. An explicit transfer refers to the cudaMemcpy or
cudaMemcpyAsync function in CUDA Runtime API where the programmer can

https://github.com/ParCoreLab/ComScribe
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explicitly specify the kind (Host-to-Device, Device-to-Host, or cudaMemcpyDe-
fault) of the memory transfer. Implicit transfer types are Zero-Copy memory and
Unified Memory. Zero-Copy memory paradigm allows a GPU to directly access
host memory over PCIe or NVLink interconnect by pinning a memory region in
host memory and mapping it to the GPU. A memory region allocated with Unified
Memory via cudaMallocManaged is accessible from any processor (CPU or GPU)
in the system. Page faults are handled by the page migration engine automatically.

Device-Device Communication. As in host-device communication, there
are two types of a data transfer: explicit transfers and implicit trans-
fers. In an explicit transfer, the programmer can use either cudaMemcpy or
cudaMemcpyPeer. If peer access is disabled, the data will be copied to the host
and then transferred to the destination device. In P2P communication, implicit
transfer types are also Zero-Copy memory or Unified Memory. In Zero-Copy
memory, devices with peer access capability can read and write to each oth-
ers’ memory through the data pointer. In Unified Memory, any memory region
allocated with cudaMallocManaged can be accessed by the peer GPUs.

2.2 NCCL for GPU-Based Collective Communication

NCCL is NVIDIA’s Collective Communications Library that provides efficient
and topology-aware inter-GPU communication. It implements both collective
and point-to-point communication primitives for intra-node and inter-node com-
munication. NCCL has the ability to detect and utilize various interconnects
such as PCIe, NVLINK, InfiniBand Verbs, and IP sockets. This feature elimi-
nates the burden of optimizing applications for systems with different topology
or interconnects.

Collective communication involves a data transfer between more than one
GPU, unlike P2P communication where there is only one sender and receiver. In
order to use a collective primitive on a group of GPUs (i.e. in a communicator),
each GPU within the communicator is assigned a zero-based rank and each
rank involved in a collective communication must call the same communication
primitive function with compatible arguments. For example, they must be in the
same communicator.

The need for efficient implementation of collective communication primitives
comes from the fact that many parallel algorithms share data among a group
of processors (i.e., communicator). Especially, the need for abundance of data
in deep learning models require data to be distributed in many processors and
share the gradients among processors, typically with an All-Reduce collective.
Hence, deep learning frameworks such as PyTorch, Tensorflow and MxNet have
already integrated NCCL into their frameworks to perform collective calls.

Before the advent of NCCL, collective primitives would be implemented
through a combination of CUDA memory copy operations and CUDA kernels for
local reductions. In NCCL, each collective is implemented in a single kernel that
handles both communication and computation operations in order to speed up the
synchronization and minimize the resources needed to reach peak bandwidth.
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Collective Communication Primitives. NCCL provides five collective
communication primitives: Broadcast, Reduce, ReduceScatter, AllGather, and
AllReduce. Especially, AllReduce is frequently used in deep learning applications
to share the local gradients among processors. NCCL’s collective communication
primitives are similar to MPI’s collective communication primitives. The func-
tionality of each collective primitive is described below:

– Broadcast: The Broadcast collective copies data buffer that resides in the root
rank’s memory to the all other ranks.

– Reduce: The Reduce collective performs a reduction operation on data (e.g.
sum, max) aggregated from all ranks in a communicator and writes the result
in the specified rank.

– ReduceScatter: The ReduceScatter collective performs the same operation as
the Reduce operation, except the result is scattered in equal blocks among
ranks, each rank getting a chunk of data based on its rank index.

– AllGather: In AllGather, each rank in the communicator aggregates N values
from every rank into an output buffer. The output is ordered by rank index.

– AllReduce: The AllReduce collective is similar to the Reduce collective. The
only functional difference is that the result of the reduction is written into
each rank’s receive buffer in the communicator instead of one rank. AllRe-
duce is a rank agnostic operation, i.e. reordering of ranks does not affect the
outcome since all ranks will have identical data at the end. This operation is
functionally equivalent to a Reduce followed by a Broadcast.

Point-to-Point Primitives. P2P primitives (ncclSend, ncclRecv) were added
to NCCL 2.7. These primitives allow users to express primitives that are not
directly implemented in NCCL such as one-to-all (scatter), all-to-one (gather),
and all-to-all communication operations.

3 Collective Communication Monitoring

In ComScribe, design of collective communication monitoring is significantly
different than P2P communication monitoring. ComScribe leverages nvprof to
capture P2P communication information to construct the communication matri-
ces. However, this approach is not applicable to collective communication moni-
toring because nvprof does not provide any memory transfer information about
NCCL collective primitives. NVIDIA’s new profiling tool Nsight Systems could
serve as an alternative approach for NCCL profiling but even though it can visu-
alize the execution timeline of NCCL kernels, it does not provide any information
on data transfers in a machine readable format. Moreover, the information pro-
vided by Nsight Systems is convoluted with the compute kernel information
required for the collective primitives, which makes it hard for the programmer
to distill the communication related activities.

Figure 1 illustrates the collective communication monitoring workflow added
to ComScribe. ComScribe employs LD PRELOAD utility to intercept NCCL



46 M. A. Soytürk et al.

Fig. 1. Workflow diagram of ComScribe

calls and records the data transfers of collective primitives. The main benefit
of this approach is that it eliminates the need to change the source code of the
binary being investigated by the user.

In order to use NCCL, the initialization step is to create a communicator and
allocate a send buffer and a receive buffer for each device. Creation of the com-
municator involves generating a unique id for the communicator and assigning
zero-based rank to each device in the communicator. After the initialization, the
programmer can make multiple collective calls on the communicator. The same
collective call must be performed by each rank in the communicator.

Internally, NCCL computes the data transfer channels and decides on which
algorithm to be used based on the estimation of how long each algorithm would
take for each collective call and enqueues the work to a queue. ComScribe

retrieves this data before the execution of the collective call on the devices. At
the end of the execution, ComScribe generates a single output file that contains
the data transfers of each device in the communicator. Then, it parses these
output files and generates communication matrices and other communication
related statistics.

AllReduce. While NCCL implements Broadcast, Reduce, AllGather and
ReduceScatter operations with only ring algorithm, it provides three algorithms
for AllReduce: ring, tree and collnet. The algorithm used for is important for
profiling because it affects the amount of communication among ranks. Table 1
shows the data movement induced by each algorithm.

Table 1. Number of bytes sent and received by a rank in the communicator for AllRe-
duce operation. S is the size of the data, N is the number of ranks

Algorithm types Intranode Internode

Ring 2 × (N − 1) × S/N 2 × (N − 1) × S/N

Tree root: S, others: 2 × S root: S, others: 2 × S

Collnet 2 × S S

Ring is a high latency, bandwidth optimal algorithm, where each rank in the
communicator sends data to the next rank and receives data from the previous
rank. It offers maximum bandwidth by partitioning data into small chunks and
pipelines them along the ring. For AllReduce, this setup leads to 2 × (N − 1)
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sends and receives with size S/N , where S is the size of the data to be reduced
and N is the number of ranks in the communicator.

The tree algorithm was introduced in NCCL 2.4 to improve the scalability.
It is a logarithmic latency algorithm which has a good performance on small
and medium size operations [25]. It uses a double binary tree approach which
pipelines a Reduce and a Broadcast to implement an AllReduce operation. Each
rank in AllReduce primitive with tree algorithm sends and receives 2×S except
the root, which is just S.

The collnet algorithm allows GPUs on multiple nodes to do in-network reduc-
tions by using SHARP plugin [17] for Mellanox switches. In-network reduc-
tions improve performance by eliminating the need to send data multiple times
between endpoints.

4 Evaluation

We evaluate the results of our tool on two applications: a machine translation
application, which uses Google’s Neural Machine Translation model [29] and
an image classification application, which employs a 18 layer Residual Neural
Network (ResNet-18) model [9]. A DGX-2 system with 16 NVIDIA Tesla V100
GPUs is used for evaluation. CUDA 10.1 and NCCL 2.7.8 are used for the
experiments. The overhead of ComScribe for collective communication profiling
is 1.4x on average. Since the prior work [1] already shows the P2P capabilities of
ComScribe, we mainly focus on collective communications in our evaluation.

4.1 Machine Translation Model

To demonstrate the capabilities of ComScribe, we profile a data parallel Google’s
Neural Machine Translation (GNMT) model with an improved attention mecha-
nism [20] on WMT16 English-German dataset [13]. Figure 2 shows the communi-
cation matrix of GNMT model for both P2P and collective communication com-
bined in log scale. The communication matrix generated with ComScribe is a
(d + 1) ∗ (d + 1) matrix where d is the number of GPUs. X- and Y-axis indicate
the GPU ids. (0,0) entry is reserved for the host. Other entries in the matrix show
the number of bytes transferred between a CPU-GPU or GPU-GPU pairs.

Table 2 shows the number of calls made to each communication type and the
amount of data movement for each type. An interesting observation from the
table is that the implementation of the GNMT model performs explicit transfers
more than any other transfer types. Since explicit data transfer time is composed
of a fixed latency and a component that is proportional to the transfer size, small
sized transfers are dominated by the fixed latency. An optimization could be to
bundle these fine-grained messages into more coarse-grained transfers.

To better understand the usage of collective communication primitives, our
tool can also produce matrices for each collective and P2P operation separately.
The implementation of GNMT uses three collective primitives during the train-
ing of the machine translation model: AllReduce, Broadcast and AllGather.
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Figure 3 shows that AllReduce operation is responsible for most of the collec-
tive communications. Hence, the time spent on optimizing AllReduce operation
might have a good return on investment.

Fig. 2. Communication matrix of GNMT on 8 GPUs that shows the number of bytes
transferred between CPU-GPU and GPU-GPU pairs for both P2P and collective com-
munication. (0,0) is reserved for host.

Table 2. Communication primitive usage analysis of GNMT application.

Communication type Number of calls Total size (in Mbytes)

AllReduce 30739 3, 661, 704

Broadcast 5 612

AllGather 3 3

Explicit transfers 778694 15, 711

Unified memory 0 0

Zero copy memory 0 0

4.2 Image Classification Model

Convolutional Neural Networks (CNNs) are widely used to classify images as
they are capable of extracting various features from the given set of training
images and infer the class of unseen images. We use a distributed data-parallel
PyTorch implementation of ResNet-18 model with NCCL backend [24] to classify
images on a subset of ImageNet [6] dataset, which consists of 120000 images,
where the size of each image is 64 × 64.

In a data-parallel training, the data is first distributed across GPUs in the
system and each GPU runs the same model on mini-batches from its own local
data. Once each GPU completes its forward and backward passes independently
in an iteration, a gradient exchange among GPUs occur to aggregate the gradi-
ents of the weights. However, there are various optimizations [10,16,23] that can
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(a) AllReduce (b) Broadcast (c) AllGather

Fig. 3. Communication matrix for each collective that is used during the training of
GNMT model. Number of bytes transferred with AllReduce on the left, Broadcast in
the middle, and AllGather on the right in logarithmic scale

be implemented by library developers or the users of the libraries to complete the
second step, which changes the collective communication frequency. For exam-
ple, instead of launching AllReduce in every iteration to update gradients, the
application can conduct a number of local training iterations before synchroniz-
ing gradients globally. Another optimization example that PyTorch implements
is gradient bucketing [16], which increases throughput and decreases latency.
Gradient bucketing method buckets multiple gradients into one ncclAllReduce
call instead of sending each tensor separately.

ComScribe can help users to understand the effect of gradient bucketing
on data movement. Table 3 shows the number of calls to each NCCL primitive
used during the training and the total size of the communication detected by
ComScribe. A naive implementation of the gradient exchange step would be
calling AllReduce operation for each parameter as soon as the gradient is ready
for that parameter. In this naive approach, the number of AllReduce calls in an
epoch would be equal to DxN , where D is the number of parameters and N is
the number of iterations, yet since PyTorch implements gradient bucketing, the
number of calls to the AllReduce operation is less than the naive approach.

Table 3. Number of execution of each primitive, total size used in ResNet-18 trained
on a subset of ImageNet dataset for one epoch

Collective operation Number of calls Total size (Bytes)

ncclAllReduce 1174 3.2 × 1010

ncclBroadcast 789 6.1 × 107

5 Related Work

There are several tools that can trace memory transfers of host-device and device-
device pairs with LD PRELOAD utility (EZTrace [28], Extrae [4], and Score-P
[12]). These tools can generate execution traces for various programming models
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including MPI, OpenMP, CUDA, and PThread. However, the profiling support for
CUDA memory transfer functions is limited with explicit memory transfer types
(i.e. cudaMalloc and cudaMemcpy) and NCCL tracing is not supported by any of
them. Our tool can detect collective communication primitives of NCCL and var-
ious P2P communication types such as Unified Memory and Zero-Copy memory.

Tartan, multi-GPU benchmark suite [14,15], consists of micro-benchmarks
and applications to evaluate the performance of modern interconnects such as
PCIe, NVLink 1.0, NVLink 2.0, NV-SLI, NVSwitch and Infiniband systems with
GPUDirect RDMA in scale-up (intra-node) and scale-out (inter-node) scenar-
ios. Even though Tartan assesses interconnect performance in terms of latency,
bandwidth, and efficiency on message size for P2P and collective communica-
tions, it is not a tool that can be used to monitor and detect communications of
an application.

Nsight Systems is NVIDIA’s visualization tool that aims to help users to iden-
tify potential optimizations for their applications. It can provide a timeline of the
executed functions and data transfer information for CUDA memory operations.
With 2020.5 and 2021.2 releases, NCCL support was added for timeline visu-
alization but currently it does not show the underlying communication among
GPUs. Our tool can log communication among GPUs for collective NCCL calls
in a machine readable format whereas to our knowledge Nsight Systems com-
mand line interface can only show the time it takes to run a single collective call
at the moment.

Scope [22] is a benchmark framework which consists of various benchmark
suites such as Comm|Scope, NCCL|Scope and many others. Comm|Scope is a
NUMA-Aware multi-CPU multi-GPU benchmark suite that measures point-to-
point transfer latency and bandwidth within a single node for different data trans-
fer scenarios with CUDA P2P communication types such as Unified Memory and
Zero-copy Memory. NCCL|Scope consists of micro-benchmarks to measure the
bandwidth of all five NCCL primitives with cudaEvent. Even though our work and
Scope have features in common such as the categorization of communication types,
our work supports the recording of communication for any application.

There are number of tools to generate communication patterns for multi-core
applications. ComDetective [26] detects inter-thread data transfers by using debug
registers andPerformanceMonitoringUnits formulti-threaded applications. Simi-
lar to ComDetective, Azimi et al. [2] and Tam et al. [27] use kernel support to access
PMUs and the kernel generates the communication pattern for the applications.
Simulator-based approaches to collect memory access traces for generating com-
munication patterns include Barrow-Williams et al. [3] and Cruz et al. [5]. Numal-
ize [7,8] uses binary instrumentation to intercept memory accesses and captures
communication between threads accessing the same address in memory. None of
the aforementioned tools, however, have support for multi-GPU communication.

6 Conclusion

The communication among GPUs is a critical performance and scalability contrib-
utor in multi-GPU systems. ComScribe, our prior work, identifies and analyzes
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implicit and explicit P2P communication types. This work extendsComScribe to
support collective communication profiling for GPUs sharing a common host. To
implement the collective communication support in ComScribe we take advan-
tage of LD PRELOAD utility to identify and extract the communication among
GPUs in a communicator. We evaluated our tool against two deep learning appli-
cations. Our tool can provide insights to study the communication patterns of col-
lective operations.
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Abstract. With discrete Intel GPUs entering the high performance
computing landscape, there is an urgent need for production-ready soft-
ware stacks for these platforms. In this paper, we report how we prepare
the Ginkgo math library for Intel GPUs by developing a kernel backed
based on the DPC++ programming environment. We discuss concep-
tual differences to the CUDA and HIP programming models and describe
workflows for simplified code conversion. We benchmark advanced sparse
linear algebra routines utilizing the converted kernels to assess the effi-
ciency of the DPC++ backend in the hardware-specific performance
bounds. We compare the performance of basic building blocks against
routines providing the same functionality that ship with Intel’s oneMKL
vendor library.

Keywords: oneAPI · Intel GPUs · Ginkgo · Math library · SpMV

1 Introduction

In the past, Intel GPUs were primarily available as an integrated component
of Intel consumer-grade CPU architectures. With the announcement that the
Aurora Supercomputer will be composed of general purpose Intel CPUs com-
plemented by discrete Intel GPUs, it becomes clear that Intel has committed
to enter the arena of discrete high performance GPUs. Compared to integrated
GPUs, discrete GPUs are usually not exclusively intended to accelerate graphics,
but they are designed to also deliver computational power that can be used, e.g.,
for scientific computations. To enable the programmers to use Intel GPUs, Intel
has teamed up with partners from academia and industry to create the oneAPI
ecosystem, a platform for C++ developers to develop code in the DPC++ lan-
guage, based on the SYCL language, that can be executed on any Intel device,
including CPUs, GPUs, and FPGAs. As application scientists are in need of high
performance math functionality for Intel GPUs, we develop a DPC++ backend
for the Ginkgo open source math library that enables to run both basic linear
algebra building blocks and complex algorithms like iterative Krylov solvers on
Intel’s GPUs. Up to our knowledge, we are the first to present the functionality
and performance of an open source math library on Intel discrete GPUs.
c© Springer Nature Switzerland AG 2022
R. Chaves et al. (Eds.): Euro-Par 2021, LNCS 13098, pp. 57–68, 2022.
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In this paper, we describe the process of preparing Ginkgo for Intel’s GPUs
by first providing an overview of the Ginkgo library design in Sect. 2 and intro-
ducing the oneAPI ecosystem and the DPC++ programming model in Sect. 3.
The core of the paper is Sect. 4, where we discuss some differences between the
CUDA/HIP programming environment and the oneAPI environment, detail how
we reflect these particularities in the development of the DPC++ backend, and
report how we developed a small framework for converting CUDA kernel code to
DPC++ equivalents. In Sect. 5, we evaluate the performance of Ginkgo on dif-
ferent Intel GPU generations: we initially benchmark both the Intel generation
9 and 12 GPUs in terms of feasible bandwidth and peak performance to derive a
roofline model, then evaluate the performance of Ginkgo’s SpMV kernels (also
in comparison to Intel’s oneMKL library), and finally assess the performance
of Ginkgo’s Krylov solvers. We conclude with a summary of the porting effort
and performance evaluation in Sect. 6.

Fig. 1. The Ginkgo library design overview.

2 Ginkgo Design

Ginkgo [1] is a GPU-focused cross-platform math library focusing on sparse
linear algebra. The library design is guided by combining ecosystem extensi-
bility with heavy, architecture-specific kernel optimization using the platform-
native languages CUDA (NVIDIA GPUs), HIP (AMD GPUs), or OpenMP
(Intel/AMD/ARM multicore) [2]. The software development cycle ensures
production-quality code by featuring unit testing, automated configuration and
installation, Doxygen code documentation, as well as continuous integration and
continuous benchmarking framework. Ginkgo provides a comprehensive set of
sparse BLAS operations, iterative solvers including many Krylov methods, stan-
dard and advanced preconditioning techniques, and cutting-edge mixed precision
methods.

A high-level overview of Ginkgo’s software architecture is visualized in
Fig. 1. The library design collects all classes and generic algorithm skeletons in
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the “core” library which, however, is useless without the driver kernels available
in the “omp”, “cuda”, “hip”, and “reference” backends. We note that “refer-
ence” contains sequential CPU kernels used to validate the correctness of the
algorithms and as the reference implementation for the unit tests realized using
the googletest framework. We note that the “cuda” and “hip” backends are very
similar in kernel design, so we have “shared” kernels that are identical for the
NVIDIA and AMD GPUs up to kernel configuration parameters [6]. Extending
Ginkgo’s scope to support Intel GPUs via the DPC++ language, we add the
“dpcpp” backend containing corresponding kernels in DPC++.

3 The oneAPI Programming Ecosystem

oneAPI1 is an open and free programming ecosystem that aims at providing
portability across a wide range of hardware platforms from different architecture
generations and vendors. The oneAPI software stack is structured with the new
DPC++ programming language at its core, accompanied by several libraries to
ease parallel application programming.

DPC++ is a community-driven (open-source) language based on the ISO
C++ and Khronos’ SYCL standards. The concept of DPC++ is to enhance the
SYCL [4] ecosystem with several additions that aim at improving the perfor-
mance on modern hardware, improving usability, and simplifying the porting
of classical CUDA code to the DPC++ language. Two relevant features origi-
nally introduced by the DPC++ ecosystem now also integrated into the SYCL
standard are2: 1) a new subgroup concept that can be used inside kernels. This
concept is equivalent to CUDA warps (or SIMD on CPUs) and allows optimized
routines such as subgroup-based shuffles. In the Ginkgo library, we make exten-
sive use of this capability to boost performance. 2) a new Unified Shared Memory
(USM) model which provides new malloc host and malloc device operations
to allocate memory which can either be accessed both by host or device or respec-
tively accessed by a device only. Additionally, the new SYCL queue extensions
facilitates the porting of CUDA code as well as memory control. Indeed, in pure
SYCL, memory copies are entirely asynchronous and hidden from the user, since
the SYCL programming model is based on tasking with automatic discovery of
task dependencies.

Another important aspect of oneAPI and DPC++ is that they adopt plat-
form portability as the central design concept. Already the fact that DPC++
is based on SYCL (which leverages the OpenCL’s runtime and SPIRV’s inter-
mediate kernel representation) provides portability to a variety of hardware. On
top of this, DPC++ develops a plugin API that allows to develop new back-
ends and switch dynamically between them3. Currently, DPC++ supports the
standard OpenCL backend, a new Level Zero backend which is the backend of
1 https://spec.oneApi.com/versions/latest/index.html.
2 These extensions are now part of the SYCL 2020 Specification: https://www.

khronos.org/news/press/khronos-releases-sycl-2020-final-specification.
3 https://intel.github.io/llvm-docs/PluginInterface.html.

https://spec.oneApi.com/versions/latest/index.html
https://www.khronos.org/news/press/khronos-releases-sycl-2020-final-specification
https://www.khronos.org/news/press/khronos-releases-sycl-2020-final-specification
https://intel.github.io/llvm-docs/PluginInterface.html
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choice for Intel hardware4, and an experimental CUDA backend for targeting
CUDA-enabled GPUs. As our goal is to provide high performance sparse linear
algebra functionality on Intel GPUs, we focus on the Intel Level Zero backend
of DPC++.

4 Porting to the DPC++ Ecosystem

Though porting Ginkgo to a new hardware ecosystem requires acknowledg-
ing the hardware-specific characteristics, the Ginkgo design exposed in Sect. 2
induces a general porting workflow: 1) As a first step, core library infrastructure
needs to be ported manually. This includes the Ginkgo Executor which allows
transparent and automatic memory management as well as the execution of ker-
nels on different devices. Another example of manual porting in this preparatory
step is the cooperative group and other shared kernel helper interfaces used for
writing portable kernels and simplify advanced operations. 2) A set of scripts can
be used to generate non-working definitions of all kernels for the new backend.
The completion of this step creates a compilable backend for the new hardware
ecosystem. 3) For an initial kernel implementation, we rely whenever possible on
existing tools to facilitate the automatic porting of kernel implementations from
one language to the target language, doing only manual fixes when appropriate.
The successful completion of this step provides a working backend. 4) Finally,
we analyze and validate the observed performance for the ported kernels. Often,
simple kernels already provide competitive performance, but advanced kernels
require either manual tuning or algorithmic adaptation to reach the hardware
limits.

In this section, we concentrate on step 3) of this workflow and parts of step 1).
These steps which we detail now are the more library agnostic aspect of the port-
ing workflow and our lessons learned can be of practical use to other libraries.
In addition, step 4) is a more complex effort and some portions of the library
have been tuned, such as the Ginkgo SpMV kernels, and their performance
will be showcased in Sect. 5. To facilitate the porting in step 3), we can rely on
the Intel “DPC++ Compatibility Tool” (DPCT), which converts CUDA code
into compilable DPC++ code. DPCT is not expected to automatically gener-
ate a DPC++ “production-ready” executable code, but “ready-to-compilation”
and it requires the developer’s attention and effort in fixing conversion issues
and tuning it to reach performance goals. However, with oneAPI still being in
its early stages, DPCT still has some flaws and failures, and we develop a cus-
tomized porting workflow using the DPC++ Compatibility Tool at its core, but
embedding it into a framework that weakens some DPCT prerequisites and pre-
vents incorrect code conversion. In general, DPCT requires not only knowledge
of the functionality of a to-be-converted kernel, but also knowledge of the com-
plete library and its design. This requirement is hard to fulfill in practice, as for
complex libraries, the dependency analysis may exceed the DPCT capabilities.
Additionally, many libraries do not aim at converting all code to DPC++, but
4 https://spec.oneApi.com/level-zero/latest/core/INTRO.html.

https://spec.oneApi.com/level-zero/latest/core/INTRO.html
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Fig. 2. Summary of the workflow used to port the cooperative groups functionality
and isolating effort such that we get the correct converted DPC++ codes.

only a subset to enable the dedicated execution of specific kernels on DPC++-
enabled accelerators. Thus, we employ a strategy where we first isolate kernels
we want to convert and then re-integrate them into the library.

Isolated Kernel Modification. DPCT converts all files related to the target
file containing any CUDA code that are in the target (sub)folders. To prevent
DPCT from converting files that we do not want to be converted, we have to
artificially restrict the conversion to the target files. We achieve this by copying
the target files into a temporary folder and considering the rest of the Ginkgo

software as a system library. After the successful conversion of the target file,
we copy the file back to the correct destination in the new DPC++ submodule.
By isolating the target files, we indeed avoid additional changes and unexpected
errors, but we also lose the DPCT ability to transform CUDA kernel index-
ing into the DPC++ nd item<3> equivalent. As a workaround, we copy simple
headers to the working directory containing the thread id computation helper
functions of the CUDA code such that DPCT can recognize them and transform
them into the DPC++ equivalent. For those complicated kernels, DPCT fails in
the kernel conversion, and we need a fake interface that enables DPCT to apply
the code conversion for nd item<3>.

Fake Interface - Workaround for Cooperative Groups. While DPC++
provides a subgroup interface featuring shuffle operations, this interface is dif-
ferent from CUDA’s cooperative group design as it requires the subgroup size
as a function attribute and does not allow for different subgroup sizes in the
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same global group. As Ginkgo implementations aim at executing close to the
hardware-induced limits, we make heavy use of cooperative group operations.
Based on the DPC++ subgroup interface, we implement our own DPC++ coop-
erative group interface. Specifically, to remove the need for an additional function
attribute, we add the item ct1 function argument into the group constructor. As
the remaining function arguments are identical to the CUDA cooperative group
function arguments, we therewith achieve a high level of interface similarity. This
workflow resolves the porting not only for the cooperative group functionality
but also other custom kernels replacing the automated DPCPP conversion.

A notable difference to CUDA is that DPC++ does not support subgroup
vote functions like “ballot”, or other group mask operations yet. To emulate
this functionality, we need to use a subgroup reduction provided by oneAPI to
emulate these vote functions in a subgroup setting. This lack of native support
may affect the performance of kernels relying on these subgroup operations. We
visualize in Fig. 2 the workflow we use to port code making use of the cooperative
group functionality via four steps:

1. Origin: We prepare an alias to the cooperative group function such that
DPCT does not catch the keyword. We create this alias in a fake cooper-
ative group header we only use during the porting process.

2. Adding Interface: As explained previously, we isolate the files to prevent
DPCT from changing other files. We also add the simple interface includ-
ing threadIdx.x and make use of the alias function. For the conversion
to succeed, it is required to return the same type as the original CUDA
type, which we need to extract from the CUDA cooperative group function
this thread block.

3. DPCT: Apply DPCT on the previously prepared files. Adding threadIdx.x
indexing to the function allows DPCT to generate the nd item<3> indexing.

4. Recovering: During this step, we change the related cooperative group func-
tions and headers to the actual DPC++ equivalent. We implement a complete
header file that ports all the cooperative group functionality to DPC++.

In Fig. 3, the final result of the porting workflow on a toy example with
cooperative groups. For the small example code in Fig. 3a, if we do not isolate the
code, DPCT will throw an error like Fig. 3b once encountering the cooperative
group keyword. A manual implementation of the cooperative group equivalent
kernel is shown in Fig. 3c. Our porting workflow generates the code shown in
Fig. 3d, which is almost identical to the original CUDA code Fig. 3a.

Pushing for Backend Similarity. To simplify the maintenance of the
platform-portable Ginkgo library, our customized porting workflow uses some
abstraction to make the DPC++ code in this first version look more similar
to CUDA/HIP code. We note that this design choice is reflecting that Ginkgo

was originally designed as a GPU-centric sparse linear algebra library using
the CUDA programming language and CUDA design patterns for implementing
GPU kernels and that the developers of Ginkgo are currently used to design-
ing GPU kernels in CUDA. However, this may not be preferred by developers
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(a) CUDA cooperative group example (b) DPCT conversion reports an error

(c) Manual DPC++ subgroup
implementation. The main difference

from CUDA are in orange

(d) The result converted by our
porting script

Fig. 3. The cooperative group example

used to programming in task-based languages, and it may also narrow down the
tasking power of the SYCL language. We may thus decide at a later point to
move closer to the SYCL programming style, which is possible given Ginkgo’s

strict decoupling between algorithms and hardware backends. For now, we aim
for a high level of code similarity by not only adding the customized cooperative
group interface previously discussed, but also adding a dim3 implementation
layer for DPC++ kernel launches that uses the same parameters and parameter
order as CUDA and HIP. We simply reverse the dim3 in the interface layer.

One fundamental difference remaining between the CUDA or HIP ecosystems
and DPC++ is that the latter handles the static and dynamic memory alloca-
tion in the main component. CUDA and HIP handle the allocation of static
shared memory inside the kernel and the allocation of dynamic shared memory
in the kernel launch parameters. Another difference is the kernel invocation syn-
tax since DPC++ relies on a hierarchy of calls first to a queue, then a parallel
instantiation. For consistency, we add another layer that abstracts the combina-
tion of DPC++ memory allocation and DPC++ kernel invocation away from
the user. This enables a similar interface for CUDA, HIP, and DPC++ kernels
for the main component, and shared memory allocations can be perceived as a
kernel feature, see Fig. 4. In Fig. 4, the right purple block (additional layer call)
has the same structure as the left gray block (cuda kernel call). The enhanced
porting script not only handles the kernel conversion but also the addition of
the intermediate layer.
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Fig. 4. Hierarchical view of usual CUDA (left) and DPC++ (right) kernel call and
parameters. Wrapping the hardware-specific kernels into an intermediate layer enables
consistency in the kernel invocation across all backends.

5 Performance Assessment of Ginkgo’s DPC++ Backend

Experiment Setup. In this paper, we consider two Intel GPUs: the generation
9 (Gen9) integrated GPU UHD Graphics P630 with a theoretical bandwidth of
41.6 GB/s and the generation 12 Intel R© Iris R© Xe Max discrete GPU (Gen12)5

which features 96 execution units and a theoretical bandwidth of 68 GB/s. To
better assess the performance of either GPUs, we include in our analysis the
performance we can achieve in bandwidth tests, performance tests, and sparse
linear algebra kernels. We note that the Gen12 architecture lacks native support
for IEEE 754 double precision arithmetic, and can only emulate double precision
arithmetic with significantly lower performance. Given that native support for
double precision arithmetic is expected for future Intel GPUs and using the dou-
ble precision emulation would artificially degrade the performance results while
not providing insight whether Ginkgo’s algorithms are suitable for Intel GPUs,
we use single precision arithmetic in all performance evaluation on the Gen12

architecture6. The DPC++ version we use in all experiments is Intel oneAPI
DPC++ Compiler 2021.1 (2020.10.0.1113). All experiments were conducted on
hardware that is part of the Intel DevCloud.

Bandwidth Tests and Experimental Performance Roofline. Initially, we
evaluate the two GPUs in terms of architecture-specific performance bounds.
For that purpose, we use the BabelStream [3] benchmark to evaluate the peak
bandwidth, and the mixbench [5] benchmark to evaluate the arithmetic per-
formance. In the upper part of Fig. 5, we visualize the bandwidth we achieve
for different memory-intense operations. On both architectures, the Dot kernel
requiring a global synchronization achieves lower bandwidth than the other ker-
nels. We furthermore note that the Gen12 architecture achieves for large array

5 https://ark.intel.com/content/www/us/en/ark/products/211013/intel-iris-xe-max-
graphics-96-eu.html.

6
Ginkgo is designed to compile for IEEE 754 double precision, single precision, double
precision complex, and single precision complex arithmetic.

https://ark.intel.com/content/www/us/en/ark/products/211013/intel-iris-xe-max-graphics-96-eu.html
https://ark.intel.com/content/www/us/en/ark/products/211013/intel-iris-xe-max-graphics-96-eu.html
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Fig. 5. Top: Bandwidth analysis on the Intel Gen9 (left) and the Gen12 (right) GPUs
using double and single precision values, respectively. Bottom: Experimental perfor-
mance roofline for the Gen9 (left) and Gen12 (right) GPUs.

sizes about 58 GB/s and the Gen9 achieves 37 GB/s. The experimental roofline
visualized in the lower part of Fig. 5 reveals that the Gen9 architecture achieves
about 105 GFLOP/s, 430 GFLOP/s, and 810 GFLOP/s for IEEE double pre-
cision, single precision, and half precision arithmetic, respectively. The Gen12

architecture does not provide native support for IEEE double precision, and the
double precision emulation achieves only 8 GFLOP/s. On the other hand, the
Gen12 architecture achieves 2.2 TFLOP/s and 4.0 TFLOP/s for single precision
and half precision floating point operations.

Fig. 6. SpMV kernel performance for Ginkgo and Intel’s oneMKL library on Gen9

(left) and Gen12 (right) using double and single precision, respectively.



66 Y. M. Tsai et al.

Fig. 7. Performance evaluation of Ginkgo’s Krylov solvers on Intel’s Gen9 (left) and
Gen12 (right) GPUs.

SpMV Performance Analysis. An important routine in sparse linear algebra
is the Sparse Matrix Vector product (SpMV). This kernel reflects how a
discretized linear operator acts on a vector, and therewith plays the central role
in the iterative solution of linear problems and eigenvalue problems. We consider
two sparse matrix formats: 1) the “COOrdinate format” (COO) that stores all
nonzero entries of the matrix along with their column- and row-indices, and
the “Compressed Sparse Row” (CSR) format that further reduces the memory
footprint of the COO format by replacing the row-indices with pointers to the
first element in each row of a row-sorted COO matrix. We focus on these popular
matrix formats not only because of their widespread use, but also because Intel’s
oneMKL library provides an optimized CSR-SpMV routine for Intel GPUs.

In Fig. 6, we visualize the performance of the CSR and COO SpMV ker-
nels of the Ginkgo library along with the performance of the CSR SpMV

kernel from the oneAPI library. Each dot represents the performance achieved
for one of the test matrices of the Suite Sparse Matrix Collection. Ginkgo’s

CSR reaches up to 4 GFlop/s for several problems using double precision arith-
metic, oneMKL CSR up to 3 GFlop/s similarly to Ginkgo’s COO format.
For Gen12, Ginkgo’s CSR reaches up to 14 GFlop/s, oneMKL 13 GFlop/s
and Ginkgo’s COO 10 GFlop/s. These results highlight that Ginkgo’s for-
mats CSR and COO are at least competitive with the oneMKL CSR on both
Gen9 and Gen12

7. The achieved performance in terms of percentage of peak
bandwidth are exposed in Fig. 8.

Krylov Solver Performance Analysis. We now turn to advanced numerical
algorithms typical to scientific simulation codes. The Krylov solvers we consider –
CG, BiCGSTAB, CGS, FCG, and GMRES – are all iterative methods popular for
solving large sparse linear systems. They all have the SpMV kernel as the central
building block, and we use Ginkgo’s COO SpMV kernel and test matrices from
the Suite Sparse Matrix Collection that are orthogonal in their characteristics
and origin. We run the solver experiment for 1,000 solver iterations after a warm-
up phase. In Fig. 7, we visualize the performance of the Krylov solvers on the

7 At the point of writing, oneMKL does not provide a COO implementation and CSR

can only operate on shared memory on the Gen12 architecture.
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AMD RadeonVII GPU NVIDIA V100 GPU

Intel Gen9 letnIUPG Gen12 GPU

Fig. 8. SpMV performance relative to the hardware bounds on various GPUs.

Gen9 architecture (left) and Gen12 architecture (right). On the Gen9, the
performance varies between 1.5 GFLOP/s and 2.5 GFLOP/s. We notice that
the performance differences in-between the solvers are quite small compared
to the performance differences for the distinct problems. Running Ginkgo’s
Krylov solvers in single precision on the Gen12 architecture, we achieve between
5 GFLOP/s and 9 GFLOP/s for the distinct systems. We note that all Krylov
solvers based on short recurrences (BiCGSTAB, CG, CGS, FCG) are very similar
in terms of performance, while GMRES usually achieves lower performance. This
highlights that the kernels of GMRES require specific tuning.

Platform Portability. Finally, we evaluate the hardware efficiency of the
Ginkgo DPC++ backend compared to the other backends. For that, we focus
on the relative performance the functionality achieves on GPUs from AMD,
NVIDIA, and Intel, taking the theoretical performance limits reported in the
GPU specifications as the baseline. This approach reflects the aspect that the
GPUs differ significantly in their performance characteristics, and that Intel’s
oneAPI ecosystem and GPU architectures are still under active development
and have not yet reached the maturity level of other GPU computing ecosys-
tems. At the same time, reporting the performance relative to the theoretical
limits allows us to both quantify the suitability of Ginkgo’s algorithms and
to estimate the performance we can expect for Ginkgo’s functionality when
scaling up the GPU performance. In Fig. 8 we report the relative performance of
different SpMV kernels on AMD Radeon VII (“hip” backend), NVIDIA V100
(“cuda” backend), and Intel Gen9 and Gen12 GPUs (both “dpcpp” backend).
As expected, the achieved bandwidth heavily depends on the SpMV kernel and
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the characteristics of the test matrix. Overall, the performance figures indicate
that the SpMV kernels achieve about 90% of peak bandwidth on V100 and
Gen12, and about 60–70% of peak bandwidth on RadeonVII and Gen9. On
all hardware, Ginkgo’s SpMV kernels are competitive to the vendor libraries,
indicating the validity of the library design and demonstrating good performance
portability.

6 Summary and Outlook

We have prepared the Ginkgo open source math library for Intel GPUs by devel-
oping a DPC++ backend. We presented strategies that are practical to accom-
modate the design differences between CUDA/HIP and the oneAPI ecosystem.
We also evaluated the efficiency of Ginkgo’s functionality in terms of translating
hardware performance into algorithm performance and comparing basic building
blocks against equivalent kernels shipping with Intel’s oneMKL library. In this
performance evaluation, we demonstrated that Ginkgo’s kernels are competi-
tive to Intel’s oneMKL library, and that Ginkgo’s advanced math functionality
is readily available to run on Intel GPUs. While the oneAPI ecosystem itself aims
for providing portability to GPUs from other vendors, we have acknowledge that
this is currently not possible, and we thus have to postpone the evaluation of
Ginkgo’s DPC++ backend on AMD and NVIDIA platforms.
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Abstract. Deep Reinforcement Learning has been recently a very active
field of research. The policies generated with use of that class of train-
ing algorithms are flexible and thus have many practical applications.
In this paper we present the results of our attempt to use the recent
advancements in Reinforcement Learning to automate the management
of resources in a compute cloud environment. We describe a new app-
roach to self-adaptation of autonomous management, which uses a digital
clone of the managed infrastructure to continuously update the control
policy. We present the architecture of our system and discuss the results
of evaluation which includes autonomous management of a sample appli-
cation deployed to Amazon Web Services cloud. We also provide the
details of training of the management policy using the Proximal Policy
Optimization algorithm. Finally, we discuss the feasibility to extend the
presented approach to further scenarios.

Keywords: Computing clouds · Autonomous control · Digital twin ·
Deep Reinforcement Learning

1 Introduction

In the last few years, computing clouds have gained wide-spread adoption.
Almost every newly created software utilizes resources which are available
through a cloud-like interface. On the one hand this approach allowed to greatly
improve the development time, on the other hand it also posed a number of
challenges. One of the more prominent ones is the optimization of costs, espe-
cially when working with Infrastructure-as-a-Service (IaaS ) environments. Since
the resources (Virtual Machines - VMs) are charged usually based on how long
they are being used, in order to limit the costs one needs to reduce the usage
time. Unfortunately, this is a non-trivial task, especially given that there might
be special constraints imposed by Service Level Agreements (SLAs).

In the recent years we could also observe a lot of progress being made in
the field of Reinforcement Learning (RL) [19]. Initially, the algorithms which
are part of that domain, were only perceived as applicable to relatively simple
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problems. It was assumed that the controlled environment could be observed
with the use of only a few metrics and there could not be too many actions to
execute. Fortunately, combining RL with the Deep Learning techniques allowed
to mitigate those limitations and reach new state-of-the-art results [14,15,18].
The main advantage of the mentioned methods is the ability to learn through
observing and interacting with an environment which is similar to or the same
as the one the agent is going to operate in. Using such an approach allowed to
achieve results surpassing the performance of humans.

There are also first attempts to utilize Deep Reinforcement Learning (DRL)
in the context of autonomous cloud management. These systems share one com-
mon flaw: their policies are able to make good decisions only in situations, which
they were exposed to in the prior training. Without external intervention there
is no way to update the policy after deployment. One might argue that an obvi-
ous solution to this problem would be to continuously train the policy while
it is in control of the cloud environment, in other words: use an online policy
training algorithm. Unfortunately, there is one significant disadvantage to this
approach. Due to the nature of the training process, the new versions of the
policy might not make decisions as good as the current policy. Making constant
changes introduces a risk that the update might trigger applying potentially
disastrous changes into the managed environment. To avoid such a situation,
the performance of a new version of the policy needs to be verified prior to its
deployment. One way of doing this is to compare the reward achieved by the
old and new policies within a tightly controlled environment. A good example
is a simulation, where the conditions: time flow, workload, available resources
are provided equally and the decisions coming from the policies are the only
major difference. Another advantage of such an approach is that it introduces
a mechanism which allows the policy to become closer and closer suited to the
environment it controls. New information is constantly being added to the repre-
sentation of the policy (e.g. in the case of DNN - to the neural network weights).

An approach, which also utilizes a simulated copy of the managed resources,
called the Digital Twin or the Virtual Twin has been employed in industrial and
manufacturing systems for over a decade [12]. In this paper we present an experi-
mental monitoring and management system, which to the best of our knowledge,
is a first attempt to apply the concept of a digital twin to cloud resources man-
agement. It is an extension of our previous research [5] which demonstrated how
DRL techniques can be used to control cloud application’s resources. It uses the
newly acquired data to continuously re-train the control policy and then com-
pare this with the currently used version. This allows the management system to
respond to a potentially changing workload while addressing the issues described
above. This paper’s contribution includes a novel architecture of an autonomous
management system which utilizes a continuous policy improvement loop, initial
policy training procedure, implementation of the described concepts available as
an Open Source project [6], experiments and analysis of their results.
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The paper is organized as follows: in Sect. 2 we overview related work, Sect. 3
describes the system’s architecture and Sect. 4 explains the policy training pro-
cedure. Section 5 discusses the design of the experiment, description of the envi-
ronment it was executed in and evaluates the results of the experiment. Section 6
summarizes our research and outlines further work.

2 Related Work

Reinforcement Learning can be applied in the field of cloud resource autoscaling
in various ways [8], e.g. to create a policy which changes the number of acquired
resources (typically VMs) or a policy which assigns a computational task to a
specific resource (typically VMs to physical servers).

In [16] authors aim to create a cloud resource scheduling framework, which
uses the Deep Q-network (DQN) algorithm. The autonomous agent is assign-
ing virtual machines, which execute computational tasks, to a set of physical
servers. Its objective is to minimize both the submitted task execution times-
pan and the energy consumption of resources. The approach has been verified
using a simulated experiment, in which the proposed approach has been com-
pared to random, round robin and multi-objective particle swarm optimization
allocation algorithms. The policy created using the DQN algorithm was able
to find near-optimal allocation, what suggests that the presented approach can
be considered as an efficient resource allocation and task scheduling strategy.
A similar approach is used in [3]. In this case, however, the objective of the
DQN-trained policy was to choose an assignment policy (e.g. first fit) for incom-
ing VM placement requests. Authors performed a number of simulation experi-
ments where they compared the proposed approach with traditional assignment
heuristics. That analysis showed the effectiveness of the DRL-based approach,
especially in the context of handling workloads with major fluctuations. In [20]
a resource provisioning framework based on the concept of monitoring-analysis-
planning-execution (MAPE ) loop is introduced. It consists of two loops: the
first one is responsible for provisioning resources from an IaaS provider and uses
DRL techniques; the second loop is coordinating cloud services which use the
provisioned resources. Using both loops allows to control the number of used
VMs while reducing the waste caused by incorrectly predicting the specific task
resource consumption. The approach has been verified using a simulated exper-
iment which demonstrated its ability to increase utilization, decrease the total
cost while avoiding SLA violations.

The mentioned papers suggest that autonomous control achieved by using
DRL techniques can render good results. Unfortunately such conclusions are
confirmed only by results of simulations. This raises a concern, whether the dis-
cussed approach can be applied to more complex, real-world infrastructures. In
our previous work [5] we demonstrated how such a task could be addressed and
presented a proof-of-concept of an autonomous resource provisioning system.
That system used a policy, created by a DRL training algorithm, to control
resources utilized by a sample application deployed to Amazon Web Services
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cloud [1]. In this paper we are extending this approach. We introduce a simu-
lated copy of the managed resources (a so called digital twin) which is used to
continuously improve the initially deployed policy.

The idea of using a virtual clone of a physical object or system is not new. It
has been first proposed in 2003 [10] and since then applied primarily to manu-
facturing processes, aviation and healthcare [2]. The digital copy can be a source
of information for production optimization, predictive maintenance, cost opti-
mization and physical resource management. To the best of our knowledge, the
presented system is the first attempt to apply this technique together with DRL
to cloud resources management. In this context, a set of simulated resources
becomes the digitial twin of the application infrastructure deployed to a public
cloud. Due to the fact that the source environment is also digital and can be
examined through a set of well defined APIs, its replication is relatively easy.
The simulated behavior of the managed resources can be made quite accurate
as they are governed by complex, yet precise and deterministic rules. By using
a simulation we can create a safe environment in which on the one hand the
training process can be performed safely (a policy making disastrous changes
would not be copied to the real environment) and in a short amount of time
(e.g. thanks to a speed up in the time flow).

3 Digital Twin System Architecture

The architecture of the described system consists of two loops. The first one
is the feedback loop of the subsystem which embeds the control policy in the
real cloud environment. The second one is formed of the components used to
continuously update the policy, including the simulated copy of the controlled
resources (the digital twin). The components of both loops are shown in Fig. 1.

The first feedback loop starts with collecting measurements about the
resources which take part in executing the jobs. Each of them is configured to
start reporting relevant measurements as soon as the resource becomes online.
The measurements often differ in their nature what influences how often their
values are provided, e.g. the amount of free RAM and CPU usage is reported
every 10 s while the virtual machine (VM) count - once per minute. To simplify
the implementation of collecting of those raw measurements, we introduced the
Graphite monitoring tool [9]. Graphite aggregates all the collected values into a
single interval to create a consistent snapshot of the environment. This interval
in our case is set to one minute.

Next, the measurements are passed to the SAMM monitoring and manage-
ment system [7]. SAMM enables experimenting with new approaches to man-
agement automation. It allows to easily add support for new types of resources,
relevant metrics, to integrate new algorithms and technologies, and to observe
their impact on the observed system. In our use case, SAMM is used to combine
other elements of the system together. First, it periodically polls measurements
which portray the current state of the system (e.g. the average CPU usage in the
computation cluster, amount of used memory etc.). Then, SAMM aggregates the
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Fig. 1. Components of the real cloud environment under discussion. On the left side
there is the environment-policy feedback loop. On the right side, the continuous policy
update loop. Arrows denote interactions between the components.

measurements into metrics used by the decision policy. Finally, it communicates
with the Policy Evaluation Service: provides the current state of the system in
a form of metric values and retrieves decisions. The decisions are then executed
through a cloud vendor API (e.g. Amazon Web Services API).

The Policy Evaluation Service provides decisions on how to change the allo-
cation of resources based on the results of evaluation of the observed system
state. The decisions are made according to the policy trained with the use of the
PPO [18] algorithm. The results of the evaluation may include starting a new
small, medium or large VM (deficient resources are used to handle the workload
under the current system state), removing resources - shutting down a small,
medium, large VM (excessive resources are used given the current state of the
system), doing nothing (a proper amount of resources is allocated). One should
remember that implementing the change is always subject to environment con-
straints. Not always it is possible to immediately execute an action. We might
need to wait for a while because the system is in a warm-up or cool-down (a
period of inactivity to allow to stabilize the metrics after the previous action has
been executed), the previous request might still be being fulfilled, the request
failed and needs to be retried in some time. In order to be able to train a policy
which can cope with such limitations, the mentioned factors need to be involved
in the simulation used for training.

For the described system we make a few assumptions about the workload
under management:

– processing is organized into many independent tasks,
– the number of tasks which are yet to be executed can be monitored,
– the tasks which have been interrupted before their termination (e.g. in case

the processing VMs are shutdown) are rescheduled,
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– the tasks are considered idempotent, i.e. executing them multiple times does
not change the end result,

– information about the currently executed tasks (e.g. schedule time, resources
usage) needs to be available to the management system,

– resources administering the workload (e.g. accepting the input requests) are
exempt from automatic management to prevent the workload from being
accidentally terminated.

Fulfilling the monitoring requirements may require introducing extensions to
the software which generates the workloads and instrumenting the resources which
are used to create tasks. In our case, the workload driver has been enhanced with
the capability to store relevant workload information in a database.

The second loop highlighted in Fig. 1 is responsible for continuously updat-
ing the policy. This part of the autonomous management system is responsible
for ensuring that the decisions implemented in the real environment are made
by the policy which has been retrained with the use of the most recent data.
This loop starts with the Policy Evaluation Service which hosts the currently
used Behavior Policy. Actions taken by the policy are implemented in the cloud
environment and thus are observable in the measurements and metrics (e.g. in
the number of used CPU cores) recorded in the database. The content of the
database is then used by the Policy Training Service. It periodically retrieves a
set of the most recently processed tasks and the specification of the resources
which were available when those tasks were being executed. This allows the
service to configure the simulated environment in which a Candidate Behavior
Policy is being trained. Once the training is over, the driver compares the reward
from the simulation and that from the real environment. If the former reward is
greater, the candidate policy replaces the currently used one. The simulator has
been implemented following the results of our prior research [4].

The policy is trained according to the procedure described in the next section.

4 Policy Training

The policy has been implemented as a neural network. We experimented with
different architectures of the neural network used as a decision policy. The best
results have been obtained with the use of the long-short term memory (LSTM)
[11] architecture. LSTM is a type of recurrent neural network, which means it
passes the output of a layer back to its input. This makes it well-suited to process
data in form of sequences, as it has access to the previously made decisions. A
basic building block in the LSTM networks is usually described as a cell. In our
case the network consisted of 128 cells. For training we have used the Proximal
Policy Optimization (PPO) [18] algorithm with parameters as shown in Table 1.

To avoid the cold start problem, we have trained the initial version of the
policy in the above described simulator. As the workload we have used a set
of 1551 jobs. The jobs have been organized into 21 batches (10 batches of 100
and 11 batches of 50 jobs) submitted at 8 min intervals. Every job requested
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Table 1. Policy training process - parameters.

Parameter name Parameter value Parameter name Parameter value

Value function coefficient 0.0005 Lambda 0.97

Gamma 0.99 Training timesteps 250000

Clipping factor 0.2 Learning rate 0.0003

Batch size 250 Simulator speedup 60

360 s on a single CPU core. The single job has been added 30 min after the final
batch. This ensured that there would always be a cool-down period of time at
the end. We chose such a workload because on the one hand it was small enough
so that it allowed to conduct a full simulation in a short amount of time and on
the other hand it was comprehensive enough to allow the policy to gather some
valuable experience about batch processing applications. In our experiment we
present a scenario where such an application is being automatically managed.
The discussed approach is not limited to batch processing, though. If a different
type of workload needs to be controlled, the policy can be adjusted by training
it with the use of a different workload.

The agent objective was defined as minimizing the overall cost of resources,
which has been expressed as maximizing the following reward function:

F (TS , TM , TL, TQ) = −
∑

x∈V

(Tx · Cx) − TQ · CQ (1)

where:

– F (TS , TM , TL, TQ) is the negative cost of resources used for processing,
– V denotes a set of possible VM sizes. In our experiments it includes S, M or
L which represent small, medium or large VMs, accordingly,

– Tx denote the number of hours of running VMs of size x,
– Cx is the hourly cost of running a machine of size x. In our case CS = $0.2,

CM = $0.4 and CL = $0.8,
– TQ – the hours spent by tasks waiting for execution.
– CQ – the hourly penalty for missing SLA targers when a task is waiting

for execution. The cost 0.036 is accrued for every second of a delay between
submitting task for execution and actual execution. There were no limitations
on the waiting time or the waiting queue size.

5 Experiment

To evaluate our approach to the autonomous cloud resources control, we have
conducted an experiment with the use of resources of a publicly available cloud
environment. The overall objective was to quantify the impact of the continuous
training loop on the management process. First, we ran the sample application
10 times and managed it using the initial version of control policy. Next, we
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ran the same sample application 10 more times but managed it with the use
of a policy which was being continuously updated. Afterwards, we compared
the average resource costs and computation times. Finally, we analyzed how the
update process influenced the decisions made by the policy.

As a sample workload, we have used the pytorch-dnn-evolution tool [17].
This is a tool which attempts to discover an optimal structure of a Deep Neu-
ral Network (DNN ) to solve a given problem (e.g. categorize images in a given
set) using a co-evolutionary algorithm. In our setup, the evolution process was
configured to search an optimal DNN architecture for recognizing the handwrit-
ten digits from the MNIST dataset [13]. Using pytorch-dnn-evolution also has
its drawbacks. The workload is CPU-intensive and very irregular. The number
of evaluated individuals can greatly change in subsequent evolution iterations,
what makes it hard to choose the proper amount of resources. On the other
hand, we have verified that such a workload met all the conditions outlined in
Sect. 4, which enabled using a dynamic scaling approach.

The experiment was carried out with the use of the Amazon Web Services [1]
infrastructure. The sample application has been using Virtual Machines (VMs)
of three types: large (2 core CPU and 8 GB of RAM), xlarge (4 core CPU
and 16 GB of RAM) and 2xlarge (8 core CPU and 32 GB of RAM). Each
run started with 1 virtual machine of each type already provisioned and ran
until all the scheduled tasks were completed. We did not allow the autonomous
management policy to remove all VMs of a given type to avoid situations in
which the progress would have stalled completely. This would force us to predict
whether the policy is going to recover from such a state, which is a variant of the
halting problem. Shutting down all the virtual machines is also undesirable in
a production environment, therefore we have decided to exclude this possibility
from our tests. It is worth noting, however, that it is technically possible to
configure the presented system to allow the disposing of all of the provisioned
resources. All VMs were running in the same region (US North Virginia) and
the same availability zone to avoid introducing any additional network latency.
The components SAMM, Graphite and the workload driver have been running
on a separate VM.

Table 2. Raw measurements of subsequent workload runs.

Workload run 1 2 3 4 5 6 7 8 9 10

Resources cost, initial policy (USD) 7.86 8.10 8.07 7.82 8.43 8.15 8.29 8.04 8.25 7.41

Resources cost, policy updates (USD) 7.35 6.63 7.04 6.62 6.64 6.70 7.05 6.63 6.57 6.89

Workload time, initial policy (min.) 322 316 282 308 257 249 235 260 248 345

Workload time, policy updates (min.) 344 300 295 272 272 312 300 315 275 311

Table 2 presents raw observations of the total resources cost and the time
required to process all of the jobs for a given workload run. When the policy
remained unchanged, the average cost of resources was equal to 8.04 USD (stan-
dard deviation of 0.29). That value decreased to 6.81 USD (standard deviation
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of 0.26) when the policy updates were activated. That can be interpreted as a
15.3% cost reduction. We have attempted to confirm that result with the use
of the one-tail t-Student test, however we noticed that one of the value sets did
not meet the near-normal criterion according to Shapiro-Wilk test. However, the
observed cost averages show a strong difference while manifesting their low stan-
dard deviations. We reason that updating the control policy while a workload is
being executed, rendered superior results.

It is also worth noting that the lowering of the resource cost seemed to
increase the workload time (on average by 6.17%, from 282.20 to 299.6 min).
The dynamically changed policy on the average showed slower overall execution,
which shows that the policy traded off the execution time for the desirable cost
reduction. We have analyzed a number of factors, which potentially might have
affected the execution time, to confirm that the observed cost reduction resulted
from introducing the changes in control policy.

– The number of the fully executed jobs (not interrupted by a VM termi-
nation) within a workload run. In both cases those numbers were very similar
and thus would not affect the results.

– Average computation time required for a single job. We have noticed
that the average amount of time required to finish a single job has been shorter
by 0.98 s in the case of continuous policy updates. That can be caused by the
workload driver generating jobs which require less computations to finalize.
When considered in the context of a whole workload run, that factor could
account for a reduction in the total used resource time by 184.69 min or in
other words a reduction of $0.13 of monetary costs. Given that the difference
between the averages of raw observations in the two considered scenarios
(with continuous policy updates and without them) is equal to $1.23, we
can estimate that at least $1.1 of the cost reduction can be attributed to
the continuous policy updates. This allows to sustain the claim that policy
updates reduce the overall monetary cost.

– Environment factors. Factors like network latency, VM start-up time, etc.
had the same impact on both approaches (using a static policy and using
that with continuous updates). These factors’ effect has been reduced by run-
ning each variant of the policy multiple times. We also assume that given the
small differences in the total used resource time measurements (e.g. 11221 min
on average with a standard deviation of 403.98 min for runs without policy
updates) the impact of the environment factors on the results of our experi-
ment is very limited.

The summarized results of the conducted experiment are shown in Table 3.
To demonstrate the effects of continuous re-training and updating the policy,

in Fig. 2 we present a single run of the initial policy versus a run of one of the
policy versions obtained after a few iterations of the continuous training. The
initial policy seems to focus on multiple changes to the count of small VMs. The
second policy is more aggressive in the resource allocation: it launches multiple
medium and large VMs, however the changes in VM counts seem to be less fre-
quent. This results in a shorter total calculation time (189 min instead of 249 min
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Table 3. Results of managing the sample application with and without the continuous
policy updates. All values are averages over 10 runs.

Measured value Without updates With updates

Average resource cost (USD) 8.04 (σ = 0.29) 6.81 (σ = 0.26)

Average workload time (min.) 282.20 (σ = 37.95) 299.60 (σ = 22.71)

Average used resource time (min.) 11221 9504

Average single job time (seconds) 41.87 40.77

Average number of fully executed jobs 11422 11424

Fig. 2. Number of VMs running while the environment was being managed automati-
cally. Top: initial policy, bottom: updated policy.

in the top chart). The number of the executed jobs and the average job execution
times are very similar in both cases: 11424 and 41.76 for the initial policy vs.
11389 jobs and 41.34 s for the updated policy. This allows to conclude that the
observed differences were primarily driven by the change in policy. As presented
in the example above, the continuous re-training process is capable of introduc-
ing the versions of policy, which manifest significantly different behaviors, what
translates to an optimization of costs.

Due to the use of the digital twin approach, the additional resources for the re-
training of the control policy were very moderate in our test scenario. We could
reuse the VMs which were already provisioned to support SAMM, Graphite,
and other components of the management system. Since the additional cost
introduced by the automatic resource management was equal in both experiment
scenarios, we decided to exclude it from the final results.
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6 Conclusions and Further Work

In this paper we have presented the use of the digital twin approach for the
autonomous management of cloud resources. We created a digital, simulated
version of an existing environment and used it to reduce the monetary cost of
running it. We explained the architecture of a novel management system based
on that idea and discussed its implementation which is based on the SAMM mon-
itoring and management system. Finally, we have conducted an experiment to
verify the presented approach, which empirically demonstrated the benefits of the
used management method. We were able to reduce the average cost of resources
from $8.04 to $6.83 (by 15.3%). The management policy was being updated using
the new information coming from the managed environment, which allowed to
respond to the situations to which it not been exposed before.

The continuous policy update loop proved to be an effective way of dynami-
cally adjusting the management policy. At the same time this approach also has
its disadvantages. Training an RL policy requires quite a significant amount of
time. This means that, depending on the pace of changes to the actual workload,
the update procedure might not be able to respond fast enough to changes in
the workload or environment. Extending the management system with the con-
tinuous training loop increases its complexity and adds more parameters that
need to be tuned. These parameters need to be tuned very carefully, otherwise
one risks creating a policy which e.g. ignores historical data and only focuses on
the most recent observations.

Our on-going work is focused on extending the presented approach. We plan
to investigate the influence of different variants of the continuous training setup
on the performance of the policy. We are working on introducing a parallelism of
simulation, which would support more frequent re-training. We believe that neu-
ral network models which are used as the control policy can be further optimized,
e.g. by using a bi-directional LSTM layer.
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Abstract. We consider the problem of profit optimization for cloud bro-
kerage service in the IaaS environment. We replace this optimization prob-
lem with a game-theoretic approach where players tend to achieve a solu-
tion by reaching a Nash equilibrium. We propose a fully distributed algo-
rithm based on applying the Spatial Prisoner’s Dilemma (SPD) game and
a phenomenon of collective behavior of players participating in the game
composed of two classes of automata-based agents - Cellular Automata
(CA) and Learning Automata (LA). We introduce dynamic strategies like
local profit sharing, mutation, and competition, which stimulate the evo-
lutionary process of developing collective behavior among players to max-
imize their profit margin. We present the results of an experimental study
showing the emergence of collective behavior in such systems.

Keywords: Collective behavior · Multi-agent systems · Spatial
prisoner’s dilemma game · Cellular automata · Infrastructure as a
service

1 Introduction

Cloud Computing (CC) is a term used with increasing frequency in the past few
years, as its popularity continues to grow. They can reduce the cost and com-
plexity of owning and operating computers and networks. In an Infrastructure-
as-a-Service (IaaS) cloud, this is achieved by using Virtual Machines (VMs),
which can be dynamically assigned to the resources according to the demand
and availability, as well as a possibility of consolidating several such VMs into
the same virtual server.

As a result, an IaaS system can offer such on-demand computational services
at a low cost. Cloud users usually pay for the usage (counted by the number
of instance-hours incurred) in a pay-as-you-go model and are therefore freed
from the prohibitive upfront investment on infrastructure, which is usually over-
provisioned to accommodate peak demands [13].

Users may be charged in several different ways to access such resources. For
example, it could be either a long-term reservation or a quick on-demand lease
[13]. In long-term reservations, customers pay a fee to reserve a certain amount of
c© Springer Nature Switzerland AG 2022
R. Chaves et al. (Eds.): Euro-Par 2021, LNCS 13098, pp. 81–90, 2022.
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computing resources for a period of one or several years. Then, they get charged
extra for actually using the resource. While the extra payment may be lower
than comparable on-demand service, it may not be desirable for each customer
to pay for the more extended reservation period if their workload is relatively
light or unpredictable [3].

One of the answers to this problem is cloud service brokering [4], a model
in which a trusted third party matches the needs of customers with services of
cloud providers. Typically, brokers’ service is to find the best deals among a
set of clouds that best fit the user requirements. Brokers consider the price and
many other factors, such as privacy and security issues, Service Level Agreements
(SLAs), performance, and they might offer solutions integrating services from
multiple service providers [8].

In this paper, we analyze a game-theoretic approach to consider a problem of
multi-broker job allocation and scheduling, aiming to optimize the brokers’ profit
while maintaining a Quality of Service (QoS) level acceptable to the customer.
We propose a fully distributed approach based on converting this optimization
problem into a game-theoretic one, where brokers representing users’ demands
will search for a solution in the form of a Nash equilibrium. For this purpose
we will use a variant of SPD game proposed by [5] in the context of Cellular
Automata (CA) space.

The remainder of this paper is organized as follows. In the next section,
works related to the subject of our study are discussed. Section 3 describes the
proposed Cloud Computing (CC) system model and defines the scheduling prob-
lem. Section 4 demonstrates the performance metrics, the input parameters, and
the experimental results. Finally, Sect. 5 concludes the paper.

2 State of the Art

A multi-objective approach to the cloud brokering problem was recently pro-
posed in [7], where authors provide a dichotomic approach to minimize the cost
of service and a second - negatively correlated - objective. The novelty of the
approach lies in considering services that can be sold in bundles, in which a set
of services is sold together for a lower price than the sum of individual services’
prices. In [6], the authors introduced a brokering system for scientific workflows,
which optimizes a multi-criteria problem using an aggregated objective func-
tion. The brokering part of the system selects the length of the service period to
minimize VMs lease cost.

The idea of broker exploitation of pricing model was also studied in [13]
and solved using approximate dynamic programming. The theoretical study of
users’ requests aggregation under a concave cost function assumption and Ran-
domized Online Stack-Centric Scheduling Algorithm (ROSA) was proposed in
[14]. In their paper, authors proved the lower bound of the proposed solution’s
competitive ratio and evaluated its performance with trace-driven simulation
using Google cluster data.

Aazam [2] proposed a dynamic broker, which predicts users’ behavior based
on the so-called relinquish probability, i.e., the likelihood that the user will cease
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to use the requested services. The study also involves an advanced refund mech-
anism based on multiple criteria. It is further extended to the Amazon cloud
model and includes historical record integration in [1].

Similarly, in [10], the authors introduced an adaptive learning system that
allows the analysis of the sequence of negotiation offers received by the broker for
effectively learning the opponent’s behavior over several stages of the negotiation
process. They formulated this issue as the multi-stage Markov decision prob-
lem to suggest the broker with appropriate counter-offer tactics. Authors claim
their solution can outperform the existing fixed behavioral learning schemes and
maximize the utility value and success rate of negotiating parties without any
break-offs.

Closer to our work, in [3] authors analyzed the scenario of user cost min-
imization in mobile cloud computing (MCC) networks, where multiple coop-
erative brokers assign cloud resources to mobile users. The work investigated
two classes of cloud reservation strategies, i.e., a competitive strategy and a
compete-then-cooperate strategy as a performance bound, showing that notice-
able cooperative gains can be achieved over the pure competition in markets
with only a few brokers. In contrast, the cooperative gain becomes marginal in
more crowded markets.

A similar combinatorial auction-based algorithm was proposed in [9]. Authors
aimed to solve the optimization problem where cloud users submit their require-
ments, and in turn, vendors submit their offers containing the price, QoS, and
their prepared sets of resources. Results for procurement cost and scalability on
a large number of cloud vendors were verified using various standard distribution
benchmarks, including random, uniform, decay, and CATS.

3 Multi-objective Scheduling in Cloud Environment

3.1 Cloud Brokering Model

We assume that the Cloud Service Provider (CSP) offers abundant computing
capacity at any given time. The Cloud Resource Broker (CRB) purchases com-
putational resource from IaaS provider and has to pay for the resource cost. For
the purpose of this paper we follow the specification of Compute Optimized VM
series provided by Amazon EC2 and shown in Table 11. Broker then offers to
sell a set of VM instances M1,M2, ...,Mm, specified by several characteristics,
including a number of cores P (Mi), memory M(Mi), storage space S(Mi) and
cost per hour CB(Mi).

Cloud Service Users (CSUs) (U1, U2, ..., Un) submit to the broker their work-
flow applications Jj

k for execution. Each application is the set of n tasks or jobs.
Users are expected to pay appropriate fees to the broker dependent on the SLA
requested. Job (denoted as Jj

k) is jth job produced (and owned) by user Uk. Jk

stands for the set of all jobs produced by user Uk, while nk = |Jk| is the number of

1 The price is for Linux Instances (EU Frankfurt) with full upfront payment on 1-year
term reservation as of July, 2021.
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Table 1. Compute Optimized Dedicated VM Instances in Amazon EC2.

vCPU Memory (GiB) Price (Reserved) Price (On-demand)

c4.large 2 3.75 $0.074 $0.114

c4.xlarge 4 7.5 $0.146 $0.227

c4.2xlarge 8 15 $0.293 $0.454

c4.4xlarge 16 30 $0.586 $0.909

c4.8xlarge 36 60 $1.173 $1.817

such jobs. Each task has varied parameters defined as a tuple <rj
k, sizej

k, tjk, dj
k>,

specifying its release dates rj
k ≥ 0; its size 1 ≤ sizej

k ≤ mm, that is referred to
as its processor requirements or degree of parallelism; its workload tjk and a
deadline dj

k.
The broker’s cost function CB(Mi) is dependent on both the prices of

reserved cloud resource instances and on-demand instances (as defined in
Table 1). The cloud broker is capable of leveraging the pricing gap between
reserved (CR) and on-demand (COD) instances to reduce the expenses of all
the users. To attract customers, CRBs should charge for a VM lease less than
the on-demand pricing (COD) offered by the cloud provider. In order to ensure
a reasonable profit for the broker, we assume that the broker’s asking price
CB(Mi) will be 25% lower than the on-demand price requested by the cloud
provider.

We consider the multi-broker resource scheduling problem for IaaS clouds,
where multiple customers may submit their job requests to a broker at random
instants with a random workload that should be fulfilled before a specified dead-
line. We assume that the inter-arrival times for job requests are arbitrary. If the
broker cannot accommodate the request to finish execution before the specified
deadline, it must either use a larger VM instance offering more processing capac-
ity or buy additional on-demand instances to fulfill the customer’s request. Both
solutions account for a negative impact on the broker’s profit [8].

From a global system perspective, an appealing design objective is to find
the allocation strategy for all brokers’ submissions that minimizes all requests’
average cost by cooperatively deciding on the reservation and task outsourcing
strategies of all the brokers.

However, different brokers may be run by different organizations and may
be selfish and only willing to maximize their profits. In other words, there is
no incentive for the brokers to cooperate if the resulting profit is not higher
compared with that achievable through pure competition [3].
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4 A Game-Theoretic Approach to IaaS Multi-broker
Scheduling

To mitigate this issue, we introduce an agent-based game-theoretic distributed
scheduling scheme. We consider a two-dimensional CA lattice of the size n × m.
Each cell of the CA has a Moore neighborhood of radius r and a rule, which
depends on its neighborhood state. Each cell of a 2D CA will be considered an
agent (player) participating in the SPD game [5]. Each player (a cell of CA) has
two possible actions: C (cooperate) and D (defect).The payoff function of the
game is given in Table 2.

Table 2. Payoff function of a row player participating in the SPD game.

Player’s action Opponent’s action

Cooperate (C) Defect (D)

Cooperate (C) R = 1 S = 0

Defect (D) T = b P = a

Each player associated with a given cell plays a game with each of his eight
neighbors in a single round, collecting their total score. After a q number of
rounds (iterations of CA), each cell (agent) of CA can change its rule (strategy).
We assume that considered 2D CA is a non-uniform CA, with one of the following
rules: all-C (always cooperate), all-D (always defect), and k-D (cooperate until
no more than k (0 ≤ k ≤ 7) neighbors defect).

A player may change his current strategy into another by comparing his
total score collected during q rounds with his neighbors’ scores. He selects as
his new strategy the best performing neighbor’s strategy, i.e., the player whose
total collected score is the highest. This new strategy is used by a cell (player)
to change its current state, and the value of the state is used in games during
the following q rounds of interaction.

It is worth to notice that choosing the action D by all players corresponds
to the Nash equilibrium (NE) point. Looking from the point of view of players’
global collective behavior, this average total payoff of all players in NE point is
low. Instead, we would expect the players to choose the action C, which provides
the highest value of the average total payoff of all players equal to 1. For this
instance of the game, it is the maximal value of a possible average total payoff
of all players, and it will be achieved when all players decide to select the action
C. We are interested in studying conditions when such behavior of players in
iterated games is achievable.
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4.1 CA–Based Players

We will be using CA–based agents as the first type of participant in the game.
CAs are spatially and temporally discrete computational systems initially pro-
posed by Ulam and von Neumann and today are a powerful tool used in computer
science and natural science to solve problems and model different phenomena.

When a cell (i, j) is considered a CA-based player, it will be assumed that it
is a part of the 2D array, and at a given discrete moment t, each cell is either in
state C or D. The state’s value is used by CA–based player as an action with
an opponent player. For each cell, a local neighborhood is defined. Because we
employ a 2D finite space, a cyclic boundary condition is applied.

In discrete moments, CA–based players will select new actions according to
local rules (also called strategies or transition functions) assigned to them, which
will change the states of the corresponding cells. We will be using several rules,
among which one of them will be initially randomly assigned to each CA cell, so
we deal with a non-uniform CA.

We will consider two types of CA–based players. To cells of the first type, one
of the following rules: all–C, all–D, and k–D will be assigned. The second type
of CA–based player uses probabilistic CA. To cells of this type, the following
rule will be assigned: cooperate with probability pcoop or defect with probability
1 − pcoop, where pcoop is some predefined value.

It is worth to notice that the considered 2D CA differs from a classical CA,
where rules assigned to cells do not change during evolving CA in time. A CA
with the possibility of changing its rules is called a second-order CA. In opposite
to a classical CA, a second-order CA has the potential to solve various optimiza-
tion problems.

4.2 LA–Based Players

We will also employ a deterministic ε–LA as the second group of players in
the considered game. The ε–LA has d = 2 actions and acts in a deterministic
environment c = (c1, c2, ..., c2∗d), where ck stands for a reward defined by the
payoff function from Table 2 obtained for its action and action of his opponent
(CA or LA–based player) from the Moore neighborhood. It also has a memory
of length h and a reinforcement learning algorithm that selects a new action. In
our case, C and D are actions of an automaton, and they are associated with
states of the array cells occupied by LA–based players.

Whenever ε–LA generates action, and its opponent from a neighborhood
selects an action, the local environment (payoff function) sends it a payoff in
a deterministic way. The objective of a reinforcement learning algorithm repre-
sented by ε–LA is to maximize its payoff in an environment where it operates.

The automaton remembers its last h actions and corresponding payoffs from
the last h moments. As the next action ε–LA chooses its best action from the
last h games (rounds) with the probability 1 − ε (0 < ε ≤ 1), and with the
probability ε/d any of its d actions.
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4.3 Sharing, Mutation and Competition Mechanisms in the Game

In this paper, we are more interested in incorporating the global goal of the
system into the local interests of individual brokers. In the following, we assume
that action (C) is considered an equivalent of the cooperation in a classic PD
game and denotes a situation where brokers are willing to share their unused
allocation slots within their VMs while receiving a partial payment from other
brokers. On the other hand, action (D) means that the broker declines to par-
ticipate in resource sharing, which is considered an equivalent of the defection
(D) in a classic PD game.

To study a possibility of the emergence of global collective behavior of players
in the sense of the second class of the collective behavior classification [11] we
introduce additional mechanisms of local interaction between players, which can
be potentially spread or dismissed during the evolution.

The first mechanism is a competition, where after a q rounds (iterations),
each agent compares its total payoff with its neighbors’ total payoffs. If a more
successful player exists in the neighborhood, this player replaces their own rule
with the most successful one. This mechanism converts a classical CA into the
second–order CA, which can adapt in time. When both players are CA-based
players, a rule of a given player is replaced by a rule of the most successful
players, and the value of the sharing tag is copied. If both players are LA–based
players, then replacing happens only if the best player differs in at least one value
of such parameters as h, ε, or a sharing tag. If one player is a CA-based player
and the other one is an LA-based player, then a player of the most successful
class replaces a given player.

The second mechanism used is a mutation of system parameters. With some
predefined value of probability, a CA–based agent of the first type can change the
currently assigned strategy (rule) to one of the two other strategies. Similarly,
a CA–based agent of the second type can increase/decrease its probability of
cooperation. Also, parameters h and ε of LA–based agents can be a subject of
mutation.

The third mechanism called an Income Sharing Mechanism (ISM) provides
a possibility of sharing payoffs between players. It is assumed that each player
has a tag indicating whether he wishes (on) or not (off ) to share his payoff
with players from the neighborhood who also wish to share. Before starting the
iterated game, each player turns on its tag with a predefined probability psharing.
Due to the competition mechanism, rules with tags containing information about
willingness to share incomes can be potentially spread or dismissed during the
system’s evolution.

5 Experimental Analysis and Performance Evaluation

In this section, we evaluate the performance of the considered classes of agents
and introduced mechanisms of interactions (mutation, competition, sharing) and
their impact on the emergence of cooperative behavior between brokers and their
overall performance.
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Optimal parameters for the SPD game were adapted from our earlier paper
[12] and are as follows. A 2D array of the size of 4 × 4 cells (players) was used,
with an initial state C or D (player action) set with the probability equal to 0.5.
Initially, the rule k–D was assigned (if applied) to CA cells with probability 0.7,
and the remaining three rules (all–C, all–D, probabilistic CA) with probability
0.1. When k–D was applied, k was randomly selected from the range 0–7. If the
competition mechanism is turned on, updating the array cells (by a winner in a
local neighborhood) is conducted after each iteration (q = 1). Parameters of the
payoff function were set to a = 0.3 and b = 1.4, respectively. We incorporate these
settings into the proposed scheduler to find a job allocation schedule maximizing
the broker’s income and minimizing the need for procuring additional resources
on-demand.

We conduct simulations using the Google cluster trace data, which has been
widely employed to perform cloud computing-related simulations. From the
above dataset, we generate sample workload batches in the range of 1000–10000
jobs. The experimental scenarios are encoded as follows: {Agent, N,M}, where
Agent denotes the type of employed automata, N - number of brokers and M
- number of VM instances, i.e., {CA, 4, 10} denotes scenario employing N = 4
brokers in the system with M = 10 VM instances and CA–based players.

Jobs were then scheduled by independent brokering agents (in the range N =
{2, 4, 8, 16}) on cloud infrastructure containing M = 10, 20, 30, and 40 reserved
VM instances using a fast Minimum Time Maximum Profit list heuristic [8] and
a proposed game-theoretic space-sharing scheme.

We analyze two different performance metrics. First, the Scheduling Success
rate, which denotes the ratio of completed job requests, i.e., without the need to
procure additional on-demand resources. Similarly to [8], we do not count such
events as SLA violations. In such cases, a broker will be forced to cover additional
lease costs implying lower profits. The second analyzed metric is the aggregate
profit improvement resulting from cooperation and multiplexing of job requests
between individual brokers. Table 3 reports the average improvement over the
results achieved using a simple list scheduling heuristic.

Let us start with a comparison between CA and LA–based agents. In most
cases, LA–based players achieve better results than their CA–based counterparts.
It might be because CA-based players do not have learning abilities, and the
value of the average payoff is a result of the initial settings. In contrast to CA,
LA–based players are aware of their environment, they can learn and adapt, and
the average payoff depends upon a given memory size and the ε–value.

We can also notice that, as the congestion increases, the profit improve-
ment decreases, i.e., the additional lease costs arise as the demand for resources
increases. We also observe that ISM’s benefits have a more significant impact
on larger systems with a higher number of available VMs. As can be seen, the
profit improvements increase on average by 8.6% points as the number of VM
instances increases from 10 to 40. This means that cooperation is more beneficial
in less crowded scenarios, while the benefit is only marginal if the number of job
requests is high compared to a number of available VMs instances.
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Table 3. Averaged Scheduling Success Rate and Profit Improvement results for mul-
tiple scheduling scenarios computed with SPD Scheduler (using Income Sharing and
Mutation mechanisms) and Minimum Time Maximum Profit list heuristic.

Problem instance Scheduling success rate [%] Profit improvement [%]

MinTMaxP SPD-ISM SPD-Mut MinTMaxP SPD-ISM SPD-Mut

{CA, 2, 10} 86.35 89.24 86.89 5.31 5.78 5.41

{CA, 4, 20} 89.78 91.31 91.85 7.51 8.52 7.89

{CA, 8, 30} 91.24 92.21 90.74 9.11 9.52 8.89

{CA, 16, 40} 92.45 93.56 91.56 12.41 13.75 13.24

{LA, 2, 10} 89.54 90.78 90.41 5.81 6.07 5.84

{LA, 4, 20} 91.44 91.65 90.97 9.44 9.26 9.91

{LA, 8, 30} 90.84 91.35 91.57 10.11 10.86 10.31

{LA, 16, 40} 93.33 93.55 92.89 13.58 13.76 14.57

{CA+LA, 2, 10} 89.98 90.14 89.74 5.75 6.23 5.89

{CA+LA, 4, 20} 91.24 92.45 91.45 8.42 8.89 8.74

{CA+LA, 8, 30} 92.98 93.78 92.48 8.11 9.89 9.94

{CA+LA, 16, 40} 95.54 95.75 96.87 14.41 15.37 16.22

This could also be attributed to the higher ratio of deadline violations in
smaller-scale experiments. In such cases, due to a larger number of job requests,
resource sharing between the brokers become less profitable due to the increasing
number of additional on-demand leases required to meet the SLA requested by
the customers.

6 Conclusion and Future Work

We have presented a theoretical framework to study the behavior of heteroge-
neous multi–agent systems composed of two classes of automata–based agents:
CA and LA agents operating in an environment described in terms of a spatial
PD game. This framework was defined to solve global optimization tasks in a
distributed way by agents’ collective behavior.

We incorporated this framework into the paradigm of a multi-broker job
allocation scenario within the IaaS architecture to use the competition among the
entities involved in the scheduling process to converge towards Nash equilibrium.
It allowed us to account for often contradicting interests of the clients within
the CC system without any centralized control and introduced several desirable
properties such as adaptation and self-organization.

A set of conducted experiments has shown that these proposed solutions
are promising building blocks that enable the emergence of global collective
behavior in heterogeneous multi-agent systems. Conditions of the emergence of
such systems’ global behavior may depend on several additional parameters, and
these issues will be a subject of our future work.
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1 Université Paris-Saclay, CEA, LIST, 91191 Gif-sur-Yvette, France
{erwan.lenormand,thierry.goubier}@cea.fr
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Abstract. This paper presents a data management model targeting het-
erogeneous distributed systems integrating reconfigurable accelerators.
The purpose of this model is to reduce the complexity of developing
applications with multidimensional sparse data structures. It relies on
a shared memory paradigm, which is convenient for parallel program-
ming of irregular applications. The distributed data, sliced in chunks,
are managed by a Software-Distributed Shared Memory (S-DSM). The
integration of reconfigurable accelerators in this S-DSM, by breaking the
master-slave model, allows devices to initiate access to chunks in order
to accept data-dependent accesses. We use chunk partitioning of multi-
dimensional sparse data structures, such as sparse matrices and unstruc-
tured meshes, to access them as a continuous data stream. This model
enables to regularize memory accesses of irregular applications, to avoid
the transfer of unnecessary data by providing fine-grained data access,
and to efficiently hide data access latencies by implicitly overlaying the
transferred data flow with the processed data flow.

We have used two case studies to validate the proposed data manage-
ment model: General Sparse Matrix-Matrix Multiplication (SpGEMM)
and Shallow Water Equations (SWE) over an unstructured mesh. The
results obtained show that the proposed model efficiently hides the data
access latencies by reaching computation speeds close to those of an ideal
case (i.e. without latency).
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1 Introduction

As a response to the power wall problem, High Performance Computing (HPC)
systems heterogeneity is gradually increasing. Part of this heterogeneity comes
from the association of processors with co-processors, mainly GPUs. These latter
allow the execution of computational-intensive portions of applications, called
compute kernels, with high FLOP/W efficiency. However, as illustrated by the
efficiency on the High Performance Conjugate Gradient (HPCG) benchmark [11],
these systems achieve only a fraction of their theoretical peak performance and
do not show efficiency gains from their heterogeneity for irregular applications.
This poor performance is due on one hand, to the random data access pat-
terns generated by these applications, and on the other hand, to the complexity
of porting irregular compute kernels to GPUs. Thanks to their reconfigurable
architecture, Field-programmable gate arrays (FPGAs) are particularly suitable
for processing irregular compute kernels [7]. The attractiveness of FPGAs for
HPC systems is growing by means of their increasing computing power and the
improvement of High Level Synthesis (HLS) tools. However, porting irregular
compute kernels to FPGA remains a challenging task, because random data
access patterns limit the abilities of HLS tools. Thus, designers must deal with
low-level kernel design, optimization of data structures for FPGA memory sys-
tems and orchestration of distributed data transfers.

To address this issue, we propose a data management model for irregular
compute kernels targeting heterogeneous distributed systems with reconfigurable
accelerators. The latter is based on a shared-memory provided by a Software-
Distributed Shared Memory (S-DSM). The application datasets are sliced in
chunks managed by the S-DSM. The integration of reconfigurable accelerators
in the S-DSM allows devices to initiate accesses to chunks. In this way, all the
processing units can make fine-grained random data accesses. This unified data
access model simplifies programming and meets the needs of irregular applica-
tions. By abstracting the data structure, chunk partitioning enables to prefetch
the data as streams of chunks. This prefetching should make it possible to hide
high data access latencies by implicitly overlaying the transferred data flow with
the processed data flow. The efficiency of the proposed data management model
relies on its ability to hide latencies. To assess this efficiency, we have used two
case studies: General Sparse Matrix-Matrix Multiplication (SpGEMM) and a
tsunami simulation code. These two applications generate a lot of irregular mem-
ory accesses, which are complex to optimize because they are data-dependent.

The paper is organized as follows: Sect. 2 presents the data management
model, Sect. 3 describes the experiments conducted to validate the model, Sect. 4
gives some references on related work, finally, Sect. 5 concludes this paper.

2 Data Management Model

Shared memory is a convenient programming paradigm to develop multi-
threaded applications, which randomly access data. Software-Distributed Shared
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Memory can be used to aggregate distributed physical memories into a shared
logical space. In this work, we consider a S-DSM for heterogeneous micro-server
that has been proposed in previous work [5]. The latter is organized as a semi-
structured super-peer network, where a set of clients are connected to a peer-
to-peer network of servers. Clients execute the user code and servers manage
the shared data and related metadata. The integration of reconfigurable accel-
erators in the S-DSM enables compute kernels to initiate access to distributed
data. Obviously, this way to access the data can lead to high access latencies. To
deal with this problem, the data management model aims to hide data access
latencies by overlaying the transferred data flow with the processed data flow.
This relies on the ability to access data as continuous streams. To do this we use
chunks, a common object in computer science, whose concept is to use metadata
to describe the data stored in it. Chunks are the atomic piece of data managed
by the S-DSM. Each one has an unique identifier (chunk ID) and their maxi-
mum size can be set by the application. We use them to represent irregular data
structures, as they are convenient objects for data management in distributed
systems and their metadata allow to abstract the stored data. From the point of
view of the compute kernels, the role of the S-DSM is to transparently provide
the data and metadata corresponding to chunk ID. By partitioning the data
structures according to the access granularity of the applications, data streams
can be generated from sequences of chunk ID. Adapting the size of chunks to the
granularity of access allows to avoid the transfer of unnecessary data. We have
chosen two data structures widely used in irregular applications to illustrate the
data management model: sparse matrix and unstructured meshes.

Sparse Linear Algebra consists in performing linear operations on matrices
(or vectors) for which the majority of the elements are equal to zero. Sparse
matrices are compressed to reduce their memory footprint and to accelerate
access to their nonzero elements. The compressed sparse row format (CSR),
shown in Fig. 1b, is one of the most used sparse matrix representations. The
column indices and the values of elements are stored in row-major order in the
arrays Col and Val. RP [i] indicates the position of the first element of row i in
the arrays and the operation RP [i+1]−RP [i] is equal to the number of elements
in the row. As shown in Fig. 1c, we have adapted the CSR format to the use of
chunks. We colocalize the value and the column index of an element to form a
pair. The set of pairs representing a row is stored in a chunk. Then we use chunks

0 0 A0,2 0

0 A1,1 0 A1,3

0 0 0 0

A3,0 0 0 0

(a) Dense format.

Val A0,2 A1,1 A1,3 A3,0

Col 2 1 3 0

RP 0 1 3 3 4

(b) CSR format.

(2,A0,2)

(1,A1,1) (3,A1,3)

(0,A3,0)

ID count

0

1

3

1

2

1

(c) Chunk-based CSR format

Fig. 1. Matrix representation.
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(a) Hilbert space-filling curve over the
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(b) Chunk partitioning of the mesh with
chunks of two elements.

Fig. 2. Reordering and partitioning of a 2D unstructured mesh.

metadata to indicate the number of elements per row. This structure reduces the
number of memory accesses required to read or write a matrix row. It can be
easily adapted to another compressed format (e.g. compressed sparse column
format). Reading or writing a matrix involves to request access to each row and
to request the transfer of rows data between the memory and the compute kernel.
Decoupling the access request and the transfer request allows the prefetching of
the data into the FPGA memory and thus hides the access latency. Considering
that the kernel is developed as a pipeline of stages, which are separated by
FIFOs, then the prefetching speed is implicitly limited by the size of the FIFOs.
This prevents the FPGA memory from being overloaded due to too early data
prefetching. In an ideal case prefetching speed corresponds to the speed of data
consumption of the following stages in the pipeline.

Many HPC applications of Finite Element Method (FEM) work on unstruc-
tured meshes with triangular elements in 2D and tetrahedral elements in 3D.
Typical kernels on such unstructured meshes proceed by mesh updates - updat-
ing all elements, nodes or edges of the mesh according to a function of neighbour-
hood values, applying a convolution or stencil and hence following indirections
to both iterate over the mesh and to access neighbourhood information. Conse-
quently, the topology of the mesh and indexing of data has a significant impact on
data access locality and therefore application performance. Space-filling curves
(SFC) allow to improve data access locality of the mesh [2]. We use this tech-
nique to do an efficient chunk partitioning of the mesh. As shown in Fig. 2a, a
SFC is drawn in the geometric space of the mesh. Vertices are indexed according
the order in which they meet the curve. As illustrated in Fig. 2b, we apply a basic
partitioning along the curve, which consists in grouping the values of nodes of
consecutive indices in chunks of constant size. The elements are numbered in
order of the smallest index of their vertices. By following the path of the curve,
most of the data of the mesh could be accessed through a sliding window, whose
size would not be dependent of the mesh size. Thus, traversal of the mesh would
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be done through a continuous flow of data, where the majority of chunks would
be accessed only once. Only the data of the elements located at the junction
zones between the different spaces of the curve would not be accessible through
the window. By following the curve, it is possible to identify the corresponding
chunks. In this way, a chunk ID sequence corresponding to these data can be
generated. We use these observations to design kernels iterating over unstruc-
tured meshes. The sliding window is implemented with an addressable FIFO.
Buffers are used to access data not accessible through the sliding window.

3 Data Management Model Validation

To validate the proposed data management model and assess its ability to hide
data access latencies, we have conducted experiments with a simulation tool.
This tool makes it possible to evaluate the performance of the system from
high level modeling without requiring a full FPGA synthesis. The experiments
focused on sparse matrix-matrix multiplication and a tsunami simulation code.

3.1 Simulation Methodology

To conduct the experiments, we have chosen to use a simulation tool that we
have developed [12]. The objective was to evaluate the performance of the sys-
tem from a high-level modeling. The behavioral description of the kernels is
modeled in C++. The irregularity of the applications we are studying and the
distributed nature of the system we are targeting imply high and variable data
access latencies. Thus, the main objective of this tool is to evaluate the effects
of latency on the ability to speed up compute kernels using our data manage-
ment model. Performance evaluation is based on the generation of data access
latencies relating to the activity of the compute kernel. The tool uses a hybrid
method: the activity of the compute kernel is generated by a simulation engine
and latencies are produced by measuring the real latencies of S-DSM requests
executed on the physical architecture, in order to produce faithful latencies. The
simulation engine and the S-DSM server can be run on different nodes. This
makes it possible to study different topologies associated with different latency
profiles. In the rest of the section three topologies are used: No Latency which
corresponds to the ideal case where all the data is stored in the FPGA memory,
Local which corresponds to the case where the FPGA is connected by a local
bus to the node running the S-DSM server and storing the data, and Remote
which corresponds to the case where the FPGA and the S-DSM server are on
two different nodes and are connected through an Ethernet network. Local node
latencies are medium (383µs for a read request and 207µs for a write request)
and remote node latencies are high (1311µs for read and 533µs for write). We
have used a Xilinx Virtex VC707 as a reference FPGA to set up the simulation
engine. Thus, the clock frequency was set to 200 MHz and the theoretical peak
memory bandwidth between the DDR and compute kernels was 12.8 Gb/s. The
simulation being non-deterministic, the results presented are the median values
of 10 runs.



96 E. Lenormand et al.

Request
Ai &Ci

Read
Ai

Request
Bk0,:

Ai,k0

Read
Bk0,:

Compute
Ai,k0 ×Bk0,:

PE0

Request
Bk1,:

Ai,k1
Read
Bk1,:

Compute
Ai,k1 ×Bk1,:

PE1

Request
Bk2,:

Ai,k2
Read
Bk2,:

Compute
Ai,k2 ×Bk2,:

PE2

Ci

Cpi,:

Cpi,:

Cpi,:

Write
Ci

Fig. 3. Dataflow of the SpGEMM compute kernel using 3 PEs.

3.2 Case Study 1: General Sparse Matrix-Matrix Multiplication

SpGEMM is widely used to study acceleration methods for sparse linear alge-
bra. This application generates irregular memory access patterns that makes
it complex to optimize, with usually a low efficiency in terms of floating point
operations per unit of time. We have designed the compute kernel by using
the row-wise sparse matrix-matrix multiplication algorithm formulated by Gus-
tavson [10]. Thanks to the row-wise traversal of the matrices, this algorithm is
well suited to dataflow processing and is quite straightforward to parallelize. As
illustrated in Fig. 3, to parallelize the computations, the kernel is implemented
with several processing elements (PEs). The first stages of the kernel access the
nonzero elements of the first input matrix and distribute them to the PEs. Each
PE multiplies the elements received by the corresponding rows of the second
input matrix. Finally, the last stages sum the partial results computed by the
PEs and write the result matrix. The indices and the values of the matrix are
encoded with 4 bytes (Single precision computations).

As the arithmetic intensity of SpGEMM is strongly data-dependent, we have
chosen matrices, presented in Table 1, with varying sizes, densities and patterns.
Thus, the experiments allow to evaluate the capacity of the data management
model to adapt to irregularity. In order to limit the simulation time, the memory
footprints of the matrices are smaller than a FPGA DRAM. To reproduce a
situation where the capacity of the accelerator memory requires to transfer the
data during the execution, we have adapted the simulated memory capacity
accordingly to the dataset. Thus, the accelerator memory has been configured
with 65536 locations of 1 kib (64 Mib). For each matrix, we have defined the
theoretical peak computation speed by considering the processing time as the
size of data transferred between the memory and the compute kernel divided by

Table 1. Square matrices, from [6], used for simulations. NNZ and density refer to the
source matrix. The memory footprint includes the three operand matrices.

Name Row NNZ Density (%) Memory footprint Peak GFLOP/s

consph 83334 6010480 0.087 294Mb 2.99

cop20k A 121192 2624331 0.018 182Mb 2.52

F2 71505 5294285 0.10 383Mb 2.93

m t1 97578 9753570 0.10 427Mb 3.07

s3dkt3m2 90449 3753461 0.046 134Mb 2.94
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(a) Computation speed in GFLOP/s
(higher is better). The horizontal lines are
the theoretical peak computation speeds.

(b) Memory controller activity (occu-
pancy percentage). Close to 100% means
saturation.

Fig. 4. Performance according to the number of processing elements (PEs).

the FPGA memory bandwidth. These are represented by the horizontal black
bars on Fig. 4a and Fig. 5.

Fig. 5. Computation speed in GFLOP/s
according the system topology (higher is
better). The horizontal lines are the theo-
retical peak computation speeds.

For the first experiment, we var-
ied the parallelism level of the compute
kernel by implementing between 4 and
64 PEs on the local node. Figure 4a
shows the computation speed obtained
for this experiment. This shows that
the increase in parallelism makes it
possible to speed up computations, up
to 16 PEs. The speed up obtained
between 16 PEs and 32 PEs is low
(between 1.04 and 1.22) or even neg-
ative. Between 32 and 64 PEs the
speed ud is always negative. This effi-
ciency limitation means that the PEs
are under-exploited due to an insuffi-
cient supply of data (data starvation).
The latter can be explained either by a
data starvation in FPGA memory (due
to excessive latencies), or by a FPGA

memory bandwidth bottleneck. Figure 4b illustrates the occupancy rate of the
FPGA memory controller. These results show that the controller is saturated for
the configuration with 16 PEs. This information highlights that the FPGA mem-
ory bandwidth is the bottleneck for this kernel. This bandwidth limit is also one
of the explanations for the nonlinear speed up between the configurations with 4
PEs and 16 PEs. The second experiment aimed to study the impact of topology on
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performance. For this we have used a configuration with 16 PEs, able to saturate
the memory controller on the local node. The results obtained are illustrated in
Fig. 5. It shows that for the matrices consph, F2 and m t1 the performance gap
with the ideal case for the local node (between 1% and 2%) and the remote node
(between 2% and 6%) is very low. This small performance gap is mainly explained
by the time to load the first data required to reach the nominal mode of the kernel.
This shows the ability of the data management model to hide data access laten-
cies. For the matrices cop20k A and s3dkt3m2, the performance gap is larger, but
remains relatively small, respectively 38% and 6% for local node and 54% and 32%
for remote node. For these two latter, the performance gap with the theoretical
peak is also the largest, even for the ideal case. These results highlight a correla-
tion between data density and the ability to speed up computations. Indeed, for
the most sparse matrices, the memory accesses at row granularity do not use all
the width of the data bus. Therefore, sparsity amplifies the effect of memory band-
width bottleneck. Moreover, the more the rows are sparse, more processing time
is short. This limits the ability to overlay the processing flow with the data trans-
fer flow. For the matrix cop20k A, the low arithmetic intensity per row limits the
ability to hide data access latencies.

3.3 Case Study 2: Shallow Water Equation

The Shallow Water Equations (SWE) are hyperbolic partial differential equa-
tions that describe a layer of fluid below a pressure surface. They can be solved
with FEM. The code under study is the TsunAWI simulation code, a production
code that implements the SWE with inundation, and whose results are used in
the Indonesia Tsunami Early Warning System (InaTEWS), and under real-time
constraints in the LEXIS European project [8]. The base data structure is a 2D
unstructured mesh. This code has been optimized for performance, especially
concerning the mesh ordering [9]. In this code, we have designed a kernel to
speed up the calculation of the gradient, one of the operations of the tsunami
simulation code. This operation is an interpolation of the sea surface height
via barycentric coordinates. The barycentric coordinates are precomputed for
each vertex element. The processing of an element requires five floating point
operations, resulting in a low FLOP/byte ratio. The kernel is implemented with
several independent processing elements (PEs). Each PE process a different part

Table 2. Characteristics of the set of meshes used for the experiments.

Region Name # Elements # Vertices Memory footprint

Indian ocean Padang C 460 119 231 586 14Mb

Padang F 2 470 345 1 242 653 74Mb

Pacific ocean Coquibo C 3 396 755 1 709 506 102Mb

Coquimbo F 9 762 027 4 887 927 293Mb

Mediterranean Sea Mediterranean 9 917 645 4 999 404 298Mb
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(a) Computation speed in MElements/s
(higher is better).

(b) Memory controller activity (occu-
pancy percentage). Gray bars correspond
to the loading time of the first data.

Fig. 6. Performance according to the number of processing elements (PEs).

of the mesh. The size of the sliding window is 1024 words. For the experiments,
we have used five meshes presented in Table 2. The FPGA memory have been
configured with 32 Mib. This was defined according to the maximum number of
processing elements implemented (16 PEs), in order to allow each PE to prefetch
up to 512 chunks of 1 kib per stream of data. Considering the memory footprint
of each mesh and the maximum memory bandwidth of the FPGA, the theoreti-
cal peak computation speed is approximately 426 MElements/s for all meshes.

(a) Computation speed in MElements/s
(higher is better).

(b) Memory controller activity (occu-
pancy percentage). Gray bars correspond
to the loading time of the first chunks.

Fig. 7. Performance according the system topology.
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The first experiment aimed to study the speed up efficiency of the kernel
according the parallelism level. To do this, the kernel has been implemented
with 1 to 16 PEs. The computation speeds obtained are represented in Fig. 6a.
It shows that the speed up gain sharply decreases beyond 2 PEs. The occupancy
rate of the memory controller illustrated in the Fig. 6b provides a better under-
standing of these results. In this figure, the colored bars represent the percentage
of time the controller is active, the gray bars correspond to the loading time of
the first chunks as a percentage of simulation time, and the space between the
colored bars and the gray bars represents the part of time during which the con-
troller could have been used more. For the four largest meshes the results show
a saturation of the memory controller for configurations with 4 PEs or more. We
conclude that the bandwidth of the FPGA memory limits the performance scal-
ing of the kernel. From 2 PEs onward, the controller occupancy rate is too high
to efficiently speed up the processing by increasing the parallelism. Additionally,
the smaller the mesh, the more the loading time of the first chunks represents
a significant part of the total processing time, which reduces the computation
speed.

For the second experiment, we have evaluated the kernel performance accord-
ing to the topology with 4 PEs. Figure 7a and 7b respectively illustrate the
computation speed obtained and the associated occupancy rate of the memory
controller. These results show that increasing data access latency reduces com-
putation speed and highlight a correlation between the size of the mesh and the
slowdown. As shown in Fig. 7b, this effect can be explained by the proportion
of the processing time spent to load the first chunks. For large datasets process-
ing on the local node, where the load time is the least impacting, processing
speeds almost reach those of the ideal case. For the remote node, where the read
access latency is three times greater than on the local node, the slowing down
of the computation speed is relatively low for the three largest meshes (from
10% to 17%). Finally, the performance of the No Latency configuration is close
to the theoretical peak computation speed. The gap is due to the inability to
access all nodes from the sliding window, which requires reading several times
some chunks. Thus, we conclude that this mesh traversal method is almost ideal,
given how small that gap is.

3.4 Discussion

The experiments have evaluated a data management model where accelerator
tasks initiate access to distributed data. The experimental scenario used was
the most disadvantageous, as the FPGA memory was empty at startup and
all data had to be transferred during runtime. The results showed that thanks
to prefetching, the programming model can efficiently hide the latencies of dis-
tributed data access. Nevertheless, this efficiency depends on the workload of the
compute kernel. In practice, the observed workloads are huge. The size of the
sparse matrices used in scientific applications can exceed ten gigabytes. The size
of the complete datasets used for the tsunami simulation are at least ten times
larger than the data subset used for the calculation of the gradient only. For the
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complete simulation each element of the mesh involves a hundred floating opera-
tion per iteration. Thus, the processing time of the largest meshes on a high end
processor can exceed several hours, and this motivates to distribute the process-
ing to an heterogeneous system with FPGAs. This work shows that an S-DSM
can simplify the distributed data management thanks to chunk partitioning and
that the presented data management model solves the data access latency issue.
Experiments have shown how in this model an FPGA can be supplied with data.
As each accelerator is master of its access to data, this model can be extended
to a distributed system integrating several FPGAs.

4 Related Work

Prior work have been done to provide shared memory for distributed systems
with accelerators. Willendberg et al. [16] have proposed an FPGA communi-
cation infrastructure compatible to GASNet. This enables processing elements
implemented on an FPGA to initiate remote direct memory access to remote
FPGAs. Unicorn [4] provides a distributed shared memory (DSM) for CPU-
GPU clusters. This is achieved with transactional semantics and deferred bulk
data synchronization. StarPU [1] uses a DSM to manage data replication for het-
erogeneous distributed systems, but this DSM is not directly exposed to users.
Recent work has studied chunk partitioning applied to sparse matrix for accel-
eration of sparse linear algebra. Winter et al. [17] have proposed an adaptive
chunk-based SpGEMM for GPU. This approach uses chunks to store the par-
tial results of multiplication, then uses the chunk metadata for the merge stage.
Rubensson and Rudberg [13] have proposed the Chunks and Tasks program-
ming model for parallelization of irregular applications. In this model, matrices
are represented by sparse quatrees of chunks. MatRaptor [15] and REAP [14]
uses a chunk-based CSR format adaptation and the row-wise product to imple-
ment SpGEMM kernel on FPGA. Barrio et al. [3] have proposed an unstructured
mesh sorting algorithm to enabling stream processing for finite element method
applications. This algorithm was applied to study the acceleration of scientific
codes on CPU-FPGA platform.

5 Conclusion

Increasing the energy efficiency of HPC systems has become a major issue.
Thanks to their reconfigurable architecture, FPGAs could increase power effi-
ciency for HPC applications with irregular compute kernels. However, due to
their complexity of use, FPGAs are underemployed in HPC systems. In this
paper we have proposed a data management model for irregular compute kernel
acceleration on FPGA integrated in distributed system. This model relies on a
S-DSM to allow accelerators to initiate access to distributed data and on chunk
partitioning to abstract the irregular structure of the datasets. We have shown
how this data management model could be applied to compute kernels of sparse
linear algebra and finite element method. We have conducted experiments with
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a hybrid simulation tool, which exploits the physical system to provide accurate
data. These experiments have shown that the data management model enables
to efficiently hide high data access latencies. Finally, experiments have shown
that memory bandwidth is a bottleneck. This phenomenon is normal since the
studied applications are memory bound. High Memory Bandwidth (HBM) tech-
nologies as available on current and future FPGAs should help to remove this
bottleneck and improving performance of compute kernels.
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Abstract. The sparse matrix-matrix multiply kernel (SpMM) gained
significant interest in the last years due to its applications in data sci-
ence. In 2018, Zhang and Gruenwald [15] proposed the bitmap-based
sparse format bmSparse and described in detail the implementation of
the SpMM for Nvidia GPUs. The novel format is promising in terms
of performance and storage space. In this work, we re-implement the
algorithm following the authors’ guidelines, adding two new stages that
can benefit performance. The experiments performed using nine sparse
matrices of different sizes show significant accelerations with respect to
cuSparse’s CSR variant.

Keywords: Sparse matrix matrix multiplication · GPU · Sparse
format

1 Introduction

The era of big data has brought about a major paradigm shift and the emergence
of new problems in which the information is structured in large graphs. The
connection between graphs and sparse matrices (those in which the vast majority
of their coefficients are equal to zero) has been extensively studied and, because
of it, there are important efforts that propose to express graph problems in terms
of basic linear algebra operations on sparse matrices. These efforts have attracted
the interest of part of the academic community, historically concentrated on the
sparse matrix-vector product (SpMV) for its role in solving systems of linear
equations, to other operations such as the sparse matrix-sparse matrix product
(SpMM), which has important applications in data science. In particular, the
most frequent goal is to find algorithms, implementations, and storage formats
capable of running efficiently on parallel hardware.

In recent decades, the trend in computer architecture design has been to
incorporate multiple cores on the same chip [2]. As a consequence, the use
of throughput-oriented processors [7] to accelerate scientific applications has
increased. A paradigmatic example is GPUs, which have been used heavily in
the context of dense and sparse linear algebra for more than a decade, to the
point where efficient implementations are publicly available for most of the stan-
dard operations [3,6,13].
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Sparse Matrix Multiplication (SpMM) operates on two matrices stored in
a sparse storage format, that is, a format to avoid explicitly storing null coeffi-
cients. As the pattern of nonzero coefficients, and therefore the space necessary
to store the result of the operation, will depend on the interaction between the
nonzero coefficients of the operands, it must be estimated or calculated from
them, which gives the SpMM a higher level of complexity than the SpMV.

In 2018, Zhang and Gruenwald [15] introduced a sparse block format called
bmSparse, which adapts the bitmap indexing technique used in the context of
relational databases (and also for some of the early sparse formats). Although
the performance of similar formats has been studied in the context of SpMV [11],
the work mentioned is the first to do so with SpMM. The results obtained for
the (WebBase-1M) sparse matrix were promising, showing better performance
than the libraries CUSP [1] and bhSparse [12].

This work focuses on re-implementing the algorithm proposed in [15] incor-
porating modifications to improve its performance. Among the optimizations
considered, we explore the inclusion of two new stages. One avoids making the
product of those blocks that will result in a null block due to their pattern of
zeros (T4). The other computes the final storage space and output nonzero pat-
tern before the numerical multiplication stage (T9). The experimental evaluation
was carried out on a set of nine matrices from the SuiteSparse collection with
different characteristics, showing that the new stage T4 of the algorithm allows
significant savings in the execution time of the subsequent stages.

The rest of the work is structured as follows. In Sect. 2, the main concepts
about the sparse matrix multiplication operation are summarized. Then, in
Sect. 3, the details of the SpMM kernel implementation using the bmSparse
storage format are studied. Later, we present the main proposals in Sect. 4. The
experimental evaluation of our proposals on a set of sparse matrices follows.
Finally, the main conclusions drawn during the work and the lines of future
work to be developed are presented in Sect. 6.

2 Sparse Matrix Multiplication (SpMM)

Sparse matrix multiplication (SpMM) is a very useful operation in various con-
texts of linear algebra and graph analysis, with applications such as solvers for
algebraic multigrid methods (AMG) [8], triangle counting [4] and breadth-first
search (BFS) with multiple sources [9]. Algorithm 1 presents a pseudocode of
the row-wise SpMM method presented by [10]. In the case of other typical
operations on sparse structures, such as SpMV, a common strategy to improve
performance is to exploit prior knowledge about the sparse matrix’s sparse pat-
tern to minimize memory operations on global memory [14]. However, SpMM

adds additional difficulties since the computational complexity of the problem
does not depend solely on the nonzero structure of the separate inputs but on
how they interact with each other. On the other hand, in most applications,
the SpMM is usually executed only once for each pair of matrices. Therefore,
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the optimization techniques that are based on analyzing the nonzero patterns
are less effective than in the case of the SpMV, which is usually part of the
innermost loop of iterative solvers.

Algorithm 1: SpMM proposed by [10]
1: for ai∗ ∈ A do
2: for aij ∈ ai∗ and aij �= 0 do
3: for bjk ∈ bj∗ and bjk �= 0 do
4: value = aij ∗ bjk
5: if cik /∈ ci∗ then
6: cik = 0
7: end if
8: cik = cik + value
9: end for

10: end for
11: end for

The particularities above determine that the major design decisions to con-
sider are how to partition the work to be done between different processing units
(in the parallel case).

2.1 The bmSparse Storage Format

The bmSparse format represents sparse matrices using 8 × 8 blocks and the
following data structures:

– keys: An array of integers (uint64 t) represents the position of a block in the
block array. The first 32 bits encode the row number, while the last 32 bits
encode the column number. The keys appear ordered by row and then by
column. The choice of uint64 t to represent the keys makes it possible to
represent arrays of up to 232 blocks of columns and rows. For smaller arrays,
memory usage could be reduced by modifying the format to allow 32 bits to
represent keys.

– bmps: An array of integers (uint64 t) that stores in position i, a bitmap
associated with the block in position keys[i]. Each element of the block is
mapped to one bit of the bitmap. The bit is zero if the block element is null
and one otherwise.

– values: Array with the nonzero values of the array ordered by rows and then
by column.

– offsets: Array with the start position of each block in values.

3 The SpMM with bmSPARSE

Given two input matrices, A and B, stored in bmSparse format, the multiplica-
tion algorithm for this format performs two principal tasks. First, it has to build
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task list that determines which pairs of blocks of A and B must be multiplied
and added to a block of the resulting matrix C. The task list can be seen as a
list of (i, j, k) tuples, named tasks, obtained from the rule:

Cik =
∑

j
Aij × Bjk. (1)

Once the task list is formed, the algorithm has to process the tasks and
construct the output structure. The original algorithm [15] is divided into 7
stages, which are identified as T1...7.

The stages T1, T2 and T3 are in charge of creating the task list. Assuming
that A keys[n] stores the key (i, j), the task list is considered as the union of the
sets t′n, n ∈ [0, size(A keys)), of all the tuples in which the key (i, j) of A keys
participates. If B rowj = {x | x ∈ B keys ∧ row(x) = j} is defined as the set of
keys in row j from B, t′n can be formally expressed as:

t′n = { (i, j, k) | A keys[n] = (i, j) ∧ ∃x ∈ B rowj : col(x) = k}. (2)

Note that in the Definition 2, the tasks are represented as tuples of coordi-
nates (i, j, k). However, if (i, j) = A keys[n] and (j, k) = B keys[m], the tasks
can also be represented by the tuple of positions (n,m). In Eq. (3) the set tn is
defined, which uses the representation of tasks as tuple of positions. There is a
one-to-one correspondence between the elements of t′n and tn.

tn = { (n,m) | A keys[n] = (i, j) ∧ B keys[m] ∈ B rowj} (3)

We based our implementation on the latter representation, while [15] is based
on the former. The main advantage of defining the task list as the union of sets
tn is that these sets can be easily calculated thanks to the characteristics of the
format. On the one hand, observe that the second component of the tn tasks
represents positions of the same row of blocks in matrix B.

In stage T5 the task list is ordered so that tasks associated with the same
output block are contiguous. Using the representation of tasks as tuples of coor-
dinates (i, j, k), the above is equivalent to ordering according to (i, k). Because
the task list array uses another representation of tasks, to determine the relative
order between two items a conversion is done before comparing them.

The T6 stage is in charge of determining which blocks of the resulting matrix
will be non-null, which corresponds to the keys array of the format bmSparse. To
achieve this, the task list array is interpreted as an array of tasks represented
as (i, j, k).

Stage T7 processes the tasks to generate the resulting blocks. Processing a
task involves building a dense version of the input blocks, performing the mul-
tiplication, and adding the partial block of results to the corresponding output
block.

In stage T8, the array of values generated in stage T7 is taken as input, and a
new array is created that contains only the non-null values of the original array.
Relative orders remain.

Most of the implementation was performed using primitives from the Thrust
API, with the exception of T7 that required developing specific CUDA kernels.
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4 Main Extensions

In addition to the variants made to the steps defined in [15], In this work, two
new stages are proposed, T4 and T9 with the aim of improving performance,
saving work in other stages.

Different versions of the algorithm are generated by including these stages,
each one associated with a different sequence of stages. Valid sequences are
represented by paths in the directed graph of Fig. 1. The layout followed by [15]
is comparable to the one specified in the previous section, that is, T1,2,3,5,6,7,8.

Fig. 1. Possible execution paths.

4.1 T4: Null-Task Filtering

The result of executing a task is the product of two blocks, which will then be
added to one of the blocks of the resulting matrix. If the bitmap of that product
is null, that task will not affect the result of the SpMM and could be ignored.
In [15], the bitmap of a task is calculated in stage T7, once the product of the
blocks has already been made. However, the bitmap of the product of two blocks
can be obtained using only the bitmaps of those blocks, without the need for
floating-point operations. Stage T4 consists of calculating the bitmaps of each
task, and eliminating from the task list those that do not contribute to the values
of the resulting matrix. It is an optional stage in the sense that the correctness
of the algorithm does not depend on it. The motivation for this step is to achieve
higher performance in the later stages.

The filtering of tasks is performed using the primitive thrust::remove if, which
takes as input the array of tasks and a functor that determines if the bitmap
that would be obtained when executing the task is null.

The functor implementation iterates over each dimension of the resulting
bitmap, checking for possible intersections between the bits in each row of A
and the corresponding column of B. The function returns false if a non-null bit
is found.

4.2 T9: Calculate C Bitmaps Based on A and B’s Bitmaps

The stage T9 computes the array of bitmaps of the resulting matrix using the
input matrices’ bitmaps.
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For this purpose, the first step is to define an iterator of type thrust::make
transform iterator to generate the bitmap resulting from executing a task with
the incoming bitmaps. To calculate the output bit (i, k), the associated functor
iterates over the dimension j of both input bitmaps. When determining which
bit should be in 1 in each bitmap, it starts with a bitmap with 1 in the first
position (0x8000000000000000) and shifts it to the right according to the row
and column number. In case both corresponding bits are in 1, the results are
accumulated in the result bitmap by a bitwise or, as shown in Listing 1.1.

Listing 1.1. Computation of the task bitmap.

#define F 0x8000000000000000 ;
. . .
u i n t 64 t r e s u l t = 0 ;
for ( int i = 0 ; i < 8 ; i++)

for ( int k = 0 ; k < 8 ; k++)
for ( int j = 0 ; j < 8 ; j++) {

const bool A b i t s e t = A bmp & (F >> ( i ∗ 8 + j ) ) ;
const bool B b i t s e t = B bmp & (F >> ( j ∗ 8 + k ) ) ;
i f ( A b i t s e t && B b i t s e t ) r e s u l t |= F >> ( i ∗ 8 + k ) ;

}

Once we have all the bitmaps associated with the block multiplications,
thrust::reduce by key is used to perform a bitwise or between the bitmaps of
the same output block. Computing the output bitmaps beforehand eliminates
the need of the T8 (compression) stage. However, since only the positions of the
nonzero elements, and not their values, are taken into account, it is possible that
some of the elements turn out to be null and some explicit zeros end up being
stored.

5 Experimental Evaluation

This section makes an experimental evaluation of different variants of the SpMM

algorithm based on bmSparse described previously.

5.1 Platform Setup and Test Cases

All testing is done on a system comprised of an Intel i7-9750H@2.60 GHz CPU
and an NVIDIA GeForce GTX 1660 Ti GPU, Turing architecture. GPU pro-
gramming is done using CUDA 10.2, and the associated Thrust [3] parallel algo-
rithms library.

Square sparse matrices obtained from the SuiteSparse Matrix Collection [5]
are used, identified with a number from 1 to 9. The matrices used store single-
precision floating-point numbers (floats). The characteristics of each matrix are
presented in Table 1.

Performance measured by runtime is compared to that of the cuSPARSE [3]
library, also part of the CUDA Toolkit.
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Table 1. Main characteristics of the matrices used. Arrays 1–3 have dimension close
to 104, matrices 4–6 have dimension close to 105 and the remainder to 106.

Name Id. Blocks NNZ Dimension

cryg10000 1 8613 49699 10000

Goodwin 030 2 20728 312814 10142

ted A unscaled 3 13761 424587 10605

Goodwin 095 4 203725 3226066 100037

matrix 9 5 148928 2121550 103430

hcircuit 6 90082 513072 105676

webbase-1M 7 550761 3105536 1000005

t2em 8 572656 4590832 921632

atmosmodd 9 1410884 8814880 1270432

5.2 SpMM Algorithm Performance

We start the analysis by discussing the execution time of each stage. Table 2
details the base implementation (Vbase) runtimes by multiplying each matrix by
itself, broken down according to the stages of the method.

Table 2. Execution time (in µs) of multiplying sparse matrices using the base variant of
the SpMM algorithm based on bmSparse. Arrays are assumed to be in device memory,
that is, transfer time is not included.

Stage Runtime by matrix

1 2 3 4 5 6 7 8 9

T1 53 58 56 731 185 391 693 1084 2000

T2 39 43 41 269 172 110 251 436 1858

T3 202 536 339 1808 1668 1255 3788 2122 6238

T5 318 1201 642 10355 8994 6906 25392 8505 42552

T6 303 419 308 2284 2493 2130 5985 2515 7020

T7 397 2036 965 19477 20618 17313 55158 19693 77953

T8 58 1264 2659 14121 857 2238 46206 3155 5662

Total 1370 5557 5010 49045 34987 30343 137473 37510 143283

In this implementation, the T1 stage calls the primitive thrust::reduce by key
on the array of keys, so it is expected that the duration of T1 depends mostly
on the size of that array, which corresponds to the third column of Table 1.
This hypothesis can be corroborated from Tables 1 and 2, where the duration
of T1 can be observed to increase with the number of blocks. Something similar
happens in stage T2, where the vector B count is accessed for each element of
A keys.
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The main goal of stage T3 is to create the array task list, Therefore, the
times of T3 should depend mainly on the number of tasks that are part of the
task list. This hypothesis can be corroborated in Fig. 2, which shows a linear
dependence between the number of tasks and execution times.

Fig. 2. Execution time (in µs) of T3 stage as a function of the number of tasks in the
task list.

Although the number of tasks is the variable that best predicts the duration
of T3, this information is typically not available before doing the multiplication.
However, this duration could be estimated using the number of blocks and the
dimension of an array. On the one hand, the more blocks, the more likely tasks
will be formed between pairs of them. On the other hand, as the dimension
increases, there are more possible positions for the blocks, which decreases the
probability that they will form a task. This explains why, with a few exceptions,
the T3 times increase with the number of blocks.

In stages T5, T6 and T7 a similar pattern is repeated between the execution
times of each matrix, since the task list is also processed in these stages.

5.3 Impact of Executing T4

Table 3 shows the runtimes corresponding to each stage of the variant that
includes stage T4 (VT4). Comparing the results with Table 2, it can be observed
that, despite the extra cost of including the T4 stage, the overall performance
does not deteriorate in any of the evaluated cases, obtaining execution time
reductions of up to 40%.

Table 4 details, for each matrix, the number of tasks that are part of the
task list vector, built in stage T3, and the percentage of tasks that are later
discarded at stage T4. It can be observed that for the selected set of matrices,
the number of tasks eliminated varies significantly and that these can represent
a high percentage of the tasks generated in T3.

From Fig. 3, it can be seen that in stages T5, T6 and T7, a linear reduction
in execution time is obtained with respect to the amount of discarded tasks.
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Table 3. Execution time (in µs) of multiplying sparse matrices using the VT4 variant.
Arrays are assumed to be in device memory, that is, transfer time is not included.

Stage Runtime by matrix

1 2 3 4 5 6 7 8 9

T1 53 58 56 731 185 391 693 1084 2000

T2 39 43 41 269 172 110 251 436 1858

T3 202 536 339 1808 1668 1255 3788 2122 6238

T4 42 91 58 592 492 385 1310 603 2249

T5 167 1080 630 8947 7141 4199 14626 7944 33276

T6 174 397 303 2106 1997 1391 3519 2387 6002

T7 257 1731 949 16711 15938 10648 31330 17783 61583

T8 57 1619 2635 17340 1017 3254 50965 4998 7945

Total 991 5555 5011 48504 28610 21633 106482 37357 121151

Table 4. Amount of tasks generated in T3 and percentage of tasks eliminated in
stage T4.

Matrix # tasks % removed tasks

1 59512 36,3

2 346798 14,4

3 153486 1,6

4 3369528 13,4

5 3205366 20,0

6 2231426 38,5

7 7540274 42,6

8 2851764 7,8

9 12556668 22,1

Fig. 3. Percentage of time reduction of stages T5, T6 and T7 based on the percentage
of tasks eliminated in stage T4
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On the other hand, and regarding the performance of the stage T4 itself, it
can be corroborated from the data in the Tables 3 and 4, that the execution
times depend primarily on the size of the task list, as it happens in the T3 stage.

5.4 Impact of Executing T9

To answer whether it is convenient to perform (our variant of) the calcula-
tion of the array of bitmaps and offsets before the multiplication, Table 5 com-
pares a variant that incorporates the previous calculation of the output bitmaps
(VT4&T9) with the version VT4. In this table, it can be seen that the time of the
T7 stage for the VT4&T9 version is less than that of the VT4 version in all cases.
The main reason is that, in the first case, the calculation of the output offsets
and bitmaps array is considered part of T9, while in the second, it is considered
part of T7. However, when comparing the total time of both versions, the inverse
relationship occurs. This is because stage T8 in VT4 runs in less time than stage
T9 in VT4&T9. In the implementation used by VT4&T9, almost 90% the runtime
of stage T9 is spent executing the functor that generates bitmaps from tasks.
This was easily verified replacing the functor by a trivial one in an informal
experiment.

Table 5. Average duration (in µs) of the stages after T6 in the VT4 and VT4&T9

variants. The last two rows show the sum of the times of the mentioned stages.

Stage Versión Runtime by matrix

1 2 3 4 5 6 7 8 9

T7 VT4 260 1730 952 16793 15985 10635 31320 17782 60671

VT4&T9 226 1650 887 16099 14094 9381 28287 16105 53778

T8 VT4 76 225 222 1304 2399 1995 5464 2452 6727

T9 VT4&T9 233 1002 621 8301 5723 3521 10750 5957 21081

Total VT4 336 1955 1174 18097 18384 12630 36784 20234 67398

VT4&T9 459 2652 1508 24400 19818 12902 39038 22062 74860

Since the T4 stage performs a job similar to that of T9, a possible improvement
is to calculate the bitmaps of those tasks that are non-null in the T4 stage. In
this way, the T9 stage would only be in charge of reducing the bitmaps of the
tasks that correspond to the same C block. As future work, it is interesting to
study this change and possible optimizations to the functor that calculates the
bitmaps of each task.

Comparison with CuSPARSE. Table 6 compares the execution times of the
VT4 variant based on the bmSparse format and the implementation for the CSR
format included in cuSparse. It is observed that VT4 has a better performance
in all matrices except the first one, where there is a small difference that favors
cuSparse. The matrix with the most significant difference is matrix 5, where the
execution time of cuSparse is approximately 5× longer than that of bmSparse.
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Table 6. Execution times (in µs) of the VT4 variant based on bmSparse and the
implementation of cuSparse based on CSR. In both cases, values of type float and
input arrays previously loaded into device memory are assumed.

Matrix

1 2 3 4 5 6 7 8 9

Time cuSPARSE 882 3998 5841 46555 140496 22113 455073 48310 202372

Time bmSPARSE 991 5555 5011 48504 28610 21633 106482 37357 121151

Relative perf. 0.89× 0.72× 1.17× 0.96× 4.91× 1.02× 4.27× 1.29× 1.67×

6 Concluding Remarks

The SpMM is a sparse matrix operation that has interesting applications in data
science. The bmSparse format, presented by Zhang and Gruenwald [15], is a novel
bitmap-based sparse format, specially conceived to achieve high performance
for the SpMM in throughput-oriented processors such as GPUs. The use of
bitmaps effectively addresses one of the main challenges of the SpMM, which
is to determine the nonzero pattern of the output matrix from the two input
matrices, and the preliminary results presented by the authors are promising.

We have re-implemented the algorithm based on the directions of [15] and
proposed two new stages that can improve its performance. T4 stage removes
unnecessary tasks from the task list based on the bitmaps of the blocks of A
and B that form each task. The experimental results on a set of nine sparse
matrices from the SuiteSparse Matrix Collection show that the savings on the
time of subsequent stages greatly compensate for the addition of T4, achieving
interesting runtime reductions. The addition of T9, which computes the resulting
bitmaps from the bitmaps of A and B blocks, did not result in a performance
gain, although several possible optimizations to this stage were identified. The
variant that includes T4 (VT4) is superior to cuSparse in 6 out of 9 test cases
and achieves up to 5× runtime reduction.

We intend to fine-tune each stage of the algorithm for future work, concen-
trating on optimizing the most time-consuming stages. We are also interested in
adapting the implementation to harness GPUs equipped with Tensor Cores.
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Abstract. In deep neural networks, using more layers and parameters
generally improves the accuracy of the models, which get bigger. Such
big models have high computational complexity and big memory require-
ments, which exceed the capacity of small devices for inference. Knowl-
edge distillation is an efficient approach to compress a large deep model (a
teacher model) to a compact model (a student model). Existing online
knowledge distillation methods typically exploit an extra data storage
layer to store the knowledge or deploy the teacher model and the student
model at the same computing resource, thus hurting elasticity and fault-
tolerance. In this paper, we propose an elastic deep learning framework,
EDL-Dist, for large scale knowledge distillation to efficiently train the
student model while exploiting elastic computing resources. The advan-
tages of EDL-Dist are three-fold. First, it decouples the inference and
the training process to use heterogeneous computing resources. Second,
it can exploit dynamically available computing resources. Third, it sup-
ports fault-tolerance during the training and inference processes within
knowledge distillation. Our experimental validation, based on industrial-
strength implementation and real datasets, shows that the throughput of
EDL-Dist is up to 181% faster than the baseline method (online knowl-
edge distillation).

Keywords: Knowledge distillation · Distributed computing · Deep
neural network

1 Introduction

In recent years, Deep Neural Networks (DNNs) have achieved major success in
various domains, such as computer vision [16] and natural language processing
[15]. Bigger models with more layers, neurons and parameters generally improve
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the accuracy of a model. For instance, ERNIE [15] exploits large numbers of
parameters, e.g., 10 billions parameters. With a large number of parameters, deep
neural networks have high computational complexity and big memory require-
ments, which exceed the capacity of small devices (mobile phones or IoT devices)
on which they are deployed for inference.

Knowledge distillation [6] is an efficient approach to distill the knowledge
from a big model into a smaller model while retaining its accuracy. During knowl-
edge distillation, a small model (a student model) is trained with the supervision
of a large model (a teacher model). The teacher model is a cumbersome model,
which could be an ensemble of separately trained models or a single very large
model trained with a strong regularizer [6]. Compared with the teacher model,
the student model is relatively small and compact.

Different from normal training, which does not rely on a trained teacher
model, knowledge distillation requires a pre-trained teacher model. During
knowledge distillation, the teacher model is used by the inference process to
generate supervision knowledge while the student model is trained. These infer-
ence and training processes can be sequentially performed or in parallel. The
training can be carried out offline or online. The offline approach exploits an
extra data store to cache the knowledge distilled from the teacher model, which
is used to train the student model separately [4]. This approach can decouple
the inference of a teacher model and the training of a student model. How-
ever, this approach requires much storage and distilling the knowledge from the
teacher model may take much time when the teacher model or input data are
big. The online approach puts the teacher model and the student model into the
same server and performs the training of the student model and the inference
of the teacher model synchronously. When the teacher model is very big, the
training of the student model gets limited by the synchronization of the infer-
ence of the teacher model, which takes much computing time. In addition, both
the offline and online approaches do not support elastic computing resources or
fault-tolerance.

The training of knowledge distillation typically exploits many computing
resources, e.g., CPU cores or GPU cards. However, the availability of computing
resources may vary dynamically as there may be concurrent users with same
priority. Thus, some computing resources can be granted to a user for a long
time while some other computing resources can only be used for a short time
and may be dynamically withdrawn. During the long training of knowledge dis-
tillation with elastic computing resources, some will become unavailable, while
some others will become available. Furthermore, these computing resources are
heterogeneous, e.g., GPU cards with diverse computing capabilities.

In this paper, we address the problem of efficient knowledge distillation with
heterogeneous computing resources. We assume a distributed environment with
two kinds of computing resources: dedicated and elastic. The dedicated com-
puting resources are provided by powerful servers, e.g., V100 GPU cards, for
knowledge distillation only. The elastic computing resources are smaller servers,
e.g., P4 GPU cards, and can be dynamically allocated to other tasks of higher
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priority or knowledge distillation. We propose an Elastic Deep Learning frame-
work, i.e., EDL-Dist, with a distributed, fault-tolerant architecture. EDL-Dist
provides an elastic service that manages multiple GPU cards, for inference of
teacher models. It manages the training of knowledge distillation with multi-
ple GPU cards on multiple servers (a server may have one GPU or more GPU
cards). Furthermore, the type of GPU cards can be different depending on the
process, e.g., training versus inference, which are decoupled in order to exploit
elasticity. Our solution to fault-tolerance is based on a fail-over mechanism [14]
using check-points and re-execution of tasks in Teacher. In addition, EDL-Dist
comes with two main algorithms for scheduling and knowledge distillation. The
scheduling algorithm is hybrid, i.e., combines static [9] and dynamic scheduling,
and associates computing resources from different processes. The knowledge dis-
tillation algorithm, EDL-Dist algorithm, is distributed and enables decentralized
training of the student model with the knowledge from the teacher model.

This paper is organized as follows. Section 2 introduces the related work of
knowledge distillation. Section 3 describes the EDL-Dist framework. Section 4
presents the experimental results, which show the advantage of EDL-Dist com-
pared with the baseline method (the online approach) and normal training.
Finally, Sect. 5 concludes the paper.

2 Related Work

In this section, we first introduce knowledge distillation. Then, we discuss solu-
tions for supporting knowledge distillation, with distributed or decentralized
training, and elastic computing resources.

Knowledge distillation is based on the popular machine learning Softmax
function and a temperature [6]. The Softmax output layer converts the logit
computed for each class (predefined category associated to the input data) into
a probability with a temperature T. The temperature indicates the impact of
the output from the teacher model, where a higher value of T corresponds to a
weaker impact of the output of the teacher model.

During the training of knowledge distillation, two neural networks are used:
teacher model and student model. The student model is trained using the com-
bination of two loss functions. One loss function is based on a soft prediction,
which considers the soft labels from the teacher model. The other loss function
is based on a hard prediction, which considers the ground truth label from the
training data. The soft prediction corresponds to the outputs of the student
model, while the hard prediction is the original output of the student model.

Knowledge distillation can be carried out based on two methods: offline and
online. With the offline method, a teacher model is trained before distillation.
Then, the knowledge of the teacher model can be extracted and stored in a cache
[4]. This method requires large extra storage resources. With the online method
[17], the inference of the teacher model and the training of the student model
are performed in the same GPU card. Thus, when the teacher model is big, the
training of the student model gets limited by the synchronization of the inference
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of the teacher model, which takes much computing time. Furthermore, these two
approaches do not support elastic computing resources or fault-tolerance.

In order to accelerate the training of a deep learning network, multiple GPUs
can be exploited using data parallelism. The model is replicated in each GPU
while the data is distributed in different GPUs [1]. Ring all-reduce [3] is generally
exploited to realize the distributed training process with the data parallelism
method. However, the ring all-reduce method is only designed for the training
without consideration of knowledge distillation. Furthermore, it cannot support
elastic computing resources and do not provide fault-tolerance.

3 EDL-Dist

In this section, we present the EDL-Dist framework, its architecture, algorithms
for scheduling and knowledge distillation, and our solution for fault-tolerance.

3.1 Architecture

The architecture of EDL-Dist (see Fig. 1) has three modules: Student, Teacher
and Coordinator. Student is composed of dedicated computing resources, which
are used to train a student model with a distributed or decentralized method.
Teacher consists of dynamic computing resources. In the dynamic computing
resources, the teacher models are deployed for the inference process. Coordinator
coordinates data transfer and training in Student and inference in Teacher.

Fig. 1. Functional architecture.

We exploit a decentralized training algorithm, i.e., ring allReduce [3], to
perform parallel training in Student. Since transferring data among different
GPU cards is time consuming, the training data is partitioned and cached in the
host memory of each server for fast data access. During training in Student, only
the gradients are transferred among different servers. Within each iteration of
the training process, each computing resource in the student model takes data,
including the input training data, the hard labels and soft labels from a data
service, DistilReader, to update the student mode.

DistilReader is a service that caches the input training data and the corre-
sponding soft labels, generated from Teacher, in the host memory of each com-
puting resource in Student. It provides an interface between a Student server
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and the Coordinator server or Teacher servers. The Student server, Coordinator
server or Teacher server denotes a server that supports the corresponding mod-
ule. This service is deployed in each Student server. As shown in Fig. 2, Distil-
Reader sends the input data to Teacher and receives the soft labels from Teacher.
In order to know which Teacher server to connect to, DistilReader retrieves the
server information from Coordinator. In addition, DistilReader regularly queries
Coordinator to know if the Teacher server is still alive. When a Teacher server
becomes unavailable, DistilReader searches for available Teacher servers from
Coordinator to replace the unavailable server.

Fig. 2. DistilReader service.

Teacher is composed of multiple dynamic computing resources, each of which
can become unavailable at any moment because of unexpected changes in the
multiuser workload. When a dynamic server is alive and added as a Teacher
server, it is registered in Coordinator. Then, a teacher model instance is deployed
in the server in order to perform inference, which takes input data and generates
corresponding soft labels. When the Teacher server remains available to be con-
nected for knowledge distillation, it sends heartbeat messages to Coordinator in
order to maintain its status until the end of the knowledge distillation task.

Coordinator has two components: a service manager and a database, which
is an in-memory database for efficient data processing. The service manager can
query the database in order to search for available computing resources in Teacher.
The service manager answers the queries from DistilReaders in Student. The reg-
ister information from Teacher is directly stored in the database. The alive status
stored in the database has a time limit, i.e., Time to live (TTL). When the heart-
beat information is sent from a Teacher server to the database, the corresponding
alive status is prolonged, i.e., the corresponding TTL is updated. If the Teacher
server does not send heartbeat messages to the database for a long time, when its
TTL expired, its status will be considered unavailable.

3.2 Hybrid Scheduling Algorithm

In order to speed up the inference process, it is critical to schedule the workloads,
i.e., the inference to generate soft labels for input data, requested from Student
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to computing resources in Teacher. A resource represents a computing unit that
can perform training, e.g., a GPU card or a CPU care. The resource scheduling
problem is NP-hard [12]. When a Student resource is scheduled to a smaller
number of Teacher resources than an appropriate number, the throughput of the
student model is restricted by the inference of its scheduled resources. Otherwise,
when a resource in Student is scheduled to a bigger number of resources in
Teacher, more and more soft labels and corresponding input data will be stored
in the host memory of Student servers to be used. The accumulated stored soft
labels and corresponding input data may occupy large amount of memory, which
may block the training process. Thus, it is important to schedule the appropriate
number of resources to each Student resource.

We propose a hybrid scheduling algorithm (see Algorithm 1), i.e., which
combines static and dynamic scheduling methods. We assume historical infor-
mation on the execution of the training and inference processes. For instance, the
throughput of the training in a Student server, e.g., one GPU card in Student,
is ts and the throughput of the inference in a Teacher server, e.g., one GPU card
in Teacher, is tt. The throughput gives the number of images or the amount
of input data that can be processed in the same resource per time unit by the
student model (or the teacher model) without restriction of another module. We
assume that the resources in the same module, e.g., Student or Teacher, are of
the same type while the types of GPU cards in different modules can be different.
We set the number of Teacher resources as n = tt

ts
for each Student resource,

i.e., we schedule �n� Teacher resources to each Student resource.

Algorithm 1. Hybrid Scheduling Algorithm
Require: number of Teacher resources n
Require: lower threshold of the volume of soft labels lt
Require: upper threshold of the volume of soft labels ut
1: schedule n Teacher resources to the Student resource
2: while knowledge distillation is not terminated do
3: volume = get volume(unused soft labels)
4: if volume > ut then
5: stop sending input data to Teacher servers
6: end if
7: if volume == 0 then
8: schedule an additional available Teacher resources to the Student resource
9: end if

10: if volume < lt then
11: continue sending input data to Teacher resources
12: end if
13: end while

During the training of knowledge distillation, when a Student resource
searches for Teacher resources, it is scheduled �n� Teacher resources (Line 1). As
the execution environment may vary during the training of knowledge distillation,
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we dynamically adjust the scheduling (Lines 3–12). We use a monitoring task in
each Student resource to monitor the number of combinations of soft labels and
input data (Line 3). The occupied volume is calculated based on the number and
average size of a combination of input data and soft labels, which can be measured
with an offline method. When the growing volume exceeds a predefined upper
threshold value (Line 4), the Student resource stops sending input data to the
Teacher resource (Line 5) in order to consume the unused soft labels until the vol-
ume decreases to a smaller value than another lower bound threshold value (Lines
10–12). The upper threshold and the lower threshold can be set by the user based
on the size of storage in the resource of Student. This mechanism ensures that the
number of soft labels remains reasonable in each Student resource, which does not
slow down the training or incur memory leaks in the Student resource. Otherwise,
if the resources in Student stay idle in order to wait for the soft labels from Teacher,
more Teacher resources are required by the Student resource in order to accelerate
the inference in the teacher model (Lines 7–9). When there are available Teacher
resources, they are scheduled to the Student resource.

3.3 EDL-Dist Algorithm

We now present our EDL-Dist Algorithm 2 for the parallel training in each
Student resource during the training of knowledge distillation. The input data
and the hard label y are retrieved from the host memory (Line 3), which can
be done by DistilReader. Then, the soft labels are prepared by the DistReader
service from Teacher in Line 4. Based on the hard label and the soft labels,
the student model θ is updated in Line 5. The loss function in each server is
a weighted function based on the loss function of the hard labels and the soft
labels. λ is the learning rate, which can be set corresponding to the student
model. Then, an average student model is calculated in Line 7.

Algorithm 2. EDL-Dist Algorithm
Require: hard loss function φ(hard label, hard prediction)
Require: soft loss function ψ(soft labels, soft predictions)
Require: hard prediction function F (θ, input)
Require: soft prediction function F ′(θ, input)
Require: learning rate η
Require: weight for hard loss function α
Require: weight for soft loss function β
Require: number of Student resources N
1: while not converged do
2: for θi in resource i do
3: y, input = get training sample()
4: soft labels = get soft labels(input)
5: θi = θi − η �θi {αφ(y, F (θi, input)) + βψ(soft labels, F ′(θi, input)}
6: end for

7: θ =
∑N

j=1 θj

N

8: end while
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3.4 Fault-Tolerance

We consider the fault-tolerance in Student and Teacher, assuming that Coordi-
nator is always available. If the Coordinator server is not stable, fault-tolerance
can be simply achieved by having multiple instances of the in-memory database
deployed in multiple servers using existing frameworks, e.g., Zookeeper [7]. If a
Teacher resource is not available, its status will become unavailable when its TTL
expires in the database. The Teacher resource can become unavailable in three
cases. The first case is before the resource is scheduled to a Student resource.
In this case, EDL-Dist simply ignores this Teacher resource. The second case is
when the Teacher resource is scheduled to a Student resource that does not send
input data to it or does not wait for soft labels from it. In this case, the Student
resource will search for another available Teacher resource that is not scheduled
to any Student resource. The third case is when the Teacher resource is scheduled
to a Student resource that sends input data to it and is waiting for soft labels
from it. In this case, as presented in Sect. 3.1, the Student resource will search
for another available Teacher resource. Once a Teacher resource is re-scheduled
to it, the Student resource sends the input data to the Teacher resource again.
When a new Teacher resource is available in Teacher, it is scheduled to a Stu-
dent resource that is searching for Teacher resources. If there is no such Student
resource, the Teacher resource will wait for such a Student resource.

To address fault-tolerance in Student, we exploit a fail-over mechanism [14]
that uses check-points during the training of knowledge distillation. A checkpoint
is a copy of the student model. Before the training process, a server is selected as a
master node and saves the checkpoint at every certain iterations. The checkpoint
is saved in a distributed file system, which is accessible to all the Student servers.
Each Student server updates the student model in each iteration. Then, when a
Student server becomes unavailable or a new Student server is added to Student,
the training in all the Student servers stops. Afterward, each Student server loads
the student model from the checkpoint and continues the training process. Thus,
the consistency of the student model is ensured while addressing fault-tolerance.

4 Experimental Validation

In this section, we present our experimental validation of EDL-Dist in compar-
ison with online knowledge distillation (Online) (baseline) and normal training
(N-training). We present the experimental setup and then give the results.

4.1 Experimental Setup

EDL-Dist is implemented based on the PaddlePaddle framework [13] and pub-
licly available at Github1. Student is based on Paddle FleetX2, which implements

1 https://github.com/elasticdeeplearning/edl.
2 Paddle Fleet: https://github.com/PaddlePaddle/FleetX.

https://github.com/elasticdeeplearning/edl
https://github.com/PaddlePaddle/FleetX
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the ring allReduce algorithm using NCCL3 for decentralized training. We use
Redis4 as the in-memory database in Coordinator [11].

We carry out three experiments to show the advantages of EDL-Dist com-
pared with Online and N-training. Online deploys the teacher and student mod-
els in the same GPU server. N-training represents the training with GPU cards
without knowledge distillation. In all experiments, we use real datasets, i.e., Ima-
geNet data set [2]. In the first experiment, we combine CPUs and GPU cards,
in order to show that EDL-Dist can efficiently exploit heterogeneous computing
resources.

Table 1. Throughput for different approaches.

CPUcores N-training Online EDL-Dist Advantage

1 14.16 5.92 14.34 142.23%

2 28.44 11.51 28.07 143.87%

4 55.17 21.76 54.92 152.39%

8 101.59 37.87 102.40 170.40%

16 168.42 59.94 168.42 180.98%

Table 2. Throughput for different approaches.

CPUcores N-training Online EDL-Dist Advantage

8 57.14 46.04 35.68 −22.50%

12 57.14 46.04 52.46 13.94%

16 55.17 46.04 57.65 25.22%

In the next two experiments, we use ResNet101 [5] as the teacher model,
ResNet50 [5] as the student model, and set the batch size as 32. The second
experiment (Sect. 4.3) figures out the fine-tuned number of Teacher GPU cards
(NVIDIA Tesla P4 GPU card) for each Student GPU card (NVIDIA Tesla V100
GPU card). The single-precision performance, which represents the speed to
perform calculation, of P4 is 5.5 Teraflops while that of V100 is 14 Teraflops.
The third experiment (Sect. 4.4) is performed with 8 v100 GPU cards in Student
and various numbers of P4 GPU cards in Teacher for EDL-Dist. We compare
the throughput and the training time to that of Online and N-training.

4.2 Comparison with Heterogeneous Resources

To validate that our solution is efficient with heterogeneous computing resources,
we experiment with the combination of CPU and GPU cards for knowledge
3 NCCL: https://developer.nvidia.com/nccl.
4 Redis: https://redis.io/.

https://developer.nvidia.com/nccl
https://redis.io/
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distillation. We take MobileNetV3 small [8] as the student model and Resnet50
[5] as the teacher model. We use Intel(R) Xeon(R) Gold 6148 CPU @ 2.40 GHz
CPU cores and a P4 GPU card. We set the batch size as 64 in Student.

First, we take the P4 GPU card in Teacher and different numbers of CPU
cores in Student. The results are shown in Table 1. The throughput of our pro-
posed approach, i.e., EDL-Dist, is similar to that of N-training and significantly
outperforms Online (up to 181%). Then, we take the P4 GPU card as the Stu-
dent GPU card and different numbers of CPU cores as the Student resources. As
shown in Table 2, the throughput of EDL-Dist is smaller than that of N-training
and Online when Teacher resources are not enough (8). The throughput of EDL-
Dist is similar to that of N-training and significantly outperforms Online (up to
25.22%) when the Teacher resources are enough (12 and 16).

4.3 Fine-Tuning of EDL-Dist

The throughput of EDL-Dist increases with the number of Teacher GPU cards.
With enough Teacher GPU cards, the throughput of EDL-Dist can be similar
to that of N-training. As we add more Teacher GPU cards, the throughput of
EDL-Dist becomes a little bit lower as it takes some time to manage unused
intermediate soft labels from Teacher. In order to validate this property of EDL-
Dist, we also experiment using a v100 GPU card in Student and various numbers
of P4 GPU cards as Teacher resources. The throughput of EDL-Dist is shown
in Fig. 3a when using different numbers of P4 GPU cards. The training time
is shown in Fig. 3b. Figures 3a and 3b indicate that the fine-tuned number of
Teacher resources (P4 GPU card) is 5 when we use a single v100 GPU card
as the Student resource. When the number of Teacher GPU cards is smaller
than 5, the throughput increases linearly as number of P4 GPU cards increases,
which shows the good scalability of EDL-Dist. When the number of Teacher
GPU cards is greater than 5, the throughput slightly decreases as it takes time
to manage unused soft labels in the Student server. Furthermore, we find that

Fig. 3. Fine-tuning with various numbers of P40 Teacher GPU cards.
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the throughput of Online is much smaller (up to 93.0%) than that of EDL-Dist
and the training time of the Online is much longer (up to 92.9%) than that of
EDL-Dist when the number of Teacher GPU cards is smaller than 8.

4.4 Comparison with Multiple Student GPU Cards

In this experiment, we take 8 V100 GPU cards and 40–56 P4 GPU cards for
different approaches. We compare the throughput between EDL-Dist, Online
and N-training. We take 8 NVIDIA Tesla v100 GPU cards as dedicated Student
GPU cards while using 48 P4 NVIDIA Tesla GPU cards as Teacher GPU cards
as we find 48 is the appropriate number of Teacher GPU cards as shown in
Table 3. Please note that some GPU servers are dynamically added and removed
during the execution of the experiments.

Table 3 shows that the accuracy (1 and 5) of EDL-Dist is similar to that
of N-training and Online. Accuracy 1 represents the accuracy of the predicted
class with the highest probability. Accuracy 5 represents the accuracy of the
top 5 ranked classes based on the probability. The accuracy of EDL-Dist can be
slightly higher than that of N-training (Accuracy 5).

While the student model is trained with the training data and the soft labels
with knowledge distillation, the trained student model from knowledge distilla-
tion can get more generalization information from the teacher model [6]. Thus,

Table 3. Experimental results (accuracy). Accuracy 1 is the accuracy of the predicted
class with the highest probability. Accuracy 5 is the accuracy of the top 5 ranked classes
based on the probability.

N-training Online EDL-Dist (40) EDL-Dist (48) EDL-Dist (56)

Accuracy 1 77.1 79.0 79.0 79.0 79.0

Accuracy 5 93.5 94.3 94.5 94.5 94.5

Fig. 4. Experimental results with 8 Student v100 GPU cards and 40(EDL-Dist-
40)/48(EDL-Dist-48)/56(EDL-Dist-56) P40 GPU cards.
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we can efficiently train a student model with higher accuracy (compared with
N-training) using EDL-Dist.

In Fig. 4a, the throughput of EDL-Dist is much higher (23.5% faster) than
that of Online. This shows that EDL-Dist significantly speeds up training com-
pared with the Online while not requiring extra storage resources. The through-
put of EDL-Dist is slightly lower than that of N-learning because of some
overhead when there are multiple Student GPU cards. The training time of
N-training, Online and EDL-Dist is shown in Fig. 4b. The training time of EDL-
Dist (48) is almost the same as that of EDL-Dist (56), which indicates that the
bottleneck of the number of Teacher GPU cards is 48. With 48 Teacher cards,
the training time of EDL-Dist is 19.4% shorter than that of Online. Compared
with N-training, the training time of EDL-Dist is slightly longer (12.8%). As it
takes time to transfer the data from Student servers to multiple Teacher servers,
the training time of EDL-Dist is slightly longer than that of N-training.

5 Conclusion

In this paper, we proposed EDL-Dist, an elastic deep learning framework for large
scale knowledge distillation. EDL-Dist has a distributed, fault-tolerant archi-
tecture that leverages heterogeneous computing resources. We did a thorough
validation of our solution by implementing an industrial-strenght prototype of
EDL-Dist (available at github) and experimenting with real datasets. The exper-
imental results show that EDL-Dist can be 181% faster than online training while
its accuracy is a little higher than that of normal training. In the future, we may
exploit federated learning [10] to deal with the decentralized data in order to
ensure the data security and privacy.
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Abstract. The ubiquity of heterogeneous systems facilitates the
exploitation of scientific problems, such as molecular dynamics simula-
tors, but their highly optimized codes for multi-core HPC architectures
complicates porting. In this work, EngineCL is extended to enable effi-
cient co-execution of molecular dynamics kernels. Contributions include
support for a new execution core and a hybrid co-execution mode, solving
the problems encountered when running only with OpenCL-based tech-
nologies. Experimental evaluation shows improvements in all the kernels
studied, obtaining on average speedups of up to 1.38 in performance and
1.60 in energy efficiency over the current optimized version.

Keywords: Heterogeneous computing · Hybrid parallel computing ·
Co-execution · OpenCL · Performance portability · Load balancing ·
Molecular dynamics · Particle simulations

1 Introduction

Along the last three decades, computationally intensive scientific applications
have generally been run in clusters composed of homogeneous multi-core com-
puting nodes. Among these applications, ls1-MarDyn is a massively parallel
Molecular Dynamics simulator for chemical engineering and energy technology
applications for large systems, developed in the High-Performance Computing
Center Stuttgart (HLRS) [14]. It is designed with a focus on performance and
easy extensibility, targeting thermodynamics and nanofluidics simulations.

Ls1-mardyn has been deeply optimized to take advantage of the features
of multi-core architectures, using OpenMP for efficient node-level performance.
Data structures, such as linked cells, and algorithms have been defined to exploit
the different levels of the memory hierarchy, prefetching, instruction level paral-
lelism (ILP), as well as vector units (SIMD instructions) [15].

In this context, the emergence of heterogeneous systems and hardware accel-
erators, such as GPUS and FGPAs, offer a new chance to increase performance
c© Springer Nature Switzerland AG 2022
R. Chaves et al. (Eds.): Euro-Par 2021, LNCS 13098, pp. 129–140, 2022.
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and reduce energy consumption. However, they also present a number of chal-
lenges, including programmability and performance portability. To overcome
these problems OpenCL has been developed, extending C/C++ for heteroge-
neous systems, proposing a host-device programming model in which the CPU
offloads the compute-heavy functions (kernels) to an accelerator.

However, given the great effort developed to optimize ls1-mardyn on CPUs,
this paper proposes that the most suitable model for its implementation in het-
erogeneous systems is not the host-device model, but a co-execution model. In
co-execution all the devices share the execution of a single massively data-parallel
kernel to minimize its execution time. But co-execution presents a new challenge,
because OpenCL does not offer equivalent performance to the CPU-optimized
version of the kernels, significantly burdening the capacity of the system.

This paper presents a new hybrid co-execution mode for EngineCL, sup-
porting two programming models for heterogeneous computing. This OpenCL-
based runtime system outstandingly simplifies the co-execution of a single mas-
sive data-parallel kernel on all the devices of a heterogeneous system [2,9–11].
EngineCL performs a set of low level tasks regarding the management of devices,
their disjoint memory spaces and scheduling the workload between the system
devices while providing a layered API. In this work, it is also enhanced to allow
the execution of native optimized kernels on the CPU as well as on-line compiled
OpenCL kernels in the GPU, transparently to the programmer.

This topic has been studied previously from several points of view [3,4,7,
12]. For instance, [13] proposes a runtime system that splits work between the
CPU and GPU. LaKomski et al. offers co-execution evaluation but uses a static
work-sharing technique, not adapting to irregular problems [6]. Hybrid CPU-
GPU implementation of particle simulations using OpenCL is proposed in [1,5],
but they compute different kernels per device. The application field is close to
our work but they do not perform co-execution among the devices. Finally, [8]
address the same problem from another perspective for synthetic benchmarks.

Our work offers an independent runtime with a high-level API, facilitating
the integration in real-world C++ applications. It offers two execution cores,
including custom native parallelized and vectorized code execution. Moreover,
it supports co-execution with a new hybrid mode running native code on the
CPU combined with OpenCL code on the GPU. Nevertheless, we evaluate the
scalability, along with its performance and energy efficiency when co-executing.

2 Motivation

The advent of heterogeneous systems has opened up new optimization opportu-
nities for applications that have traditionally been optimized to run on clusters
of CPUs, like ls1-mardyn. However, they give rise to three main challenges: pro-
gramming complexity, inefficiency in balancing between CPUs and GPUs, and
device performance portability issues as the programming model varies.

Firstly, OpenCL allows the execution of a kernel on different devices, through
the host-device programming model, offering code portability but not always per-
formance portability. Furthermore, it is a low-level language that is particularly
difficult to use in complex software architectures, like ls1-mardyn.
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Secondly, the host-device programming model leaves the CPU in charge of
device management, work distribution and synchronization. This facilitates pro-
gramming but the CPU continues consuming energy without contributing any-
thing to the computation. Therefore, it is convenient to co-execute the problem
to void harming both the performance and energy consumption of the system.

Thirdly, one of the key points of the performance of a device and the asso-
ciated OpenCL programming model is determined by the quality of the driver
and the optimizations provided by the vendor. This has been a serious problem
encountered during the OpenCL technology applicability study in the kernels
extracted from the ls1-mardyn simulator. The Intel Xeon processor requires a
degree of optimizations not achievable by its driver regarding these molecular
dynamics kernels, causing a performance penalty. Thus, the feasibility study only
allowed a correct use by the GPU, but ruled out any possibility of exploiting the
CPU.

The first two drawbacks are addressed by using EngineCL, a high-level co-
executor runtime for heterogeneous computation tested on multiple architec-
tures. It offers a layered and optimized design that enables high usability without
penalizing performance. It facilitates incremental transformation of compute-
intensive regions, thanks to its architecture, built-in schedulers and API design.

However, on the other hand, since EngineCL uses internally OpenCL tech-
nology, it still presents the third problem mentioned above. Ls1-mardyn uses
parallelized and vectorized kernels, so OpenCL is not able to cope with such
an optimized code, as it is depicted in Fig. 1. For this reason, it is necessary to
adapt the runtime in order to maintain its premises and design principles, but
to provide it with new computational capabilities more optimized for the CPU.
To guarantee the first two issues mentioned above, the runtime must preserve
a negligible overhead with respect to OpenCL, allow efficient co-execution and
maintain a clean API design, while providing new execution methods that are
independent of OpenCL and exploitable in the simulator. The goal is to be able
to run molecular dynamics kernels on heterogeneous systems efficiently, taking
advantage of as many devices as exist on the node and evaluating energy and
performance tradeoffs with respect to the initial implementation.

Fig. 1. CPU computation times for classical and ls1-mardyn kernels, using OpenCL
and OpenMP technologies for a set of problem sizes.
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3 Optimizations of EngineCL

The proposal of this article focuses on enhancing EngineCL [9,10] with more
functionality, without compromising its usability. The runtime has experienced
three innovations from the functional point of view. All of them with the main
goal of providing support for hybrid heterogeneous computing model, which
means combining different computing technologies for CPU-GPU co-execution.

First, the entire system has been adapted to support new execution engines.
This has required an internal transformation, including the generation of new
interfaces to encapsulate the distinct implementations of its behavior. Further-
more, it has also required a minimal modification of the external API, trying to
preserve the high usability.

Secondly, a new execution core has been implemented, thanks to the archi-
tectural adaptation to support variants of the internal computational engine.
This core is specialized in the execution of binary kernels for the CPU, as a
native execution, instead of an execution core based on OpenCL.

Finally, the third innovation focuses on adapting the runtime to support
hybrid co-execution, mixing native and OpenCL-based execution cores. In this
way, the same kernel is computed simultaneously by two independent technolo-
gies, being EngineCL in charge of synchronization, workload distribution and
resource management, regardless of the execution mode used.

3.1 Architecture

EngineCL offers a layered architecture in three tiers, increasing the functional-
ity and degree of complexity the lower the tier [10]. Figure 2 shows the layers,
tiered horizontally, and the main modules of EngineCL. Those modules that have
been affected by the innovations presented in this paper have been highlighted,
although new ones, such as Range or Executor, have also been included. This
layered design allows encapsulating the functionality provided by the modules of
the lower layers, while favoring functionality reuse and a simplified API design.

The adaptation of the runtime to support new execution paradigms has
involved a refactoring of the execution engine, which until now was intended
only for OpenCL. A new execution interface, Executor, has been incorporated,
which determines the execution core of a device. In order to traverse the execu-
tion space, provided by the application domain (Program), the Range module
has been introduced, which masks how the kernel is executed, independently of
the execution core. In addition, both the Runtime and the Work distribution
are adapted to understand the new abstract execution mechanism provided by
Executor. The new component signatures influence how they are manipulated
and instantiated by each Device and the Runtime itself. These structural changes
have not affected the API design, thanks to the layered architecture.

On the other hand, with the addition of a new native execution core, a slight
modification of Tier-1 has been facilitated. Variables and parameters provided
to the Program class are internally associated to the structures needed by each
internal execution core, regardless of the technology used.
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Fig. 2. EngineCL main modules, highlighting those affected by the innovations.

Finally, new design principles have been provided to facilitate internal main-
tainability and extensibility. Three functionalities have been defined that can
work independently of each other, the execution space (Range), the execution
core (Executor) and the data management (Buffer). Since the behavior of each
of the new interfaces depends on the instantiation of the chosen adapter, the
AbstractFactory pattern is applied to simplify the composition of operating
modes.

In this way, the mode of operation of the core does not determine the rest
of the internal components on which it depends, the extensibility of the run-
time and its internal execution mechanisms. Abstract Factories facilitate the
construction of products with interchangeable parts. The NativeFactory builds
the most optimal components for a native execution mode on CPU, instantiating
an execution space based on C++ iterators, an execution core based on a exe-
cutable code blob for CPU and a lightweight data management with direct access
to host memory. Finally, OpenCLFactory offers the original EngineCL compo-
nents, now refactored and encapsulated as independent instances. It builds an
n-dimensional range-based execution space, an OpenCL-based execution kernel,
and explicit reservation-based memory management with disjoint spaces.

3.2 Execution Model

The execution model is explained focusing on the divergent tasks regarding the
execution cores, helping to understand the main differences that allow supporting
distinct executors including the novel native CPU processor. To simplify the
model, it is taken into account the compilation and execution phases of a program
when using the runtime.

Figure 3 shows the kernel compilation stage in the upper part, while the lower
one summarizes the stages produced during the execution phase. The starting
point is a source code with an OpenCL kernel, while the offline compiler is used
to prepare the binary kernels to be used later during runtime execution.
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Fig. 3. Kernel source code compilation process (above) and initialization during the
EngineCL execution phase (below).

The clkernel tool performs a compilation for the different devices present in
the system, thanks to the ICD loading mechanism of OpenCL and the subsequent
binary construction offered by its drivers. On the other hand, the cl2native tool
performs a source code transformation to be compiled by the different backends
present in the system. The programmer can include annotations to facilitate the
conversion, provide his own optimized variant or even use his own binary file,
as long as it maintains the appropriate signature to be consumed. In any case
the code will be provided with a wrapper that establishes a common interface
to be called. This signature will be consistent with the specification needed by
EngineCL at runtime. The programming model chosen by cl2native is OpenMP,
but the programmer is free to use any other strategy and model. Finally, one of
the established compilers, such as icc or gcc, will be used, building an optimized
binary kernel with position-independent execution and without name mangling,
to be used directly by the runtime. In both cases, the resulting files contain the
pre-compiled programs with the code ready to be consumed by the different
devices of the heterogeneous node.

Subsequently, during the execution phase, as soon as the Engine module uses
the Program, a series of steps occur that affect the chosen execution mode. The
Runtime creates and configures the devices, starting to operate independently,
configuring themselves. This behavior is hidden from the rest of the runtime,
while they perform a series of steps depending on the chosen mode of operation
determined by the instantiated components (the Factories). Figure 3 shows two
paths at the bottom, one for the GPU and one for the CPU. The OpenCL
binaries are initialized and assigned to the devices associated to the context
managed by the Device, that is the GPU, who uses an execution engine based
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on OpenCL, an n-dimensional range and a program based on a low-level class
of OpenCL. On the other hand, the CPU device uses the native execution core,
its execution space is based on an iterator and initializes the program through
a dynamic indirection mechanism. The previously constructed binary kernel is
loaded dynamically in a blocking fashion, and the start function of the program is
subsequently configured. Access to the appropriate symbol within the executable
is provided by using a wrapper with a common signature.

3.3 Memory Model

The outline of the memory model, regarding the modifications performed in
this work, is shown in Fig. 4. Originally there was only one Buffer class that
encapsulated an OpenCL buffer, reserving one region of memory on the host
and another on the device, except if it was the CPU, in which case there was
only one region.

With the addition of the native mode and its optimizations, two new types of
buffers have been offered for EngineCL. On the one hand, those based on memory
region reservation, BufferAlloc, where two classes can be instantiated. The Allo-
cOpenCLMemory acts as a Proxy pattern that delegates actions to an OpenCL
buffer, preserving the initial EngineCL behavior for every OpenCL device. The
AllocHostMemory provides a host buffer that can be used and manipulated
exclusively by a native execution core.

Fig. 4. New classes and interfaces as an abstraction of the EngineCL Buffer.

On the other hand, a BufferBypass class is provided as an optimization for the
native core. This mechanism acts as a proxy with respect to the AllocHostMem-
ory class, being able to configure the behavior depending on how the memory
region is accessed. Considering ls1-mardyn and its kernels, it has been found that
a pure bypass strategy is the most advantageous, since there is no reservation or
copying of memory subregions. That is, the BufferBypass class configured by the
runtime to always reuse host memory and never make instances of the AllocHost-
Memory class under any conditions. Thereby any memory request acts directly
on the C++ containers or the host memory regions provided by the application
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domain (Program) itself. It is worth mentioning that the possibility of beneficial
use of AllocHostMemory could be found in kernels that mutate buffer contents
or where more sophisticated execution space strategies are performed, taking
advantage of the memory hierarchy, such as in stencil algorithms.

Finally, it should be noted that the use of the native model reduces the
memory requirements of the runtime, since the OpenCL-based operating mode
includes multiple primitives and structures to be able to use this technology. This
increase in memory occupation is not directly related to the application domain
data, but is influenced by the use of this programming model and the number
and architecture of the devices. Examples are contexts, command queues, events
or the callback payloads themselves. Therefore, by using the native execution
core, the runtime is being lightened, providing it with higher performance, less
memory footprint, and facilitating a more beneficial co-execution, as will be seen
in the Sect. 4.2.

4 Evaluation

4.1 Methodology

The experiments are carried out on a computer composed of an Intel Xeon
E5-2620 with 24 threads and an AMD Rx5700XT GPU with 40 compute units.
The first technology involved is the current ls1-mardyn implementation, labelled
CPU-icc. It is parallelized with OpenMP, vectorized and compiled with the Intel
compiler. Next, GPU and CPU-ocl when OpenCL drivers are used. Finally, the
new hybrid mode and its native execution core for the CPU, labelled CPU-hy.

Five kernels related to the computation of particles and their interactions
have been selected as part of the computational core of ls1-mardyn. Two of them,
md dist and md distn2 are related to the computation of distances between
molecules. The former offers a flow-based interaction with low computational
load, while the latter performs calculations based on indirections over all cells.
On the other hand, md diststar handles the minimum image convention while
computing the distance between molecules. Finally, md bin computes the associ-
ated indices for a set of cells in streaming mode, while md lj obtains the potential
and evaluates the force for the Lennard Jones 12-6 potential.

The validation of the proposal is done by analyzing the performance of the
new native execution core and the hybrid co-execution compared with CPU-icc.
The total response time is measured, including kernel computing and data trans-
fer. Two EngineCL scheduling configurations are evaluated when co-executing,
Static and HGuided [10], labelled as St and Hg, respectively.

Two metrics are used to evaluate the proposal, speedup and energy effi-
ciency. The speedup is calculated as S = TCPU−icc

Tco−exec
, being TCPU−icc and Tco−exec

the execution times for the current CPU implementation and the coexecution,
respectively. Finally, energies are measured using RAPL counters and sysfs sys-
tem drivers, giving the total consumption in Joules. The Energy-Delay Product
(EDP) is used to evaluate the energy efficiency, measured in Js.
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4.2 Experimental Results

The execution times regarding single device execution are depicted in Fig. 5,
showing how each device scales as the problem size is increased. For all the
kernels, the CPU version of OpenCL obtains the worst results. These results are
so poor that it limits the co-execution, penalizing the runtime management itself
and preventing it from being competitive with respect to the CPU-icc version.

However, thanks to the contributions of this paper, a new execution kernel for
EngineCL is provided that offers very similar performance to the CPU optimized
ls1-mardyn version, as shown by CPU-hy and CPU-icc. On the other hand, the
GPU obtains computation times close to these last two CPU modes, although
being slightly slower except in the case of the md distn2 kernel. It computes 2.64
times faster than the best version of the CPU, when calculating the distances
between one million molecules. These kernels are highly optimized for the CPU,
taking advantage of the memory hierarchy and vectorizations. Thus, the GPU
is not the fastest device, as has been the case in many other classical kernels.

It is now possible to properly exploit a heterogeneous environment thanks to
the new execution core and the performance offered. These results show how the
CPU with EngineCL is competitive and co-execution strategies may be possible.

Considering the co-execution in the heterogeneous system, Fig. 6 shows at
the top the speedups when co-executing with respect to the CPU optimized
version, CPU-icc. The abscissa axis shows the load balancing algorithms used
for each of the kernels, including the geometric mean. EngineCL provides co-
execution between the CPU and GPU devices. In the case of the CPU, it offers
two different execution cores, OpenCL-based and the new native executor.

The results show that, using the right scheduler in each case, co-execution is
always worthwhile, with the new hybrid execution model. The average speedup
is of 1.38x, and up to 4.02x on the md distn2 kernel. This is due to the new
architecture and optimizations enabled by the hybrid mode. Therefore, it allows
concurrent operation without incurring overheads that slow down execution, as
is the case with the purely OpenCL-based mode. The GPU + CPU-ocl setup
only becomes competitive with the CPU-icc version with a single kernel, due to
its computational overhead.

Fig. 5. Scalability when launching the computation in a single device.
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Fig. 6. Speedups (top) and energy efficiency (bottom) when co-executing compared
with current ls1-mardyn technology (CPU-icc). The annotations of the most significant
values have been rounded to the second decimal place.

It can be seen that the md distn2 and md lj kernels are the ones that offer
the highest performance in co-execution, due to the fact that they have a higher
computational cost. The number and complexity of their operations, along with
the memory regions used per kernel, increase the total computation time. On the
other hand, kernels limited by memory or with a strong communication pattern
compared with the computation time, are restricted in time. Therefore, dynamic
balancing algorithms, such as HGuided, do not have enough time to amortize
their cost by making decisions at runtime. The Static algorithm offers the best
generalized performance, due to the simplification of management operations
by the runtime, and the correct workload distribution. Static is adequate since
the total computation time is low and the kernels present regular behaviors,
balancing properly the workload. Since kernels are CPU intensive, it is counter-
productive to take up management and scheduling time, as it slows down the
final execution for such limited times. On the other hand, it is observed how in
the case of md distn2, where the execution is longer, the HGuided algorithm is
able to amortize its synchronizations and CPU usage, obtaining shorter com-
putation times than in the Static version. Since the total computation time is
long enough, it benefits from the parallel operations provided by a strategy that
generates multiple chunks at runtime, concurrently computing and doing data
transfer. Therefore, it is important to highlight the advantage of having different
scheduling algorithms, as each one offers beneficial exploitation situations.

Finally, Fig. 6 shows at the bottom the experimental results considering the
energy efficiency of the co-execution with respect to the system using the CPU-
icc version. Thus, it depicts the gains in EDP when co-executing compared to
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using the current optimized version. The conclusions observed in the performance
evaluation are accentuated since both energy consumption and response time are
taken into account. The GPU is a very energy efficient device, so that in kernels
where there is a higher computational load, the improvements with respect to
the CPU optimized version are intensified, reaching up to 4.94 in md disnt2 and
1.82 in md lj. On average, improvements of 1.60x are obtained with Static and
1.35x with HGuided, with respect to the CPU-icc. Regarding the differences
between the CPU-hy and CPU-ocl based co-execution, the performance is up
to 1.34x better on average with the new hybrid mode, while in energy efficiency
they increase to 3.14x with Static and 2.96x with HGuided.

5 Conclusions

Given the advantages of heterogeneous systems and their architectures, both in
performance and energy efficiency, new opportunities are emerging to improve
scientific applications. However, it is necessary to explore sophisticated solutions
since they are complex to program and integrate in real applications.

In this work, ls1-mardyn, a highly optimized simulator for HPC processors,
is chosen to exploit more efficient solutions that simultaneously take advantage
of the different heterogeneous devices of a node, such as GPU and CPU.

Since the OpenCL technology for CPU does not have an appropriate per-
formance for a set of molecular dynamics kernels, a number of innovations on
the EngineCL runtime is carried out in order to exploit the co-execution effi-
ciently. This paper describes the contributions made, such as the adaptation of
the architecture to support new execution modes, the new native execution core
for the CPU and a hybrid method of co-execution. An experimental evaluation
is performed to compare both performance and energy efficiency with respect to
the current parallelized and vectorized processing mode. Scalability analysis of
the new CPU execution mode shows similar performance to the optimized mode
used by ls1-mardyn, improving over the OpenCL version in all cases. When per-
forming co-execution there is always at least one scheduling mechanism that
offers improvements over the CPU version, both in performance and energy effi-
ciency. On average, improvements of up to 1.38x in performance and 1.60x in
energy efficiency are obtained with respect to the current optimized version.

In the future, behavioral studies will be performed regarding multi-node exe-
cutions. Furthermore, strategies for integration of EngineCL inside the simulator
will be provided, along with molecular dynamics multi-kernel experiments.
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Abstract. In this paper, for the first time, we explore and establish
the combined benefits of heterogeneous DVFS (dynamic voltage fre-
quency scaling) control in improving the energy-performance behavior of
data-parallel applications on shared-memory multicore systems. We pro-
pose to customize the clock frequency individually for the appropriately
selected groups of cores corresponding to the diversified time of actual
computation. In consequence, the advantage of up to 20% points over the
homogeneous frequency scaling is achieved on the ccNUMA server with
two 18-core Intel Xeon Gold 6240 containing 72 logical cores in total.
The cost and efficiency of the proposed pruning algorithm for selecting
heterogeneous DVFS configurations against the brute-force search are
verified and compared experimentally.

Keywords: Data-parallel applications · Energy saving ·
Heterogeneous voltage frequency scaling · Multicore · ccNUMA

1 Introduction

Energy efficiency becomes one of the main challenges in the race of high-perfor-
mance computing (HPC) to Exascale [11]. The scientific community is attempt-
ing to address this challenge in different ways on both hardware and software
levels. State-of-the-art solution methods in this area can be generally divided [6]
into system-level and application-level categories.

A widely accepted technique from the first category is dynamic voltage and
frequency scaling (DVFS) [13]. It is known [8] as an efficient method to save
energy for memory-bound applications when CPU cycles are being wasted as
they are stalled on the main memory [8]. Using DVFS allows lowering the oper-
ational voltage/frequency at the cost of possibly higher execution time [3].

For multicore processors with shared memory, DVFS can be performed [9]
at various level of granularity: (i) per-chip DVFS with changing the whole chip’s
c© Springer Nature Switzerland AG 2022
R. Chaves et al. (Eds.): Euro-Par 2021, LNCS 13098, pp. 141–153, 2022.
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frequency, (ii) cluster-level DVFS with multiple on-chip voltage regulators driv-
ing a set of DVFS domains, and (iii) per-core DVS with a separate regulator
for each core. In particular, the per-core frequency control is available in more
recent Intel processors (based on the Haswell architecture and later) by limiting
the minimum and maximum frequencies for a given CPU core [18]. While the
first level represents homogeneous voltage frequency scaling across the proces-
sor, the other two levels correspond to heterogeneous scaling, which can help [2]
getting the most performance out of the system.

Data parallelism is the most common parallel decomposition strategy, by
which an application’s data domain is decomposed into as many data parti-
tions as threads assigned to the computation. In data-parallel model, tasks are
assigned to threads, and each task performs similar types of operations on dif-
ferent data. At an abstract programming level, data-parallel programs consist of
a loop body executing on different parts of the input data [16].

Data-parallel programs are growing in importance, increasing in diversity,
and demanding increased performance from hardware while preserving mini-
mized energy consumption. In our previous works, we explore the usability of
the DVFS technique as a tool for balancing energy savings with admissible per-
formance losses for such data-parallel algorithms/applications as 3D MPDATA
from computational fluid dynamics [14,17], and conjugate gradient [15].

Another example of using DVFS for data-parallel applications is presented
in paper [4], which explores the relationship between task scheduling and energy
constraints for stencil computation, a class of memory-bound applications that
are quite common in scientific computing. This paper and our previous works
apply homogeneous voltage frequency scaling for multicore CPUs, possibly com-
bined with concurrency throttling. This solution seems to be a natural choice for
homogeneous multicore and regular data-parallel applications structured with a
uniform behavior when all cores or threads execute a similar type of work [2].

Typically, using heterogeneous DVFS across homogeneous multicore CPUs
is justified [2] for irregular or unstructured applications when at a given time,
cores might do different types of work. On the contrary, in this paper, we explore
and establish for the first time the combined benefits of heterogeneous DVFS con-
trol and performance heterogeneity in improving the energy-performance behav-
ior of regular data-parallel applications on homogeneous multicore CPU systems
with shared memory, including ccNUMA (cache-coherent non-uniform memory
access) ones. The rationale behind these benefits lies in the evolving relation-
ship between feasible sizes of applications (determined by sizes of data sets)
and increasing variety in the core number. The consequence is thread divergence
within an application and load imbalancing across cores, resulting in deteriorat-
ing energy efficiency. The usage of heterogeneous DVFS allows us to mitigate
the deterioration and reduce energy consumption without the performance loss.

The material of this paper is organized in the following way. Section 2
describes the basics of our approach, including a use case of application studied
in the paper, as well as a more detailed motivation and the problem statement.
A brute-force search and a pruning algorithm for selecting heterogeneous DVFS
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configuration across homogeneous multicore platforms are proposed in Sect. 3
and Sect. 4, respectively. Section 5 provides an overview of related work, while
Sect. 6 presents conclusions.

2 Basics

2.1 Use Case of Data-Parallel Application: 3D Diffusion Problem

As the bulk of physics phenomena, the diffusion process is described [5] by a
partial differential equation shown below:

∂U/∂t = ∂2U/∂x2 + ∂2U/∂y2 + ∂2U/∂z2 (1)

In Eq. (1), the function U = U(x, y, z, t) describes concentration of a physical
quantity in point (x, y, z) at moment t. In some sense, this equation is universal.
For example, it can describe the process of heat transfer where the unknown
function U(x, y, z, t) represents temperature. The studied application is based
on the finite difference method [20], which results in the following equation:

Uh+1
i,j,k = Δt

[
(Uh

i−1,j,k − 2Uh
i,j,k + Uh

i+1,j,k)/Δx2 + (Uh
i,j−1,k − 2Uh

i,j,k

+Uh
i,j+1,k)/Δy2 + (Uh

i,j,k−1 − 2Uh
i,j,k + Uh

i,j,k+1)/Δz2
]
+ Uh

i,j,k (2)

We focus on modeling 3D diffusion problems defined over the structured
rectilinear domain of sizes X ×Y ×Z in i−, j−, and k−dimensions, respectively.
This iterative numerical algorithm is intended to run long simulations engaging
even many thousands of time steps. Each step performs a single computing
kernel - a 3D stencil code. The application code features a constant computation
intensity for all steps, so the simulation time is proportional to their number.

In the basic code of the application (Listing 2.1), the computing kernel is
implemented in parallel using the OpenMP standard. The parallelization strat-
egy exploits data parallelism across i−dimension, based on distributing data
across available resources by #pragma omp for directive, and then incorporates
vectorization along k−dimension using #pragma vector directive.

The studied application is characterized by vector-friendly data structures
that enable taking advantage of the vectorization process. However, the data
traffic requirements constraint the parallel efficiency of the code by the main
memory bandwidth. The performance bottleneck is mainly noticeable for rather
large problems with domain sizes that significantly exceed the cache capacity.

In this work, all experiments are performed on the Intel-based ccNUMA
server S2600WFT with two 18-core Intel Xeon Gold 6240 CPUs (Cascade Lake
architecture) containing 72 logical cores in total. Each processor is equipped with
24.75 MB of L3 cache. The thermal and power limitations of the test platform
permit setting the minimum clock frequency to 1.0 GHz and then sampling it at
every 0.1 GHz to reach the maximum Turbo Boost speed of about 2.5 GHz.

All energy measurements are provided by the Yokogawa WT310 power meter
[17], monitoring the entire platform. This power meter passes the power to the
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Listing 2.1. Parallelization of data-parallel application using OpenMP

#pragma omp for

for(int i=0; i<X; i++) // i - dimension

for(int j=0; j<Y; j++) // j - dimension

#pragma omp simd

for(int k=0; k<Z; k++) // k - dimension

v(i,j,k) = u(i,j,k)

v(i,j,k) += xS * (u(i-1,j,k) - 2*u(i,j,k) + u(i+1,j,k))

v(i,j,k) += yS * (u(i,j-1,k) - 2*u(i,j,k) + u(i,j+1,k))

v(i,j,k) += zS * (u(i,j,k-1) - 2*u(i,j,k) + u(i,j,k+1))

server under the load and measures the total energy consumption in real-time [6,
17]. It allows us to obtain maximally accurate and reliable energy measurements.
Moreover, to make sure the experimental results for energy are trustworthy, we
customize the number of time steps for every tested domain size to keep the
execution time at the level of at least 700 s. As a result, the relative standard
deviation (RSD) for all benchmarks does not exceed 1.5% and 2.5% for execution
time and energy consumption measurements, respectively. Besides, we ensure the
server is located in an air-conditioned server room providing stable temperature,
as well as it is fully dedicated to our experiments.

2.2 Motivation for the Research and Problem Statement

The proposed parallelization (see Listing 2.1) splits up iterations within the first
loop (i-dimension) and distributes them over the available threads corresponding
to the OpenMP parallel region. As a result, the uniform workload distribution
occurs only when the number X of iterations is equally divided among the num-
ber LC of logical cores. Otherwise, the parallelization scenario leads to workload
imbalance and thread divergence. In this case, the load imbalancing percentage
(LIP) corresponds to the ratio of total number of threads that perform more
loop iterations to the total number of logical cores:

LIP = (X mod LC)/LC · 100% (3)

Assuming X > LC, the more loaded threads perform R times more iterations
than the rest of threads, where the parameter R can be expressed as:

R = �X/LC�/(�X/LC� − 1) (4)

Figure 1 characterizes the execution time and energy consumption when solv-
ing the 3D diffusion problem with various domain sizes. In all examples, R = 2.
This study assumes a limit of 2% performance losses to achieve energy savings.

The left parts of Fig. 1 present the execution time and energy consumption for
various domain sizes, assuming the usage of homogeneous DFVS across cores for
different frequencies. As shown in Fig. 1a and Fig. 1b, the optimal performance-
energy trade-off (marked with red points) corresponds to the highest CPU fre-
quency since reducing the frequency leads to energy savings but breaks the
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assumed limit for performance losses. The reason is that all required data reside
in the cache hierarchy, and computing units are not waiting for loading data
from the main memory.

In contrast, in Figs. 1c and 1d, we observe that reducing the clock frequency
does not affect performance for large domain sizes. Now the execution time
is practically constant despite decreasing the frequency from the highest to the
lowest one. In this case, the performance depends primarily on the main memory
speed, and frequency scaling does not affect the execution time. Consequently,
the DVFS method allows reducing the total energy consumption up to 30% with
negligible performance losses not exceeding 1–2% for all performed tests.

However, our experiments reveal a need for revisiting the DVFS technique
even in this case that commonly assumes homogeneous frequency scaling across
cores. To explain this, let us move on to the analysis of the right parts of Fig. 1a–
d, which demonstrate the execution time distribution across threads for different
domain sizes and a variety of workloads with varying values of LIP parameter,
where LIP ∈ {8, 25, 50}%. More precisely, these plots show the total execution
time that every OpenMP thread spends on (i) computation (area marked in
blue color) and (ii) synchronization. In turn, the synchronization costs are split
into two stages: (i) the arrival stage that puts threads arriving at the barrier
into a waiting state (area marked in red color), and (ii) the departure stage that
releases from the barrier all waiting threads (marked in gray color).

The cost of the departure stage depends on the number of synchronization
points, which in our study increases linearly with the number of time steps.
As expected, the time required by this stage is practically uniform for every
OpenMP thread. For a single synchronization point, this time mainly depends
on the OpenMP implementation chosen and hardware limitations.

However, the cost of actual computation (see blue regions in the right parts
of Fig. 1) differs across threads. The same is true for the cost of the arrival
stage of synchronization. This heterogeneity results from non-uniform workload
distributions over available cores/threads, described by LIP and R parameters.

Additionally, we observe a negative impact of the inter-socket data traf-
fic on thread divergence. This undesirable effect becomes essential only when
threads operate on data located in the cache hierarchy. As shown in the right
parts of Figs. 1a and 1b, the threads pinned to cores located on the boundaries
between sockets feature a higher time of actual computation even if they execute
a fewer number of iterations. This time is mainly limited by the inter-socket data
exchange overhead. On the contrary, the overhead is negligible or simply imper-
ceptible for larger domains when the time of actual computation is constrained
by the main memory speed (see Figs. 1c and 1d, respectively).

Summarizing our observations, the homogeneous variant of DVFS method
allows selecting the performance-energy trade-off considering the total execu-
tion time that reflects the maximum computation time obtained across a pool of
threads. Consequently, threads that process fewer loop iterations waste energy
waiting at points of synchronization in the arrival stage. This disadvantage inten-



146 P. Bratek et al.

Fig. 1. Execution time and energy consumption for solving the 3D diffusion problem
with various domain sizes, using homogeneous DFVS. (Color figure online)
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sifies with a constantly increasing number of cores offered by modern shared-
memory computing systems.

3 Heterogeneous DVFS: Brute-force Search

The analysis from Sect. 2 motivates us to adjust the frequency and supply voltage
to individual cores. Our key idea is to customize the clock frequency individually
for the appropriately selected groups of cores corresponding to the diversified
time of actual computation. We distinguish two heterogeneous DVFS scenarios
that prioritize the appropriately selected groups of cores.

The first scenario corresponds to smaller problem sizes (Figs. 1a and 1b),
when we can identify cores with the time of actual computation limited by
inter-socket data traffic overheads. In this case, we distinguish three groups of
cores, including: (i) cores located on the boundaries between sockets; cores with
a higher (ii) and a fewer (iii) number of loop iterations. The amounts of cores
in the last two groups reflect the LIP parameter and depend on the domain
size and number of cores. Based on the time of actual computation for every
group, a higher voltage/frequency should be assigned to the first group, then for
the second one, and the lowest for the last group. The second scenario assumes
larger problem sizes where the main memory constraints result in performance
degradation (Figs. 1c and 1d). Here, only two groups are indicated, including
cores with a higher (ii) and a fewer (iii) number of loop iterations. Hence, a
higher priority and thus a higher voltage/frequency are given to the first group.

To fully explore the heterogeneous DVFS approach, we test almost all fre-
quency configurations for groups, considering various domain sizes. More pre-
cisely, while examining a given frequency for the group with a higher priority,
we test different frequency combinations for the group with a lower priority by
scaling down the frequency from a fixed level to the minimum, sampling it at
every 0.2 GHz. For example, when setting clock speed to 2.0 GHz for cores in the
first group, we combine it with the set {2.0, 1.8, ..., 1.0} GHz of frequencies for
the second group. We also reveal no need to scale down the clock speed for cores
located on the boundaries between sockets. As expected, setting the maximum
frequency/voltage for these cores guarantees to achieve the best results in terms
of both performance and energy consumption.

The summary of performed tests is depicted in Figs. 2 and 3. The first one
shows the best heterogeneous frequency setups determined for various domain
sizes with up to 1–2% performance losses. We select three groups of clock speeds
for domains of sizes not exceeding 138 × 138 × 138 (these domains fit in the
cache), while two groups are enough for larger domains.

Figure 3 presents the advantages of using heterogeneous voltage/frequency
scaling compared to homogeneous scaling, achieved for different domain sizes.
The proposed approach permits a maximum energy reduction of about 25% for
the domain of size 150 × 150 × 150, when the profit for homogeneous scaling is
about 9% only. In general, the heterogeneous approach allows us to achieve better
energy profits for all performed tests. The most significant energy improvement
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Fig. 2. The best heterogeneous frequency setups selected for various domain sizes.

Fig. 3. Comparison of energy-savings for homogeneous and heterogeneous DVFS
approaches applied to various domain sizes.

compared to the homogeneous solution is obtained for the size of 96 × 96 × 96.
In this case, we observe the advantage of about 20% points over the traditional
frequency scaling, which does not bring any energy improvement.

4 Pruning Algorithm for Selecting Heterogeneous DVFS
Configurations

The main disadvantage of the brute-force search is its high cost. Let us assume we
begin tests with a clock speed equal to fmax. Then we decrease frequency starting
from fstart up to fstop by every fstep. Let F = {fmax, fstart, . . . , fstop}, where
|F| = N , be a set of tested frequencies. According to the brute-force technique of
searching for frequencies for cores with higher and lower workloads, we combine
each frequency fi from the set F with a subset of F containing elements fj such
that fj ≤ fi. As a result, the number TC of tested configuration is expressed as
TC = N(N + 1)/2, where the cardinality N of set F is as follows:

N = (fstart − fstop)/fstep + 2 (5)
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Fig. 4. Block diagram of the pruning algorithm for selecting heterogeneous DVFS
configurations

For example, using the brute-force strategy with fmax, fstart, fstop, and fstep
equal to respectively 2.5, 2.4, 1.0, and 0.2 GHz, requires testing TC = 45 fre-
quency configurations. In each of them, we perform energy consumption tests,
and their run time should be long enough to ensure the stability of measurements.
Therefore, finding the best frequency configuration in this way is a highly time-
consuming task. In this section, we propose a pruning algorithm for selecting the
best heterogeneous DVFS configuration. This algorithm allows us to significantly
reduce the value of TC and speed up finding the best frequency configuration.

The proposed algorithm is shown in Fig. 4. It consists of two stages, the aim
of which is to find the best frequencies fhw, flw for cores with higher and lower
workloads, respectively. The input parameters of the algorithm include La, which
is an acceptable performance loss. For example, La = 1.02 allows the frequency
to be reduced until a 2% increase in run time is achieved. We use the routine
Set(f1, f2) to examine frequency configurations - it sets clock speeds f1 and f2
for groups of cores with higher and lower workloads, respectively. Analogously,
the routine Set b(f) sets frequency f for cores located on the boundaries between
sockets. In Fig. 4, the routine Measure(T,E) is responsible for measuring the
execution time T and energy consumption E for the current configuration. To
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Table 1. Comparison of brute-force search (B-F) and proposed algorithm (A) for
domains of various size X = Y = Z

R LIP
[%]

Domain
size

fhw [GHz] flw [GHz] TC Energy
reduction [%]

Efficiency
rE [%]

B-F A B-F A B-F A B-F A

2 8 78 2.4 2.4 1.8 1.8 45 8 16.62 16.62 100.00

2 25 90 2.0 2.0 1.8 1.8 45 7 17.14 17.14 100.00

2 50 108 1.8 1.6 1.4 1.2 45 11 22.88 22.40 97.90

3/2 8 150 2.4 2.0 1.2 1.0 45 10 25.04 23.98 95.77

3/2 25 162 2.2 2.2 1.2 1.2 45 10 17.92 17.92 100.00

3/2 50 180 2.0 2.0 1.4 1.4 45 9 16.17 16.17 100.00

4/3 8 222 2.4 2.2 1.0 1.2 45 10 19.52 18.33 93.90

4/3 25 234 2.2 1.8 1.2 1.4 45 9 17.02 15.97 93.83

4/3 50 252 1.4 1.4 1.2 1.2 45 10 21.61 21.61 100.00

provide the accuracy of results, we repeat all measurements m times and cal-
culate their median value (m = 5 as default). The algorithm checks if all data
reside in the cache memory. When this condition is met, cores located on the
boundaries between sockets have the highest time of actual computation (see
Figs. 1a and 1b). In this case, the best strategy is to let these cores work with
the maximum frequency to deal with data exchange overheads.

A set of tests is performed to explore the speed and efficiency of the proposed
algorithm. Table 1 presents a comparison of results obtained using the brute-force
search and pruning algorithm for different values of R and LIP . The comparison
is based on the number TC of configurations tested by the pruning algorithm
and efficiency rE , where rE is the ratio (in %) of energy reduction achieved
by both techniques. In all tested cases, the algorithm’s efficiency exceeds 90%
and in more than half of them reaches 100%. At the same time, we significantly
reduce the cost of selecting a heterogeneous DVFS configuration. While the
brute-force search always requires exploring 45 frequency configurations, the
pruning algorithm achieves the goal by examining only 7–11 configurations.

5 Related Works

The methods of improving energy efficiency in computing can be divided [6,
10] into hardware-level or system-level. The methods from the first category
aim to optimize the energy efficiency of the environment where applications
are performed. The solutions from the second category focus mainly on the
optimization of applications for performance and energy. These methods use
application-level models for predicting the performance and energy consumption
of applications. The approach proposed in this work combines methods from both
categories since it is based on DVFS and the application-level model.
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For data-parallel applications, the combination of methods from both cate-
gories is also considered by Reddy and Lastovetsky in work [10]. They propose
a method to solve the bi-objective optimization problem of an application for
performance and energy on homogeneous clusters of modern multicore CPUs.
This method gives a diverse set of Pareto-optimal solutions and can be com-
bined with the DVFS technique to provide a better set of solutions. However,
the proposed approach target only homogeneous DVFS policies.

At the same time, heterogeneous voltage frequency scaling is studied in a
number of works that can be included into the first category. Unlike this paper,
the studied methods employ application-agnostic models [7]. They are princi-
pally deployed at the operating system (OS) level [12] or as a runtime system
extending the OS [2,19]. Therefore, they require changes to the OS [6]. Typically
these methods propose asymmetry-aware or heterogeneity-aware schedulers that
exploit the asymmetry [1,9] or heterogeneity [12,19] between sets of cores in a
multicore platform to find optimal DVFS configurations. For example, work [1]
studies a case when an application running on some cores coexists together with
its co-runners (applications running on other cores), while paper [12] considers
the heterogeneity of cores in ARM architectures.

6 Conclusions

This paper studies the benefits of heterogeneous DVFS control and performance
heterogeneity in improving the energy-performance behavior of data-parallel
applications on homogeneous multicore CPU systems. Using the 3D diffusion
problem as a use case, we show that using heterogeneous voltage/frequency
scaling permits significant energy improvement compared to the homogeneous
solution. The advantage of up to 20% points over the homogeneous frequency
scaling is achieved on the ccNUMA server with two 18-core Intel Xeon 6240.

The cost and efficiency of the proposed pruning algorithm for selecting het-
erogeneous DVFS configurations against the brute-force search are compared
experimentally. In all tests, the efficiency of the pruning algorithm exceeds 90%
and in more than half of them reaches 100%, which indicates that both tech-
niques return the same energy saving. At the same time, we significantly reduce
the cost of selecting a heterogeneous DVFS configuration. While the brute-force
search always requires exploring 45 frequency configurations, the pruning algo-
rithm achieves the goal by examining only 7–11 configurations.
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Abstract. Task-based runtime systems typically exploit asynchronicity
inherent in applications to reduce overall execution time. In the past
decade, focus shifted to supporting the heterogeneity that is increas-
ingly prevalent in high-performance computing systems. Existing task-
based runtime systems are designed to be general; thus, they come
with challenges such as overheads and the complexity of abstractions.
Much of the burden of exposing heterogeneous parallelism is placed on
application developers, who must fit domain-specific code to general-
purpose interfaces. This paper presents a different approach that targets
heterogeneous systems through domain-specific runtimes. Our pipeline-
based design presented here leverages the domain-specific knowledge of a
focused class of scientific simulations to pragmatically orchestrate their
computations. Promising, multi-GPU performance results obtained with
the Oak Ridge Leadership Computing Facility’s Summit are presented.

Keywords: Runtime system · Heterogeneous platforms ·
Asynchronous task execution · Domain-specific runtime · Performance
portability

1 Introduction

Scientific workflows have evolved to the point where higher model fidelities create
an axis of complexity that is orthogonal to the platform complexity, creating a
new set of performance portability challenges. Most of the tools and abstractions
that have been developed and deployed have attempted to be entirely transparent
to the developers. Thus developers are often left with the choice of either embrac-
ing an entire abstraction (magic compiler) or shouldering the entire paralleliza-
tion burden (ninja programmers). Neither choice is optimal. An abstraction that
attempts to own the whole optimization must account for all corner cases, result-
ing in complex tools; on the other hand, leaving it all to the software developers is
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no longer viable for even modestly sized codes. Furthermore, leaving the domain
knowledge on the table is likely to result in a suboptimal solution. A nascent move-
ment in the programming models and compilers communities involves orthogonal-
izing the optimization of different aspects of scientific software as a way of mak-
ing performance portability tractable. This approach takes the idea of separation
of concerns in software architecture and applies it to program synthesis. We are
using this approach in the multiphysics software Flash-X, where the orchestra-
tion system (OS) has individual tools that are simple, because each tool focuses
on one aspect of program synthesis/optimization, but together they are intended
to deliver a powerful performance portability solution.

A key design principle of the OS is to enable both domain-specific knowledge
and platform knowledge to be utilized in the application configuration without
placing undue burden on either the tool developers or the domain experts. The
system relies on a pipeline consisting of assembly, configuration, transformation,
and orchestration. The first three steps in the pipeline are static, and they are
used to configure an instance of an application suited to a target platform. We
refer to them as offline tools (OT). Note that these steps do not occur in the
order specified; instead they are interspersed and work cooperatively. Along with
the OT is an orchestration runtime (OR) in the system that carries out all the
data movement between resources and orchestrates execution. In this paper we
present the design and evaluation of the OR.

In Sect. 2 we discuss the background. Domain-specific structures and pat-
terns that inform the design of our domain-specific runtime are presented in
Sect. 3, and the design is described in Sect. 4. Section 5 presents results from
a performance study executed as part of profiling and optimizing the current
implementation of the OR. In Sect. 6 we discuss future work to be done so that
OS can be used for our immediate science goals and beyond.

2 Background

Performance portability solutions throughout the history of high-performance
computing (HPC) have relied on achieving separation of concerns. In the dis-
tributed-memory model it sufficed to keep the portions of the code that relied on
communication separate from those that could be executed locally. One could
then optimize the performance of a single processing element separately from
the scaling performance (see [5] for an example of such an approach). With the
advent of accelerators and heterogeneous nodes, the HPC community has been
engaged in finding enduring solutions [13,17], and many solutions have been
offered. These include domain-specific languages [3,7,9,15], abstractions based
on C++ template metaprogramming [8,10], and other domain-specific solutions
such as [18] providing an entire framework. Tools such as Kokkos [8] and Raja
[10] provide the ability to express the computation at a high level, which can
be specialized to the target device as needed. They also provide mechanisms for
launching calculations on devices and accompanying data movement.

An orthogonal class of tools provide task-based runtime support. Some of
these systems at the application execution level have been around since appli-
cations have deviated from lockstep parallelism or perfect load distribution.
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Charm++ [12] and Uintah’s runtime [14] have been among the longest-lived and
are still in active use. Other more general-purpose asynchronous runtimes that
have found variable degrees of success in HPC systems include HPX [11], StarPU
[1], and Legion [2]. Except for Uintah, which is embedded, all the other systems
subscribe to the idea of being transparent to the application programmer. They
all rely on some form of implicit or explicit dependency analysis graph (DAG) to
do their scheduling. Some of these provide a more complete solution (e.g., Legion
[2]) while others focus just on tasking. To a large scientific software project, they
present a collection of options that provide a part of the functionality but often
no way of reasonably combining them. In addition they assume that dependen-
cies become visible only at run time, and therefore they miss the opportunity of
having significantly simpler static DAGs that exploit dependencies derived from
domain knowledge. Our OS exploits this domain-specific knowledge of a rela-
tively small space of dependencies and opportunities of overlapping executions.
It has the possibility, therefore, to avoid unnecessary overheads and complexity
that come from having to be conservative about dependency assumptions, corner
cases, and dynamic analysis.

3 Domain-Specific Context for Runtime

The OS design targets applications for multiphysics simulations that are based
on partial differential equations (PDEs). In particular, we focus on Flash-X, a
new code derived from the FLASH code [4]. A major part of the execution time of
such codes is spent in iterative cycles that advance the PDE solution. Examples
are time-stepping methods as well as iterative linear and nonlinear solvers. In
general, the high-level physics operations to be carried out at each time step
is known when the simulation is specified (i.e., at setup time). In addition the
structure of these steps remains fixed during evolution. We target our runtime
design at these iterative domain-specific structures and patterns.

The OR design is based on the assumption that the basic discretization is
adaptive mesh refinement (AMR) with non-overlapping blocks and that physics
operators are applied on blocks individually and concurrently in a predeter-
mined sequence. We differentiate between two types of load distribution. Global
distributed-memory mode is handled by MPI and is not relevant to this paper.
Local distribution between various devices by a single MPI process is the focus
of the OR and this article.

Because data locality and data movement are critical aspects of overall per-
formance, the APIs of the physics solvers (referred to henceforth as operators)
expose aggregate computations, called task functions, that run between any
data movements and barriers that the operators need. This delineation enables
maximization of local data reuse on devices. At the level of time stepping, explicit
knowledge of task function interdependence within one operator and across oper-
ators results in simple graphs that enable the OR to use asynchronization and
latency hiding for better performance.
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Fig. 1. Thread team configuration that applies a task function using a GPU with
its own dedicated memory. Task function B is implemented to use a GPU, and the
distributor will eventually enqueue with the team all leaf blocks at the finest AMR
level in the form of data packets of blocks. We assume that the blocks’ data resides
in host memory and therefore that the distributor has an additional task of initiating
asynchronous transfers of all packets to the GPU memory. The final runtime element in
the configuration is responsible for asynchronous GPU-to-host data movement (DM)
of packets of blocks and for unpacking these upon termination of each transfer. (Color
figure online)

4 Design of the Orchestration Runtime

Our design assumes that each physics operator in each time step can be applied
identically and concurrently to all active blocks. The OR implements scheduling
and orchestration of the execution of necessary task functions for a number of
well-understood arrangements of operators. Supported arrangements of opera-
tors are implemented via specific configurations built from components called
runtime elements, which are described below.

4.1 Runtime Elements for Data Movement and Task Execution

The primary runtime elements are thread teams, which are created on the host
when the simulation starts and persist throughout the application execution. The
number of threads in each team is specified at run time. To apply a computation
to a set of blocks in an arbitrary order, a thread team is assigned an associated
task function along with all relevant data. The OR coordinates the asynchronous
movement of data to the target memory systems as well as execution of all
associated tasks. Note that task functions can execute code on any device without
being aware of the specifics of the device so long as the required data is resident
in the appropriate memory system.

Figure 1 shows a thread team configuration that uses a single thread team
(in blue). The configuration begins with a runtime element called distributor,
which for this configuration collects the blocks on which task function B will
be applied, packages up the blocks into packets, and publishes each packet (the
right arrow) with the team once the packet contains a specified number of blocks.
The distributor also initiates an asynchronous host-to-GPU data movement. Ten
of the team’s threads are activated such that at any time each thread can have
sole ownership of a single packet and apply task function B to the blocks in the
packet by launching kernels on the GPU. The OR ensures that a data packet is
available on the target device before the task function is applied to it.
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Figure 1 also introduces the runtime element data mover (DM/Unpack),
which is shown as the data subscriber of Team 1. When a thread in the team
finishes applying task function B to a data packet, it publishes the packet by
enqueueing it with DM/Unpack. In turn, the data mover is responsible for man-
aging the asynchronous transfer of a data packet back to the host and its sub-
sequent unpacking. The distributor and data mover allow for decoupling the
thread team from data movements and therefore encapsulating low-level details
associated with data movements on a particular platform.

This functionality of the configuration implies that a thread in the team can
begin applying task function B to blocks in the data packet at the same time
that the distributor can begin forming the next data packet. It follows that once
the first data packet is sent, the OR is able to overlay data movements with
computations to achieve latency hiding. Similarly, the latencies and overheads
associated with the GPU-to-host data movement and unpacking are overlapped.
The OR’s ability to hide latencies is under the control of run time parameters
that specify, for instance, sizes of data packets and numbers of active threads.
This discussion hints at the notion of thread team configurations as pipelines,
which is considered next.

4.2 Complex Orchestration of Multiple Thread Teams

Figure 2 depicts a more complex configuration with more than one task func-
tion. The distributor must now enqueue each block with both Teams 1 and 2 to
enable parallel execution of different task functions. Here the distributor is mul-
tithreaded, which means that the set of blocks to which all task functions are to
be applied are partitioned between two distributor threads working concurrently.

Since Teams 1 and 2 are assigned different data types and their task func-
tions were written for different hardware (CPU and GPU, respectively), the
distributor now gathers blocks on which task functions A, B, and C are to be
applied, decomposes the blocks into tiles, and enqueues each tile with Team 1.
It also aggregates those same blocks into data packets of a desired size (four
blocks as drawn in the figure), and each of these is sent asynchronously to GPU
memory before being enqueued with Team 2. This example demonstrates that
thread team configurations allow the OR to run concurrently the same data
items through multiple independent pipelines.

The inclusion of task function C in this example demonstrates that the
composability of configurations allows for extending pipelines (green pipeline in
Fig. 2), which can improve performance through increased overlapping of com-
munication and computation as well as overlapping of computation at multiple
levels in the hierarchy of parallelism. Note that this configuration is valid only if
A is independent of B and C and if B and C are either independent, or C must
be executed after B. Thus, the independence of the pipelines is important when
mapping task functions onto configurations, in that two or more dependent task
functions may be included in a mapping so long as dependent task functions are
located in the same pipeline and in the correct order.
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Fig. 2. A thread team configuration implementing two pipelines using three thread
teams with CPU code for task functions A and C and GPU kernel launches for task
function B. The task function A pipeline runs on the host with three threads. The
B/C pipeline gives 4 threads to Team 2 for launching kernels on the GPU. Team 3
is initialized with with zero threads because it needs data items to first pass through
Team 2. However, when a thread in Team 1 or Team 2 goes to sleep because its task
function has been applied to all necessary data items, it informs Team 3 to activate a
thread (thread migration is indicated by dashed lines).

The different data types between Teams 2 and 3 require the inclusion of a
runtime element (DM/Unpack/Splitter) as a data subscriber for Team 2 and a
data publisher for Team 3 that translates between types. Since the task func-
tions assigned to these teams use different hardware, this element is also respon-
sible for moving and unpacking of the data. In particular, when a thread in
Team 2 finishes applying task function B to a data packet of blocks, the packet
is enqueued with the new element. In turn, the element will transfer the packet
asynchronously to the host, unpack its contents, decompose each block into its
constituent tiles, and enqueue each of these with Team 3.

4.3 Load-Balancing with Data Movement and Thread Migration

The example in Fig. 2 also illustrates the OR’s scheme for load balancing of
thread resources of the host. This is accomplished by specifying a second relation-
ship between runtime elements as thread publishers and thread subscribers.
This relationship is indicated by dashed arrows. While a thread publisher can
have at most one thread subscriber, there is no limit to the number of thread
publishers that a thread subscriber can have. When a thread in a team with a
thread subscriber determines that there is no more work to be done by the team
in the current execution cycle, it goes to sleep only after informing the team’s
thread subscriber that the latter can now activate one of its threads.

The thread publisher/subscriber relationship explains, therefore, why Team 3
can be initialized with zero active threads. It is the thread subscriber of the other
two teams (and of the distributor indirectly). Hence, by the end of the execution
cycle, Team 3 can have nine threads activated for applying task function C. This
thread setting prioritizes thread resources to transferring packets and launching
kernels in task function B as quickly as possible to boost the occupancy of the
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Fig. 3. A single-pipeline thread team configuration that enhances task-based paral-
lelism with data parallelism via the inclusion of the data parallel runtime element and
the mapping to two thread teams of CPU and GPU task functions that implement the
same computation. As blocks flow into the data-parallel element, 20% of these will be
decomposed into tiles and enqueued with the thread team assigned the CPU version of
the function; the remaining blocks are aggregated into data packets, sent to the GPU,
and enqueued with the team assigned the GPU version. Thus two thread teams work
in tandem on different devices to apply a given computation to all necessary blocks.

GPU. Once threads are no longer needed to execute task functions A and B,
they can be used to spin up the extension of the green pipeline.

We emphasize that while data publisher/subscriber connections are used to
construct pipelines in a thread team configuration, thread publisher/subscriber
connections are not. Rather, these connections resemble decorators added to a
configuration in order to improve load balancing.

5 Evaluation

The orchestration runtime, which is implemented in C++ with pthreads, cur-
rently utilizes OpenACC only for offloading computations to accelerators and
a CUDA backend for resource management and movement of data. The OR’s
design, however, does not preclude other offloading solutions or backends.

5.1 Experimental Configurations

For verification and early performance analysis of the OR, we use the Sedov
explosion problem [16] with a simplified hydrodynamics solver used only for
testing and development. While the solver is computationally simple, it is a
stringent test of the efficacy of the OR because it has much lower arithmetic
intensity than do most of the physics operators in Flash-X. Although AMReX
(v20.08) provides the mesh, it is used in uniform grid mode to make reason-
ing about the performance easier in these early evaluations. The 3D domain is
decomposed into a 163 array of 163 blocks, and the solution is evolved by 250
time steps.

The experiments were conducted on a single IBM Power System AC922 node
on OLCF Summit.1 Each node has two IBM POWER9 processors (42 usable
1 https://www.olcf.ornl.gov/summit/.

https://www.olcf.ornl.gov/summit/
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cores with four HW threads per core) and six NVIDIA Volta V100 GPUs. The
processors are connected to the GPUs via dual NVLink connections and have an
aggregate 512 GB of DDR4 memory. The GPUs have 96 GB of high-bandwidth
memory (HBM2) per node. We used the following test setups in our evaluation:

1. MPI baseline – 42 single-core MPI processes run without the OR and with-
out OpenMP multithreading. At each time step, a loop over blocks applies
the hydrodynamics physics operators to each block in series.

2. OpenMP baseline – 6 seven-core MPI processes run without the OR but
with OpenMP multithreading over the AMReX block iterator. Each thread
applies the hydrodynamics physics operator to its blocks in series. The num-
ber of OpenMP threads is a run time parameter.

3. CPU-only OR – 6 seven-core MPI processes with the orchestration run-
time using a single-threaded distributor with a single team that is assigned a
task function that applies the hydrodynamics operators using the CPU. The
number of threads activated in the team is a run time parameter.

4. GPU-only OR – 6 seven-core MPI processes each using the orchestration
runtime and each assigned a unique GPU. At each time step, the hydrody-
namics physics operators are applied using the configuration in Fig. 1, where
the distributor uses only a single thread and the team activates only a single
thread. The number of blocks per packet is a run time parameter. Note that
the single task function used in this case contains code that launches several
computational kernels on the GPU.

5. Data Parallel OR – the same as for the GPU-only setup but using the
configuration in Fig. 3. The distributor uses only a single thread, and Team 2
activates only a single thread. The number of threads activated in Team 1,
the number of blocks per packet, and the splitting percentage are run time
parameters.

Simulations were built with PGI (v19.9) with OpenACC and OpenMP activated
where necessary. The IBM Spectrum MPI (v10.3.1.2-20200121) implementation
was used. For GPU-based runs, CUDA (v10.1.243) was used to drive the OR
backend. All host/GPU data movements were handled directly by the OR using
CUDA and without using managed memory. Also, OpenACC is used solely for
offloading computation to the GPU. In order to verify correct execution, the
results of each test setup, which are executed independently of Flash-X, were
compared against Flash-X results for the same problem.

5.2 Performance Analysis

The main figure of merit is the time a simulation spends applying hydrodynamics
operators. This is reported as the maximum wall time across all MPI processes
at a given time step (Max Wall Time/Step), or as the sum of the maximum wall
time/step across all steps (Max Wall Time).

OpenMP baseline and CPU-only OR configurations were run once each for
different values of the thread run time parameter. The results, shown in Fig. 4
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Fig. 4. Boxplots that summarize the per-time-step performance for a simulation run
with the MPI baseline configuration (left), simulations run in the OpenMP baseline
configuration each with a different number of threads over the AMReX block iterator
loop (center), and simulations run in the CPU-only OR configuration each with a
different number of threads activated in the team (right). 1+X denotes one distributor
thread and X team threads. Each box is associated with the max wall time per time
step collected across the 250 time steps of a single simulation. These results have been
used to fix run time parameter values and to compare the performance of these three
CPU-only configurations.

Fig. 5. Boxplots that summarize the performance of each of the principal test config-
urations. Each box in the left plot is associated with the total max wall time across 50
repeated trials of the given test configuration. Each box in the right plot is associated
with the wall time/step reported by each MPI process across all time steps and all 50
repeated trials.

with the results from a single MPI run, indicate that 11 threads and 1 distributor
thread with 13 team threads, respectively, give the best performance. A similar
test for the GPU-only OR configuration found that 40 blocks per packet result in
good performance. These results were used with a simplistic model to predict the
best run time parameter values for the data-parallel configuration. A coarse grid
search about these values revealed that using 55 blocks per packet, activating five
threads in the CPU-based team, and sending 10 blocks to the CPU-based team
for each packet yield reasonable results. With these run time parameters, 50
identical simulations were run for each of the four principal test configurations.
The results are shown in Fig. 5.
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Figure 4 shows that in general the CPU-only OR configuration is competi-
tive with both the MPI configuration and the use of OpenMP to multithread
the AMReX block iterator and therefore indicates that the implementation of
thread teams is reasonably performant. One will need to understand, however,
why the CPU-only performance has a much higher variance, which could be
related to the observation that the GPU-only OR configuration has relatively
little variance, as seen in both plots of Fig. 5. The left plot of the figure shows that
roughly 50% of the data-parallel simulations (CPU/GPU) had total wall times
that are better than or similar to those of the GPU-only configuration. However,
it also shows that the remaining samples had significantly worse performance.
The right plot shows that approximately 75% of all time-step executions in the
data-parallel configuration were better than or similar to that of the GPU-only
configuration. However, the variance in time-step performance is even stronger
(indicated by black dots). This suggests that dividing the work between CPU
and GPU for the same operation yields better performance than CPU-only or
GPU-only approaches. However, the high variance implies that in a given time
step a single MPI process may perform poorly and therefore result in a large
max wall time, which could explain why the data-parallel configuration does not
perform better than the GPU-only configuration in the left plot. Since this is the
performance value that is important, suppressing the large tail of poorly per-
forming time-step computations will be of fundamental importance in achieving
good usage of heterogeneous platforms with GPUs and CPUs.

Since the Sedov test problem is computationally light and has low arithmetic
intensity, the speedup of approximately 2 due to GPU usage seems reasonably
good, especially since all data started in and was returned to the host memory.
In order to help gauge the quality of the speedup, future performance studies
should include a comparison with results obtained when all data movement and
computation offloading to GPUs are executed by OpenACC or OpenMP. Profil-
ing of the GPU-based configurations suggests that the Sedov task functions are
executed faster by the GPU than it takes for the distributor to assemble a packet
and for that packet to arrive at the GPU. Indeed, for one time step executed
by the data-parallel configuration, the GPU was idle approximately 40% of the
time. Therefore, multithreaded distributors should be used to stream data to
the GPU and allow for overlapping more computation on the device. However,
profiling also suggests that for this simple, quick task function, the interaction
between the OR and the CUDA runtime was inefficient. This limitation impacts
the OR’s efficient use of the GPU and should be investigated further.

One possible source of the inefficient interaction is that for each packet,
four kernels are launched in rapid succession. Three of these launches are to
schedule-independent kernels for concurrent execution. If using multiple threads
each launching four kernels in a short span of time is too overwhelming, then
one should investigate whether avoiding optional concurrent kernel execution
can lead to improved performance. Another possible solution is to use more
MPI processes, each of which uses fewer cores, and assign more than one process
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to a given GPU. This could be an alternative scheme for streaming data to the
GPU that might improve the interaction between runtimes.

6 Conclusions and Future Work

Our early investigations into the efficiency of the OR clearly indicate that this
simplified approach to asynchrony as well as data movement and computation
orchestration is promising for its target applications. The ultimate test will come
when it is deployed in a production run at exascale. The class of applications that
we are targeting have a few heavy-weight physics operators whose coarse-grained
dependencies and potential for overlap between computations at different devices
or between computation and communication are easy to infer. A complete DAG
is neither needed nor practical for such applications that have a high degree of
heterogeneity within their solvers and where the memory footprint of the state
data changes dynamically because of adaptive mesh refinement. We leverage this
characteristic of our applications to focus entirely on building the mechanics of
making these overlaps and their corresponding data movements occur in het-
erogeneous computing environments without incurring the overheads of a gen-
eral dynamic runtime scheduler. The dependencies are inferred at configuration
time and informed by analytical performance models that we are simultaneously
building. (See [6]; the offline toolchain can generate a relatively simple graph
that is used for scheduling by the OR).

Aside from lines of investigation mentioned in the preceding section, our
future work will consist of enabling OpenMP as an alternative means to offload
computation to accelerators; implementing other OR backends with, for example,
HIP; allowing for OR data movement paradigms beyond host-to-GPU-to-host;
and implementing Fortran wrappers so that the OR can execute task functions
written in Fortran. In terms of design, we would like to explore the idea of
coupling global data movement operations, such as guardcell (GC) filling, with
distributors (Fig. 3). At present, a simulation requests the global sharing of GC
data and blocks further work. In particular, the distribution of blocks to pipelines
for applying the hydrodynamics operators can begin only once all blocks have
received their GC data. The coupling of GC fill with the distributor, however,
would allow for immediately distributing a block upon receiving its GC data.
Similarly, we would like to overlap MPI communications with computation and
OR communication by integrating reductions into thread team functionality.
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Abstract. Performance and energy are the two most important objec-
tives for optimization on heterogeneous HPC platforms. This work stud-
ies a mathematical problem motivated by the bi-objective optimization
of a matrix multiplication application on such platforms for performance
and energy. We formulate the problem and propose an algorithm of poly-
nomial complexity solving the problem where all the application profiles
of objective type one are continuous and strictly increasing, and all the
application profiles of objective type two are linear increasing. We solve
the problem for the matrix multiplication application employing five het-
erogeneous processors that include two Intel multicore CPUs, an Nvidia
K40c GPU, an Nvidia P100 PCIe GPU, and an Intel Xeon Phi. Based on
our experiments, a dynamic energy saving of 17% is gained while tolerat-
ing a performance degradation of 5% (a saving of 106 J for an execution
time increase of 0.05 s).

Keywords: Bi-objective optimization · Min-max optimization ·
Min-sum optimization · Performance optimization · Energy
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1 Introduction

Performance and energy are the two most important objectives for optimiza-
tion on modern parallel platforms such as supercomputers, heterogeneous HPC
clusters, and cloud infrastructures [3,5,7,18]. State-of-the-art solutions for the
bi-objective optimization problem for performance and energy on such platforms
can be broadly classified into system-level and application-level categories.
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System-level solution methods aim to optimize the performance and energy
of the environment where the applications are executed. The methods employ
application-agnostic models and hardware parameters as decision variables. The
dominant decision variable in this category is Dynamic Voltage and Frequency
Scaling (DVFS) [3,6,7,10,19,22].

The application-level solution methods proposed in [2,8,14,15] use
application-level parameters as decision variables that include the number of
threads, number of processors, loop tile size, and workload distribution. The
solution methods proposed in [14,15] solve the bi-objective optimization prob-
lem of an application for performance and energy on homogeneous clusters of
modern multicore CPUs. The solution method [2] considers the effect of het-
erogeneous workload distribution on bi-objective optimization of data analytics
applications by simulating heterogeneity on homogeneous clusters.

Khaleghzadeh et al. [8] discover that moving from the single-objective opti-
mization for performance or energy to the bi-objective optimization for perfor-
mance and energy on heterogeneous processors results in a drastic increase in
the number of optimal solutions in the case of linear performance and energy
profiles, with practically all the solutions load imbalanced. They prove that for
two processors with linear execution time and energy functions, the Pareto front
is linear and contains an infinite number of solutions, out of which one solution
is load balanced while the rest are load imbalanced. They then propose an algo-
rithm that solves the bi-objective optimization problem for discrete execution
time and dynamic energy functions with any arbitrary shape and returns the
Pareto front of load imbalanced solutions and best load balanced solutions.

This work introduces a mathematical problem motivated by the bi-objective
optimization of a matrix multiplication application on heterogeneous HPC plat-
forms for performance and energy.

Consider the bi-objective optimization of a highly optimized matrix multipli-
cation application on a heterogeneous computing platform for performance and
energy. The application computes the matrix product, C = α × A × B + β × C,
where A, B, and C are matrices of size M ×N , N ×N , and M ×N , and α and β
are constant floating-point numbers. The application uses Intel MKL DGEMM
for CPUs and Intel Xeon Phi and CUBLAS for Nvidia GPUs. The Intel MKL
and CUDA versions used are 2017.0.2 and 9.2.148. Workload sizes range from
64 × 10112 to 19904 × 10112 with a step size of 64 for the first dimension m.

The platform consists of five processors: Intel Haswell E5-2670V3 multi-core
CPU (CPU 1), Intel Xeon Gold 6152 multi-core CPU (CPU 2), NVIDIA K40c
GPU (GPU 1), NVIDIA P100 PCIe GPU (GPU 2), and Intel Xeon Phi 3120P
(XeonPhi 1).

Figure 1 shows the execution time functions {f0(x), . . . , f4(x)} and the
dynamic energy functions {g0(x), . . . , g4(x)} of the processors against the work-
load size (x). Briefly, the total energy consumption during an application exe-
cution is the sum of dynamic and static energy consumptions. The static energy
consumption is the idle power of the platform (without application execution)
multiplied by the application’s execution time. The dynamic energy consumption
is the total energy consumed by the platform during the application execution
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Fig. 1. The top two plots contain the execution time and energy profiles of the five het-
erogeneous processors employed in the matrix multiplication application. The bottom
two plots do not contain the profiles for Xeon Phi. While the execution time profiles
of the two CPUs are close to each other, the energy profile of CPU 1 is significantly
higher than that of the CPU 2.

minus the static energy consumption. The dynamic energy consumption during
an application execution is obtained using power meters, which is considered the
most accurate method of energy measurement [9].

The execution time function shapes are continuous and strictly increasing.
The energy function shapes can be approximated accurately by linear increasing
functions. The execution time profiles of the two CPUs are close to each other
but the energy profile of CPU 1 is significantly higher than that of the CPU 2.
The optimization goal is to find workload distributions of the workload size
n ({x0, . . . , x4},

∑4
i=0 xi = n) minimizing the execution time (max4

i=0 fi(xi))
and the total dynamic energy consumption (

∑4
i=0 gi(xi)) during the parallel

execution of the application. We solve the optimization problem for such shapes
of performance and dynamic energy functions in this work.

We first formulate the mathematical problem, which for a given positive real
number n aims to find a vector X = {x0, · · · , xk−1} ∈ R

k
≥0 such that

∑k−1
i=0 xi =

n, minimizing the max of k-dimensional vector of functions of objective type one
and the sum of k-dimensional vector of functions of objective type two. We then
propose an algorithm solving the case where all the functions of objective type
one are continuous and strictly increasing, and all the functions of objective type
two are linear increasing. The algorithm exhibits polynomial complexity.

We employ the algorithm to solve the problem for the matrix multiplication
application using the five heterogeneous processors. Based on our experiments,
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the maximum dynamic energy savings can be up to 17% while tolerating a per-
formance degradation of 5% (an energy saving of 106 J for an execution time
increase of 0.05 s).

The main original contributions of this work are:

– Mathematical formulation of the bi-objective optimization problem which for
a given positive real number n aims to find a vector, X = {x0, · · · , xk−1} ∈
R

k
≥0, such that

∑k−1
i=0 xi = n, minimizing the maximum of k functions of

objective type one and the sum of k functions of objective type two.
– An exact algorithm of polynomial complexity solving the bi-objective opti-

mization problem when all the functions of objective type one are continuous
and strictly increasing, and all the functions of objective type two are linear
increasing.

The rest of the paper is organized as follows. We discuss the related work in
Sect. 2. The formulation of the bi-objective optimization problem is presented in
Sect. 3. In Sect. 4, we propose our algorithm solving the bi-objective optimization
problem. Section 5 contains the experimental results. Finally, we conclude the
paper in Sect. 6.

2 Related Work

A bi-objective optimization problem can be mathematically formulated as [16,20]:

minimize {T (x), E(x)}, Subject to x ∈ S

where there are two objective functions, T : Rk → R and E : Rk → R. We denote
the vector of objective functions by F(x) = (T (x), E(x))T . The decision vectors
x = (x1, ..., xk)T belong to the (non-empty) feasible region (set) S, which is a
subset of the decision variable space R

k. We denote the image of the feasible
region by Z (=F(S)), and call it a feasible objective region. It is a subset of the
objective space R

2. The elements of Z are called objective (function) vectors or
criterion vectors and denoted by F(x) or z = (z1, z2)T , where z1 = T (x) and
z2 = E(x) are objective (function) values or criterion values.

The objective is to minimize both the objective functions simultaneously.
The objective functions are at least partly conflicting or incommensurable, due
to which it is impossible to find a single solution that would be optimal for all
the objectives simultaneously. Furthermore, there is no natural ordering in the
objective space because it is only partially ordered. Therefore, the concept of
optimality is handled differently from a single-objective optimization problem.
The generally used concept is Pareto optimality.

Definition 1. A decision vector x∗ ∈ S is Pareto optimal if there does not exist
another decision vector x ∈ S such that T (x) ≤ T (x∗), E(x) ≤ E(x∗) and either
T (x) < T (x∗) or E(x) < E(x∗) or both [16].

An objective vector z∗ ∈ Z is Pareto optimal if there is not another objective
vector z ∈ Z such that z1 ≤ z∗

1 , z2 ≤ z∗
2 and zj < z∗

j for at least one index j.
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There are several classifications for methods solving bi-objective optimization
problems [16,20]. Since the set of Pareto optimal solutions is partially ordered,
one classification is based on the involvement of the decision-maker in the solu-
tion method to select specific solutions. There are four categories in this classifi-
cation, No preference, A priori, A posteriori, Interactive. The algorithms solving
bi-objective optimization problems can be divided into two major categories,
exact methods and metaheuristics. While branch-and-bound (B&B) is the dom-
inant technique in the first category, genetic algorithm (GA) is popular in the
second category.

Bi-objective Optimization on High Performance Computing Plat-
forms. There are two principal categories of methods for optimizing appli-
cations on high performance computing (HPC) platforms for performance and
energy. The first category of system-level solution methods aims to optimize the
performance and energy of the executing environment of the applications. The
dominant decision variable in this category is Dynamic Voltage and Frequency
Scaling (DVFS). DVFS reduces the dynamic power consumed by a processor by
throttling its clock frequency. The methods proposed in [6,19,22] optimize for
performance under a energy budget or optimize for energy under an execution
time constraint. The methods proposed in [3,7,10] solve bi-objective optimiza-
tion for performance and energy with no time constraint or energy budget.

The second category of application-level solution methods [2,8,11,14,15,17]
use application-level decision variables and models. The most popular decision
variables include the loop tile size, workload distribution, number of processors,
and number of threads.

Reddy et al. [15,17] study bi-objective optimization of data-parallel appli-
cations for performance and energy on homogeneous clusters multicore CPUs
employing only one decision variable, the workload distribution. They propose an
efficient solution method. The method accepts as input the number of available
processors, the discrete function of the processor’s energy consumption against
the workload size, the discrete function of the processor’s performance against
the workload size. It outputs a Pareto-optimal set of workload distributions.
Khaleghzadeh et al. [8] propose exact solution methods solving bi-objective opti-
mization problem for hybrid data-parallel applications on heterogeneous com-
puting platforms for performance and energy.

Tarplee et al. [21] consider optimizing two conflicting objectives, the make-
span and total energy consumption of all nodes in a HPC platform. They employ
linear programming and divisible load theory to compute tight lower bounds on
the make-span and energy of all tasks on a given platform. Using this formula-
tion, they then generate a set of Pareto front solutions. The decision variable is
task mapping. Aba et al. [1] present an approximation algorithm to minimize
both make-span and the total energy consumption in parallel applications run-
ning on a heterogeneous resources system. The decision variable is task schedul-
ing. Their algorithm ignores all solutions where energy consumption exceeds a
given constraint and returns the solution with minimum execution time.
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3 Formulation of the Bi-objective Optimization Problem

Given a positive real number n ∈ R>0 and two sets of k functions each, F =
{f0, f1, · · · , fk−1} and G = {g0, g1, · · · , gk−1}, where fi, gi : R≥0 → R≥0, i ∈
{0, · · · , k − 1}, the problem is to find a vector X = {x0, · · · , xk−1} ∈ R

k
≥0 such

that
∑k−1

i=0 xi = n, minimizing the objective functions T (X) = maxk−1
i=0 fi(xi)

and E(X) =
∑k−1

i=0 gi(xi). We use T × E to denote the objective space of this
problem, R≥0 × R≥0.

Thus, the problem can be formulated as follows:
BOPGVEC(n, k, F,G):

T (X) =
k−1
max
i=0

fi(xi), E(X) =
k−1∑

i=0

gi(xi)

minimize
X

{T (X), E(X)} (1)

s.t. x0 + x1 + · · · + xk−1 = n

We aim to solve BOPGVEC by finding both the Pareto front containing
the optimal objective vectors in the objective space T × E and the decision
vector for a point in the Pareto front. Thus, our solution finds a set of triplets
Ψ = {(T (X), E(X),X)} such that X is a Pareto-optimal decision vector, and
the projection of Ψ onto the objective space T ×E, Ψ ↓T×E , is the Pareto front.

4 Bi-objective Optimization Problem for Max of
Continuous Functions and Sum of Linear Functions

In this section, we solve BOPGVEC for the case where all functions in the set F
are continuous and strictly increasing, and all functions in the set G are linear
increasing, that is, G = {g0, · · · , gk−1}, gi(x) = bi × x, bi ∈ R>0, i = 0, . . . , k − 1.
Without loss of generality, we assume that the functions in G are sorted in the
decreasing order of coefficients, b0 ≥ b1 ≥ · · · ≥ bk−1.

Our solution consists of two algorithms, Algorithm 1 and Algorithm 2. The
first one, which we call LBOPA, constructs the Pareto front of the optimal
solutions in the objective space Ψ ↓T×E . The second algorithm finds the decision
vector for a given point in the Pareto front.

The inputs to LBOPA (see Algorithm 1 for pseudo-code) are two sets of
k functions each, F and G, and an input value, n ∈ R>0. LBOPA constructs
a Pareto front, consisting of k − 1 segments {s0, s1, · · · , sk−2}. Each segment
si has two endpoints, (ti, ei) and (ti+1, ei+1), which are connected by curve
Pf (t) = bi ×n−∑k−1

j=i+1(bi − bj)×f−1
j (t) (0 ≤ i ≤ k−2). Figure 2 illustrates the

functions in the sets, F and G, when all functions in F are linear, fi(x) = ai×x.
In this particular case, the Pareto front returned by LBOPA will be piece-wise
linear, Pf (t) = bi × n − t × ∑k−1

j=i+1
bi−bj
aj

(0 ≤ i ≤ k − 2), as shown in Fig. 2.
The main loop of the Algorithm 1 computes k points (Lines 3–7). In an itera-

tion i, the minimum value of objective T , ti, is obtained using the algorithm, solv-
ing the single-objective min-max optimization problem, minX{maxk−1

j=i fj(xj)}.
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Algorithm 1. Algorithm constructing the Pareto front of the optimal solutions.
1: function LBOPA(n, k, F,G)

2: S ← ∅

3: for i ← 0, k − 1 do

4: ti ← minX { maxk−1
j=i

fj(xj) }
5: ei ← bi × n − ∑k−1

j=i+1(bi − bj) × f
−1
j

(ti)

6: S ← S ∪ (ti, ei)

7: end for
8: for i ← 0, k − 2 do

9: Connect (ti, ei) and (ti+1, ei+1) by curve bi × n − ∑k−1
j=i+1(bi − bj) × f

−1
j

(t)

10: end for
11: end function

Fig. 2. Sets F and G of k linear increasing functions each. Functions in G are arranged
in the decreasing order of slopes. LBOPA returns a linear piece-wise Pareto front shown
in the bottom plot comprising a chain of k − 1 linear segments.

We do not present the details of this algorithm. Depending on the shapes of
functions, {f0, . . . , fk−1}, one of the existing polynomial algorithms solving this
problem can be employed [12,13].

The end point (tmin, emax) = (t0, e0) represents decision vectors with the
minimum value of objective T and the maximum value of objective E, while the
end point (tmax, emin) = (tk−1, ek−1) represents decision vectors with the maxi-
mum value of objective T and the minimum value of objective E (as illustrated
for the case of all linear increasing functions in Fig. 2).

Given an input t ∈ [t0, tk−1], Algorithm 2 finds a decision vector X = {x0,
x1, · · · , xk−1} such that

∑k−1
i=0 xi = n, maxk−1

i=0 fi(xi) = t, and
∑k−1

i=0 gi(xi) is
minimal. The algorithm first initialises X with {x0, x1, · · · , xk−1 | xi = f−1

i (t)}
(Line 2) so that fi(xi) = t for all i ∈ [0, k − 1]. For this initial X the condition
maxk−1

i=0 fi(xi) = t is already satisfied but
∑k−1

i=0 xi may be either equal to n or
greater than n. If

∑k−1
i=0 xi = n, then this initial X will be the only decision vector

such that
∑k−1

i=0 xi = n and maxk−1
i=0 fi(xi) = t and hence the unique (Pareto-

optimal) solution. Otherwise,
∑k−1

i=0 xi = n+nplus where nplus > 0. In that case,
this initial vectorX will maximize both

∑k−1
i=0 xi and

∑k−1
i=0 gi(xi) in the set Xt of

all vectors in the decision space satisfying the condition maxk−1
i=0 fi(xi) = t. The

algorithm then iteratively reduces elements of vector X until their sum becomes
equal to n. Obviously, each such reduction will also reduce

∑k−1
i=0 gi(xi). To

achieve the maximum reduction of
∑k−1

i=0 gi(xi), the algorithm starts from vector
element xi, the reduction of which by an arbitrary amount Δx will result in the
maximum reduction of

∑k−1
i=0 gi(xi). In our case, it will be x0 as the functions in

G are sorted in the decreasing order of coefficients bi. Thus, at the first reduction
step, the algorithm will try to reduce x0 by nplus. If x0 ≥ nplus, it will succeed
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and find a Pareto-optimal decision vector X = {x0 − nplus, x1, · · · , xk−1}. If
x0 < nplus, it will reduce nplus by x0, set x0 = 0 and move to the second step.
At the second step, it will try to reduce x1 by the reduced nplus, and so on. This
way the algorithm minimizes

∑k−1
i=0 gi(xi), preserving maxk−1

i=0 fi(xi) = t and
achieving

∑k−1
i=0 xi = n.

Algorithm 2 . Algorithm finding a Pareto-optimal decision vector X =
{x0, x1, · · · , xk−1} for the problem BOPGV EC(n, k, F,G).
1: function Partition(n, k, F,G, t)

2: X = {x0, · · · , xk−1 | xi ← f
−1
i

(t)}
3: nplus ← ∑k−1

i=0 xi − n

4: if nplus < 0 then

5: return (0, 0, ∅)

6: end if
7: i ← 0
8: while (nplus > 0) ∧ (i < k − 1) do

9: if xi ≥ nplus then

10: xi ← xi − nplus

11: nplus ← 0

12: else
13: nplus ← nplus − xi

14: xi ← 0

15: i ← i + 1

16: end if
17: end while
18: if nplus > 0 then

19: return (0, 0, ∅)

20: end if

21: e ← ∑k−1
i=0 bi × xi

22: return (t, e,X)

23: end function

The correctness of these algorithms is proved in Theorem 1.

Theorem 1. Consider bi-objective optimization problem BOPGV EC(n, k,
F,G) where all functions in F are continuous and strictly increasing and
G = {gi(x) | gi(x) = bi × x, bi ∈ R>0, i ∈ {0, · · · , k − 1}}. Then, the piece-
wise function S, returned by LBOPA(n,k,F,G) (Algorithm 1) and consisting
of k − 1 segments, is the Pareto front of this problem, Ψ ↓T×E, and for any
(t, e) ∈ Ψ ↓T×E, Algorithm 2 returns a Pareto-optimal decision vector X such
that T (X) = t and E(X) = e.

Proof. First, consider Algorithm 2 and arbitrary input parameters n > 0 and
t > 0. If after initialization of X (Line 2) we will have

∑k−1
i=0 xi < n, it means

that t is too small for the given n, and for any vector Y = {y0, y1, · · · , yk−1}
such that

∑k−1
i=0 yi = n, maxk−1

i=0 fi(yi) > t. In this case, there is no solution to
the optimization problem, and the algorithm terminates abnormally.

Otherwise, the algorithm enters the while loop (Line 8). If i < k − 1 upon
exit from this loop, then the elements of vector X will be calculated as

xj =

⎧
⎪⎨

⎪⎩

0 j < i

n − ∑k−1
m=j+1 f−1

m (t) j = i

f−1
j (t) j > i

(2)
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and therefore satisfy the conditions
∑k−1

j=0 xj = n and maxk−1
j=0 fj(xj) = t. More-

over, the total amount of n will be distributed in X between vector elements
with higher indices, which have lower G cost, gi(x), because bi ≥ bi+1,∀i ∈
{0, · · · , k − 2}. Therefore, for any other vector Y = {y0, y1, · · · , yk−1} satisfying
these two conditions, we will have

∑k−1
i=0 gi(yi) ≥ ∑k−1

i=0 gi(xi). Indeed, such a
vector Y can be obtained from X by relocating certain amounts from vector
elements with higher indices to vector elements with lower indices, which will
increase the G cost of the relocated amounts. Thus, when the algorithm exits
from the while loop with i < k − 1, it returns a Pareto-optimal vector X.

If the algorithm exits from the while loop with i = k − 1, it will mean that t
is too big for the given n. We would still have nplus > 0 to take off the last vector
element, xk−1, but if we did it, we would make maxk−1

j=0 fj(xj) < t. This way we
would construct for the given n a decision vector, which minimizes

∑k−1
i=0 gi(xi)

but whose maxk−1
j=0 fj(xj) will be less than t, which means that no decision

vector X such that maxk−1
j=0 fj(xj) = t can be Pareto optimal. Therefore, in this

case the algorithm also terminates abnormally.
Thus, for any t ∈ T , Algorithm 2 either finds a Pareto-optimal decision vector

X such that T (X) = t and E(X) =
∑k−1

i=0 bi × xi = e, or returns abnormally
if such a vector does not exist. Let Algorithm 2 return normally, and the loop
variable i be equal to s upon exit from the loop. Then, according to formula
2, e =

∑k−1
i=0 bi × xi = bs × (n − ∑k−1

i=s+1 f−1
i (t)) +

∑k−1
i=s+1(bi × f−1

i (t)) =
bs × n − ∑k−1

i=s+1(bs − bi) × f−1
i (t), where s, n, bi, bs, ai are all known constants.

Therefore, the Pareto front e = Pf (t) can be expressed as follows:

e = Pf (t) = bs × n −
k−1∑

i=s+1

(bs − bi) × f−1
i (t)

tmin = min
X

{ k−1
max
j=i

fj(xj) }, tmax = fk−1(n)

t ∈ [tmin, tmax], s ∈ Z[0,k−2],

which is the analytical expression of the piece-wise function constructed by Algo-
rithm 1 (LBOPA). End of Proof.

Theorem 2. LBOPA (Algorithm 1) and PARTITION (Algorithm 2) have poly-
nomial time complexities.

Proof. The for loop in LBOPA (Algorithm 1, Lines 3–7) has k iterations. At
each iteration i, the computation of ti has a time complexity of O(k2 × log2 n)
[12], the computation of ei has a time complexity of O(k), and the insertion of
the point in the set S has complexity O(1). Therefore, the time complexity of
the loop is O(k3 × log2 n). The time complexity of the loop (Lines 8–10) is O(k).
Therefore, the time complexity of the Algorithm 1 is O(k3 × log2 n).

Let us consider the PARTITION Algorithm 2. The initialization of X (Line
2) and computation of nplus has time complexity O(k) each. The while loop
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Fig. 3. Pareto front for the matrix multiplication application using five heterogeneous
processors described earlier for two workloads. Each Pareto front contains four linear
segments.

(Lines 8–17) iterates as long as nplus > 0 and i < k − 1, of which i < k − 1
is the worst case scenario. The time complexity of the loop is, therefore, O(k).
The time complexity of computation of e in Line 21 is O(k). Therefore, the time
complexity of the Algorithm 2 is bounded by O(k). End of Proof.

5 Experimental Results

We employ the LBOPA and PARTITION algorithms to obtain the Pareto fronts
for the matrix multiplication application using the five heterogeneous processors
mentioned earlier. An automated tool, HCLWATTSUP [4], is used to deter-
mine the dynamic and total energy consumptions using system-level physical
power measurements using power meters. HCLWATTSUP has no extra over-
head and, therefore, does not influence the energy consumption of the kernel.
The HCLWATTSUP interface is explained in the supplemental. Several precau-
tions are taken in computing energy measurements to eliminate the potential
disturbance due to components such as SSDs and fans. The input performance
and dynamic energy functions, (F,G), to LBOPA and PARTITION are linear
approximations of the profiles shown in the Fig. 1.

To obtain an experimental data point, the application is executed repeatedly
until the sample mean lies in the 95% confidence interval and a precision of 0.025
(2.5%) has been achieved. For this purpose, Student’s t-test is used assuming
that the individual observations are independent and their population follows the
normal distribution. We verify the validity of these assumptions using Pearson’s
chi-squared test.

Figure 3 shows the Pareto fronts for two workloads, 12352 × 10112 and
15552 × 10112. Each Pareto front contains four linear segments. Each seg-
ment is connected by two endpoints. All the points lying on a segment are the
performance-energy optimal solutions in the objective space.

For the workload 12352 × 10112, 17% dynamic energy saving is gained while
allowing 5% performance degradation. Similarly, for the workload 15552×10112,
13% energy saving is achieved while tolerating 5% performance degradation.
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The first linear segment has a steep slope signifying a significant dynamic
energy saving for a slight increase in execution time. The energy savings are 93 J
and 106 J for execution time increases of 0.03 s and 0.05 s for the two workloads.
The energy-performance tradeoff (that is, the gain in energy saving for a corre-
sponding increase in execution time) decreases with each next linear segment.

Based on an input user-specified energy-performance tradeoff, one can selec-
tively focus on a specific segment to return the Pareto-optimal solutions (work-
load distributions). The shapes of the two Pareto fronts are similar, suggesting
that the qualitative conclusions apply for all workloads for this application.

6 Conclusion

Performance and energy are the two most important objectives for optimization
on heterogeneous HPC platforms. This work introduced a mathematical problem
motivated by the bi-objective optimization of a matrix multiplication application
on heterogeneous HPC platforms for performance and energy. The application
exhibits performance functions that are continuous and strictly increasing and
energy functions that are linear increasing.

We first formulated the problem, which for a given positive real number
n aims to find a vector X = {x0, · · · , xk−1} ∈ R

k
≥0 such that

∑k−1
i=0 xi = n,

minimizing the max of k-dimensional vector of functions of objective type one
and the sum of k-dimensional vector of functions of objective type two. We then
proposed an algorithm of polynomial complexity solving the problem for the
case where all the functions of objective type one are continuous and strictly
increasing, and all the functions of objective type two are linear increasing.

We solved the bi-objective optimization problem using the algorithm for the
matrix multiplication application employing five heterogeneous processors, two
Intel multicore CPUs, an Nvidia K40c GPU, an Nvidia P100 PCIe GPU, and
an Intel Xeon Phi. Based on our experiments, 17% dynamic energy saving can
be achieved while tolerating a performance degradation of 5% (a saving of 106 J
for an execution time increase of 0.05 s).
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Abstract. Novel architectures leveraging long and variable vector
lengths like the NEC SX-Aurora or the vector extension of RISCV are
appearing as promising solutions on the supercomputing market. These
architectures often require re-coding of scientific kernels. For example,
traditional implementations of algorithms for computing the fast Fourier
transform (FFT) cannot take full advantage of vector architectures. In
this paper, we present the implementation of FFT algorithms able to
leverage these novel architectures. We evaluate these codes on NEC SX-
Aurora, comparing them with the optimized NEC libraries. We present
the benefits and limitations of two approaches of RADIX-2 FFT vec-
tor implementations. We show that our approach makes better use of
the vector unit, reaching higher performance than the optimized NEC
library for FFT sizes under 64k elements. More generally, we prove the
importance of maximizing the vector length usage of the algorithm and
that adapting the algorithm to replace memory instructions with regis-
ter shuffling operations can boost the performance of FFT-like compu-
tational kernels.

1 Introduction

Accelerated computing is becoming more and more relevant in High-Performance
Computing (HPC). The limitation to the performance improvements imposed
by the slow-down of Moore’s law applied to general purpose CPUs has made
HPC architects looking for solutions that can complement the computational
power delivered by standard CPUs (i.e., accelerators). The most visible example
of this are GP-GPU based systems, that populate 3 places within the first 5
most powerful supercomputers in the world (Top500).

GP-GPUs, however are not the only approach to acceleration: the use of vec-
tor or SIMD extensions is becoming more and more relevant in HPC systems.
Beside the AVX-512 SIMD extension by Intel, we detect appearing on the mar-
ket the first CPU implementing the Arm SVE extension (Fujitsu A64FX, ranked
first in the Top500) and the NEC SX-Aurora vector engine, a discrete acceler-
ator leveraging vector CPUs able to operate with registers of up to 256 double
precision elements. On top of this market movements, we can not ignore the
RISC-V architecture which recently ratified v1.0 of the V-extension, boosting
vector computation from the academic world and the open-source community.
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The efficient use of vector accelerators often require to adapt or rewrite clas-
sical algorithms to exploit their full computing power. In most cases, vendor spe-
cific libraries coupled with optimized compilers allow to port large HPC codes to
vector accelerators in a relatively smooth way. For portability reasons however,
scientists often look for open-source libraries including kernels already optimized
for specific architectures. The computation of the Fourier transformation using
the FFT algorithms is an example of a relevant HPC kernel extremely used by
the HPC community. For this reason we focused this paper on the design and
the evaluation of non-parallel vectorized FFT implementations.

The main contributions of this paper are: i) we developed four implementa-
tions of the FFT algorithms targeting large vector architectures; ii) we evaluate
our FFT codes on the NEC SX-Aurora accelerator, analyzing benefits and lim-
itations of its architecture with an in depth study of hardware counters; iii) we
compare our performance results with the vendor library distributed by NEC.

The remaining part of the paper is structured as follows: Sect. 2 compiles the
related work in the field of FFT implementations for HPC systems; Sect. 3 briefly
presents the NEC SX-Aurora accelerator; Sect. 4 analyzes the optimizations tar-
geting large vector architectures; Sect. 5 includes the measurements gathered on
NEC SX-Aurora; Sect. 6 closes the paper with general remarks and conclusions.

2 Related Work

FFT is a kernel of paramount importance in several algorithms of scientific com-
puting. Therefore, a large body of research about FFT optimization on many
architectures has been published in the last decades. The key reference pub-
lications used as background for our implementations are the book of E. Chu
et al. [4], the paper of M. C. Pease [10] and the paper of P. N. Swarztrauber [11].

More recently, the research community is focusing on developing efficient
FFT implementations targeting emerging architectures with different degrees of
parallelism, e.g., high number of cores and long SIMD or vector units. Chow
et al. [3] report their effort in taking advantage of the IBM Cell BE for the com-
putation of large FFTs; Anderson et al. [1] make use of FPGAs for accelerating
3D FFTs; Wang et al. [13] present an FFT optimization for Armv8 architec-
tures; Malkovsky et al. [9] evaluate FFTs on heterogeneous HPC compute nodes
including GP-GPUs. Most of those studies are limited to up to 8-elements SIMD
units in CPUs or high thread-level parallelism in GPUs while the implementa-
tions proposed in our paper are targeting wider vector units.

D. Bailey [2] and Paul N. Swarztrauber [11] studied various FFT algorithms,
including Pease’s and Stockham’s, for the firsts vector computers which were
limited by their inefficiency accessing non continuous data. The algorithms they
propose have a minimum vector length of

√
N at best, which is lower than our

algorithm’s N
8 . Moreover, our implementations propose an exploitation of the

data locality in the many vector registers that the SX-Aurora has, reducing the
accesses to the main memory.

Furthermore, our method extends the approach of Franchetti et al. [5] since
we explore larger FFT sizes as well as double precision data types.
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Promising results for acceleration with the NEC SX-Aurora accelerator have
been shown for SpMV in [6] and for spectral element method for fluid dynamics
in [7]. We extend those evaluation efforts of NEC’ accelerator with FFT. This
paper continues the work done in the thesis from Pablo Vizcaino Serrano [12].

3 Hardware Platform: The NEC SX-Aurora

We implemented and evaluated our FFT codes targeting the NEC SX-Aurora
VE (VE), the latest NEC’s long vector architecture which combines SIMD and
pipelining. Vector units and vector registers use a 32 × 64-bit wide SIMD front
in an 8-cycles deep pipeline resulting in a maximum vector length of 256×64-bit
elements or 512 × 32-bit elements. The VE10B processor used for this publica-
tion was presented at the IEEE HotChips 2018 [14], and the first performance
evaluation was described in the same year [8].

Each of the 8 VE cores consists of a scalar processing unit (SPU) and a vector
processing unit (VPU) and is connected to a shared last level cache (LLC) of
16 MB. Three fused multiply-add vector units deliver a peak performance of
269 GLFOPS (double precision) per core at 1.4 GHz. The peak performance of
the used VE variant is 2.15 TFLOPS delivering a byte/FLOP ratio of 0.56.

Vector Engines are integrated as PCIe cards into their host machines. Pro-
grammers can use languages like C, C++, Fortran, and parallelize with MPI as
well as OpenMP, while accelerator code can still use almost any Linux system
call transparently. The proprietary compilers from NEC support automatic vec-
torization aided by directives. They are capable of using most features of the
extensive vector engine ISA1 from high-level languages loop constructs. For the
work presented in this paper, we employed the open-source LLVM-VE project2,
which supports intrinsics allowing tight control over VE features to operate with
complex numbers, control vector registers, and LLC cache affinity.

4 Implementation

There exist multiple algorithms for the computation of the FFT, each with its
benefits and disadvantages from the computational point of view. In this paper,
we focus on a subset of algorithms, those that are denominated RADIX-2. Con-
sidering an FFT with N being the number of transformed elements, a RADIX-2
FFT requires N to be a power of two and divides the required computation in
log2(N) phases. FFT algorithms are also split into in-place and out-of-place, with
the latest requiring an additional buffer alongside the input and output arrays.
All implementations proposed in this paper are out-of-place since our objective
is an efficient vectorization and not a reduced memory footprint. Moreover, some
FFT algorithms require a permutation of the resulting elements and others are
self-sorting. In this paper we study both approaches.

1 https://www.hpc.nec/documents/guide/pdfs/Aurora ISA guide.pdf.
2 https://sx-aurora-dev.github.io/velintrin.html.

https://www.hpc.nec/documents/guide/pdfs/Aurora_ISA_guide.pdf
https://sx-aurora-dev.github.io/velintrin.html
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All implementations in this paper are designed for complex double-precision
data. The visual representations of the algorithms shown in this paper are sim-
plified, presenting only the real component because the computation of the imag-
inary component is conceptually equivalent to its real counterpart.

For the FFT calculation, we often refer to twiddle factors. W is the set of the
twiddle factors, which are complex exponents computed as tf(k,N) = e

−2πik
N ,

with k ∈ {0, N − 1}.

4.1 Pease FFT

The first implementation with the potential to be efficiently vectorized is the
FFT algorithm developed by Marshall C. Pease [10]. In terms of arithmetic
operations, each phase of a naive Pease’s FFT implementation requires N/2
additions, N/2 subtractions, and N/2 multiplications. One important downside
of Pease’s algorithm is the permutation requirement at the end of the last phase.
Modern vector ISA offer instructions to load and store scattered data, but they
are typically less efficient than those that operate on contiguous or constant-
strided data.

Pease’s algorithms is characterized by a constant geometry, that means that
the same elements are operated in each of the log2(N) phases. More specifically,
the first half of the N elements operate with the second half of each phase. This
leads to a potential N/2 elements that can be operated at the same time (i.e.,
vector length of N/2). Once a phase has been calculated, the vector registers
no longer hold the first and second half of the N elements, so they must be
shuffled. Due to the lack of instructions to perform this rearrangement on vector
registers, this operation could be done storing all the elements in memory and
loading them again in the correct order.

To mitigate the slowdown introduced by the need of accessing the mem-
ory in each phase, we propose an implementation of the Pease algorithm that
distributes the N elements in eight registers instead of two. Sacrificing some
potential vector length and using a precise distribution, this allows us for the
computation of three phases before having to reorder the elements in memory.

A visualization of this technique is shown in the right of Fig. 1. This imple-
mentation is named 8-Pease in the rest of the paper. It uses a potential vector
length of N/8 and only accesses memory every three phases while still needing
the data permutation at the final stage of the algorithm. The downside of having
an upper limit on the vector length of N/8 instead of N/2 is supressed for large
FFT sizes where N/8 is larger than the maximum vector length (256).

In Fig. 1 we also show that the twiddle factors are different in each phase;
therefore, our first approach is to pre-compute them for each phase and to load
them as the algorithm advances. The reason to not compute the twiddle factors
during the execution is that they require the cosine operation, which is not
present in the vector instruction set. Therefore, one needs to scalar compute
them, store them in memory and load them in vector registers.
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Fig. 1. 8-Pease vectorization for N = 16. (Color figure online)

The pseudocode of the 8-Pease implementation is given in Algorithm 1.

Algorithm 1. 8-Pease pseudocode
1: procedure fft 8Pease(Arr)
2: for p ∈ [1 : 3 : log2(N)] do
3: reg {0, 1..7} r ← v ld(&real(Arr[{0, N/8..7 ∗ N/8}]))
4: reg {0, 1..7} i ← v ld(&imag(Arr[{0, N/8..7 ∗ N/8}]))
5: 3x4 PairOperation()
6: if p < log2(N) then
7: v st strideds(res {0, 1..7} r, &real(Arr[{0, 1..7}], 8)])
8: v st strideds(res {0, 1..7} i, &imag(Arr[{0, 1..7}], 8)])
9: else

10: vindex ← v load(&indexes[0])
11: v st scatters(res {0, 1..7} r, real(Arr), vindex + {0, N/8..7 ∗ N/8})
12: v st scatters(res {0, 1..7} i, imag(Arr), vindex + {0, N/8..7 ∗ N/8})

Note that unlike Fig. 1, the pseudocode shows the operation of the real and
imaginary parts. The vector loads, the PairOperations and the stores have been
grouped for simplicity. The dark red elements from Fig. 1 are loaded in reg1, the
light reds in reg2, etc. The function 3x4 PairOperation is equivalent to executing
the function in Algorithm 2 for 3 phases with 4 PairOperations each. All vector
instructions operate on N/8 vector elements. In reality, NEC limits the vector
length to 256 elements, requiring our code to compute the phases in various
iterations.

The function PairOperation() in Algorithm 2 takes advantage of fused opera-
tions to calculate the complex multiplication. Remember that the multiplication
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Algorithm 2. PairOperation pseudocode
1: procedure PairOperation(reg1 r, reg1 i, reg2 r, reg2 i)
2: res1 {r, i} ← reg1 {r, i} + reg2 {r, i}
3: res2 {r, i} ← (reg1 {r, i} − reg2 {r, i}) ∗ W {r, i}
4: return res1 {r, i}, res2 {r, i}

of two complex numbers, (a + b · i) · (c + d · i) = (e + f · i) normally requires
7 operations: e = a · c − b · d, and f = a · d + b · c. We can group operations to
have 2 multiplications and 2 fused operations (operations calculated with a sin-
gle instruction are encapsulated using parenthesis): t1 = (a · c), and t2 = (a · d),
so that e = (t1 − b · d) and f = (t2 + b · c).

Looking at Fig. 1, it can be noted that there are only N/2 different twid-
dle factors (W0,W1,...WN/2−1). More precisely, the number of different twiddle
factors to be used in each phase is half compared to the previous one.

The repetition of the twiddle factors across the FFT brings three important
observations: i) we are wasting memory since we were storing all of them for
each phase; ii) we are missing potential cache locality; iii) for advanced phases,
we could access a single twiddle factor per register and then replicate it. In each
batch of three phases in 8-Pease, the twiddle factor of the second phase are
identical for half the registers, and in the third one they are identical for all
registers. This means that for the three phases, we only load 7 twiddle factor
registers instead of 12.

Finally, another implementation of the Pease algorithm is proposed. Even
with the twiddle factor access optimization, it still represents a slowdown.

To implement this optimization, we use gather vector instructions to load the
twiddle factors. In reality, gather instructions offer a more general functionality
than what we require since they are meant to load sparse data, while we need
strided chunks of data. However, since no ad hoc instructions exist for our case,
we decided to implement this version using gather instructions. In NEC archi-
tecture, gather operations require a vector with absolute addresses to index the
memory. We use two registers, one holding the constant relative indexes that are
reused and another temporarily holding the absolute indexes after adding the
offset. A graphical representation of the use of gather operation is provided in
Fig. 2, with its code equivalent in Algorithm 3. This implementation is named
8-Pease-gt in the rest of the paper.

Algorithm 3. Gather access to twiddle factors pictured on Fig. 2.
1: vr indexes = vel vseq vl(V L); � 0, 1, 2, 3, ...
2: indexes = vel vand vsvl( (0x1), indexes, V L); � 0, 0, 2, 2, ...
3: indexes = vel vsll vvsl(indexes, 3, V L); � 0, 0, 8, 8, ...
4: indexes = vel vaddul vsvl(addr, indexes, V L); � 0xA000, 0xA000, 0xA008, ...
5: vr W = vel vgt vvssvl(index, N/8, V L);
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Fig. 2. Example of the proposed accesses to twiddle factors using gather operations

4.2 Stockham FFT

The other algorithm that has been studied for vectorization is Stockham’s algo-
rithm [11]. While the algorithm is still RADIX-2 and out-of-place, it has two
main differences with Pease’s algorithm. The first one is that it is a self-sorting
algorithm, so it does not require a permutation at the last phase. The second
difference is that Stockham’s algorithm does not have constant geometry like
Pease’s. This complicates the algorithm and its vectorization, limiting the max-
imum vector length depending on the phase.

Using the same approach as with 8-Pease, we can divide the N elements of
each phase into eight vector registers to compute three phases before rearranging
the elements in memory.

Due to the self-sorting nature of the algorithm, the process of storing and
loading the elements changes for every three phases. With p being the phase
where the loads occurs, the stores on p + 3 consist of vector length

2p groups of
2p consecutive elements. Since an instruction that writes several consecutive
elements before jumping a fixed stride does not exist in NEC’s architecture, we
have two options in the implementation. We can limit the vector length of the
problematic phases to be equal to the size of the groups, 2p. Since inside a group
all the twiddle factors have the same value, we could use a broadcast operation
to load them. The downside of this option is that for phases 3–5 and 6–8 this
means limiting the vector length to 8 and 64. With SX-Aurora’s maximum vector
length of 256, this limit implies not taking full advantage of the vectorization
potential.

If we do not want to limit the vector length, we can store values with a
scatter operation and load twiddle factors with a gather. The initial interest in
using the Stockham algorithm was removing this type of memory operations,
so adding them again may seem counterproductive, even though the pattern
of Stockham’s scatter operations contain consecutive elements while Pease’s is
sparser. This difference is represented in a simplified example diagram in Fig. 3.

Regardless, using these long-latency instructions at the end of these special
phases outperforms having up to 32 times more instructions during three phases
when limiting the vector length to 8, so the final implementation uses scatters.

In terms of twiddle factors, we use the gather instruction that is also present
in 8-Pease-gt and we name this new implementation 8-Stockham-gt.

A simplified pseudocode of this alternative is shown in Algorithm 4.
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Fig. 3. Simplified example of the scatter operations used in Pease and Stockham’s
algorithms, with a vector length of 8 elements.

Algorithm 4. 8-Stockham pseudocode
1: procedure fft 8Stockham(Arr)
2: reg {0, 1..7} r ← v ld(&real(Arr[{0, N/8..7 ∗ N/8}]))
3: reg {0, 1..7} i ← v ld(&imag(Arr[{0, N/8..7 ∗ N/8}]))
4: 3x4 PairOperation()
5: v st strideds(res {0, 1..7} r, &real(Arr[{0, 1..7}]), 8)
6: v st strideds(res {0, 1..7} i, &imag(Arr[{0, 1..7}]), 8)
7: gsize = 8
8: for p ∈ [4 : 3 : log2(N)] do
9: reg {0, 1..7} r ← v ld(&real(Arr[{0, N/8, ..., 7 ∗ N/8}]))

10: reg {0, 1..7} i ← v ld(&imag(Arr[{0, N/8, ..., 7 ∗ N/8}]))
11: if gsize < VL then
12: gatherW ()
13: 3x4 PairOperation()
14: vindex ← v load(&indexes[0])
15: v st scatter(res {0, 1..7} r, real(Arr), vindex + {0, gsize..7 ∗ gsize})
16: v st scatter(res {0, 1..7} i, imag(Arr), vindex + {0, gsize..7 ∗ gsize})
17: else
18: broadcastW ()
19: 3x4 PairOperation()
20: v st(res {0, 1..7} r, &real(Arr[{0, N/8, ..., 7 ∗ N/8}]))
21: v st(res {0, 1..7} i, &imag(Arr[{0, N/8, ..., 7 ∗ N/8}]))

22: gsize = gsize ∗ 8

5 Evaluation

In this section we study the performance of our implementations in the vector
accelerator from NEC, the SX-Aurora. We measure the real time used to com-
pute the FFT, including the communication to the accelerator and other system
interferences. The pre-computation is disregarded because it can be used for
multiple FFT of the same size.

NEC has optimized math libraries called NEC Library Collection (NLC)3.
Our usage of NLC is limited to aslfftw, a vectorized FFT whose interface is com-
patible with fftw. We have compared the performance of the proposed implemen-
tations in Sect. 4 with aslfftw, computing it as a speedup to a scalar (i.e., without
vector instructions) fftw, compiled with NEC’s compiler ncc.

3 https://www.hpc.nec/documents/sdk/SDK NLC/UsersGuide/main/en/.

https://www.hpc.nec/documents/sdk/SDK_NLC/UsersGuide/main/en/
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Fig. 4. Speedup in NEC of the proposed vectorized FFT implementations and aslfftw.

We see in Fig. 4 how our implementations outperform aslfftw until an FFT
size of 65536 elements. From that point on, aslfftw doubles the performance of
our Pease’s implementations, while 8-Stockham-gt only underperforms aslffw by
less than 10%. In our best case, we reach 17% of the peak performance of one VE
node. It is also notable that while 8-Pease-gt was designed to improve 8-Pease,
it obtained a lower performance.

In Fig. 5 we show the number of total instructions and vector instructions
with respect to aslfftw. NEC’s implementation executes many more instructions
than our implementations, with sizes up to 65536. From that point, we execute
more instructions than aslfftw, except for the total instructions of 8-Stockham-gt.

Fig. 5. Total (left) and vector (right) instructions with respect to aslfftw.

Figure 5 also shows us that 8-Pease-gt executes approximately 10% more
instructions than 8-Pease. This is due to the gather instruction using absolute
addresses in NEC, requiring additional operations to modify the indexes before
the gathers.

To better understand the difference in instructions, we have to consider the
number of elements being operated with each vector instruction. In Table 1 we
display the average vector length used by the implementations, with greener
colors indicating a higher vector length.
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Table 1. Average vector length in elements for different FFT sizes and implementa-
tions.

We show that our proposed implementations are able to use the maximum
vector length, 256 64-bit elements, with smaller problem sizes than aslfftw. This
implies a better usage of the vector unit and a reduction in instructions since
each is doing more operations.

A pair of relevant counters to understand the performance of the implementa-
tions is vec arith cyc and vec load cyc, which count the cycles spent in arithmetic
vector instructions and load vector instructions respectively.

Fig. 6. Vec arith (left) and load (right) cycles of our implementations wrto. aslfftw.

In Fig. 6 we see the number of cycles used by arithmetic and load vector
instructions with respect to aslfftw. There is a difference of 25%–70% in arith-
metic cycles for larger FFT sizes. The finer grain of using a small vector length of
aslfftw can allow it to be more precise with arithmetic optimizations, but the sig-
nificant disparity in large sizes suggests a core difference in the FFT algorithm.
In FFT computation, the number of floating-point operations is related to the
used RADIX. These results suggest that aslfftw is using a different RADIX for
bigger transforms.

A much larger difference is present in load vector cycles. We find a notable
spike in the cycles spent by our Pease’s algorithm in size 65536, taking 4 times
more cycles loading vector elements. This is the exact size where alsfftw starts to
outperform our implementations. We would also like to study the vector cycles
spent in store operations, but these cycles are not mapped in any hardware
counter present in the architecture.

To study if the increment in vector load cycles of our Pease’s implementa-
tions is due to loading more elements or due to slower loads, in Fig. 7 we show
how many vector elements are being loaded per each cycle spent in vector load
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instructions, as a metric of “efficiency” of the vector loads. We also show the
vector load cache hit ratio of the implementations, since it can be related with
slower loads.

Fig. 7. Vec. load elements per vec. load cycle (left) and hit ratio (right)

We see that from size 65536 onwards aslfftw has greater vector load efficiency
than our Pease’s implementations, loading three times more elements per load
cycle.

8-Pease-gt and 8-Stockham-gt present a nearly identical hit ratio, and they
load the same number of elements from memory. Considering that the vector load
efficiency is not lowered for 8-Stockham-gt, we can suggest that the difference in
the efficiencies between implementations is caused by an unfavorable memory
access pattern inherent to Pease’s algorithm, presumably related to the scatter
operations executed at the last phase of the implementation. We also note in
the left plot of Fig. 7 that the usage of the gather instruction in 8-Pease-gt does
not accomplish its intended results since it lowers the efficiency of vector load
instructions with respect to 8-Pease instead of improving it. The theoretically
better memory access of 8-Pease-gt is reflected in the cache hit-ratio, when
comparing it to 8-Pease.

6 Conclusions

Our implementations of the FFT for the NEC SX-Aurora show an efficient usage
of the vector engine, overtaking the highly optimized proprietary vendor imple-
mentation found in NEC Libary Collection for FFT sizes up to 65536 elements.
We achieve 20× speedup for sizes under 1024 compared to NEC’s FFT, and
2× speedup up to 65536 elements. We also discussed the performance of vec-
tor memory gather operations in our implementations, finding that optimizing
memory accesses do not pay of because of their long latency.

We compared two algorithms for the FFT computation, Pease’s and Stock-
ham’s. We found that for vectorized codes, the complex permutations needed by
Pease’s impact negatively the performance, notably with large FFT sizes. We
argue in favour of more specific register shuffling and memory accessing vector
instructions. We evinced the importance of avoiding memory instructions that
FFT computation often requires, even if this implies more vector registers or
reducing the vector length.
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We also highlight two main weaknesses of our proposed implementations
for larger FFT sizes when comparing them with NEC’s implementation: i)
both Pease and Stockham implementations spend ∼25% more cycles execut-
ing floating-point operations, suggesting the need to explore different RADIX
FFT algorithms. ii) Pease’s implementation has a lower vector load efficiency.

We leave for future work the parallelization of our implementations, the
exploration of different RADIX FFT algorithms and the evaluation on other
vector architectures.
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Abstract. Kernel Fusion is a widely applicable optimization for numer-
ical libraries on heterogeneous systems. However, most automated sys-
tems capable of performing the optimization require changes to software
development practices, through language extensions or constraints on
software organization and compilation. This makes such techniques inap-
plicable for preexisting software in a language like OpenCL.

This work introduces an implementation of kernel fusion that can be
deployed fully within the defined role of the OpenCL library implemen-
tation. This means that programmers with no explicit intervention, or
even precompiled OpenCL applications, could utilize the optimization.
Despite the lack of explicit programmer effort, our compiler was able to
deliver an average of 12.3% speedup over a range of applicable bench-
marks on a target CPU platform.

Keywords: OpenCL · Kernel fusion · Heterogeneous computing

1 Introduction

Good software design practices and good software performance practices are
sometimes in tension. One tension exists between the desire for software porta-
bility and the optimization opportunities available when the target architecture
is known ahead of time to the developer. OpenCL was designed to address this
tension by deferring code generation of accelerator machine code until applica-
tion execution, allowing each accelerator vendor to build appropriate optimiza-
tions into the compiler for that particular accelerator. Another common tension
is between the design principle of modularity and the optimization opportunities
enabled by interprocedural optimization. Function encapsulation allows useful
units of code to be reused in a variety of different contexts. However, in any
particular use case, performance would likely benefit from optimizations taking
into account the particular mixture of functions used in that circumstance.

Recent efforts have turned towards generative frameworks where the host
application explicitly constructs, at run-time, a complete description of the com-
putation to be performed on the accelerator [2,2,13,14]. Such strategies are effec-
tive, but require applications to be rewritten for the newly developed language.
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In this work, we show how it is possible to implement inter-kernel optimiza-
tions entirely behind the OpenCL API. This strategy enables legacy software
written with OpenCL C or already compiled into SPIR IR to take advantage
of inter-kernel optimizations such as kernel fusion. While the extent of those
optimizations can be limited by the information hidden by the narrow API,
we find that in many examples, there is sufficient information for substantial
performance improvements.

In this paper, we describe how the asynchronous nature of the OpenCL API
can be exploited to perform inter-kernel optimizations without explicit inter-
vention from the application programmer. Sections 2 and 3 cover the technical
details of the opportunity and exploitation, respectively, of inter-kernel informa-
tion in an OpenCL compiler through the OpenCL API. Section 4 show perfor-
mance results demonstrating the impact of kernel fusion implemented with this
strategy on a variety of applications. We conclude with a summary of related
work in Sect. 5 and some final remarks in Sect. 6.

2 Background

While OpenCL is a widely supported standard, few implementations are avail-
able in open source. Portable OpenCL (POCL [8]) is one such actively supported
open-source framework, so we will present our work in the context of that infras-
tructure. The POCL system is capable of executing OpenCL workloads on CPUs
and supported GPUs with the main branch, and has been customized to a vari-
ety of other targets. This means that the architecture of POCL is likely to be
representative of other OpenCL implementations as well, as many features are
required by the OpenCL specification itself, as well as the constraints of discrete
accelerators.

Fig. 1. POCL compilation chain.

The POCL implementation is divided into two layers, the host and device
layer. The Host layer implements the portion of the OpenCL runtime that runs
synchronously with the host application code. For our purposes, we will focus on
the kernel compilation and execution portions of the system. The Host layer of
the compiler comprises generic LLVM passes and optimization and is agnostic of
the target hardware. The device layers include target specific implementations
such as LLVM codegen and resource management that ensures proper sharing
and synchronization of memory. The Fig. 1 shows the compilation path with
POCL framework.

The POCL compiler uses clang as its frontend to generate LLVM IR or Stan-
dard Portable Intermediate Representation (SPIR [10]). POCL then proceeds by
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linking and inlining a target-specific builtin function library to the kernel. While
targeting GPUs, POCL directly lowers the input OpenCL source code into SPIR
code to target assembly code, as the GPU hardware and driver will manage the
parallel work-item execution. The regions between barriers, will be executed by
all work items before proceeding to the next region, are generated by the parallel
region formation passes in POCL. For CPUs, POCL performs thread coarsening,
instantiating explicit loops over work-item indexes within a work-group for those
regions. POCL then adds target-specific optimizations such as vectorization and
unrolling parallel regions. In the end, what was an LLVM-IR representation of
the work of a single work-item becomes an LLVM-IR function encapsulating the
computation of an entire work-group.

After compilation, when the application enqueues a kernel launch, the POCL
compiler puts this command into its command queue to be sent to the asyn-
chronously operating Device-runtime layer. For a CPU target, the device layer
of the runtime manages the worker thread pool for parallel execution. The run-
time dispatches work units to that worker pool when a kernel launch command is
read from the queue. Even though some devices, such as the parallel cores of the
host CPU itself, are capable of executing synchronously, the OpenCL standard
mandates asynchrony between the host and device sides of the command queue.
This design is beneficial for many systems, and can be exploited by our system
to take advantage of the fact that kernels do not need to be eagerly executed
when queued.

3 Kernel Fusion

In kernel fusion [2,3], we merge the code from multiple kernels to execute the code
together as a single kernel. This process is expected to improve memory local-
ity and can enable further instruction optimizations that only become apparent
when optimizing the code across multiple kernels. In this section we describe our
kernel fusion method. One of the salient features of our kernel-fusion framework
is that our can perform kernel fusion even in the presence of loop-carried depen-
dencies across multiple kernels if the compiler can determine the dependence to
be bounded and deterministic.

Our entire fusion process is divided into two branches:

– BRANCH A: Which deals with total fusion. Here the participating kernels
are either independent (i.e. they do not share I/O buffers) or there is no inter-
work-item dependency. In such cases, the work of a given work-item in the
first kernel can be immediately followed by the work of the work-item with
the same index in the subsequent kernel, with no change in the computed
results. The framework merges the kernels directly without any changes in
kernel code or scheduling. The fusion framework makes use of the default
POCL asynchronous scheduling.

– BRANCH B: deals with kernels with a non-zero loop-carry dependence.
POCL kernels imply a global memory barrier in between them. This normally
ensures all dependencies across the kernels are met. Our fusion framework
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must ensure that the dependent work-items (or iterations) in the latter kernel
are executed after all work-items from the former kernel on which they depend
have been executed. The framework transforms the kernel code of the former
kernel to merge the latest dependent iteration (for i-th iteration of the second
kernel) of the kernel the i-th iteration of the latter kernel. The fused kernel,
in such situation, mimics software pipelining in traditional loop fusion. In
such cases, a few iterations of the predecessor kernel is executed before the
merged kernel is executed, similar to how a software-pipelined loop may need
to execute some startup iterations. Likewise, some of the work-items of the
successor kernels will need to be executed after the merged kernel is executed.
The number of iterations of the individual kernels and merged kernel executed
will depend on scheduling and work-group sizes. In such cases, we transform
the scheduling code to use work groups as large as possible to reduce the
number of iterations of individual kernels executed. The framework reject
the kernels as fusion candidates if a transformation to meet the dependencies
cannot be applied.

Algorithm 1. Kernel Fusion algorithm. The merged kernel list will contain
the merged kernel along with the dependent iterations of individual kernels.
We modify the LAUNCH function of the baseline POCL to check for inter-
iteration dependency between the cached kernels.
1: procedure Launch(stack) � Launches with mergeable kernels in the stack
2: merged kernel ← empty
3: carried dependency ← none � Holds the dependency of merged kernel
4: arg list ← empty � Holds the argument list of merged kernel
5: for each kernel in stack do
6: kernel args ← get kernel arguments(kernel)
7: kernel dependency ← calculate dependency(kernel)
8: if carried dependency = none then
9: updated kernel ← kernel

10: else
11: updated kernel ← update kernel(kernel, carried dependency)
12: end if
13: merge kernels(merged kernel, updated kernel, argList)
14: update carried dependency(carried dependency, kernel dependency)
15: update argList(argList, kernel args)
16: end for
17: end procedure

Figure 2 describes our fusion framework. Our fusion framework extends from
the compilation which handles the code transformation and merged kernel cre-
ation. The scheduling section requires some additional support to ensure the
dependent iterations of individual kernels are executed for loop-carry dependent
fusion. This scheduling is not used for total fusion to reduce the overhead in
scheduling.
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Fig. 2. The workflow of our fusion framework. The framework has two sections. The
compilation section which handles the code transformation and merged kernel creation
and the scheduling section which realizes the iteration scheduling for individual kernels
and the merged kernel to handle the loop carry dependencies.

In our fusion compilation section the compiler follows a lazy loading policy.
The compiler maintains a kernel buffer (KB) which will contain the kernels
whose execution has been deferred so that fusion opportunities can be identified.
When the first kernel received, it is directly moved from the command queue
to the KB. For each additional kernel received, it is compared to the kernels
already in the KB to determine whether the new kernel could be fused with the
deferred kernels. If so, the fusion is performed, and the results of the fusion are
put back in the KB in place of the kernels that were fused, potentially capable of
being fused again with subsequent kernels. If not, or if a synchronization event
is detected, all deferred and fused kernels are immediately executed with the
appropriate scheduler.

To determine whether fusion is possible, for each new kernel, the compiler
checks if there is a loop carry dependency with the previous kernels in the
KB. The compiler also checks for the total number of iterations/work-items.
If the total number of iterations are different, it considers the two kernels as non
mergeable. Otherwise, if the kernels are fully independent (i.e. I/O buffers of the
previous kernels is different from the I/O of the new kernels) or if there is no
loop-carry dependency, the compiler will perform total fusion. In such cases, the
compiler merges the incoming kernel with the existing kernel in the KB. The
new merged kernel replaces the existing kernel in the KB. As the framework
is able to achieve total fusion, the framework only schedules the merged ker-
nel in the execution buffer. The merged kernel will be using the default POCL
scheduling and the work-groups.
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Branch B shows the path taken while merging kernels with a constant loop
carry dependency. In such cases, the framework will not be able to do a complete
fusion of the kernels. The compiler will find an upper bound for the loop-carry
dependency distance and make the necessary transformation to the predecessor
kernels before merging. The last dependent iteration of the predecessor kernel
is merged with the iteration of the incoming kernel. The compiler will main-
tain all the individual kernels along with the merged kernel in the execution
buffer. The compiler will also maintain the relative loop-carry dependence list
for each kernel in the execution queue. The run-time module of Branch B will
execute the dependent iterations of the independent kernels before it starts exe-
cuting the merged kernel in the work group. The actual dependent-iterations
will be contingent on the number of work-groups created. As more work-groups
are created, the more fragmented the scheduling becomes and more individ-
ual dependent iterations needs to be executed. The default POCL scheduling
for pthreads is dynamic with scheduling chunk size determined by the function
min(32, N/num threads) where N stands for max iterations and num threads
gives the total number of parallel threads. This limits the number for iterations
executed in a work-group to 32. We need the size of the work-group to be as large
as possible so that we execute the fewest individual iterations. Consequently, we
use

(N −max loop dependence)/num threads (1)

as our work-group size. Here max loop dependence stands for the maximum loop
carry dependence across all merged kernels.

3.1 Loop Carry Dependent Fusion

Figure 3 explains the three stages involved in loop carry dependency fusion. The
example contains three kernels (K1,K2 and K3). Every iteration of K2 has a
loop carry dependency of a single iteration over K1, and K3 has a loop carry
dependency of one iteration over K2 The first stage in compilation involves
identification of these dependencies using LLVM [6,11] analysis passes. Once
the dependency is determined to be static, in the second stage the compiler
transforms Kernel K1 to satisfy the dependency with K2 by simply updat-
ing the iterators used in the kernel. The compiler then merges the transformed
kernel K1‘ with K2 to create a temporary merged kernel K12. In the next iter-
ation K12 is transformed to satisfy the dependency with K3 before creating the
final merged kernel K123. We maintain individual Kernels (K1,K2,K3) and the
merged kernel K123 in the execution queue.

In scheduling stage, the framework divide the iterations equally among all
threads. Each thread will have its own iteration queue which will contain all
kernels. Each will execute the dependent iterations of Kernels K1 and K2 for the
iterations allocated to the thread. Once the dependents iterations are executed
the allocated merged kernel iterations are scheduled.
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Fig. 3. Loop carry dependency Fusion. In Stage 1, we identify these dependency and if
the value is deterministic we mark the kernels for fusion. In Stage 2, we try to merge the
larges non-dependent chunks of Kernels K1, K2 and K3 to create a new merged kernel
K123. In stage 3, scheduling For each thread i We will run all dependent iterations of
Kernel K1 and K2 before executing the chunk of merged Kernel K123.

3.2 Other Implementation Details

We have implemented our framework on top of POCL version 1.5. POCL has
defined a set of optimizations such as barrier removal and autovectorization [7,8]
for OpenCL kernels. Our Merge module is inserted before the these passes.

The overhead of analysis and code generation would substantially increase
the apparent execution time of a set of kernels, given the relative complexity
of the operations. However, many applications will regularly execute the same
sequence of kernels with the same data dependencies, rather than shut down
and start up the OpenCL environment for every new buffer. This is particularly
applicable for applications processing consecutive frames of a video or a batch
of images in a machine learning inference query. To take advantage of this, the
first time a kernel is fused in the system, the fused kernel is cached and re-
referenced when the same kernels with the same dependencies are seen again.
This significantly decreases the effective cost of our transformations, but does not
complete eliminate the runtime checking needed to verify the buffer dependencies
between kernels in the queue every time.

We find that the default scheduling algorithm of POCL introduces a lot
of fragmentation, which is counterproductive to the kernel merge. As a result,
we were observing a lot of overhead in scheduling the kernels multiple times.
We overcome this issue by introducing a new low-overhead scheduling based on
the number of parallel threads (Function 1). This will also keep the number of
iterations of individual kernels executed to minimum and we can extract more
performance from the merged kernels. However, in such cases we are trading off
the advantages of dynamic scheduling.
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4 Results

In this section we discuss the efficacy of our fusion framework on POCL version
1.5. We demonstrate the efficacy of our fusion framework in the CPU backend of
POCL. However, our framework can be easily ported to other OpenCL supported
devices as only the scheduling module of the framework is device-specific.

Table 1. List of benchmarks used for evaluation, taken from a sampling of image
processing operations.

Name (key) Description No of kernels

Before fusion After fusion

Image Negatives (ImN) Takes the negative of input image

and performs jitter operation on it

3 2

Image Enhancement (ImE) Enhance the input image using

brightening and non max

suppression filter

2 1

Intensity Transformation

(Int)

Reduce the brightness of image,

corrects it and modifies the color

3 1

Log Transformation Log Log transform followed by

grey-scaling the image and finally

binarization of the image

4 1

Spatial Filtering (SpF) It is a edge detection algorithm

that uses convolutional filter

4 2

RGB2YUV (R2Y) Converts an RGB image in

interleaved format to a YUV

image in interleaved format

3 1

HueContrastCrop (Con) Modifies the input image color

and crops it

3 1

Morphological Transforms

(MT)

Dilate and erode a part of image 3 1

Gaussian (Gau) Applying Gaussian Filter to the

image

3 1

Canny Edge Detector (Can) Applying Canny Edge detector

algorithm on image

8 1

Image Transformation (ImT) Apply log transformation on

input image and convert them to

single-channel grayscale. Performs

binarization and crop the input

image

4 2

We have tested our framework with a set of image processing benchmarks.
Table 1 describes the set of benchmarks we have used for testing. In R2Y bench-
mark we do not have inter-iteration dependency across kernels. So we are able
to do complete fusion for R2Y.

Our test machine is build with 16 GB RAM and AMD Ryzen 5 3600x with
6 cores and 12 threads. We used LLVM version 9 with Ubuntu 18.04. Table 2
provides the execution time of baseline POCL and POCL with kernel fusion in
seconds. We observe an average improvement of 12.30% in overall execution time
over the set of benchmarks.
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Table 2. Execution time of various benchmarks in baseline POCL and POCL with
kernel fusion in seconds.

Benchmark Baseline POCL in s Fused kernels in s

ImN 3.85 3.04

ImE 0.10 0.12

Int 17.59 16.64

Log 3.68 3.28

SpF 1.38 1.25

R2Y 2.94 1.65

Con 3.38 3.35

MT 4.08 4.20

Gau 1.50 1.11

Can 6.93 5.21

Fig. 4. Percentage improvement of our fusion compiler when compared to POCL
baseline.

Figure 4 shows the percentage improvement in execution time for fusion
framework over the baseline POCL. Some benchmarks show significant improve-
ments, such as the R2Y benchmark where complete kernel fusion is possible,
resulting in a 44% improvement in execution time. We can also see the overhead
of our framework show in benchmarks with little potential from fusion and short
kernels, such as the ImE benchmark. As a result of the additional overhead, we
see a 20% increase in execution time for ImE. We can also the that kernel fusion
is typically a memory locality optimization, so arithmetic-intensive benchmarks
such as Int see little performance improvement. Other benchmarks generally
saw improvements, with the magnitude of those improvements varying with the
amount of kernel fusion opportunity and potential benefit, and the fixed over-
head relative to the execution time of each individual kernel.
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5 Related Works

Kernel Fusion is a widely known and extensively employed technique to improve
execution time and reduce power consumption [1–3,12,15,17]. In [15] authors
explain a kernel fusion framework for independent kernels in GPU to improve
the power consumption. [2] explains a framework to automatically fuse GPU
OpenCL kernels for Stan Math Library, using language extensions to drive the
fusion optimizations. The framework was able to achieve performance compara-
ble to the hand tuned fusion kernels. In [17] authors explain a runtime frame-
work which will decide which kernel merges would result in faster code. The
learning framework is based on the number of branches executed by each kernel
which is especially costly in streaming processors such as GPUs. The OpenCL
fusion described in [3] explains a framework to perform kernel fusion in CPUs
where they explain data fusion for flow dependent kernels. In this work we have
mostly concentrated on the data fusion with inter loop dependencies, however
our framework can handle non dependent kernels. There has been a few compiler
driven works for GPU devices [1,3–5], for SYCL cross-platform framework [12]
for CUDA supported devices [1,4] to improve the performance across the kernels

In our work we are introducing a framework to transform loop carry depen-
dent kernels to perform aggressive fusion in CPU. There have been some works
which rely on scheduling [9,16] and avoid static kernel fusion to improve the per-
formance and/or energy consumption. In [9], the authors describe three different
concurrent execution of multiple kernels. The inner thread execution method is
similar to the total fusion we elaborate as every thread in the warp executes the
corresponding iteration of kernels. In [16] the authors introduces a framework
to preempt a kernel at thread-block level to allow simultaneous execution of
multiple kernels.

6 Conclusion

In this paper we described our kernel fusion framework in POCL. If the input
kernels has no inter-loop dependencies, our framework performs a total fusion.
When there is inter-loop dependencies our framework divides the input kernels to
dependent iterations and independent iterations. The framework then transforms
the independent iterations and fuses the kernels. The scheduling part of our
framework executes the dependent iterations of the individual kernels before
executing the fused kernel. We compared the performance of our kernel fusion
framework and we observed an overall execution time improvement of 12.30%
over the baseline POCL implementation. In future we want to optimize our
fused kernel by eliminating the intermediate buffers which were primarily used to
transfer data from one kernel to the next kernel in the baseline implementation.
We would also want to implement compiler flags that a user could invoke to
override the default behavior of the compiler, if the user can predict that kernel
fusion is possible but detrimental. The will ensure that the users can weigh in
to reduce the chances of the overhead dominating the gains of kernel fusion.
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Abstract. The Bisq trade protocol is a key component of the Bisq
decentralised exchange, allowing users to trade with one another in a
decentralised manner. However, the protocol publishes trade data to the
Bitcoin blockchain. In this paper, we analyse the privacy risks this creates
for users. Specifically, we present two new heuristics, one to identify Bisq
trades on the Bitcoin blockchain and another to cluster the addresses
used in those trades. We demonstrate that these heuristics are effective
in identifying the trading activity of Bisq users and aggregating their
trading activity across multiple trades. We conclude with suggestions as
to how best to defeat these heuristics and improve the privacy aspects
of the Bisq trade protocol.

Keywords: Decentralised exchange · Address clustering · Blockchain
analysis · Privacy

1 Introduction

In recent years, a rise in both the value and applicability of many cryptocur-
rencies has led to substantial growth in various cryptocurrency communities. As
one of the foremost ways in which cryptocurrencies are acquired and traded,
this growth is reflected in the success of many centralised exchanges. While cen-
tralised exchanges are very accessible and easy to use, they are imperfect from a
privacy perspective. Centralised exchanges often enforce identity checkpoints in
accordance with KYC, or know your customer, law. These identity checkpoints
combined with broad-based blockchain analysis techniques, can be a cause for
concern.

Bisq is a decentralised cryptocurrency exchange that seeks to alleviate this
concern. The Bisq exchange enables users to trade both cryptocurrencies and fiat
currencies over a peer-to-peer network without the need for a trusted intermedi-
ary. Bisq allows traders to connect with each other directly, thereby eliminating
identity checkpoints. However, while Bisq removes the need for a centralised
clearing house, it relies on the Bitcoin blockchain to provide a degree of trust
for its trading functions, consequently allowing for the application of blockchain
analysis. In this paper, we use blockchain analysis techniques to analyse the Bisq
trade protocol from a privacy perspective.
c© Springer Nature Switzerland AG 2022
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Specifically, we present two heuristics that aid in the analysis of the Bisq
trade protocol. Firstly, we use an identification heuristic that exploits the pre-
dictable structure of Bisq trade transactions in order to distinguish individual
trades on the Bitcoin blockchain. Secondly, we use an address clustering heuris-
tic to aggregate individual Bisq user activity. Address clustering heuristics are
a commonly used technique in blockchain analysis: they allow for addresses on
a blockchain to be grouped together, with each group, or cluster, representing
a pool of addresses owned by a single individual or entity, see e.g., [5,9]. Our
address clustering heuristic creates address clusters targeting Bisq traders.

This paper reviews related work (Sect. 2); introduces Bisq and the Bisq trade
protocol (Sect. 3); presents our identification and address clustering heuristics
(Sect. 4); details our analysis and results (Sect. 5); and concludes with suggestions
to defeat the heuristics in the future (Sect. 6).

2 Related Work

In this paper, we divide related work into two fields, address clustering and
decentralised exchanges.

Address clustering is a key analysis technique used in many high-level anal-
yses of various blockchains, see, e.g. [3,5,6,8,9]. In this paper, we employ a
specialised clustering heuristic in order to aggregate user activity in Bisq trades.
Recently, specialised address clustering heuristics have been utilised in trac-
ing transactions in “privacy coin” blockchains, such as ZCash shielded transac-
tions [13] and Monero ring confidential transactions [10]. In our previous work,
we used address clustering to highlight the privacy concerns surrounding partic-
ipation in the Bisq DAO [4], a concern separate to the Bisq trade protocol.

Decentralised exchanges facilitate the exchange of cryptocurrencies and/or
fiat currencies without the involvement of a trusted third party acting as a
trade intermediary or central clearing house. While decentralised exchanges offer
similar functionality to users, they vary widely in terms of technology, security
and trustlessness, see [7]. Decentralised exchanges have been implemented using
a variety of different technologies, such as the liquidity pools used by Uniswap [1]
and order-book style trade protocol used by Bisq [2]. Bisq stands out from many
decentralised exchanges in that it facilitates trades between blockchains, though
it is not unique in this regard. THORChain is a decentralised liquidity protocol
that facilitates cross-chain liquidity, see [15]. Due to the rising popularity of
many different cryptocurrencies in recent years, there has been an increasing
need for cross-blockchain exchange [12].

3 The Bisq Decentralised Exchange

Bisq is a decentralised cryptocurrency exchange that allows traders to connect
and trade with one another directly without needing a trusted third party [2].
Bisq allows traders to trade bitcoins for altcoins (Ethereum, Litecoin, etc.) as
well as fiat currencies (Euros, Dollars, etc.), with Bitcoin acting as a trade axis,
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i.e., every trade conducted on Bisq either buys or sells Bitcoin in exchange for
some other asset. Bisq’s use of Bitcoin as a trade axis will be discussed in Sect. 4.
As of block height 670 026, over 90 000 trades have been completed using Bisq.

Similarly to Bitcoin and many other cryptocurrencies, decentralisation is a
key driving force behind Bisq. Bisq’s decentralised nature allows it to operate
without the need for identity checkpoints or trusted third parties. Traders using
Bisq need only divulge payment information directly with one another and on
a trade-by-trade basis. Rather than acting as a central hub through which to
trade, Bisq facilitates many individual trades. Additionally, Bisq’s governance is
managed decentrally through the Bisq DAO, or decentralised autonomous organ-
isation. We investigated this aspect of Bisq in an earlier work [4] and omit the
details here.

Bisq relies on the Bitcoin blockchain and its own peer-to-peer network to
orchestrate trades. Bisq nodes connect to the peer-to-peer network in order to
access an order-book. Traders wishing to buy or sell an asset broadcast their offer
using the peer-to-peer network, which can then be accepted by other traders.
Once an offer is accepted, traders connect with each other directly to complete
the trade. The peer-to-peer network facilitates all communication between the
traders and the Bitcoin blockchain provides security through the use of multi-
signature transactions, which are used to lock funds until a trade has been com-
pleted successfully. We note that Bisq’s reliance on the Bitcoin blockchain allows
it to operate decentrally but requires it to publish data surrounding each trade.

3.1 The Bisq Trade Protocol

The Bisq trade protocol is a cornerstone of Bisq and is the mechanism by which
a trade is performed decentrally. Essentially, the trade protocol sets out the steps
performed on the Bisq peer-to-peer network and the Bitcoin blockchain over the
course of a trade, allowing for the non-custodial transfer of funds between trading
parties. The trade protocol is implemented by the Bisq software and executed
on behalf of traders. Since its initial implementation, the protocol has changed
over time with updated versions of the Bisq software. However, the underlying
concepts behind the trade protocol have remained largely unchanged.

Over the course of a trade, the trade protocol uses both the peer-to-peer net-
work and the Bitcoin blockchain. The peer-to-peer network facilitates commu-
nication between the traders, while the Bitcoin blockchain is used for a number
of reasons including both trade security as well as the collection of trade fees.
Bitcoin is also used as a trade axis, meaning every trade exchanges Bitcoin for
some other asset, be it an altcoin or fiat currency. While the Bisq peer-to-peer
network plays a key role in the protocol, we are more interested in the activity
on the Bitcoin blockchain. For each successful trade, four transactions are added
to the blockchain (see Fig. 1). These transactions are named the maker fee
transaction, the taker fee transaction, the deposit transaction, and the pay-
out transaction. These transactions are all linked, with transactions spending
the outputs of previous transactions.
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Fig. 1. A Bisq trade comprises four transactions on the Bitcoin blockchain: a maker
fee transaction, a taker fee transaction, a deposit transaction and a payout transaction.
The transaction outputs and transaction inputs of these four transactions are linked
as shown, e.g., the second output of the maker fee transaction is redeemed by the first
input of the deposit transaction.

Trade Flow. The Bisq trade protocol defines a number of steps that must be
performed for each trade (see Fig. 2). First among these steps is the creation of
an offer to trade. Any trader wishing to trade an asset will first broadcast an
offer using the Bisq peer-to-peer network, after which the offer is added to the
Bisq order-book. This coincides with the creation of a maker fee transaction on
the Bitcoin blockchain. The purpose of this transaction is to collect a trade fee
from the ‘maker’, or trader who created the offer to trade. This fee can be paid
using either Bitcoin or a coloured-coin known as BSQ issued by the Bisq DAO.
A coloured-coin is an amount of Bitcoin that has been marked, or ‘coloured’,
as having some additional meaning, in this case, marking an amount of Bitcoin
as being BSQ. For a more thorough explanation of coloured-coins, see [14]. The
trade fee is collected from the first output of the maker fee transaction, while
the second output comprises the security deposit for the trade, and, if the trader
is selling Bitcoin, the trade amount to fund the Bitcoin side of the trade. Both
traders provide a security deposit for each trade so as to disincentivise fraud, this
deposit is refunded to both traders if a trade is completed successfully. Finally,
the maker fee transaction may have a third output for change.

After an offer is created and added to the order-book, it can be accepted
by another trader; this trader is known as the ‘taker’. When a taker accepts an
offer to trade, the peer-to-peer network is used to notify the maker and remove
their offer from the order-book. This coincides with the creation of the taker fee
transaction on the Bitcoin blockchain. This transaction is functionally identical
to the maker fee transaction, with the outputs being used for the same purposes
as before. When comparing the maker fee and taker fee from the perspective of
a specific trade, only one of the transactions will include both the trade amount
and the security deposit. This is due to the assignment of the maker and taker
roles in a trade being irrespective of who is buying Bitcoin and who is selling.
The seller is the party that adds the trade amount to the second output of their
fee transaction regardless of whether they are the maker or the taker.

Once an offer is accepted and both fee transactions are confirmed, out-
puts from the fee transactions are used to create the deposit transaction. The
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Fig. 2. Each Bisq trade consists of a number of steps involving both the Bitcoin
blockchain and the Bisq peer-to-peer network. In this case, the ‘maker’, or trader
creating the trade offer, is offering to buy bitcoins in exchange for some other asset.
The taker accepts this offer, selling their bitcoins in exchange for that asset.

deposit transaction is a multi-signature transaction that is used to securely lock
funds until a trade progresses. The deposit transaction uses the second output
of both fee transactions as inputs, thereby combining the security deposits of
both traders as well as the trade amount. These funds are then locked in the
form of a 2-of-2 or 2-of-3 multi-signature transaction output. Additionally, the
deposit transaction contains an OP RETURN output containing the SHA256 hash
of the trade contract agreed upon by the traders. The multi-signature output of
the deposit transaction cannot be spent without the signature of both traders,
preventing the transfer of funds without payment. In order to release the held
funds, the buyer must confirm that they have sent payment via the agreed upon
medium, e.g., bank transfer, altcoin trade, etc., and the seller must confirm that
they have received said payment.

Finally, each successful trade concludes with a payout transaction to redis-
tribute the locked funds to traders. Once payment for the trade amount has
been sent and received, the payout transaction is created using the signatures of
both traders. Each payout transaction has one input and two outputs, with the
sole input being the multi-signature output of the deposit transaction. The two
transaction outputs are used to distribute locked funds between traders, with
both traders receiving a refund of their security deposit and the buyer receiving
the Bitcoin trade amount. Once the payout transaction has been confirmed, the
trade is complete, with the Bitcoin trade amount being transferred to the buyer
and the seller being paid after the creation of the deposit transaction.
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Mediation and Arbitration. Not all Bisq trades run smoothly. Occasionally,
a dispute can arise between traders that requires the input or intervention of
a third party. For this reason, Bisq integrates the capacity for mediation and
arbitration into its trade protocol. If an issue arises over the course of a trade,
either trader can open a dispute. Bisq implements a dispute escalation system
where raised disputes are first addressed by a mediator, and, if mediation fails,
an arbitrator. Mediators and arbitrators are bonded roles within the Bisq DAO,
meaning that the holders of these roles have been approved by the Bisq DAO
and have locked a required amount of BSQ. When a dispute arises, it is first
brought to the attention of a mediator. Mediators can make suggestions as to
how the dispute should be resolved, but do not have the authority to enforce
these suggestions. Should no agreement be reached, disputes are then raised to
arbitrators, who have the authority to implement their own solution as to how
the dispute should be resolved. The way in which arbitrators have enforced their
rulings has changed over time. Initially, arbitrators were provided a key for every
2-of-3 multi-signature deposit transaction, meaning the arbitrator only needed
the agreement of a single trader in order to impose a solution. This functionality
was removed in October 2019, introducing a new arbitration protocol. Now,
traders sign a time locked transaction alongside the deposit transaction, which
if published, forwards all funds to the Bisq donation address. Arbitrators can
later reimburse traders as they deem fair.

4 Address Clustering

In this section, we demonstrate that the structure of transactions created by the
Bisq trade protocol on the Bitcoin blockchain enables the creation of heuristics
for identifying Bisq trades and clustering the addresses used by traders.

4.1 Identification Heuristic

The identification of Bisq trades on the Bitcoin blockchain is the starting point
for any blockchain-based analysis of the Bisq trade protocol. The structure of the
four transactions enables the creation of an identification heuristic. Specifically,
each deposit transaction must meet the following criteria:

1. It must have at least two transaction inputs and two transaction outputs.
2. Both transaction inputs must reference the second output of a previous trans-

action.
3. The first output must be a 2-of-2 or 2-of-3 multi-signature transaction output

using either P2SH or P2WSH.
4. The second output must be an OP RETURN containing 32 bytes of data.

Once deposit transactions have been identified, the retrieval of the other Bisq
trade transactions is trivial. The deposit transaction references both the maker
fee and taker fee transactions, and is itself referenced by the payout transaction.
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4.2 Address Clustering Heuristic

The identification of Bisq trades on the Bitcoin blockchain allows for a more in
depth analysis of the Bisq trade protocol using blockchain analysis techniques.
The inputs of the deposit transaction follow the same order as the outputs of
the payout transaction, with the first ordinal belonging to the buyer, and the
second to the seller. Due to this consistent ordering, addresses associated with
the inputs of the deposit transaction and the outputs of the payout transaction
can be added to address clusters corresponding to the buyer and seller. We can
also add addresses referenced by the fee transactions to these clusters, as both
inputs of the deposit transaction reference the second output of a fee transaction.
This link allows for addresses referenced by the inputs of the fee transactions,
as well as addresses referenced by any change outputs, to be added to the buyer
and seller clusters alongside the address referenced by the second output of the
fee transaction.

4.3 Arbitration Protocol

The Bisq arbitration protocol causes problems for our address clustering heuris-
tic. While trades that have been mediated do follow the normal trade structure,
arbitrated trades can deviate from this structure, leading to false positives in the
heuristic. As such, arbitrated trades must be identified and removed. There are
two arbitration protocols, as discussed in Sect. 3.1. Trades arbitrated using the
newer arbitration protocol are easy to identify, as they use a time-locked trans-
action to forward all funds held in the deposit multi-signature output to the
Bisq donation address. This creates a payout transaction with only one output
as opposed to the two outputs of a non-arbitrated payout transaction.

It is more difficult to identify trades arbitrated using the older arbitration
protocol. The older arbitration protocol uses a 2-of-3 multi-signature output
rather than a 2-of-2 in the deposit transaction, with the third key belonging to
the arbitrator. In order to identify arbitrated trades, we must know whether or
not the arbitrator’s key was used to sign the creation of the payout transaction.
For each 2-of-3 multi-signature output created during a Bisq trade, the public
keys authorised to sign a transaction spending the output are always added in
the same order, with the arbitrator’s key always being the first key, followed by
the traders’ keys. To recognise when a trade has been arbitrated, we need to
know if this first key was used.

To identify which keys are used to spend a P2SH multi-signature output, we
extract the scriptSig from the spending transaction, in this case the payout
transaction. When a P2SH output is spent, the OP CHECKMULTISIG operation
is used to check whether or not the provided signatures match the public keys
found in the P2SH redeem script. In the case of a 2-of-3 multi-signature output,
the operation checks whether the two signatures provided match two of the
three public keys provided in the redeem script. To check whether the first
key is used, we execute the scriptSig as normal using btcdeb1, the Bitcoin
1 https://github.com/bitcoin-core/btcdeb.

https://github.com/bitcoin-core/btcdeb
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Script Debugger. However, when the public keys are being added to the stack,
we substitute the arbitrator’s public key for a stand-in key. We then continue
executing the script as normal to completion. Should the OP CHECKMULTISIG
operation execute successfully, we can assert that the arbitrator’s public key
was not used to create the payout transaction. However, should the operation
fail, it will have done so due to the substitution of the arbitrator’s key for a
stand-in key, thereby proving that the arbitrator’s key was used to create the
payout transaction.

5 Analysis and Results

In this section, we apply2 and analyse the results of both the identification
(see Sect. 4.1) and address clustering heuristics (see Sect. 4.2). We illustrate the
effectiveness of the clustering heuristic in classifying Bisq trade activity and we
validate the results using data gathered from the Bisq peer-to-peer network.

Using the identification heuristic, we identified 90 801 Bisq trades3 as of the
end of Bisq DAO cycle 23, coinciding with block height 670 026 on the Bitcoin
blockchain, i.e., the deposit transactions of all identified trades were included
in or before block 670 026, with the first Bisq trade deposit transaction being
identified in block 408 023.

The identification of Bisq trades allows for the application of the Bisq trade
protocol-specific address clustering heuristic. Before the heuristic can be applied
we must remove trades that cannot be clustered, such as arbitrated trades and
incomplete trades. Such trades can be identified using the methods described in
Sect. 4.3. We found that out of the 90 801 retrieved trades, the clustering heuristic
could be applied to 87 326 trades. Of the trades that could not be clustered:

– 3003 were arbitrated using the older arbitration protocol.
– 353 were arbitrated using the newer arbitration protocol.
– 119 trades did not have an identified payout transaction, i.e., these trades

may not have been completed.

We found that when the heuristic was applied to the 87 326 clusterable trades,
621 697 distinct addresses were identified. The clustering heuristic produced
40 801 address clusters, with each cluster representing a set of addresses that
are likely controlled by the same Bisq trader. Here, the clustering heuristic pro-
duces clusters that contain on average 15.24 addresses. The clustering heuristic
produces two address clusters for each trade, corresponding to the buyer and
the seller. Should each cluster represent solely the activity of a single trader in
a single trade, then we would expect to see two clusters per trade, or 174 652

2 Source code implementing both heuristics can be found here: https://github.com/
Liam-Hickey-Ire/BisqTradeProtocolAnalysisSource.

3 https://github.com/Liam-Hickey-Ire/BisqTradeProtocolAnalysisSource/blob/
master/Data/670026/our-deposit-tx-hashes.csv: This CSV file lists the deposit
transaction hashes of every trade identified by our heuristic.

https://github.com/Liam-Hickey-Ire/BisqTradeProtocolAnalysisSource
https://github.com/Liam-Hickey-Ire/BisqTradeProtocolAnalysisSource
https://github.com/Liam-Hickey-Ire/BisqTradeProtocolAnalysisSource/blob/master/Data/670026/our-deposit-tx-hashes.csv
https://github.com/Liam-Hickey-Ire/BisqTradeProtocolAnalysisSource/blob/master/Data/670026/our-deposit-tx-hashes.csv
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clusters. In practice, the clustering heuristic produces far fewer clusters; this
means that the clustering heuristic not only follows the activity of traders on a
per trade basis, but also aggregates trader activity across multiple Bisq trades,
with each cluster including addresses used in, on average, 4.28 different trades.
In this way, the clustering heuristic aggregates Bisq trading activity. The extent
to which addresses used in trades, as well as trades themselves, can be linked
using this clustering heuristic may be unexpected by Bisq users, and is a privacy
risk.

5.1 Validation

In assessing the validity of a blockchain-based heuristic, the absence of a ground
truth often poses a problem [11]. Fortunately for us, the Bisq peer-to-peer net-
work offers a partial solution to validating the identification heuristic. Bisq stores
a great deal of peer-to-peer sourced data using Protocol Buffers4. Specifically,
Bisq uses Protocol Buffers to store data related to trade statistics in two files,
TradeStatistics2 and TradeStatistics3.

Bisq uses these files to store data relating to each Bisq trade for the pur-
pose of providing statistics. Formerly, TradeStatistics2 was used to store
this data, which included the deposit transaction hash of each Bisq trade.
TradeStatistics2 was deprecated in favour of TradeStatistics3, which only
stores data relating to each trade that cannot be directly linked to the Bitcoin
blockchain. To provide a ground truth against which to compare the identifica-
tion heuristic, we extracted this data from TradeStatistics3 and an archived
copy of TradeStatistics2.

We extracted 69 966 trade entries from TradeStatistics2. However, the
data includes a number of incomplete and duplicate entries. Removing corrupted
data yielded a total of 68 517 trade entries5, with each entry containing a deposit
transaction hash that can be compared with trades identified using the identi-
fication heuristic. We found that the identification heuristic successfully identi-
fied 99% of trades found in TradeStatistics2. Of the entries extracted from
TradeStatistics2, 469 were not identified by the heuristic. However, we found
that most of these trades did not actually exist on the Bitcoin blockchain, leaving
just 18 trades that we failed to identify. Our heuristic identified approximately
503 trades that were not present in TradeStatistics2. However, at least some
of these trades were confirmed to be valid due to the presence of BSQ trade fee
transactions, implying that TradeStatistics2 contains inaccuracies.

We can perform a similar comparison using TradeStatistics3. Even though
it no longer stores the deposit transaction hashes, it does contain an entry for

4 Protocol Buffers is a data serialisation mechanism developed by Google, similar in
function to other data serialisation mechanisms such as JSON or XML.

5 https://github.com/Liam-Hickey-Ire/BisqTradeProtocolAnalysisSource/blob/
master/Data/670026/bisq-deposit-tx-hashes.csv: Each line of this CSV file lists the
deposit transaction hashes of every Bisq trade retrieved from TradeStatistics2,
with corrupted and duplicate entries removed.

https://github.com/Liam-Hickey-Ire/BisqTradeProtocolAnalysisSource/blob/master/Data/670026/bisq-deposit-tx-hashes.csv
https://github.com/Liam-Hickey-Ire/BisqTradeProtocolAnalysisSource/blob/master/Data/670026/bisq-deposit-tx-hashes.csv
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each Bisq trade. After removing duplicate entries, TradeStatistics3 contains
91 689 trade entries, compared to the 90 801 trades retrieved using the identifi-
cation heuristic. This means that our identification heuristic falls short by some
888 trades, or 0.97% of the trades found in TradeStatistics3.

One of the motivating factors behind the removal of deposit transaction
hashes from TradeStatistics2 was an effort to hinder blockchain-based anal-
ysis of Bisq trades.6 However, we have shown that Bisq trades can be identified
on the Bitcoin blockchain with a high degree of accuracy using the identification
heuristic. This shows that the identification heuristic reveals sensitive informa-
tion even prior to the application of the clustering heuristic.

5.2 Case Study

In addition to the classification of Bisq user activity on a per-trade basis, clusters
generated by the address clustering heuristic have the potential to aggregate
Bisq user activity across multiple trades. Specifically, this scenario arises when
a trader spends the output of a payout transaction when creating a maker or
taker fee transaction, linking two separate trades in the process through a shared
address. This situation also arises when a trader spends a change output of a
prior maker or taker fee transaction, similarly linking two otherwise separate
trades. In linking trades, users inadvertently merge address clusters, which are
generated for each trade, thereby allowing their activity to be tracked across
multiple trades.

This can best be seen in a specific example. Prior to our analysis, we per-
formed numerous trades using the Bisq trade protocol. In doing so, we inadver-
tently linked trades by spending the outputs of payout transactions or change
outputs in the creation of fee transactions. As the Bisq client software does
not reuse addresses, we used 60 different addresses over the course of numerous
trades. These address were partitioned into three clusters of size 29, 26, and 5 by
our address clustering heuristic. Analysing the largest of these clusters, we find
that the 29 addresses were used across 8 different trades. These trades were each
linked in one of two ways. Firstly, as previously highlighted, trades can be linked
when a trader spends the output of a payout transaction or a change output
from a prior fee transaction to create a new maker or taker fee transaction. This
occurs 6 times in the largest address cluster, 4 of which being due to the spending
of change outputs. We also observe a single case of trades being linked through
address reuse in the largest of our three clusters. Interestingly, this address is a
BSQ address we used to pay trade fees. This points to the potential expansion of
this address clustering heuristic to better contend with trades paying fees using
BSQ. The analysis presented in this paper can be combined with other heuristics
applicable to Bisq, see e.g., [4], as well as the wider Bitcoin blockchain.

Despite its anecdotal nature, from this example we can see how the clustering
heuristic can be used to effectively aggregate Bisq user activity across multiple
trades. This is due to the spending of transaction outputs resulting from previous

6 https://github.com/bisq-network/bisq/issues/3893.

https://github.com/bisq-network/bisq/issues/3893
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trades and address re-use, resulting, in this case, in only three known addresses
being needed to retrieve clusters representing the entirety of our trading activity.

6 Conclusion

Bisq’s reliance on the Bitcoin blockchain in decentralising many of its functions
places it within the scope of blockchain analysis. In this paper, we performed such
an analysis, focusing specifically on the Bisq trading functions. We illustrated
the privacy risks associated with the Bisq trade protocol. Specifically, we used
the structure of Bisq trade transactions on the Bitcoin blockchain to create
a heuristic capable of identifying those trades with an accuracy level exceeding
99%, identifying 90 801 trades in total. We extended this analysis, again utilising
the structure of Bisq trade transactions, to create a Bisq trade protocol-specific
address clustering heuristic capable of partitioning addresses used in Bisq trades
into clusters corresponding to the trading parties. We developed methods by
which arbitrated Bisq trades can be identified. The heuristic partitioned 621 697
Bitcoin addresses found across 87 326 Bisq trades into 40 801 clusters, proving
it to be effective in aggregating the activity of Bisq users across multiple trades.
This can be seen in our case study, where our own Bisq trade activity was
concentrated into only three address clusters by the clustering heuristic.

There are several approaches to remedying this situation. Both the identifi-
cation heuristic and the address clustering heuristic rely on the structure of Bisq
trade transactions. Any ambiguity introduced in this area could defeat both
heuristics. This could be achieved by, for example, changing the order of inputs
and outputs in Bisq deposit and payout transactions such that the addresses of
the buyer and seller cannot be linked across transactions. This approach does
not prevent addresses being linked by the value of their transaction outputs, as
currently the trade amount is held alongside the security deposit allowing for
the buyer and seller to be discerned by the value of their outputs. This could
be addressed by separating the trade amount into its own transaction output,
obfuscating the flow of Bitcoin between the buyer and the seller.

The effectiveness of the clustering heuristic can also be reduced by changing
the behaviour of Bisq users. Many clusters aggregate user activity across multiple
trades due to the output of a payout transaction or change output being spent
in either a maker fee or taker fee transaction. Avoiding this behaviour would
serve to increase the number of clusters generated by our heuristic while also
reducing their size, thereby lessening its effectiveness.

Another way in which these heuristics can be defeated is by purposely trig-
gering false positives. It is entirely possible to publish a set of transactions on
the Bitcoin blockchain that mimic the characteristics of the transactions created
during a Bisq trade. Creating such ‘false’ trades would trigger false positives in
both heuristics. However, Bitcoin transaction fees make this a costly solution.

The Bisq trade protocol is an effective means by which the trading functions
of Bisq are decentralised, allowing users to trade directly with one another with-
out the need for a trusted third party. However, Bisq’s reliance on the Bitcoin
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blockchain in achieving this level of decentralisation places the Bisq trade proto-
col under the purview of blockchain analysis providers, placing decentralisation
ahead of user privacy. The heuristics described in this paper not only identify
Bisq trades on the Bitcoin blockchain, but also aggregate user activity, often
across multiple trades. The degree to which trades can be linked and addresses
clustered within those trades may be unforeseen by Bisq’s users who expect a
higher standard of privacy. However, these privacy issues can be ameliorated as
discussed, allowing the Bisq community to offer a more privacy focused decen-
tralised exchange.
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Abstract. Nowadays, supply chain tracing notarization is among the
most used non-financial blockchain applications. However, creating a
blockchain based system for the management of a supply chain remains
a complex task. In this paper, we propose a graphical domain specific
language (DSL) and a tool allowing the supply chain domain expert to
easily represent the supply chain he needs to trace. The graphical rep-
resentation of the supply chain is then translated in automatic way in a
set of solidity smart contracts implementing it. A small intervention of a
programmer is required to customize and finalize such smart contracts.
The obtained semi-automatic process of smart contract generation will
boost the blockchain usage for supply chain traceability.

Keywords: Supply chain management · Blockchain · Smart contract ·
Graphical DSL

1 Introduction

According to the definition of Stadtler and Kilger [12], a supply chain (SC) is a
“network of organizations that are involved, through upstream and downstream
linkages, in the different processes and activities that produce value in the form
of products and services in the hands of the ultimate consumer”. From an ana-
lytic point of view, we can define a SC as a flow of goods or services generated
by the processes that transform raw objects into intermediate objects, and such
objects into final products. Hence, depending on the specific scenarios where they
are applied, different types of SC can be defined, e.g., production, distribution,
maintenance and sales supply chains. Several studies and applications propose
to implement supply chain management systems exploiting the blockchain tech-
nology [1,9,11], but according to the same researches, they provide solutions
that are not general enough.

This paper proposes a general model aimed at easily representing any specific
SC. This model will be then exploited for automatizing SC management systems
design and development over a blockchain. The design phase will be facilitated by
a graphical interface enabling the SC manager to represent the objects (assets)
c© Springer Nature Switzerland AG 2022
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involved in the supply chain process as basic components, the operations that
can be done on these objects as relations among objects, and their constraints.
The development phase will be facilitated because a set of smart contracts skele-
tons representing the objects, the operations, and the constraints of the supply
chain are automatically derived from its graphical representation. Programmers
will then finalize and customize these skeletons according to the specific supply
chain features.

The paper is organized as follows. Section 2 describes SC features and typolo-
gies. In Sect. 3 we propose our model and framework for blockchain based SC
design and development, while Sect. 4 describes a real use case exploiting our
model. Section 5 describes the tool we developed which implements the model we
defined. Finally, Sect. 7 draws the conclusions and describes possible future works.

2 Background

A SC is a system of organizations, people, activities, information and resources
involved in the process of transferring or supplying a product or service from
the supplier to the customers [12]. In this sense, a SC is a representation of a
real system where some “agents” participate to fulfill the service. An agent is
any entity involved in the SC including abstract or real subjects like: producers,
vendors, warehouses, transportation companies, distributions centers, or retail-
ers [8]. To analyze the definition of SC we study characteristics and properties
of SC already classified in literature. Production supply chains are designed
to organize the creation of a product. This type traces the phases in which the
asset under analysis undergoes transformations: from the origin point to the
end of the life cycle of production. This chain describes in detail the changes,
the time required for transformations, the information required for production.
These models generally include production of both goods and services [6]. Pro-
duction supply chain is often represented by a flowchart, where there is always a
well-known (defined) initial state, and possibly one or multiple final states. Dis-
tribution supply chains type aims to organize and manage the traceability of
resources. A supply chain of this type highlights channels for each macro termi-
nation area, and specifies all the agents or the intermediaries involved an asset
from the producer to the customer. Distribution channels can include whole-
salers, retailers, deliverers, and even the Internet [5,13]. Sales supply chains
describe the relationships between distribution nodes of an asset; it does not deal
with changes in the asset or possible substantial changes, but only with the path
chain that a product undergoes in its sales or delivery cycle: generally we speak
of a finished product from producer to consumers [14]. This involves analysis
such as market overview, production planning and financial strategies [2,15].

Distributed Ledger Technology (DLT) refers to systems and protocols that
allow simultaneous access, validation, and updating with immutable data across
a network. DLT, more commonly known as Blockchain Technology (BT), given
its potential across industries and financial sectors. In simple words, the DLT
is all about the idea of a “decentralized” network against the conventional
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monolithic centralized mechanism. The BT offers great potential to foster var-
ious sectors with its unique combination of characteristics as decentralization,
immutability, and transparency. So far, the most prominent attention the tech-
nology received was through news from industry and media about the develop-
ment of cryptocurrencies (such as Bitcoin1, and Monero2), which all are having
remarkable capitalization. BT, however, is not limited to cryptocurrencies; there
are already existing blockchain based applications in industry and the public
sector. Also, BT can have applications on non-financial sector, such as trace-
ability problems and workflow organization. A smart contract is a self-executing
contract (script) with the terms of the agreement between two actors, generally
a buyer and a seller, directly written into lines of code. The code and the agree-
ments contained in the script exist across a distributed decentralized blockchain
system. One of the most popular coding languages for describing smart contracts
is Solidity3, widely used for Ethereum4 systems.

Fig. 1. Scheme of the supply chain used on soybeans traceability study [9]. (Color
figure online)

Figure 1 shows an example of a real use case of supply chain representing the
soybeans life cycle, from the seed production phase, to the end customer sell.
This use case has been used in [9] to develop a blockchain based application able
to represent supply chains for agricultural products. On the supply chain schema
of Fig. 1 we can highlight different phases that describe three different type of
supply chain: transitions from a point to another characterize moving opera-
tion (highlight in green); the passing from an owner to another represents sales
phases (highlight in red); the various phases where the object under examination
changes its properties are transformation phases (highlight in yellow).

3 Supply Chain Model and Graphical Representation

Our approach analyzes SC structures in order to highlight their typical elements
and to identify recurrent patterns in the interactions among them. As a matter
of fact, analysing the existing literature, we found out that there are a number
of interaction patterns among the elements building up a SC that are general,

1 Bitcoin project: https://bitcoin.org.
2 Monero project: https://www.getmonero.org.
3 Solidity white paper: https://docs.soliditylang.org/en/v0.8.6/.
4 Ethereum project: https://ethereum.org/en/.
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Fig. 2. Assets and containers graphical representation.

i.e., they are not strictly related to the specific business case represented by
the supply chain. For instance, a typical pattern is the one which represents
the packaging of a number of items in one single traceable package. The iden-
tified patterns are exploited to define the basic components of our model. The
idea behind our model is to be able to define the workflow of a SC by simply
composing the components representing the identified patterns.

We identified the following families of elements involved in a SC: Assets,
Containers (packaging), Operations, and Roles.

To ease the usage of the proposed model, we define a graphical DSL rep-
resenting a supply chain model. In this way, users will be able to define the
workflow representing their specific SCs by properly combining the graphical
components representing the constructs of our model.

Assets. They are the objects that the supply chain treats: they typically repre-
sent the goods involved in the operations on the supply chain. As a matter of fact,
some goods are loaded in the supply chain at the beginning of the process (e.g.,
raw materials), some operations are applied to such goods to obtain semi-finished
products, further operations are applied until the final product is obtained. The
assets that, in order to be tracked, must be contained into containers are called
uncountable (e.g., the milk needs to be stored in a bottle). If an asset involves
any kind of destruction as a consequence of its use or transformation, it is called
“consumable”.

Containers. Whenever an asset is inserted or accumulated into another object,
the latter is referred as “container”. Examples of containers are: silos, haulers,
ships, and packagings. Containers are used in two cases: i) when an asset, for its
own nature, must be necessarily contained in a support (for instance, the water
must be contained in a bottle), this is the case of uncountable asset; ii) when an
asset is contained into a package in order to be transported, stored or cataloged
(for instance a case of water bottles) Containers are countable and traceable
objects. Each asset or container on a supply chain can be “consumable” or
“non-consumable”. An egg, a liter of milk, a bag of seeds, bucket of manure, are
examples of consumable objects. A tree, a field, a vineyard, are instead examples
of non-consumable objects.

Figure 2 shows a diagram of how assets and containers are graphically repre-
sented according to the proposed model, based on their properties.
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Operations are the components of our model which allow to represent
updates, modifications or transformations of an asset. Figure 3 shows some
examples of the main operations defined in our model: each operation has specific
properties, parameters, and outputs, all described in the following.

(a) asset move() (b) asset pack() (c) asset unpack()

(d) asset flow() (e) asset transform()
(countable asset)

(f) asset transform()
(uncountable asset)

(g) asset monitor() (h) asset compose() (i)
asset decompose()

(j) asset destroy()

Fig. 3. Examples of possible operations defined on the model.

– asset move (Fig. 3(a)) this operation concerns the update of the position - or
the geolocalization - of the asset. Figure 3(a) shows the operation applied over
a countable asset, but it is also applicable to containers (with uncountable
asset inside).

– asset pack (Fig. 3(b)) This operation represents the packaging or collection
of the asset inside an object suitable for transport or tracking. There is no
change of original asset information. The asset is inserted into a further object
which in turn can be a source of operations and traceability. This operation
can obviously be repeated several times, with different container objects; it
could be also applied to each pair formed by any object and any type of
container.

– asset unpack (Fig. 3(c)) In this case an asset is extracted from a container.
When a non consumable container releases all the assets it contains, it is
destroyed. The object contained is removed from the package.

– asset flow (Fig. 3(d)) This operation represent the transfer of an asset from
one package to another package.

– asset monitor (Fig. 3(g)) This operation is used when an object requires
a control operation. Therefore this operation does not change the traits of
an asset, nor its geolocation: the operation keeps track of information of the
asset, relevant for its traceability.
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– asset transform (Figs. 3(e) 3(f)) The transformation operations are meant
to change features of an asset, and they are typically dependent on the specific
asset and supply chain. Hence, transformations imply a substantial change of
properties and traits of an asset. If the operation is applied to consumable
assets, it has the main effect to destroy the original asset and to create the
new one (or ones). Sometimes, a non consumable assets may generate assets:
in this use, the “transform()” operation has the task of generating the new
asset.

– asset compose and asset decompose (Fig. 3(h) 3(i)) Assembly operations
exploits existing assets to create a new asset without destroying them. In
the opposite way. the operation designed to disassemble objects previously
assembled with a composition operation, is defined decomposition. Notice
the similarly of the “asset compose()” with the “asset transform()”: in both
cases a new asset is created. However, the transform operation destroys the
previous asset, while in the compose operation the original assets are still
there.

– asset destroy (Fig. 3(j)) when an object has to be destroyed and is no longer
part of the supply chain, it is destroyed.

4 Representing a Real Case

This section shows how the proposed model can be exploited to represent the
supply chain defined in [9] and represented in Fig. 1.

Here we suppose that the Soy Bean Producer, SBP , wants to track the
soybean production process, from the acquisition of the seeds to their commer-
cialization. For this reason, SBP exploits our framework to represent the main
steps of the production process, thus automatically obtaining the skeletons of
the smart contracts that represent each asset of the supply chain. Figures 4 and
5 show the graphical representation of the soybean production process using our
framework.

Fig. 4. Representation of the soybeans supply chain use case [9], seen in Fig. 1, with
the proposed framework (part I).

The first asset of the supply chain represented in Fig. 4 is Seed (the leftmost
box in the figure), which is an uncountable asset and hence it is enclosed in a
container, called Sack. This asset does not have any incoming arrow. This means
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Fig. 5. Representation of the soybeans supply chain use case [9], seen in Fig. 1, with
the proposed framework (part II).

that the production of this asset is not tracked using our framework, and this
asset is simply created by a subject. Our framework allows to set constraints on
the role of the subject who can create/buy an asset. In the reference example,
the subjects allowed to create Seed assets must have the role Seed Company.
As a matter of fact, in the figure we can see the constraint Role(owner) = Seed
Company paired with the Seed assets. The operation that is done on the Seed
asset is Sell, which is paired with the operation Move. Hence, in the graphical
representation of the supply chain we have a second instance of the Seed asset
on the right of the first instance, and these two instances are directly connected
through a Move arrow, which represent the physical transfer of the asset and, at
the same time, the owner properties of the two instances are connected with a red
arrow representing the Sell operation. The framework, by default, imposes the
constraint that only the owner of an asset can perform the Sell operation. This
constraint is not explicitly reported in the supply chain graphical representation.
In the reference example, a further constraint is defined on the role of the entity
which can buy Seed. This constraint is represented in the Fig. 4 as Role(owner)
= Farmer, and it is paired with the second instance of the Seed asset.

The second operation in the soybeans supply chain represented in Fig. 4 is
the Plant one. This operation is a transformation (as shown by the dashed line)
because the Seed asset is transformed in Crop asset when it is planted in the
field. The Crop asset is uncountable as well, and hence it is included in a Field
container, which represents the place where the seeds have been planted. The
Field container is, obviously, Non-consumable and hence it is represented by a
rectangle in the figure. More than one Field container can be defined in the
supply chain, and the ID of the one to be used is specified in the invocation
of the Plant operation. Our framework, by default, imposes the constraint that
only the controller of an asset can perform an operation on such asset (with the
exception of the Sell one which requires the invoking entity to be the owner, as
previously explained). The reason is that the controller is the entity who have
the physical availability of the asset. This constraint is automatically embedded
in the smart contract representing the asset. Moreover, since the Plant operation
can be executed only by entities having the role of Farmer, this additional con-
straint is explicitly paired with the Plant operation, and in Fig. 4 is represented
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by the constraint Role(controller) = Farmer paired with the Crop asset. How-
ever, differently from the Sell operation, in this case the constraint is imposed
on the Controller of the asset, i.e., on the entity who has the physical availabil-
ity of the asset. Another constraint that is imposed on this operation is that
a given ratio between the weight of the seeds and the dimension of the field
must be respected. Hence, a constraint taking into account the weight property
of the Seed asset and the dimension property of the Field container is defined
by the SBP on the Plant operation. More than one seed sack could be planted
in the same field, generating multiple Crop assets included in the same Field
container. Hence, the constraint will take into account the total weight of all the
seed sacks already planted in the field to decide whether the Plant operation can
be executed. Our framework, when producing the smart contract representing
the assets, defines the methods representing the operations and the constraints,
and the related invocations. The programmers will then customize such meth-
ods by writing the code implementing the required constraint checks. The third
operation of the supply chain is Harvest crop, and its features are very similar
to the Plant operation. The result of the Harvest crop operation applied to each
Crop asset is a new asset, called Harvest. The Harvest assets are stored in a
Grain Elevator Non-consumable container. More than one Grain Elevator con-
tainers can be defined in the supply chain, and the ID of the one to be used is
specified in the invocation of the Harvest crop operation. The next operations
are very similar the ones we have already described, hence we will not provide a
detailed description.

5 Describing the Tool

The developed tool point to describe the SC, and translate it into smart con-
tracts. The user has only to draw the equivalent model of the supply chain: solid
blocks that represent assets, linked particles for the properties of assets; arrows
to represents the operations; roles and constraints that enrich each function
specified with arrows. The tool translates the components into code suitable for
creating smart contracts for a related framework. The smart contract structure
is procedurally generated in solidity-like language, starting from blocks, arrows,
constraints, and roles.

First set of available functions to the user is the representation of the assets:
the three different classifications of an asset -described in the proposed model-
are available through the “Asset” button. On this button selection, is possible to
choose among the characteristic: uncountable or countable, consumable or non-
consumable. Another basic feature is the “Package” draw option. In this case,
there are only two options: consumable and non-consumable. Because a package
is considered always a countable asset. Once a package object has been placed,
any asset object could be dragged into it (or any other package object with its
relative content). Another basic set of functions is operations. In this subset it
is possible to draw each operation of the model according to each family: move,
transform, compose. Also, it is possible to select the “sell” operation, which is
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Fig. 6. A screenshot example of the proposed tool.

enabled only between two “owner properties” of the same asset in two different
instances. To characterize the various operations of a SC it is possible to assign
roles with and impose constraints on access to certain functions at a given time.
Through the “roles” panel it is possible to build the set of roles necessary for the
specific SC. Role constraints are only one specific constraint that can be defined.
Interface prompt to set constraint and any defined property of the assets. Any
object drawn in the main panel can be edited. By clicking on one of them, the
green editing area will appear which the names and properties of each object
can be changed: as already mentioned, selecting an operations it is possible
in this area to add constraints an authorizations. Otherwise, in cases of the
assets, packages, or properties, the editable options are limited to appearance,
nomenclature, and handling properties.

To make the tool more user-friendly and to make the model easily editable
over time, two functions allow saving and loading the drawn schema. The func-
tion “Save model” saves the drawing and the properties of the SC thus con-
structed, translated in JSON format. The function “Load model” loads a JSON
file on the tool, then automatically redraws the schema. The function “Export”
translates the model into smart contract prototypes, which is based on the
recently released solidity standard. The translator parses the saves file JSON
as a starting point. Based on assets, operations, roles, and constraints, it gener-
ates a Solidity code.

6 Relevant Related Work

One of the most similar study [7] presents a solution by a tool capable to design
solidity code based on predetermined logic blocks: since models are usually easier
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to understand than software source code. This solution is based on a virtual
environment that allows to build a smart contract, giving easily understandable
bricks. Unlike this approach, our solution does not include a few pre-set bricks
or a few common combinations of solidity code. Our graphical DSL aims to be as
general as possible such that the framework can represent multiple combinations
and types of supply chains.

In [10], a model based on the Business Process Model and Notation (BPMN)
representation is shown. The developed graphical DLS translates blockchain
smart contracts using the graphical representation of the DEMO modelling lan-
guage [4]. This representation makes it easier for the user to represent a workflow
or the transaction operations of the same asset. Due to the nature of the BPMN
representation, through this is not possible to design various types of supply
chains.

This study [3] presents an automatic smart contract template generation
framework that uses ontologies and semantic rules to encode specific transaction
problems. The template uses the structure of abstract syntax trees to organise
the constraints in the generated template in a solidity script. The minimum
atom of the constraint is the declaration of the owner and his/her ownership
of an object. Similarly to our model, the study describes how the roles and
minimum relations (atoms) can build more complex operations.

7 Conclusion and Future Work

Given the various natures of SCs, it is difficult to design a SCMS general enough
to be able to represent all possible types of SCs. We present a universal model
for SCs ; this model represents every aspect of the most used SC such as pro-
duction processes or in business management. The model constitutes a graphical
DSL for the representation of SCs. Through this model, we analyze and recon-
struct a well-known use case: soybean traceability schema. its SC is translated
through the presented model, also adding more detail to the original schema.
Furthermore, we developed an easy-to-use graphic framework: the proposed tool
allows a manager to design the various components of a CS and to specify their
relationships and constraints.

As future work we plan to better analyze the proposed model, comparing it
with several other general schemes, aiming to underline the differences in use or
similarities. Our task is to refine the tool and make the graphical interface easier
to handle, especially for inexperienced managers who lack specific knowledge of
the model.

Also, we plan to analyze a specific use case such as “DOPUP: Dop Olive oil
for a new Presence of Umbria on the Planet”, about Umbria’s olive supply chain.

As a successive step we plan to translate into other code languages for DLT,
such as Chaincode5.

5 White paper of Chaincode: https://hyperledger-fabric.readthedocs.io/en/release-1.
3/chaincode.html.

https://hyperledger-fabric.readthedocs.io/en/release-1.3/chaincode.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/chaincode.html
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Abstract. Denial of Service (DoS) attacks are a growing threat in net-
work services. The frequency and intensity of DoS attacks are rapidly
increasing day by day. The immense financial potential of the Cryptocur-
rency market is a prevalent target of the DoS attack. The DoS attack
events are kept on happening in cryptocurrencies and the blockchain
ecosystem. To the best of our knowledge, there has not been any study
on the DoS attack on the blockchain ecosystem. In this paper, we iden-
tify ten entities in the blockchain ecosystem and we scrutinize the DoS
attacks on them. We also present the DoS mitigation techniques applica-
ble to the blockchain services. Additionally, we propose a DoS mitigation
technique by the use of verifiable delay function (VDF).

Keywords: Denial-of-service · Verifiable delay function ·
Non-interactive · Blockchain

1 Introduction

Blockchain had brought a paradigm shift in digital innovation and the financial
world since the advent of Bitcoin [26]. Today, the cryptocurrency market con-
sists of 5424 cryptocurrencies that all together built a financial market worth
around $1.71 trillion (as of 26 May 2021) [9]. The immense financial potential
of the cryptocurrency market has become a growing concern for the targeted
attacks. Some of the well-known attacks in current blockchain systems are selfish
mining, blockchain forks, 51% attack, double spending, Sybil attack, and Denial-
of-service attacks [33]. A Denial-of-service (DoS) attack prevents legitimate user
requests and depletes the server’s resources. Due to the various configurations
and decentralized features of blockchain, many of the attacks are preventable.
Nevertheless, DoS attacks, especially its distributed variant (DDoS), are still
prominent attacks on cryptocurrencies and blockchain-based applications.

Due to the increasing intensity and frequency of DoS attacks, it is con-
templated as one of the biggest and severe threats for the Internet industries.
One of the major DoS attacks was mounted on a DNS server in October 2016,
which manifested in a cut of access to major websites, including PayPal, Netflix,
and Twitter, for several hours [46]. The spectrum of DoS attacks can range
from DNS services, cloud providers, IoT devices to the cryptocurrency and
blockchain market. Nowadays, the cryptocurrency market is a popular target of
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DoS attacks, with the motivation of ransom, stealing funds, or business competi-
tion. In the past, many works [12,19,21] regarding the detection and prevention
of DoS attacks have been carried out. Moreover, DoS/DDoS solutions based on
blockchain are an emerging area of research. Applying the most recent advances
of cryptographic research for the DoS/DDoS1 problem can open new directions
and avenues for addressing this ever-present problem.

In the general context of a DoS attack in blockchain, an adversary usually
mounts a DoS attack when the cost of mounting an attack is very low. There-
fore, various countermeasures, such as increased block size, increased transaction
fees, or limiting transaction size have been proposed for mitigating the attacks.
However, most of these countermeasures also force legitimate system users to
invest their economic or computational power. This behavior shows a dire need
to construct new methods for DoS prevention that do not require extra-economic
or computational power of blockchain users. In this paper, we study and review
DoS attacks on ten different entities in the blockchain ecosystem and possible
mitigation techniques. In addition, we propose DoS mitigation by applying the
astonishing functionality of verifiable random function (VDF) [8].

1.1 Related Work

Many DoS attacks have been mounted in the blockchain ecosystem and its ser-
vices in the past few years. Some of these DoS attacks or threats on cryptocur-
rencies were disclosed a couple of years after they had been discovered. It requires
new techniques to detect and counter the attack. Some of those new blockchain-
based DoS mitigation techniques are devised from the decentralized nature and
the deployed smart contracts of blockchain [30,36]. Even different machine learn-
ing techniques have been proposed to fight the DoS attack in cryptocurrency [14].

Specifically for the Bitcoin blockchain (as the blockchain of the most popu-
lar and valuable cryptocurrency), several DoS attacks have been mounted [40],
which include mining pools, currency exchanges, eWallets, and financial services.
Like most high visibility businesses, mining pools and currency exchanges are the
primary DoS targets, which drives them to buy DDoS protection services such
as Incapsula, CloudFlare, or Amazon Cloud. A report from September 2020 [18]
revealed that the Bitcoin software implementation had a vulnerability for an
uncontrolled memory consumption that was repeatedly used as a DoS vulnera-
bility until it was patched in June 2018. This DoS vulnerability existed in many
other branched Bitcoin implementations, including Litecoin and Namecoin.

Another major cryptocurrency, Ethereum [45] has also suffered from DoS
attack [4]. In September 2016, a DoS attack against the Ethereum network
was begun by exploiting a flaw in its client node. Furthermore, the same week,
another DoS attack was mounted on the processing nodes of Ethereum [44]. A
recent disclosure on Ethereum shows that a very cheap DoS attack could have
brought down the Ethereum main net due to a bug in Geth Ethereum client [16].

1 Throughout the paper, we use DoS to refer to both DoS and DDoS attacks, unless
explicitly mentioned.
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Recent work shows an Incentive-based blockchain denial of service attack
(BDoS) [25] on Proof-of-work-based blockchains that exploits the reward mech-
anism to discourage the miner participation. This BDoS could theoretically
be able to grind the (Bitcoin’s) blockchain to a halt with significantly fewer
resources (21% of the network’s mining power). This attack raises a concern
about the liveness of the Proof-of-work-based cryptocurrencies. This big con-
cern and recent ongoing DoS attack disclosures compel researchers to find new
ways to construct efficient DoS mitigation techniques.

1.2 Denial of Service Attack

A denial of service (DoS) attack targets to disrupt the availability of the network,
server or application, and prevents legitimate requests from taking place. For a
DoS attack to be successful, the attacker has to send more requests than the
victim server can handle. These requests can be legitimate or bogus. The DoS
attack depletes the server’s resources such as CPU, memory, or network.

Definition 1. (DoS): Let a server S be given, with the available resources
R1, R2, . . . , Rn (Ri can be bandwidth, memory, CPU etc.). Let A or a set of {Aj}
are an attacker or a set of attackers and let the legitimate users are represented
by the set {Uk}. A DoS attack on server S is expressed by a set of probabilities
for successful resource-depletion {PR1 , PR2 , . . . , PRn

}. The total probability for
a success of a DoS attack is then a probability the server S to refuse legitimate
transactions from a user u, where u ∈ {Uk} and is modeled as the probability of
blocking the legitimate traffic in at least one of the resources:

PDoS = 1 − (1 − PR1)(1 − PR2). . . . .(1 − PRn
) (1)

Note that the situation when attacker(s) exhausts at least one resource Ri

implies the attack probability is PRi
= 1, which from Eq. (1) further leads to

PDoS = 1.
DoS attacks can be categorized into several categories based on network and

application layers or volume and protocol attacks. Network-level DoS attacks
aim to overload the server’s bandwidth or cause CPU usage issues. However,
application-level DoS attacks focus on applications, websites, or online services.

1.3 Our Contribution

The contributions of our work are as follows:

1. We thoroughly investigate the DoS attacks in the blockchain ecosystem.
2. We present different mitigation techniques of DoS attacks in the blockchain

ecosystem.
3. We propose a VDF-based DoS resistant protocol by using the functionality

of VDF.

The rest of the paper is as follows: Sect. 2 shows a detailed analysis of DoS
attacks in the blockchain ecosystem. Further, Sect. 3 presents DoS mitigation
techniques, including our VDF-based proposal. Finally, in Sect. 4, we conclude
the paper and discuss the possible future directions.
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2 DoS Attacks on Blockchain Ecosystem

The blockchain ecosystem has suffered from many DoS attacks in the past, and
that situation is a continuing trend. The DoS attack can be launched against a
specific entity or a network in the blockchain. We present a nonexclusive list of
ten entities in the Blockchain ecosystem with their corresponding DoS attacks.

1. On cryptocurrency wallets A crypto wallet is a software program in which a
user stores cryptocurrency. The wallet contains a set of signing keys for the
user to sign new transactions. Wallets are also integrated with decentralized
applications (DApps) to hold and manage users’ signing keys and transac-
tions securely. In a wallet service, a user is the sole owner of his account keys.
However, if someone steals the signing keys, then the cryptocurrency held in
that account can be spent. Therefore, hardware wallets (e.g., TREZOR) are
ways to store cryptocurrency and the signing key in an offline manner. Never-
theless, online wallets are still a preferable choice for blockchain users. These
online crypto wallets also suffer from DoS attacks [28] due to inconsistency
in its smart contracts that further hinders the services of integrated DApps.
Recently, a DDoS attack was mounted on the Wasabi bitcoin wallet [15].

2. On cryptocurrency exchange services A cryptocurrency exchange allows
clients to buy, sell and store crypto-currencies at some exchange rate and
leverages the clients to trade their currencies and earn some profit due to
the fluctuations in the price of currencies. Besides, the exchange charges
some fee for every trade made by its client and also converts the cryptocur-
rency into fiat currencies. Many exchange services also provide a wallet, but
the wallet signing keys are controlled by the exchange service apart from the
wallet user. Furthermore, these exchange services are online platforms, hence
susceptible to DoS attacks that can cause the temporary unavailability of
the platform. In the past, many of the crypto-currency exchange services
were jeopardized by the DoS attacks (especially DDoS). One such example
is the Bitcoin exchange platform, Bitfinex which has been a victim of DDoS
attacks several times [2]. Another well-known bitcoin exchange service, Mt.
Gox, was completely disrupted by DDoS attacks over time [17]. Over the
years, many cryptocurrency exchange platforms have suffered DoS attacks.
Recently, a UK-based exchange EXMO was hit by DDoS attack [10].

3. On memory (transaction) pools A memory pool (mempool) is a repository
of unconfirmed transactions in a cryptocurrency blockchain, e.g., Bitcoin.
Once a user creates a new transaction, it is broadcast to the network and
stored in the mempool. In the mempool, the transaction waits to be picked
by a miner to be added in a block and subsequently to the blockchain,
therefore acquiring the transaction’s confirmation. If a transaction remains
unconfirmed for a long time in the mempool, it gets rejected eventually. As
the transactions with high fees are most likely to be selected by a miner, it
poses a threat to flood the mempool by small fee transactions, consequently
affecting the mempool size. In that direction, it creates uncertainty among
the users for their transactions and leads them to pay higher mining fees
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to prevent the rejection of their transactions. The work [34] studies such an
attack on Bitcoin mempool and proposes a few countermeasures. However,
the proposed solutions have limitations regarding the minimum payable fee
and rejection of fast transactions. A follow-up work [32] provides similar
prevention measures for Proof-of-work-based blockchain but suffers from the
similar problems.

4. On mining pools Mining pools are the major players in Proof-of-work-based
cryptocurrencies, e.g., Bitcoin. The mining pool’s goal is to accumulate min-
ers’ power and solve the Proof-of-work puzzles. As the difficulty of Proof-of-
work puzzles gives a very low probability of solving the puzzle to a single
miner, the miner usually prefers to join a mining pool where the miner gets a
fair share of the reward proportional to his/her effort, if the mining pool finds
the solution. Two kinds of entities can mount a DDoS attack on a mining
pool: 1) A hacker whose aim is to make money by asking the ransom from
the attacked mining pool with the promise of stopping the DDoS attack [22],
2) A competing mining pool whose goal is to increase his winning probability
by undermining the power of competing mining pools. Few game-theoretic
studies [47,48] are also conducted to analyze DoS attacks in mining pools.

5. On layer-two blockchain protocols Layer-two blockchain protocols are built
on the top of the main blockchain that moves a sufficient amount of transac-
tion load from the main blockchain to the off-chain in sub-seconds (instead
of minutes or hours) with a reduced fee and similar security. Hence, these
protocols are referred to as an orthogonal solution for the scalability prob-
lem in the blockchain. In recent years, there has been tremendous growth in
constructing new layer-two protocols [20] for blockchain scalability such as
channel networks. In a channel network, channels are established between
the parties of the network and governed by the smart contracts of the main
chain. It provides a fast and scalable approach for off-chain interactions.
These protocols also suffered from DoS attacks in the past [39,42].

6. On sharding protocols Similar to layer-2 blockchain solutions, sharding proto-
cols [41] also tackle the scalability issue of blockchain. The idea of sharding
is to partition the blockchain state into multiple shards. Each shard pro-
cesses a set of transactions; therefore, all shards can process the transactions
parallelly and hence increases the blockchain throughput. The majority of
the sharding protocols are built on the top of the Bitcoin blockchain, and
some are built for the Ethereum blockchain. A sharding protocol deals with
challenges involving the shard assignment to validators, transaction assign-
ment to shard, and intra-shard consensus. A DoS attack can be mounted on
sharding protocol by flooding a single shard which becomes the bottleneck
for the whole system. A recent work [27] studies the DoS-attack on shard-
ing protocols and proposes a Trusted Execution Environment (TEE) based
countermeasure.

7. On commit-chain operator A commit-chain [23] is an off-chain scaling solu-
tion where the transactions are performed off-chain by a non-custodial and
untrusted operator. The operator commits the balances of users periodically
to the blockchain by computing a checkpoint and feeding it to an on-chain



DoS Attacks on Blockchain Ecosystem 235

smart contract. The scheme involves users publishing challenges to the smart
contract in case of a dispute with the operator, which imposes a drawback
where a malicious user can flood the smart contract with unwarranted chal-
lenges. Another significant issue is the operator being a central entity can
become a victim of a DoS attack, resulting in collapsing the whole system.

8. On smart contract A smart contract is a transaction protocol in blockchain
that takes actions according to the terms of the contract. In the Ethereum
blockchain, each block has a maximum gas limit that is spent by executing a
smart contract, and exceeding the gas limit causes a DoS attack. An attacker
can mount a DoS attack on smart contract [4] in several possible ways such
as: 1) By sending a computationally intensive transaction to a contract thus
preventing other transactions from being included in a block; 2) By adding a
couple of refund addresses at once that can end up smart contract exceeding
the gas limit while refunding to those addresses; 3) By unexpected revert
of refund to a legitimate user by using fallback function. A recent work [35]
shows a method to detect DoS attacks caused due to unexpected revert in
Ethereum smart contract. An example of a DoS attack on a smart contract
is an auction contract where an attacker can constantly call the bidding
function (e.g., bid()), preventing other legitimate users from making their
bids. In the NEO blockchain, a vulnerability allowed attackers to invoke
a malicious contract that created a DoS attack by crashing each node that
tried to execute the contract [37]. Moreover, a DoS attack on a smart contract
triggers stopping a node from executing the functions for all the DApps it
hosts.

9. On mixing services A mixing service is a protocol that allows a cryptocur-
rency user to utilize its currency anonymously. It provides unlinkability of
the user’s input to its output and prevents the user’s identification from
being revealed. There are centralized [6] and decentralized [31] mixing ser-
vices. Centralized mixing services being a single-point-of-failure are more
vulnerable to DoS attacks (e.g. by competing services). However, both types
of mixing services suffer from DoS due to different actions of its users, such
as 1) By providing inconsistent input for the shuffle, leading the whole veri-
fication step of shuffle to fail; 2) By denying to perform some required task
e.g., to sign a group transaction; 3) By several participation requests in the
mixing transaction pool leading to the depletion of a precomputed pool by
participants [49].

10. On consensus participants In the blockchain, consensus participants are the
major players who decide on the blockchain’s new block. Therefore, consen-
sus participants are the usual DoS target for an attacker. In deterministic
leader election protocols of consensus, the leader of the consensus round
can be a primary target for DoS attacks which can make the whole system
halt if the leader suffers a DoS attack. Other main targets can be stake-
holders in Proof of Stake consensus mechanisms that hold some stake in the
system, therefore attracting an attacker to mount DoS. A DoS attack can
be mounted on PBFT-based permissioned blockchains and its participants,
where a DDoS attack can be launched if an adversary controls over 33 %
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of the replicas. As in the BFT-based blockchains, network size is known to
the participants, an attacker creates the required number of Sybil replicas
needed for a DoS attack. Hence, for each transaction sent by the primary,
the Sybil replicas will not reply to their approvals, leading the whole system
to halt.

3 DoS Mitigation Techniques for Blockchain Systems

In most of the DoS events, an attacker floods the network by creating multiple
transactions in a short time period, hence maximizing his throughput. This kind
of situation arises when the cost of creating a transaction is low. In most settings,
these transactions are monetary payment transactions of a tiny value, but for
some cases, these can be data transactions (e.g., IoT blockchain transactions).
To mitigate the DoS attack, some cost should be imposed on the attacker to slow
down or stop unnecessary requests in the blockchain system. Hence, following,
we present the DoS mitigation techniques in the blockchain ecosystem.

– Client Puzzles Client puzzles are one of the most effective prominent tech-
niques to defend against DoS attacks. In a client puzzle, a client has to solve a
puzzle before being granted access to a service or a resource by a server. The
initial introduction of the client puzzle was given by Dwork and Naor [13]
to combat the spam attacks. Client puzzles can be categorized into different
types based on the resource used by the client for solving the puzzle such
as number of CPU cycles or a number of memory access, quantifying CPU-
bound puzzles [5] and memory-bound puzzles [1] respectively. Several client
puzzles such as Time-lock puzzles [29], Hash-chain [24] and Equihash [7] are
employed in the blockchain ecosystem. A client puzzle scheme can be Inter-
active where server creates the puzzle for the client or Non-Interactive (NI)
where the client creates a puzzle, solves the puzzle and sends it to the server.

– Fee-based Approach In many events of DoS attack, to disincentivize an
attacker an extra or minimum fee can be introduced in the blockchain ecosys-
tem. This fee can be of different types based on the underlying blockchain
system. The fee can be a mining fee in mining pools, a mixing fee in mixing
services, a transaction fee in transaction pools, a relay fee in a blockchain
network, a registration fee for user registration (e.g. a user of a permissioned
blockchain), etc. Therefore, with the introduction of a minimum fee, launch-
ing a DoS attack becomes costlier for an attacker. However, the fee-based
approach adversely affects legitimate users who do not want to pay this min-
imum amount of fee.

Table 1 presents the possible DoS mitigation solutions for corresponding
blockchain ecosystem. Fee-based approach can be applied in almost every case
but will not be favorable for all blockchain users. In the table, for layer-2 and
sharding protocols, the use of client puzzle will defeat the purpose of scalabil-
ity due to its time consumption, therefore fee-based approach is a more viable
option. For memory pools, mining pools, and mixing services, non-interactive
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client puzzle schemes can be applied where the miner/user presents a verifiable
puzzle and its solution for the inclusion of its new transaction (Rewarding puz-
zle solution in case of mining pool). Apart from the above described techniques,
other mechanisms such as packet filtering techniques or DoS protection services
e.g. Incapsula can be used for DoS mitigation in some blockchain contexts.

Table 1. DoS mitigation techniques in blockchain ecosystem

Blockchain ecosystem Applicable solutions

Cryptocurrency Wallets Client Puzzle (Inside Smart Contract)

Cryptocurrency Exchange Services Client Puzzle (On Exchange Clients)

Memory Pools Fee-based Approach/NI-Client Puzzle

Mining Pools Fee-based Approach/NI-Client Puzzle

Layer-2 Blockchain Protocols Fee-based Approach

Sharding Protocols Fee-based Approach

Commit-chain Operator Client Puzzle (On Commit-chain Users)

Smart Contract Client Puzzle (Inside Smart Contract)

Mixing Services Fee-based Approach/NI-Client Puzzle

Consensus Participants Client Puzzle (On Participant Registration)

3.1 VDF-Based DoS-Resistant Protocol

Most of the existing client puzzles lack public verifiability, non-parallelizability,
non-interactivity, and easy verification. Therefore, the initial introduction of
VDF [8] as a moderately hard function can be configured as a client puzzle
for DoS mitigation achieving all these properties. A VDF can be described as a
function f : X → Y which takes a predefined number of steps T to compute the
output y ∈ Y, given an input x ∈ X and a polynomial number of processors.
Furthermore, the verification of the output is exponentially easy. VDF produces
a unique output that is efficiently and publicly verifiable. There have been a few
constructions of VDF. We employ the Wesolowski VDF scheme [43] to construct
our client puzzle due to its fast verification and short proof size properties.

We define an Interactive VDF client puzzle, where a server S creates a puzzle
p and asks for solution s of the puzzle from the client C before giving access to its
resource. In the following construction, K is a key space, P is a puzzle space, O
is a solution space, D is a puzzle difficulty space, and I is a puzzle input space.

– Setup(1λ): Select K = ∅,D ⊆ N,P ⊆ {0, 1}∗,O ⊆ {0, 1}∗, I ⊆ {0, 1}∗.
Generate a group G of unknown order, an RSA modulus N , a hash func-
tion H : {0, 1}∗ → G and D ← T . Set param ← (P,O,D, I) and
pp ← (G, N,H, T ), return (param, pp).

– GenPuz(T, i, pp): Server runs this algorithm to create a puzzle for the client.

It generates an input i ∈ I for VDF-evaluation, samples l
$← Primes(λ).

Return a puzzle p = l to the client.
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– FindSol(i, p, pp): Client runs this algorithm to solve the puzzle p. Client com-
putes g = H(i), further computes y ← g(2T )mod N . It computes q, r such
that 2T = ql + r where 0 ≤ r < l, and computes a proof π = gq. Send a
solution s = (y, π) to the server.

– VerSol(i, p, s, pp): Server computes r ← 2Tmod l and accepts if g, y, s ∈ G and
y = πlgrmod N .

An Interactive VDF-based DoS-resistant protocol can be designed using client
puzzle as depicted in Fig. 1. The protocol construction follows from the Stebila
et al. [38]. To define this interactive protocol, we assume server and client have
public identities IDS and IDC . Our VDF-based client puzzle can also be made
Non-Interactive where the client constructs a puzzle and its solution. The client
and server share a common source of randomness (e.g. random beacon). The
client creates publicly verifiable puzzles using randomness. Further, the non-
interactive VDF client puzzle can be transformed into a DoS-resistant protocol
that can be efficiently applied in the blockchain ecosystem during DoS events.

Interactive DoS-resistant Protocol

Client C Server S

SKC, IDC, NC
$← {0, 1}k SKS , IDS

(Request : IDC, NC)

NS
$← {0, 1}k

i ← (IDC, IDS , NC , NS)

p ← GenPuz(T, i, pp),

σ ← MACSKS (i, p)

(Challenge : NS , p, σ)

i ← (IDC, IDS , NC , NS)

s ← FindSol(i, p, pp)

(Response : s, p, i, σ)

If IDC ∈ {List of Recorded IDs},
Reject

If σ = MACSKS (i, p), Reject

If VerSol(i, p, s, pp) = 0, Reject

Store IDC

Fig. 1. Interactive DoS-resistant protocol
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Following the implementation study of VDF [3], for 128-bit security and
the difficulty between 216 to 220, our DoS-resistant protocol can be efficiently
employed for DoS mitigation in the blockchain. With the aforementioned setting,
the running time for FindSol, VerSol algorithms are in order of minutes and
order of milliseconds respectively. The verification time on the server side can be
further optimized using Dimitrov’s multiexponentiation method [11]. As a future
work, we will put a demonstration of a proof-of-concept and initial experiments
with Wesolowski VDF for DoS mitigation.

4 Conclusion

In this work, we offered a thorough study of DoS attacks in the blockchain ecosys-
tem. To the best of our knowledge, this is the first investigation in the context of
blockchain. As the frequency and intensity of DoS attacks are increasing rapidly,
it raises a concern about efficient detection and mitigation techniques. Therefore,
we listed out main mitigation approaches which can be used for DoS mitigation
in the blockchain ecosystem. We also identify verifiable delay function as an effec-
tive primitive to mitigate DoS attacks. A proper construction of non-interactive
VDF puzzle and experimental results will be provided in the continuation of
this work. This paper will help academic and industrial researchers to study the
possible venues and impact of the DoS attack in the blockchain context and to
improve upon the existing solutions.
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Abstract. Many proposals for token exchange mechanisms between
multiple parties have centralization points. This prevents a completely
trustless and secure exchange between those parties. The main issue lies
in the fact that communications in projects using a blockchain are asyn-
chronous: classical result asserts that in an asynchronous system a secure
exchange of secrets is impossible, unless there is a trusted third party.
In this paper, we propose our preliminary results in the creation of our
Broadcast Time-Lock Exchange (BTLE) protocol. The core of BTLE is
the introduction of synchronicity in communications through the use of
time-lock puzzles. This makes it possible to exchange secrets between
two parties while eliminating the need for a trusted third party.

1 Introduction

Since the introduction of Bitcoin, a plethora of blockchain-based digital cur-
rencies have being created. These systems are very different in terms of design
and purpose. Initially the projects tried to solve some of the problems in Bit-
coin [21], such as increasing the number of transactions per second or creating a
decentralized consensus method that would use less energy resources. This need
has increased over the years, in particular with the rise of DeFi [25]. Because
it is unlikely that there will emerge a token capable of solving all problems the
different designs encounter, blockchain interoperability (also called cross-chain
communication) is an important research problem.

The methods of cross chain communication to date can be divided into two
macro categories [9]: centralized and decentralized. Centralized methods are
methods in which participants send their funds to a central institution (e.g.
an online exchange) that takes care of distributing them between the parties at
a later date. The advantages of centralized methods are ease of implementation,
easy of use and speed. Unfortunately, however, the disadvantages are greater: a
central party can steal funds, deny access to funds and in general central parties
cannot guarantee the privacy of users.

On the other hand, decentralized exchanges suffer from opposite problems.
Although they do not depend on central entities that could jeopardize the safety
c© Springer Nature Switzerland AG 2022
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of the participants, today these exchanges are difficult, slow to implement and
require parties to be online for the whole duration of the exchange. An analysis
of the different methods for Cross-Chain Communication is made in Zamyatin
et al. [29]. As highlighted by the authors, all decentralized exchanges described
in the literature involve only two parties. It is therefore assumed that the parties
know each other beforehand: how to choose a partner is always left out of the pro-
tocol description. This makes it difficult to implement decentralized trades that
mirror those of markets where a participant wants to exchange his tokens at an
advantageous price, but is not interested in the identity of the partner. Solution
for this problems are automatic market makers [28], non custodial exchanges
with centralized order-books (also called continuous order books) and match-
ing system [8]. Other proposals are decentralized order-books [13], but it’s still
unclear whether they can handle the liquidity of traditional centralized markets.

The impossibility result of Fair Exchange [2] states that in an asynchronous
setting (as it is the one in blockchains) it is impossible to have secure fair
exchange without a third party. Instead of relying on central parties or coordi-
nators and to keep the protocol peer-to-peer, we decided to rely on synchronous
communications. The idea is not new, and generally decentralized exchanges
rely on Hash Time Locked Contracts (HTLCs), i.e. smart contracts that can
be opened only by knowing a secret (in the form of an hash pre-image) after
a certain time. The invention of these contracts is credited to Tier Nolan who
explained its work on Bitcoin Forum [19] and it has been widely studied, for
example in [10,16] in the context of atomic swaps. Interestingly, HTLCs are also
the base of payment channels such as Lightning Network [24].

From the studies on Lightning Network, we know that one of the problems
of HTLCs is that they require that both parties are constantly online for the
protocol to be safe [18]. Also with HTLCs it is not possible to have more open
channels. Only recently Malavolta et al. [14] have created a way to create multiple
channels of exchange of funds from a single node, but these require that the
available capital is divided between the various channels. It is not therefore
possible to create general proposals of exchange of funds, as when orders are
generated in an exchange market, but it is necessary to decide beforehand with
whom to communicate/exchange funds.

To solve these problems, we decided to obtain synchronous communication
between blockchains in a different way, namely by using time-lock puzzles [23].
Using a time-lock puzzle we can divide the exchange into two phases. In the
first phase we use a time-lock puzzle to create an exchange proposal and collect
the availability of different participants. In the second phase we make the actual
exchange with the winner of the first phase. Here we could use an HTLC, since
the parts have been reduced to two, but we decided to use the time-lock puzzle
again to leave the possibility for the parts not to be constantly online. This gives
the possibility to have a secure exchange even in case of network interruptions.
The major contributions of our paper are:

– We present our preliminary results on Broadcast Time-Lock Exchange
(BTLE): a new protocol for a broadcast (or multi-party) atomic exchange
of token in a cross-chain scenario



Towards a Broadcast Time-Lock Based Token Exchange Protocol 245

– For optimization reasons, we investigated possible alternatives to the famous
RSA-based time-lock puzzles [23]. In details, we propose a new time-lock
puzzle based on the conic-based cryptosystem presented in [5], which can be
of independent interest.

The structure of the paper is the following: in Sect. 2 we present the relevant
literature on time release cryptography and cross chain communication, then in
Sect. 3 we present briefly the classic RSA-based time-lock puzzle of Rivest et al.
[23]. We use that to present the details of the inner working of our new conic-
based RSA-like time-lock puzzle. On Sect. 4 we present BTLE. Finally in Sect. 5
we conclude.

2 Related Works

We use time-lock puzzles in a cross-chain communication protocol. For this rea-
son it is useful to analyze the literature in two separate way. The first subsection
analyzes the proposed time-related cryptosystems, while the second analyzes
different cross-chain protocols.

2.1 Time Release Cryptography

On this topic there is a detailed survey by Jaques et al. [11]. In this sub-section
we present only the fundamental results related to the BTLE protocol.

Timed primitives came up in several contexts. We can distinguish between
a pre-blokchain phase and a post-blockchain phase. The first generation, pre-
blockchain, includes “time capsules” for key escrowing as in Bellare et al. [4],
time-based cryptographic secrets as Rivest et al. in [23] and contract signing as in
Boneh et al. [7]. Of those, only the last two protocols are secure against parallel
processing, i.e. they use what has been defined as inherently secure function [6].

After the introduction of Bitcoin [17], time based cryptography had a new
wave of research. In particular, the post-blockchain study of time-based crypto-
graphic protocols is focused on verifiable delay functions (VDF) and time-lock
puzzles (TLP). The difference is that VDFs are time-lock puzzles whose solution
is publicly verifiable without the need to solve the puzzle [6].

The majority of the newer studies have focused on VDFs. Some of them
proposed new protocols, such as [15], while others extended the TLP in [23]
making it a VDF. The works of the latter type are that of Wesolowski [26] and
that of Pietrzak [20]. These works are compared in [6]. Interestingly, the new wave
of research on time based cryptography has generally left aside the traditional
time-lock puzzles. Still, because we do not need any outside verification of the
result (our setting has an implicit verification: if the solution is right, then the
user can retrieve the funds, otherwise it can not), we use the more heavily studied
construct of time-lock puzzle.
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2.2 Cross Chain Communication

In this paper, we focus on decentralized cross-chain exchanges, because central-
ized exchange are out of scope.

The first report on the interoperability issue is that of Buterin [9], in which
describes the main methods of interoperability at the time. In many cases the
realization of an interoperable system was leveraged to create a system that
increased the scalability in terms of transactions of the blockchain in question.
In fact, interoperability gave the possibility of rebalancing the loads between two
blockchain and then divide the work between the two. In this sense we talk about
sidechains, introduced for the first time in [3]. Several projects were born that
aim to create “a blockchain of blockchains”, such as Cosmos [12], Polkadot [27]
and Plasma [22]. In both projects, the idea is to create a hierarchy of blockchains
and each exchange of funds is approved through the blockchain at the head of
all others. In these projects the exchange is neither atomic nor peer-to-peer.

To date, the peer-to-peer exchange methods are all based on the concept
of Hash Time Lock Contract (HTLC), whose inventor is considered Nolan [19]
and are analyzed for example by Herlihy [10] and by Miraz and Donald [16]. An
HTLC is a contract that use hash-based and time-based locks to lock and unlock
funds. Participants in this kind of contract have to manually redeem funds by
generating cryptographic proof of payment before a certain date in order proceed
with the protocol. This requires parties to stay online, which is difficult for power
constrained devices of in places where continuos internet connectivity can’t be
assumed.

This type of contract is not implementable on any blockchain because it needs
a scriptable blockchain and requires that different blockchain have the same
hash function. These are not common requirements: for example the blockchain
protocol in Monero does not have the concept of smart contract and can not
implement HTLC, and it wouldn’t be possible to make a HTLC between Tezos
(which uses the Blake2b function as its principal hash function) and Bitcoin
(which uses the SHA256 function to make hashing).

For a more detailed analysis see e.g. the work of Zamyatin et al. [29].

3 Two Time-Lock Puzzles

In this section we do a brief digression on how to measure time in a time-
lock puzzle and then we present both the classic time-lock puzzle presented by
Rivest et al. which we call it RSW-TL, and we present the new time-lock puzzle
based on the RSA-like system in [5], which we call it BM-TL. Both systems use
functions that are believed to be sequential, meaning they are not parallelizable.
Therefore, given a particular type of CPU, there is no advantage in having more
of them: all computations are necessarily done on only one core of the CPU.
These time-lock puzzle can be classified as a CPU-bound puzzle with a timing
function and an implicit verification [1].
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On Time. Since computation is sequential, it’s possible to predict the time to
solve the puzzle. Given T the time such that A wants to keep B busy, and S the
number of squaring per unit of time (either done by the RSW-TL method or
the BM-TL method, see below), then t = TS is the number of squaring needed.
Obviously S depends mainly on the processor used. As of now, we are doing
the necessary tests to see which of the two proposed methods is the best for the
BTLE protocol, i.e. has the least variation based on the CPU.

RSA-TL. In [23], the authors proposed a simple yet effective time-lock puzzle
exploiting repeated squares. A time-lock puzzle is used to encrypt a secret sk
(which could be, e.g., the key of a symmetric cryptosystem) so that it could be
decrypted only after a fixed amount of time T .

In particular, said A the entity that creates the time-lock puzzle, A encrypts
sk as

c ≡ sk + a2t (mod n)

where n = pq, with p and q prime numbers, 0 < a < n a random number
and t a positive number computed as before. The value of c can be efficiently
computed if p and q are known. Indeed, in this case, one can compute e ≡ 2t

(mod ϕ(n)) and then ae (mod n) exploiting Euler’s totient theorem. The entity
A sends (n, a, t, c) to the entity B that has to recover sk.

The entity B can not perform ae (mod n) efficiently because it doesn’t know
p and q, nor can it derive them from n. In fact, multiplication of “big” primes
is the same trapdoor function used by the RSA cryptosystem. Therefore it has
to perform t squarings, since the computation of a2t is believed not to be paral-
lelizable.

BM-TL. The idea of Rivest et al. for creating time-lock puzzles can be easily
adapted using different products for performing the powers. In [5], the authors
developed an RSA–like cryptosystem based on a particular parametrization of
the Pell conic. We recall here some details. The Pell conic is defined as

H = {(x, y) ∈ F × F : x2 − Dy2 = 1},

where F is a field and D square-free, meaning that there is no square in its
prime decomposition. It is well known that (H,⊗) is a group, where ⊗ is the
Brahmagupta product defined by

(x1, y1) ⊗ (x2, y2) = (x1x2 + y1y2D,x1y2 + x2y1).

A set of parameters can be found using the line y = 1
m (x + 1), yielding to the

group (P,�) isomorphic to (H,⊗), where

P = F ∪ {α}, a � b =

{
ab+D
a+b , if a + b �= 0

α, if a + b = 0

with α �∈ F the point at infinity. When F = Zp, p prime, we have that

a�p+1 ≡ 1 (mod p)
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for every a ∈ P , where the powers are evaluated with respect to the product �.
The Pell conic H and the set of parameters P can be also constructed over rings
and considering P = Zn ∪ α, with n = pq, p and q primes, we have an analogue
of the Euler’s totient theorem:

a�Ψ(n) ≡ 1 (mod n), ∀a ∈ Z
∗
n,

where Ψ(n) = (p + 1)(q + 1). Finally, we recall that the powers z�n can be
evaluated by means of the Rédei rational functions:

z�n = Qn(D, z)

where Qn(D, z) is the n–th Rédei rational function defined by

Qn(D, z) =
An(D, z)
Bn(D, z)

, (z +
√

D)n = An(D, z) + Bn(D, z)
√

D

and the polynomials An(D, z), Bn(D, z) can be evaluated by(
z D
1 z

) (
1
0

)
=

(
An(D, z)
Bn(D, z)

)
.

For proofs and further details, see [5].
Thus, we can construct a time-lock puzzle following the idea of Rivest et al.

[23], but exploiting the product �. In this case, the secret sk is encrypted by

c ≡ sk + a�2t (mod n).

Knowing the factorization of n, one can efficiently compute a�2t evaluating
first e ≡ 2t (mod Ψ(n)) and then ae (mod n). Without knowing the factoriza-
tion of n, one must perform t squarings with respect to the product �.

4 The Broadcast Time-Lock Exchange Protocol

We now explain how it is possible to use time-lock puzzles to create an alterna-
tive to order books and AMMs in decentralized token exchanges. We assume a
decentralized platform where participants want to exchange tokens. We assume
each participant has a client which follows the defined blockchain protocol.
Because the setting is decentralized, it makes no sense speaking of synchroniza-
tion between these clients. For this reason each participant has its own view of
the current state of the decentralized market. Without loss of generality, we can
say that the participant that initiates the process is selling its token in exchange
of (or to buy) the other.

The Broadcast Time-Lock Exchange (BTLE) protocol needs two classes of
participants. The first class is the initiator : this kind of participant is the one who
initiates the exchange by proposing the deal, i.e. the selling of its token. Using
the terminology of traditional centralized markets, this participant corresponds
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to a market taker. The other class of participants is that of exchangers: these
participants are possible buyers interested in an equivalent deal but who do not
want to start it. The analogue in traditional markets is that of market makers.

In this protocol there is a single initiator which we call Alice for simplicity
and which we denote by A, and many possible exchangers. Since the exchangers
represent Alice’s partner, following the cryptography tradition we will call them
all “Bobs”. Moreover, supposing that they are indexed and that they are in
finite number d, we will say that the potential exchangers are {B1, B2, . . . , Bd}.
Recall that we are in a decentralized environment and therefore there cannot be
a temporal-based ordering of possible buyers: asynchronous systems imply the
absence of a shared clocks.

Furthermore, we suppose the set {B1, B2, . . . , Bd} is completely determined
by the view of A: since we are in an asynchronous environment, it is possible that
Alice’s view of potential buyers is not synchronized. This means that in some
other nodes there are other potential exchangers or that some have withdrawn. In
the protocol description we will see why neither of these two cases is a problem.
Finally we assume that there are d secure channels of communication between A
and each one of {B1, B2, . . . , Bd}. Finally, we assume {B1, B2, . . . , Bd} compete
at the same price level, as in traditional order books.

The BTLE protocol is divided into two rounds. In the first round Alice (the
initiator) chooses from among the potential exchangers the one with whom the
real token exchange will take place. In the second round the actual exchange
takes place. In both stages a time-lock puzzle is used.

4.1 Choosing an Exchanger

In this round Alice has to choose the exchanger among {B1, B2, . . . , Bd} ←
GetExchangersList(). It will follow the routine explained in Fig. 1. In this sub-
section and in the following one we treat the time-lock puzzle TLP as a blackbox
which takes two inputs and then outputs a cryptographic puzzle. The solution of
the puzzle is the cleartext itself: that’s why we chose time lock puzzles with implicit
verification. Also, we see the modularity of BTLE that can support multiple types
of time-lock puzzles, either from those presented in Sect. 3 or even different ones.

As seen in the Fig. 1, A generates a random message for each participant in
{B1, B2, . . . , Bd} and associates this message to the intended receiver. The inputs
of the time-lock puzzle are the message and a time in seconds. The output is
a tuple that represent the cryptographic puzzle (See Sect. 3). A performs this
subroutine for all Bi, i = 1, . . . , d. Then it sends all the puzzles and waits for
a solution. When A receives the first solution (i.e. the cleartext of the random
message) from some Bj , it checks that is a valid message, i.e. the cleartext is
equal to the message associated with Bj . If that is the case, A accepts the solution
and Bj is the winner: A will proceed to communicate only with Bj and discards
all other solutions. If the message isn’t valid, A waits for another solution.

Note that in a time-lock puzzle TBi = TLP (randi, time), the random mes-
sage is different for each Bi, but time is equal for all participants: all potential
exchangers must have the same chance of being able to find the solution at the
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Algorithm 1. Round 1: Choosing the Exchanger
1: {B1, B2, . . . , Bd} ← GetExchangersList()
2: for i = 1, . . . , d do
3: A generates randi
4: {map randi → Bi}
5: A computes the time-lock puzzle TBi = TLP (randi, time) of Bi

6: end for
7: for i = 1, . . . , d do
8: A sends TBi to Bi

9: end for
10: accepted solution=0
11: while accepted solution==0 do
12: wait for solution
13: if verify solution(sol)==1 then
14: accepted solution=1
15: winner sol=sol
16: end if
17: end while
18: return map(sol)

same time. The randomness of the winner is determined by unpredictable factors
such as network latency or puzzle real solving time.

From this we can see the equivalence with order books where the order is
based on the order execution time: since there cannot be a shared clock due
to the asynchronicity of the system, A bases its “order book” on the puzzle
resolution time.

4.2 The Token Exchange

We call Bob the winner of the previous round and we denote him as B. From
now on, Alice will only interact with Bob and will discard all other potential
exchangers.

The goal of this second round is to obtain a token exchange protocol that is
atomic. In particular, if A has 1 coin1, and B has 1 coin21 then there can be
only two succesful ending of the protocol: eitherA has 1 coin2 B has 1 coin1
or A has 1 coin1 B has 1 coin2.

Given the uncertainty of the real execution time to find a solution for a time-
lock puzzle (the uncertainty is in the order of tens of seconds) it is not possible
to carry out a simple exchange of keys between the parties. A few seconds are
enough to issue two transactions, so the participant who first solves the assigned
time-lock puzzle is able to take both the token associated with the solution and
his token. Therefore the protocol would not be provably atomic. In the following
we describe a method that allows to overcome this problem.

1 The real exchange rates between the two tokens and how they are decided are beyond
the scope of this paper.



Towards a Broadcast Time-Lock Based Token Exchange Protocol 251

Recall that given two secret keys sk1 and sk2, an elliptic curve generator g
and the relative public key pk1 and pk2, then the key sum is homomorphic:

(sk1 + sk2)g = pk1 + pk2 = (sk1g) + (sk2g) (1)

The Swap The actual exchange of tokens coin1 and coin2 is explained in
Fig. 1, with notation in Table 1. A and B create the key pairs (skA

2 , pkA
2 and

skB
1 , pkB

1 respectively) that represent the first of the two shares to redeem the
exchanged funds. After this step, A and B exchange the public keys pkA

2 and pkB
1 .

If this first part is successful, both A and B create ephemeral keys (skA
1 , pkA

1 and
skB

2 , pkB
2 respectively) that represent the second of the two shares to redeem the

exchanged funds. At this point A and B can create new public keys (called PKB
1

and PKA
2 respectively) to which they can send the funds. Because of the way

the keys and consequently the addresses are built, neither of the two participants
can redeem the funds in either blockchains at this point of the exchange. For
example, A needs to know skB

2 in order to redeem coins in the address for PKA
2 .

For this reason in the second part of the exchange A and B exchange the time-
lock puzzles TLPA and TLPB . Once the time-lock puzzles are opened/solved, A
gets skB

2 and B gets skA
1 . Using λ as time unit, we see that the second time-lock

puzzle is sent later with a smaller opening time (1/4 of the time unit). This is
to make the two participants A and B open the puzzle at about the same time.

Table 1. Notation used in the explanation of the token exchange protocol

BC1,BC2 Blockchain 1 and 2 with tokens coin1 and coin2

G1,G2 the base point for the elliptic curve of BC1 and BC2

l1,l2 the base point order for the elliptic curve of BC1 and BC2

PKA
1 public key for the address on blockchain BC1 where A has the coins

PKB
1 public key for the address on blockchain BC2 where B has the coins

PKA
2 public key for the address on blockchain BC1 where A has the coins

PKB
2 public key for the address on blockchain BC2 where B has the coins

skA
1,2, pk

A
1,2 shares created by A for blockchian BC1,2

skB
1,2, pk

B
1,2 shares created by B for blockchian BC1,2

4.3 Analysis of the BTLE Protocol

As in the HTLC case, BTLE is also atomic in the sense that either both par-
ticipants get tokens from the other blockchain, or both participants can retrieve
their tokens. This is possible if we assume that all participants are rational and
thus incentivized to respect different timeouts, as in the case of HTLC. The only
step where there is a possibility of stealing the secret and breaking the atom-
icity, is the one where participant A has the time-lock puzzle of participant B,
but A has not yet sent his time-lock puzzle. In this case A could start work-
ing on the received time-lock puzzle and discover the secret without sending his
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Fig. 1. Protocol execution between Alice and Bob for a successful swap

own time-lock puzzle. This case, however, is covered by the protocol: B waits a
limited amount of time (a quarter of the expected time to solve the time-lock
puzzle) and in case it does not receive A’s puzzle, he would proceed to recover his
tokens assuming A is dishonest. The only requirement is that the time lambda
be longer than the time for creating new blocks in the blockchains between which
the exchange takes place: that to prevent participant A from solving the received
time-lock puzzle and sending the solution to take the money before the block is
created, preventing B from acting safely, i.e. sending a transaction to retrieve its
token. In this case both the transaction of A and the one of B would appear in
the mempool of the miners/validators and it is not possible to know in advance
which of the two transactions will end up in the block (invalidating the atomicity
of the system). By choosing a suitable lambda the problem does not arise and
it is not possible for A to steal the tokens.

Another advantage of BTLE over traditional cross-chain swaps is that it does
not require the use of hash functions. This is because the BTLE uses techniques
at a lower level than other atomic swap methods. In fact, we use the fact that the
sum between points in elliptic curves is homomorphic, so BTLE is not affected
by the internal mechanics of a blockchain protocol. This means that our protocol
can also be used on blockchains that do not use the same hash function.

Using only elliptic curve theory, BTLE can also be used on blockchains that
do not have a scripting language, such as Monero and all blockchains that are
derived from CryptoNote. This additional advantage gives the possibility to
implement BTLE in all those cases for which to date there are no exchange
methods.

Finally, since there is little communication between participants, it is not
necessary for all parties to be constantly online, unlike other methods. In fact,
they can stay offline for the duration of solving a time-lock puzzle without this
creating security problems within the protocol.
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5 Conclusions and Future Works

We presented in this paper the preliminary results of BTLE, a P2P and broadcast
exchange protocol that creates an alternative to order-books and AMMs in a
decentralized context. Unlike the other methods, it does not require the parties
to be constantly online to finalize the exchange, thanks to the use of time-lock
puzzles. We also proposed a new time-lock puzzle that is an alternative to the
classical time-lock puzzle of Rivest et al.

At this moment, we are better investigating the two types of proposed time-
lock puzzles with the goal of understanding which method is more suitable for
short duration puzzles (in the order of seconds). We are also working on the
implementation of the BTLE protocol to demonstrate its applicability on differ-
ent blockchain technologies, like Bitcoin, Monero, Ethereum.
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Abstract. This work has started from the necessity of improving the
accuracy of numerical simulations of COVID-19 transmission. Coughing
is one of the most effective ways to transmit SARS-CoV-2, the strain
of coronavirus that causes COVID-19. Cough is a spontaneous reflex
that helps to protect the lungs and airways from unwanted irritants and
pathogens and it involves droplet expulsion at speeds close to 50 miles/h.
Unfortunately, it’s also one of the most efficient ways to spread diseases,
especially respiratory viruses that need host cells in which to reproduce.
Computational Fluid Dynamics (CFD) are a powerful way to simulate
droplets expelled by mouth and nose when people are coughing and/or
sneezing. As with all numerical models, the models for coughing and
sneezing introduce uncertainty through the selection of scales and param-
eters. Considering these uncertainties is essential for the acceptance of
any numerical simulation. Numerical forecasting models often use Data
Assimilation (DA) methods for uncertainty quantification in the medium
to long-term analysis. DA is the approximation of the true state of some
physical system at a given time by combining time-distributed observa-
tions with a dynamic model in an optimal way. DA incorporates obser-
vational data into a prediction model to improve numerically forecast
results. In this paper, we develop a Variational Data Assimilation model
to assimilate direct observation of the physical mechanisms of droplet
formation at the exit of the mouth during coughing. Specifically, we use
high-speed imaging, from prior research work, which directly examines
the fluid fragmentation at the exit of the mouths of healthy subjects in
a sneezing condition. We show the impact of the proposed approach in
terms of accuracy with respect to CFD simulations.

Keywords: Data assimilation · CFD simulations · Coughing and
sneezing simulations · Covid-19 diffusion

1 Introduction

Studies about the transmission of respiratory illnesses like influenza say that
infections typically happen when a healthy person comes into contact with
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respiratory droplets from an infected person’s cough, sneeze or breath [8]. Cough-
ing is one of the most effective ways to transmit SARS-CoV-2, the strain of
coronavirus that causes COVID-19. Cough is a spontaneous reflex that helps to
protect the lungs and airway from unwanted irritants and pathogens, droplets
are expelled at speeds close to 50 miles per hour. Unfortunately, it’s also one of
the most efficient ways to spread diseases, especially for respiratory viruses that
need host cells in which to reproduce.

Computational Fluid Dynamics (CFD) is a powerful way to simulate droplets
expelled by mouth and nose when people are coughing or sneezing. As for all
numerical models, the CFD models for coughing and sneezing introduce uncer-
tainty through the selection of scales and parameters. Taking into account these
uncertainties is essential for the acceptance of any numerical simulation. Numer-
ical forecasting models often use Data Assimilation (DA) methods for the uncer-
tainty quantification in the medium to long-term analysis. DA is the approxi-
mation of the true state of some physical system at a given time by combining
time-distributed observations with a dynamic model in an optimal way. DA
incorporates observational data into a prediction model to improve numerically
forecasted results. It allows for problems with uneven spatial and temporal data
distribution and redundancy to be addressed such that models can incorporate
information efficiently. DA tries to answer questions such as “what can be said
about the value of an unknown variable x that represents the evolution of a
system, if we have some measured data y and a model M of the underlying
mechanism that generated the data?”. This is the Bayesian context, where we
seek a quantification of the uncertainty in our knowledge of the parameters that,
according to Bayes’ rule takes the form

p (x|y) =
p (y|x) p (x)

p (y)
(1.1)

Here, the physical model is represented by the conditional probability (also
known as the likelihood) p (y|x), and the prior knowledge of the system by the
term p (x). The denominator is considered as a normalising factor and represents
the total probability of y. There are many DA methods derived from this formu-
lation [9,10] which have been mostly custom-developed on the forecasting model
with which they are combined. Those which have gained acceptance as powerful
methods in the last ten years are the Variational DA (VarDA) approaches [1]
based on the minimisation of a function which estimates the discrepancy between
numerical results and observations assuming that the two sources of information,
forecast and observations, have errors that are adequately described by error
covariance matrices. To apply a DA approach to a CFD model for coughing and
sneezing, real observations are needed.

2 Related Works and Contribution of the Present Work

In [16], a CFD analysis with an Eulerian-Lagrangian model was used to inves-
tigate the transport characteristics of evaporating droplets expelled into a ven-
tilated room. This study aims to understand the transport and dispersal of
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droplets produced by coughing in a ventilated room with the help of Bayesian
Data Assimilation. Experiments were conducted to measure the initial velocity
and the duration of a coughing burst. In [17], an analytical approach instead
of a CFD analysis is proposed. The authors model the detailed processes of
cough jet flow, including droplet evaporation and motion, turbulent flow around
the jet, and particle tracking to study the dispersion and deposition of expira-
tory droplets in a room during coughing. In [3], the authors present the results
of a combined experimental and theoretical investigation of the fluid dynamics
of such violent expiratory events. Direct observation of sneezing and coughing
events reveals that such flows are multiphase turbulent buoyant clouds with
suspended droplets of various sizes. Observations guide the development of an
accompanying theoretical model of pathogen-bearing droplets interacting with
a turbulent buoyant momentum puff. In [20], the transport characteristics of
saliva droplets produced by coughing are examined in a calm indoor environ-
ment. The dispersion processes of saliva droplets of different diameters expelled
during coughing are analysed using the Lagrangian equation. The results indi-
cate that the transport characteristics of saliva droplets due to coughing change
with size. In [15], the authors report the direct observation of physical mecha-
nisms of droplet formation at the exit of the mouth during sneezing. Specifically,
they use high-speed imaging to directly examine the fluid fragmentation at the
exit of the mouths of healthy subjects.

In this work, we assimilate the real images provided in [15], in coughing and
sneezing CFD simulations that we developed. To this aim, we implemented a 3D
Variational DA model where an optimal parameter is introduced to balance the
weight of the errors covariance matrices.

In summary, in this paper, we developed CFD models to simulate the droplet
and aerosol size distributions and morphology at different positions, times, and
exhalation conditions including coughing and sneezing. We use data assimilation
to increase the accuracy of the CFD models using the observed data from the
real experiments. This will provide more accurate data on the evolution of the
particulate size distribution near the mouth.

The paper is structured as follows. In the next Section, the Data Assimilation
problem is described and the definition of Variational approaches to solving it
are presented. A description of the CFD simulations for sneezing and coughing
are then presented. A Section that describes the pre-process of the resulting
data, both from the CFD and the observed experimental results on realistic test
cases is provided to show how DA performs on our test cases. A final Section
presents the conclusions and describes future works.

3 Data Assimilation

Data Assimilation (DA) is an approach for fusing data (observations) with prior
knowledge (e.g., mathematical representations of physical laws, model output) to
obtain an estimate of the distribution of the true state of a process [18]. In order
to perform DA, one needs observations (i.e., a data or measurement model), a
background (i.e., a priori state or process model), and information about the
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distribution of the errors on these two. DA merges the estimated state xt ∈ R
n

of a discrete-time dynamic process at time t:

xt+1 = Mt+1xt + wt (3.1)

with an observation yt ∈ R
m:

yt = Htxt + vt (3.2)

where Mt is a dynamic system and Ht is called observation operator. The vectors
wt and vt represent the process and observation errors, respectively. They are
usually assumed to be independent white-noise processes with Gaussian proba-
bility distributions: wt ∼ N (0, Qt), vt ∼ N (0, Rt), where Qt and Rt are called
error covariance matrices of the model and observation, respectively. DA is a
Bayesian inference that combines the state xt with yt at each given time. The
Bayes theorem conducts to the estimation of xa

t which maximise a probabil-
ity density function given the observation yt and a prior from xt. This app-
roach is implemented in one of the most popular DA methods which is the
three-dimensional Variational (3DVar) DA. The goal of 3DVar is to compute an
optimal solution, xa

t , that minimises a weighted difference between the actual
measurement, yt, and the measurement prediction.

Fig. 1. 3D variational data assimilation framework.

The 3DVar problem can be described as following:

xa
t = argminxJ(x), with J(x) = J1(x) + J2(x) (3.3)

where
J1(x) = (x − xt)T Q−1(x − xt) (3.4)
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is called background or first-guess cost function and

J2(x) = (Htx − yt)T R−1(Htx − yt) (3.5)

is called observation cost function. If Eq. (3.3) is linearised around the back-
ground state [12], the 3DVar problem is formulated by the following form:

δxa
t = argminδxJ(δx), with J(δx) = J1(δx) + J2(δx) (3.6)

and

J1(δx) =
1
2
δxT Q−1δx, J2(δx) =

1
2
(Htδx − dt)T R−1(Htδx − dt) (3.7)

where dt = [yt − Htxt] is the misfit and δx = x − xt is the increment. The error
covariance matrices Qt and Rt in Eq. (3.7) are here designed to be correlated
by a parameter α such that Qt = αI and Rt = (1 − α)I with 0 < α < 1 and
where I is the identity matrix. In this way we can decide the degree of fidelity
we want to give to the observations with respect to the CFD simulation. As the
weight of the covariance matrices in the DA process is given by the inverse of
the matrices (see Eq. (3.4) and (3.5)) [2], with this choice of covariance matrices
we can chose a bigger value of α if we assume that the observations are very
reliable or a smaller value to α if the CFD model is a high fidelity model. With
this choice Eq. (3.6) becomes

J(δx) =
δxT δx

2α
+

(Htδx − dt)T (Htδx − dt)
2(1 − α)

(3.8)

As an important issue in Data Assimilation is to provide a result in real-time,
the choice of an efficient method to compute the minimum of the functional J is
a fundamental topic. In this paper, we compute the minimum of the functional
J in Eq. (3.8) by the minimisation method proven to be faster for optimisation
problems [11], i.e., the L-BFGS (Limited-Broyden Fletcher Goldfarb Shanno)
method [19]. The L-BFGS method is a Quasi-Newton method that can be viewed
as an extension of conjugate-gradient methods in which the addition of some
modest storage serves to accelerate the convergence rate.

4 Coughing and Sneezing CFD Simulations

Numerical simulations of a cough respiratory event have been performed using
an integrated computational fluid dynamics modelling framework known as IC-
FERST, which is based on Fluidity [13]. The integrated approach includes a
combination of an extended interface capturing model based on compressive
advection method [14], with surface tension and hydrostatic force solvers for
force-balancing, as well as adaptive mesh optimisation, to accurately predict
complex droplet/ejecta transients and complex flow patterns.

To simulate a coughing respiratory event, a simple inlet is first modelled using
assumed dimensions of a typical human mouth. Simplifying the mouth shape,
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a geometry can be designed with an angled and straight inlet of diameter 8 mm. To
represent the surrounding, the inlet is modelled inside a domain of 5 m × 2.5 m. In
[6] a model for the flow rate of air ejected after a single cough is presented. The male
and femalemodels are derived fromafit to results from13males and 12 females.We
use the male relationships to establish boundary conditions for inlet velocity in our
CFD simulations. The cough peak flow rate, CPFR (L/s), is related to the subjects’
weight w (kg) and height h (m), as CPFR = −8.8980 + 6.3952h + 0.0346w, with
the cough expiration volume, CEV (L), following as CEV = 0.138CPFR+0.2983,
and the peak velocity time, PVT (s), as PVT = (1.36CPFR+65.86)/1000. Time is
here non-dimensionalised as τ = t/PVT, where t (s) is the time after the cough has
begun, and the mass flow rate M̄ = M/CPFR, where M is the dimensioned mass
flow rate (L/s). The dimensionless mass flow rate is computed to fit experimental
results as: M̄ = (a1τ

b1−1 exp (−τ/c1))/(Γ (b1)cb1
1 ), where a1 = 1.680, b1 = 3.338,

c1 = 0.428, a2 = CEV
(PVT×CPFR) − a1, b2 = (−2.158CEV)

(PVT×CPFR) + 10.457, c2 = 1.8
b2−1 . and if

τ ≥ 1.2 we must also add M̄ += (a2(τ −1.2)b2−1 exp (−(τ − 1.2)/c2))/(Γ (b2)cb2
2 ).

We then compute the flow rate and given the area of our inlet (i.e., a mouth with
size 3.4 cm−2) compute the flowvelocity through time for our inlet boundary condi-
tions. A jet of fluid containing a water and air mixture can be used as an analogy for
sneezing and coughing, characterised by a liquid jet that undergoes primary atom-
isation and further secondary droplet break-up [7] as an initial test case. Complex
dynamic behaviour of high-speed jets, such as jet spreading andpressure decay, due
to mass and momentum transfer [5] are well captured by the numerical schemes
underpinning IC-FERST/Fluidity. Adaptive mesh optimisation and interface cap-
turing are employed to model complex multi-phase jet flow physics such as near-
nozzle instabilities, as well as droplet break-up, entrainment and droplet diffusion
in the main region of the jet. The resolution of the mesh is focused on areas of high-
importance physics, such as the interface and regions of high-vorticity. Adaptive
implicit time-stepping, hydrostatic pressure and surface tension solvers addition-
ally contribute to increasing the accuracy of the predicted droplet break-up and
dispersion measurements.

Interface-Capturing Numerical Model: For multi-component flow modelling, one
phase is generalised in an arbitrary number of phases (or fluid) components. If
αi is the volume fraction of component i and Nc is the number of components,
where i = 1, 2, 3..., Nc, then a constraint of the system as

∑Nc

i=1 αi = 1 which
can be used to define the conservation of mass for each component i as

∂

∂t
αiρi + � · (αiρiu) − Qi = 0, i = 1, 2, 3..., Nc (4.1)

where ρi, t, u, Qi is the density of component i, time, velocity and mass source
term, respectively. The equation of motion of an incompressible viscous fluid
may be written as

∂(ρu)
∂t

+ � · (ρu × u) = −�p + � · [μ(�u + �Tu)] + ρg + Fσ (4.2)

A compressive advection method based interface capturing scheme is employed.
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5 Simulation, Data Pre-processing and Assimilation

Simulation: The domain size is 5 m × 2.5 m. A controlled water jet ejecta of size
0.03 mm is simulated from the 8 mm inlet. This corresponds to a total volume
fraction of approximately 0.004. Results are shown in Fig. 2a and Fig. 2b. The
mesh resolution varies from 10 μ to 5 mm. The lower limit of this resolution
allows for the capturing of droplets at the interface which is important since
numerous studies in the field of cough simulation estimate the droplets to vary
from a few microns to 10 of microns. Figure 2a shows the mass fraction of water
(log-scale) in the simulation at 63 ms and the ejecta has travelled approximately
23 cm. Figure 2b shows a zoomed-in version of the encircled area of Fig. 2a to
illustrate the mesh adapting at the interface, with the minimum edge length
observed to be 7 μ. This coughing simulation was subsequently used for data
assimilation in the next Section.

(a) Water mass fraction of cough. Encir-
cled area is zoomed-in and shown in Fig-
ure 2b.

(b) A zoomed-in view of the cough ejecta
front, illustrating mesh adaptivity.

Fig. 2. Cough ejecta simulation

Real Images and data pre-processing: The images of real sneeze emissions were
obtained from [15]. In order to assimilate sneezing images with a coughing CFD,
we are here assuming that, in terms of velocity and mass fraction, the sneeze
at a later time step corresponds to a cough at an earlier time step. The data
was preprocessed using OpenCV Open Source Computer Vision Library) [4].
Two images of real observations were used: sneeze emissions after 5 ms recorded
at 2000 fps fps (Fig. 3a); and sneeze ejecta at 8 ms recorded at 8000 fps fps
(Fig. 3b). The images represent the observed data in the DA function (3.5);
we have yt = y5ms and yt = y8ms. The background data from the coughing
CFD model are two images of simulated sneeze emissions: at an angle of 24 ◦C
(Fig. 3c); and horizontal (Fig. 3d). This data represent xt = x5ms and xt = x8ms

in (3.4). The images from the CFD simulation were scaled between 0 and 0.01
(for sneezing) and 0 and 0.02 (for coughing) with respect to their water mass
fraction. The images from the simulations were cropped between 1.53 m and
1.63 m of height and a 0.12 m width. After this pre-process, the dimensions of
the images from the CFD simulation (x5ms and x8ms) and the observations
(y5ms and y8ms) match. All images were set at the same resolution and the
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(a) y5ms: Sneez-
ing emissions af-
ter 5 ms recorder
at 2000 fps.

(b) y8ms: Cough-
ing emissions af-
ter 8 ms recorded
at 8000 fps.

(c) x5ms: CFD sim-
ulation of the sneez-
ing emissions at a
24 degree angle af-
ter 5 ms.

(d) x8ms: CFD
simulation of the
coughing emissions
at horizontal angle
after 8 ms.

Fig. 3. Direct observations of the physical mechanisms of droplet formation at the exit
of the mouth during sneezing [15] and CFD simulations of sneezing and coughing.

observations (interpolation) operator Ht in (3.2) is the identity function. The
observation images (Fig. 3a and Fig. 3b) were also scaled between 0 and 0.01 (for
sneezing) and 0 and 0.02 (for coughing) with respect to their water mass fraction
to be consistent with to the simulation images.

(a) Masked
sneezing emis-
sions

(b) Masked
coughing emis-
sions

(c) Masked an-
gled inlet simula-
tion

(d) Masked hor-
izontal inlet sim-
ulation

Fig. 4. Different masks (in blue) applied to the CFD simulations and observations
(Color figure online)

The four images in Fig. 3 were transformed to grayscale (ranged from 0 to
255 in one channel) using OpenCV. Additionally, a mask was drawn by hand
on all images to eliminate the nose and mouth from the observations, and the
inlets from the simulations. We chose a non-grayscale colour (blue) for the mask
to avoid eliminating useful information. The mask allows us to perform the data
assimilation only on the sneeze emissions and ejecta. The masked images are
shown in Fig. 4. The backgrounds of all four images were set to white. Since
the observations do not include a water mass fraction associated with them, we
assumed a value of 0.01 (for sneezing) and 0.02 (for coughing) for pixels in black
and 0 for pixels in white, in order to complement the simulations.
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Data Assimilation: The algorithm has been implemented using Python 2.7.15
and tested on 3 high-performance nodes equipped with bi-Xeon E5-2650 v3
CPU and 250 GB of RAM. The execution time of the algorithm for assimilating
y5ms (Fig. 3a) in x5ms (Fig. 3c) is 0.38 s. The execution time of the algorithm
for assimilating y8ms (Fig. 3b) in x8ms (Fig. 3d) is 0.42 s. These values of the
execution times have been computed as mean values of 50 runs of the algorithm
on the same machine and the same data set and for different values of 0 < α < 1.

(a) t = 5ms, sneezing CFD simulation. (b) t = 8ms, coughing CFD simulations.

Fig. 5. Values of MSE, for the coughing and sneezing CFD simulations, computed with
respect to the observed data yt before xt (blue dots) and after xa

t (orange dots) the
assimilation process for different values of the parameter α. (Color figure online)

(a) t = 5ms, α = 0.9, coughing simulation (b) t = 8ms, α = 0.5, sneezing simulation

Fig. 6. Results of the assimilation of yt (observation) and xt (CFD simulation) for a
fixed t and a specific value of α

Figure 5 shows value of Mean Square Error (MSE) defined as MSE(x) =
‖x−xC‖2

L2

‖xC‖2
L2

where xC denotes a control variable. The MSE is here computed with

respect to the observed data before and after the assimilation process for different
values of the parameter α. As expected, for bigger values of α, the result of the
assimilation come closer to the observations and it presents a smaller value of
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(a) starting photo (b) y5ms

(c) xa
5ms for α =

0.9
(d) xa

5ms for α =
0.8

(e) xa
5ms for α =

0.7
(f) xa

5ms for α = 0.6
(g) xa

5ms for α =
0.5

(h) xa
5ms for α =

0.4

(i) xa
5ms for α = 0.3 (j) xa

5ms for α = 0.2
(k) xa

5ms for α =
0.1 (l) x5ms

Fig. 7. Results of the assimilation of y5ms in the CFD sneezing simulation x5ms for
different values of α

MSE. Figure 6a shows results of the assimilation process of the observation y5ms

in the CFD sneezing simulation x5ms for α = 0.9. The Figure shows also the
error computed as |x5ms − y5ms|; the error is here zero almost everywhere. This
confirms the results in Fig. 5b which show an improvement in accuracy for α =
0.9. Figure 6b shows results of the assimilation process of the observation y8ms in
the CFD sneezing simulation x8ms for α = 0.5. This choice of α means that the
observation and the CFD simulation have the same weight in the assimilation
process. In this case, the assimilation completely merges the data with an equal
balance between the two. Figure 7 shows how the DA technology merges the two
data for different values of 0 < α < 1. The results confirm that for small values
of α the solution xa of the assimilation process is closer to the CFD simulation.
The assimilation of those data can have a big impact on real case applications to
evaluate “safe” distances. In the presented case, for example, the CFD says that
the spread of the droplets after 5 ms has a radius of almost 4 cm with almost 6 cm
of distance from the mouth (Fig. 8b). The observation shows a smaller radius
near the mouth but the droplets reach 12 cm from the mouth (Fig. 8a). The
fusion of these pieces of information (Fig. 8c) is important in the evaluation of
safe distances for people interactions. In fact, the technology and the model we
presented are general and can be applied to other kinds of computational fluid
dynamic systems which simulate other scenarios.
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Fig. 8. Real world scenario: students in a classroom: (a) result from the real observa-
tion, (b) result from the CFD simulation, (c) result from the DA of observation and
CFD

6 Conclusions and Future Work

In this study, we implemented a 3D Variational DA model to merge real images
with numerical results of a physics simulation. In particular, we use a coughing
CFD simulation at varying inlet geometries and assimilate its results with exper-
imental results from [15] of sneezing and coughing. For this initial test case, we
have considered only the mouth as the source of ejecta. We have also hypothe-
sised that considering a sneeze simulation at a later timestep as compared to a
cough simulation may be able to provide comparable and interchangeable results
thereby also testing the versatility of the DA techniques. To this aim, we imple-
mented the DA model where an optimal parameter is introduced to balance the
weight of the error covariance matrices in the assimilation function. The ben-
efits of this study are highlighted by the demonstration of DA’s versatility in
effectively using the experimental sneezing results in the coughing CFD simu-
lation. This versatility can be leveraged to provide for a robust methodology
that can assist in modelling various COVID-19 spread scenarios which involve
ventilation airflows (indoors or outdoors) while also reserving the potential to
model crowd airflow dynamics. These simulations run High Performance Com-
puting infrastructure. The computing resources and the related technical sup-
port used for future work have been provided by CRESCO/ENEAGRID High
Performance Computing infrastructure and its staff http://www.cresco.enea.it/
englishforinformation.

Acknowledgements. This work is supported by the EP/V036777/1 Risk EvaLuatIon
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Abstract. The transmission of COVID-19 through a population
depends on many factors which model, incorporate, and integrate many
heterogeneous data sources. The work we describe in this paper focuses
on the data management aspect of EpiGraph, a scalable agent-based
virus-propagation simulator. We describe the data acquisition and pre-
processing tasks that are necessary to map the data to the different
models implemented in EpiGraph in a way that is efficient and compre-
hensible. We also report on post-processing, analysis, and visualization
of the outputs, tasks that are fundamental to make the simulation results
useful for the final users. Our simulator captures complex interactions
between social processes, virus characteristics, travel patterns, climate,
vaccination, and non-pharmaceutical interventions. We end by demon-
strating the entire pipeline with one evaluation for Spain for the third
COVID wave starting on December 27th of 2020.

Keywords: Epidemiological simulation · COVID-19 · Heterogeneous
data processing · Parallel tool

1 Introduction

The transmission of the COVID-19 virus through a population depends on
many factors that reflect the makeup of the community, the characteristics and
behaviours of the individuals, as well as the effect of the measures taken to curb
its propagation. The larger the community, the more difficult it becomes to predict
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the outcomes. To tackle this problem, we have implemented EpiGraph, a scalable,
parallel agent-based simulator. This paper centres on data management, which
turns out to be quite complex, given that EpiGraph implements several modules
that reproduce the different aspects which have an impact on the virus propaga-
tion. The interplay of these modules simulates a complex phenomenon that takes
many heterogeneous sources and data types as input by mapping them to the dif-
ferent parameters of the agent model. The aim of this work is two-fold, on one hand
we aim to contribute to a better understanding on the modelling for the epidemic
simulation to coronavirus pandemic, and on the other, we describe methodologies
for an efficient integration of heterogeneous data.

Figure 1 shows the different stages involved in EpiGraph simulation. The
input data is first obtained from multiple sources ranging from research papers,
to public and private databases. These data are highly heterogeneous and have
to be processed in a second stage using multiple technologies. Section 2 describes
in detail these two stages.

EpiGraph simulator

Vaccination model

NPIs

Social model

Epidemic model

Meteorological model
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Fig. 1. Stages involved in EpiGraph simulations.

The third stage of the figure corresponds to the simulation process. EpiGraph
is an agent-based simulator that includes multiple models that realistically repro-
duce the environment where the infection spreads. The Meteorological model
uses meteorological data to increase or reduce the disease’s R0s values based
on each particular weather condition. The Epidemic model is a compartmental
stochastic extended SEIR model. Rather than the more common analytic models
based on differential equations, Epigraph computes, for each infected individual,
the duration of the different compartments and the transition probabilities.

The social model reproduces the social habits of four different main group
types: students, workers, stay-at-home people, and elders. A group can represents
a certain number of individuals that interact during work hours - for instance,
groups are the students belonging to the same classroom, workers of the same
company. Note that an interaction involves the co-location in time at a distance
that is small enough to make disease transmission possible. EpiGraph model
interaction during work hours, school-time, family time, and leisure, including
multiple professions. See [16,24] for additional details. The risk of infection, given



Data Management in EpiGraph COVID-19 Epidemic Simulator 269

by the specific R0 value of the infected individual, also depends on two factors
that reduce the transmission risk: the vaccination of the susceptible individual
that is in contact with the infected one, and the use of non-pharmaceutical inter-
vention (NPIs), like the use of face masks. These factors are modelled by the
Vaccination and NPI models included in the simulator. Finally, the transporta-
tion model computes the number of travellers between the urban areas that are
being simulated based on the geographical distance between them.

There is a large amount of output data produced during the simulation (we
have simulated up to 200M individuals and 650 cities). In order to provide a com-
prehensive analysis of the results, a post processing stage (fourth stage) is carried
out. Then, the fifth stage uses this information to generate different statistical
data that summarize the simulation output and graphically displaying the results.
Section 2.3 describes more in detail the analysis and visualization stage.

2 Epigraph Data Management

This section provides a description of the data used and produced by the simu-
lator, as well as how these data are processed. Figure 2 shows the different data
sources involved in a simulation and how they interact with the different software
components. Epigraph consists of two main software pieces that are used in com-
bination with several auxiliary programs. The first component is the Scenario
generation in which the different urban areas used in the simulation are created.
Note that these urban areas only contain information about the characteristics
of the individual in the population and the way they interact with other individ-
uals. The input data sources (upper part in the figure) are geolocation provided
by web applications that are used to identify the geographic coordinates of each
city, its related NUTS code, as well as the distances between each pair of cities.
The second data source are the Eurostat, and Spanish-equivalent INE, that pro-
vide the demographic data used by the simulator. This information, depicted in
Sect. 2.1, includes among other, the population pyramid and the distribution of
employment related to each city. Two different social-network graphs are used
for generating the contact patterns of each individual. Finally, contact matrices,
extracted from public surveys, are used to provide statistical information of the
average number of contacts between individuals of certain age ranges.

The Epigraph generator is an MPI program written in C that creates, for each
urban area, the characteristics (age, profession, etc.) of all individuals belonging
to the same urban area as well as the related contact patterns1. We call this social
fabric, and we store it as sparse matrices, in which each node is an individual
and each edge is a time-dependent interaction with other person.

The social fabric created in the scenario generation stage is used as input
in the scenario simulation (lower part of Fig. 2). Note that this information can
be reused among multiple simulations when the social fabric (i.e. the simulated
urban areas) do not change. Regarding the data sources shown in the figure,
1 Note the EpiGraph employs static and dynamic contact patterns, and in this section

we are referring to the static one.
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Fig. 2. Overview of the data flow related to EpiGraph simulation. In the scenario
generation stage (upper part figure) the social fabric is generated and stored in files.
In a second stage this information is used in combination with other sources of data
(lower part figure) to perform the simulation.

the COVID-19 model parameters were taken from the existing literature. The
non-pharmaceutical interventions (NPIs) applied in each region and the coron-
avirus incidence were processed using Excel and Bash scripts. The vaccination
data is a combination of the different parameters used in vaccine efficacy models
and data for the existing doses administrated in each region. This information
was taken from the existing literature and government databases, respectively.
Finally, the meteorological data consists of a collection of meteorological mea-
surements (pressure, temperature, etc.) of each urban area that was processed
using Matlab.

All the previous data is used by EpiGraph to perform the scenario simulation.
The simulator output is a collection of trace files with the state of each individual
for each simulated time step in each urban area. Note that this information is
very rich in contents, because it includes, in combination with the individual
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characteristics (health, age, occupation, etc.), the actions taken or applied to the
person (vaccination, use of NPIs, travel, etc.) for each time step. The following
sections provide details about the data sources involved in the simulations and
how these data were processed.

2.1 Scenario Generation

Geographical Data. EpiGraph simulations comprises one or multiple urban
areas, that are identified by names, coordinates and NUTS codes. The first two
parameters are used by the transport model for calculating the distance between
the cities, i.e., the number of individuals in a population that travel between the
cities. The latter parameters is used to carry out database search.

– The city’s latitude and longitude were obtained from online databases, based
on these coordinates, and using Google Maps services. By means of these
services it was possible to obtain the distances of each city with the other
ones -which is needed by EpiGraph’s transport model-.

– NUTS codes represent a three-levels division of the European territory [14].
We use the happyGISCO tool [10] (which is an interface to Eurostat Gisco
web services) in combination with Python scripts to obtain the city NUTS
codes from their coordinates. The red arrow in Fig. 2 highlights that the city
NUTS codes are used by shell scripts for selecting the related demographic
data of each city.

Demographic Data. This set of data defines the characteristics of the sim-
ulated population. For Spain, the data was taken from the Spanish National
Statistics Institute (INE) [19] with an aggregation level of province. For the rest
of European countries, the source of data was EuroStat [11] with an aggregation
level of country.

Demographic data include the following attributes related to the social activ-
ity: percentage of the people for the collectives of students, elderly people,
workers and unemployed; Regarding the elderly people we distinguish the sub-
collectives that live in nursing homes or at home. The worker collectives are bro-
ken down by the following sub-collectives: industry, building, catering, services,
security forces, education, front-line-health, non-front-line-health, social-health
and transport. Note that each collective and profession has a different social
pattern. The household size is percentage of homes with one to five members
that is used to model the family contacts.

Demographic data also includes: the population and population pyramid
related to each simulated city; The percentage of essential workers; and the col-
lective group sizes that includes a normal distribution comprising the minimum
and maximum number of people involved in the same collective. For instance,
the number of students in the same classroom or the number of workers in a
company2.
2 Note that each collective and sub-collective has different group sized based on the

activity that they perform.



272 M. Guzmán-Merino et al.

Population-Mixing Data. This data is used to generate the social pattern,
i.e. the social interactions, between the simulated individuals. In epidemic sim-
ulations, population mixing is a crucial factor that determines the realism and
accuracy of the simulations. The sources of information for the social model are
described below:

– Social network graphs: we have employed the Enron Email Corpus graph [7]
(70,578 nodes and 312,620 edges) for generating the work, elderly and infor-
mal meetup contacts, and a Facebook graph [2] (250,000 edges and 3,239,137
edges) for the school contacts. We have developed in [16] a variation of the
Random Walk algorithm [18] which generates scaled sub-graphs from the
Enron and Facebook data-sets, with an specific average connectivity <k>
provided as input argument. This value of connectivity is obtained from the
contract matrices that are explained next.

– Contact matrices [6] are dense matrices in which each element Ai,j represents
average number of daily interactions between individuals of ages i and j.
The contact matrix repository includes data for various countries and some
regions of these countries, including sub-contact matrices for school, work, and
community contacts. These contact matrices were processed using Matlab and
Bash scripts. The school contact matrix was used to generate the student’s
school contacts (using the Facebook graph), with a number of interactions
per age specified by the matrix. In a similar way, the work contact matrix
was used to define the age distribution of the work, stay-at-home and elders
interactions. Finally, the community contact matrix was used to generate the
connectivity related to the leisure contacts.

– Daily Contacts of health professional with patients: according to the Spanish
National Health System, on average a health professional is in contact with
30 patients per day on average. Due to the lack of data, we have used this
value for all the simulated countries.

– Average contacts of health professional with COVID-19 patients. We estimate
this value considering, on one hand, 180,000 health professionals in Spain.
On the other, given a 10% of SARS-CoV-2 prevalence among the Spanish
population at the end of the second wave, and the number of suspects per
day, based on the number of diagnostic tests performed (1M per day, scaled by
1.3 in order to consider the tests not performed on suspects) will result in an
average of 4.2 contacts with suspects per day, and a estimation of 0.4 contacts
with COVID-19 patients per day, per health professional. According to [21]
the hazard ratio for front-line health professionals is 3.3, so we assume that
front-line health professional have a larger number of about 1.4 contacts with
COVID-19 patients per day. Data are stored in configuration files formatted
in xml.
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– Catering contacts per hour. In our experiments we consider three levels of
catering contacts: pre-pandemic, pandemic with a more reduced number of
contacts per hour, and lockdown with catering services closed. Related data
are stored in configuration files formatted in xml.

2.2 Scenario Simulation

SARS-CoV-2 Infection Data. These data were extracted from research
papers. They include the basic reproduction numbers (R0s) related to each dis-
ease stage, the state transition probabilities (for instance, the probability of an
infected individual of being asymptomatic), the hospitalized and death probabil-
ities, and the duration of each infection stage. Please refer to [24] for a detailed
description of these parameters.

Non-pharmaceutical Intervention Data. This category includes different
sources of heterogeneous data that record the NPIs imposed by each country
during the pandemic.

– Social distancing policies consider three distancing measures collected from
the Data on country response measures to COVID-19 database [9]: the closure
of schools, the closure of public spaces of any kind, and the workplace closure.
In this work we use the existing social distance measures for each European
country in a simulation starting on December 27th of 2020.

– Face mask use. EpiGraph models the use of both surgical and ffp2-grade face
masks, with different efficacies [24]. The results provided in this work are
related to the simulation period at the beginnings of 2021 in which the entire
European population was using mask outside the family circle.

– Sampling strategies [16] are modelled by the number of daily tests performed,
the minimum time between two consecutive tests carried out to the same
individual, the quarantine time, and the percentage of quarantine breakers,
i.e. the fraction of people who do not comply with social distancing during
quarantine time. These data was provided by the Spanish Ministry of Health.

COVID-19 Incidence. We use the ECDC’s weekly sub-national 14-day noti-
fication rate of new COVID-19 cases [9] for setting the initial percentage of
infected population in each urban area (this value is only used at the beginning
of the simulation). ECDC database provides sub-regional data for European
countries, so the cities are set with regional values -instead of average country
values-. These data are automatically loaded using bash scripts that leverage the
city’s NUTS code to identify the incidence region values in the ECDC database.

We obtain the seroprevalence information related to each country from [20].
This information, which is uploaded using bash scripts, is only needed for setting
the initial conditions at the beginning of the simulation.
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Vaccination Data. [23] presents the EpiGraph’s vaccination model in detail.
It includes both the vaccine effectiveness model, that depends on the individual
age and the SARS-CoV-2 variant, and the vaccination strategy that is simulated,
that defines aspects such as prioritization among target groups, and the time
between the administration of the doses. The vaccination model was obtained
from research papers and the vaccination strategy was provided by the Spanish
Ministry of Health3. Please see [23] for further details about this model.

Meteorological Data. In the current development of the simulator the mete-
orological data is provided by the Spanish Meteorological Agency (AEMET) [1]
and is only used for Spanish-level simulations. The input data consists of cvs
files with 10-min samples taken during one year by all the meteorological sta-
tions in Spain. Data was processed by Matlab using interpolation algorithms (for
estimating lost values) and collecting and processing the desired meteorological
parameters of temperature, pressure and humidity for each city in Spain [22].

2.3 Analysis and Visualization

EpiGraph generates simulation traces for each urban area, that contain, for each
time step, the number of individuals each state of the infection and additional
information as the number of vaccinated individuals (for each vaccine type and
time when the doses have been administrated), use of masks, number of quaran-
tined and hospitalized individuals, use of other NPI interventions. This informa-
tion is processed in parallel and is combined with the population demographic
and social data in order to generate both global and collective-specific statistics.
For example, it is possible to obtain for a certain urban area, how many catering
workers are infected or how many of the infected ones are vaccinated. In addi-
tion, we employ Matlab for providing overall statistics and graphical display of
the results by means of images and videos.

3 Evaluation

In this section we provide simulation results for a national scenario related to
Spain. The simulations were executed on the Tirant supercomputer, which is
made up of 336 nodes each with two Intel Xeon processors Sandy Bridge E5-
2670 and 32 GB RAM, interconnected with an Infiniband 40 Gbps network. In
this section we provide simulation results for Spain. We simulate the third wave
starting on December 27th of 2020.

This scenario simulates a population of 19,574,086 individuals related to the
63 most populated cities of Spain, using 109 processes. The simulation starts on
December 27th of 2020, which was the starting date for the COVID-19 vaccina-
tion campaign. It reproduces the Spanish COVID-19 vaccination campaign and
includes a given number of daily tests of 0.25% over the simulated population,

3 Note that the vaccination prioritization strategy is similar for all European countries.
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Fig. 3. Spain third wave: daily real (in red colour) and simulated (in blue colour) data
related to the number of infections of the COVID-19. Simulation starts on December
27th of 2020. (Color figure online)

and a percentage of positive tests of around 9% (which corresponds to the real
testing rate and detection efficacy). Figure 3 shows in red colour the daily real
reported cases for Spain and in blue colour the aggregated simulated cases for
the considered cities. Real cases have been scaled by a factor of 1.42 in order
to include the non-reported cases. Simulated cases represent the median of 10
different simulations.

A more detailed results of the simulation output is shown in Fig. 4 (left)
in which the results are broken down by Spanish provinces. We can observe
that both the real cases (in red) and the simulated ones (in blue) are similar
although there are some differences for some of them. Note the high complexity
of the problem that we are tackling. Figure 4 (left) shows the geographic location
of each one of the urban areas.

Note that this baseline simulation scenario is being used to evaluate different
alternative scenarios. Examples of them are the scenarios where we introduce
changes in the vaccination strategy (for instance, introducing changes in the
prioritization process). Other interesting question is to assess alternative NPIs.
For instance, evaluate school closing (instead of being opened, as has happened
in Spain), reducing the activity in the catering sector, lifting up the imposition
of using face masks in open spaces, etc.

4 Related Work

There are many approaches to model the COVID-19 propagation. A starting
approach is the SEIR model based on solving the differential equations like in
[4]. More complex versions of the SEIR model include, for instance, a quarantine
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Fig. 4. (Left) Simulations results of the Spanish third wave, broken down by commu-
nities. Red line represents the real infected and the blue ones the simulated. Simulation
starts on December 27th of 2020. (Right) Infected dispersion map of the 64 simulated
cities. (Color figure online)

class and a class of isolated (hospitalized) members [3,17]. The main limitation
of this approach is the lack of details in the simulation. An alternative way
of modelling the infection spread are the models based on machine learning
[15]. The work in [12], developed in the Imperial College of London introduces
an extension of a semi-mechanistic Bayesian hierarchical model that infers the
impact of interventions and estimates the number of infections over time. In
[13], the authors use the discrete renewal equation as a latent process for the
modelling of infections and propose a generative mechanism to connect infections
to death data. They use this joint Bayesian hierarchical model to produce short-
term predictions, and they apply their model to 11 different countries.

The European Centre for Disease Prevention and Control (ECDC) [8] has
built a Monte-Carlo based model of COVID-19 that they use for forecasting.
To model the behaviour of the people and how well they are responding to
the measures, they compare the predictions with Google data about mobile
phone use and they use the daily confirmed COVID-19 cases and daily deaths
to calibrate it. It is interesting to note that some models perform forecast, like
COFFEE model from Los Alamos National Laboratory [5], and other are also
capable of performing projections. A projection involves simulating alternative
hypothetical scenarios. In the case of EpiGraph, this tool belongs to the models
that perform projection.

5 Conclusion

This work describes the data management of EpiGraph, an agent-based simu-
lator for influenza and COVID-19 propagation. The approach followed in Epi-
Graph is to combine several models that reproduce the different aspects of the
environment where the disease spreads. This involves the simulation of complex
phenomena that are modelled by employing different, complex and heteroge-
neous data sources. This work provides a description of the data management
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involved in EpiGraph’s simulations including both the input data acquisition
and pre-processing, and the output data post-processing and analysis. In our
simulation framework, the use of Python and Bash scripts allows to quickly
gather and perform simple processing (as data filtering or, specific data gath-
ering) from many heterogeneous sources. Alternatively, Matlab was used for
computing more complex tasks. This tool permits using advanced processing
algorithms, because of the large number of toolboxes that includes, although its
performance (considered as execution time) is low. We used Matlab for tasks that
are usually performed once (like meteorological data interpolation) or for data
visualization where data that was already processed. C programming language
was employed for complex, computational-intensive tasks, like the social contact
generation (that involves processing Enron/Facebook graphs) and the simula-
tion processes. Given the particular characteristics of EpiGraph, it was possible
to divide this data-intensive processing into different tasks, related to different
sections of urban areas. In this way, several processing scripts can be simulta-
neously executed in order to speed-up the pre-processing and post-processing
stages. For both the scenario generation and the simulation, MPI was used to
execute the C program in parallel on multiple compute nodes.
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Abstract. Resilience to faults, errors, and failures in extreme-scale
high-performance computing (HPC) systems is a critical challenge.
Resilience design patterns offer a new, structured hardware and software
design approach for improving resilience. While prior work focused on
developing performance, reliability, and availability models for resilience
design patterns, this paper extends it by providing a Resilience Design
Patterns Modeling (RDPM) tool which allows (1) exploring performance,
reliability, and availability of each resilience design pattern, (2) offering
customization of parameters to optimize performance, reliability, and
availability, and (3) allowing investigation of trade-off models for com-
bining multiple patterns for practical resilience solutions.

Keywords: High-performance computing · Resilience · Design
patterns · Tool

1 Introduction

Resilience ensures successful execution of application running on HPC systems
with thousands of nodes prone to several software and hardware failures. Next
generation of HPC systems, contending for exaflops speed, will see more of these
software and hardware failures, requiring more rigorous resiliency techniques.
Recent unexpected issues in HPC systems such as bad solder, dirty power, and
early wear-out [10,17] calls for better resiliency measures.
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Resilience design patterns [12,13] present a structured hard- and software
design approach to tackle resilience problems in next generation HPC systems.
Prior work focus on (1) identifying and standardizing the resilience design pat-
terns in production high-performance computing (HPC) systems [11–13], (2)
developing a proof-of-concept prototype for demonstrating the resilience design
pattern concept using a fault-tolerant generalized minimal residual method (FT-
GMRES) linear solver with portable resilience [1,2], (3) describing performance,
reliability, and availability models for all structural patterns with flowcharts and
state diagrams, and (4) introducing initial Resilience Design Pattern Modeling
(RDPM) tool to study the characteristics of patterns [15].

This paper extends the previous work by (1) exploring each resilience design
pattern models with parameter values customization, and (2) advancing RDPM
tool to study combination of resilience design patterns.

2 Background

This section describes the metrics and resilience design patterns necessary to
understand models implemented in RDPM.

2.1 Terminology and Metrics

The glossary in this work is mostly derived from our prior work in computing
systems [3,13,14,19].

A fault is a flaw in a system that can result in an error. It may not cause
any error when hidden, but once activated it can result in an error that can put
a system in an illegal state. Once the error gets to the system service interface,
it becomes a failure and makes the system inconsistent.

Reliability of a system is the probability of it not running into a fault, error,
or failure 0 ≤ t (Eq. 1). The fault, error, or failure distribution is the system
reliability probability during 0 ≤ t (Eq. 2). Its relative possibility is probability
density function (PDF) f(t). The rate at which a system encounters fault, error,
or failure is λ. The mean-time to error (MTTE) is its anticipated time to error,
while the mean-time to failure (MTTF) is its anticipated time to failure (Eq. 3).

R(t) = 1 − F (t) =

∫ ∞

t

f(t)dt (1)

F (t) = 1 −R(t) =

∫ t

0

f(t)dt (2)

MTTF =

∫ ∞

0

R(t)dt (3)

A =
tpu

tpu + tsd + tud
(4)

MTBF = MTTF + MTTR (5)

A =
MTTF

MTTF + MTTR
(6)

=
MTTF

MTBF

Availability is the part of the time a system works correctly, with planned
uptime (PU) tpu, scheduled downtime (SD) tsd, and unscheduled downtime (UD)
tud (Eq. 4). Performance is the time in which a task is executed successfully,
including PU, SD, and UD. The mean-time to repair (MTTR) is the anticipated
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time to repair. It can be used with the MTTF to determine the mean-time
between failures (MTBF) (Eq. 5). Availability can be determined using MTTR,
MTTF, and MTBF (Eq. 6), if there is no SD.

2.2 Resilience Design Patterns

Resilience design patterns [12] specifically tackle the problem of handling faults,
errors, and failures in extreme-scale HPC. They help in finding the problem
induce by faults, errors, and failures and provide solutions to resolve them.
Architects and developers can use resilience design patterns catalog [13] to create
next generation resilient systems. Resilience design patterns allow investigation
of design options to study the cost-benefit trade-offs between performance, pro-
tection coverage, and power consumption of different resilience solutions.

The current resilience design patterns catalog has 21 behavioral patterns:
4 strategy, 7 architectural, and 15 structural (Fig. 1). It also contains 5 state
patterns. This paper extends the prior work [15], by introducing RDPM tool
to explore performance, reliability, and availability of each structural resilience
design pattern and investigate trade-off models for combining multiple patterns
for practical resilience solutions.

Fault Treatment Recovery Compensation

Fault
Diagnosis

Reconfiguration
Checkpoint
Recovery

Redundancy
Design

Diversity

M
on

ito
rin

g

P
re

di
ct

io
n

R
es

tr
uc

tu
re

R
ei

ni
tia

liz
at

io
n

R
ej

uv
en

at
io

n

R
ol

lb
ac

k

R
ol

lfo
rw

ar
d

F
or

w
ar

d 
E

rr
or

C
or

re
ct

io
n 

C
od

e

N
-M

od
ul

ar
R

ed
un

da
nc

y

N
-V

er
si

on
 D

es
ig

n

R
ec

ov
er

y 
B

lo
ck

Stateful

S
tr

at
eg

y
A

rc
hi

te
ct

ur
al

S
tr

uc
tu

ra
l

Behavioral State

E
nv

iro
nm

en
t S

ta
te

D
yn

am
ic

 S
ta

te

S
ta

tic
 S

ta
te

S
ta

te
le

ss

Self-Stabilization

Self-
Masking

N
at

ur
al

 T
ol

er
an

ce

S
el

f-
H

ea
lin

g

Self-
Correction

S
el

f-
A

w
ar

e

A
ct

iv
e/

S
ta

nd
by

Fig. 1. Classification of resilience design patterns

3 Related Work

Reliability modeling, analysis and optimization proposes three types of models
[18]: structural, state-space, and hierarchical. Structural models use block dia-
grams, reliability graphs, and fault trees to show the relation between systems.
State-space models use Markov chains to show dependency between systems.
Hierarchical models combine abstract structural models with Markov models to
balance the speed of analysis and model accuracy. Additionally, Trivedi et.al. [21]
propose performability analysis to model the interaction between performance
and failure recovery behavior.
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Rollback pattern represents Checkpoint/restart (C/R), which is one of the
main resiliency strategies in HPC. In C/R, most of the reliability and perfor-
mance models have been about optimum checkpoint interval [4,22] and its appli-
cation to systems with a non-constant MTBF [20], different failure distributions
[16], and multilevel C/R solutions [5].

In production HPC, modular redundancy is still not in use. Modular redun-
dancy research is mostly concentrated on solutions and models at the Message
Passing Interface (MPI) [7,9]. For the first time, Elliott et al. combine two differ-
ent resilience mechanisms, C/R and modular redundancy [6], to explore perfor-
mance and reliability trade-offs. This paper implements and further investigates
the performance, reliability, and availability trade-off models.

4 RDPM

RDPM tool simplify the modeling of performance, reliability, and availability of
patterns and their combination. Each pattern has its own models and parame-
ters, which makes it hard to understand the performance, reliability, and avail-
ability for different parameters values under different implementations. Things
get more complex when multiple patterns are combined horizontally or vertically
for resiliency. The RDPM tool allows calculation of performance, reliability, and
availability with ease for individual or combined patterns.

The Python-based RDPM1 tool allows calculation, plotting, and storing of
performance, reliability, and availability values for patterns and patterns combi-
nation. It has five components - RDP, Extract, Plot, CSV, and Patterns. RDP
is the main class. It allows extraction of parameters from XML file and calcu-
lation, storing, and plotting of performance, reliability, and availability values.
Extract allows extraction of individual pattern parameters from XML2 file. Pat-
terns calculate the performance, reliability, and availability values and pass to
Plot to draw line/3D scatter plot. The calculated values are also passed to CSV
for storing as CSV files.

4.1 Structural Patterns

Next, we will define the parameters, calculate performance, reliability, and avail-
ability values, and plot it for all the structural patterns. The performance, reli-
ability, and availability models for all the structural patterns can be found in
[15].

Monitoring: The monitoring pattern uses a monitoring system to recognize a
defects or anomalies. Figure 2 demonstrates performance, reliability and avail-
ability of the Monitoring pattern. The task’s execution time TE is 168 h (7 days),
MTTF M is 24–168 h (1–7 days). tm, Ta, and Tn is 1 s. Reliability remains low
with wrong results as the pattern just monitor the system.
1 https://code.ornl.gov/6hk/rdpm.
2 https://code.ornl.gov/6hk/rdpm/-/blob/master/xml/patterns.xml.

https://code.ornl.gov/6hk/rdpm
https://code.ornl.gov/6hk/rdpm/-/blob/master/xml/patterns.xml


RDPM: An Extensible Tool for Resilience Design Patterns Modelling 287

(a) Performance (b) Reliability (c) Availability

Fig. 2. Monitoring pattern performance, reliability, and availability

Prediction: The prediction pattern uses a monitoring system to recognize the
potential of future defect or anomaly. Figure 3 demonstrates performance, reli-
ability and availability of the Prediction pattern. The task’s execution time TE

is 168 h (7 days), MTTF M is 24–168 h (1–7 days). tmon, tf , tr, and tmod is 2 s.
Tn is 1 s. Reliability remains low with wrong results as the pattern just monitor
the system to predict potential defect or anomaly.

(a) Performance (b) Reliability (c) Availability

Fig. 3. Prediction pattern performance, reliability, and availability

Restructure: The restructure pattern changes the interconnection between the
systems to reduce the impact of a fault, error, or failure. Figure 4 demonstrates
performance, reliability and availability of the Restructure pattern. The task’s
execution time TE is 168 h (7 days), MTTF M is 24–168 h (1–7 days). td, Ti,
and Tr is 2 s. The MTTF Mu of the unprotected part of the system is 720 h
(30 days). Reliability increases as the pattern resolve the fault, error, or failure.

Rejuvenation: The rejuvenation pattern restores the affected system to reduce
the impact of a fault, error, or failure. Figure 5 demonstrates performance, reli-
ability and availability of the Rejuvenation pattern. The task’s execution time
TE is 168 h (7 days), MTTF M is 24–168 h (1–7 days). td and Tl + Tr is 2 s. Te,f

is 0.5 h. Ts is 1, 5 and 10 min. The MTTF Mu of the unprotected part of the sys-
tem is 720 h (30 days). Restoring the affected system results in higher execution
time.
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(a) Performance (b) Reliability (c) Availability

Fig. 4. Restructure pattern performance, reliability, and availability

(a) Performance (b) Reliability (c) Availability

Fig. 5. Rejuvenation pattern performance, reliability, and availability

Reinitialization: The reinitialization pattern restores the affected system to
its initial state to reduce the impact of a fault, error, or failure. Figure 6 demon-
strates performance, reliability and availability of the Reinitialization pattern.
The task’s execution time TE is 168 h (7 days), MTTF M is 24–168 h (1–7 days).
td, Ti, and Tr is 2 s. The MTTF Mu of the unprotected part of the system is 720 h
(30 days). Execution time increases significantly as the application executes from
the start whenever required.

Rollback: The rollback pattern restores the system to the last checkpoint
before a fault, error, or failure. Figure 7 demonstrates the performance, relia-
bility, and availability of the Rollback pattern. The task’s execution time TE

is 168 h (7 days), MTTF M is 24–168 h (1–7 days), the time to save system
state/progress to storage Ts is 1, 5 and 10 min, Tl +Tr is 1 s, and the MTTF Mu

of the unprotected part of the system is 720 h (30 days). Faster storage results
in better performance, reliability, and availability.

Rollforward: The rollforward pattern restores the system to the time when a
fault, error, or failure. Figure 8 demonstrates the performance, reliability, and
availability of the Rollforward pattern. The task’s execution time TE is 168 h
(7 days), MTTF M is 24–168 h (1–7 days), the time to save system state/progress
to storage Ts is 1, 5 and 10 min, Tl + Tr is 1 s, and the MTTF Mu of the
unprotected part of the system is 720 h (30 days). Rollforward results in better
performance, reliability, and availability than rollback as the system restores to
the point when a fault, error, or failure occur.
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(a) Performance (b) Reliability (c) Availability

Fig. 6. Reinitialization pattern performance, reliability, and availability

(a) Performance (b) Reliability (c) Availability

Fig. 7. Rollback pattern performance, reliability, and availability

Forward Error Correction Code: The Forward Error Correction Code
(FECC) pattern applies redundancy to system state or resources to reduce the
impact of a fault, error, or failure. Figure 9 demonstrates performance, reliability
and availability of the Forward Error Correction Code pattern. The task’s execu-
tion time TE is 168 h (7 days), MTTF M is 24–168 h (1–7 days). Ta,ten + td, and
Tc is 2 s. The MTTF Mu of the unprotected part of the system is 720 h (30 days).
Redundancy allows better performance, reliability, and availability than other
patterns discussed till now. However, reliability is still low as the pattern doesn’t
employ redundancy fully.

Active/Standby: The Active/Standby pattern applies redundancy in the form
of N functionally identical replicas to reduce the impact of a fault, error, or
failure. Figure 10 demonstrates the performance, reliability and availability of
the Active/Standby pattern. The task’s execution time TE is 168 h (7 days). To
demonstrate performance, redundancy N is 1, 2 or 3 and in time and space, α
between 0 and 1, and MTTF M is 24–168 h (1–7 days). Ta is 1 s, ti + td + tr is
2 s, and Tf is 1 min. To demonstrate reliability and availability, redundancy N is
1, 2 or 3 and in space with α = 1, the MTTF M is 48–336 h (2–14 days in 1 day
increments). Reliability increases significantly but redundant systems overhead
increases execution time significantly.

N-modular Redundancy: The N-modular redundancy pattern applies redun-
dancy in the form of N functionally identical replicas to maintain continuous
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(a) Performance (b) Reliability (c) Availability

Fig. 8. Rollforward pattern performance, reliability, and availability

(a) Performance (b) Reliability (c) Availability

Fig. 9. Forward Error Correction Code pattern performance, reliability, and availability

(a) Performance (b) Reliability (c) Availability

Fig. 10. Active/Standby pattern performance, reliability, and availability

correct operation of a system. Figure 11 demonstrates the performance, reliabil-
ity and availability of the N-modular Redundancy pattern. The task’s execution
time TE is 168 h (7 days). To demonstrate performance, redundancy N is 1, 2
or 3 and in time and space, α between 0 and 1, and MTTF M is 24–168 h (1–7
days). Ta is 1 s, ti + to is 1 s, and Tr is 1 min. To demonstrate reliability and
availability, redundancy N is 1, 2 or 3 and in space with α = 1, the MTTF M is
48–336 h (2–14 days in 1 day increments). Performance, reliability, and availabil-
ity remain same as the active/standby pattern as the parameters remain almost
same.

N-Version Design: The N-version design applies redundancy as N function-
ally equivalent alternate system implementations to handle a fault, error, or
failure. Figure 12 demonstrates the performance, reliability and availability of
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(a) Performance (b) Reliability (c) Availability

Fig. 11. N-modular Redundancy pattern performance, reliability, and availability

(a) Performance (b) Reliability (c) Availability

Fig. 12. N-Version Design pattern performance, reliability, and availability

the N-Version Design pattern. The task’s execution time TE is 168 h (7 days).
To demonstrate performance, redundancy N is 1, 2 or 3 and in time and space,
α between 0 and 1, and MTTF M is 24–168 h (1–7 days). Ta is 1 s, ti + to is
1 s, and Tr is 1 min. To demonstrate reliability and availability, redundancy N
is 1, 2 or 3 and in space with α = 1, the MTTF M is 48–336 h (2–14 days
in 1 day increments). Performance, reliability, and availability are same as the
active/standby pattern as the parameters are almost same.

Recovery Block: The recovery block pattern applies redundancy as a func-
tionally equivalent alternate system implementation encapsulated in a recovery
block. Figure 13 demonstrates the performance, reliability and availability of
the Recovery Block pattern. The task’s execution time TE is 168 h (7 days). To
demonstrate performance, redundancy N is 1, 2 or 3 and in time and space, α
between 0 and 1, and MTTF M is 24–168 h (1–7 days). Ta is 1 s, ti+to is 1 s, and
Tr is 1 min. To demonstrate reliability and availability, redundancy N is 1, 2 or
3 and in space with α = 1, the MTTF M is 48–336 h (2–14 days in 1 day incre-
ments). Performance, reliability, and availability are same as the active/standby
pattern as the parameters are almost same.

Natural Tolerance: The natural tolerance pattern uses implicit error/failure
detection and self-masking to reach a correct system state from an illegal system
state. Figure 14 demonstrates the performance, reliability and availability of the
Natural Tolerance pattern. The task’s execution time TE is 168 h (7 days). To
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(a) Performance (b) Reliability (c) Availability

Fig. 13. Recovery Block pattern performance, reliability, and availability

(a) Performance (b) Reliability (c) Availability

Fig. 14. Natural Tolerance pattern performance, reliability, and availability

demonstrate performance, redundancy N is 1, 2 or 3 and in time and space,
α between 0 and 1, and MTTF M is 24–168 h (1–7 days). Ta is 1 s, td is half
second, and Tm is 30 s. To demonstrate reliability and availability, redundancy
N is 1, 2 or 3 and in space with α = 1, the MTTF M is 48–336 h (2–14 days in
1 day increments). Performance, reliability, and availability improve a little from
the active/standby pattern as the parameters Tm improve by 30 s as compared
to Tf .

Self-healing: The self-healing pattern uses explicit error/failure detection and
self-correction to reach a correct system state from an illegal system state.
Figure 15 demonstrates the performance, reliability and availability of the Self-
Healing pattern. The task’s execution time TE is 168 h (7 days). To demonstrate
performance, redundancy N is 1, 2 or 3 and in time and space, α between 0 and
1, and MTTF M is 24–168 h (1–7 days). Ta is 1 s, td is half second, and Tc is
30 s. To demonstrate reliability and availability, redundancy N is 1, 2 or 3 and in
space with α = 1, the MTTF M is 48–336 h (2–14 days in 1 day increments). Per-
formance, reliability, and availability are same as the natural tolerance pattern
as the parameters remain almost same.

Self-aware: The self-aware pattern uses explicit error/failure detection and self-
correction to reach a correct system state from an illegal system state. Figure 16
demonstrates the performance, reliability and availability of the Self-Aware pat-
tern. The task’s execution time TE is 168 h (7 days). To demonstrate perfor-
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(a) Performance (b) Reliability (c) Availability

Fig. 15. Self-Healing pattern performance, reliability, and availability

(a) Performance (b) Reliability (c) Availability

Fig. 16. Self-Aware pattern performance, reliability, and availability

mance, redundancy N is 1, 2 or 3 and in time and space, α between 0 and 1,
and MTTF M is 24–168 h (1–7 days). tm, Ta, and To is 1 s. Tc is 30 s. To demon-
strate reliability and availability, redundancy N is 1, 2 or 3 and in space with
α = 1, the MTTF M is 48–336 h (2–14 days in 1 day increments). Performance,
reliability, and availability remain same as the natural tolerance pattern as the
parameters remain almost same.

4.2 Pattern Combinations

Multi-level Rollback: Recent work [8] detailed prior solutions and proposed a
new approach for offering a separate resilience strategy for computation offloaded
to a general-purpose computing graphics processing unit (GPGPU) accelerator.
While the application itself is employing the Rollback pattern (level l = 0),
an additional Rollback pattern is employed for the offloaded computation (level
l = 1) to contain and mitigate GPGPU errors and failures using a more efficient
strategy. The GPGPU computation is rolled back to a locally stored checkpoint
upon an error or failure. The performance, reliability, and availability are calcu-
lated based on the parameters for each pattern, making the GPGPU resilience
pattern a subsystem of the application resilience pattern.

While the application is waiting for the offloaded computation to finish, it
is assumed that no other computation takes place and there is no need to save
system state and progress to storage at level 0. Therefore, the application’s failure
free performance Tf=0 and performance under failure T are composed of the
corresponding performances at level 0 and 1 (Eqs. 7 and 8). The reliability R(t)
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(a) Performance (b) Reliability (c) Availability

Fig. 17. Multi-level Rollback performance, reliability, and availability

can be obtained using the performance under failure T and the failure rate λu

(or MTTF Mu) of the unprotected part of the system (Eq. 9). The availability A
can be calculated using the task’s execution time without any resilience strategy
TE and the performance under failure T (Eq. 10).

Tf=0 = Tf=0,l=0 + Tf=0,l=1 (7)
T = Tl=0 + Tl=1 (8)

R(t) = e−λuT = e−T/Mu (9)

A =
TE

T
=

TE

Tl=0 + Tl=1
(10)

Figure 17 shows the performance, reliability and availability of 2-level Roll-
back using the parameters from in Fig. 7 with 80% of the task’s execution time
TE offloaded to a GPGPU, the time to save GPGPU state/progress to node-
local storage Ts,l=1 of 1 s and the time to load it and to roll it back the same.
Multi-level rollback provides better performance, reliability, and availability than
normal rollback pattern.

Rollback and N-modular Redundancy: The recent work OpenMP tar-
get offload resilience [8] also considered employing the N-modular Redundancy
pattern. In this case, GPGPU errors and failures are detected and potentially
corrected using redundancy. The performance, reliability, and availability are
calculated similarly to the multi-level Rollback based on the parameters for each
pattern (Eqs. 7–10).

Figure 18 shows the performance, reliability, and availability of this solution
using the parameters from Fig. 7, where 80% of TE offloaded to a GPGPU.
GPGPU redundancy N is 1, 2, or 3 and in time (α = 1), the times to replicate
the input Ti and to compare the outputs To are 0. The time to reboot a GPGPU
and use it again for redundancy Tr and the MTTR R are 1 min. Inclusion of
redundancy further improves performance, reliability, and availability than roll-
back pattern.
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(a) Performance (b) Reliability (c) Availability

Fig. 18. Rollback and N-modular Redundancy performance, reliability, and availability

5 Conclusion

We introduced the RDPM tool, which allows exploring the design space for
resilience solutions in HPC systems. It applies the resilience design pattern
concept and models the performance, reliability and availability of resilience
solutions. The parameterized resilience patterns can be employed horizontally,
i.e., covering different parts of the system, or vertically, i.e., covering subsets of
each other. The tool is easily extensible to new patterns and provides results in
plots and CSV files. Future work involves extending the RDPM tool with power
consumption models. The ultimate goal of this longer-term effort is to enable
hardware/software codesign for performance, resilience and power consumption.
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Abstract. Increasing the size and complexity of modern HPC systems
also increases the probability of various types of failures. Failures may
disrupt application execution and waste valuable system resources due
to failed executions. In this work, we explore the effect of node failures
on the completion times of MPI parallel jobs. We introduce a simulation
environment that generates synthetic traces of node failures, assuming
that the times between failures for each node are independently dis-
tributed, following the same distribution but with different parameters.
To highlight the importance of failure-awareness for resource allocation,
we compare two failure-oblivious resource allocation approaches with
one that considers node failure probabilities before assigning a partition
to a job: a heuristic that randomly selects the partition for a job, and
Slurm’s linear resource allocation policy. We present results for a case
study that assumes a 4D-torus topology and a Weibull distribution for
each node’s time between failures, and considers several different traces
of node failures, capturing different failure patterns. For the synthetic
traces explored, the benefit is more prominent for longer jobs, up to
82% depending on the trace, when compared with Slurm and a failure-
oblivious heuristic. For shorter jobs, benefits are noticeable for systems
with more frequent failures.

Keywords: Impact of node failures on MPI parallel jobs · Fault-aware
resource allocation · Synthetic node failure trace generation

1 Introduction

HPC systems grow in size to meet the increased demand for both capability and
capacity. At the same time, heterogeneity and complexity also increase to keep
pace with application demand for performance. Several studies have outlined
that the higher scale and complexity of HPC systems comes at the cost of more
frequent failures [1,15,20,23]. Furthermore, larger scale and more complex sys-
tems will introduce more complex software stacks to exploit their resources, with
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more frequent software-related errors [4,23]. To further motivate the importance
of fault-tolerance, authors in [4,15,23] argue that reliability, along with resource
management and energy efficiency, will be among the main obstacles towards
robust exascale. Error resilience has been recognized to be one of the major tech-
nical research priorities for the next years, in the European Technology Platform
for HPC (ETP4HPC) strategic research agenda [8].

By combining failure logs and traces with workload logs, several studies have
outlined the impact of various system failures on system resource utilization.
Authors in [5] report that in a large-scale HPC system, 20% or more of the
computing resources are wasted due to failures and recovery. For one of Google’s
multipurpose clusters, it was found that a large fraction of time is spent for
jobs that do not complete successfully [4]. The authors in [18] show that system
related errors cause an application to fail once every 15 min. What is more,
failed applications, although few in number, account for approximately 9% of
total production hours. Authors in [20] examine node failure rate in the dataset
collected during 1995–2005 at LANL. The number of failures per year per system
can be as high as 1100, implying that an application requiring the entire cluster
is expected to fail more than two times per day.

Therefore, node failures in a HPC system need to be considered both from the
point of view of job completion times (a main concern for application owners) and
from the point of view of potential resource wastage (one of the main concerns
of system owners and operators). To mitigate the impact of failures, different
approaches have been proposed including checkpointing [13,25,27], scheduling
methods [3,12] and methods for resource allocation and resource management
[9,10,17,30]. For evaluating the effectiveness of these approaches, failures traces
and logs acquired from a real HPC system or cluster have been used. However,
traces constitute merely a snapshot of a real system, corresponding to a specific
size and period of operation. Moreover, several studies have shown that failures
are affected by the workload [21,28].

It is therefore important to be able to explore the efficiency of fault tolerance
methods under different failure conditions in a controllable and configurable
manner. In this work, we present a simulation environment based on a synthetic
trace generator for node failures. Further to the evaluation of fault tolerance
methods, this work is a tool for system operators to assess the cost of failures,
expressed in node-hours lost, either due to failure-oblivious resource allocation,
or the overhead of fault-tolerance methods. We assume that for each node time-
to-failure (TTF) is independently distributed, with all nodes following the same
distribution, but with different parameters for each node.

To highlight the importance of failure aware resource allocation, we compare
three different approaches with two of them being failure oblivious. The first one
is based on a simple heuristic that searches for different contiguous and rectangu-
lar partitions of a torus topology. Then, based on the findings of [11], we estimate
for each such partition the probability of failing during the upcoming job. This
approach is compared against Slurm’s [29] linear resource allocation, and to a
heuristic that selects a partition for each job in a random manner. Both of these



300 I. Vardas et al.

comparison baselines are oblivious to the probability of node failures. Finally, we
illustrate the potential benefits of the failure-aware resource allocation approach
with a set of simulation results for a case study concerning a 4D-torus topology
with 4096 nodes. The mean time between failures for each node is independently
distributed, and follows the Weibull distribution [10,11]. The scale and shape
parameters of the corresponding distribution for each node are determined by
two separate Gaussian distributions. Results derived with our simulation envi-
ronment suggest that the benefit achieved by a failure-aware resource allocation
approach depends on the system failure pattern. Specifically, the benefit is more
prominent for larger jobs (job duration ≥24 h) in systems with less frequent fail-
ures. This benefit is up to 82%, depending on the simulated trace. For shorter
jobs, the benefit becomes notable only on systems with more frequent failures.

2 Simulation Environment

In this section we describe our simulation environment and its main components.
Fail-stop errors cause the execution of an application to terminate due to a
hardware or software fault, whereas silent errors can impact the result of an
application without causing termination. In this paper, we focus on Fail-stop
type of failures. Moreover, with the term failure we refer hardware- or software-
related deviation from nominal operating behavior. We further assume that a
node restart is enough to fix transient failures, and that nodes fail independently
of each other. Our simulation environment is not meant to offer the same level
of simulation accuracy like Simgrid [2] or xSim [7]. In the current version we
do not rely on any networking or processor model for deriving an accurate job
duration; instead, we assume that job durations are known and explore three
resource allocation approaches under different failure patterns. Job durations
can be specified either through a distribution a post-processed trace.

Fig. 1. Synthetic failure generation process.



Exploring the Impact of Node Failures 301

2.1 Generator of Node Failure Traces

The key component of our simulated environment is the node failure trace gener-
ator. It assumes that the time to failure (TTF ) for each node are independently
distributed and characterized by the same distribution, but with each node
having different distribution parameters. The synthetic node failure generator
assigns the parameters to each node’s TTF distribution. Each such parameter
value is a sample drawn from a normal distribution. The main idea behind this
assignment is that appropriate choices for the mean and standard deviation of
the normal distribution lead to a predictable range of generated parameters for
the TTF distribution of each node, and provide a degree of control on the way
in which node parameters are distributed within this range. To make the above
failure trace generation method more clear, we use as an example the case study
presented in Sect. 3. We assume a topology of N nodes where TTF for node i is
modeled with a Weibull distribution Wi ∼ (λi, ki), where λi denotes the scale and
ki the shape of the corresponding distribution, respectively. Figure 1 summarizes
the trace generation flow for this case study. In step 1, scale and shape parameter
values are assigned to each node’s TTF distribution. Gλ ∼ (μλ, σλ) denotes the
normal distribution from which samples are drawn to provide the scale param-
eter. The corresponding distribution for the shape parameter is Gk ∼ (μk, σk).
In the second step, K different failure times are generated for each node. The
jth failure time for node i is estimated as ti,j = ti,j−1 + wi,j where wi,j is the
jth sample of Wi ∼ (λi, ki) and t(i, 0) = 0. In the third step, all different ti,j
are merged into a single time-series and then sorted to derive the time of system
failures, denoted as (ts,1, ts,2, . . .).

2.2 Resource Allocation Alternatives

The second major component of the simulation environment presented in this
paper consists of the different resource allocation approaches. The first, denoted
as Slurm-linear, is the resource allocation implemented by Slurm’s linear selec-
tion plugin [22]. Nodes are arranged in an one-dimensional array, and for a
request for k nodes with no overcommit requirement, the first k consecutive
available nodes are allocated to the job. The other two approaches are specific
to 4D-torus topologies, and are based on a heuristic that extracts a contiguous
and rectangular partition from the 4D-torus topology. Its goal is to avoid con-
tention from other partitions. If static routing is further assumed, this heuristic
also ensures that failures of nodes that do not belong to the selected partition
will not affect any job running on that. In the current version of the simulation
environment, we rely on a simple heuristic for extracting such a partition. How-
ever, more elaborate approaches that also consider fragmentation may also be
used [14,19]. The second resource allocation approach implemented is random
partition selector (RPS). When emulation of a new job’s execution is needed,
our heuristic populates a list of available contiguous and rectangular topology
partitions, and then RPS selects one of them randomly, without consideration of
any information or estimate about node failure probabilities. Both Slurm-linear
and RPS are failure-oblivious approaches, and serve as comparison baselines.
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The third approach implemented, will be denoted as failure aware partition
selection - FAPS hereafter. It is based on the finding of [11] and consists of
two steps. First, it utilizes the aforementioned heuristic to get a list of available
contiguous and rectangular torus partitions, with Pi denoting the ith partition.
In the second step, the goal is to select the partition that is the least probable
to fail during that the execution duration of the job being scheduled. Let us
assume a topology of n = 1...N nodes where resources needed to be allocated
for the jth with duration dj . As per the case study presented in Sect. 3, we
assume that each node’s TTF follows a Weibull distribution. For simplicity, let
t denote the uptime of the nth node after its last failure. Following the findings
of [11], the probability that a node n will fail in dj given that it has survived
until t is expressed through Eq. 1, where kn denotes the shape parameter of the
nth node’s TTF distribution and λn the corresponding scale parameter.

pf
n = P (T ≤ dj + t|t) = 1 − e

tkn−(dj+t)kn

λn
kn (1)

Then, the probability of a partition Pi failing in dj is derived via Eq. 2, which
enables the proposed resource allocation approach to identify the partition with
the lowest failure probability (argmin

i
P f

i ).

P f
i = 1 −

N∏

n=1

(1 − pf
n) (2)

2.3 Impact of Node Failures to a Batch of MPI Parallel Jobs

The third component of the simulation environment is the logic that schedules
jobs for execution. This component checks if the synthetic node failure generator
has generated any fault on any node that belongs on the partition assigned to
that job. The input to this component is a batch of jobs, where jobs durations
are assumed to be known. More precisely, job durations can be specified through
a post-processed trace of a distribution. In the current version of our simulation
environment, no concurrent job execution is emulated. Instead, each job jk+1

is assigned resources and scheduled for execution only after job jk completes.
When a node failure occurs at some point in time, the uptime of that node is set
to 0. If this node is assigned to the job whose execution is currently emulated,
then this job is marked as aborted. When the job is aborted, both RPS and
FAPS rerun their corresponding scheduling logic to determine a new partition
to assign the job to.

3 Evaluation Case Study

In this section we present a case study of a system consisting of 4096 nodes,
arranged in an 8× 8× 8× 8 4D-torus topology. The TTF of every node fol-
lows a Weibull distribution, with different parameters for each node. We use
our simulation environment to compare the time required to complete a batch
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of jobs in the presence of failures, when resources are allocated according to
the approaches discussed in Sect. 2: the two failure-oblivious ones (Slurm-linear,
RPS ), and the failure-aware approach FAPS. We consider different simulation
scenarios by using different parameters for the normal distributions depicted in
Fig. 1, thus controlling the combination of shape and scale parameters assigned
to the Weibull distribution characterizing the TTF of each node.
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Fig. 2. Impact of shape on node TTF.

Table 1. Normal distribution parameters for
scale & shape, and resulting MTTF (hours).

Scale Shape Avg node System

tid μλ σλ μk σk MTTF MTTF

1 5800 0.1 8 0.1 5462 1.37

2 5800 0.1 32 0.1 5700 1.42

3 8500 0.1 8 0.1 8004 2.04

4 8500 0.1 32 0.1 8345 2.13

5 16000 0.1 8 0.1 15068 4.04

6 16000 0.1 32 0.1 15726 4.27

7 22000 0.1 8 0.1 20718 5.36

8 22000 0.1 32 0.1 21623 5.72

Figure 2 shows how the corresponding shape parameter affects a node’s TTF,
with the scale value set to a value corresponding to 2160 h (i.e. uptime of approx-
imately 3 months). Each curve corresponds to a different pdf. As shape values
become larger, a single node’s MTTF approaches the corresponding scale value.
Each of the 8 main rows in Table 1 corresponds to a different node failure trace.
For each trace, we derive scale and shape parameters for the TTF distribution
of 4096 nodes following the process depicted in Fig. 1. Columns 2 and 3 are,
respectively, the mean and standard deviation of the normal distribution that
generates the values for the scale parameter of each node. Columns 4 and 5 are
the mean and standard deviation parameters of the normal distribution that
generates the corresponding shape values for each node. Each pair of scale and
shape values defines the parameters of each node’s TTF following the Weibull
distribution. Following the process described in Sect. 2.1, time series of failures
for each node are generated. Merging and sorting the time series of all nodes,
for a period of 10 years, allows us to extract the system-wide MTTF. For the
experiments discussed in the rest of this section, for both normal distributions
we set the standard deviation to a rather small number compared to the mean,
resulting in an homogeneous cluster of nodes (in terms of their scale and shape
parameters). For the normal distribution that generates scale values, we have
used two alternative settings for the mean: 5800 and 22000. These settings cor-
respond to average scale values over all nodes. From the first two traces in
Table 1, we notice that, when the average scale value is 5800, the corresponding
average MTTF over all nodes is 5700 for the higher average shape value, and
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5462 for the setting of 8. So, the average scale value used in the first normal dis-
tribution, when combined with large shape values, directly affects each node’s
MTBF. Another observation is that, although average MTBF over all nodes is
as high as 5800 in the first two traces, the corresponding system wide MTTF to
failure is 1.37 h, suggesting that, there is at least one node failure every 1.37 h.
Even when the average node MTBF is 21623 h which corresponds to one failure
per 2.46 years approximately, the system wide MTTF is 5.72 h.

Next, we present results for each one of the simulated scenarios explored.
The description of each simulated scenario consists of the following information:
(a) number of jobs in the batch, (b) job duration for each job instance, (c)
job size in terms of number of processes, and finally (d) a synthetic trace of
failures. For the case study presented in this section, we use one of the eight
traces listed in Table 2. For each simulated scenario, before emulating each job’s
execution, a resource allocation is carried out using the three methods described
in Sect. 2.2. To determine whether a job execution fails, we extract all nodes
that belong to the partition assigned to that job, for each allocation method.
If the corresponding failure trace indicates a failure for one or more nodes, the
job is considered aborted. Then, batch completion time is augmented by tj,i +rt
where rt denotes the node repair time and tj,i job’s j execution time until the
failure. After a node is rebooted and considered fixed, its uptime is reset to 0.
The aborted job is rescheduled for execution, i.e. the resource allocation step is
repeated until its execution completes. For the simulation results presented here,
the topology size is set to 4096 nodes, arranged in an 8× 8× 8× 8 4D-torus. Job
size is set to 256 processes, and we assume batches of homogeneous jobs, i.e. jobs
of the same duration. However, different simulation scenarios are possible with
different job sizes and durations drawn from traces. Batch size is set to 1000
jobs, and we consider 5 different job durations: 4, 8, 24, 48, and 72 h. Repair
time (rt) for a failed node is set to 9 min. The simulation environment discussed
though, also allows to specify a distribution for deriving node repair times.
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Fig. 3. Completion time for 1000 jobs, 256 processes, Scale = 22000.
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Fig. 4. Completion time for 1000 jobs, 256 processes, Scale = 5800.

Due to space limitations, we focus only on the traces that resulted in the lower
and higher system MTTF (denoted as SMTTF ). These 4 traces are enough
to describe the key patterns observed in all our simulated scenarios. A com-
mon observation for Figs. 3a, 3b is that for the shorter duration jobs emulated
(4, 8, 24 h), the benefit of the failure aware resource allocation (FAPS ), in terms
of batch completion time, is rather limited. More on that, for the scenario in
Fig. 3a that corresponds to an average shape value of 8, it is marginally worse
than the two failure-oblivious approaches (Slurm-linear, RPS ). There are two
main reasons for that. First, for larger scale values of the node’s TTF Weibull dis-
tribution, failures become more rare over time, and thus more shorter jobs may
fit between two successive system failures. Moreover, a batch of 1000 72-h long
jobs, runs for longer and thus, more errors accumulate during the batch’s lifetime
on the cluster. In such scenarios, there is more room for a failure-aware approach
to show benefit. Figures 3a, 3b also show that with longer jobs the failure aware
resource allocation approach offers notable benefit. For the case of a batch of
48 h long jobs and an average shape of 32, it achieves 1.4% and 1.6% lower batch
completion when compared to Slurm-linear and RPS, respectively. Although
this reduction might not seem much, the failure aware approach achieves to save
768 and 895 h respectively. The corresponding improvements are even higher for
the case of 72 h-long jobs (6.3% and 7.3%). There is another interesting observa-
tion regarding the effect of the average shape parameter. Comparing the benefit
of FAPS over RPS, for the scenarios in Figs. 3a and 3b, we observe that it is
higher for the case of the lower average shape value. The corresponding benefit
is 5.6% for an average shape value of 8, and 5.1% for a value of 32. As Fig. 2
shows, smaller shape values imply a more flattened curve for the TTF distri-
bution which in turns implies that node failures are more dispersed over time.
A larger shape value suggests that TTF samples are more clustered around the
scale value; many nodes are expected to fail in close-by points in time. Under
such conditions, all the partitions explored by FAPS are expected to have similar
failure probabilities, leaving little room for a beneficial selection. An observation



306 I. Vardas et al.

that further supports this assumption is that the difference in benefit would be
larger in a trace with more frequent faults, where FAPS is more often incapable
to find a good partition to assign to a job. Indeed, Figs. 4a, 4b reveal that the
benefit of FAPS over RPS is 23.5% for an average shape value of 8 and 79%
for the case of 32. Our partition selection heuristic is a rather simple one, as it
does not perform an exhaustive search for all possible partitions. Consequently,
it yields a limited set of partitions in which FAPS will search for the less proba-
ble to fail. We are currently exploring further the validity of this intuition, and
the improvement potential with an enhanced variant of the partition selection
heuristic.

Figures 4a and 4b cover another pair of interesting scenarios. They correspond
to traces 1 and 2 in Table 1 and describe a platform with more frequent failures.
For the two different average shape values explored, the corresponding system
MTTF are 1.37 and 1.42 h, respectively. Following the pattern observed before,
for jobs of shorter durations, such as, 4 and 8 h, the failure aware resource alloca-
tion method achieves the same batch completion time with the failure oblivious
ones. However, FAPS offers a notable benefit even for jobs with a 24 h duration.
Following the pattern regarding shape’s effect before, this benefit is larger for
the smaller average shape value explored. At the scenario with 48-h long jobs
and an average shape value of 8, FAPS achieves 46.8% and 48.4% lower batch
completion time when compared to Slurm-linear and RPS. This benefit remains
significant for the scenario depicted in Fig. 4b where the average shape value is
larger (32). These results indicate that the type of jobs (in terms of duration) that
benefit from failure-aware resource allocation is affected by the system failure
pattern. In the paragraphs above, we discussed results from simulation scenarios
with 256 process. We have also derived results for scenarios with 512 processes;
however, due to space limitations, the corresponding graphs are omitted. Our
results correspond to traces 5 and 6 from Table 1. Again, we observe marginal
or not benefit with the failure-aware resource allocation method for job dura-
tions up to 24 h. For longer jobs and an average shape value of 8, we observe a
more notable benefit. However, for the larger shape value, the benefit over the
failure-oblivious approaches, even for 72-h long jobs is limited. We are currently
exploring which of two factors contributes the most to this effect: limited num-
ber of partitions enumerated by our heuristic, and implications of a large shape
value on node failures.

4 Related Work

Simulations of parallel applications have been a valuable tool for exploring their
performance and scalability in large scale setups. They also allow to evaluate
applications in setups that are different than the real HPC platforms that are
available, offering the advantages of a controlled and configurable environment.
Towards this direction, several simulators have been proposed. Simgrid [2] allows
the simulation of unmodified applications, while xSim [6] allows running an appli-
cation at a scale of up to millions of concurrent threads. LogGOPSim [6] allows
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the simulation of parallel algorithms at large scale relying on an extended ver-
sion of the LogGPS model. For systems of growing size and complexity, a large
number of studies have outlined the importance and effect of various failures
[1,15,20,23] apart from performance. For mitigating the effect of failures several
approaches have been proposed including checkpoint/restart [13,25,27], failure
aware scheduling and resource allocation [3,9,10,12,17,30]. The resource allo-
cation approach explored in this study is heavily based on the findings of [11]
and follows a similar path for the resource allocation with [10]. More precisely,
authors in [10] present algorithms that allocate resources for MPI jobs, such that
system reliability is maximized. They take into account the probability of nodes
failing during the execution time of each job. A common approach for evaluating
the effectiveness of fault tolerance mechanisms relies on failure logs and traces
acquired from real HPC systems. It is important though, to be able to evaluate
such approaches in larger scales and under different system configurations and
failure patterns. Towards this direction several studies have proposed simula-
tors aimed at evaluating fault tolerance mechanisms (apart from performance
and scalability). The work in [7] extends xSim [6] adding support to inject MPI
process failures and explore the efficiency of checkpoint/restart. Authors in [24]
discuss a simulator that aims at exploring proactive and reactive fault tolerance
mechanisms, as well as a combination of the two. For its evaluation, they replay
traces from failure logs. With a focus on coordinated and uncoordinated check-
point/restart protocols, authors in [16] suggest a simulation framework based on
LogGOPSim [6]. The work in this study does not target a full system simulator.
Our main focus is on different failure patterns and their effect on resource allo-
cation for parallel jobs. Our key contribution is a configurable mechanism that
generates different traces of node failures.

5 Conclusions and Future Work

This paper is an early exposition of our modeling and simulation approach
towards quantifying the impact of node failures on the completion times of MPI
parallel jobs. We generate synthetic traces of node failures in a case study that
assumes a 4D-torus topology and a Weibull distribution for each node’s mean
time between failures. For the synthetic traces explored, benefit is more promi-
nent for the longer jobs. It can be up to 82% depending on the failure trace,
when compared with Slurm and a failure-oblivious heuristic. For shorter jobs,
benefit is notable for systems with more frequent failures.

Our research plan going forward includes more comprehensive case studies for
larger-scale supercomputers incorporating more nodes and more complex inter-
connection topologies (such as 6D-torus and Dragonfly). We also plan to extend
the scheduling logic for concurrent job execution and explore different distribu-
tions for the time to failure. Furthermore, we plan to incorporate node failure
prediction in Slurm, by taking advantage of its software plug-in architecture.
This extension will be building upon the software infrastructure created in our
prior work towards adding failure awareness to resource allocation in Slurm [26].
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Abstract. Fault tolerance is a key challenge as high performance com-
puting systems continue to increase component counts, individual com-
ponent reliability decreases, and hardware and software complexity
increases. To better understand the potential impacts of failures on
next-generation systems, significant effort has been devoted to collecting,
characterizing and analyzing failures on current systems. These studies
require large volumes of data and complex analysis in an attempt to
identify statistical properties of the failure data.

In this paper, we examine the lifetime of failures on the Cielo super-
computer that was located at Los Alamos National Laboratory, looking
specifically at the time between faults on this system. Through this anal-
ysis, we show that the time between uncorrectable faults for this system
obeys Benford’s law, This law applies to a number of naturally occurring
collections of numbers and states that the leading digit is more likely to
be small, for example a leading digit of 1 is more likely than 9. We also
show that a number of common distributions used to model failures also
follow this law. This work provides critical analysis on the distribution of
times between failures for extreme-scale systems. Specifically, the anal-
ysis in this work could be used as a simple form of failure prediction or
used for modeling realistic failures.

Keywords: Failure characterization · DRAM memory failure ·
Benford’s law

1 Introduction

Fault tolerance is a key challenge as high performance computing systems con-
tinue to increase component counts, individual component reliability decreases,
hardware complexity increases, and software complexity increases. To bet-
ter understand the potential impacts on next-generation systems, significant
effort has been devoted to collecting, characterizing and analyzing failures
[15,16,19,25,26]. These studies require large volumes of data, typically gath-
ered over many years, and utilizing complex analysis in an attempt to identify
the underlying probability distribution and its statistical properties.

Several mitigation methods have been developed to address memory failures.
A popular method of fault tolerance in today’s large-scale production systems is
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coordinated checkpoint/restart. The overheads of checkpoint/restart are deter-
mined, in part, by the duration of the checkpoint interval. Determining the opti-
mal checkpoint interval requires an understanding of failure statistics on a given
system in order to minimize lost work and checkpoint overheads [8]. Therefore,
to better understand checkpoint overheads, one must understand the failure rate
on a system. Checkpointing can also be coupled with failure prediction [14] to
minimize time lost in the rework stage, but current prediction-based mechanisms
have relatively poor performance or exceedingly high overheads. Therefore, hav-
ing a cheap method to determine when faults are likely could improve application
performance.

In this paper we examine faults on the entire lifetime of the Cielo supercom-
puter that was located at Los Alamos National Laboratory, looking specifically
at the time between memory faults on this system. We undertake several simple
analytical studies and make the following contributions. We show that:

– The time between uncorrectable memory faults over the lifetime of Cielo obey
Benford’s Law: the leading digit is more likely to be small (Sect. 3.2);

– The correctable faults from Cielo do not appear to obey Benford’s law. We
also outline a few suggestions as to why this is not true (Sect. 3.2); and

– Several common theoretical distributions used in HPC to model failures also
appear to obey Benford’s Law (Sect. 3.3).

To the best of our knowledge, this is the first work to demonstrate that
memory faults from an large-scale HPC system obey a Benford distribution. It
also provides critical analysis on the occurrence of memory failures on extreme-
scale systems. Specifically, our analysis could be used to improve existing failure
prediction mechanisms or to make models of memory failures more realistic.

2 Background

2.1 System Description

Cielo was a leadership-class HPC system located in Los Alamos, New Mexico. It
was a Cray XE6 system running Linux that was operated from March 2011 to
May 2016. At the time of its decommissioning, it was comprised of approximately
8,500 compute nodes. Each compute node contained 32 GB of DRAM and two
processor sockets, each occupied by an AMD OpteronTM 8-core processor. Cielo
consisted of 96 racks of compute nodes arranged in 6 rows. Each rack contained
96 compute nodes arranged in a three-level hierarchy. Each rack was composed
of three chassis. Each chassis was composed of eight slots. Each slot hosted four
compute nodes.

2.2 Terminology: Faults and Errors

Throughout this paper, we distinguish between faults and errors, cf. [2]. A fault
is the underlying cause of an error (e.g., stuck-at bits or high-energy particle
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strikes). An error is incorrect system state due to an active fault. Errors are
detected and possibly corrected by higher-level mechanisms such as parity or
error correcting codes (ECC). They may also be uncorrected or, in the worst
case, undetected.

2.3 Terminology: Transient vs. Permanent Faults

Hardware faults can be classified as transient, intermittent, or hard [3,6,7]. Tran-
sient faults, which cause incorrect data to be read from a memory location until
the location is overwritten with correct data. These faults occur randomly and
are not indicative of device damage [3]. Particle-induced upsets (“soft errors”),
which have been extensively studied in the literature [3,27], are one type of
transient fault. Distinguishing a hard fault from an intermittent fault in a run-
ning system requires knowing the exact memory access pattern to determine
whether a memory location returns the wrong data on every access. In practice,
this is impossible in a large-scale field study such as ours. Therefore, we group
intermittent and hard faults together in a category of permanent faults.

2.4 Memory Failure Logs

All of the DRAM on Cielo is protected by chipkill-correct ECC. When the mem-
ory controller detects a memory error, it is designed to use ECC to correct the
error. If it is able to correct the error, the error is recorded as a correctable error
(CE). If it is unable to correct the error, the error is recorded as a detected,
uncorrectable error (DUE). Correctable errors are recorded in registers provided
by the x86 Machine Check Architecture (MCA) [1]. The contents of these regis-
ters are polled periodically and written to the console log. Uncorrectable errors
are recorded in an event log after the node is rebooted. For both correctable and
uncorrectable errors, detailed information about each error is recorded. This
information includes the physical address where the error occurred and ECC
syndrome data that describes the cause of the error. Decoding the recorded
information about each error allows us to identify the physical location of each
logged error. We examined the memory error logs collected on Cielo from May
2011 to May 2016. Additional details can be found elsewhere [16,23].

2.5 Benford’s Law

Benford’s law, also called the Newcomb-Benford law, the law of anomalous num-
bers, or the first-digit law, is an observation about the frequency distribution
of leading digits in many real-life sets of numerical data. The law states that in
many naturally occurring collections of numbers, the leading digit is likely to be
small. In sets that obey the law, the number 1 appears as the leading significant
digit about 30% of the time, while 9 appears as the leading significant digit less
than 5% of the time. The law is named after physicist Frank Benford, who pro-
posed the law in 1938 [4], although it had been previously observed by Simon
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Newcomb in 1881 [20]. Benford’s Law has been shown to apply to a wide vari-
ety of data sets, including electricity bills, street addresses, stock prices, house
prices, death rates, lengths of rivers, and physical and mathematical constants.

Mathematically, the probability distribution of the leading digit d (d ∈
{1, · · · , 9} is:

P (d) = log10(d + 1) − log10(d) = log10

(
d + 1
d

)
(1)

Figure 1 shows both the probability distribution function (PDF) and the
cumulative distribution function (CDF) for a theoretical Benford distribution.

Fig. 1. Probability mass function for Benford distribution and cumulative mass func-
tion (CMF)

3 Experimental Results

3.1 Methodology

In the following sections we calculate the probability mass function of the leading
digit and compare with a theoretical Benford distribution. For this calculation we
use the time between memory faults in seconds. If the first digit of the time between
faults begins with a zero, we use the first non-zero digit in the calculation.

The choice of seconds is arbitrary as the properties of this distribution is
independent of the representations (i.e., if an observation obeys Benford’s Law
it does not matter how that metric is represented). More formally, Benford’s
Law has been shown to be sum-invariant, inverse-invariant, and addition and
subtraction invariant [5,13].

3.2 Cielo System Lifetime Data Benford Analysis

Figure 2 shows the empirical distribution of the first digit of the time between
faults in DRAM and SRAM over the lifetime of Cielo, measured in seconds.
Figure 2a shows the data for uncorrectable memory faults. Figure 2b shows the
data for correctable memory faults. From this figure, we make a few important
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observations. First, the intervals between uncorrectable memory faults follows a
Benford distribution: memory fault intervals are much more likely to have a small
first digit. However, Fig. 2b shows that while the interval between correctable
memory faults are more likely to have a small first digit, they do not follow a
Benford distribution as closely as the uncorrectable memory faults do.

(a) All Uncorrectable Faults on
Cielo

(b) All Correctable Faults on
Cielo

Fig. 2. Benford distribution of fault time for all correctable faults and uncorrectable
faults over the entire lifetime of Cielo

This difference may be explained by the mechanics of how errors are logged
on the system. As described in Sect. 2.4 correctable memory faults on Cielo were
logged in a ring buffer. Therefore, it is possible that some of these errors were lost
when the ring buffer overflowed during computation. This is due, at least in part,
to the fact that a correctable memory fault can produce a very large number of
correctable errors, depending on the system’s memory access patterns. If errors
are lost, the calculation of the fault time may be affected. In contrast, it is less
likely that uncorrectable memory faults are lost because the affected node halts
and the single fault is recorded.

To understand how these data are affected by memory technology, Fig. 3
shows the leading digits of our uncorrectable memory fault data divided into two
groups: memory faults in Static Random Access Memory (SRAM) (Fig. 3b); and
memory faults in Dynamic Random Access Memory (DRAM) (Fig. 3a). Investi-
gating these differences are important to developing a complete understanding
of how memory faults occur because these two memory technologies use differ-
ent protection mechanisms on Cielo; Chipkill [9] is used to protect DRAM, and
memory parity is used to protect SRAM.

From the data in these figures. we make several observations. First, the
SRAM uncorrectable fault times in Fig. 3b appear to follow a Benford distri-
bution. The likely reason for this is due to total number of faults in each of these
two scenarios. Because some of the logs we analyzed contain confidential infor-
mation, we cannot comment on the total number of DRAM or SRAM faults, but
over its lifetime, Cielo experienced more SRAM errors in comparison to DRAM.
This is related to the fact that the SRAM structures are typically protected
only by parity. Recent AMD processors provide much stronger SRAM protec-
tion. Finally, we observe that although the Benford distribution does not appear
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to be a good match for the intervals between uncorrectable DRAM faults, they
do exhibit a similar trend: leading digits are still likely to be small.

(a) DRAM Uncorrectable
Faults on Cielo

(b) SRAM Uncorrectable
Faults on Cielo

Fig. 3. Benford distribution of uncorrectable fault time for Static Random Access
Memory (SRAM) and Dynamic Random Access Memory (DRAM) on Cielo

(a) DRAM Correctable DRAM
Faults on Cielo

(b) SRAM Correctable DRAM
Faults on Cielo

Fig. 4. Benford distribution of correctable fault times for Static Random Access Mem-
ory (SRAM) and Dynamic Random Access Memory (DRAM) on Cielo

In Fig. 4, we examine the same data for correctable memory faults. Interest-
ingly, we observe a trend that is the opposite of what we observed with uncor-
rectable memory faults. Specifically, the Benford distribution is a good match for
the time between DRAM correctable faults while the match between the Benford
distribution and the time between correctable SRAM faults is not particularly
good. In this case, these differences in SRAM cannot be attributed to the size
of the data sample (i.e., the total number of correctable memory faults in our
dataset). Correctable faults are much more common than uncorrectable faults.
As a result, we do not believe that these results can be attributed to the size
of the sample. We are currently investigating the source of this phenomenon.
As with uncorrectable memory faults, it might be related to the differences of
logging and reporting the correctable errors. However, further study is needed.

Finally, Fig. 5 shows the distribution of failure interarrival times for both
permanent and transient faults. For the data in these figures, we only distinguish
between faults based on whether they are transient or permanent. All other
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distinctions are ignored; each dataset includes SRAM and DRAM faults, and
correctable and uncorrectable memory faults). From this figure we observe that
the permanent errors more closely follow a Benford distribution. This result
may not be surprising given the fact that the majority of permanent faults are
uncorrectable and transient faults are more likely to be correctable. However, it
suggests that further analysis is needed to understand if the processes behind
these faults obey a Benford distribution. Although the Benford distribution is
not a particularly fit for the intervals between transient memory faults, these
intervals do exhibit the same general trend: small leading digits are more common
than large leading digits.

(a) Transient Faults (b) Permanent Faults

Fig. 5. Benford distribution of the interarrival times for permanent and transient faults
on Cielo.

3.3 Theoretical Distributions

In the previous section, we observed that fault interarrival time for Cielo
appeared to follow closely a Benford distribution. In addition to charactertiz-
ing and tabulating failures, fitting failures to known distributions is common
in fault tolerance. In this section, we examine the relationship between Ben-
ford’s Law and three probability distributions that are commonly used to model
failures on HPC systems: exponential, Weibull, and gamma.

Mathematically, the probability mass function of the leading digit d (d ∈
{1, · · · , 9} for a theoretical probability distribution is:

P (d) =
∞∑

k=−∞

(
F ((d + 1) · 10k) − F (d · 10k)

)

where F (x) is a cumulative density function (CDF).
Figure 6a shows the probability of the leading digit of a random variable

drawn from exponential distributions. The solid lines represent the probabilities
based on the theoretical distribution. The dashed lines represent the probability
predicted by Benford’s Law. Figure 7a and 7c show the same data for two differ-
ent groups of Weibull distributions, corresponding to two different values of the
shape parameter (0.25 and 0.75). Figure 8a and 8c show the same data for two
different groups of gamma distributions, corresponding to two different values
of the shape parameter (0.25 and 0.75).
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Figure 6b shows the the sum of squared errors (SSE) of the leading digit
probabilities based on theoretical exponential distributions relative to the prob-
ability predicted by Benford’s Law. Figure 7b and 7d show the same data for two

(a) Per-digit probability. (b) Sum of Squared Er-
rors (SSE)

Fig. 6. Exponential Distribution. Comparison of the probability leading digits from
data drawn from exponential distributions to the results predicted by Benford’s Law. In
subfigure (a), solid lines represent values for the theoretical exponential distributions.
Dashed lines represent the values predicted by Benford’s Law.

(a) Per-digit probability
(Weibull w/ shape (k) = 0.25)

(b) Sum of Squared Er-
rors (SSE)
(Weibull w/ shape (k) = 0.25)

(c) Per-digit probability
(Weibull w/ shape (k) = 0.75)

(d) Sum of Squared Er-
rors (SSE)
(Weibull w/ shape (k) = 0.75)

Fig. 7. Weibull Distribution. Probability of leading digits from data drawn from
two groups of Weibull distributions (each with a different value of the shape param-
eter) to the results predicted by Benford’s Law. In subfigures (a) and (c), solid lines
represent values for the theoretical Weibull distributions. Dashed lines represent the
values predicted by Benford’s Law.
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different groups of Weibull distributions, corresponding to two different values
of the shape parameter (0.25 and 0.75). Figure 8b and 8d show the same data
for two different groups of gamma distributions, corresponding to two different
values of the shape parameter (0.25 and 0.75).

These figures show that the probability of leading digits for random variables
drawn from these theoretical distributions closely match the values predicted by
Benford’s Law. Because these distributions have been shown to be a reasonable
fit for memory errors on Cielo [16], these data help explain why Benford’s Law
accurately predicts the leading digits of these intervals on Cielo.

(a) Per-digit probability
(gamma with shape (k) = 0.25)

(b) Sum of Squared Er-
rors (SSE)
(gamma w/ shape (k) = 0.25)

(c) Per-digit probability
(gamma w/ shape (k) = 0.75)

(d) Sum of Squared Er-
rors (SSE)
(gamma w/ shape (k) = 0.75)

Fig. 8. Gamma Distribution. Probability leading digits from data drawn from two
groups of gamma distributions (each with a different value of the shape parameter)
to the results predicted by Benford’s Law. In subfigures (a) and (c), solid lines repre-
sent values for the theoretical gamma distributions. Dashed lines represent the values
predicted by Benford’s Law.

4 Related Work

Failures characterization on large computer systems has been ongoing for over
a decade. These studies have focused both on failures in HPC centers [10–12,
16,21,23–26] and industry datacenters [12,17,18,22]. These studies cover a wide
diversity of systems of varying sizes and hardware/software configurations, yet
many common failure trends are observed across all these systems.
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Our work distinguishes itself from the existing studies in a number of impor-
tant ways. First, to the best of our knowledge this is the first study to examine
Benford’s law and the interarrival times of failures for an HPC system. Second,
this work is critical to both those modeling faults for HPC and those studying
failures as it provides a simple methodology for verifying failure times. Finally,
the results of this work may be of use to the those trying to mitigate or predict
failures as this Benford property might be utilized to aid failure prediction.

5 Conclusions

In this paper, we have provided a study of the time interval between memory
faults for both correctable and uncorrectable errors on the Cielo supercomputer
that was located at Los Alamos National Laboratory. Through this analysis,
we show that the time between uncorrectable faults for this system obeys Ben-
ford’s law – a law that states that the leading digits of some naturally occurring
datasets is more likely to be small in value. We also show that correctable errors
do not appear to follow this law, possibly due to the fact that the logging of
correctable errors is done by polling mechanism and therefore many errors can
be missed or logged with times that vary significantly from the actual fault time.
Finally, we show that many common distributions used in literature to model
failures also follow a Benford distribution.
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Abstract. Real-time applications often take the form of streaming
applications, where a stream of inputs such as camera images is processed
by an application represented as a task graph. The workload together
with the required throughput often necessitates processing on a multi-
core system and also demands parallelization of large tasks. We extend a
scheduling algorithm for such applications, originally devised to handle
varying task workloads, to also cover varying core count, e.g. caused by
failure of a core. We use frequency scaling to accelerate processing when
the necessity to re-execute tasks from the crashed core arises, to main-
tain throughput. We evaluate the algorithm by scheduling synthetic task
graphs that represent corner cases and a real streaming application.

Keywords: Fault-tolerant execution · Task scheduling · Energy
efficiency

1 Introduction

Data stream processing is an important paradigm in embedded and edge com-
puting [4], where a stream of data elements, e.g. camera images from a sensor,
arrive and are processed by an application arranged as a task graph. Differ-
ent instances of the task graph are overlapped, cf. Fig. 1, leading to a sequence
of rounds with identical workloads. Real-time throughput requirements deter-
mine the maximum length of such a round. Scheduling the tasks of a round can
be done statically, i.e. before actual execution, as a large sequence of identical
rounds amortizes this investment. If the throughput is fixed, the target to opti-
mize is energy per round, i.e. average power consumption, which has become as
important as throughput for mobile systems. Executing such applications often
necessitates multicore platforms because of tight deadlines, and sometimes tasks
must be parallelized to reduce processing times of large tasks.

As such platforms and applications are running for long times, a fault may
occur in a core, so that it fails. In this case, the application cannot be continued
with the previous schedule. Litzinger and Keller have presented a scheduling
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Fig. 1. Left: Task graph, with tasks T1 to T4 which communicate via links. Right:
Streaming pipeline on 4 cores, with one round of execution marked with a rectangle
and steady state indicated by a circular arc, Task graph and steady state of streaming
pipeline, with marked round, adapted from [12]. (Color figure online)

algorithm that can adapt a (statically computed) schedule in case of varying
workload [12]. We apply this algorithm to re-schedule tasks onto the remaining
cores in case of a core failure. We discuss several scenarios how to handle the task
graph from which a task was processed during the fault. Variants trade addi-
tional energy to handle the fault for delay of output. We evaluate our proposal
with synthetic task graphs which represent corner cases to give upper and lower
bounds on increase in workload and energy consumption for subsequent rounds.
Furthermore, we implement a real-world image processing application to demon-
strate applicability. Naturally, this approach cannot be used if all cores are run-
ning at maximum frequency in the fault-free case, as no processing resources will
be left to handle the increased workload per core on fewer cores after a core fail-
ure. For example, even if workload w per round can be perfectly balanced, then
a core failure will increase the workload per core by a factor p/(p − 1) and thus
the (average) frequency in the fault-free case can be at most fmax · (p−1)/p, and
will be lowered by an additional factor 1/α if repetition of a lost task increases
the workload by αw. Please note that this argument also holds in case of a spare
core, the only difference being starting from p + 1 cores.

The remainder of this article is structured as follows. In Sect. 2, we provide
background information on static scheduling of moldable tasks for energy effi-
ciency, and fault tolerance. In Sect. 3, we combine the scheduling algorithm from
[12] with fault tolerance to continue applications in the presence of a core failure,
with minimum energy overhead. Section 4 reports on our preliminary evaluation,
while Sect. 5 gives conclusions and an outlook to future work.

2 Background

Scheduling Parallelizable Tasks. In the streaming pipeline of Fig. 1, n inde-
pendent tasks are given with their workload τj (measured in cycles) and their
speedup profile sj(q) when executed on q cores. All these tasks have to be com-
pleted before a given deadline D, the length of the round. To schedule these tasks



324 J. Keller and S. Litzinger

T1 T2 T3 T4

P0 P1 P2 P3

T1

T2
T3 T4 T4

P0 P1 P2 P3

Fig. 2. Left: 4 equal-sized tasks on 4 cores, each with allocation aj = 1. Right: 4 tasks
with exponentially increasing workloads on 4 cores with allocations 0.5, 0.5, 1, 2, resp.

(cf. e.g. Melot [14]), an allocation, i.e. a number of cores is computed for each task
to run on. This means that tasks are moldable [11], i.e. the degree of parallelism
is fixed before actual task execution. Furthermore, an assignment, i.e. a subset
of cores where the task is to run on, is specified, as well as a starting time and an
operating frequency. The schedule must be feasible, i.e. no two task executions
may overlap on a core. The platform is a multicore machine with p cores which
can be scaled individually to K discrete operating frequencies f1 to fK . Thus,
the runtime of task j on q cores running at frequency fk is tj,k,q = τj/(sj(q) ·fk).
Runtime can also be influenced by memory access patterns, which might depend
on the scheduling decision. However, we do not include this in our model. For
each frequency level k and each task j (or task type), the power profile powj(fk)
of the cores is known. Thus, the energy consumption of task j on q cores running
at frequency fk is Ej,k,q = tj,k,q · powj(fk) · q. Please note that powj(fk) is not
total power consumption, but idle power powidle is subtracted. Thus, the total
energy per round is the sum of the task execution energies plus D ·p·powidle. This
term is a constant for given D and thus not influencing scheduling decisions.

Litzinger and Keller [12] present such a scheduling algorithm for indepen-
dent, parallelizable tasks. Each task is assigned an allocation aj = 2bj where
bj ∈ {−max{�log2(

n
p )�, log2(p)}, . . . , log2(p)}. If aj is integral, then task j

has exclusive use of aj cores for the time interval between 0 and D. If aj

is a fraction, then task j is sequential and runs for a time interval of length
at most aj · D, i.e. the maximum runtime of a task with allocation aj is
T (aj) = min(1, aj) · D. The execution frequency for task j is set to the min-
imum fk such that tj,k,max(aj ,1) ≤ T (aj). Obviously, the allocations must be
set that such a frequency exists. Allocations are set such that

∑
j aj ≤ p, and

that the energy consumption resulting from these settings is minimized. Figure 2
depicts two examples with the 4 tasks from Fig. 1, yet with different workload
distributions.

Allocations need not necessarily be powers of two, it is sufficient to have a
small number of allocations. Also, for fractional allocations, i.e. sequential tasks
mapped to the same core, using powers of 2 makes it always possible to find
allocations that sum up to 1, i.e. utilize that core completely. The task runtimes
are derived by benchmarking and include a 3% buffer for variation in task run-
time, e.g. due to interrupt processing, to exclude late tasks. In the following, we
assume that a feasible schedule with above structure exists for given task set
and deadline. The scheduling algorithm from [12] is able to adapt allocations in
case of varying task workload. Yet, alternatively to changing workloads, also the
number of cores could change and necessitate an adapted schedule.
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Scheduling for Fault Tolerance. A reason for such a change in core count
could be the failure of a core due to a hardware or software bug or some bit
flip from radiation. We consider the fail-stop model for cores [15], i.e. the failed
core is assumed to be silent. Our work tries to improve system time to failure
by overcoming core failures. Other works (cf. e.g. [3]) rely on a runtime system
for failure notification. We consider a task that does not write its results until
the deadline as lost, and the corresponding core reported as failed. In order to
continue an application in this case, either task duplication or task repetition
can be used [16]. We will consider task repetition in the sequel. Thus, besides
the number of cores, also the workload may change after a failure.

Related Work. Kicherer and Karl [9] combine dynamic scheduling of multi-
variant tasks on a heterogeneous system for performance with fault tolerance. In
contrast, we target streaming applications without task variants or heterogeneity.
Eitschberger [3] computes static schedules for tasks with dependencies on par-
allel machines with speed scaling and considers the trade-off between runtime,
energy efficiency and fault tolerance. However, he treats fault-free and fault cases
separately. Moreover, we use quasi-static scheduling instead of static scheduling.
Marahatta et al. [13] present a dynamic scheduler that minimizes response time
and simultaneously improves energy consumption and degree of fault tolerance.
By contrast, we target task sets with a common deadline. Izosimov [8] considers
transient faults, which are overcome by re-execution. In contrast, we consider
permanent faults, i.e. we also consider re-mapping of tasks. Ajwani et al. [1]
investigate the generation of synthetic but realistic streaming task graphs for
benchmarking purposes, while we target corner cases and real applications for
illustration. Benoit et al. [2] consider scheduling of moldable jobs on platforms
with core failures, however they do not address frequency scaling nor energy
consumption, but minimize makespan for one execution.

3 Scheduling Moldable Tasks for Fault-Tolerance

We consider the case that a core fails at an arbitrary point of time within a
round. We assume that it fails near to the end, as this is a worst case scenario.
We notice the failure because this core does not write the results of its task
computation to the shared memory and late tasks do not occur, cf. Sect. 2.
Hence, we do not rely on a runtime system to notice a core fault. In particular,
we consider a fail-stop model [15], i.e. a core that fails is silent, and does neither
memory accesses nor disturbs other cores from this point on. While a fail-stop
model sounds quite restricted, we note that this is only the model exposed to the
scheduler level. Within task execution, more evolved fault models and detection
strategies can be used, cf. e.g. [5,6,10]. As we do not consider task duplication,
the task that has been executed on that core is considered lost. If the application
allows that processing of one input packet is skipped, then the cure is simple. In
the following rounds, the tasks dependent on the lost task (i.e. the rest of the
task graph instance) are skipped, and from the following round on the tasks to
be executed only use p − 1 instead of p cores. As the scheduling algorithm from
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Fig. 3. Streaming pipeline from Fig. 1 with a core running task T1 (yellow) getting
faulty. Left: T1 (yellow) is lost due to a core failure, and all dependent tasks are
skipped, leading to reduced workload for the two rounds following the core failure.
Right: T1 (yellow) is lost due to a core failure, and repeated in the subsequent round.
All dependent tasks are delayed by one round, leading to workload fluctuations in the
three rounds following the core failure. (Color figure online)

Sect. 2 can adapt the mapping prior to each round, and considers the number of
cores as a parameter just as it considers the task count, it can cope both with
the changed workload and with the changed platform. If e.g. task T1 from the
yellow task graph instance is lost in the marked round in Fig. 1, then tasks T2
and T3 (yellow) will be skipped in the following round, and T4 (yellow) will be
skipped in the next-but-one round, cf. Fig. 3 (left).

Another, also straightforward scenario is when the processing of an input
packet can be delayed by one round. In that case, the lost task is repeated in the
next round. To realize this, we only need to store task inputs until the task is
successfully executed. Note that also all tasks dependent on the lost task in the
respective task graph instance will be delayed by one round. Thus, the next s
rounds show a variation in workload, if the lost task has a distance s from the sink
of the task graph, and a change in platform in all following rounds, because only
p − 1 instead of p cores are available. Yet, there is no change beyond the higher
energy consumption that comes with higher load and frequency. We consider
again the fault from the previous example. If T1 (yellow) is lost in the marked
round, then it must be repeated in the following round, while T2 and T3 (yellow)
will be delayed to the next but one round, cf. Fig. 3 (right).

In the following, we thus concentrate on a more ambitious scenario. We want
to avoid the jitter in output production, i.e. we want to maintain a throughput
of one completed sink task per round even after a core failure. Mind that this
is not possible if a sink task runs until the end of a round: if a core it runs
on fails, this is detected by the end of the round, and the sink task must be
repeated. Therefore, we divide a round into two half-rounds. Accordingly, we
divide the task set into two half-sets, where each half-set has approximately half
of the workload from the complete task set. Even if the workload cannot be
split exactly, the tasks can be divided evenly by allocation, as all allocations are
powers of 2. We schedule each half-set in a half-round, putting the half-set with
the sink task first. Allocations in the half-rounds can be derived from allocations
in the full round by multiplying with 2. Still, a division into two half-rounds will
already increase energy consumption in the fault-free case because of reduced
parallel efficiency at higher degrees of parallelism.
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Fig. 4. Streaming pipeline from Fig. 1 mapped onto two half-rounds (assuming equal
workloads). Left: no fault. Right: fault in second half-round on core running task T2.
(Color figure online)

If a core fails, we will notice this at the end of a half-round because the task
that ran on this core did not write its results, i.e. it is lost. The lost task is then
repeated in the next half-round. Please note that due to our requirement, the
next half-round can only belong to a subsequent round if the lost task is not
the sink task. In this case, it might be necessary to delay some dependent task,
as in the delay scenario discussed above. Thus, we can apply the same solution,
however with half-rounds instead of rounds.

We demonstrate our approach with the two examples from Fig. 2. These
examples can be considered corner cases. In the first example (best case) we have
identical workload and allocation thus the additional work due to repeating a lost
task is bounded. In the second example (worst case), the lost task is the biggest
and its repetition doubles the workload in a half-round. In the first example,
the 4 tasks with equal workload from Fig. 2 (left) can be evenly divided into
two half-rounds (T3 and T4 in the first half-round, T1 and T2 in the second
half-round), each with an allocation of 2 cores, see Fig. 4 (left). If core 3 fails in
the second half-round, then T2 (red) must be repeated in the next half-round,
which belongs to the subsequent round. Hence, T4 (red), which is dependent,
must be delayed into the second half-round of the subsequent round, see Fig. 4
(right). This example can be considered a best case, as the task workloads are
well balanced, and the fault occurs towards the end of a round. Still, as the
number of cores reduces to 3, some task allocations reduce from 2 to 1, which
leads to an increase in operating frequency and hence energy consumption.

The second example assumes an exponential workload distribution, i.e. τ4 =
2τ3 = 4τ2 = 8τ1. Scheduling into two half-rounds means that T4 runs in the first
half-round with allocation 4, and T1, T2 and T3 run in the second half-round
with allocations 0.5, 1 and 2, respectively. If a core fails in the first half-round,
then this means that all tasks must execute in the second half-round, with only
three cores left. This is kind of a worst-case scenario, where the workload of a
half-round doubles, and the number of cores is reduced. Figure 5 illustrates this
example.

If the workload in a half-round gets very high after a fault, then it might
be worthwhile to treat jitter for energy by prolonging this half-round. In the
extreme, the length of the half-round could be doubled, which is equivalent to
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Fig. 5. Streaming pipeline from Fig. 1 mapped onto two half-rounds (assuming expo-
nential workloads) and corresponding schedules. Left: no fault. Right: fault in first
half-round on core 0 running T4.

having an additional half-round to repeat the lost task. In Sect. 4, we mention
both ways, but any half-round length in-between these two extremes is possible.

While our examples only comprise a small number of tasks, our approach can
be scaled to much larger task sets. First, the underlying scheduling heuristic from
[12] is not computationally intensive. Second, if there are many tasks (compared
to the number of cores), then most or all tasks will be sequential. This simplifies
scheduling, and results in only 1/p of the total workload being affected by a core
failure at most, in contrast to parallel tasks. For example, the fault in Fig. 5
affects more than half of the workload.

Please also note that our approach is not restricted to using two half-rounds.
Using three (or even more) partial rounds would allow more freedom of task
placement, e.g. to place a sink task in either first or second partial round. Fur-
thermore, if the sink task is in the first partial round, then we would have the
freedom to move some tasks of a task graph either to next or next-but-one partial
round, and thus possibly achieve a better workload balance. On the other hand,
using more partial rounds for a given task set results in fewer tasks per partial
round and shorter partial rounds, which reduces energy efficiency and workload
balance between partial rounds already in the fault-free case. Moreoever, also
the length of the half-rounds or partial rounds need not be identical, they could
be scaled in proportion to their workloads.

4 Evaluation

To evaluate our approach, we have computed schedules for the two cases dis-
cussed in Sect. 3 as well as for a real-world application from the image processing
domain. To this end, we have adopted the scheduler in [12]. In order to obtain
realistic results even for the synthetic task sets considered in Sect. 3, scheduling
is based on power and runtime characteristics which have been experimentally
determined. In [12], these are provided for a floating-point multiplication task
from the epEBench benchmark [7] running on an Intel Xeon E5-1620 v3 pro-
cessor with four physical cores and 15 discrete operating frequencies between
1.2 GHz and 3.5 GHz. Furthermore, we take parallelization to be perfect (i.e.
e(q) = 1, 1 ≤ q ≤ p) in the best case scenario (equal workload distribution),
while parallel efficiency is assumed to decline with increasing core count and set
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as e(1) = 1, e(2) = 0.9, e(4) = 0.85, e(8) = 0.8 for the scenario with exponen-
tially increasing workload. Deadlines are chosen in such a way that a feasible
solution exists under a single core failure in all considered situations.

We will first examine the scenario where we have tasks with equal workloads,
cf. Fig. 4. The scheduler computes the following schedules (for p = 4 initially, as
we assume a system as specified above):

1. schedule for a full round (n = 4, p = 4, deadline D),
2. schedule for the regular 1st half-round (T3, T4, p = 4, deadline D/2),
3. schedule for the regular 2nd half-round (T1, T2, p = 4, deadline D/2),
4. schedule for the 1st half-round immediately succeeding a single core failure

(T2, T3, p = 3, deadline D/2),
5. schedule for the 2nd half-round immediately succeeding a single core failure

(T1, T2, T4, p = 3, deadline D/2),
6. schedule for the 1st half-round thereafter (T3 and T4, p = 3, deadline D/2),
7. schedule for the 2nd half-round thereafter (T1 and T2, p = 3, deadline D/2).

After the core failure has been accommodated in the subsequent round, schedul-
ing for the remaining rounds is very similar to scheduling prior to the occurrence
of a core failure, the only difference being p = 3 instead of p = 4. Scheduling
yields the following results:

1. all tasks: q = 1, f = 2.0GHz,
2. T3, T4: q = 2, f = 2.0GHz,
3. T1, T2: q = 2, f = 2.0GHz,
4. T2: q = 2, f = 2.0GHz, T3: q = 1, f = 3.5GHz,
5. T1, T2, T4: q = 1, f = 3.5GHz,
6. T3: q = 2, f = 2.0GHz, T4: q = 1, f = 3.5GHz,
7. T1: q = 2, f = 2.0GHz, T2: q = 1, f = 3.5GHz.

Scheduling all four tasks over a full round under deadline D leads to an
allocation of one core for each task, which is not surprising as workloads are equal
among the tasks. Furthermore, each task can be executed prior to the deadline
at a rather low operating frequency (2.0 GHz). Scheduling in half-rounds leads
to an increase in allocation to two cores per task, while operating frequencies
can be kept at the same low level. A core fault during the execution of T2
in the second half-round leads to the necessity of repeating T2’s execution in
the upcoming round, cf. Fig. 3. Accordingly, T2 and T3 are run in the first half-
round immediately succeeding the core failure. As only three cores are in working
condition, there can be no allocation of two cores to both T2 and T3. One of
them must make do with one core, which leads to a higher operating frequency
of 3.5 GHz for the core in question. In the second half-round immediately after
the core failure, three tasks must be run in parallel on the three available cores
to uphold throughput. Each task is allocated one core and operating frequency is
adjusted to prevent a deadline violation. In the remaining rounds after the core
failure, the assignment of tasks to half-rounds reverts to the status quo ante.
Yet, scheduling has to take into account that only three cores are operational,
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Table 1. Relative energy consumption for equal and exponentially increasing τj

Situation Rel. energy consumption

Equal τj Exp. incr. τj

Full round, no fault 1.00 1.00

Half rounds, no fault 1.00 1.06

Half rounds, immediately after fault 1.74 1.86

Half rounds, afterwards 1.25 1.06

thus in each half-round, one of the two tasks is allocated one core instead of two.
Consequently, it is executed at a higher operating frequency.

Table 1 shows relative energy consumption values for the various situations
encountered here. The full round fault-free case serves as a reference. Scheduling
in half-rounds does not lead to an increase in energy consumption despite the
larger allocations, the reason being a parallel efficiency of 1. For the round imme-
diately succeeding the single core failure, an energy overhead of 74% is predicted
by the scheduler for executing the majority of tasks on a higher frequency level.
This overhead could be reduced by stretching the second half-round, which is
where total workload peaks, leading to a trade-off. The energy overhead drops
to 25% for the half-rounds thereafter.

For the scenario with exponentially increasing task workloads, computing
schedules for all the relevant situations (cf. Fig. 5), leads to the following results:

1. (full round, no fault, n = 4, p = 4) T1: q = 0.25, f = 1.7GHz, T2: q = 0.5,
f = 1.7GHz, T3: q = 1, f = 1.7GHz, T4: q = 1, f = 2.0GHz,

2. (1st half-round, no fault, n = 1, p = 4) T4: q = 2, f = 2.0GHz,
3. (2nd half-round, no fault, n = 3, p = 4) T1: q = 0.5, f = 1.7GHz, T2: q = 1,

f = 1.7GHz, T3: q = 1, f = 2.0GHz,
4. (2nd half-round, immediately after fault, n = 4, p = 3) T1: q = 0.5, f =

1.7GHz, T2: q = 0.5, f = 2.0GHz, T3: q = 1, f = 2.0GHz, T4: q = 1,
f = 3.5GHz,

5. (1st half-round, afterwards, n = 1, p = 3) T4: q = 2, f = 2.0GHz,
6. (2nd half-round, afterwards, n = 3, p = 3) T1: q = 0.5, f = 1.7GHz, T2:

q = 1, f = 1.7GHz, T2: q = 1, f = 2.0GHz.

When scheduling for a full round, for the most part allocations are chosen
according to the workload distribution, the exception being T4 with a4 = 1,
although additional resources are available. Scheduling T4 to two cores would
reduce energy efficiency due to a worse parallel efficiency and despite a4 = 1
requiring a higher operating frequency of 2.0 GHz. Scheduling in half-rounds
leads to T4 being run on two cores in parallel in the first half-round to keep
operating frequency low. In the second half-round, T3 is allocated one core
instead of two. Utilizing two cores more accurately represents workload dis-
tribution but decreases efficiency. Core operating frequency is raised slightly to
match the half-round’s deadline. A core failure during T4’s execution (1st half-
round) leads to the necessity of executing all four tasks in the second half-round
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on three cores, cf. Fig. 5. While this is not critical for the small tasks, T4 can
be completed without a deadline violation only by increasing the operating fre-
quency to the maximum value of 3.5 GHz. Again, this could be mitigated by
stretching. Subsequently, the original task assignment to half-rounds is restored
without modification, as only three cores were occupied already in the fault-free
case.

With regard to energy consumption, we can gather from the rightmost col-
umn of Table 1 that scheduling for half-rounds instead of full rounds introduces
a slight penalty of 6% to energy efficiency, which can be partially attributed
to higher operating frequencies and to some extent also to the higher degree of
parallelism invoked when scheduling tasks in half-rounds. In the round where
the core failure occurs, energy efficiency takes a massive hit as all tasks must be
executed in the second half-round, having one core run at maximum frequency.
Thereafter, the energy overhead reverts to 6% for the execution in half-rounds,
as the schedule matches the one from before the core failure.

To evaluate our technique for a real-world streaming application, we have
adopted the image processing application in [12] with slight modifications to raise
the fraction of computationally intensive tasks. In particular, the application
consists of 7 tasks: (0) load image, (1) enhance contrast, (2) sharpen image, (3)
vertical edge detection, (4) horizontal edge detection, (5) combine images, and
(6) write image. Each task j depends on the output of task j −1, except for task
4, which processes task 2’s output, and task 5, combining the results of tasks
3 and 4. In contrast to the application in [12], we have created an additional
task (sharpen image), and the edge detection tasks work with a 5 × 5 kernel
instead of a 3 × 3 one. For the tasks remaining unchanged, power and runtime
characteristics as well as parallel efficiency values when running on an Intel Xeon
E5-1620 v3 are taken from [12], while for the others we have performed runtime
and energy measurements ourselves. All tasks are parallelizable on up to four
cores except for the I/O tasks, which run sequentially. Parallel efficiencies are
derived from runtime measurements. When scheduling, the deadline for a full
round is computed as

D =

∑
j tj,1,1

p +
∑

j tj,K,1

p

2
.

Tasks 2, 4, and 6 are assigned to the first half-round. Accordingly, tasks 0,
1, 3, and 5 are executed in the second half-round. Scheduling in half-rounds
introduces an energy overhead of 0.3% versus scheduling for a full round, which
reaches 8.0% after a core failure has been compensated for (i.e. for the regular
schedule in half-rounds on p − 1 cores). As it turns out, a failure of any of the
seven tasks cannot be accommodated under D as computed above. If a looser
deadline is not an option (e.g. in case a certain throughput is to be upheld), one
of the upcoming half-rounds may be stretched so the failed task can be repeated
and a regular execution thereafter is granted. Due to dependencies, tasks may
have to be postponed over several upcoming half-rounds. As we are interested
in avoiding output jitter, we have determined the minimum half-round lengths
after a core failure until the task graph instance the failed task belongs to is
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Table 2. Minimum half-round lengths yielding a feasible schedule for the half-rounds
succeeding a core failure (image processing application, Intel Xeon E5-1620 v3)

Failed task 0 1 2 3 4 5 6

Min. half-round length (ms) #1 64 38 32 64 64 24 67

In half-round after core #2 64 65 24 67

Failure #3 65 67

Σ 64 167 97 64 155 91 67

Cumulative deadline transgression (ms) 24 48 18 24 36 12 27

completed (afterwards, execution proceeds as before, the only difference being
p − 1 instead of p available cores). Table 2 shows the results.

Note that D = 79.4ms, i.e. the deadline for a half-round is D/2 = 39.7ms.
In the worst case (failure of task 1), we have a cumulative deadline transgression
of 48ms > D/2. Here, avoiding output jitter may not be possible, depending
on when exactly the sink task completes or whether other measures to speed up
execution can be taken. The situation is less critical for all the other tasks, with a
shorter delay (<D/2) at the end of the task graph instance’s execution suffering
the core failure. In fact, the first half-round can be completed in <37.4 ms on
three cores, and the second one in <33.2 ms. This leaves the opportunity to make
up for the delay once execution has reverted to the regular pattern.

In summary, we have seen that the concept of scheduling task sets in half-
rounds can provide significant fault tolerance and even maintain the original
throughput in cases of single core failures for different task workload distribu-
tions, a natural requirement being that deadlines are not too tight in the first
place.1 As can be expected, this comes at a price in the form of a small detriment
to energy efficiency in the fault-free case.

5 Conclusion and Future Work

We have presented an approach to continue processing in a streaming application
after a core failure. Throughput requirements are maintained, and jitter of result
production is avoided, both at the cost of increased core operating frequencies.
The choice of frequencies seeks to restrict additional energy consumption as
much as possible. We have evaluated our approach based on synthetic task sets
and a real application with parameters measured on an Intel multicore platform.

1 If this is not the case—as e.g. for the image processing application treated here—one
can stretch the half-round(s) right after the core failure in which the failed task is
repeated while its dependent tasks are postponed as necessary, potentially recover-
ing the time lost in the subsequent rounds by slightly tightening the deadline. This
procedure will not lead to output jitter if the initial delay is kept reasonably short.
Another option could be to decrease task runtime following a core failure by exe-
cuting a less computation-intensive implementation, e.g. performing edge detection
with a 3 × 3 kernel instead of a 5 × 5 one.
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Future work will comprise actual fault experiments on a real system and a
comparison of throughput and energy consumption from model and experiment.
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Workshop Description

ParaMo is a forum for researchers working on programming models, networking,
resource management, and runtime to solve the problems on parallel computing in
high-performance cloud. The notion of cloud computing has changed the way how we
utilize computing resources. Since High-Performance Computing (HPC) has long been
suffered from under- or over-utilization of resources, many HPC researchers are trying
to adapt HPC applications to the cloud environment. With proper adaptation, HPC
applications are able to enhance their resource utilization ratio and scalability by using
virtualized and on-demand resources on clouds. While we discuss HPC on clouds, we
should discuss the parallel programming models as well. Various parallel programming
models and their frameworks (e.g., TensorFlow, PyTorch, MapReduce, MPI, OpenMP,
OpenCL, CUDA) has been proposed for parallel computing. For example, the
MapReduce programming model has been used for various big data processing
applications since it helps to reduce the complexity of problem parallelization such as
decomposition, communication, and scheduling. However, a parallel programming
model should be carefully selected for HPC applications to achieve high-performance
and efficient resource usage because their target hardware architectures (e.g., acceler-
ators, multi-core CPUs, memory hierarchy, etc.) are different as well as the abstraction
levels. For example, MapReduce may not be a suitable selection of parallel pro-
gramming model for a large-scale graph data processing problem. In addition, since
traditional parallel programming models, such as MPI, are implemented for a single
tenant cluster environment, applying these models to HPC applications on the cloud is
challenging in terms of resource management.

The third International Workshop on Parallel Computing Models in High-
Performance Cloud (ParaMo 2021) was held as a virtual event in Lisbon, Portugal.
The workshop was organized in conjunction with the Euro-Par annual series of
international conference. The format of the workshop was the technical presentation of
research papers. Around twenty people attended the online sessions.

This year, we have received four articles for review, from European and Asian
countries. After a thorough peer-reviewing process, we have selected three articles for
presentation at the workshop (75% of acceptance ratio). The review process focused on
the quality of the papers, their innovative ideas and soundness of the presentation. In
addition to regular papers, we had an invited keynote paper, which also followed the
same review process with regular papers.

We would like to thank the ParaMo Advisory Committee, the Program Committee,
and the sub-reviewer who made the workshop possible. We would also like to thank
Euro-Par for hosting our community, and the Euro-Par workshop chairs, Prof. Ricardo
Chaves and Prof. Dora B. Heras for their help and support.
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Abstract. As containers run in a distributed manner in clouds, it is
important to satisfy network service level objectives (SLOs) for contain-
ers. In addition, it has been known that containers utilize more CPU
resources for network processing than native processes because of the
long networking stack of containers. Thus, for achieving network SLOs,
containers require sufficient CPU resources as well as network resources,
which we call inter-resource dependency. However, existing cloud sched-
ulers have limitations in that they do not take CPU into account for the
network SLO. This paper proposes DepCon that controls CPU resources
for containers to satisfy network SLOs. DepCon consists of DepCon
scheduler that works in the cloud-level and DepCon agent at each node.
We implement DepCon in the most popular container orchestration plat-
form, Kubernetes. Our evaluation results show that DepCon reduces the
network performance variance by 20 times while improving the network
throughput by 40%. In addition, DepCon reduces the scheduling over-
head by 20 times compared to the representative multi-resource schedul-
ing technique like DRF.

1 Introduction

Cloud applications have performance requirements such as throughput and
latency and the requirements are expressed as service level objectives (SLOs)
that are defined by tenants [11,22]. In particular, SLO guarantee in terms of
network performance is of paramount importance. This is because recent cloud
applications tend to run as containers in a distributed manner and provide
user-facing service by communicating with each other [9,13,15,29]. However,
it remains challenging to satisfy network SLOs for containers [3,11,22,25,28].

The challenge comes partly from the fact that containers share the same
operating system (i.e., host OS) [17,24]. The networking stack of the same host
OS is shared among containers. Therefore, containers can interfere with each
other, which makes difficult to achieve network SLOs. Furthermore, the net-
work processing of containers consumes higher CPU resources than the native
processes [13,18,26]. This is because containers require additional packet pro-
cessing in a network bridge [18]. This means that satisfying network SLOs needs
to have both network and CPU resources. For example, if a container does not
receive enough CPU resources, the network performance of the container can be
degraded despite the sufficient network resources allocated to the container [26].
c© Springer Nature Switzerland AG 2022
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However, existing container scheduling techniques do not consider the depen-
dency between the network and CPU resources. For example, the most popular
container orchestration platform, Kubernetes, does not take into account the
required CPU resources for containers to achieve specific network performance.
We find that containers running on Kubernetes experience performance degra-
dation (by 51% on average) and performance variance (by 41% on average) when
containers with different network SLOs run on multiple servers (Sect. 4.2).

This paper proposes DepCon that addresses the performance degradation and
performance variance in Kubernetes by taking the dependency between network
and CPU resources into account in satisfying network SLOs. First, we devise
DepCon scheduler that assigns a proper host server to satisfy network SLOs of
containers. DepCon scheduler acquires network SLOs for containers from users
and examines host servers in the system to find a host server with sufficient
network and CPU resources. When the DepCon scheduler assigns a host server
for a container, DepCon agent on the host server dynamically allocates CPU
resources for the container. DepCon agent adaptively adjusts the CPU allo-
cation depending on the actual network performance and SLOs of containers.
Such hybrid architecture of DepCon that consists of DepCon scheduler and Dep-
Con agent reduces the scheduling overhead by dividing container placement and
resource allocation into cloud-level DepCon scheduler and server-level DepCon
agent. This is different from existing multi-resource scheduling that conducts
both container placement and resource allocation in a centralized scheduler. We
implement DepCon in the most popular container orchestration platform, Kuber-
netes [7], and conduct performance evaluation. Our evaluation results show that
DepCon improves performance by 40% while reducing performance variance by
20 times compared to Kubernetes. In addition, DepCon reduces scheduling over-
head by 20 times compared to the existing multi-resource scheduling technique.

2 Background and Motivation

Kubernetes consists of servers called nodes, and a cluster consists of a master
node that manages the cluster and worker nodes where pods are actually cre-
ated and operated. The smallest deployable unit in Kubernetes is a pod, which
consists of one or more containers1. By default, Kubernetes allocates computing
resources for the pod CPU and memory via Linux cgroups [23], and network
bandwidth via tc [10].

We conduct an experiment to demonstrate the limitation of container
scheduling in Kubernetes, which cannot satisfy the network SLOs of contain-
ers. For the experiments, we utilize two servers equipped with an Intel Xeon
CPU E5-2650v3@2.3 GHz (10 cores), 128 GB memory, and 256 GB SSD. The
servers are connected using an Intel 82599 10 GbE network interface. The host
OS is Ubuntu 18.04 and kernel version is 5.3. We construct container environ-
ments using Docker 19.03 and Kubernetes 1.18.3. For Kubernetes, we configure
one server as a master node while running one worker node on another server.

1 In this paper, we put one container per pod for simplicity.
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Fig. 1. Performance by increasing the number of containers with tc

We utilize Netperf [19] benchmark to measure the network performance of con-
tainers and configure the containers running on the worker node to transmit
64 B TCP packets to the master node. Then, we assign 300 Mbps of network
bandwidth as SLO to each container and increase the number of containers from
five to 20. We run Netperf benchmark on each container for two minutes and
measure the network throughput and CPU usage.

Figure 1(a) shows the normalized and average network throughput (y-axis)
of containers when the number of containers increases (x-axis). The normalized
throughput 1.0 means the configured network SLOs, 300 Mbps of network band-
width. When the number of containers running on the worker node is less than
10, all containers satisfy the network SLO simultaneously. However, as the num-
ber of containers increases larger than 15, all containers experience performance
degradation that achieves lower throughput than the SLOs. The network capac-
ity is 10 Gbps, which is sufficient for 20 containers running concurrently (i.e.,
6 Gbps in total), but the throughput of containers decreases by 48% on average.
In addition, we find that when 15 containers run concurrently, the performance
variance of containers increases by 14% on average. This means that the con-
tainers achieve varied throughput even though the same network bandwidth is
allocated to the containers.

Figure 1(b) depicts the reason of the performance degradation is insufficient
CPU resources. When the number of containers running on the worker node
increases to 15, the total CPU usage becomes 1000% that is the total CPU
capacity of the worker node. However, the container scheduling of Kubernetes
does not consider the required CPU resources for the containers to achieve 300
Mbps on the worker node and allow the containers to contend for CPU resources.
This leads to the performance degradation of the containers, which results in SLO
violation. In addition, we divide the CPU usage into different categories such as
User, System, and Softirq. Note that User and System indicate the CPU usage
in user-level and kernel-level respectively, while Softirq means the CPU usage
to process software interrupts (i.e., softirq). Especifically, when the number of
containers increases from 5 to 20, the CPU usage of Softirq increases by 3.2 times.
This is because the network processing of containers (i.e., pods) requires a larger
amount of CPU resources from additional IP forwarding and NAT [16,18,21,30]
in kernel-level compared to native processes. Moreover, the network bandwidth
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allocation by tc increases the CPU overhead from frequent lock operation and
packet header inspection [13].

Figure 1(c) depicts CPU usage per container. When 15 containers run con-
currently, we find that the CPU usage variance between the containers increases
by 14% on average. The CPU usage variance causes network performance vari-
ance in Fig. 1(a). This means that as the overhead of softirq increases, CPU
performance variance between containers increases, which leads to high network
performance variance. As a result, to address the problem of performance degra-
dation and high performance variance in Kubernetes, we need a new scheduler
that achieves network SLO.

Fig. 2. DepCon design

Algorithm 1 Pod placement

S={s1...sN}: set of host servers
AS={as1...asN}: set of available servers
CSLO: network SLO of container request
netIdle, cpuIdle: idle network and CPU
1: count ← FW ← 0
2: FS ← ∅
3: AS ← S
4: for i ∈ 1..N do
5: idle ← si.netIdle
6: if idle > CSLO then
7: ascount++ ← si
8: end if
9: end for
10: while AS = ∅ do
11: if FS = FW < asi.cpuIdle then
12: FS ← asi
13: FW ← asi.cpuIdle
14: end if
15: end while

3 Design and Implementation

This paper proposes DepCon that is designed to satisfy the network SLO. A goal
of DepCon is to overcome the limitations of Kubernetes as follows: 1) DepCon
considers CPU for the network SLO to select the suitable server to create pods.
2) To achieve network SLO, DepCon allocates “proper” CPU to containers. So,
DepCon scheduler performs the cloud-level pod placement and the DepCon agent
node-level CPU allocation. The DepCon scheduler first searches host servers with
sufficient network resources, which means that the amount of available network
resources is larger than the network SLO. Then, among the servers, the DepCon
scheduler selects a server with the largest CPU resources in order to ensure
network SLO. At last, the DepCon agent on the selected server allocates CPU
resources dynamically for achieving the network SLO.

Figure 2 depicts the design of DepCon. The DepCon scheduler runs as a
centralized controller and performs pod placement. For example, the DepCon
scheduler receives a request to create a pod with 100 Mbps network SLO from a
tenant. Then, the DepCon scheduler creates a list of servers with available net-
work bandwidth more than 100 Mbps among 3 servers, which are Server 1 (S1)
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and Server 2 (S2). Note that this is different from Kubernetes that only offers
admission control for CPU and memory resources. Between S1 and S2, the Dep-
Con scheduler selects a server with the larger amount of available CPU resources.
So, S1 is selected as the server. In Fig. 2, when the container is created on S1,
the node changes the available bandwidth reduces to 200 Mbps (from 300 Mbps).
DepCon agent on S1 receives the network SLO of the container from the Dep-
Con scheduler. Then the DepCon agent monitors the network performance of the
container and dynamically adjusts CPU allocation for the container to achieve
the network SLO 100 Mbps.

We implement DepCon in Kubernetes and Linux kernel. First, we modify the
scheduling plugin of Kube-scheduler to assign a higher weight to servers with
more available CPUs and also modify the Kubernetes agent (i.e., Kubelet) to
communicate with the DepCon agent (the LoC is 96). Second, we implement the
DepCon agent as a loadable kernel module (the LoC is 317). The DepCon agent
retrieves the information of containers from Kubelet such as network SLO and
performs CPU allocation for containers by exploiting the Linux functionality,
cgroups [23].

3.1 DepCon Scheduler

Algorithm 1 shows the pod placement of the DepCon scheduler. First, DepCon
scheduler creates a list of servers that have larger amount of available network
resources than the requested network SLO (lines 4–9). The scheduler rejects
the pod creation request when the available network resources are less than the
network SLO. Second, it assigns a weight on each server in the list based on the
amount of available CPU resources (lines 10–15). DepCon scheduler does not
have knowledge on how much CPU resources are needed for achieving network
SLOs. Therefore, the scheduler assigns higher weight to the server with more
CPUs. Finally, the scheduler selects a host server (FS) with the highest weight
(FW ) to place the pod.

3.2 DepCon Agent

DepCon agent runs dynamically to adjust CPU allocation for the container in
order to satisfy network SLOs. As DepCon obtains the network SLO, the DepCon
agent tries to find a proper amount of CPU resource for achieving the network
SLOs in the host server. For simplicity, we assume that network SLO is given as
network bandwidth.

DepCon agent periodically monitors network bandwidth of the container and
compares the bandwidth with the network SLO. When the bandwidth is less than
the SLOs, the DepCon agent increases CPU allocation for the container. The
degree of increase and decrease is designed to be in proportion to the difference
between the SLO (NS) and the actual bandwidth (NP ) as in Eq. 1. This is based
on a closed-loop control algorithm. Note that CPUprev and CPUalloc indicate
the CPU allocation in previous period and current period, respectively. In Eq. 1,
k is a tunable parameter that has an impact on the overall performance of the
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Fig. 3. Containers have the same SLO, 300 Mbps Fig. 4. Network throughput
with two SLOs

DepCon agent. For example, the large value of k reduces the time for achieving
the SLOs by increasing the CPU allocation in big steps. However, this can result
in the large variance of container performance. On the other hand, when k is
small, the performance of containers does not fluctuate much. But, the CPU
allocation is changed at a slow pace, which leads to slow convergence to the
network SLO.

CPUalloc = CPUprev + CPUprev ∗ k ∗ NS − NP

NS
(1)

4 Evaluation

We evaluate DepCon in three sets of experiments. First, we measure the network
throughput and CPU utilization when the containers are configured with the
same network SLO, and compare them with that of Kubernetes. Second, we
measure the network throughput for containers configured with different network
SLOs. At last, we compare the scheduling overhead of DepCon with that of DRF,
representative multi-resource scheduling technique.

4.1 Motivating Example Evaluation

For the experiments, we measure the network throughput and CPU usage under
DepCon using the same experimental setup as in Sect. 2. In DepCon agent, k is
set to 0.05, which is empirically determined, and the monitoring period is set to
100000 µs.

Figure 3 shows the network throughput (see Fig. 3(a) and total CPU usage
(see Fig. 3(b)) with DepCon. The network throughput of DepCon is compared
to that of k8s (k8s stands for native Kubernetes). With DepCon, the network
performance variance between 15 containers reduces by 43% on average com-
pared to k8s. This is because DepCon agent adjusts the CPU resources for the
containers to satisfy the network SLOs. We also find that all containers achieve
a similar level of CPU utilization. This is different from k8s where containers
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Fig. 5. Normalized throughput of containers with four SLOs using 10 servers

utilize different amounts of CPU resources owing to softirq processing. In addi-
tion, when 20 containers run concurrently, DepCon reduces the CPU usage for
softirq processing by 12% on average. This is because DepCon does not utilize
tc so that reduces the packet processing overhead caused by tc. By reducing the
CPU usage in softirq, DepCon improves average network throughput by 7% by
increasing the amount of CPU that the container of each container can utilize
(see Fig. 3). However, the containers still cannot satisfy the network SLOs when
the number of containers increases larger than 15 because the CPU resources
of the worker node become saturated similar to Fig. 1(b). Even so, the DepCon
guarantees network SLO as much as possible by adjusting the CPU to reduce
network performance variance.

4.2 Support for Different Network SLOs on Multiple Servers

Now, we evaluate DepCon when containers with different network SLOs run on
multiple servers. We conduct two experiments with the different numbers of host
servers when the servers have the same hardware specification as Sect. 4.1.

For the first experiment, we utilize four servers in total. We configure the
experimental environment with one master node, two worker nodes, and an
evaluation machine. We create 30 containers on the two workers and the con-
tainers have two different SLOs in a random manner (100 Mbps or 300 Mbps).
We present normalized average network throughput (y-axis) in Fig. 4. With k8s,
Fig. 4 shows that the network performance decreases by 9% and the performance
variance increases by 10%. There are two reasons. First, k8s does not take into
account the CPU resources required to achieve network SLO. As a result, this
leads to run containers with insufficient CPU resources. Second, k8s performs
fair CPU scheduling by the default Linux CPU scheduler, CFS, even though
the containers have different network SLOs such as 100 Mbps, 300 Mbps. Thus,
the containers receive the same amount of CPU, which is not sufficient for the
container with 300 Mbps of network SLOs. On the other hand, DepCon adjusts
the CPU allocation of containers to converge to the SLO. As a result, Dep-
Con enables the containers to achieve 300 Mbps by reducing the performance
variance between containers by 3 times compared to k8s. Additionally, network
performance improves on average by 5% compared to k8s.
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For the second experiment, we utilize 10 servers in total and assign one mas-
ter node, six worker nodes, and three traffic reception machines. We create 100
containers on the six workers and the containers have four different SLOs in a
random manner from 100 Mbps to 400 Mbps. Figure 5(a) shows the SLO achieve-
ment of 100 containers under the k8s and DepCon, respectively. We present
normalized and average network throughput (y-axis). At the network SLO of
200 Mbps, the k8s suffer from performance variance of up to 103 Mbps. This is
because the containers with 200 Mbps of SLO do not receive sufficient CPU as k8s
do not consider the CPU usage of the containers and results in CPU contention
in the worker nodes. In addition, we illustrate the performance distribution of
containers per worker node with k8s and DepCon, respectively, in Fig. 5(b) and
Fig. 5(c) to observe the difference in satisfying SLOs depending on worker nodes.
Note that x-axis indicates the configured SLO per container while y-axis means
the normalized throughput to the value of SLOs. Figure 5(b) shows that the
containers with k8s suffer from performance degradation and performance vari-
ance regardless of the worker node they are running on. At the network SLO
of 400 Mbps, the network performance of k8s decreases by an average of 51%.
On the other hand, Fig. 5(c) depicts that DepCon resolves performance variance
in all worker nodes and satisfies the SLOs ranging from 100 Mbps to 300 Mbps.
DepCon reduces the average performance variance of servers by 16x compared to
k8s by scheduling containers on servers with sufficient CPU and adjusting CPU
to achieve network SLO. In addition, in Fig. 5(a), the performance variance of
containers at SLO of 200 Mbps decreases by an average of 20 times (98 Mbps)
compared to k8s which has a performance variance by 41% on average.

However, we find that the containers with 400 Mbps of SLO experience per-
formance degradation compared to the configured SLOs. The reason is that the
CPU capacity of six worker nodes is insufficient to support 100 containers with
different SLOs from 100 Mbps to 400 Mbps. The total CPU utilization of worker
nodes is 973% on average, which means that the CPU resources are fully uti-
lized in all worker nodes. This allows the containers with 400 Mbps of SLO not
to receive sufficient CPU resources to achieve 400 Mbps. Even though the con-
tainers with 400 Mbps of SLO achieve lower performance than the configured
SLO by 32% on average, DepCon improves the network performance by 40% on
average compared to k8s.

4.3 Scheduling Overhead Analysis

Because container scheduling deals with numerous numbers of servers, low
scheduling overhead is important for high scalability [4]. This evaluation shows
the scheduling overhead of DepCon compared with Dominant Resource Fairness
(DRF) [6], the well-known multi-resource scheduling technique.

DRF is a fair sharing model that is designed to achieve the max-min fairness
to multiple resource types. DRF receives the resource demand that includes the
amount of computing resources such as CPU and memory required for a job
from tenants, which is similar to the container scheduling in Kubernetes. Then,
based on the resource demand, DRF finds a dominant resource that has a larger
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Fig. 6. Scheduling overhead of DepCon and DRF in different conditions

fraction among multiple resources as follows. DRF-based scheduling algorithm
iterates resource allocation over the number of tenants (T ) and resource types
(R). Hence, the time complexity of the DRF-based algorithm is O(R2T ) [12] and
its scheduling overhead increase with the number of tenants and resource types.
On the other hand, DepCon scheduler does not iterate resource allocation for
the numbers of tenants or resource types, only for the number of host servers
(N) (see Algorithm 1). Therefore, the worst-case time complexity of DepCon
scheduler is O(N).

We run two experiments to compare the scheduling completion time of Dep-
Con and DRF using simulations. Note that scheduling completion time indicates
the time spent to determine the appropriate host server to place containers. First,
We measure scheduling completion time with fixed number of servers by utilizing
a representative cloud simulator, CloudSim [20]. Then, we measure the schedul-
ing completion time of DepCon and DRF under various experiment environments
that have different numbers of tenants and host servers.

In the first experiment, we measure scheduling overhead in a simulation envi-
ronment consisting of 400 host servers. We compare the scheduling completion
time of DepCon and DRF for the 300 container creation requests with varying
the number of tenants. Figure 6(a) shows the scheduling overhead of DepCon
and DRF in the CloudSim environment. The x-axis is the DepCon and DRF
experimented with changing the number of tenants. For example, in DRF-#,
# means the number of tenants where N denotes the number of containers. In
other words, DRF-N/4 indicates that the number of tenants is 300

4 . The y-axis is
the normalized total scheduling time. On CloudSim, DepCon takes 0.032 as aver-
age normalized scheduling time and DRF takes average normalized scheduling
time from 0.38 to 0.94 as the number of tenants increases from N/10 to N . So,
DepCon reduces scheduling overhead by 29x on average compared to DRF-N,
and decreases scheduling overhead by 20x on average compared to overall DRF.

In the second experiment, we measure the scheduling overhead of DepCon
with the different numbers of host servers and containers, and compare the
results with DRF. Also, we divide the evaluation of DRF into three cases such
as DRF-N, DRF-N/5, and DRF-N/10. N, N/5, and N/10 indicate the number
of tenants in each experiment where N means the number of total containers to
be created. We construct the simulation environment using DepCon simulator,
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our own simulator due to the difficulty of CloudSim because it did not work with
more than 700 containers. Note that we measure the scheduling completion time
that takes to determine proper host servers and present normalized scheduling
time where one indicates the results of DRF-N . Figure 6(b) shows normalized
scheduling time with the increasing number of host servers when the number of
containers is fixed as 2,000. As the number of tenants increases from N/10 to
N , the scheduling overhead of DRF dramatically increases by 15x. In contrast,
the scheduling time of DepCon increases by 1.8x from 0.072 to 0.135, as the
number of servers increases from 100 to 300. This is because the time complex-
ity of pod placement algorithm depicted in Algorithm 1 is only dependent on
the number of host servers. Even though the number of host servers increases,
DepCon offers lower scheduling overhead than DRF-N and DRF-N/5. With 300
host servers, DepCon reduces the scheduling time by 640% and 45% compared
to DRF-N and DRF-N/5, respectively. However, DepCon has a higher overhead
than DRF-N/10 because the number of servers that affect the scheduling over-
head of DepCon is larger than the number of tenants which is related to the
time complexity of DRF.

5 Discussion

Kubernetes allows tenants to assign CPU for their pods using CPU request and
CPU limit. The CPU request indicates the minimum CPU allocation for pods,
which is applied to the cpu.shares in cgroup. The CPU limit means the max-
imum CPU allocation for pods and is applied to cpu.cfs quota us. As Dep-
Con agent also configures cpu.cfs quota us, the configuration of CPU limit by
tenants can interfere with the operation of the DepCon agent. This is because
DepCon agent adjusts the cpu.cfs quota us of containers while CPU limit con-
figured the cpu.cfs quota us of pods. As Kubernetes subordinates containers to
pods, the cpu.cfs quota us of a container cannot exceed the cpu.cfs quota us
of a pod where the container belongs. This means that DepCon agent cannot
increase the value of cpu.cfs quota us more than that of pods. As a result,
DepCon allows tenants not to specify a CPU limit for the pod to prevent inter-
ference with the operation of the DepCon agent.

6 Related Work

Multi-resource scheduling techniques have been actively researched for efficient
resource utilization because the resource sharing (e.g., CPU, memory, and net-
work bandwidth) between jobs (e.g., containers) results in several issues such as
performance interference and SLO violation.

DRF [6] and H-DRF [2] are representative multi-resource schedulers. The
schedulers aim at providing fairness in resource allocation by applying the gen-
eralization of max-min fairness that maximizes the minimum allocation received
by a user in the system for multiple resource types. DRF considers the hetero-
geneous data center applications and allocates the same dominant share, which
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is the maximum among all shares of a user, to all jobs. H-DRF applies a hierar-
chical structure to DRF in order to offer multi-resource scheduling for Hadoop
frameworks [1]. However, both DRF and H-DRF have high computational com-
plexity because they calculate resource allocation for every tenant and resource
[12].

Other studies [8,12,14,27] achieve fairness in resource allocation while solv-
ing several issues such as utilization or overhead of DRF. DC- DRF [12] is
the adaptive approximation of DRF to reduce the time complexity for multi-
resource allocation at a centralized controller. It presents several optimization
techniques such as parallelism and NUMA-awareness to improve the schedul-
ing performance of the controller. PS-DSF [14] is a server-based DRF extension
for the fair resource allocation of multiple resources in heterogeneous servers
with placement constraints. PS-DSF proposes the max-min fairness of virtual
dominant shares for tenants associated with each server to improve resource
utilization. Carbyne [8] is an altruistic approach that focuses on long-term fair-
ness rather than immediate fairness. It improves average job completion time
and cluster resource utilization by re-locating the leftover resources without vio-
lating fairness. TSF [27] is a new sharing policy that considers multi-resource
shares for data center jobs with placement constraints. TSF suggests to remove
the placement constraint and allocates the maximum amount of resources. Even
though it increases resource utilization by providing idle resources to users, it
increases scheduling overhead when there are more than 100 tasks configured to
run the job, which increases the total runtime of the job.

At last, HUG [5] is a DRF-based scheduling technique that not only increases
resource utilization but also guarantees minimal performance, which is simi-
lar this paper. HUG limits the bandwidth utilization of each tenant to ensure
optimal isolation and high network utilization for multiple tenants. Also, HUG
can satisfy the network SLOs, as it reserves and allocates the minimum net-
work resources to each tenant. Even though the technique can offer minimum
network bandwidth through resource reservation, it cannot guarantee sufficient
CPU resources for achieving specific network SLOs.

7 Conclusion

This paper proposes a new cloud scheduler that achieves the network SLO in the
Kubernetes environment. DepCon overcomes the limitations of Kubernetes by
providing admission control for containers and by adjusting CPU resources for
the network SLO. We design and implement DepCon in Kubernetes and measure
network performance in different environments. Our evaluation results show that
DepCon reduces the network performance variance by 20x and improves the
network performance by 40%. In addition, in terms of the scheduling overhead,
DepCon decreases the scheduling completion time by 20 times compared to
DRF (Dominant Resource Fairness). In future work, we plan to adopt learning
approaches to predict the required computing resources for various workloads to
satisfy the network SLOs of containers.
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Abstract. Distributed Stream Processing is a valuable paradigm for
reliably processing vast amounts of data at high throughput rates with
low end-to-end latencies. Most systems of this type offer a fine-grained
level of control to parallelize the computation of individual tasks within
a streaming job. Adjusting the parallelism of tasks has a direct impact
on the overall level of throughput a job can provide as well as the amount
of resources required to provide an adequate level of service. However,
finding optimal parallelism configurations that fall within the expected
Quality of Service requirements is no small feat to accomplish.

In this paper we present Rafiki, an approach to automatically deter-
mine optimal parallelism configurations for Distributed Stream Pro-
cessing jobs. Here we conduct a number of proactive profiling runs to
gather information about the processing capacities of individual tasks,
thereby making the selection of specific utilization targets possible.
Understanding the capacity information enables users to adequately pro-
vision resources so that streaming jobs can deliver the desired level of
service at a reduced operational cost with predictable recovery times. We
implemented Rafiki prototypically together with Apache Flink where we
demonstrate its usefulness experimentally.

Keywords: Distributed Stream Processing · Capacity planning ·
Resource optimization · Quality of Service · Parallelization · Profiling ·
Performance modeling

1 Introduction

Distributed Stream Processing (DSP) enables the processing of large volumes
of unbounded streams of data with high throughput rates and low end-to-end
latencies. Streams of data are generated in a growing number of contexts includ-
ing IoT sensor networks, social media, and online transactions [5,9]. In order to
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meet Quality of Service (QoS) requirements regarding performance and avail-
ability, DSP systems must be configured and allocated a sufficient amount of
resources to provide an adequate level of service. Determining configurations,
how many resources to allocate to a DSP system, and what levels of throughput
those resources and configurations can provide is challenging. Finding optimal
configurations is typically time-consuming and requires expert-level knowledge
of the DSP system and streaming job [1,10]. However, uncovering this informa-
tion is important for all users of these systems, and providing an approach that
automates and speeds up this process is necessary.

In the stream processing model, a series of tasks are performed on a stream
of data, and each item in the data stream is processed by a task as soon as it
becomes available [5]. Given an infinitely large stream of data, tasks will pro-
cess as many items as possible using the available resources. To increase overall
throughput and reduce end-to-end latency, the computation of tasks in DSP jobs
can be run in parallel. Because each task performs a different function and can
therefore process a different maximum number of messages per second, one of the
most important configurations to adjust to match available resources to stream
processing workloads is the number of parallel computations, or parallelism, of
tasks.

By gaining insights into the capacity of a DSP job on a fine-grained level,
resource allocation can be better optimized and QoS requirements can be more
easily met. Finding optimal parallelism configurations and the capacity of a DSP
job is often used for dynamic autoscaling. These reactive approaches typically
profile running jobs and automatically rescale tasks when certain thresholds are
reached [6]. Though useful for running applications, there is value in proactively
profiling a DSP job in order to understand task-level capacity and set utilization
targets.

In this paper we present Rafiki, an approach which automatically deter-
mines the processing capacities of individual tasks for any selected streaming
job. Rafiki takes advantage of cloud computing, OS-level virtualization, and
container orchestration technologies to deploy duplicate DSP pipelines and test
their maximum capacity under realistic conditions. By running a series of proac-
tive profiling runs, Rafiki finds optimal parallelism configurations at a task level
and reports the maximum throughput possible for those configurations. With the
insights gained from the profiling runs, a user can allocate sufficient resources to
a DSP job in order to reach utilization targets, which allows for a more accurate
estimation of recovery times as well as the identification and removal of perfor-
mance bottlenecks. Additionally, our method provides an interface for monitor-
ing the capacity utilization for any targeted job after profiling runs have been
completed. We provide a prototype and evaluate its effectiveness experimentally
with two DSP jobs.

The remainder of this paper is organized as follows. In Sect. 2 we explain our
approach. In Sect. 3 we outline Rafiki’s design and evaluate our approach with
two DSP jobs. We conclude with related work in Sect. 4 and a brief conclusion
in Sect. 5.
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2 Approach

In order to measure task-level capacity and apply the gained insights to a given
DSP job, we propose Rafiki, a three-step solution. First, a set of profiling runs
are iteratively executed with increasing and optimal parallelism configurations
to obtain maximum capacities across the different tasks. Second, the capacity
information for all tasks is deduced based on the metrics gathered from the pro-
filing runs of the tested parallelism configurations. Third, the gathered capacity
information is applied to a running job to target a specific utilization. Addition-
ally, real-time insights are provided into the potential effects of changing task
parallelisms in an interactive dashboard. An overview can be seen in Fig. 1. We
have implemented this approach to validate it and promote its usability.1

Fig. 1. Overview of the architecture and interactions

2.1 Profiling Runs

The main goal of this step is to calculate the maximum capacity for each task at a
given level of parallelism. We achieve this by executing a set of brief profiling runs
while stressing the system’s processing capacity in every iteration. By ensuring
a sufficient amount of messages are available to be consumed, we can flood the
entire pipeline to detect tasks that are unable to process messages at the rate
they are received. These tasks cause backpressure and indicate the maximum
processing capacity of the task at the current parallelism configuration. In each

1 https://github.com/ciklista/rafiki.

https://github.com/ciklista/rafiki
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run, the essential idea is to detect tasks that are the bottleneck given the current
configuration and increase their parallelism in the next iteration.

A set of profiling runs is always started with all tasks having a parallelism
of one. We then subsequently increase the parallelism of certain tasks, one at
a time, until no more bottlenecks can be enforced, or a user-defined maximum
parallelism has been reached. With each profiling run, we take advantage of
cloud computing and container orchestration technologies to deploy duplicate
DSP jobs with increasing parallelism configurations that read from the same
Apache Kafka source. Messages are replayed from the same offset to ensure that
each experiment iteration receives the same message sequence.

Fig. 2. Profiling run loop

Figure 2 illustrates the experiment loop as well as the decision process of
which task parallelism to increase for the next iteration. After a run has suc-
cessfully completed and metrics have been collected, we check if backpressure
was detected on any task throughout the run. If this was not the case, we can
assume none of the tasks reached its maximum capacity and no bottleneck was
found within the system. In this case, we increase the parallelism on the source
task, allowing messages to be consumed at a larger rate. This process is repeated
until backpressure is found on any task. Once that happens, we can then deduce
which task parallelism needs to be increased in order to resolve this bottleneck.
If backpressure is reported for a single task, the subsequent task is not able
to consume messages at the same rate at which they are produced. Following
this reasoning, we therefore increase the parallelism of the task following the
task that experienced backpressure. If we see multiple tasks experiencing back-
pressure, we will increase parallelism on the task subsequent to the last task
that experienced backpressure, in the order of the data flow. We repeat this
process until increasing the parallelism of a certain task would exceed the pre-
defined maximum allowed parallelism. This upper bound is set by the user and
is derived from financial or host system constraints.

2.2 Deducing Capacity

After each profiling run, throughput and backpressure metrics are collected and
used to define the maximum throughput of individual tasks. Based on observed
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backpressure, we can deduce different types of information for any task x with
any task parallelism configuration y as shown in Table 1. Rafiki assumes, that
all tasks are isolated and that parallel instances of an operator are similar, i.e.
receive a similar share of messages, and that the underlying system operates
without failures.

Table 1. Capacity assumptions for task x at parallelism y

Case Task x− 1 under
backpressure

Task x under
backpressure

Assumption

1 ✓ ✗ Throughput is
maximum capacity

2 ✗ ✓ Throughput is lower
bound for capacity

3 ✗ ✗ Throughput is lower
bound for capacity

4 ✓ ✓ Throughput is lower
bound for capacity

One additional special case is a source task, as it does not have a preceding
task to monitor in order to determine its capacity. There are two approaches to
solving this issue. First, one could identify a metric that follows the concept of
backpressure in the system generating the input stream of the DSP job. Alter-
natively, one could simply aggregate capacity information across all runs for
a given parallelism configuration of the source task. By design of the profiling
runs, this provides a lower bound for the given configuration. Further, under
the assumption of infinite messages at the time of a profiling run, maximum
capacity for source tasks is defined as the capacity observed when none of the
tasks experienced backpressure. It can then be assumed, that the source task
operated at its maximum capacity.

2.3 Utilization Targeting

After successfully completing the profiling runs, the maximum, or at least a
lower bound for the maximum, number of messages that a task can process at
a specific parallelism has been recorded in the database. With this throughput
table we can monitor a running job and deduce the current capacity to achieve a
target utilization. A DSP job should typically be run at a percentage of the max-
imum capacity in order to be able to recover from failures that will likely occur
over the lifespan of a long-running job. Effective DSP systems use fault toler-
ance mechanisms such as checkpointing to periodically create consistent states to
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recover from in case a failure occurs. Upon failure, messages since the last saved
state must be reprocessed in addition to the messages that continue to arrive.
Targeting a specific utilization allows a DSP system enough processing capac-
ity to be able to recover from failure. For example, a job processing incoming
messages at 100% has no additional capacity for recovery, but a job running at
70% of the maximum capacity has 30% processing capacity for recovery. Having
insights into the processing capacity and target utilization also make it possible
to estimate recovery times. It is crucial that the running job we monitor is the
same as the job we run our experiments with since the capacity depends on the
implementation.

3 Evaluation

In this section, we show through experiments that using Rafiki is both practical
and beneficial for obtaining the task-level capacity information of DSP jobs.

3.1 Prototype Implementation

To evaluate our approach, we implemented Rafiki prototypically to work with
Apache Flink. The prototype consists of three main components, a Java appli-
cation, a database, and a web UI. All components ship as docker containers.
The core is a Java Spring Boot application that triggers the profiling runs. It
publishes an API that can start the execution of jobs on a remote DSP system
and supervises the profiling loop. After completing a profiling run, it records and
stores the metrics in a PostgreSQL database.

The web UI, depicted in Fig. 3, is a React application that enables a user to
upload a custom Java executable to Flink and to set parameters relevant for the
profiling runs such as the highest level of parallelism. The web UI calls the APIs
exposed by the Java application. Once results are available, the web UI allows
for real-time monitoring of a running job and applies the capacity information
to single tasks of that job, indicating current capacity via color codes. The web
UI also features a sandbox mode that enables users to simulate a different level
of parallelism on their job and observe changes in capacity.

3.2 Experiment Setup

Profiling runs were conducted on the Google Cloud Platform2 in a three node
Kubernetes [14] cluster using the Google Kubernetes Engine.3 Hardware and
software specifications are shown in Table 2. Flink was deployed natively in
Kubernetes with HDFS [12] being used for the storage of Flink checkpoints.
All streaming jobs were configured to consume messages from the Kafka [7]
streaming platform. Based on the cluster setup, a maximum parallelism of six

2 https://cloud.google.com/.
3 https://cloud.google.com/kubernetes-engine.

https://cloud.google.com/
https://cloud.google.com/kubernetes-engine
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Fig. 3. Rafiki UI. Task-level capacity is indicated via different colors. (Color figure
online)

was used. The duration of a profiling run iteration was set to two minutes to
allow enough time for messages to accumulate and be processed in windowing
periods. Each job was profiled with four successive runs with the mean being
used for the evaluation.

Table 2. Cluster specifications

Resource Details

OS Ubuntu 18.04

CPU 4 vCPU

Memory 16 GB RAM

Software Java v1.11, Flink v1.12, Kafka v2.6, ZooKeeper
v3.6, Redis v5.0, Prometheus v2.25, Docker v19.3,
Kubernetes v1.18, HDFS v2.8

3.3 DSP Jobs

Rafiki was tested with two DSP jobs, the Yahoo Streaming Benchmark [2] and
an IoT Vehicles Experiment [3]. Source code for both jobs can be found in the
Rafiki repository.4 The Yahoo Streaming Benchmark is an advertising analytics
use case that counts how many times ads from an ad campaign were viewed in
a given time window. In the benchmark, ad campaigns with corresponding ad
events are synthetically generated at a constant rate. The stream processing job
then deserializes events from Kafka, filters them based on an ad type, matches
the ad id to a campaign id, and counts how many times ads from a campaign
4 https://github.com/ciklista/rafiki.

https://github.com/ciklista/rafiki
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were viewed in a 10-s window. The IoT Vehicles Experiment is an IoT traffic
sensor use case that detects speeding vehicles. The experiment uses pregenerated
vehicle data that includes the positional data of the vehicles. The data stream is
filtered based on certain points of interest and then collected in a window. The
vehicle speed is calculated based on the window time and the update interval
of the vehicles. Vehicles that exceed a predefined speed are then reported to a
different Kafka sink.

(a) Yahoo Streaming Benchmark

(b) IoT Vehicles Experiment

Fig. 4. Profiling results of experiments conducted with our two DSP jobs. For each
job, task, and task parallelism, we report the average maximum throughput and the
corresponding standard deviation across all conducted runs. For most tasks, it can be
observed that the influence of the task parallelism on the maximum throughput is fairly
linear.

3.4 Results

Rafiki tested on average 25 configurations for the Yahoo Streaming Benchmark
and 17 configurations for the IoT Vehicles Experiment on each run. The results
depicted in Fig. 4 show the highest measured throughput for each level of par-
allelism. Cases where throughput was not recorded indicate that the task could
adequately handle the overall throughput at a lower parallelism, and that overall
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throughput was limited by another task. With a maximum parallelism of 6, each
task shows a linear increase in processing capacity with additional task paral-
lelism. Despite slight variance across runs, repeated profiling experiments found
the same bottlenecks and generally tested configurations in the same order. We
therefore conclude that Rafiki proved its ability to measure task-level capacity
and identify bottlenecks that would benefit most from increased parallelism.

Table 3. Validation results

Job # Messages Estimated
processing time

Average real
processing time

Average
deviation

Yahoo
Streaming
Benchmark

51.8 M 398.7 s 445.3 s −10.31%

IoT Vehicles
Experiment

56 M 625.8 s 594 s 5.38%

To validate the measured capacity results, we compared the predicted pro-
cessing time against the actual processing time, as seen in Table 3. To do this, we
accumulated messages in Kafka and measured the time needed to process these
messages. We then compared our estimated processing time with the actual pro-
cessing time. Rafiki underestimated the maximum processing capacity in the
Yahoo Streaming Benchmark by 5–14% with an average of 10% and overesti-
mated the maximum processing capacity in the IoT Vehicles Experiment by
3–6% with an average of 5%.

3.5 Discussion

Rafiki was implemented to deduce information about task-level capacity in order
to make it possible to monitor and reach utilization targets. While the results
for the IoT Vehicles Experiment also show the same relation, we cannot observe
as high of a capacity gain per parallelism as in the Yahoo Streaming Benchmark
experiment. Although we can still use the capacity information to set a utilization
target, the results indicate that the limiting factor for this job is likely not the
parallelism. While Rafiki is able to reveal such bottlenecks, it cannot show its
source.

The current implementation of Rafiki is limited by a few aspects. External
factors such as failing nodes or a bottleneck in the underlying network are not
detectable by Rafiki and would alter the results. This issue could be solved in
future iterations by extending the range of collected metrics to include these
factors and for Rafiki to react to the events. Another limitation is jobs that
have multiple sources. If Rafiki does not detect backpressure in the system, it
would increase the parallelism for all the sources, likely resulting in a higher
parallelism than needed for a subset of the sources. This issue could also be
solved by extending our approach.
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4 Related Work

Our approach is inspired by previous work in DSP capacity planning. Related
work that assesses the maximum capacity of a DSP system typically uses analyti-
cal models to predict capacity or profiling techniques to monitor actual capacity
in a running system. Profiling-based approaches have been shown to be more
accurate. Roy et al. use both analytical modeling and profiling to find the
capacity of distributed systems [11]. They find that the accuracy of their mod-
els decrease as system activity increases. Bilal and Canini [1] argue that using
analytical modeling to predict throughput and latency reduces the accuracy of
results as assumptions must be simplified to create models and these models
must be regularly updated to reflect changing environmental conditions.

Kalavri et al. [6] use task processing rates to create a model to automatically
scale a DSP job according to the current workload. Theirs is a reactive profiling-
based approach that works on running systems. Rafiki, by contrast, uses parallel
profiling runs to determine the capacity information of a chosen DSP job so that
utilization targets can be easily set by a user for different throughput rates thus
ensuring any QoS requirements are met.

In [8], the authors propose a prototype called Flink-ER which represents the
DSP execution graph as a flow network. Here each task has a capacity and a
flow representing the maximum message processing rate and current processing
rate respectively. Flink-ER uses graph theory and partitions to identify perfor-
mance bottlenecks, using network bandwidth and latency as the basic capacity
measurement.

To automate finding optimal parameters in DSP systems, Bilal and Canini [1]
propose a framework that compares the results of various optimization algo-
rithms. Their profiling-based approach focuses on minimizing latency while pro-
viding a minimum level of throughput to obtain realistic results.

Tang and Gedik [13] use an estimation of each task’s CPU utilization to gen-
erally measure capacity at a task level. The tasks with the highest CPU utiliza-
tion are identified as bottlenecks and are allocated more resources. After increas-
ing the parallelism of the bottleneck task, it is then tested to see if the throughput
increased. In contrast, Rafiki directly identifies bottleneck tasks using backpres-
sure metrics.

Stela [15] identifies bottleneck tasks based on their input and output rate
to dynamically scale individual tasks of a DSP system up or down. Congestion
is found when the input rate of the data stream is higher than the number of
messages that can be processed. This measure of capacity is used by Rafiki,
however, it is obtained as a metric directly from backpressure metrics. Stela is
an online, reactive application, while Rafiki duplicates configurations pipelines
in parallel and intentionally overloads the system to find bottlenecks.

Our overall approach borrows from Chiron [4]. Chiron uses a profiling-based
approach to measure the capacity of DSP jobs with QoS requirements to find
optimal checkpoint intervals. OS-virtualization, container orchestration, and IaC
methods are used to deploy isolated and duplicated pipelines with varying check-
point interval configurations. In order to test the maximum capacity and increase
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the number of events processed by the DSP job, events are read from an earlier
timestamp. All duplicate pipelines read from the same Kafka topic to increase
accuracy [4]. Chiron builds on Timon [3], which tests alternate DSP configura-
tions by deploying parallel pipelines that read from production data streams.

5 Conclusion

Finding optimal parallelism configurations for DSP jobs and determining the
maximum throughput those configurations can provide is no easy feat. In this
paper we proposed Rafiki, an automated approach for finding optimal configu-
rations and gaining insights into the task-level capacity of a DSP job. A number
of proactive profiling runs are conducted where Rafiki uncovers capacity infor-
mation for individual tasks. This capacity information is collected and makes
the process of allocating sufficient resources to meet QoS requirements easier
for users. It can be used to estimate recovery times through selecting specific
utilization targets, thus helping to create more efficient and reliable DSP jobs.
Rafiki was tested experimentally using two DSP jobs and found to accurately
measure capacity within an average of 5–10%. Rafiki offers increased usability by
providing a web UI that allows for real-time capacity monitoring and experiment
evaluation. Future work could enhance and build upon the proposed solution in
a number of ways. Though tested prototypically with Apache Flink, the concepts
of task parallelism and bottlenecks in stream processing pipelines are common
across most DPS systems. Mapping these abstractions to different systems would
increase Rafiki’s versatility. Bottlenecks could also be defined by metrics other
than backpressure, such as processing rates, latency, or CPU utilization.
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Abstract. Even though a large-scale graph structure is a powerful
model to solve several challenging problems in various applications’
domains today, it can also preserve various raw essences regarding user
behavior, especially in the e-commerce domain. Information extraction
is a promising research area in deep learning algorithms using large-scale
graph data. This study focuses on understanding users’ implicit naviga-
tional behavior on an e-commerce site that we can represent with the
large-scale graph data. We propose a GAN-based e-business workflow by
leveraging the large-scale browsing graph data and the footprints of nav-
igational users’ behavior on the e-commerce site. With this method, we
have discovered various frequently repeated clickstream data sequences,
which do not appear in training data at all. Therefore, We developed a
prototype application to demonstrate performance tests on the proposed
business e-workflow. The experimental studies we conducted show that
the proposed methodology produces noticeable and reasonable outcomes
for our prototype application.

Keywords: Deep learning · Large scale graph data · GAN ·
Distributed e-business workflows · Distributed systems

1 Introduction

We have been observing the increasing importance of e-commerce websites world-
wide since the beginning of the Covid-19 outbreak. As the number of e-commerce
users and their interactions with e-commerce websites increase, we would say
that the volume of record files associated with users’ interaction also signifi-
cantly overgrows. Meanwhile, understanding user needs and intents will also be
challenging because the volume of data increases massively. However, this new
difficulty can bring new opportunities to understand users’ behavior more deeply
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with scalable approaches. One of the existing scalable approaches is learning
from large-scale graph data that we can adapt to represent the user’s naviga-
tional behavior as a graph network. There exist studies that have successfully
shown that they can model navigational browsing behavior data as graph data
[10,11]. We observe this research problem in various domains, such as telecom
[1], internet of things [3], and social networking [5,14]. This study focuses on
learning from navigational behavioral data generated in e-commerce websites.

This study focuses on analyzing and learning from browsing graph data for
enabling automating UI testing. Software testing includes requirement analysis,
test case design, test case writing, test code development, test execution, test
report preparation [2]. In the test phase, there are too many scenarios for the
software to be tested. Usually, business analysts create these scenarios. Then,
the testers perform the tests semi-automatically or automatically by utilizing the
software. Selenium is an example of software that automatically performs tests.
It tests all of the operations for the functional requirements on the interface. The
testing process of the UI interfaces must follow specific steps in the user interface
so that it can test some of the functional requirements [16]. For example, to buy
a dress, the user must first enter the dress category, put the dress in the basket,
and then complete the buying steps. Hence, automating the testing process and
generating the testing scripts is highly important in UI testing for efficiency and
time savings. To address this need, we propose a workflow that can learn from
the large-scale graph data to generated automated testing scripts.

In e-commerce web applications, the user interfaces are constantly chang-
ing. Conversely, the processing steps and services at the back-engine of these
e-commerce websites are generally less subject to change. As a result, alterna-
tives are continually increasing from the beginning to the last desired page. Due
to these changes and the complexity of the business processes at the user inter-
faces, the need to renew or re-create new test data as the page changes appear.
Hence, there is a need for automated testing methodologies that can learn user
behavior from large-scale behavioral data.

This study addresses the predicament mentioned above by investigating
the following research problem: How do the deep learning algorithms create
clickstream-based data sequences in automated UI testing? We investigate an
e-business workflow design that can generate automated user test codes for e-
commerce websites to address this research problem. Our proposed e-business
workflow collects many examples of UI browsing scenarios, i.e., clickstream-based
data sequences, from the e-commerce website by running the application that
crawls the websites according to their page structures. We use the page structures
(URL structures) available on websites to create large-scale browsing graph data
to train the deep learning algorithm. We use one of the deep learning methods,
i.e., GAN (Generative Adversarial Networks) [15], which has proven successful.
GAN architectures generally produce new indistinguishable examples very simi-
lar to the given input. After using these examples as training data for the GAN
architecture, we then create many new scenarios. Next, we determine whether
these scenarios are usable or not. We eliminate data sequences that are not
valid from the collected dataset. Finally, we transfer the newly generated data
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sequences to the next step in the proposed workflow to create test scripts for the
sequences successfully selected by the workflow.

Motivation: We argue that automating the testing process and generating the
testing scripts is highly important in software engineering. Based on the stan-
dard software development practices, we already know that the user interface is
constantly changing. On the other hand, the logical flow of the back-engine codes
and services does not change that frequently. Due to the changes in user inter-
faces, there is a need to generate new click-stream-based data sequences that the
end-users can use and then provide automating testing of the data sequences in
advance. Our motivation is to design and implement an e-business workflow that
can automate UI testing by dynamically generate and test new data sequences
that the end-user might use.

Research Problem: In this study, we propose an e-business workflow for
automating user interface testing. We propose the architecture of an e-business
workflow. We also realize the prototype implementation. The most crucial func-
tion of our business workflow is whether the synthetic sequences it has created
are successfully created or not. The research questions we are interested in are
as follows. 1) How can such a business workflow be realized and learn from
large-scale graph data? 2) What might be the deep learning algorithms in this
proposed e-business workflow process? What should be the approach used for
this learning algorithm to learn from the page in the best way? 3) How can
the success and correct outcomes of the selected deep learning algorithms be
observed?

Contributions: We propose an e-business workflow on generating artificial test
scripts over the data obtained by crawling the structure of an e-commerce web-
site. The proposed workflow creates synthetic sequences by getting the URL
structure of the website. Furthermore, to facilitate testing of the proposed app-
roach, we implement a prototype application. We test the prototype applica-
tion via an e-commerce website and dataset collected from the website. The
experimental study results are promising and show the usability of the proposed
approach.

Organization: Section 2 presents the literature review on automated UI testing
and deep learning approaches. Section 3 describes the proposed methodology,
while Sect. 4 presents the details of the prototype of the proposed methodology.
Section 5 presents the evaluation of the proposed methodology. Finally, Sect. 6
concludes the article and discusses future work.

2 Literature Review

Automatic determination of scenarios, such as our motivation mentioned in the
introduction, becomes more and more important day by day. There are different
approaches in the literature for determining scenarios automatically. For exam-
ple, in a patent obtained in the USA, a tool can produce test scripts based
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on rules (US8850407B2). After this, a research group work on [4] automatically
generates test cases and codes using pre-existing UML sequence diagrams. Thus,
many operations can be performed in the user interface in large-scale desktop
and web applications. Considering that these processes come one after another,
in a subsequent study to find these scenarios, these many possible scenarios are
created by using genetic algorithms [13]. In another study in [8], allows users
and developers to automatically save the tests they want to be performed auto-
matically for android applications. Unfortunately, these can be quite costly to
obtain.

From this point of view, the algorithms that use the basis of the GAN algo-
rithm selected and proceeded [6]. The purpose of the algorithms and other deep
learning algorithms selected here in the flow we propose is to produce synthetic
flows that are not included in the training dataset and contain actions that the
user can perform.

The data we use in our system is the flow data that may occur on the website.
Websites are kept graphically due to their structure. Motivated by the growing
need for fast distributed processing of large-scale graphics such as website graph-
ics and various social networks, the researchers wanted to introduce lower limits
to keep calculations distributed. Therefore, they set a lower bound to calculate
the spanning tree (ST) value in the website graph. As a result of their work, they
determined algorithms and lower limits for distributed computation of various
graph problems [9]. In the proposed system, we use GPU-supported processors
and a flow to work on multiple GPUs to provide training.

3 Methodology

To address the research problem discussed in the introduction, we propose an
e-business workflow that can process large-scale browsing graph data and gen-
erate UI testing scripts. Figure 1 depicts the proposed workflow. The proposed
e-business workflow is designed to be a distributed system. Therefore, its com-
ponents are implemented on distributed software development platforms. The
proposed workflow consists of several components: The Crawling Module, The
Browsing Graph Data Clustering Module, The Mapping Based Data Repre-
sentation Module, The GAN Based Sequence Generator Module, The Filtering
Module, and The Sequence2Script Module. We explain these modules in great
detail below.

3.1 Crawling Module

This module takes the starting page of the e-commerce website to be tested
as to its input and generates all possible URL sequences. The starting page of
the website is the first page that users can interact. The crawler module gener-
ates clickstream data sequences that represent the user’s browsing behaviors on
the website. We record each clickstream data sequence as graph data. Figure 2
depicts an example browsing graph data.
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Fig. 1. Overview of the proposed pipeline

Fig. 2. An example of the browsing data. The figure on the left represents the large scale
browsing graph data. The figure on the right represents the one particular browsing
graph data that belongs to a user. Note that the user browsing graph data is referred
as clickstream data sequence throughout the manuscript.

Table 1. The best clustering evaluation result

Algorithm Distance measure n s Window size V-measure

Bisecting
K-means

Euclidean 6 4.63 3 90%

Browsing data can take very large steps. Here we can talk about 3 quintillion
data for a 6-step graph. As the number of steps and topic values increases, the
number of data also increases.
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3.2 Browsing Graph Data Clustering Module

This module is responsible for processing the clickstream data-sequences data to
map each URL to a related topic. In this module, we apply clustering algorithms
on the clickstream data sequence graph data to categorize them and determine
the appropriate topic label for each category. To do this, we use the word2vec
embedding approach to represent each URL as encoded feature vectors. We
cluster the URLs encountered in clickstream data sequences using different clus-
tering algorithms such as partition-based clustering algorithms (e.g., k-means)
and hierarchical clustering algorithms (e.g., bisecting k-means). We obtain the
web site’s URL tree structure by crawling the website.

To validate the results of the clustering algorithms, we also create ground
truth data. Here, we utilize regular expressions and map each URL into a topic
to obtain ground truth data. Then, we use the ground truth data to analyze the
quality of the clustering results. The experimental study results indicate that
the clustering algorithms can group the URLs in the collected data successfully.
Table 1 shows the results where s is the characteristic of the Zipf distribution
and n is the number of cluster [16]. The empirical study shows that the bisecting
k-means algorithm gives the best results with euclidean space as the distance
metric.

After completing the clustering, The Browsing Graph Data Clustering Mod-
ule also determines the label for each cluster. This module maps each URL within
a cluster to the corresponding topic of that cluster. This way, we use the topics
to represent the URLs. As an output, this module produces “topic sequences”
that correspond to URL sequences. Table 2 shows the example topic labels.

Table 2. Sample dataset. The first column indicates the URL which the user visits
during browsing the website. The second column indicates the topic, which is associated
to each URL.

Input data: URL Output data: Label

https://www.site1.com/path-to-a/product-page?pid=123456 Product

https://www.site1.com/path-to-a/search-result?q=query Search

3.3 Mapping Based Data Representation Module

The results we get after applying regular expressions to streams are sequences.
In this module, we use a vocabulary-based mapping methodology to represent
“topic sequences.” Here, we create a vocabulary dictionary from all the unique
keywords found in the sequences. By using this vocabulary dictionary, we map
each keyword in sequence dataset to its corresponding numerical value. Figure 3.
represents the way we represent the topic sequences with numerical values.

https://www.site1.com/path-to-a/product-page?pid=123456
https://www.site1.com/path-to-a/search-result?q=query
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Crawled User Sequences
Each rectangle represents a page path topic
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Numerical User Sequences
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Fig. 3. The mapping process used in the system

3.4 GAN Based Sequence Generator Module

In this module, we use a GAN-based deep learning algorithm to generate new
data sequences. There are many different versions of GAN [15] based deep learn-
ing algorithms in the literature. The SeqGan network proposed by Yu et al.
inspires the method used in this study [17]. Figure 1 depicts our deep learning
approach. GAN (Generative adversarial networks) [6] architectures consist of
two neural networks. These two nerves are called heavy Generator and Discrim-
inator. When GAN is given a training set, it learns to create new data with the
same statistics as the training set. Here, the generator tries to trick the discrim-
inator into producing new artifacts. And the discriminator will gradually make
the distinction better.

Since our study aims in sequence production, we decided to use GAN net-
works, a new production model that has proven successful. In this study, we use
a customized SeqGAN network for sequence generation. In our approach, LSTM
and CNN are used respectively in generator and discriminator networks that
form SeqGAN. The additional information about how sequences are generated
using SeqGan can be found in [17]. The steps of generating sequences using Seq-
Gan are explained in detail by the author [17]. First, the generator is trained
to generate negative samples for training the discriminator network. This gen-
erator training and the discriminator training using these negative samples are
called pre-training of generator and discriminator. Until SeqGan converges, the
following two producers take place: (1) generate a sample from the generator
and then compute a Q value and update the generator parameters via policy
gradient g-steps times. (2): Generate a group of negative samples and combine
them with the positive samples to train the discriminator network k epoch and
apply this procedure d-steps.

We use the ground truth data sequences created in the previous steps by the
clustering module to train the model. At each iteration of the GAN-based neural
network, we also produce generated data sequences to trick the discriminator into
creating new data sequences. Table 3 lists the details of the datasets used in this
study. This table represents the counts of large scale ground truth data and
generated sequences on the Mother & Baby products clickstream data. 239,570
of the 426,781 sequences produced here have passed through hashmap and are
marked as valid browsing graph data.
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As an output of this module, the new data sequences (i.e., topic sequences)
are produced.

Table 3. Number of browsing graph data (1-node, 2-node, 3-node browsing graph
data) in dataset

Counts Large-scale ground truth data Large-scale generated data

All 813,430 655,356

Uniques 22,141 426,781

3.5 Filtering Module

In this module, we implement two important features in our workflow for data
sequence generation. These features are 1) eliminate the sequences in the dataset
produced by the proposed e-business workflow and 2) check if a page path-topic
sequence is valid. In this context, valid sequences are those sequences that can be
executable using a test executor probably. Figure 4 illustrates the construction
of Trie and HashMap data structures on a example training sequences Fig. 4.
We use Trie data structure to eliminate duplicated sequences generated by the
model. At the end of the filtering module, the sequences that are not eliminated
are used to generate test scripts.
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Fig. 4. Building Trie and HashMap on example training sequences
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3.6 Sequence2Script Module

The purpose of our last module in the system is to generate executable test
scripts using sequences from the previous module. Up to now, we create data
sequences with a deep learning approach using GAN architecture for representing
possible website topics that can be sequentially visited. To create executable test
scripts, we need website URLs and the identifiers of elements showing which
element interacts with the generated sequences on those websites. This is a
concept module for creating test scripts from giving data sequence.

4 Prototype

To facilitate testing of the proposed e-business workflow, we provide a prototype
implementation. We implement a crawler to collect data on the website. The
Scrapy library in Python is used to implement a crawler. Here, for tracking the
pages where the crawler goes, we used the topics of the website whose following
page structure we know and extracted regular expressions [16]. After the URL
sequence data was obtained, the URL sequences were clustered with the k-means
and bisecting k-means algorithms in Python. Then the v-measure scores were
calculated. We choose the best performing clustering methodology based on
the v-measure values. Here, we use Apache Spark ML library to implement the
clustering module [16]. We use Sagemaker on the AWS machine to train the deep
learning model and determine its results. Here, KernelGateway-ml.g4dn.xlarge
was selected for the kernel, and the training was completed with GPU support.
We selected the data-sequence length as three and the batch parameter as 100
and during the experimental study.

We created a Dom tree while generating scripts. Following this, we produced
scenarios suitable for the BDD (Behavior-driven development) approach by using
Cucumber. In this way, we created a UI test script that can be used for the
relevant flow, and as a result, we completed the process of obtaining the test
scenarios. During the test script production we perform here, these codes are
generated with negligible periods.

5 Evaluation

To facilitate testing of the prototype implementation and show the usability
of the proposed workflow, we conduct an experimental study. We measure the
proposed system performance with Perplexity and BLEU evaluation metrics. We
describe the details of the evaluation study below.

Dataset: We collect the website’s URL tree structure using a crawler. Then,
we created data sequences using this tree structure as the ground truth data.
Note that browsing data sequences can include a high number of steps. For
example, we can talk about three quintillion possible data sequences for a 6-step
browsing data sequence. As the number of elements in a datasequence increases,
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the total number of possible data sequence will also increase. To facilitate testing
of the proposed approach, in this study, we only focused on up to 3-node data
sequences. Since we divide sequences including at least one duplicated token into
subsequences, we generally obtain smaller sequences. Therefore we account up
to 3-node data sequences. Table 3 lists the details of the datasets used in this
study. Figure 2 depicts an example browsing graph data.

Note that, by crawling the website we are not able to capture all possi-
ble paths in the website’s URL tree structure. The reason for this that the
e-commerce websites limit crawlers’ activities within the sites for various rea-
sons such as they don’t allow robots to crawl the websites for security purposes.
Hence, we only have a partial picture of the URL tree structure. Based on the
obtained URL structure, we generate the possible 1-node, 2-node, . . . n-node
data sequences as the ground truth data. By utilizing the proposed workflow,
we try to generate new data sequences that do not exists in the ground truth
dataset and that can be used to create new UI testing scripts.

Experimental Study Design: To understand the usability of the proposed
workflow, we compared the final output generated data-sequences against the
training dataset (i.e., ground truth browsing data-sequences). We investigate
that whether the proposed workflow can find new data sequences that the sys-
tem has not seen before. After that, the new datasequences should represent
the same browsing behavior that one would encounter in the initial input of
the ground truth browsing data sequence dataset. We run the whole workflow
and generated new synthetic sequences by utilizing the SeqGan algorithm. The
proposed workflow used the Trie and HashMap data structures to make gener-
ated sequences valid and non-duplicated. We compared the final generated data
sequence against the initial dataset by using perplexity and BLUE metrics. The
tests were conducted on Jupyter in AWS Sagemaker employed a Tesla T4 GPU.

Evaluation Metrics: There are so many metrics to compute similarity, differ-
ence, distance, and so on. We take the two metrics to evaluate our generated
graph data sequences: Bleu score metric and Perplexity metric.

By using Blue score we evaluate our generated sequences over training
sequences. Results close to zero mean that it is not good enough for transla-
tions in data sequences and results close to 1 mean better translations [12].

We also use perplexity to evaluate the generated sequences over training
sequences. The perplexity metric does not have a range like the blue score. It is
particularly used for evaluating language models [7]. We take inverse probability
to calculate this metric. Since we take inverse probability, a lower perplexity
score means that we produce better data sequences.

Evaluation Results: The results we obtained have been arranged in order to
find answers to the questions of the system we mentioned above in the research
motivation and the third research problem. We calculate the BLEU and Per-
plexity scores for a random number of data sequences generated as the output of
the whole workflow. After these calculations, we compute an average of Perplex-
ity and BLUE metrics separately for the sequences to obtain the overall system
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scores. Table 4 shows the result for the evaluation. The results show that the
proposed workflow can generate new data sequences successfully.

Table 4. Results for perplexity and BLEU score analysis based on unigram and bigram

Score metric Unigram Bigram

Perplexity 43.51 28.71

BLEU 0.798 0.606

Threads to Validity: The results we obtained in this study depend on the web-
site URL structure of the e-commerce website we have carried out. However, the
e-business workflow we use constitutes a step-by-step mechanism independent
of data. This e-business workflow can also be applied to different datasets.

6 Conclusion and Future Work

In this study, an e-business workflow has been proposed where UI testing can
be automated. The proposed workflow utilizes a GAN-based deep learning app-
roach, which allows the system to generate new clickstream-based data sequences
after training on the large-scale graph data. In the proposed workflow, to repre-
sent the graph data, we use a vocabulary-based mapping approach. We reckon
that embedding approaches such as word2vec and node2vec can also be used
and integrated with the proposed workflow. To facilitate testing of the system,
we implement a prototype application. We evaluate the prototype application
via an experimental study. The results of the empirical research results indicate
that the proposed approach can generate new synthetic data sequences. In turn,
these data sequences can be used to create UI test scripts automatically.

In the future work, we plan on expanding on the number of e-commerce web-
sites in which we can test the prototype application. Furthermore, we also plan
on utilizing different hyperparameter algorithms for finding the best parameter
suite for the GAN-based deep learning algorithm.
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Abstract. With the gradual increase in the scale of applications based
on microservice architecture, the complexity of system operation and
maintenance is also significantly increasing. The emergence of AIOps
makes it possible to automatically detect the state, allocate the resources,
warn and detect the anomaly of the system through some machine learn-
ing models. Given dynamic online workloads, the running state of a pro-
duction microservice system is constantly in flux. Therefore, it is neces-
sary to continuously train, encapsulate and deploy models based on the
current system status, so that the AIOps model can dynamically adapt
to the system environment. To address this problem, this paper proposes
a model management pipeline framework for AIOps on microservice plat-
forms, and implements a prototype system based on Kubernetes to verify
the framework. The system consists of three components: model train-
ing, model packaging and model deploying. Parallelization and parame-
ter search are introduced in the model training process to support rapid
training of multiple models and automated model hyperparameter tun-
ing. Rapid deployment of models is supported by the model packaging
and deploying components. Experiments were performed to verify the
prototype system, and the experimental results illustrate the feasibility
of the proposed framework. This work provides a valuable reference for
the construction of an integrated and streamlined AIOps model manage-
ment system.

Keywords: Model management pipeline · AIOps · Parallel model
training · Microservice · MLOps

1 Introduction

With the wide adoption of the microservice architecture [2,18] in a variety of
enterprise information system, the complexity of system management signifi-
cantly arises for large-scale microservice platforms. Recently AIOps (Artificial
Intelligence for IT Operations) [4,14] is emerging as a promising solution to
this challenge on microservice system management. Under the framework of
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AIOps, system designers are able to integrate machine learning and data analytic
technologies to build intelligent microservice management systems. By leverag-
ing container orchestration frameworks such as Kubernetes, AIOps enhanced
microservice systems can easily collect their real-time monitoring data streams
[8] and execution logs, and adopt machine learning models to provide proac-
tive insights and management decisions to effectively detect system anomaly,
meditate resource allocations, and prevent potential system failures.

Under this architecture, AIOps machine learning (ML) models play a critical
role of implementing decisions related to autonomous system management. It is
not a trivial task to train accurate AOps models across different circumstances
and deploy them in the microservice systems. Generally speaking, there are two
major issues to be addressed:

(1) Fast model training to adopt to the dynamics of running context Differ-
ent from static classification scenarios, it is often impractical to directly
deploy an AIOps model for anomaly detection or root cause location in
a microsystem [22] without onsite calibration. An open micro-service sys-
tem may exhibit changing dynamics under different workloads. Therefore,
AIOps needs to continually train [5,19] and update models so as to represent
the dynamics of a running system. Furthermore, During the runtime of the
system, system administrators and reliability engineers regularly check the
outputs of the models and assess their performance. In case of low accurate
prediction or poor decision, they may want to kick off the re-training process
for the models with the newly collected data. Given the complexity of train-
ing a modern Deep Neural Network model for AIOps [12], it is a challenge
to efficiently run the training process with sufficient computing resources.

(2) Encapsulation and deployment of model code as microservice A natural way
to deploy an AIOps model in a the microservice system is to container-
ize the model code into a docker image, and then deploy the model image.
To implement such a model-as-service approach, we need to streamline and
automate many relevant processing steps including model training, verifica-
tion, packaging and deployment. Clearly, Continuous Integration and Con-
tinuous Deployment (CI/CD) [10,16] is the right design pattern to support
model-as-service in AIOps. Most existing CI/CD pipelines are designed for
integrating software code rather than machine learning models. To support
model encapsulation and deployment, we must introduce customized model
metadata description and deployment scripts.

In order to solve the problems mentioned above, this paper proposes a new
AIOps model management pipeline framework and implemented a prototype
system built on Kubernetes to verify this framework. This framework consists
of the following steps:

(1) Model training: It is often time consuming to run an iterative training pro-
cess for a DNN models with many weight parameters. Therefore, we adopt
state-of-the-art parallel training method to accelerate this process for updat-
ing the AIOps models.
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(2) Model packaging: Building reproducible container images from model source
code and supporting libraries, and creating model registry to implement
version control and storage of model mirroring.

(3) Model deploying: Handling single or more complex deployments for installing
model images on kubernetes.
The final outcome of this framework is a ML pipeline [23] that trains multiple
AIOps models, explores the metrics to pick the best, packages the model as
a docker image, and deploys it as a Rest API.

The rest of the paper is organized as follows. Section 2 discusses the related work,
Sect. 3 introduces the details of the Microservice-oriented model management
system. Section 4 describes some verification experiments of the system. Section 5
concludes the paper and discusses future work.

2 Related Work

2.1 Parallel Model Training

In general, the methods for parallel training of deep learning models [1,15] can be
divided into two categories. The first one is data parallelism [17], and the second
is model parallelism [3]. Before introducing the parallel model training method,
we briefly describe the traditional deep learning model training process [11]. As
shown in Fig. 1, In each round of the iterative training algorithm, the values of
current weight parameters and a batch of train data need to be injected into the
model, and the current loss values are obtained through the forward propagation
process. After that, the backpropagation algorithm [9] calculates the gradient of
the parameters according to the loss function and update the weight parameters.
In the next round, the updated parameters go through the forward propagation
process of the model with the new batch data again.

Fig. 1. Traditional model training process

Model Parallelism: A deep neural network model is divided into multiple com-
ponents according to their functions. These components can be trained respec-
tively by different devices (GPU/CPU, etc.) in the distributed system. As shown
in Fig. 2 and Fig. 3, different network layers of the neural network model are
assigned to multiple computing devices, or different parameters within the same
layer are assigned to these devices.
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Data Parallelism: We allow multiple computing devices to have their own
copies of the same model, and partition the training dataset into multiple groups.
Each device is only responsible for training the model with their share of the
dataset. After they finish the training, the calculation results of all the devices
are combined in a certain way.

Fig. 2. Model parallelism Fig. 3. Data parallelism

In current AIOps implementations, most models are not very large and many-
layer DNN models. Instead, they tend to be medium size and moderate numbers
of parameters. Therefore, it is more suitable to adopt data parallelism approach
because it is better for handling large amount of training data. Data-parallel dis-
tributed training stores a backup of a model on each worker node, and processes
different parts of the data set on each node. The data parallelization training
method needs to combine the results of each worker node and synchronize the
model parameters between them. This paper mainly discusses data parallelism
from two aspects: synchronous and asynchronous [13,20].

Data parallelism in synchronous mode is shown in the Fig. 4. It can be seen
that at the beginning of each iteration, the training data will be divided into dif-
ferent mini-batch. All devices will first uniformly read the values of the current
parameters and acquire a mini-batch data. After that run the forward propaga-
tion process on different devices to get the prediction results of the model, and
then run the backpropagation process to get the gradient ΔP of the parameters
on the respective mini-batch. Because each work node processes its own parti-
tion of the training dataset, the gradients of their parameter copies are always
different from each other. Thus, after all the worker nodes have completed back
propagation computation, a shared parameter server needs to collect the parame-
ter gradients from them, calculate the average value of the gradients, and update
the parameters based on the average value. Finally, the parameter server trans-
mitted the updated parameters to each worker node for the next round of the
iterative training.

Data parallelism in asynchronous mode is shown in the Fig. 5. The biggest
difference between it and synchronization mode is the method of parameter
update. In each iteration, different devices will read the current value of the
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Fig. 4. Data parallelism in synchronous mode

parameter. And the forward propagation process will be executed to calculate
the prediction result of the model based on the value of the current parameter
and the mini-batch data. Finally, run the backpropagation process to get the
gradient ΔP of the parameters on the mini-batch.

Fig. 5. Data parallelism in asynchronous mode

Different from synchronous mode, the process of updating parameters in
asynchronous mode is also independent of each other, although each device reads
the parameters from the same place. In asynchronous mode, different devices
are completely independent. Each device uses different data for training, and
updates the parameters according to the gradient value which acquired by itself.
Note that different devices training the same model often consume different
time, and due to the independence of each device, it may lead to the different
reading time of the parameters. This will cause the differences between parameter
values obtained by these devices. This problem is called gradient interference in
asynchronous mode. The more serious problem caused by this is that the deep
learning model trained in asynchronous mode may not be able to achieve better
training results.

2.2 MLOps

In order to establish a standard machine learning model development and deploy-
ment process, MLOps was proposed [21]. MLOps is a practice in the ML field
that applies DevOps principles [6,24] to ML systems for unifying the ML system
development and operation. The main target of MLOps is to shorten the iterative
cycle of model development and deployment, and to improve the overall efficiency
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of model delivery through more standardized and automated processes. The
main principles of MLOps are automation and continuity. Automation requires
that all automated links in the entire workflow from data access to final model
deployment should be automated. Continuity requires the addition of continuous
training and updating of the model on the basis of CI/CD, that is, when new
data arrives or the performance of the model decreases, the model needs to be
triggered to retrain to improve its performance [7]. On the basis of the above-
mentioned MLOps, AIOps model management for microservice systems needs
to introduce a model encapsulation process, and encapsulate the training model
as a docker image for deployment and operation in the microservice system.

There are already some tools for MLOps and model encapsulation for
microservice platforms. Kubeflow is an open source pipelined machine learning
platform based on Kubernetes. It provides end-to-end lifecycle management of
ML applications by leveraging TFX components such as data validation, model
evaluation, and model services. Because it can be deployed in various Kuber-
netes clusters, Kubeflow enables ML workflows to work in any Kubernetes-based
microservice platform where Kubeflow is installed. Source-to-Image (S2I) is a
toolkit for building reproducible container images from source code. S2I pro-
duces ready-to-run images by injecting source code into a container image and
enabling the container to prepare necessary code and scripts for execution. It
takes a base “builder” image with all the libraries and adds tools needed to com-
pile an application or install dependencies and a set of scripts for testing and
running the applications.

3 The Framework of the Model Management System

The model management system proposed in this article is composed of three
main components, including Model training, Model packaging and Model deploy-
ing component (Fig. 6).

Fig. 6. Workflow diagram of the model management system
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3.1 Model Training Component

The model training component adopts the synchronous data parallel method to
carry out the model training in a distributed way. The implementation of data
parallelism of the model training consists of a group of workers that are assigned
to independent computing accelerators. Each worker is responsible for maintain-
ing a copy of the model parameters (weights being trained) and synchronizing
between all workers before each training starts. The process of distributed model
training is described as follows:

Step1: Every worker node performs a forward and backward propagation com-
putation of the model on its mini-batch of data from the entire dataset. After it
finishes the backward propagation pass computation, every worker node gener-
ates a set of updates to the weight parameters based on the data it processed.
Step2: All the worker nodes exchange their parameter updates with each other,
so that they can gather all the updates from Step 1.
Step3: Every worker node calculates the average values of the updates by the
number of nodes.
Step4: Every worker node applies the averaged updates to its own copy of the
model parameters.
Loop: Return to Step 1.

Reducing Computation and Communication Overheads: In the process
of distributed model training, steps 1, 2, and 3 introduce computation and com-
munication overhead. Specifically, step 1 and step 2 result in the majority of
the computational overhead. We use the maximum batch size suitable for mem-
ory to make more efficient utilization of the GPU to reduce the computational
overhead incurred in these two steps. For the reason of deep learning models
typically perform dense updates. In this way, model parameters are updated for
every training sample, and batch size does not affect the communicate updates
time that the workers take. However, changing the batch size affects the number
of cycles of the above training process. Therefore, we can reduce the number of
process executions by increasing the batch size and reduce the total communi-
cation overhead.

In addition, when there are more available computing resources, the model
training component can launch multiple parallel training experiments to search
for optimal hyperparameters, and using multiple GPUs to accelerate a single
experiment.

3.2 Model Packaging Component

After the training model is obtained, the model needs to be packaged as a docker
image for management and deployment. We implement the system model pack-
aging and management components based on open source tools including Source-
to-Image, Argo and Gitlab. Source-to-Image (S2I) is a container image packag-
ing tool that can build container images in a fast, flexible and reproducible way.
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Next, we need to construct a CI pipeline to automate the packaging process. In
our framework, we adopt Argo, an open-source workflow manager for Kuber-
netes, to do this work. Moreover, we also built a docker image registry based on
Gitlab to save the packaged models.

The Argo pipeline orchestrates the packaging process in the three steps:
First, it runs S2I to generate a new image for the model. Second, it mounts
three resources in the generated docker image, including the volume to access
the model data, the docker socket and credentials to upload the image onto the
docker image repository. Third, it actually pushes the image to the repository
and informs the model deployment component.

3.3 Model Deploying Component

The model deploying component in this system is responsible for installing model
images in a Kubernetes platform and converting ML models into production
REST microservices. In addition, the component also takes care of scaling the
model and keeping it running with a standard API. Model deploying compo-
nent uses Kubernetes CRD for image deployment. We configure the deployment
CRD of the component through a configuration file in the Yaml format. This
configuration file specifies the relevant information such as the name, the docker
image and the namespace of the service to be deployed. The model deploying
component needs to creates Kubernetes Pods with the specific model image on
the Kubernetes cluster according to the specification of the Yaml file.

In order to achieve the timely update of the model in the AIOps system,
we have designed model monitoring and feedback functions within the model
deploying component. The model monitoring mainly implements the perfor-
mance evaluation of the deployed model. Through regular performance evalua-
tion, the system can detect the performance degradation of the deployed model
in time. When such a degradation occurs, the feedback mechanism of the model
management system kicks in to automatically retrain the new version of the
model and package it to ensure the high adaptability of the AIOps model in the
microservice platform.

4 Experiments

Based on the self-built Kubernetes cluster, we have conducted experiments to
verify the prototype system. Since the entire system is not fully implemented
at present, we only performed some preliminary tests on the main functional
components of the system. The Kubernetes version corresponding to the cluster
is v1.20.6. We manage the Kubernetes cluster based on Rancher and use Single
Node Filer (NFS) for model storage. We utilize the MNISTdataset to train
the image classification model to test the model training components. We have
configured two configuration files, “const” and “adaptive” for the model. The
former is used for training and testing a single model, and the latter is used for
training and testing multiple models in hyperparameter search. In the training



384 R. Chen and W. Wu

experiment of a single model, our model learning rate is 0.5, and the model
contains three layers, the dropout for layer 1 and 2 is 0.25, and 0.5 for layer 3.
Totally, eight times of single model trainings were performed in this experiment,
and the average training time was recorded. The validation loss changes of the
model in a single model training is shown in Fig. 7 and the final validation loss
value is 0.044, validation accuracy is 0.986.

Fig. 7. Validation loss curve of single model training experiment

We conducted 8 hyperparameter search experiments and ensured that at least
one experiment had the same validation accuracy as a single model training
experiment. The model structure of the hyperparameter search experiment is
the same as that in the single model experiment. The difference is that the
corresponding parameter of the hyperparameter search experiment is a variable
range, rather than a fixed value as a single experiment. The validation loss curve
of the best hyperparameter search experiment is shown in Fig. 8, and the result of
the complete hyperparameter search experiment is shown in the Fig. 9. One can
see that the best validation loss and accuracy value among the 8 hyperparameter
search experiments is 0.056 and 0.982, and it took 227 s in total.

Fig. 8. Validation loss curve of optimal
hyperparameter

Fig. 9. Validation loss curve of com-
plete hyperparameter
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Table 1 shows the training time and validation loss results of a single experi-
ment and a hyperparameter search experiment. From the results, one can clearly
see that the average training time of multiple hyperparameter search experiments
using parallel training is lower than that of a single experiment. The main reason
is that hyperparameter search only requires at least one experiment to achieve
the same accuracy as a single model experiment, so some experiments may end
early. The time to complete 8 parallel experiments is 250 s, which is far less than
the time for serial completion, which shows the feasibility of the parallel training
we have achieved.

Table 1. Performance of different model training experiments

Number 1 2 3 4 5 6 7 8 Average

value

Single model training Training time (s) 130 237 148 196 148 192 148 221 177.5

Val loss 0.046 0.05 0.044 0.046 0.048 0.05 0.051 0.051 0.0495

Val Acc 0.985 0.983 0.986 0.986 0.984 0.985 0.984 0.984 0.985

Hyperparameter search Training time (s) 118 241 115 94 135 53 135 54 118.1

Val loss 0.056 0.065 0.074 0.078 0.159 0.212 0.228 0.285 0.1446

Val Acc 0.982 0.98 0.976 0.975 0.952 0.944 0.938 0.919 0.958

We also carried out packaging and deployment tests on the three models of
MINIST, ARIMA and TRANSFORMER. Each model executed the complete
process three times, recorded and calculated the average packaging and deploy-
ment time of each model. The specific results are shown in Table 1. The time
consumption of the entire process is mainly concentrated in the model packaging
stage. Since models have different dependencies, that leads to differences in the
packaging time (Table 2).

Table 2. Average package and deploy time of different models

Model Average package time (s) Average deploy time (s)

MINIST 457 10

ARIMA 228 10

TRANSFORMER 543 10

5 Conclusion

In this paper, we introduce an AIOps model management prototype system
based on Kubernetes, the system consists of three main components, which
are used to implement the functions of model training, model packaging and
model deploying in the model management for AIOps on the microservice sys-
tem. However, the system we proposed is still in the early stage of design and
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implementation, we only conducted some simple experiments to test the basic
functions of the system. The preliminary experimental results show the feasibil-
ity of implementing an integrated and streamlined AIOps model management
with the components we have developed.

In future work, we will further integrate the entire system on the basis of
current work, implement phased performance testing of deployed models, and
develop feedback mechanisms to ensure that models in the production environ-
ment can be updated in time when their performance declines. We plan to make
further verification of the system in real operation and maintenance scenarios,
ensuring that the framework we proposed can truly serve the real AIOps systems.

Acknowledgements. This paper was supported by National Key R&D Program of
China (Funding No. 2018YFB1402800), State Key Laboratory of Software Develop-
ment Environment (Funding No. SKLSDE-2020ZX-01).
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Eighth Workshop on Large Scale Distributed
Virtual Environments (LSDVE 2021)

Workshop Description

The Eighth International Workshop on Large Scale Distributed Virtual Environments
(LSDVE 2021) was held in online, on 31th of August, 2021. For the eighth time, this
workshop was organized in conjunction with the Euro-Par annual series of international
conferences.

The recent advances in networking have determined an increasing use of infor-
mation technology to support distributed networked cooperative applications. Several
novel applications have emerged in this area: distributed social networks and media,
blockchain-based social media, token economies, and collaborative applications. In
particular, this workshop aims to provide a venue for researchers to present and discuss
important aspects of large-scale networked collaborative applications and of the plat-
forms supporting them, with a particular focus on distributed social networks and
media. Social Networks are dynamic and evolving in nature and involve a huge amount
of users and this makes it challenging to design distributed platforms for social
networks/media. Important challenges are the design of user interfaces, coordination
protocols, and proper middle-ware and architectures. The workshop’s aim is to provide
the opportunity for scientists, engineers, researchers, and entrepreneurs to discuss and
exchange novel ideas, results, and experience on all the aspects of Distributed Social
Networks design and their deployment on distributed architectures.

This year, the workshop has provided three sessions. In the first session, the paper
“Consistency Analysis of Distributed Ledgers in Fog-enhanced Blockchains” shows
how a blockchain deployed in the fog layer outperforms a blockchain deployed in the
end-user layer, in terms of block finality and storage. The paper addresses the problem
of reliability of fog-enhanced blockchain systems by analyzing the forking phe-
nomenon in integrated fog-blockchain systems under different conditions.

The second session “Trust and Reputation in social Media” includes the paper
“SMART: a Tool for Trust and Reputation Management in Social Media”, which
proposes a data-driven tool called SMART whose aim is to provide a decision-making
methodology to compute weighted trust content ratings to classify them as trustworthy
or not. The tool has been developed within the European ARTICONF project.

The second session “Cloud Infrastructures” includes two papers. The first one,
“Towards Generating Realistic Trace for Simulating Functions-as-a-Service”, addres-
ses the problem of generating realistic traces for simulating serverless computing
platforms. The generated traces are based on the Azure Functions dataset and they are
applicable in an already available versatile and high performance simulator (DISSECT-
CF). The paper “SPIRIT: A microservice-based framework for interactive Cloud
infrastructure planning” proposes an open framework named SPIRIT, which allows a
user to include cloud infrastructure planning algorithms and to evaluate and compare
their solutions.



We wish to thank all who helped to make also this eighth edition of the workshop a
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numerous colleagues who attended the sessions, and finally the Euro-Par 2021 orga-
nizers whose invaluable support greatly helped in the organization of the workshop.
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Abstract. Both revolutionary technologies of Fog Computing (FC) and
Blockchain (BC) serve as enablers for enhanced, people-centric trusted
applications, and they do meet in the provision of higher standards and
expectations. In this paper, we address the reliability of fog-enhanced BC
systems by analyzing the forking phenomenon under different conditions,
and provide a reliable Distributed Ledger (DL) consistency assessment.
We use the FoBSim tool that is specifically designed to mimic and emu-
late realistic FC-BC integration, in which we deploy the Proof-of-Work
(PoW) consensus algorithm and analyze the forking probability under
fluctuating conditions. Based on our results, we propose an inconsis-
tency formula, which can quantitatively describe how consistent the DL
in a BC system can be. Finally, we show how to deploy this formula in
a decision making model for indicating optimal deployment features of a
BC network in a Fog-enhanced system.

Keywords: Distributed Ledger · Consistency · Blockchain · Fog
Computing

1 Introduction

Blockchain (BC) is the technology proposed by Nakamoto [24] in 2009 as the
backbone of the famous Bitcoin network. BC proposed many simple solutions
for different problems that faced a successful distributed digital currency system
for years. A major component of a BC-based system is the Distributed Ledger
(DL), whose consistency is a problem that describes the unreliability of DLs in
dense and highly dynamic networks [7]. This problem concerns maintaining exact
copies of the DL, as the appearance of different DL versions is trivially expected
in realized scenarios. Reasons for such issue include both, the transmission delay
between network entities and the continuous and concurrent alteration of DL
data. The concept of Finality is usually related to the DL consistency, which is
the state of the BC, under which the transaction cannot be canceled, reversed
or changed by any of the participants in this network under any circumstances
[4]. Although Nakamoto’s model did not perfectly solve the consistency problem,
it proposed a highly accurate, probabilistic solution. Specifically, a next block
of data is introduced into the network when its previous block had, most likely,
c© Springer Nature Switzerland AG 2022
R. Chaves et al. (Eds.): Euro-Par 2021, LNCS 13098, pp. 393–404, 2022.
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sufficient time to be confirmed by the DL (i.e. synchronized between the majority
of network entities). The occurrence of two pieces of information at the same
time would lead to a temporary inconsistent state of the ledger, which is termed
forking [13].

The enforced delay between blocks depends mainly on the ability of system
entities to find a puzzle solution. The difficulty of the puzzle is indeed updated
through time according to the design requirements (e.g. Bitcoin’s predefined
delay is 10 min). Such model is classified as a ‘Probabilistic Finality System’
since the system continuously lowers the probability of concurrent DL updates,
yet the probability never reaches zero. Examples of algorithms belonging to this
class include the Proof-of-Work (PoW) and the Proof-of-Elapsed-Time (PoET).
The other class is the ‘Absolute Finality Systems’, where the system allows its
entities to produce a next block, only when the previous block is confirmed.
Examples of algorithms belonging to this class include the PBFT and some
versions of the Proof-of-Stake (PoS) [14].

The mechanisms deployed in BCs to decrease the probability of forking can be
concluded by three main approaches. First, a gossiping protocol to synchronize
confirmed blocks/ledgers. Second, the continuous increment of the puzzle diffi-
culty, which gives a window to network entities to gossip, leading to increased
total energy consumption of the system, and/or decreased total throughput.
Third, the utilization of full and light nodes in the network [27], so that gos-
siping is performed by fewer network entities. Accordingly, data propagation
through the network shall consume less time.

Fog Computing (FC) [21] is the distributed extension of the cloud at the edge
of the network. FC provides enhanced services closer to end-users in terms of
time, energy, and network load. The integration of FC with BC had been recently
discussed by many researchers [2]. On one hand, more efficient services can be
provided by FC over clouds, mostly required by Internet of Things (IoT) systems.
On the other hand, the BC technology can be deployed for reliable, TTP-free,
and secure Transactions (TXs) ledger in such distributed environments.

We have previously shown in [3] how a BC deployed in the fog layer outper-
forms a BC deployed in the end-user layer, in terms of block finality and storage.
This paper aims at analyzing the forking phenomenon in integrated FC-BC sys-
tems that utilizes a probabilistic finality mechanism. Specifically, we use the
PoW algorithm to represent the class of probabilistic finality. As we perform our
analysis under different conditions, we contribute a method for evaluating the
consistency of the DL, by finding the ratio of forks appearing within the DL
to the maximum possible number of chain versions. Additionally, we study the
effect of different BC deployment scenarios in the fog and end-user layer. Conse-
quently, we propose a decision making model that may help practitioners choose
the optimal deployment approaches of BCs in Fog-enhanced environments. Such
assessment approach can clarify the path for a reliable and consistent construc-
tion of DLs, deployed at both the fog and end-user layers. It also determines
the conditions under which a BC deployed in the fog layer outperforms a BC
deployed in the end-user layer, in terms of DL consistency.
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The remainder of this paper is organized as follows: Sect. 2 presents the pre-
vious research efforts that targeted the analysis of forking in PoW-based BCs.
Section 3 presents the terminology, the proposed methods and parameters, and
the implementation we used for conducting our research. Section 4 presents and
discusses our results. Finally, Sect. 5 concludes our paper.

2 Related Work

It was proven by Brewer [6] that a DL system cannot guarantee ledger consis-
tency, nodes availability and partition tolerance, altogether. Accordingly, any
attempt for decreasing the inconsistency levels in a given BC system, would
either decrease the availability level of the system, or decrease the overall toler-
ance against network partitioning. Later, the Trust property was added to these
three characteristics of a DL [10]. In this work the authors quantified the trust
in a BC system by referring to the average number of orphaned blocks in one
day, leading to the probability of discarding a proposed TX. Similarly, we pro-
posed the Un-Reliability metric of PoW-based BCs in [1]. This metric describes
how reliable shall a BC system be according to the probability of discarding a
generated TX relatively to the throughput (in terms of TXs per given time) of
that BC.

Kiffer et al. [16] analyzed the consistency of Nakamoto’s BC from a security
point of view. In their study, the block delay, puzzle difficulty, and the adversar-
ial fraction out of the total network size, were the considered parameters. The
proposed method aimed at presenting the probability of some versions of the
delay attacks, that may alter data saved on the DL. Under similar conditions,
Zhao et al. [30] have recently proposed a formula for ensuring the consistency
property against the delay attacks.

Misic et al. [23] presented some ledger forking probability analysis depending
on the absence hours of miners and the network size. They have discussed the
optimization of mean delivery time of TXs, while the network size is fluctuating.
Accordingly, the effects of varying properties of their proposed network model,
namely different types of blocks, and different number of TCP connections per
node, were analyzed. The authors also analyzed the BC forking events, BC par-
titioning, and duration of inconsistent state of the ledger in a Bitcoin delivery
network [22]. Using a probabilistic model, they computed the probability distri-
bution of two- and three-way forks, the forked partition sizes, and the duration
of ledger inconsistency until the resolution.

Lan et al. [18] proposed consistency maintenance techniques for P2P networks
(e.g. BC networks), based on push, pull, and hybrid gossiping algorithms. They
found that a push-based approach achieves near-perfect consistency in stable
P2P networks, although the flooding of messages through the network was found
a burden, while a hybrid approach is very good for highly dynamic networks.

Wang et al. [29] compared their proposed CMV algorithm with the rumor
spreading based scheme, and the Update Propagation Through Replica Chain
(UPTReC) scheme, in terms of finality time and messages overhead. Similar
benchmarks were used in [15,28] and [18] to evaluate the consistency of the DL.
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In light of this short literature review, our present work addresses the open
issue regarding the factors that affect the consistency of probabilistic finality-
based BCs. We also noted that all previous works targeted a binary output of
their proposed models/analysis. Such models answer: “What is the probability
that a fork appears in a given scenario?”. However, our proposed models and
analysis aims at quantifying the output by answering the question on “How
many chain versions may appear out of the maximum possible number of chains
in a given scenario?”.

3 Methods

To obtain accurate measures for our analysis, we used the FoBSim tool [3] for
mimicking BC operations both in the end-user and fog layers. The main advan-
tage of FoBSim is that it provides means for investigating integrated BC-FC
systems using different deployment options and different consensus mechanisms.

FoBSim uses a hybrid gossiping protocol to trigger all miners to share new
blocks and adopt the longest chain that is confirmed by the majority of the
network. Using this functionality in FoBSim, one can decrease the number of
different DL versions occurring at the end of a simulation run. To detect the
appearance of a fork during a simulation run, however, we deactivated this gos-
siping function. That is, more forks appearing in the ledger indicate higher levels
of DL inconsistency under the simulated scenario conditions. Manipulating the
conditions, leading to higher or lower levels of inconsistency, facilitates the detec-
tion of direct effects of such conditions on DL consistency.

To enforce the required abstraction of different conditions, we designed sev-
eral simulation scenarios. In each scenario, we oscillate the configuration of one
condition and stabilize the others. Furthermore, for each case within a scenario,
we performed five consequent runs under the same conditions and computed
the average number of chain versions. The five parameters that were oscillated
are the number of miner nodes in the BC network M , the number of neigh-
bors per miner N , the puzzle difficulty Ω, the number of simultaneously mined
blocks β, and the average transmission delay between neighbors τ . Table 1, and
the second column of Table 2 present the configuration of different parameters
for each simulation scenario. All parameters can be directly configured in the
Sim parameters.json file (i.e. the input file for FoBSim). We define the set P (β)
as a set containing all chain versions that can be possibly formed, independently,
out of all confirmed blocks. By referring to the Probability Theory and the prin-
ciples of Enumerative Combinatorics, the number of elements in P (β) can be
computed according to Eq. 1. Note that the order of blocks in a given chain
matters, which increases the number of elements in P (β) even more than β!.

|P (β)| =
β∑

k=0

β!
(β − k)!

(1)

We notate the number of chain versions obtained at the end of a simulation
run as δ, and the maximum possible number of chain versions that can appear at
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Table 1. FoBSim configuration parameters

Scen. (M) (N) (Ω) (β) (τ) (in ms)

1 100, 500, 1000, 1500 2 20 10 0

2 500 2, 3, 5, 8, 15 5 10 0

3 1500 2 5, 10, 15, 20, 25 10 0

4 500 2 15 2, 3, 5, 8, 12, 18 0

5 1500 2 25 10 0, 5, 10, 15

the end of a simulation run as ξ. It is trivial that δ = ξ in a given scenario is the
worst case in terms of DL consistency, while δ = 1 is the best case. Naturally,
ξ shall be equal to the number of miners. However, if M is large enough and
β is relatively small, ξ shall be equal to the number of elements in the set
P (β). Consequently, as long as M > 0 and β > 0, ξ is determined according to
Relation 2:

ξ = min{M, |P (β)|} (2)

Quantitative conclusions, then, can be drawn regarding the inconsistency Y
of a DL by calculating the ratio δ to ξ. This can be formalized using Eq. 3.

Y = δ/ξ (3)

Note that, even if there was only one chain version, one cannot obtain an
inconsistency level of 0% using Eq. 3. To solve this, we can further develop Eq. 3
into Eq. 4.

Y ′ =
δ − 1
ξ − 1

(4)

Generally, a BC puzzle is a computational challenge f(.), whose solution
S must fulfill the condition Ω. In order for S to be sufficiently hard to find,
yet easy to verify, Ω should be set moderately according to the network condi-
tions (e.g. the avg. computational capacity C of miners or the avg. transmission
delay T between neighbors). S shall be coupled with every newly mined block
so that other miners can verify it referring to Ω. A probabilistic finality based
system requires several miners to search for S at the same time, while an abso-
lute finality-based system requests one selected miner to find S. Thus, β in our
analysis may be >1.

We attempt to simulate a probabilistic finality system represented by the
PoW algorithm. This is because it is useless to assess the consistency of an
absolute finality system as it offers a perfect consistency with the cost of lower
security. Accordingly, Ω is the number of Zero’s at the beginning of f(x), where
f(x) = H(x ⊕ S) (H(.) is a hash function, x is data being mined, and S is a
random integer being searched for by the miner).

We conducted our experiments on the Google Cloud Platform using an E2-
standard-32 VM instance (up to 3.8 GHz, 32 vCPUs, 128 GB memory) running
a Ubuntu 20.10 OS.
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4 Results, Implications and Discussion

In this section we present and discuss the results we obtained after executing the
identified scenarios. We executed all scenarios five times, and we also provide the
average results of each scenario run. Table 2 concludes the results we obtained,
where δ and Avg. δ are presented. The table also concludes the general observed
effect of each factor oscillation on δ. Next, we discuss those results and further
assess their effect on Y . Accordingly, we propose a decision model that can
determine optimal deployment of a given BC application.

For Scenario-1, simulation shows that δ is proportional to the number of
miner nodes participating in the BC network. For Scenario-2, simulation shows
that δ is inversely proportional to the number of neighbors per miner, as long
as the ratio N : M ≤ 1%. This result is similar to the results presented in
[18], because the impact of N (on the distributed DB consistency, although was
studied with different consistency metric model), was studied for a maximum of
four, and with a network size of 500. However, we found that for the case where
the ratio N : M > 1%, one can notice that δ is directly proportional to N . This
observation is somewhat consistent with the observations presented in [25]. That
is, it was argued that N < log M may increase the number of forks in a given BC,
due to several weak links acting as bottlenecks. Accordingly, it was recommended
that N shall be set to ≥ M−1

M log M . Taking the Bitcoin network as an example,
the authors argued that it is safe, with regards to N , since it operates within
a stable range of 22–99 connections (per Full miner nodes). However, we argue
that although such range is safe to guarantee network connectivity, it is not
optimized in terms of forking. As [25] sets the recommended lower bound of N
for safety, our results recommend the upper bound of N , for optimization, to be
N ≤ �M/100�.

For Scenario-3, simulation shows that δ is inversely proportional to the puzzle
solution difficulty. As discussed earlier, such result is naturally expected for a sys-
tem with a probabilistic finality. Increasing Ω is the BC solution to decrease the
probability of β > 1. Additionally, the increment of Ω provides sufficient window
for miners to spread the word, and compensates for the continuous enhancement
of mining machines. That is, such continuous enhancement (predicted by Moore’s
law [26]) may lead to faded effect of a static Ω through time. From another point
of view, compensating the advancement of computational capacities of mining
machines only by increasing Ω implies higher energy consumption through time.

For Scenario-4, the simulation shows that δ is directly proportional to the
number of blocks simultaneously mined and broadcast in the BC network.

Lastly, for Scenario-5, the simulation shows that δ is directly proportional
to the average transmission delay between neighboring miners. These results
conform with the proportionality characteristic presented in [20], where higher
transmission delays predicted higher forking probability. Furthermore, it agrees
with [12], where it was shown that lower delay between BC miners implies higher
efficiency in terms of consistency.
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Table 2. Number of chain versions at the end of each simulation run, the average
number of chain versions for each scenario, and the observed effect of oscillating the
corresponding factor on the average number of chain versions

Scenario Oscillated factor Run-1 Run-2 Run-3 Run-4 Run-5 Average δ Effect

Scenario-1 M = 100 1 1 1 1 3 1.4

M = 500 5 1 4 2 2 2.8 ↑
M = 1000 37 11 4 2 9 12.6 ↑
M = 1500 26 57 54 28 24 37.8 ↑

Scenario-2 N = 2 91 105 78 69 91 86.8

N = 3 87 66 42 65 79 67.8 ↓
N = 5 45 50 53 65 64 55.4 ↓
N = 8 117 73 71 45 71 75.4 ↑
N = 15 417 418 409 374 413 406.2 ↑

Scenario-3 Ω = 5 138 125 142 134 144 136.6

Ω = 10 143 123 128 126 142 132.4 ↓
Ω = 15 129 135 125 140 136 133 ↑
Ω = 20 22 14 20 9 31 19.2 ↓
Ω = 25 1 1 1 8 1 2.4 ↓

Scenario-4 β=2 3 3 3 3 3 3

β=3 4 3 4 4 3 3.6 ↑
β=5 66 72 42 52 89 64.2 ↑
β=8 38 51 39 62 58 49.6 ↓
β=12 393 376 389 405 379 388.4 ↑
β=18 459 461 469 466 460 463 ↑

Scenario-5 τ = 0 ms 2 5 2 1 17 5.4

τ = 5 ms 26 47 7 24 6 22 ↑
τ = 10 ms 21 46 2 6 40 23 ↑
τ = 15 ms 31 72 37 11 103 50.8 ↑

According to our results, we can accumulate our findings in Relation 5, where
η is 1/N if N/M ≤ 1% and is N otherwise.

δ ∝ M × η × τ × β

Ω
(5)

Solving for Y using Eqs. 1, 2 and 3, we can compute Y as a percentage. That
is, 100% level of inconsistency indicates the lowest level of DL consistency. In
other words, the lower the value of Y , the lower the number of logical forks. For
δ values, we use the average values in Table 2. We educe the relevant values of
M and β, and compute ξ accordingly.

Figure 1 present the results we obtained from each scenario assessment, in
terms of percentage Y . According to these results we can deduce that Relation
6 applies, where λ is M if M ≤ |P (β)|, and is 1/|P (β)| otherwise.

Y ∝ λ × η × τ × β

Ω
(6)
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Specifically, one can notice that highest consistency levels can be achieved
when deploying 500 miners, while each is connected to no more than 8 neighbors.
Furthermore, the puzzle difficulty is extremely effective as hardening the puzzle
solution results in a decreased value of β. However, Scenario-4 shows that, in the
case where M ≤ 500, simultaneous blocks appearing in the network are tolerated
in terms of Y up to β = 8. This can be justified by the exponential growth rate of
ξ, which compensates the linear growth of δ and M , and almost hides the effect
of the increasing β. Once the value of ξ is switched to be equal to M (according
to Eq. 2), the actual effect of β can be clearly noted. Finally, Scenario-5 shows
that the DL has the highest consistency levels with lower average transmission
delays between miners.

Fig. 1. Average number of chain versions according to the simulation of Scenarios
1–5, and maximum possible number of chain versions that could appear during the
simulation, represented by blue bars and orange bars, respectively (correlated with
the primary y-axis on the left). And the percentage value of Ledger inconsistency,
represented by the grey curve (correlated with the secondary y-axis on the right) (Color
figure online)

One can also notice the individual relative effect of each analyzed factor. That
is, adding more miners can indeed decrease the ledger consistency level, yet it is
not as effective as increasing the number of neighbors per miner (e.g. adding 500
miners to the network increases Y with about 1%, while changing the number
of neighbors per miner from 8 to 15 increases Y with about 60%). Furthermore,
adding more miners to the BC network (i.e. increasing M) leads to increasing
both δ and ξ in case ξ = M , while it only leads to increasing δ in case ξ = |P (β)|.
Such notion can particularly justify that increasing M does not strongly affect
Y as M increases and decreases Y at the same time. Additionally, it justifies
the results of Scenario-4, where β increases yet Y decreases. According to the
results of Scenario-1, increasing M can guarantee higher ledger consistency (in
the cases where M ≤ 500), as the effect of M is higher on ξ than it is on δ.
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Fog Computing Enhancement for DL Consistency

BC technology can provide services that map to some of the services that Fog-
enhanced systems are expected to provide. Depending on the expected charac-
teristics of the fog layer, one can evaluate the benefits of deploying BC in the fog,
so that FC services can be extended beyond data pre-processing, monitoring and
storage. For example, fog components are expected to be directly connected to
each other, which lowers the transmission delay, while the BC nodes, deployed in
the end-user layer, are connected through the internet, in a P2P fashion. Thus,
it is trivial to expect the enhancement of a BC application in terms of ledger
consistency, when deployed in the fog layer instead of the end-user layer.

To evaluate these expectations, we assume two cases, where probabilistic
finality based BC is deployed in the end-user layer, and in the fog layer. In both
cases, M = 500, N = 5 and Ω = 20. Meanwhile, the size of the message to be
sent to neighbors is unified. Recalling the results presented in [5] and [19], the
average transmission delay τ can be set between miners in the first case to 1000
ms, and between miners in the second case to 12 ms, while no jitter is considered
in both cases.

The computational power C of fog nodes and end-user miners need to be also
considered as described in [30]. That is, mining devices used by end users to mine
new blocks have more computational power than it is expected for fog nodes.
This is due to the fact that end-user miners deploy their Graphics Processing
Units (GPUs) for mining new blocks and providing BC services. On the other
hand, fog nodes usually use their CPUs to perform tasks and provide fog services.

Since M , N and Ω are equal in both cases, τ and C, are the effective factors
on Y in both deployments. The current state-of-the-art is unclear regarding the
exact fog node architecture and whether they have built-in GPUs, the compar-
ison results remain dependant on the individual case parameters at the time
of application. Additionally, some PoW versions, that are described as Memory
Hard Puzzles [9], may indeed present fogs to have higher ability to solve the
puzzle. That is, even if they actually have less computational power than the
average computational power of end-user miners, they may offer higher mem-
ory. An example of a BC system with Memory Hard Puzzle scheme is Chia, the
most recently launched Chinese cryptocurrency [11]. In such a case C represents
memory capacity, rather than computational capacity, of compared miners.

To help making the right deployment decision in such situations, we propose
the evaluation in terms of Y . That is, one can find the ratio between Yf and Ye,
where f is fog layer and e is end-user layer. This shall result in a positive value
Ψ . As C is, by definition, proportional with β, and inversely proportional with
Ω [17], a modified version of Eq. 6 gives:

Ψ =
Yf

Ye
=

Tf × Cf

Te × Ce
(7)

where T = ς × τ is the average total time of propagation and ς is a constant
that reflects different communications criteria between miners. Those criteria
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may cause additional delays related to average processing/routing delay, aver-
age queuing delay, link distance/type/quality, block/packet size, resources allo-
cation, etc.

Equation 7 can be used then to make a reliable decision regarding the deploy-
ment of the BC in e or f . Assuming all factors other than τ and C are equal,
if the value of Ψ is less than 1, then the BC is better be deployed in f , because
such deployment guarantees higher DL consistency. Otherwise, the BC is better
be deployed in e. The single critical point, where both e and f deployments are
expected to provide equivalent Y measures, can be utilized as follows:

1 =
12 × Cf

1000 × Ce
⇒ 12 × Cf = 1000 × Ce ⇒ Ce =

1.2
100

× Cf

Consequently, if average Ce is less than 1.2% of average Cf , then it is better,
in terms of Y , to deploy the BC in e. Otherwise, the BC is better be deployed in f
(we assumed that ς is equal in both deployment options, although it is expected
that the fog will provide super high connectivity that outperforms typical P2P
communications through classical internet).

On one hand, Eq. 7 describes a trade-off between T and C, as T is expected
to decrease, which strengthens DL consistency, while C is expected to increase,
which weakens DL consistency (or at least triggers reactions for maintaining it,
such as increasing Ω). Similar exclusive trade-off observations were discussed in
[8], where the relation between mining costs and queuing delays was discussed.
On the other hand, Eq. 7 describes a race condition between the technology
enhancement in e devices against f devices, which shall boost the optimization
of BC deployment in terms of DL consistency.

5 Conclusion

In this paper, we have discussed and analyzed the concepts and effective factors
of the consistency of Distributed Ledgers (DLs) in Blockchain (BC) systems.
We designed various simulation scenarios to accurately capture why and how
data in a DL becomes consistent or inconsistent. We used the FoBSim tool to
simulate our proposed scenarios, which was originally implemented to mimic Fog-
BC integrated applications. We conducted extensive simulation runs providing a
window for measuring maximum possible number of chain versions in a given BC.
Accordingly, we proposed a quantitative method to describe the inconsistency of
its DL, using the principles of enumerative combinatorics in probability theory,
and we updated the conditions under which the experiments were conducted.
We further deployed this method to contribute to a decision making model,
which can determine the optimal deployment features of a BC in a fog-enhanced
system, depending on information regarding the average computational power or
memory capacity C, and the average transmission delay between miners T . The
proposed model describes the trade-off between T and C, and the race between
technologies deployed in the fog layer versus the end-user layer.
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Abstract. The IaaS model provides elastic infrastructure that enables
the migration of legacy applications to cloud environments. Many cloud
computing vendors such as Amazon Web Services, Microsoft Azure, and
Google Cloud Platform offer a pay-per-use policy that allows for a sus-
tainable reduction in costs compared to on-premise hosting, as well as
enable users to choose various geographically distributed data centers.
Using state-of-the-art planning algorithms can help application owners to
estimate the size and characteristics of the underlying cloud inveterate.
However, it’s not always clear which is the optimal solution especially
in multi-cloud environments with complex application requirements and
QoS constraints. In this paper, we propose an open framework named
SPIRIT, which allows a user to include cloud infrastructure planning
algorithms and to evaluate and compare their solutions. SPIRIT achieves
this by allowing users to interactively study infrastructure planning algo-
rithms by adjusting parameters via a graphical user interface, which
visualizes the results of these algorithms. In the current prototype, we
have included from the IaaS Partial Critical Path algorithm. By taking
advantage of SPIRIT’s microservice-based architecture and its generic
interfaces a user can add to the framework, new planning algorithms.
SPIRIT can transform an abstract workflow described using the CWL
to a concrete infrastructure described using the TOSCA specification.
This way the infrastructure descriptions can be ranked on various key
performance indicators.

Keywords: Virtual infrastructure planning · IaC · Microservice ·
IaaS · Workflow · IC-PCP

1 Introduction

The cloud computing paradigm allows for on-demand IT service delivery via
the internet. The main benefits of cloud computing are dynamic scalability and
elasticity, which is achieved via virtualized resources [3].
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The IaaS model enables enterprises to migrate their in-house software stack to
remote cloud data centers. The IaaS model also provides virtual infrastructures
for applications with specific performance requirements [8]. However, selecting
Cloud infrastructure services and configuring them for specific objectives is time-
consuming for an enterprise. It can also be costly when an enterprise consumes
more resources than its application requires.

Most cloud providers offer a pay-per-use policy, which allows for a substan-
tial reduction in costs compared to on-premise hosting. However, cloud providers
do not offer tools for estimating and comparing the cost of an application as a
function of its requirements, QoS, QoE, etc., and the size of the infrastructure.
For instance, Azure1, Google2, and Oracle3 offer similar pricing calculators, that
allow for the estimation of costs given a selection of cloud services. The cost
of each service is displayed as well as the total costs. However, these tools are
limited to just calculating the total costs and cost per service. They only work
for their corresponding providers and therefore are not cloud-agnostic. Addi-
tionally, they do not help decide which services are needed for an application
to preserve performance or other QoS demands. Moreover, the choice of ser-
vices and their characteristics have to be done manually, since there is not an
automated infrastructure recommendation. Moreover, some services may be only
available in specific data centers.

The process of designing and formally describing a customized Cloud infras-
tructure for an application with specific requirements can be described as Vir-
tual Infrastructure planning [2,7,13]. Virtual infrastructure planning is also often
referred to as Infrastructure as a Service planning or even simply infrastructure
planning. To elaborate on this definition, application developers want to select
cloud resources while optimizing certain QoS, such as performance and costs. Fur-
thermore, they want to do this is in a time-efficient way. Within infrastructure
planning, resource utilization is an important objective. This is usually achieved
by: resource sharing, minimum resource allocation, and load balancing [6].

Infrastructure planning is important in various contexts, such as the cloud
computing context, and scientific computing context. There are many approaches
to tackle this problem that depends on the context. The most obvious way is
manual configuration. This usually involves running the application in the cloud,
and keeping adding resources until the performance of the application meets the
requirements specified. This method is not efficient, as it requires several time-
consuming manual iterations. Also, for more complex applications, such as a
complex workflow with many tasks, this approach becomes even less viable [18].
If infrastructure planning is used to migrate an existing on-premise application
to the cloud, one can pick services in the cloud with similar specifications as the
on-premise services. This is often referred to as resource mapping4. Nevertheless,
this approach is only viable if there is already an on-premise solution available.

1 https://azure.microsoft.com/en-us/pricing/calculator/.
2 https://cloud.google.com/products/calculator/.
3 https://www.oracle.com/cloud/cost-estimator.html.
4 https://cloud.google.com/solutions/resource-mappings-from-on-premises-

hardware-to-gcp.

https://azure.microsoft.com/en-us/pricing/calculator/
https://cloud.google.com/products/calculator/
https://www.oracle.com/cloud/cost-estimator.html
https://cloud.google.com/solutions/resource-mappings-from-on-premises-hardware-to-gcp
https://cloud.google.com/solutions/resource-mappings-from-on-premises-hardware-to-gcp
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For other types of applications, such as (scientific) workflows, it is often the
case that a list of interdependent tasks needs to be executed. These tasks usually
process large data sets and require a specific amount of servers with certain
properties [14]. This problem requires a different IaaS planning approach, such
as estimating required resources through the use of scheduling algorithms, such
as the partial critical path algorithm [13]. We will be looking at existing solutions
more extensively in this research.

Aside from the planning itself, it is can also be difficult to effectively compare
two IaaS solutions and make decisions suitable for a specific application and its
context [10]. This is because there may be differences in performance and QoS
in each solution, which can be hard to evaluate [5].

To tackle the above issues, we propose an open framework with the following
requirements: 1. the proposed open-framework should allow various infrastruc-
ture planning algorithms to be used and analyzed simultaneously, 2. it should
be user-centered with an intuitive user interface, 3. it should adhere to DevOps
principles by outputting IaC, 4. and it should implement a model to rank the
generated infrastructure plans.

Analyzing the above requirements we offer an implementation with the fol-
lowing key contributions: 1. A framework that via its intuitive user interface,
allows users to interactively study infrastructure planning algorithms. 2. A
framework that can generate multiple infrastructure descriptions for time-critical
applications. 3. A framework that is extendable by allowing developers to add
their planning algorithms. This allows for a wide range of application types to
be planned for. 4. A framework that allows the user to dynamically compare
planning results.

The remainder of this paper is organized as follows. Section 2 reviews state-
of-the-art infrastructure planning and workflow scheduling algorithms. Section 3
presents the requirements and architecture design of our proposed tool, namely
SPIRIT. In Sect. 4, we focus on our usability study results. Finally, Sect. 5
presents our conclusions and a description of future work.

2 State-of-the-Art

The infrastructure planning problem can be approached via the use of scheduling
algorithms. Workflow scheduling tries to solve the problem of mapping each task
in a workflow to a suitable resource and to order the tasks on each resource
to satisfy some performance criterion [1]. However, in this paper, we will use
workflow scheduling only to generate infrastructure solutions instead of mapping
tasks to virtual machines at run-time.

Abishami et al. [1] introduce the IC-PCP and the IC-PCPD2 algorithms.
Where the critical path, is the longest of all execution paths from the begin-
ning to the end in a task graph. [11]. Both algorithms are workflow scheduling
algorithms for the cloud.

Taal et al. [13] proposed different implementations, greedy and more strin-
gent, of the IC-PCP algorithm designed by [1]. The paper focuses on getting the
cheapest cloud infrastructure while adhering to the deadline of the workflow.
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Wang et al. [16] proposed a machine learning-based approach called deep-
Q-network to schedule multi-workflows in the cloud. To improve the completion
time and user’s cost of this approach, a Markov game model is applied, which
has the number of workflow applications and VM’s as state input and the max-
imum completion time and cost as rewards. The proposed model is tested via
scientific workflows and Amazon EC2, as well as several other algorithms such
as non-dominated sorting genetic algorithm-II, multi-objective particle swarm
optimization, and game-theoretic-based greedy algorithms.

Rimal et al. [12] proposed a workflow scheduling algorithm for multi-
tenant cloud computing environments. The algorithm focuses on minimizing the
makespan of workflows, tardiness, cost of execution of workflows, and make use
of idle cloud resources.

Wu et al. [17] proposed a task scheduling algorithm based on QoS-driven for
cloud computing. The algorithm works by creating a sorted list of tasks based
on task attributes, including user privilege, expectation, task length, and the
pending time of task in the queue. Then the algorithm will traverse the list and
assign the tasks to the services that will complete them the fastest.

Jain et al. [9] compare four static workflow scheduling algorithms, FCSS,
Round-Robin, Min-Min, and Max-Min. These algorithms are compared based
on a set of parameters, such as makespan, and costs such as communication cost
and computation cost. The algorithms are compared by the use of workflows
generated by the Pegasus workflow generator and cloud resources.

Visheratin et al. [15] introduce a new, improved algorithm for workflow
scheduling called CDCGA. They compared their algorithm to the IC-PCP [1]
and the LDD-LS algorithms by running it on the same workflows.

Workflow scheduling algorithms generally require performance models to do
their calculations. A performance model contains the execution time, for each
task in the workflow, on one of the available machines. So to get useful calcu-
lations, we need to make sure that this model is accurate. These performance
models are quite ambiguous in the sense that it is hard to predict these for tasks
without actually running them. There are existing benchmarking solutions that
can be used to obtain performance values [4]. The user of these algorithms might
want to know how much of an impact a change in this parameter has on the
overall costs and makespan. This is something we will further analyze during the
design of our framework.

3 SPIRIT: A Microservice-Based Framework
for Interactive Cloud Infrastructure Planning

In this section, we describe requirements and system architecture.

3.1 Requirements

From a developer’s perspective, we identified which features to be included in the
open framework by identifying user stories. To be specific, the tool should offer
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one or more IaaS solutions for planning applications. Since we are building an
open framework that should provide value to application developers, we need to
identify what features should be included from their point of view. This can be
achieved by identifying user stories. As a developer, I want: – one or more IaaS
solutions for my application, to I save time and costs. – to apply QoS constraints
on the provided solution, so my application will behave as intended when it is
run on the generated infrastructure. – to generate IaaS solutions that are cloud
agnostic, so I can deploy it on various cloud providers. – several IaC solutions,
so I have the option to run my application on a different infrastructure. – to add
my planning algorithm to the tool, so if I have a better planning approach for
my application. – IaaS solutions, in the form of an IaC template,so it can be
automatically deployed. – to compare various price and performance models so
I can evaluate the impact of these parameters on the result(s). – to customize
the virtual machines used by the planning algorithms. – to compare the results
on one or more key performance indicators so I can select the solution that is
best suited. – to automatically generate planning parameters so I can use the
planner without having this data.

Functional Requirements. Here we list the functional requirements that we
want our framework to fulfill. These requirements describe the desired behavior
of our system. We did a MoSCoW analysis on these functional requirements,
such that the requirements have an assigned priority. Therefore the system: 1.
must integrate planning approaches for at least one type of application, 2. must
have a web interface that is accessible via most common browsers, 3. must use
common standards for APIs, such as REST, 4. must apply at least two different
planning approaches, 5. must provide an IaaS solution in the form of IaC if
the QoS demands can be satisfied, 6. must allow the user to configure virtual
machines to be considered by the planner, 7. must provide a ranking scheme, in
which a recommendation can be made based on KPIs, 8. should allow users to
specify the preferred cloud provider, 9. could allow users to insert their planning
approach, 10. should allow the user to generate planning parameters based on
empirical values, 11. could automatically select the correct planning algorithm
based on user input, 12. could visualize the recommended infrastructures.

Non-Functional Requirements. Besides the functional requirements we also
designed some non-functional requirements for our system. These requirements
focus on the technical aspects of our system. 1. The graphical user interface
should focus on accessibility and usability. 2. The web interface should load
within 10s, given an internet speed of ≥10 mb/s 3. The system should be able to
handle at least 1000 simultaneous requests. 4. The system should provide solu-
tions at least 70% of the time if the parameters are within acceptable boundaries.
5. The processing time of the systems should not exceed 5s. 6. The software will
be open source and adhere to the software design principles that are included in
SOLID.
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3.2 Architecture

To fulfill the proposed requirements, we designed an architecture of our system,
as can be viewed in Fig. 1 and is composed by the elements listed below:

Fig. 1. Architecture diagram

Fig. 2. Process flow and architectural components

Backend: It provides a RESTful API to the Frontend and allows for the regis-
tration of infrastructure planning algorithms

Frontend: This is the web user interface that allows the user to select the type of
application they want to plan for (workflow application, time-constrained work-
flow application, microservice-based application, IOT based application), spec-
ify their performance model, and present to the user the results of the planning
algorithm. Developers can register additional planning services via the developer
portal.
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(a) Select type of application. (b) Upload application description file.

Fig. 3. SPIRIT wizard for selecting application type and description.

(a) Select the cloud provider. (b) Select types of VMs.

Fig. 4. SPIRIT wizard for selecting cloud provider and VMs.

Parser: This component is responsible for analyzing the application description
and extracting the parameters need for the planning algorithm. In our proof of
concept, we implemented a parser for the CWL.

Planner: This component generates the infrastructure plans. In our proof of
concept, we implemented two versions of the IC-PCP algorithm: A greedy version
and a greedy version with a repair cycle, as proposed by Zhao et al. [13].

Cloud Data puller: This component retrieves available virtual machines and
corresponding prices from several cloud providers. Data are displayed in the user
interface, from which the user can make a selection. The selection will be used
by the planning algorithms.

QoS Evaluator: It has the responsibility to process QoS demands from the user.
The component will find infrastructure solutions that comply with the specified
QoS demands. If there is no solution available that complies, the user will be
notified accordingly.
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(a) Select (optional) configuration param-
eters.

(b) Select (optional) the relevant parame-
ters for the planning algorithm.

Fig. 5. SPIRIT wizard for selecting parameters for the planning algorithm.

(a) Compare the solutions (b) Compare the solutions

Fig. 6. The SPIRIT infrastructure plan results

TOSCA Generator: This component is responsible for generating a TOSCA
description based on the output from the planning algorithms. This information
can be used by a provisioner to automatically set up the infrastructure.

Endpoint Registry: It is used to store the available (external) services.
To illustrate how the components are used and interact with each other, we

describe a process flow which is shown in Fig. 2, for planning a cloud infrastruc-
ture for an application.

According to the flow diagram in Fig. 2 a user takes the flowing steps to
generate an infrastructure plan: 1. Select type of application you want to plan
for (Fig. 3a) 2. Upload the application description file. Currently that is a CWL
file (Fig. 3b). 3. Select the cloud provider (Fig. 4a). 4. Select type of VMs for in
the infrastructure plan (Fig. 4b). 5. Select (optional) configuration parameters to
generate a planning input model. This model contains the costs and the perfor-
mance characteristics of the VMs (Fig. 5a). 6. Select (optional) the parameters
for the planning algorithms. In the current version, this includes the price and
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performance model (Fig. 5b). 7. Compare the solutions, based on the selected
KPIs. In our proof of concept, the user can compare the available solutions on
makespan and costs (Fig. 6a and 6b).

4 Usability Study

To evaluate the usability of our GUI we surveyed Cloud and DevOps experts. By
following the presented guidelines, the user was expected to complete a planning
process. The planning process is considered complete when the user has down-
loaded at least one of the proposed infrastructure descriptions. We also expected
the participants to use our ranking scheme to rank the presented output on the
available key performance indicators. After completion of the planning process,
the user was asked to answer the questions in the survey.

Fig. 7. Survey participants background information.

A total of twelve people participated in the experiment. Although the overall
volume of participants is low, nearly all the participants have a background
relevant to work. As can be seen in Fig. 7, most participants work in the field
of Cloud consultancy, or they are Cloud application developers or even IaaS
researchers.

Figure 8 indicates that the majority of users were able to complete the plan-
ning process except one. According to that user, they did not have enough infor-
mation to complete the task.

Figure 9 shows how intuitive the user interface is considered by the partici-
pants. A score of 1 means it is not intuitive, and a score of 5 means it is very
intuitive.
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Fig. 8. Results on completed planning task.

Fig. 9. Results on how intuitive the user interface is.

Fig. 10. Results on how easy to use the user interface is.

Figure 10 presents the results considering the ease of use of SPIRIT. A linear
scale is applied, where a score of 1 means it is hard to use, and a score of 5 very
easy to use. The majority is in the range from 3 to 5, which can be considered
positive.

5 Conclusion and Future Work

In this paper, we elaborated and implemented an open framework with a
user-friendly GUI that can create cost-effective infrastructure plans for vari-
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ous application types. Our proof of concept can transform an abstract work-
flow defined in CWL to a concrete infrastructure defined using the TOSCA
standard. Our microservice-based architecture and generic interfaces make our
framework extendable for other planning algorithms, and thus other application
types. Our tool also allows for the ranking of the generated infrastructures on
various key performance indicators, therefore, allowing for essayer migration of
in-house applications to the Cloud while reducing operating costs. In this paper,
we have implemented two versions of the IC-PCP algorithm: A greedy version
and a greedy version with a repair cycle. In the future, we aim to use SPIRIT
as a platform to integrate and compare more planning algorithms.
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Abstract. Social media platforms are becoming increasingly popular
and essential for next-generation connectivity. However, the emergence
of social media also poses critical trust challenges due to the vast amount
of created and propagated content. This paper proposes a data-driven
tool called SMART for trust and reputation management based on com-
munity engagement and rescaled sigmoid model. SMART’s integrated
design adopts a set of expert systems with a unique inference logic for
trust estimation to compute weighted trust ratings of social media con-
tent. SMART further utilizes the trust ratings to compute user reputa-
tion and represent them using a sigmoid curve that prevents infinite accu-
mulation of reputation ratings by a user. We demonstrate the SMART
tool prototype using a pilot social media application and highlight its
user-friendly interfaces for trustworthy content exploration.

Keywords: Social media · Trust · Reputation · Sigmoid model ·
Community engagement

1 Introduction

Social media platforms gained prominence as an essential technology for next-
generation connectivity. Typically, social media are centralized platforms that
allow users to create, publish, and share content across an interconnected net-
work. This poses critical issues of trust [17] over the created content and the
authentication of users who publish them. This is particularly problematic when
fake news, trolling, and misinformation are a regular phenomenon across pop-
ular social media platforms such as Facebook and Twitter [8]. Moreover, the
integration of privacy-by-design [18] features in social media platforms such as
pseudonymized or anonymized identity systems that enable users to control their
digital identity access aggravates this problem further. While such platforms
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improve upon privacy violations, they pose traceability challenges, for example,
in identifying users publishing fake content.

To prevent the propagation of malicious information in electronic networks
requires innovative decision-making solutions at the user level (i.e., content cre-
ation, propagation, consumption) [1] and the underlying social media environ-
ment. The essential need is to explore trust and reputation management solu-
tions [3] that involve social media users and allow them to be a part of decision-
making. Such a process facilitates trustworthy and authenticated content cre-
ation and consumption and empowers users to tackle disinformation [4] and
foster a positive engagement with fast-evolving technologies.

To achieve these goals, we propose a data-driven tool called SMART devel-
oped in the European ARTICONF [12] project, which provides a decision-making
methodology engaging community experts [6] in computing weighted trust con-
tent ratings and classifying them as trustworthy or not. The trust ratings employ
the rescaled sigmoid model [13] to compute the reputation ratings of a social media
user who created them. Additionally, SMART associates each user with a con-
textualized local and global reputation, where the local rating reflects a user’s
trust for the created content within the same context. The global reputation, in
contrast, provides the weighted trust ratings of a user across all contexts. Such a
design allows SMART to provide fair and democratic decision-making for content
trust management and prevents infinite accumulation of reputation by any user.

We developed a pilot social media application similar to Reddit1 [2] called
SocialApp to demonstrate SMART’s trust and reputation management method-
ology. We highlight the current status of the SMART prototype and its interfaces,
where a SocialApp user can perform trustworthy content exploration based on
interesting topics, endorsements, and their time of creation.

The paper has five sections. Section 2 presents the SMART tool architec-
ture and trust and reputation methodology. Section 3 demonstrates the SMART
tool prototype and its interfaces using the sample social media application
SocialApp. Section 4 briefly discusses the related works and industry-based trust
and reputation management systems. Section 5 concludes the paper.

2 SMART Architecture

Figure 1 describes the SMART architectural workflow for trust and reputation
management through a pseudonymized user who creates and publishes several
posts in the science and technology community. Furthermore, SMART pro-
vides a list of trust oracles to the community members, representing expert
systems with a unique knowledge base and an inference logic to compute the
content trust ratings. The community members can choose one or more trust
oracles by consensus to compute intermediary trust values for each content based
on a particular inference logic. Afterward, SMART computes the weighted aver-
age of the trust ratings obtained from each oracle and labels the trustworthy
or fake content. Finally, SMART aggregates the intermediary trust values of all
posts created by the user and generates its reputation.
1 https://www.reddit.com/r/socialmedia/.

https://www.reddit.com/r/socialmedia/
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Fig. 1. SMART architectural workflow for trust and reputation management.

2.1 Trust Oracle

SMART computes the trust ratings and their content using a set of oracles with
their own unique inference logic. SMART currently supports two types of trust
oracles by design and plans to integrate several others in the future (e.g., online
fact-checker tools).

Community voting based oracle O1 utilizes the percentage of upvotes gathered
by a post PCi in a community C to compute its trust rating rescaled between
[−1, 1] as follows:

O1(PCi) = 2 · Upvotes (PCi)
Votes (PCi)

− 1, (1)

where Upvotes (PCi) and Votes (PCi) are the number of endorsements and total
votes of the post PCi.

ML classification based oracles O2 represent binary machine learning models
that classify a post PCi as trustworthy (O2 (PCi) = 1) or fake (O2 (PCi) = 0):

Trust T (PCi) computed by SMART decision-maker represents the aggregated
normalized trust ratings of each oracle for a post PCi in a community C:

T (PCi) =
O1 (PCi) + O2 (PCi)

2
. (2)

The average trust computation is easily extensible to more oracles. A positive
trust indicates trustworthy content, while a negative value suggests the opposite.

2.2 Reputation Generator

The SMART reputation generator computes the reputation rating of a user and
classifies it as trustworthy and not. We define two types of reputation ratings.
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Local reputation rating represents the trustworthiness of a user in a commu-
nity C.

Global reputation rating reflects the accumulated trust of a user across all
the communities of a social application.

The reputation generator follows three stages to compute the local and global
reputation of a user.

Intermediary reputation RIC is the first stage that initially gathers the final trust
ratings T (PCi) (computed using Eq. 2) of all posts PCi of a user in a community
C. Essentially, each post created by the user varies in quality and trust and
contributes to the intermediary reputation differently. Hence, we utilize content
volume V (PCi) (measured in the number of characters) to distinguish the quality
of different posts, assuming that a larger and more detailed content has a higher
contribution to the user reputation:

RIC =
∑

i T (PCi) · V (PCi) · δ (PCi)
αC

, (3)

where αC is the maximum content volume threshold V of a post in a community
C, and δ (PCi) represents a weighted bias that rewards trustworthy and penalises
fake posts using two weights p and r, respectively:

δ (PCi) =

⎧
⎪⎨

⎪⎩

p, T (PCi) < 0;
r, T (PCi) > 0;
0, T (PCi) = 0.

(4)

We use p = −2 to penalize the fake posts and r = 1 to reward trusted
ones in the current implementation. However, our design allows the community
members to freely decide the reward and penalty weights based on consensus.

Local reputation RLC of a user in a community combines the intermediary
reputation rating RIC with a rescaled sigmoid [13,19] function. We use the
sigmoid function due to its capability to model natural growth and decay rate in
the non-deterministic environment such as social media platforms and compute
the local reputation of a user as follows:

RLC =
2

1 + e−RI′
C

− 1, (5)

where R′
I ∈ [−γ, γ] is the reputation growth and decay constraint that prevents

infinite accumulation of trust:

RI ′
C =

⎧
⎪⎨

⎪⎩

−γ, RIC < −γ;
RIC , RIC ∈ [−γ, γ];
γ, RIC > γ.

(6)

We utilize a reputation threshold β decided by community members with
consensus to classify a user into three categories:
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Fig. 2. Sigmoid representation of user reputation.

Trustful with a high positive local reputation: RLC > β;
Distrustful with a low negative local reputation: RLC < −β;
Doubtful with a local reputation in the range RLC ∈ [−β, β].

Figure 2 illustrates a sigmoid curve initialized with a reputation threshold
β = 0.4 and a reputation growth and decay range γ ∈ [−6, 6]. We observe
that a trustful user has a local reputation rating RLC > 0.4, while RLC <
−0.4 classifies a user as distrustful. Additionally, we observe that the reputation
growth and decay constraint γ prevents infinite accumulation of reputation by
a user and instead limits a finite range of values.

Global Reputation RG of a user averages the local reputations RLC across all
communities C weighted by the volume of the total posts in each community:

RG =
∑

∀C VC · RLC∑
∀C VC

, (7)

where VC =
∑

i V (PCi) is the total content volume of all posts PCi published
by a user in a community C.

3 Implementation

We developed a social media application similar to Reddit named SocialApp
to pilot our research and development. Figure 3 shows a sample instance
of the SocialApp application with two communities labeled science and
technology, and international politics. A SocialApp user can join one
or more communities based on topics of interest. For example, the users in
the international politics community discuss ongoing affairs and the latest
news across the world. In contrast, the science and technology community
users create research and innovation-related content.
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Fig. 3. SocialApp pilot use case application.

A SocialApp user can create and publish content in the form of text or mul-
timedia. SocialApp also allows users to vote for content in their own community,
reflecting their opinion about the content authenticity and quality. In its current
form, SocialApp offers three basic functionalities to pseudonymized users as any
other generic social media platform:

Post functionality allows a SocialApp user to create and publish content in
its own community. SocialApp does not allow a user to post content in a
community without joining it.

Vote functionality allows a SocialApp user to either upvote or to downvote a
published post across the associated community. Similar to post functionality,
a user cannot vote a content without joining it.

Comment functionality allows a SocialApp user to comment on a post either
in the form of text or multimedia.

Each post in SocialApp has a data schema consisting of ten fields: the unique
identifier, pseudonymized user identifier, community label, title, content, times-
tamp, comments, as well as the number of votes, endorsements, and dislikes.
To demonstrate the SMART prototype, we integrated the Mockaroo2 random
data generator into the SocialApp interface. Mockaroo enables the creation of
realistic test data in CSV, JSON, and SQL formats, which we used to generate
2000 users and 12 000 posts according to this schema.

Figure 4 shows the SMART cluster visualization with four interfaces:

2 https://www.mockaroo.com/.

https://www.mockaroo.com/
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Fig. 4. SMART cluster visualization snapshots.

Communities interface provides an aggregated view of the posts based on the
community labels and identifiers. Figure 4a shows the clustered visualization
of 12 000 SocialApp posts across 19 communities with unique labels. Each
community label represents the context and type of the social media posts
created by its members based on their interest topics. Social media users who
are not members of a specific community cannot post content.

Upvotes interface shows the clustered posts based on the number of endorse-
ments and dislikes by SocialApp users in their respective communities.
Figure 4b shows 12 000 posts clustered across categories with upvotes ranging
between 1893 and 5. The upvotes interface enables users to find the posts
with the most positive reviews and contemplate if they match the content
trust ratings. Such an interface aggregates the most endorsed SocialApp
posts and promotes trustworthy content propagation.
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Comments interface depicts the aggregated posts based on their number
of comments, reflecting the general interest across community members.
Figure 4c shows the clustered visualization of SocialApp posts based on the
number of comments, ranging between zero and 800. This visualization allows
users to obtain awareness of the trending posts and topics of discussion, gen-
erating higher interest.

Timestamp interface shows the clustered posts based on their creation date
and time across different communities. Figure 4d shows the SocialApp posts
clustered with different timestamp across 23 d. This clustered view allows
SocialApp users to understand the timeliness of the content contained within
each post. Additionally, this visualization indicates up-to-date or expired
content and focuses on recent events.

A SocialApp user can click any cluster in these interfaces and explore differ-
ent posts, content, and comments. Figure 5a shows the example of a 44% trust-
worthy post published in the conservative community by a pseudonymized
user itsanoobsgame. This enables SocialApp users to check the trust ratings of
a post and track the user who created the post and its corresponding community.

SMART also links each content to the user who published the post and
their local and global reputation ratings. Figure 5b shows the snapshot of a
pseudonymized SocialApp user scorpio05foru with a local reputation rating
0.11 in community conservative and a global reputation −0.17 across all joined
communities. Additionally, SMART links other posts created by the same user
along with their trust ratings. This allows a SocialApp user to get a historical
overview of the content quality created and published by the user.

4 Related Work

Trust and reputation management is an extensively studied problem across many
disciplines, including sociology [11], psychology [5], economics [7], and computer
science [9,16]. Each discipline defined trust from different perspectives that may
not fit into the diversified and digital social networks. In this section, we briefly
describe some of the trust models across academia and industry.

Marsh et al. [10] proposed one of the earliest theoretical models for compu-
tational trust classified in three categories: basic, general, and situational. They
characterize collaboration in digital networks, where a user who tends to trust
others yields a higher reputation. Similarly, Sebater et al. [15] classify trust across
four dimensions: the information source and the granularity that reflect the type
and context of content for trust computation, the behavioral assumption that
identifies manipulative activities by a social media user for trust enhancement,
and the reliability that refers to the accuracy of the trust model.

In the industrial sphere, the eBay trust model is quite popular across online
marketplaces. Online marketplaces such as Amazon use the eBay trust model
to rate users and publicly reflect the historical users’ activity and behavior in
an online digital network public [14,15]. The eBay computational trust model
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Pseudonymized 
user identifier

(a) Content trust.

Biden never really….24 %

Doordarshan spent….75 %

CDC director accused….35 %

Cucumo green light….44 %

Biden new target….21 %

Astrazeneca vaccine….49 %

Conservative: 0.11
Global: -0.17

(b) User local and global reputation.

Fig. 5. SMART trust and reputation visualization snapshots.



426 N. Saurabh et al.

accumulates the positive, negative or neutral rating of other users over a period
of six months. There are several potential problems with the eBay trust model.
Firstly, the user reputation ratings are unbound and allow infinite accumulation
of trust. As a consequence, new users find it difficult to compete with exist-
ing highly reputed ones. This also allows malicious users to accumulate high
reputations by first performing trustworthy activities and scamming afterward.
Hence, a trust and reputation management system requires time sensitivity and
prioritizes recent activities. Sporas [20] trust model is similar to eBay but only
considers the last user activity instead of accumulating the trust and reputation
ratings over six months. However, Sporas also allows infinite accumulation of
reputation by a user, similar to the eBay model.

5 Conclusion

Mitigating misinformation concerns and provisioning trustworthy content cre-
ation and propagation is essential for realizing next-generation social media.
We propose in this paper a data-driven tool called SMART developed in the
ARTICONF project that implements a trust and reputation management sys-
tem based on community engagement and rescaled sigmoid model. We presented
the SMART decision-making methodology that engages community experts in
computing trust and reputation ratings of social media content and users and
classifies them as trustworthy or not. We demonstrated the SMART trust and
reputation management prototype using a generic social media application called
SocialApp similar to Reddit, with user-friendly interfaces and trustworthy con-
tent exploration. In the future, we plan to integrate online fact-checkers to the
SMART tool to improve fairness across computation of trust and reputation rat-
ings. We also aim to validate its trust and reputation management for content
co-creation, news marketplace, and other real industrial applications.

Acknowledgement. This work received funding from the European Union’s Hori-
zon 2020 research and innovation programme, grant agreement 825134, “Smart Social
Media Ecosytstem in a Blockchain Federated Environment (ARTICONF)”.
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Abstract. Serverless computing is a step forward to provide a cloud envi-
ronment that responds to user requests by mainly focusing on managing
infrastructure, resources and configurations. Despite the widespread use
of cloud simulators, they are still mainly focused on supporting more tra-
ditional Infrastructure-as-a-Service scenarios and this reduces their appli-
cability in the serverless and function as a service domains. Moreover,
workload traces typically employed by IaaS simulators to represent user
behaviour, are not well adoptable for serverless model. More realistic and
serverless-like traces are essential to simulate and predict the behaviour of
functions in serverless systems. Therefore, this paper focuses on generat-
ing realistic traces for simulating serverless computing platforms. The gen-
erated traces produced by our approach are based on the Azure Functions
dataset and they are readily applicable in an already available versatile
and high performance simulator (DISSECT-CF). We validated the gen-
erated approach using the coefficient of determination (R2), which shows
very good values for the average and percentiles of the execution time and
memory. To demonstrate the benefits of the generated traces we intro-
duced a rudimentary model for serverless systems to DISSECT-CF. Our
evaluation shows that our workloads are realistic and closely follow the
behaviour of Azure’s function as a service component.

Keywords: Serverless computing · Serverless workload · Serverless
trace · FaaS · DISSECT-CF

1 Introduction

Numerous cloud simulators have been built to support the IaaS model. They offer
an environment for easy evaluation of algorithms and scenarios in the field of
infrastructure management. However, these simulators are not designed to take
responsibility for managing the necessary infrastructure, complex provisioning,
and configurations on behalf of a user, which is how users are expected to deal
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with serverless systems. Moreover, there are features essential to support the
serverless model that are missing from most IaaS frameworks. Among others
these include the following features: sharing low-level computing, support loading
and managing several trace file formats and imitate the configuration of a real
serverless provider. Thus, with these simulators, the burden is on the users to
ensure good quality results when they intend to test or evaluate the behaviour
of serverless functions.

Instead of creating dedicated serverless simulators, it is beneficial to create
them on top of already existing IaaS simulators as they can reveal detailed infor-
mation about resource consumption and pricing. DFaaSCloud [3] is a simulator
developed as an extension of CloudSim, for simulating FaaS in distributed cloud
architecture. However, DFaaSCloud includes several limitations such as low-level
computing resource sharing is not supported to reduce the usage of resources,
and unable to generate and simulate realistic traces. OpenDC Serverless [4] simu-
lator is developed based on Open DC framework, to model and test custom FaaS
patterns. The main restriction of this simulator is not supporting auto-scaling
approach that acts in response to the number of invocations.

As a foundation for the serverless simulators, the main contribution of this
work is to generate realistic traces resembling behaviour observable in the Azure
Functions dataset. Alongside this trace generation approach we introduce a
simple evaluation framework for it that mimics basic features of the serverless
model. The model automatically provisions resources and calculates the expected
price of simulated functions calls, while also discloses information regarding the
behaviour of the simulated workload. Our generator and serverless model was
devised by extending the DISSECT-CF simulator [5].

We have generated several traces to evaluate our approach. These traces
involved functions with arbitrary invocation numbers to demonstrate the usabil-
ity of our approach under different circumstances. We then validated our gen-
erated approach using the coefficient of determination (R2) of the reported exe-
cution time and memory utilisation averages and percentiles between both the
original Azure Functions trace as well as our generated ones. Finally, using these
generated traces, we imitated the behaviour of Azure’s function provider and
made several estimates and predictions of cost and utilisation of our serverless
extension of DISSECT-CF.

To validate that our trace generation approach provides realistic function
invocation behaviour, we have compared the generated trace to the originals on
the following way. First, we have randomly selected five thousand functions to
generate the traces for. The generated invocations were analysed for CPU time
and memory utilisation, namely, we have collected averages and percentiles for
both of these. We then compared the already available averages and percentiles
from the original trace with the generated ones with the help of R2. Our app-
roach provided very good R2 (>0.99) values for predicting averages, in terms of
percentiles it fallen behind a bit but it still produces traces with relatively well
matching behaviour to the originals found in the azure traces.

The remainder of this paper is structured as follows. In Sect. 2, we discuss
related work to proposed model. In Sect. 3, we focus on the methodology of gen-
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erating functions and implementing serverless model. Section 4 covers the eval-
uation of proposed model and Finally, Sect. 5 concludes the paper and suggests
future work.

2 Related Work

Over the last two decades, several IaaS simulation frameworks have been built
to offer elasticity to evaluate algorithms and scenarios. These frameworks intro-
duced many features and concepts to handle the challenges accompanying cloud
computing field. Each framework was built in mind to focus on specific purpose,
functionality or aspect to handle unaddressed challenges.

On one hand, some simulators have been built to focus on specific aspects
such as energy aware provisioning, middleware supervision as the best solution
in this sub-field. For example, GreenCloud [6] is a simulator specifically built for
estimating the energy consumption of cloud data centres. Or, SPECI [10] is a
simple simulator that was built to investigate middleware supervision protocols
of data centres. Finally, GroudSim [8] is a platform mainly focused on scientific
application modelling (e.g., workflows) in cloud and grid computing. As these
simulators are too focused on a particular purpose, they are problematic to adapt
to support serverless concepts.

On the other hand, some simulators have been built to suit wider cloud mod-
elling scenarios with extensibility in mind to support comprehensive features.
Thus, they provide essential architecture and significant concepts as foundation
to other. These include CloudSim [2] which is one of the well-known frameworks
designed to mimic general cloud behaviour. CloudSim built with the ability to
extend for introducing new features that support modelling and simulation of
cloud computing environments and its extensibility has been demonstrated with
numerous extensions over the years. Mostly, general purpose simulators such as
CloudSim are suitable to provide solid-foundation to support serverless model.
However, CloudSim’s performance is not sufficient, for instance, compared with
DISSECT-CF [7] (which is another general purpose simulator), to provide a
robust-extension able to foster analysis of billions of simulated serverless func-
tions invocations.

As most IaaS simulators lack crucial features to simulate FaaS, several new
simulators have been designed. First, DFaaSCloud [3] addressed the missing
serverless functionalities of CloudSim by adding basic FaaS components on top
of the simulated distributed cloud architecture. However, this new simulator is
unable to utilise large scale generated realistic serverless traces. It also not fully
establishing and managing the virtual infrastructure backing function platforms.
Another simulator, called OpenDC [4], followed the same step: they also mod-
elled and tested custom FaaS patterns. However, the major limitation of this
simulator is neglecting auto-scaling approach that responds to workloads.

Based on this research, there is a clear gap in realistic, large scale trace
generation for serverless platforms. Thus this paper aims at presenting a good
quality trace generator as well as a rudimentary simulation framework that can
handle the modelling of larger scale serverless workloads.
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3 Methodology

3.1 Overview of DISSECT-CF Simulator

DISSECT-CF is an IaaS simulator that brought distinct features to foster
improvements of cutting-edge computing technology. As this paper builds on
top of DISSECT-CF, here we briefly provide an overview of the simulator, its
capabilities and ecosystem.

The core of the DISSECT-CF consists of five major subsystems that imple-
ment concepts around clouds and distributed systems. The lowest subsystem,
event system takes responsibility to manage the behaviour of regular and irreg-
ular events as well as controlling the basic state of the simulation in a given
time instance. Next, its unified resource sharing subsystem establishes a shared
resource provisioning framework usable by all other components in the simulator.
Then, the energy modelling subsystem introduces a unique decoupled approach
to energy modelling which is not integrated into resource simulation (i.e., allows
performance gains by only focusing the energy model on parts of the simulated
system). On a top of these foundational components, the Infrastructure simu-
lation subsystem, offers a comprehensive set of infrastructure components like:
virtual machines, physical machines, storage and networking. Finally, the infras-
tructure management subsystem is the highest layer of abstraction that enables
the user of simulator to interact with particular components such as Reposi-
tory and the IaaS service. This layer contains major IaaS components such VM
scheduler and PM scheduler that simulate the management of users requests and
fosters the creation of custom internal IaaS behaviours.

Along the core DISSECT-CF, there are several extensions and projects that
enrich the simulator’s feature set. The most relevant to this paper is the auto
scaling framework presented in the dissect-cf-examples project1. This framework
enables the modelling of virtual infrastructure management tools and job sched-
ulers on these virtual infrastructures. This allows simulations where the virtual
infrastructure built up on top of DISSECT-CF core components are following
the workload patterns pushed to the job scheduler.

The other relevant extension to the simulator is its workload representation
focused DistSysJavaHelpers project2. This project provides abstractions to rep-
resent arbitrary workloads. Offers ways to produce even generated workloads
with the help of its GenericTraceProducer. Finally, it also enables the loading
of several well known workload trace formats to foster realistic simulations.

3.2 Architecture of Proposed Model

Supporting serverless computing model by IaaS simulators necessitate the intro-
duction of additional features. One of the significant features is to enable the
simulator to generate realistic-trace and predict the behaviour of such real-
istic serverless workloads. We introduced our serverless architecture based on
1 https://github.com/kecskemeti/dissect-cf-examples.
2 https://github.com/kecskemeti/DistSysJavaHelpers.

https://github.com/kecskemeti/dissect-cf-examples
https://github.com/kecskemeti/DistSysJavaHelpers
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Fig. 1. Architecture of proposed model

DISSECT-CF that is aimed at offering automated management of function as a
service workloads (by building on top of the pre-existing auto-scalers), as well as
providing realistic models for such serverless models in order to enable building
large scale simulations. This architecture consists of two layers built on the top
of DISSECT-CF as shown in Fig. 1.

The first step towards generating and executing serverless functions, is select-
ing the workload file and type of provider by a user of simulator, which will then
be passed to the experiment setup layer.

The experiment setup layer handles the user options by establishing proper
infrastructure based on the selected plan and generates serverless-trace for sim-
ulation. It consists of the following main components:

Infrastructure configuration plan contains preset configurations that mimic
a particular functions provider (in the current case, it was focused on Azure
functions [1]). The configurations offered focus on resource options (e.g., stor-
age and memory) for functions as well as pricing and energy model details.

Realistic execution time and memory utilisation generators are built
on top of the GenericTraceProducer of the previously mentioned DistSys-
JavaHelpers project. These allow the generation of function invocations to
be simulated following the desired amount and distribution specified by the
simulator’s user. The way the function invocations are generated are governed
by trace files (in our case the Azure functions trace). These components are
further detailed in the next subsection.

The serverless management layer is responsible for managing virtual infras-
tructure (that backs the serverless computing platform), as well as providing
just-enough resources for all the function invocations. This layer consists of fol-
lowing main components:
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The virtual infrastructure manager is responsible for providing and manag-
ing the virtual infrastructure that backs the function invocations. It is used to
offer a unified interface towards the auto-scalers and abstract the cloud infras-
tructure so the virtual machine requests or destruction requests are handled
uniformly. This component is also responsible of collecting information on the
provisioned resources during the simulation (e.g., the total amount of memory
used at a particular moment).

The auto-scaling approach provides several, extensible mechanisms that
observes the previously collected information and makes sure the virtual
infrastructure is increased or decreased in size according to the ongoing and
future function invocations. When a decision is made to change the infras-
tructure, the auto-scaler will notify the Virtual Infrastructure Manager class
to request or destroy VMs.

The function deployer gets all generated functions and dispatches them to
available VMs for execution. For example, when the number of functions needs
to be dispatched simultaneously is increased, auto-scaling class will observe
the utilization of VMs and request more.

3.3 Generating Realistic Serverless Traces from the Azure
Functions Trace

The first official real-world FaaS workload trace was publicly released on June
17th 2020 [9] by Microsoft Azure Functions on Github3. In this subsection, we
demonstrate our approach of generating realistic trace from the Azure dataset,
to be the foundation for our introduced architecture. The azure trace consists of
14 sets of three files representing 14 d of execution history. Each file includes real
detailed information regarding a particular aspect of Azure functions provider.

The first one contains a history of invocations per function. The file contains
1440 columns (1440 min, a full day) per function due to the invocations were
binned at 1-min intervals. The second file contains distributions of execution
time and the number of invocations per function. Moreover, it includes average,
minimum and maximum execution times over the number of invocations across
24-h. The third and last file contains distributions of allocated memory per
application, which is able to host the execution of individual functions. For
this metric, each application’s memory was sampled every 5 s, which they then
averaged every minute. In addition to this, the trace discloses the percentiles for
the distribution of average allocated memory and execution time. We combined
the three files into a single file, representing one day, by matching hash of the
owner’s ID, the function’s ID and the application ID.

Generating Invocations. When a user selects the azure trace file, it will be
processed by Generic Trace Producer. This loads the previously discussed files
and analyses its contents.

3 https://github.com/Azure/AzurePublicDataset.

https://github.com/Azure/AzurePublicDataset
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The Generic Trace Producer class reads each line from the trace file (which
represent one unique function and its invocations over a 24 h period) and imi-
tates the behaviour of function according to invocations as shown in Fig. 2. This
is done by extracting the necessary percentile information to be passed for gener-
ating execution time and memory. It also collects how many times this function
is invoked in one day. For each invocation, the Function Definition will be
instantiated with the previously extracted values (e.g., amount of memory). The
Function Definition is responsible for populating the corresponding task def-
inition in the simulation. These fields determine the behaviour of function by
including a unique ID, submitted time that function is invoked in real systems, as
well as the execution time and memory need for this invocation. Function Defini-
tion will continue the generation of the tasks of the selected function according to
its total number of invocations. After generating all the required function invo-
cations for the simulator, the Generic Trace Producer proceeds reading the next
line from the trace. This process continues till we finish generating all requested
functions and their invocations. Once these are generated the workload is ready
to be used by the simulator’s further components (this is achieved with the
Function Deployer).

Generating Execution Times and Allocated Memory. Generating the
execution time and amount of memory for each function and its invocations, is
mainly based on the values of the trace file’s percentile related columns. The
minimum and maximum values determine the range for the invocations. The
count value specifies the total number of invocations for single function in a
day of the original trace’s recording. Our approach offers customisation options
for the count value in order to allow the simulator’s user to generate traces
which are similar but have different number of invocations. The percentile values
that existed under percentile ranks, which determines how execution time and
memory are distributed over one day. The execution time came with 1, 25, 50,
75, 99 and 100 percentile ranks, whereas the percentile ranks of memory are 1,
5, 25, 50, 75, 95, 99 and 100.

When the functions are defined, as a first step we calculate how many invo-
cations should fall in each percentile rank by using Eq. 1.

V alue =
count ∗ percnetileRank

100
(1)

Thus, the total number of invocations will be divided into six and eight values
for execution time and memory, respectively, according to the percentile ranks.
As the percentile is a value score below which a given percentage of scores in
its frequency distribution falls, each calculated value will be subtracted from its
previous one, except the first value that falls under percentile rank 1. Thus, the
total number will be equal the count value (total number of invocations).

The second step of our approach is generating execution time and memory
values from the percentile values according to the number of invocations for
each percentile rank. Here, Generate Execution Time and Generate Memory
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Fig. 2. Flowchart for process of generating trace by Generic Trace Producer class

classes take percentile values that provided in the original file, and then generates
execution time and memory values within the range (considering minimum and
maximum values for each function) of percentile values.

When the count value is customized the characteristics of the invocations
are maintained from the original trace. Let us take an arbitrary number of invo-
cations such as 89434 with percentile values 10, 230, 550, 650, 800, 950 for
percentile ranks 1, 25, 50, 75, 99 and 100, respectively. As the first step, our
approach calculates the invocations fall within each percentile rank using Eq. 1.
As result of first step, we will have 894, 21464, 22359, 22358, 21464 and 895 for
percentile ranks 1, 25, 50, 75, 99 and 100 respectively. After getting total invoca-
tions for each percentile rank, the second step is generating execution time values
for invocations. Our approach will generate randomly (with a uniform PRNG)
894 execution time values within the range of min (that came with original file)
and 10 that located under percentile rank 1. Then, it generates 21464 execution
time values within the range of 10 and 230 located under percentile ranks 1 and
25, respectively, and so on. This process will continue till generating execution
values for all invocations and the same approach will be used for memory values.
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4 Evaluation

A laptop (Intel (R) Core (TM) i7-4600U CPU @ 2.10 GHz (4 CPUs), 2.7 GHz,
8 GB) was used for the evaluation of our approach and model for generating and
simulating FaaS.

To validate our approach of generating realistic trace that used as a foun-
dation for evaluation serverless model, we have chosen a trace that contains
around 36000 unique functions. Then we picked up randomly 5000 functions
and we have generated 5000 invocations for each function. As the total, we have
generated 25,000,000 invocations with generated execution time and memory
(this is already relatively large scale compared to some simulation framework’s
capabilities). For each function that has generated 5000 invocations, we calcu-
lated the generated percentile values and average for both execution time and
memory. Then, we measured the coefficient of determination (R2) between gen-
erated and original values to show data accuracy. For execution time, R2 was
0.8438 for percentiles and 0.9956 for average, which indicates the accuracy (and
realism) of our approach and how close the data points fall to the fitted regression
line as shown in Fig. 3a. For memory, R2 were 0.9999 and 0.9977 for percentiles
and average, respectively. The generated average of memory is more adequate
as shown in Fig. 3b, compared to the execution time and the reason is the dis-
tribution of execution time values is significantly wider than the distribution of
memory usage.

(a) Execution time (b) Memory

Fig. 3. Coefficient of determination evaluation for generated execution time and
memory

There are many applications areas that are able to use our generated realistic
trace, but we used Azure provider as scenario to demonstrate the advantage of
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our model. The configurations to simulate serverless functions are different in
FaaS providers. Azure functions provider offers several plans to be selected by a
user for their workload. Our model is able to support consumption and premium
plans, which have different resources such as the memory, price and storage. We
have provided a measurement using the consumption plan, to simulate our gen-
erated serverless functions and predict the internal behaviour of azure provider
in our model.

We have conducted the measurement that simulates several generated func-
tions with around 2 million invocations. This scenario demonstrates how our
model responds to rapid increase or decrease in demand of invocations during
the simulation. The Fig. 4 shows how our model imitates the Azure provider by
utilising dynamic allocation of memory based on the number of invocations at
each time instance. Our model was able to estimate the total price for simulated
functions (based on the pricing plans of Azure). In Azure, the cost of functions
invocations consists of two parts based on an execution count and a resource
consumption.

Fig. 4. Dynamic memory allocation of our model

The part of execution count is straightforward based on total number of invo-
cations. Thus, every call of function counts and the bill charged $0.20 per million
executions. In Fig. 4, our model executed various functions with 1,995,727 invo-
cations and estimated the cost of execution count which was $0.3991. Resource
consumption billing depends on both completion time and memory consump-
tion. It is metered in GB-seconds and charged $16 per million GB-seconds. Our
model calculated the consumption cost in Fig. 4, which was $0.1487. Thus, the
total cost of simulation will be sum of execution count cost and resource con-
sumption cost, which was $0.5478. These results demonstrate the realism and
scaling of our approach.
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5 Conclusion and Future Work

IaaS simulators play a critical role in evaluating and testing several scenarios
by providing easy-setup and reproducible environments. However, with existing
features, they are problematic to use for modelling serverless environments due
to lack of ready-to-use environment and realistic workload models. We extended
DISSECT-CF to generate realistic trace from Azure functions dataset as founda-
tion step towards simulating serverless functions. Our approach produced accu-
rate and realistic results regarding the execution time and memory. Based on the
outcomes, we imitated azure provider as scenario to demonstrate the usability of
the generated traces. Our model demonstrated the capability of estimating the
total cost for simulated serverless functions. Future work will focus on exploiting
our approach to shift generated realistic trace other formats allowing reuse of
the previously generated traces. This could result in alternative ways to simulate
serverless behaviours with IaaS simulators that do not natively serverless model.
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7. Mann, Z.Á.: Cloud simulators in the implementation and evaluation of virtual
machine placement algorithms. Softw.: Pract. Exp. 48(7), 1368–1389 (2018).
https://doi.org/10.1002/spe.2579

8. Ostermann, S., Plankensteiner, K., Prodan, R., Fahringer, T.: Groudsim: an event-
based simulation framework for computational grids and clouds. In: Euro-Par 2010
Parallel Processing Workshops, vol. 6586, pp. 305–313. Springer, Cham (2010).
https://doi.org/10.1007/978-3-642-21878-1 38

https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://doi.org/10.1002/spe.2579
https://doi.org/10.1007/978-3-642-21878-1_38


Towards Generating Realistic Trace for Simulating Functions-as-a-Service 439

9. Shahrad, M., et al.: Serverless in the wild: characterizing and optimizing the server-
less workload at a large cloud provider. In: 2020 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 20), pp. 205–218 (2020)

10. Sriram, I.: SPECI, a simulation tool exploring cloud-scale data centres. In: Jaatun,
M.G., Zhao, G., Rong, C. (eds.) Cloud Computing, vol. 5931, pp. 381–392.
Springer, Cham (2009). https://doi.org/10.1007/978-3-642-10665-1 35

https://doi.org/10.1007/978-3-642-10665-1_35


AMTE – Asynchronous Many-Task
systems for Exascale



Asynchronous Many-Task systems
for Exascale (AMTE)

Workshop Description

The workshop, Asynchronous Many-Task systems for Exascale (AMTE) 2021, was
held at x in conjunction with the 27th International European Conference on Parallel
and Distributed Computing (EuroPar) as a virtual event. The goal of the workshop was
to explore the advantages of task-based programming on modern and future high
performance systems. It gathered developers, users, and proponents of these models
and systems to share experiences, discuss how they meet the challenges posed by
Exascale system architectures, and explore opportunities for increased performance,
robustness, and full-system utilization.

The workshop was organized by Irina Demeshko, Patrick Diehl, Steven R. Brandt,
Zahra Khatami, and Parsa Amini. The keynote was given by Thomas Fahringer, and
the invited talk by Daisy Hollman. The panel discussion was moderated by Irina
Demeshko with the following panellists: Hartmut Kaiser, Laxmikant (Sanjay) Kale,
Martin Berzins, Mike Bauer, and Thomas Fahringer.

This volume of LNCS compromises selected contributions of attendees from this
event. The contributed papers range from optimization of asynchronous many-task
runtime systems to applications. This workshop has shown that AMTs are widely used
in academia and national laboratories, and researchers are working to address some
challenges posed by Excascale system architectures.



Organization

Organizing Committee

Patrick Diehl Center for Computation and Technology
at Louisiana State University, USA

Steven R. Brandt Center for Computation and Technology
at Louisiana State University, USA

Parsa Amini Center for Computation and Technology
at Louisiana State University, USA

Zahra Khatami NVIDIA, USA
Irina Demeshko Los Alamos National Laboratory, USA

Program Committee

Metin H. Aktulga Michigan State University, USA
Bryce Adelstein Lelbach NVIDIA, USA
John Biddiscombe Swiss National Supercomputing Centre,

Switzerland
Gregor Daiss University of Stuttgart,
Vassilios Dimakopoulos University of Ioannina, Greece
Patricia Grubel Los Alamos National Laboratory, USA
Jeff Hammond NVIDIA, USA
Adrian Lemoine AMD, USA
Roman Lakymchuk Fraunhofer ITWM, Germany
Thomas Heller Exasol, Germany
Kevin Huck University of Oregon, USA
Daisy Hollman Sandia National Laboratories, USA
Laxmikant (Sanjay) V. Kale University of Illinois at Urbana-Champaign,

USA
Hartmut Kaiser Center for Computation and Technology

at Louisiana State University, USA
Erwin Laure Max Planck Computing and Data Facility,

Germany
Andrew Lumsdaine Northwest Institute for Advanced Computing,

USA
Pat McCormick Los Alamos National Laboratory, USA
Dirk Pleiter Jülich Supercomputing Centre, Germany
Brad Richardson Sourcery Institute, USA
Galen Shipman Los Alamos National Laboratory, USA



Shahrzad Shirzad Center for Computation and Technology
at Louisiana State University, USA

Mikael Simberg Swiss National Supercomputing Centre,
Switzerland

Sean Treichler NVIDIA, USA
Didem Unat Koç University, Turkey
Nanmia Wu Center for Computation and Technology

at Louisiana State University, USA

444 Organization



OpenMP Target Task: Tasking and Target
Offloading on Heterogeneous Systems

Pedro Valero-Lara(B) , Jungwon Kim , Oscar Hernandez,
and Jeffrey Vetter

Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
{valerolarap,kimj,oscar,vetter}@ornl.gov

https://www.ornl.gov/

Abstract. This work evaluated the use of OpenMP tasking with tar-
get GPU offloading as a potential solution for programming produc-
tivity and performance on heterogeneous systems. Also, it is proposed
a new OpenMP specification to make the implementation of hetero-
geneous codes simpler by using OpenMP target task, which integrates
both OpenMP tasking and target GPU offloading in a single OpenMP
pragma. As a test case, the authors used one of the most popular and
widely used Basic Linear Algebra Subprogram Level-3 routines: trian-
gular solver (TRSM). To benefit from the heterogeneity of the current
high-performance computing systems, the authors propose a different
parallelization of the algorithm by using a nonuniform decomposition
of the problem. This work used target GPU offloading inside OpenMP
tasks to address the heterogeneity found in the hardware. This new app-
roach can outperform the state-of-the-art algorithms, which use a uni-
form decomposition of the data, on both the CPU-only and hybrid CPU-
GPU systems, reaching speedups of up to one order of magnitude. The
performance that this approach achieves is faster than the IBM ESSL
math library on CPU and competitive relative to a highly optimized
heterogeneous CUDA version. One node of Oak Ridge National Labora-
tory’s supercomputer, Summit, was used for performance analysis.
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1 Introduction

The motivation of this work was to analyze the OpenMP 4.5 specification for
programming productivity and performance on heterogeneous systems via the
integration of tasking and target GPU offloading. Triangular solve (TRSM) was
used as a motivating example because it is one of the most popular Basic Lin-
ear Algebra Subprograms (BLAS) routines. The authors also included a highly
optimized Compute Unified Device Architecture (CUDA) code in their analysis
to compare not only the performance but also the programming productivity.

Many other studies efficiently used task-based programming models for linear
algebra computations. Examples include CPU-only math libraries, such as Par-
allel Linear Algebra Software for Multicore Architectures (PLASMA) [7], which
is based on OpenMP and Quark [10]; Chamaleon, which is based on StarPU [2];
and Linear Algebra routines on OmpSs (LASs) [18], which is based on OmpSs [8].

Tasking [19,20] is an efficient tool for addressing irregular problems, such
as sparse [3,4] and dense [17,18] linear algebra kernels. Unlike conventional
directive-based clauses used for a uniform work sharing (i.e., decomposition) of
loops, tasking provides the flexibility, transparency, and programming productiv-
ity necessary for handling irregular and nonbalanced applications in which each
task has a different computational cost. Tasking is also well positioned to address
the heterogeneity of the current and upcoming high-performance computing sys-
tems [2,16]. Since OpenMP 4.0, it is possible to use target GPU offloading in
OpenMP codes. Using GPU offloading in OpenMP tasking could be a transparent
and simple way to implement heterogeneous codes without compromising perfor-
mance. Multiple implementations of the OpenMP 4.5 specification are found in
multiple vendor compilers, such as Intel [12], NVIDIA [15], AMD [1], Cray [5], and
IBM [11], as well as in open-source compilers [9,13], which would make OpenMP a
portable specification among many different heterogeneous CPU+GPU systems.
However, this study should be extended by using other architectures, such as
AMD and Intel GPUs, to verify the portability of OpenMP 4.5.

The parallel algorithm of the TRSM routine comprises two main components:
TRSM and general matrix-matrix multiplication (GEMM). Although GEMM
can reach a very high—nearly peak—performance on GPU, TRSM is a more
complex routine, reaching a lower performance on GPUs. In terms of the per-
centage of the peak performance reached, TRSM works better on CPUs than
on GPUs, reaching about 75–80% of the CPU peak performance but only about
50% of the GPU peak performance. To achieve high performance on GPU and
CPU, the authors propose to use CPU to compute the TRSM blocks while using
GPU for the GEMM blocks. The use of heterogeneous (i.e., CPU+GPU) systems
for linear algebra solvers is not new. For example, the MAGMA library [14] has
different linear algebra factorizations (i.e., LAPACK routines), such as LU fac-
torization/solve and Cholesky factorization/solve. These routines are distributed
and computed on CPU and GPU by using vendor programming models, such
as CUDA or HIP on NVIDIA and AMD GPUs and math libraries, such as
cuBLAS/hipBLAS on NVIDIA/AMD GPUs or MKL on Intel CPUs.

Unlike MAGMA, which uses CUDA or HIP, the authors propose to use
OpenMP tasking with target GPU offloading as the orchestrator of the blocks
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and tasks. Unfortunately, there is not a heterogeneous TRSM implementation in
MAGMA that can be compared with this. Thus, the authors included a highly
optimized asynchronous and heterogeneous CUDA implementation of TRSM in
their analysis, following the same programming approach used by MAGMA. Like
MAGMA and many other math linear algebra libraries, the authors used vendor
libraries—IBM ESSL on CPU and NVIDIA cuBLAS on GPU—to compute the
different components or blocks of the algorithms. To the best of the authors’
knowledge, this is the first time that target GPU offloading within OpenMP
tasking has been used for heterogeneous linear algebra operations on heteroge-
neous systems.

The remainder of the paper is structured as follows. Section 2 describes
the main characteristics of TRSM. Section 3 explains the main details of the
OpenMP and CUDA implementations. Section 4 evaluates these implementa-
tions and Section 5 presents the proposal for a novel OpenMP construct which
integrates OpenMP tasking and target offloading in a single OpenMP pragma.
Finally, Sect. 6 summarizes the conclusions and future directions.

2 Motivating Example: TRSM BLAS Level-3 Routine

The TRSM BLAS Level-3 routine is one of the most popular and widely used
BLAS routines. It is used in multiple applications and in some of the most
important LAPACK operations, such as LU and Cholesky solve. It solves a
triangular system, which can be defined as:

op(A) ·X = ALPHA ·B, orX · op(A) = ALPHA ·B. (1)

TRSM has a triangular matrix as input and a regular dense matrix as output.
Matrix A is a triangular matrix, which can be “lower” or “upper,” depending
on the locations of the nonzero elements within it. The result of this operation
is stored in matrix X. This matrix can be positioned on the left or right of
matrix A, which affects the order of the operations to be computed. Matrix B
is a dense matrix, and ALPHA is a scalar matrix. Op(A) can be a transposed
(i.e., AT ) or nontransposed matrix. For clarity and simplicity, the remainder
of this document will focus only on one of the possible cases of this operation,
which consists of computing a triangular system in which matrix A is a lower
triangular matrix, is not transposed, and is positioned to the left of matrix X.
More information about this operation and other BLAS Level-3 operations can
be found in Dongarra et al. [6] or on the BLAS website.1

3 Task-Based Implementation of TRSM

One of the most common ways to parallelize this type of operation is to decom-
pose the matrix into tiles of the same size, defining the dependencies between
the tiles and operations to be computed on each tile. This can be efficiently
implemented via tasking [7,17,18].
1 http://www.netlib.org/blas/.

http://www.netlib.org/blas/
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Fig. 1. Uniform (top) and nonuniform (bottom) tiled TRSM decomposition.

The top image in Fig. 1 illustrates the dependencies among the tiles and
operations to be computed on the tiles. The algorithm computes TRSM on the
diagonal tiles of the input and triangular tiled matrix A and the tiles of the first
row of the output and regular dense tiled matrix B. Once complete, a set of
GEMM operations must be run by using the output (i.e., tiles) of the previous
TRSM operations and the tiles of the column below the diagonal tile as input.
The output corresponds to the tiles located in the second row through the last
row of the output tiled matrix. This process is repeated until the last diagonal
tile of the input matrix is computed.

3.1 OpenMP

Figure 2 shows a pseudocode for the tiled TRSM decomposition, which is illus-
trated in the top image in Fig. 1, on a CPU-GPU heterogeneous system. The
algorithm used in this implementation is identical to the one used by the
PLASMA, Chameleon, and LASs math libraries. As mentioned previously, the
goal is to compute TRSM blocks on CPU and GEMM blocks on GPU. The
data and task dependencies are defined by using the #pragma omp task depend
clause. A few more lines of code must be provided to compute GEMM on GPU
and encapsulate target GPU offloading into OpenMP tasking. These new lines
consist of (1) describing the data moving from CPU and GPU via #pragma omp
target enter data map, (2) specifying that the pointers used in the GEMM
call are GPU pointers via #pragma omp target data use device ptr, and (3)
identifying which data must be copied back to CPU via #pragma omp target
exit data map.

Unlike the previous OpenMP code (Fig. 2) in which the matrices are decom-
posed into square tiles of the same size, the authors propose a different and
irregular decomposition and/or parallelization, as shown in the bottom image
of Fig. 1, in which matrix A is decomposed into square tiles, but matrix B is
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1 aSIZE = TILE_SIZE*TILE_SIZE;
2 for(d = 0; d < dt; d++) {
3 for(c = 0; c < ct; c++) {
4 #pragma omp task depend(in:TILE_A[d][d]) \
5 depend(inout:TILE_B[d][c])
6 CPU-TRSM(L, L, N, N,
7 TILE_SIZE, TILE_SIZE,
8 ALPHA, TILE_A[d][d], TILE_SIZE,
9 TILE_B[d][c], TILE_SIZE);

10 }//End for c
11 for(r = d+1; r < rt; r++) {
12 for(c = 0; c < ct; c++) {
13 #pragma omp task depend(in:TILE_A[r][d]) \
14 depend(in:TILE_B[d][c]) \
15 depend(inout:TILE_B[r][c]) {
16 TILE_A=TILE_A[r][d];TILE_B=TILE_B[d][c];TILE_C=TILE_B[r][c];
17 #pragma omp target enter data map

(to:TILE_A[0:aSIZE],TILE_B[0:aSIZE],TILE_C[0:aSIZE])↪→
18 #pragma omp target data use_device_ptr(TILE_A,TILE_B,TILE_C) {
19 GPU-GEMM(N, N,
20 TILE_SIZE, TILE_SIZE, TILE_SIZE,
21 -1.0, TILE_A, TILE_SIZE,
22 TILE_B, TILE_SIZE,
23 ALPHA, TILE_C, TILE_SIZE);
24 }//End pragma target
25 #pragma omp target exit data map(from:TILE_C[aSIZE])
26 }//End pragma task
27 }//End for c
28 }//End for r
29 }//End for d

Fig. 2. CPU-GPU OpenMP code of the tiled TRSM decomposition.

1 aSIZE = TILE_SIZE*TILE_SIZE;
2 bSIZE = TILE_SIZE*MATRIX_SIZE;
3 for(d = 0; d < dt; d++) {
4 #pragma omp task depend(in:TILE_A[d][d]) \
5 depend(inout:TILE_B[d])
6 CPU-TRSM(L, L, N, N,
7 TILE_SIZE, MATRIX_SIZE,
8 ALPHA, TILE_A[d][d], TILE_SIZE,
9 TILE_B[d], TILE_SIZE);

10 for(r = d+1; r < rt; r++) {
11 #pragma omp task depend(in:TILE_A[d][r]) \
12 depend(in:TILE_B[d]) \
13 depend(inout:TILE_B[r]) {
14 TILE_A=TILE_A[r][d];TILE_B=TILE_B[d];TILE_C=TILE_B[r];
15 #pragma omp target enter data map

(to:TILE_A[0:aSIZE],TILE_B[0:bSIZE],TILE_C[0:bSIZE])↪→
16 #pragma omp target data use_device_ptr(TILE_A,TILE_B,TILE_C) {
17 GPU-GEMM(N, N,
18 TILE_SIZE, MATRIX_SIZE, TILE_SIZE,
19 -1.0, TILE_A, TILE_SIZE,
20 TILE_B, TILE_SIZE,
21 ALPHA, TILE_C, TILE_SIZE);
22 }//End pragma target
23 #pragma omp target exit data map(from:TILE_C[bSIZE])
24 }//End pragma task
25 }//End for r
26 }//End for d

Fig. 3. CPU-GPU OpenMP code of the optimized tiled TRSM decomposition.
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decomposed into rectangular matrices. This different decomposition, which is
illustrated in Fig. 1 and implemented in the code shown in Fig. 2, allows the
occupancy of the CPU and GPU to be maximized, as well as helps overlap
more of the CPU-GPU communication and computation. Also, a lower number
of tasks is necessary, which minimizes the scheduler overhead. These modifica-
tions in the code (Fig. 3) consists of (1) removing those for loops related to the
columns of matrix B, (2) using a unidimensional array for the tiles of matrix B,
and (3) changing the input of the BLAS calls in which a whole block of rows of
matrix B is computed instead of a square tile. These modifications also reduce
the number of lines of code relative to the previous approach.

3.2 CUDA

The CUDA code uses the same matrix decomposition used in the optimized
OpenMP code shown in Fig. 3. To overlap communication with computation—
as well as CPU computation with GPU computation, when possible—the asyn-
chronous application programming interface of the cuBLAS library and CUDA
streams must be used. Also, CUDA events must be used to guarantee the data
dependencies among those blocks of the algorithm computed on the CPU and
on GPU. The use of async memory transfers between CPU and GPU requires
the use of pinned memory. This is done by using cudaHostAlloc to allocate
host CPU memory. Finally, a stream must be associated with the CUDA han-
dle before running GEMM via cublasSetStream. To achieve fully overlapping
computation and communication, the authors used a different stream in each
consecutive GEMM block.

Figure 4 shows a pseudocode corresponding to the first iteration of the CUDA
CPU-GPU asynchronous TRSM code. The authors implemented this code to
minimize the overhead of CPU-GPU communication as much as possible, as
well as to maximize CPU and GPU use. During the first iteration of the code,
all rectangular tiles of matrix B must be transferred from CPU to GPU. Once
these tiles are in GPU memory, only these must be copied back to the CPU after
the computation of the first GEMM block of each iteration because TRSM must
compute them on the CPU at the beginning of the following iteration (Fig. 4).

4 Evaluation

The authors conducted the performance evaluation by using one node of Oak
Ridge National Laboratory’s heterogeneous supercomputer, Summit, which is
currently listed on the TOP500 list as the second fastest supercomputer in the
world. Summit features 2× IBM Power9 8335-GTH at 2.4 GHz, 32 GB RAM
memory, and 6× NVIDIA V100 (Volta) GPU with 16 GB HBM2 and NVLink2
for high-bandwidth communication between CPU and GPU. In this study, the
authors used one IBM Power9 CPU (21 cores) and one NVIDIA GPU (V100);
all computations were done in double precision. The math libraries IBM ESSL
(6.1.0-2) and NVIDIA cuBLAS (CUDA version 10.1.243) were used to compute
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1 cuStream_t stream0, stream1;
2 cuEvent_t event;
3 cuHandle_t handle;
4 //First iteration
5 cblas_dtrsm(L, L, N, N,
6 TILE_SIZE, MATRIX_SIZE,
7 ALPHA, TILE_A[0][0], TILE_SIZE,
8 TILE_B0, TILE_SIZE);
9 cudaEventRecord(event);

10 cudaEventSynchronize(event);
11 cublasSetMatrixAsync(TILE_SIZE,MATRIX_SIZE,sizeof(precision),
12 TILE_B[0], TILE_SIZE,
13 TILE_BGPU0, TILE_SIZE, streams[0]);
14 //First GEMM block
15 cublasSetMatrixAsync(TILE_SIZE, TILE_SIZE, sizeof(precision),
16 TILE_A[1][0], TILE_SIZE,
17 TILE_AGPU1, TILE_SIZE, streams[0]);
18 cublasSetMatrixAsync(TILE_SIZE,MATRIX_SIZE,sizeof(precision),
19 TILE_B[1], TILE_SIZE,
20 TILE_GPUB1, TILE_SIZE, streams[0]);
21 cublasSetStream(handle, streams[0]);
22 GPU-GEMM(N, N,
23 TILE_SIZE, MATRIX_SIZE, TILE_SIZE,
24 -1.0, TILE_GPUA1, TILE_SIZE,
25 TILE_GPUB0, TILE_SIZE,
26 ALPHA, TILE_GPUB1, TILE_SIZE);
27 cublasGetMatrixAsync(TILE_SIZE,MATRIX_SIZE,sizeof(precision),
28 TILE_GPUB1, TILE_SIZE,
29 TILE_B[1], TILE_SIZE, streams[0]);
30 //Second GEMM block
31 cublasSetMatrixAsync(TILE_SIZE, TILE_SIZE, sizeof(precision),
32 TILE_A[2][0], TILE_SIZE,
33 TILE_AGPU2, TILE_SIZE, streams[1]);
34 cublasSetMatrixAsync(TILE_SIZE,MATRIX_SIZE,sizeof(precision),
35 TILE_B[2], TILE_SIZE,
36 TILE_GPUB2, TILE_SIZE, streams[1]);
37 cublasSetStream(handle, streams[1]);
38 cublasDgemm(N, N,
39 TILE_SIZE,MATRIX_SIZE,TILE_SIZE,
40 -1.0, TILE_GPUA2, TILE_SIZE,
41 TILE_GPUB0, TILE_SIZE,
42 ALPHA, TILE_GPUB2, TILE_SIZE);
43 ...

Fig. 4. CUDA code of the optimized tiled TRSM decomposition.

the different components of the algorithm (i.e., CPU-TRSM and GPU-GEMM
in the codes illustrated in Figs. 2 and 3). The IBM compiler xl 16.1.1-5 was also
used.

The performance analysis corresponds to a set of runs by using different
square matrix sizes ranging from 512 to 16,384. In every run, the authors used
a tile size that was 1/8 the size of the matrix. For example, for a matrix size of
5122, a tile size of 642 was used for matrices A and B in the OpenMP version
(Figs. 2 and 5) in which the matrices are uniformly decomposed (top image
in Fig. 1). Additionally, a tile size of 64 × 512 was used for matrix B in the
other OpenMP implementation (Figs. 3 and 5) and CUDA code (Fig. 4). Thus,
depending on the matrix decomposition used, the authors used the same number
of tasks and blocks. For comparison and completeness, two different CUDA
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implementations were included: one synchronous and one asynchronous. These
are shown as CUDA-sync and CUDA-async in Fig. 5. This helps show the impact
of using asynchronous CPU-GPU communication and computation.

Fig. 5. Performance in terms of giga-floating point operations per second of the differ-
ent implementations on CPU (top) and CPU+GPU (bottom).

First, the results were evaluated on CPU only, as shown in the top image of
Fig. 5. The OpenMP uniform code is based on the implementations of the CPU-
only math libraries, including PLASMA [7] and LASs [18] libraries. As shown
in Fig. 4, the use of a nonuniform decomposition can outperform the OpenMP
uniform code, achieving a speedup of up to one order of magnitude in some
cases (23× for a matrix size of 1,024 and 15× for a matrix size of 2,048). An
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irregular distribution of the workload can achieve a high performance, even on
relatively small matrix sizes. Finally, as expected, both variants achieved the
best performance on the biggest matrix tested, being the OpenMP nonuniform
code about 1.2× faster. Also, this code is faster than the multithreading IBM
ESSL library in most cases, performing up to a 1.2× speedup.

Except for the smallest matrix size computed, all heterogeneous versions are
faster than using CPU only. As in the CPU case, using OpenMP tasking with
OpenMP target via a nonuniform decomposition of the matrices, as shown in
the bottom image of Fig. 5, achieves a better result than using a uniform matrix
decomposition. As in the CPU case, the OpenMP nonuniform code can achieve
better results, even on small and medium matrices. The OpenMP nonuniform
code was 4.3× faster on a matrix size of 1,240, 2.3× faster on a matrix size of
4,096, and 1.1× faster on a matrix size of 16,384. Also, the OpenMP nonuniform
code surpasses the CUDA synchronous implementation in most experiments
because it is about 2× faster. Finally, although the asynchronous version of the
CUDA implementation, as shown in the bottom image of Fig. 5, is faster than
the heterogeneous OpenMP nonuniform code, the performance of the OpenMP
code is competitive with respect to the performance reached by the CUDA code
because OpenMP tasking with the target offloading code achieved about 85–95%
of the asynchronous CUDA code performance.

5 A Proposal for OpenMP Target Tasking

Given the good results shown in the previous section by using target offloading in
OpenMP tasks, we propose the integration of both OpenMP tasking and target

1 //Current specification
2 #pragma omp task depend(in:TILE_A[d][r]) \
3 depend(in:TILE_B[d]) \
4 depend(inout:TILE_B[r]) {
5 TILE_A=TILE_A[r][d];TILE_B=TILE_B[d];TILE_C=TILE_B[r];
6 #pragma omp target enter data map

(to:TILE_A[0:aSIZE],TILE_B[0:bSIZE],TILE_C[0:bSIZE])↪→
7 #pragma omp target data use_device_ptr(TILE_A,TILE_B,TILE_C) {
8 GPU-GEMM(N, N,
9 TILE_SIZE, MATRIX_SIZE, TILE_SIZE,

10 -1.0, TILE_A, TILE_SIZE,
11 TILE_B, TILE_SIZE,
12 ALPHA, TILE_C, TILE_SIZE);
13 }//End pragma target
14 #pragma omp target exit data map(from:TILE_C[bSIZE])
15 }//End pragma task
16 //Proposed specification
17 #pragma omp target task depend(in:TILE_A[d][r]) \
18 depend(in:TILE_B[d]) \
19 depend(inout:TILE_B[r]) {
20 GPU-GEMM(N, N,
21 TILE_SIZE, MATRIX_SIZE, TILE_SIZE,
22 -1.0, TILE_A[d][r], TILE_SIZE,
23 TILE_B[d], TILE_SIZE,
24 ALPHA, TILE_B[r], TILE_SIZE);
25 }//End pragma target task

Fig. 6. Proposal for OpenMP target task.
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offloading by using a new OpenMP construct: OpenMP target task. An example
of this new construct with respect to the current OpenMP specification can
be seen in Fig. 6. As shown, the use of OpenMP target tasking would simplify
the implementation of heterogeneous codes considerably. Additionally, a better
CPU-GPU communication could be performed by keeping the data in GPU
memory when other GPU tasks need to access to the same data.

6 Conclusions and Future Work

This paper proposes a new parallel approach for the BLAS Level-3 routine TRSM
by using a nonuniform data decomposition that better matches the character-
istics of heterogeneous systems. This new approach can achieve an important
acceleration compared with the reference implementations by using a nonuniform
data decomposition on both CPU and the heterogeneous CPU+GPU implemen-
tations. The authors implemented two different codes using a nonuniform data
decomposition: one based on OpenMP tasking and target GPU offloading and
one based on CUDA. Although slower than the asynchronous CUDA code, the
OpenMP code can achieve about 85–95% of the performance achieved by the
CUDA code with a much lower programming effort, reaching a high program-
ming productivity without compromising much performance. To simplify the
implementation of heterogeneous codes, we propose OpenMP target tasking, a
new OpenMP construct which combines OpenMP tasking and target offloading
in a single OpenMP pragma.

In future work, the authors plan to (1) extend this work to other dense and
sparse linear algebra kernels and other heterogeneous systems and (2) achieve
better problem tuning by using and including algorithm and hardware factors
that are susceptible to tuning in the code and OpenMP specification.
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Abstract. Task granularity is a key factor in determining the perfor-
mance of asynchronous many-task (AMT) runtime systems. The over-
head of scheduling an excessive number of tasks with smaller granularities
causes performance degradation, while creating a few larger tasks leads
to starvation and therefore under-utilization of resources. In this paper,
we developed an analytical model of the execution time of an applica-
tion with balanced parallel for-loops in terms of grain size, and number
of cores. The parameters of this model mostly depend on the runtime
and the architecture. We introduce an approach to suggest a range of
possible grain sizes to achieve the best performance based on the pro-
posed model. To the best of our knowledge, our analytical model is the
first to explain the relationship between the execution time in terms of
grain size, runtime, and physical characteristics of the machine in an
asynchronous runtime system.
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1 Introduction

Achieving exascale computing relies on computing environments with complex
architectures, deeper memory hierarchies, heterogeneous hardware and complex
networks [7]. Asynchronous many-task (AMT) models and their corresponding
runtimes are the solution to keep application developers safe from the upcoming
architectures by mitigating exascale difficulties to runtime level [3]. New runtime
systems rely on lightweight threads to avoid expensive context switching. There-
fore, the cost of thread creation is relatively low, e.g., HPX threads are created in a
few cycles. However, if millions of lightweight threads are created so each carry out
a small task of a few cycles, then the overhead of task creation will be significant.
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will most likely not be utilized to the full extent. Therefore, the amount of work
assigned to each task, grain size, requires meticulous analyses.

We have developed a model by carefully studying the relationship between
the total execution time and the grain size. Based on the analytical model, we
recommend a range of grain sizes that would lead us to lowest possible execu-
tion times. The model depends on two mostly architecture-specific parameters.
Identifying these parameters on one system would then help us to improve the
performance of other similar balanced for-loop applications on the same system.

The contribution of this work includes:

– Developing an analytical model to predict the total execution time of a bal-
anced parallel for-loop. To our knowledge, this is the first analytical model in
terms of both grain size and number of cores.

– A method has been offered to estimate the range of grain sizes to achieve
minimum execution time for a particular number of cores.

– Building a microbenchmark on top of HPX to evaluate the model. The data
collected through this microbenchmark is used to estimate model parameters
on each machine architecture. The obtained parameters could then be utilized
to predict the optimum range of grain sizes for minimum execution time, and
consequently improve the performance of any other balanced parallel for-loop
application executed on the same system.

2 Background

This section provides a brief overview of the concepts and technologies that are
building blocks of this work.

2.1 HPX

HPX[11] is a C++ runtime system for parallel and distributed applications. HPX
provides users with lightweight user-level threads with fast context switching
[12]. When a thread is blocked, the scheduler picks up another one from the
ready queue in order to hide latency, avoid starvation and therefore improve the
utilization of the computation resources [12].

2.1.1 Execution Model
HPX’s execution model mainly holds four factors responsible for performance
degradation in parallel applications: Starvation, Latency, Overheads, and Wait-
ing (also known as contention) [10].

Starvation refers to the situation where there is not enough work to keep
the computing resources busy- this could be due to an insufficient total amount
of work available, or unbalanced distribution of work among resources [12].

Latency is the time distance, usually measured in processor clock, between
requesting and accessing remote data or services [4].
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Overhead refers to the effort taken to manage parallel resources and actions
on the critical path but are not necessarily needed by the application itself [12].

Waiting is the contention over shared physical or logical resources when one
or more threads try to access the same resource and all get blocked [4].

Table 1. Table of notations

Parameter Definition Parameter Definition

N Number of cores tseq Sequential execution time

nt Total number of tasks created ti Execute time of one iteration

ps Total amount of work n Number of loop iterations

M Number of utilized cores cs Chunk size

tmax Execution time of wmax g Grain size

wmax Maximum amount of work assigned to
a single core

2.2 Analytical Modeling of Parallel Programs

The performance of a parallel program mostly depends on its underlying algo-
rithm and the architecture it is run on [5]. Amdahl’s law [2], Equation (1), shows
that there is a limit on maximum speed-up achievable in a parallel application.
This limit is imposed by the sequential fraction of the program denoted by σ.

S(p) =
p

1 + σ(p − 1)
(1)

Gunther [9] extends Amdahl’s law by incorporating effects of three factors: con-
currency, contention, and coherency, as shown in Eq. 2.

S(p) =
p

1 + σ(p − 1) + κp(p − 1)
(2)

In this equation, known as the Universal Scalability Law (USL), concurrency
(p) represents the linear speed-up in the absence of interactions among parallel
processors, contention (σ) represents the serialization effect of shared writable
data, and finally coherency or data consistency (κ) represents the cost imposed
for keeping shared writable data consistent [9].

Several models have been proposed to model scalability, including the Geo-
metric model [9], and the Quadratic model [8]. These models are mainly non-
physical, and not applicable for large number of processors [8].

3 Methodology

In this section we provide an overview of the methodology used to analyze the
effect of grain size, i.e., the workload of each runtime thread, on the execution
time in AMT runtime systems. Table 1 shows the notations used throughout this
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section. It should be noted that the amount of work could be measured in terms
of execution time or floating point operations depending on the application.
Chunk size is defined as the number of iterations included in one task, while
grain size is the amount of work contained in a task and is executed by a single
user-level thread.

The total execution time is then defined as the maximum of the execution
times of each individual core. In general this is the amount of time it takes for
the core with maximum amount of work to finish execution of its task. Here the
maximum expected amount of work to be assigned to a core is denoted as wmax,
and the time it takes to execute this amount of work as tmax.

With this assumption, the key factors contributing to the execution time are,
the overhead of scheduling tasks on the core with maximum amount of work, the
time it takes to run wmax amount of work, denoted with tmax, and the number
of cores executing the work(M). Depending on the amount of work available,
either all N cores or less than N cores will be performing the work.

Equation (3) shows the expected formula in its simplest form.

execution time = toverhead + tmax (3)

toverhead represents the penalty that has to be paid for running the program in
parallel. We hold two major factors accountable for this overhead.

The first factor is the overhead of scheduling the tasks. Although this over-
head is negligible for a small number of tasks, it becomes significant as the
number of created tasks becomes larger.

In the ideal case, when nt tasks are created,
⌈

nt

N

⌉
of them would be scheduled

on the core with the maximum amount of work. If we represent the overhead
of scheduling one task on a core with α, then α

⌈
nt

N

⌉
would be the scheduling

overhead associated with
⌈

nt

N

⌉
tasks.

The second factor is the overhead due to contention and coherency based on
USL. Equation (4) shows how USL models the effect of the overheads due to
contention(σ) and coherency(κ) in the overall execution time t, with sequential
execution time of tseq, on N cores, when tseq

N is the expected execution time on
N cores in ideal case when the mentioned overheads are not present.

speedup =
tseq

t
=

N

1 + σ(N − 1) + κN(N − 1)
⇒

t =
tseq

N
+ σ(N − 1)

tseq

N
+ κN(N − 1)

tseq

N

(4)

Based on Eq. (4), the term σ(N −1)tseq represents the overhead observed due to
contention, and κN(N − 1)tseq is the overhead caused by coherency, assuming
tseq is the ideal execution time in this problem.

We need to keep in mind that there are cases where there is not enough work
for all the cores to execute, causing the mentioned overheads to be a factor of
the cores that are actually performing the work and not just all the available
cores. For this reason, we adjust Eq. (4) by changing the total number of cores
(N) to the number of cores that are actually being utilized (M).
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Assuming that we are running our application on N cores, with a grain size
equal to g, nt tasks are being created, and M cores are being utilized. If nt < N ,
M would be equal to nt, otherwise M = N .

Equation (3) is then converted into:

execution time = α
⌈nt

N

⌉
+ σ(M − 1)tmax + κM(M − 1)tmax + tmax.

(5)
For a balanced parallel for-loop, when N = 1 all the work will be assigned to
the only available core, resulting in wmax = ps. When N > 1, in the general
case at most

⌈
nt

N

⌉
tasks would be assigned to a core. Therefore, a grain size of

g would result in a maximum amount of work of g
⌈

nt

N

⌉
being assigned to one

core, causing wmax = g
⌈

nt

N

⌉
.

Also tmax, the time to execute wmax amount of work, can be estimated as
tmax = tseq

wmax

ps
, where tseq is the time it takes to run the total amount of work,

ps, sequentially. Equation (5) is then simplified into Eq. (6).

execution time = α
⌈nt

N

⌉
+ tseq

wmax

ps
(1 + σ(M − 1) + κM(M − 1))

(6)
We refer to (6) as our analytical model in the next sections.

3.1 Model Evaluation

In order to evaluate the model, we developed a simple parallel for-loop
microbenchmark1. We refer to it as the for-loop microbenchmark. Each iteration
consists of a while loop that makes sure the iteration lasts a certain amount of
time (ti). By setting ti = 1μsec, and changing the number of iterations n, and
chunk size cs, we can see how the execution time changes when the microbench-
mark is executed on different number of cores.

Having defined ps as the total amount of work that has to be performed, for
this microbenchmark, ps = ti × n. Since ti = 1μsec, then ps = n. On the other
hand, for this specific problem wmax = tmax, and tseq = ps.

The microbenchmark was then executed with different number of cores(N),
number of iterations(n), and chunk sizes (cs). For each n, cs is changed from 1
to n in logarithmic scale. Each of these runs was executed on 1, 2, 3, ..., 8 cores.

Using the collected data points for each problem size (ps), the opti-
mize.curve fit package from scipy library in Python was used to fit our model to
the collected data. Figure 1 shows the prediction results from the fitted model
and the original data for ps = 100000, on 8 cores.

The relative error of the prediction is calculated for each problem size based
on Eq. (7), where pk is the predicted value of the sample k, tk is the true measured
value, and K is the total number of samples.

Relative error =
1
K

K∑

k=1

|1 − pk

tk
| (7)

1 https://gist.github.com/shahrzad/b81e1eb252880aca48528d2de0bd1d10.

https://gist.github.com/shahrzad/b81e1eb252880aca48528d2de0bd1d10
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As discussed earlier, for a specific runtime system, the model parameters
α and σ mostly depend on the system architecture and are expected to be
constant for different problem sizes as long as they are executed on the same
machine. Therefore, we suggest relying on the data collected from one problem
size to find parameters α and σ. For this purpose, for problem sizes of 10000,
100000, 1000000, 10000000, 100000000, we used the parameters identified based
on the data collected from one specific problem size, to estimate the execution
time in terms of grain size and measure the relative error for the same problem
size(Fig. 2a) and all other problem sizes(Fig. 2b).

Using the data collected for ps = 10000 to estimate the model parameters
generates higher prediction error on other problem sizes, but for other problem
sizes we don’t see a considerable change in prediction error. Since larger problem
sizes require more data to be collected to cover the whole spectrum of grain
sizes, ps = 100000 was selected as a reasonable problem size to estimate the
model parameters. Fitting our model to all the 512 data points collected for
ps = 100000, resulted in model parameters α = 2.42 and σ = 0.025.

We suggest to run the for-loop microbenchmark on the desired system to run
our parallel application on, for ps = 100000, to estimate α and σ. Plugging the
estimated parameters into Equation (6) would create the analytical model to be
used for other balanced parallel for-loop applications executed on the same system.

Our experiments were run on a node consisting of two Intel(R) Xeon E5-2450
CPUs clocked at 2.1 GHZ amounting to a total of 16 cores and 48 GB RAM. Hyper-
threading was turned off for the experiment. The versions of HPX used was 1.5.0.

3.2 Identifying the Optimal Range of Grain Size

The graph of execution time in terms of grain size in logarithmic scale, denoted
as the bathtub curve, can be divided into three regions. We refer to these regions
as the left side, the right side, and the flat regions of the graph. Figure 3 shows
an example of the flat region of the execution time graph versus grain size in
both linear and logarithmic scales. As it can be observed, the flat region contains
a very small range of grain sizes.

Fig. 1. The results of predicting the execution time based on the proposed model
through curve fitting vs the real data for ps = 100000, for 8 cores.
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(a) (b)

Fig. 2. The relative error of fitting the measured data for different problem sizes on
(a) the same problem size and (b) other problem sizes, calculated for each number of
cores.

3.2.1 Left Side of the Graph
In Equation (6), for small grain sizes the first term(α

⌈
nt

N

⌉
) is the dominant

factor while the second term(tseq
wmax

ps
(1 + σ(M − 1))) roughly stays constant.

Likewise, for large grain sizes the second factor is the dominant factor.
In order to find the lower-bound of the range for which the execution time

stays constant, we can assume that the second factor is constant in that region.
Also, we can change N to M , knowing that our concern is on the left side of
the graph, where nt is definitely greater than the number of cores. Taking the
derivative of the function based on the grain size leads to:

∂execution time

∂g
=

α

N

∂nt

∂g
=

α

N

∂(ps

g )

∂g
=

α

N
ps

−1
g2

. (8)

From (8), it can be observed that for the left side of the graph, the rate of change
is negative, and it decreases as the grain size increases. Here we are looking for
the value of the grain size for which the rate of change becomes very small (we
introduce a threshold λb, where 0 < λb � 1, for this purpose).

α

N
ps

1
g2

≤ λb ⇒ g ≥
√

α
N ps

λb

(9)

(a) (b)

Fig. 3. The results of running the for-loop microbenchmark with ps = 100000, on 8
cores in (a) logarithmic scale, and (b) linear scale.
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Equation (9) can also be represented as shown in (10). This representation shows
that when the ratio of the time it takes to execute one task to the total overhead
of scheduling nt tasks on N core, is greater than a threshold, we will end up in
the flat region of the graph, close to the left side.

α

N

ps

g

1
g

≤ λb ⇒ g
α
N nt

≥ 1
λb

(10)

3.2.2 Right Side of the Graph
At the right side of the graph, the overhead of creating the tasks is negligible,
since only a few tasks are being created and the associated overhead is not
significant compared to the execution time. On this side, wmax and consequently
tmax are the dominant factors. In general we can estimate wmax with g

⌈
nt

N

⌉
.

There are grain sizes for which
⌈

nt

N

⌉
is the same, but wmax would be different.

For all the values of g that create the same
⌈

nt

N

⌉
, as g increases, the difference

between wmax and ps

N increases. This means that for a range of grain sizes with
the same value of

⌈
nt

N

⌉
, as we get closer to the end of the range, we are observing

that a much bigger amount of work is assigned to the core with the maximum
amount of work, which would result in a higher execution time.

In the general case, if we denote
⌈

nt

N

⌉
as k, then:

k − 1 <
nt

N
=

⌈
ps

g

⌉

N
≤ k ⇒ (k − 1)N <

ps

g
≤ kN. (11)

If k = 1, then, 0 < ps

g ≤ N and therefore ps

N ≤ g ≤ ps. Otherwise, when k > 1
the following equation can be deduced.

ps

kN
≤ g <

ps

(k − 1)N (12)

Since
⌈

nt

N

⌉
= k, and wmax = g

⌈
nt

N

⌉
= gk, we can conclude for k > 1:

0 ≤ wmax − ps

N
<

1
k − 1

ps

N
. (13)

And for k = 1, wmax = g, nt ≤ N , therefore ps

N ≤ g ≤ ps.

0 ≤ wmax − ps

N
= g − ps

N
≤ (N − 1)

ps

N
(14)

We define a new parameter imbalance ratio as (wmax − ps

N )/ps

N . Consequently,
⎧
⎨

⎩

0 ≤ imbalance ratio ≤ N − 1 for k = 1

0 ≤ imbalance ratio <
1

k − 1
for k > 1

(15)

Equation (15) shows that as the number of created tasks increases, while the
number of tasks per core is the same, the imbalance factor decreases.
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Fig. 4. The imbalance ratio calculated for different grain sizes for ps = 10000, on 8
cores. At the area between each two green lines k =

⌈
nt
N

⌉
is constant.

Figure 4 shows how imbalance ratio changes for different grain sizes for ps =
10000, on 8 cores. Each of the regions between two dashed green lines correspond
to a specific value for k =

⌈
nt

N

⌉
.

At each of the regions with k > 1,
⌈

nt

N

⌉
= k, imbalance ratio starts from

0 and approaches 1
k−1 at the end of the region. When k = 1, imbalance ratio

increases linearly starting from 0 and reaching the maximum of N − 1 when
g = ps. As we move to larger grain sizes,

⌈
nt

N

⌉
decreases. We define a threshold,

λs (0 < λs < 1), so that for imbalance ratios smaller than this threshold,
the imbalance effect is not considered significant. Our goal would then become
finding the maximum grain size that would generate a reasonable imbalance
(imbalance ratio ≤ λs), to make sure we should stay in the flat region of the
bathtub curve of execution time against grain size.

Equation (14) states that for grain sizes greater than ps

N , imbalance ratio
increases linearly with grain size from 0 to N − 1. While for grain sizes smaller
than ps, the maximum imbalance ratio depends on k =

⌈
nt

N

⌉
. To ensure imbal-

ance ratio is smaller than or equal to a threshold (λs), first we search the grain
sizes smaller than ps

N . Since 0 < λs < 1, and k ≥ 2 in this region, there exists a
k such that 1

k−1 ≤ λs.
If there exists a kmin, for which imbalance ratio < 1

kmin−1 , where 1
kmin−1 ≤

λs, then ∀k < kmin, maximum value of imbalance ratio would be greater than
λs. To find the grain size that creates maximum imbalance ratio of λs:

imbalance ratio ≤ λs ⇒ 1
k − 1

≤ λs ⇒ kmin =
⌈
1 +

1
λs

⌉
+ 1 (16)

Based on Equation (13), g < ps

(kmin−1)N , and therefore:

gmax =
ps

(kmin − 1)N
− 1 =

ps

(1 +
⌈

1
λs

⌉
)N (17)

If g < gmax, we can ensure that imbalance ratio never exceeds λs. Since we
already found a match at grain sizes smaller than ps

N , checking the rest of grain
sizes would not be necessary.
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(a) (b)

Fig. 5. (a)The identified range of grain sizes for ps = 100000000 on 8 cores, with
λb = 0.01 and λs = 0.1. The gray dashed line represents the grain size where work is
equally divided among the cores, ps

N
. (b) The effect of λb and λs on the borders of the

identified region for minimum execution time.

3.3 Identifying the Range of Grain Sizes for Minimum Execution
Time

In the previous section, we introduced a method to identify the lower-bound
and upper-bound of grain sizes for which we expect to observe the minimum
execution time. Integrating Eq. (9) and Eq. (17) suggests the following range for
minimum execution time, Where 0 ≤ λs ≤ 1, and λb, λs � 1:

√
( α

N )ps

λb
≤ g ≤ ps

(1 +
⌈

1
λs

⌉
)N

. (18)

Here λb indicates the slope of the graph at the left side of the graph where over-
head of tasks is the dominant factor. Grain sizes smaller than

√
(( α

N )ps)/λb

would create a slope of more than λb. As for λs, a grain size greater than
ps

(1+� 1
λs

�)N could generate an imbalance ratio of greater than λs.

3.4 Locating the Flat Region of the Execution Time vs Grain Size
Graph for the For-Loop Microbenchmark

In this section we used Eq. (18) to identify the flat region of the execution time
vs grain size graph for the parallel for-loop microbenchmark. For this purpose,
we set both λb and λs to 0.1.

In Fig. 5a the identified region for minimum execution time is shown in green,
for ps = 10000000, executed on 8 cores.

Selecting a greater value for λb would move the left border of the region
to left, for a larger acceptable slope of change of execution time in terms of
grain size. On the other hand, selecting a smaller value for λs would result in
shifting the right border of the region to left, imposing a higher restriction on
imbalance ratio, as shown in Fig. 5b. λb and λs could be selected depending on
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how strict one wants to be in terms of slope of changes and imbalance ratio. In
the meanwhile, based on our experiments we suggest λb = 0.01 and λs = 0.1 as
reasonable values for

4 Related Work

Akhmetova et al. [1] utilized a system emulator to study the effect of task gran-
ularity in system performance. They also provide an algorithm to automatically
aggregate tasks into larger tasks based on the calculated task granularity in order
to improve the performance.

Grubel et al. also study the effect of the task size on performance of HPX
applications[6]. They suggest using a number of performance metrics in order to
identify the optimum grain size to improve the adaptivity at runtime.

In [13], the authors use thresholds to decide on whether to inline a task or
not at runtime. The imposed threshold for task inlining on a specific architecture
then converts into the problem to what portion of the execution time of the task
should be spent for scheduling the task, so that it would be worth to be executed
as a separate task. This is in compliance with our findings in this paper for λb,
as shown in Eq. (10), where we suggest in order to land in the flat region of
the execution time versus grain size graph, the ratio of the grain size over the
scheduling overhead of one task on one core should be greater than the given
threshold.

5 Conclusions and Future Work

In this paper we discussed the importance of task granularity on the achievable
performance in AMTs. We offered an analytical model for execution time of
a parallel application with a balanced for-loop, in terms of grain size and the
number of cores. A for-loop microbenchmark was developed to validate this
model and, a method has been provided to estimate the range of grain sizes to
achieve the minimum execution time. At the next step, we suggested that we can
use the developed for-loop microbenchmark with a fixed problem size to find the
model parameters of a runtime system on a specific architecture. The identified
parameters can then build the analytical model for arbitrary balanced parallel
for-loop applications on the same machine.

For simplification and due to the nature of the for-loop microbenchmark we
based our work on, we had ignored the κ parameter in USL model. For future
work, we would like to study the effect of this parameter on both execution time
and the upper-bound for the identified range.
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Abstract. Task graph parallelism has emerged as an important tool
to efficiently execute large machine learning workloads on GPUs. Users
describe a GPU workload in a task dependency graph rather than aggre-
gated GPU operations and dependencies, allowing the runtime to run
whole-graph scheduling optimization to significantly improve the per-
formance. While the new CUDA graph execution model has demon-
strated significant success on this front, the counterpart for SYCL,
a general-purpose heterogeneous programming model using standard
C++, remains nascent. Unlike CUDA graph, the SYCL runtime lever-
ages out-of-order queues to implicitly create a task execution graph
induced by data dependencies. For explicit task dependencies, users are
responsible for creating SYCL events and synchronizing them at a non-
negligible cost. Furthermore, there is no specialized graph execution
model that allows users to offload a task graph directly onto a SYCL
device in a similar way to CUDA graph. This paper conducts an exper-
imental study of SYCL’s default task graph parallelism by comparing
it with CUDA graph on large-scale machine learning workloads in the
recent HPEC Graph Challenge. Our result highlights the need for a new
SYCL graph execution model in the standard.

Keywords: CUDA Graph · Task graph parallelism · High
performance computing

1 Introduction

Modern GPUs are fast and, in many scenarios, the time taken by each GPU
operation (e.g., kernel or memory copy) is now measured in microseconds. The
overheads associated with the submission of each operation to the GPU, also
at the microsecond scale, are becoming significant and can dominate the per-
formance of a GPU algorithm. For instance, inferencing a large neural network
launches many dependent kernels on partitioned data and models. If each of
these operations is launched to the GPU separately and repetitively, the over-
heads can combine to form a significant overall degradation to performance.
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To overcome the overheads of kernel calls, CUDA has recently introduced
a new graph programming model, namely CUDA graph [20], that allows users
to describe a large GPU workload in a single task graph and offload the task
graph directly onto a GPU using a single CPU call. This new execution model
opens several exciting opportunities for further accelerating the performance of
large-scale machine learning workloads that compose thousands of GPU oper-
ations (i.g., kernels and memory copies). For instance, the recent research at
2021 Nvidia GTC has shown over 3× performance improvement in TensorFlow
by replacing stream-based execution with CUDA graph [23]. In the same line,
our research of CUDA graph has achieved 2× speed-up over existing stream-
based solutions in completing the inference workloads of large sparse deep neu-
ral networks (DNN) that compose more than 46K GPU operations and 69K
dependencies [17].

In addition to CUDA, SYCL [16] has emerged as a promising alternative to
GPU programming using completely standard C++. As more ML systems start
leveraging SYCL to design their back-ends (e.g., Intel oneAPI [15]), enabling
direct task graph parallelism on a SYCL device is a high priority for efficiently
executing large-scale machine learning workloads that define thousands of GPU
operations and dependencies. The default SYCL runtime counts on an out-of-
order queue to dynamically construct a task execution graph for submitted
kernels described in command group function objects. Task dependencies are
implicitly inferred from data dependencies extracted from accessor objects. In
a unified shared memory (USM) [7,22] environment where accessors are not
required, users must explicitly construct dependencies between submitted tasks
and synchronize their events. This organization adds burdens to developers and
can be error-prone because of tedious event management.

Consequently, this paper introduces a high-level programming interface called
syclFlow [21] to express task graph parallelism with SYCL. We leverage the out-
of-order property of the SYCL queue to design a simple and efficient scheduling
algorithm using topological sort. We compare the performance of syclFlow with
CUDA graph on a large-scale machine learning workload from the HPEC Sparse
DNN Inference Challenge [11]. The largest DNN model spans 1920 layers each of
65536 neurons and composes over 46K GPU operations to complete the inference
loop. Under the same kernel algorithm, SYCL can be up to 5× slower than
CUDA graph as a result of execution overheads (e.g., submission calls, event
synchronizations). The experiment results highlight the need for a new SYCL
graph execution model that allows explicit task graph parallelism on a SYCL
device.

2 The Proposed SYCL Task Graph Programming Model

Our SYCL task graph programming model, syclFlow, enables users to describe
workloads in a task dependency graph. Once a task graph is given, we schedule
and submit dependent tasks to the SYCL runtime using out-of-order queue and
event synchronization.
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2.1 Task Graph Construction in SyclFlow

Fig. 1. An example of GPU task graph. There are one kernel, denoted in a red circle,
and four memory copies, denoted in blue circles.

syclFlow allows users to construct a task dependency graph using standard
C++17 and SYCL20 based on USM. Figure 1 illustrates a GPU task graph of five
tasks (one kernel, kernel, two host-to-device memory copies, h2d x and h2d y,
and two device-to-host memory copies, d2h x, and d2h y) and four dependencies.
Listing 1.1 implements Fig. 1 using the proposed syclFlow programming model.
We create a syclFlow object (sf), use parallel for and copy to construct five
task graph nodes, and relate the dependencies between nodes using precede and
succeed. The code explains itself, inspired by our Taskflow project [12].

Listing 1.1. Example code of Figure 1 using syclFlow.

syclFlow sf;
syclTask h2d x = sf.copy(dx, hx, size);
syclTask h2d y = sf.copy(dy, hy, size);
syclTask kernel = sf.parallel for(dx, dy);
syclTask d2h x = sf.copy(hx, dx, size);
syclTask d2h y = sf.copy(hy, dy, size);
kernel.succeed(h2d x, h2d y);
kernel.precede(d2h x, d2h y);

2.2 Task Graph Scheduling in SyclFlow

Since syclFlow uses SYCL’s out-of-order queue in which the SYCL runtime may
not schedule tasks in the same order of their submissions, we have to schedule
a user’s task dependency graph before submitting tasks to SYCL. Algorithm 1
presents our scheduler. In Line 1, we apply topological sort algorithm to sort a
user’s task dependency graph and get the sorted graph in T. In Lines 2–4, we
submit each task to the queue and get an event back. In Line 5, we synchronize
the whole execution by queue.wait. This scheduling is the notable overhead
that syclFlow has on top of SYCL. Please refer to Sect. 3 for detailed runtime
breakdown. Algorithm 2 briefs the submit function. In Line 1, we declare a
command group function object for a task. In Lines 2–4, we use depends on to
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specify the dependencies between the task and its dependents and encapsulate
the dependencies together with the task in the command group function object.
In Line 5, we return the command group function object as an event.

Algorithm 1: syclFlow’s scheduler
Input: G: syclFlow task dependency graph defined by users
Input: queue: a SYCL queue associated with a SYCL device

1 T ← topological sort(G)
2 for task ∈ T do
3 task.event = queue.submit(task)
4 end
5 queue.wait()

Algorithm 2: queue.submit
Input: task: a user’s task

1 cgf ← create command group function object(task)
2 for p ∈ task.dependents do
3 cgf.depends on(p.event)
4 end
5 return event(cgf)

Listing 1.2. Example code of syclFlow::on to directly create a SYCL task.

syclFlow sf;
syclTask task = sf.on(

[=](sycl::handler& handler) {
handler.require(accessor);
handler.single task([=](){

data[0] = 1;
});

}
);

Figure 2 demonstrates how syclFlow offloads a task dependency graph to a
SYCL device and interacts with the SYCL runtime using an out-of-order queue
and the depends on method to schedule dependent tasks. The SYCL runtime
schedules the submitted command group function objects and implicitly con-
structs its task graph based on submitted events.
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Fig. 2. syclFlow offloads a user-specified task dependency graph to a SYCL device.
The SYCL runtime schedules command group function objects from out-of-order queue
and constructs a task graph based on submitted events. Every arrow between two cgfs
denotes a dependency using depends on method.

Fig. 3. Transformation of a user’s task dependency graph to CUDA graph.

syclFlow also allows users to exploit the full functionality of SYCL using on
method to directly create a SYCL task from a command group object. Listing 1.2
demonstrates the usage of on which takes a command group object to perform
a task assigning a constant value, 1, to the element in a data array.

It is worth noting that the CUDA graph execution model is very different
from the SYCL runtime, as shown in Fig. 3. The CUDA runtime directly trans-
forms a given CUDA graph into an executable graph in no need of additional
user-level scheduling. This organization also allows the CUDA runtime to per-
form whole-graph optimization to significantly improve the performance. The
synchronization overhead is minimized because CUDA graph does not synchro-
nize tasks but the whole graph at once. That is, the synchronization overhead is
limited to the number of CUDA graph submissions rather than the size of the
graph.

3 Experimental Results

We demonstrate the significance of GPU task graph parallelism on large-scale
machine learning workloads. The goal of this experiment is to highlight the
need for a new SYCL graph execution model that does not require additional
scheduling at the user level. We base our experiment on IEEE HPEC Sparse
Deep Neural Network Inference Challenge [11]. The challenge is to speed up the
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computation of inference on extremely large DNNs. Table 1 shows the statistics
of the benchmarks. We leverage the award-winning algorithm [17] to design
our SYCL kernels and task graph parallelism with syclFlow. Figure 4 shows a
partial task graph of our algorithm. We run the experiments on a Ubuntu Linux
20.04.2 LTS (Focal Fossa) x86 64-bit machine with Intel(R) Core(TM) i7-9700K
Processor at 3.6 GHz, one GeForce RTX 2080 GPU with 8 GB memory, and 32
GB RAM. All programs are compiled by using Nvidia CUDA nvcc 11.1 on a
host compiler of DPC++ clang [6] with C++17 standards.

Fig. 4. Schematic view of a partial task graph in the inference workload based on our
algorithm in [17]. A blue node represents a memory copy, and a red node denotes a ker-
nel. The entire task graph on the largest DNN composes 3K tasks and 5K dependencies.

Performance Comparison. Table 1 compares the elapsed runtime (in seconds)
between syclFlow and CUDA graph on executing 12 DNN models using one
GPU. The execution time of syclFlow is longer than CUDA graph across all
models. For example, in the DNN model of 4096 neurons and 1920 layers, it takes
26.32 s for syclFlow to complete, whereas CUDA graph can finish in 19.66 s. In
addition, the gap between syclFlow and CUDA graph keeps increasing as we
enlarge the size of the DNN models. For instance, in the largest model of 65536
neurons and 480 layers, syclFlow is more than 5× slower than CUDA graph.
Figure 5 visualizes the trend.

Synchronization Overhead. Figure 6 lists the number of event synchroniza-
tions of syclFlow and CUDA graph on completing the inference of the DNN mod-
els with 1024 neurons. The default number of batch iterations in the inference
loop is 12 [17]. Since CUDA graph constructs the graph only once when users
submit a task dependency graph to the CUDA runtime, the number of event syn-
chronizations is equal to the number of submissions. However, syclFlow requires
frequent synchronizations between the user-level scheduler and the SYCL run-
time. The number of synchronized events grows as we increase the number of
layers in the DNN model, which in turn increases the size of the syclFlow graph.
Figure 7 details the runtime breakdown of syclFlow and CUDA graph. We can
easily see that in syclFlow event synchronizations consume 41%, which is as much
as the kernel activities. While in CUDA graph, synchronization only costs 1.33%.



474 C.-H. Chiu et al.

Table 1. Comparison of the total execution time between syclFlow and cudaGraph
for completing 12 DNN models.

Model syclFlow cudaGraph

#Neurons #Layers #Tasks #Dependencies Size Time Time

1024 120 246 364 1.25 GB 0.55 s 0.47 s

480 966 1444 1.86 s 1.53 s

1920 3846 5764 6.98 s 5.79 s

4096 120 246 364 5.40 GB 1.96 s 1.48 s

480 966 1444 6.85 s 5.11 s

1920 3846 5764 26.32 s 19.66 s

16384 120 246 364 22.70 GB 8.94 s 4.36 s

480 966 1444 30.51 s 14.82 s

1920 3846 5764 146.82 s 57.23 s

65536 120 246 364 94.70 GB 80.08 s 17.29 s

480 966 1444 273.29 s 51.92 s

1920 3846 5764 > 600 s 162.20 s

Need for a New SYCL Graph Model. While we can devise a way to program
and execute task graphs using the current SYCL standards (e.g., out-of-order
queue, event synchronizations), this experiment highlights a critical need for a
new SYCL graph execution model which allows us to directly offload task graph
parallelism onto a SYCL device. This is especially important for accelerating
large-scale machine learning workloads. Specifically, modern GPUs are very fast
and the overhead of kernel calls and user-level scheduling have become very
expensive in many machine learning task graphs that compose thousands of
dependent GPU operators. These task graphs normally do not change once the
neural network architecture is decided, and there is no need to repetitively offload
the same task graph using expensive host function calls and scheduling methods.

4 Related Work

Task graph-based programming models have received much attention over the
last few years. Taskflow [12] develops a simple and powerful task program-
ming model, which enables efficient implementations of heterogeneous decom-
position strategies and leverages both static and dynamic task graph construc-
tions to incorporate computational patterns. PaRSEC [2] expresses applications
as DAG of tasks with labeled edges designating data dependencies. It pro-
vides a generic framework for architecture-aware scheduling and management
of micro-tasks on distributed many-core heterogeneous architectures. Kokkos’s
functional approaches [8] provide task graph constructions. It allows applications
to achieve performance portability on diverse many-core architectures. Legion [1]
describes a runtime system that dynamically extracts parallelism from Legion
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Fig. 5. Comparison of execution time between syclFlow and CUDA graph on different
DNN models. The performance gap between syclFlow and CUDA graph increases as
we enlarge the DNN model sizes.

programs, using a distributed, parallel scheduling algorithm that identifies both
independent tasks and nested parallelism. While these frameworks offer means
to describe heterogeneous workloads in different forms of task graphs, they do
not target direct task graph parallelism on a GPU.

CUDA graph is one of the early programming models that allow users to pro-
gram task graph directly on a GPU. There are two ways to program a CUDA
graph, explicit graph construction and implicit stream capturing. Explicit CUDA
graph construction is often the most efficient, but it requires all the parame-
ters known upfront, which is impossible for many high-performance third-party
libraries, such as cuSparse [5], cuBLAS [4], and cuDNN [19]. The second option
is implicit graph construction, which captures a CUDA graph using existing
stream-based application programming interfaces (APIs). Implicit CUDA graph
construction is more flexible and general, allowing users to manually allocate and
control streams. However, it requires users to wrangle with concurrency details
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Fig. 6. Comparison of the number of event synchronizations between syclFlow and
CUDA graph on DNN models with 1024 neurons. As the models increment, the syn-
chronization overhead keeps the same for CUDA graph, whereas syclFlow suffers seri-
ously from the overhead.

through events and streams that are known difficult to program correctly. To
simplify CUDA graph programming, Lin and Huang propose a unified interface
coupled with an optimization method to program CUDA graph in both explicit
and implicit modes [18].

SYCL is a programming model that allows users to write C++ single-source
heterogeneous code. Users submit tasks to an out-of-order queue that is associ-
ated with a SYCL device (e.g., CPU, GPU, FPGA). The SYCL runtime sched-
ules tasks from the out-of-order queue and constructs their dependencies based
on user-specified events and/or data dependencies from buffer accessor objects.
This type of task parallelism is different from CUDA graph, which takes the
whole graph to schedule and performs whole-graph optimization to reduce over-
heads of synchronization and kernel calls.
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Fig. 7. Runtime breakdown of syclFlow (on the top, 1320.72 ms in total) and CUDA
graph (on the bottom, 1097.44 ms in total) on a model with 120 layers and 1024
neurons. Kernel refers to the kernel activities, memory includes memory copy and
memory set, cuEvent presents event-related APIs, cuStream contains stream-related
APIs, cudaGraph denotes all of the APIs associated with cudaGraph, and cudaStream
covers APIs about cudaStream.

5 Conclusion

In this paper, we have introduced syclFlow to enable efficient task graph pro-
gramming using standard C++ and SYCL. We have compared the perfor-
mance of syclFlow using the default task graph parallelism of the SYCL runtime
with the new CUDA graph programming model on large-scale machine learning
workloads. The experiments have shown that offloading task graph parallelism
directly on a GPU can have a significant impact on the performance. For exam-
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ple, at the largest model of over 46K dependent GPU operations, CUDA graph
can outperform syclFlow more than 5× faster. This paper signals a need for a
new SYCL graph execution model that allows us to offload task graph paral-
lelism directly on a SYCL device. At the time of this writing, we are actively
collaborating with Codeplay [3] to design a new SYCL Graph standard through
Khronos [16].

Our future work plans to design a source-code translation algorithm that
automatically translates a written syclFlow code into a CUDA graph equivalent.
We also plan to measure the performance difference between SYCL and CUDA
graph in large-scale simulation problems [9,10,13,14].
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Abstract. The FleCSI 2.0 programming system supports multiphysics
application development through a runtime abstraction layer, and by
providing core topology types that can be customized for specific numeri-
cal methods. The abstraction layer provides a single-source programming
interface for distributed and shared-memory data parallelism through
task and kernel execution, and has been demonstrated to introduce vir-
tually no runtime overhead. FleCSI’s core topology types represent a rich
set of basic data structures that can be specialized to create application-
facing interfaces for a variety of different physics packages. Using the
FleCSI control and data models, it is straightforward to compose mul-
tiple packages to create full multiphysics applications. When used with
a task-based backend, FleCSI offers extended runtime analysis that can
increase task concurrency, facilitate load balancing, and allow for porta-
bility across heterogeneous computing architectures.
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1 Introduction

FleCSI is a C++ framework designed to support multiphysics application devel-
opment through a runtime abstraction layer and a collection of useful topology
and data types. Many of these capabilities take the form of class and function
templates whose behavior is customized by application-specific functions and
data and policy types. The abstraction layer insulates developers from underlying
complexity, while providing a single-source, integrated programming model that
is mapped on top of different low-level backends. FleCSI introduces a functional
programming model with runtime, control, execution, and data abstractions that
are consistent both with MPI [11] and with state-of-the-art, task-based backends
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such as Legion [3] and HPX [14]. When configured with one of the task-based
backends, FleCSI provides dynamic scheduling of data and task placement for
increased concurrency and application performance.

1.1 Structure

This paper describes the main features and goals of the FleCSI 2.0 program-
ming system. It provides an overview and examples of the programming model
and its components. These are explained in Sect. 2. Brief descriptions of the
core topology types are given in Sect. 3. In Sect. 4, two sample applications that
use FleCSI 2.0, Model for Prediction Across Scales (MPAS) and FleCSPH are
discussed. Some performance results regarding runtime overhead of the abstrac-
tion layer are presented in Sect. 4.3, with concluding remarks and future work
in Sect. 5.

1.2 Related Work

FleCSI is a unified runtime in the sense that it supports a single interface for
programming both the distributed and shared-memory components of modern
computing systems. Two similarly unified programming systems are Uintah [12]
and the Multi-Processor Computing runtime (MPC) [17].

Like FleCSI, Uintah uses a task-based runtime for distributed-memory exe-
cution. However, Uintah’s task concurrency must be explicitly scheduled by the
user. MPC transparently enables shared-memory support with MPI through
an MPI+X programming model. A significant feature of MPC is its ability to
run MPI processes inside of threads. This approach can reduce message latency
(memcpy of messages), and requires fewer communication endpoints. The pri-
mary advantage of FleCSI over these systems is that, under FleCSI, tasks and
data can be dynamically mapped to compute resources (when using a task-based
backend), while Uintah and MPC both employ a static mapping aligned with
the runtime processes, i.e., ranks.

2 Programming Model

The FleCSI 2.0 programming model provides explicit runtime, control, data, and
execution models that are designed to provide users with a rich environment for
application development on state-of-the-art heterogeneous system architectures.
These are described in the following sections.

2.1 Runtime Model

The runtime model is how you control the FleCSI runtime system itself. The
basic interface includes the functions: initialize, start, and finalize. These
are abstractions of the underlying runtime interfaces, e.g., Legion, MPI, HPX,
and Kokkos [9], whereby the correct combination of start-up, execution, and
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shut-down processes will be invoked, depending on the configuration of FleCSI.
The runtime model also provides support for creating command-line options, a
logging utility called flog, and a timing and profiling interface to Caliper [6].

This model will be extended in a future feature release to provide a richer
set of options to allow more precise placement of processes and memory allo-
cations in order to address the performance challenges of running on modern,
heterogeneous architectures that have deep, complex memory hierarchies, and
which require exploitation of processor–memory affinities to achieve the best
throughput.

2.2 Control Model

The FleCSI control model is how the overall execution structure of a FleCSI-
based program is defined. FleCSI provides a core control type that can be cus-
tomized with specialization-defined control points (the skeleton of the applica-
tion structure). Application developers register actions under the control points,
which may have dependencies on each other. FleCSI sorts the actions under a
control point to create a runtime program order. Along with tasks and kernels
(parts of the execution model), the control model forms an execution hierarchy
with the following relationships:

– Control Points: Identify the high-level stages of the application. The exe-
cution order of the control points is statically defined. Cycles may be defined
over any subset of the control points. The control points form a control-flow
graph (CFG).

– Actions: Registered under control points. Any two actions under a single
control point may have a dependency defined between them. The actions
under a single control point form a directed acyclic graph (DAG). Actions
allow composition of contributed packages. Actions are always executed in
a sequential program order defined by: 1.) the order of the control points,
and then 2.) the topologically sorted order of the DAG of actions under each
control point.

– Tasks: Executed from inside of an action. Task launch may be single or
index. Tasks operate on data that are logically distributed over a partitioned
address space. Dependency analysis (Legion backend only) allows tasks to be
executed concurrently by the runtime. A given point task may be executed
on any runtime process on any address space (Legion backend only).

– Kernels: Executed from inside of a task. Kernels execute data-parallel oper-
ations over a local address space. Memory consistency of kernel execution is
explicit (relaxed-consistency).

This model replaces the normal hard-coded execution structure of an appli-
cation, instead providing a well-defined, extensible mechanism that can easily
be verified and visualized. Figure 1 shows output from a FleCSI-based program
using the command-line argument --control-model.
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Fig. 1. Example FleCSI control model.

The primary advantage of this app-
roach is that FleCSI-based applica-
tions can add new actions to any of the
DAGs in the model, with associated
dependencies, without requiring mod-
ification to the core application code.
Because of FleCSI’s data model (dis-
cussed in Sect. 2.3) these new actions
will fold seamlessly into the existing
control structure, allowing extensibil-
ity and experimentation.

2.3 Data Model

Because FleCSI tasks may be executed on any memory space, all the applica-
tion’s data must be managed by the runtime so that a copy of it may be made
available in that memory space and any changes propagated to the next task
needing it. (Global variables may also be used, but only for information that
is constant across and throughout the simulation, since which process executes
which task is arbitrary.) The FleCSI data model closely follows the Legion model,
but with some simplifications and elaborations described in the following sub-
sections. Legion provides a data model based on associative arrays called regions
whose multi-index keys are called index points. The domain of keys is called an
index space, which may have an arbitrary shape but for performance reasons is
often hyperrectangular.

A region is a collective object whose storage is typically distributed across
multiple memory spaces. A partition is a collection of subsets of an index space
(or a region based on it) that may be mapped separately; the collection is indexed
with integer colors, and each subset is called a subspace. Multiple unrelated
partitions of a single region may exist; it is often the case that the subsets in
each are disjoint, that their union is the entire region, or both. In particular,
tasks that operate on disjoint subsets can write to them in parallel; read-only
access to subsets that overlap those from different partitions can be used to
automatically transfer data between sequences of such tasks.

Each region has some number of fields defined on it of various types. Legion
specifies a type only as a number of bytes and, optionally, a set of serialization
functions to marshal heap allocations between memory spaces. Each field is
available throughout the index space, but memory is allocated only for the field-
subspace pairs that are actually used.

FleCSI organizes multiple related regions, e.g., the cells and vertices of a
mesh, into topologies. Since FleCSI does not use the Legion feature of creating
multiple regions from the same index space, the term “index space” is used in
the user interface to describe a selector among the regions for a topology. Each
topology type is defined as a specialization of one of the core topology types
defined by FleCSI that specifies a number of properties like the dimensionality
of a mesh or which kinds of connectivity information to store explicitly.



484 B. Bergen et al.

Extended Index Space. To allow most tasks to treat its local application data
as a traditional, contiguous array, FleCSI stores application data on a particular
sort of two-dimensional index space based on rows. Each such Extended Index
Space is typically partitioned into subsets that are prefixes of each row, such that
each color is the index of a (partial) row. The prefixes need not all be the same
length, and the partitions can be recreated with different lengths: the underlying
index space has a very large number of columns, most of which are never realized
in memory. If Legion is in use, it automatically copies the contents of a row that
has grown into a prefix of any new allocation. Otherwise, the restricted form of
index spaces significantly simplifies the implementation of a backend based on
another runtime, e.g., HPX.

For certain topologies, e.g., an unstructured mesh, each row comprises exclu-
sive, shared, and ghost index points: the field values at each ghost point are
copies of those at a particular shared point specified by a copy plan created
by such a topology. Whenever ghost values are required by a task, FleCSI per-
forms the copies specified in the plan if the shared values have been changed
since the previous copy. This copying is explicit from the perspective of the run-
time but implicit from the perspective of the author of the relevant tasks. Other
topologies, e.g., a set of particles, have more dynamic communication patterns;
temporarily copying data into a special buffer field implements these copies in
terms of an ordinary copy plan for the buffers.

Accessors. Fields are registered by creating objects of a field definition type,
parameterized on the data type as well as the type of the topology, prior to ini-
tializing FleCSI. Every instance of the nominated topology type is then equipped
with that field, although since each has its own partitions memory is not in gen-
eral allocated for all of them.

Since the runtime must in general move field data to make it available to a
task, ordinary pointers to it are available only inside a task. These are wrapped
into accessors which provide one of several interfaces for the field values and
specify the privileges required by a task. Outside a task, an opaque field reference
is used instead that nominates a field definition and a topology instance. When
a field reference is passed as an argument to a task that declares a compatible
accessor as a parameter, the runtime provides a pointer to the relevant array in
the task’s memory space to use for the parameter.

FleCSI’s operation may be described as a distributed version of the C++
memory allocation expression new T[n]: T is specified by the field definition, n
is specified by the topology, and the resulting pointer eventually appears as the
task parameter.

Layouts. While FleCSI’s model for index spaces is simpler and more restricted
than the Legion model, its model for data types is more complicated. In addition
to restricting accessors to using the type specified in a field definition, FleCSI
provides several layouts for representing non-trivial objects. The element types
used with a layout must themselves be bitwise-copyable; for efficiency, FleCSI
does not use mechanisms like Legion’s serialization interface for transfer between
memory spaces.
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The default layout is dense, which is simply a one-dimensional array of the
specified type T. The special case of a single element, useful for metadata per-
taining to one color of a topology, is provided for convenience. The ragged layout
emulates a std::vector<T> at each index point. The sparse layout emulates a
std::map<std::size t,T> at each index point. The particle layout stores an
unordered collection of T objects with efficient insertion, removal, and iteration;
it is similar to the “bucket array” data structure, albeit with a single bucket.

All of these are implemented recursively in terms of one or more simpler
accessors, with a raw accessor that manages uninitialized memory (rather than
objects) as the base case. The field definitions follow the same structure, auto-
matically registering fields necessary for storing metadata like the sizes of indi-
vidual ragged arrays. Ragged and sparse fields require support from the topology
for allocating memory for the array elements, which is provided centrally for all
but the simplest topologies.

Topology Instances. Application developers create a topology instance with
the assistance of a topology slot, which allows the specialization to contribute to
the topology’s initialization and allows the client to defer it (so that slots can
be declared statically if desired). A topology instance is created from a coloring
which describes the memory layout required and is constructed using its own slot
that automatically utilizes an MPI task (Sect. 2.4), as is commonly required for
initialization from external data sources. Listing 1.1 illustrates the typical process
of initializing a topology with these types given a specialization Sect. 3.1.

Listing 1.1. Topology initialization

1 topology : : c s l o t c o l o r ;
2 topology : : s l o t topo ;
3
4 void s e t up c o l o r ( ) {
5 // May be d i s t r i b u t e d ra the r than dup l i ca t ed :
6 auto data = load ( ” f i l e name” ) ;
7 c o l o r . a l l o c a t e ( data . header ( ) , data . body ( ) ) ;
8 }
9

10 void se tup topo logy ( ) {
11 topo . a l l o c a t e ( c o l o r . get ( ) ) ;
12 }

A topology slot may also be passed to a task with a topology accessor as
a parameter. Such an accessor uses internal fields established by the topology
to interpret the contents of flat arrays in terms of its logical structure. Much
like accessors for dynamic layouts like ragged, these are implemented in terms
of accessors for those structural fields. Field indices are typically supplied by a
topology accessor as “strong typedef” objects to reduce the chance of miscon-
struing them as pertaining to another index space. Flat arrays can be interpreted
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as having multiple dimensions through the use of a limited implementation of
mdspan as proposed for C++23 [7].

2.4 Execution Model

FleCSI has two mechanisms for expressing work: tasks and kernels. Tasks operate
on data distributed to one or more address spaces, and use data privileges to
maintain memory consistency. Kernels operate on data in a single address space,
but require explicit barriers to ensure consistency. This is generally referred to
as a relaxed-consistency memory model.

Listing 1.2. Single-Source Execution

1 const f i e l d <double > : : d e f i n i t i o n <topology ,
2 topology : : e n t i t i e s > va lues ;
3
4 void i n i t f i e l d ( topology : : acce s so r<ro> t ,
5 f i e l d <double > : : a cce s so r<rw> f ) {
6 f o r a l l ( e , t . e n t i t i e s ( ) ) {
7 f ( e ) = 1 . 0 ; // dummy i n i t i a l i z a t i o n
8 } ;
9 }

10
11 void s e t u p f i e l d ( ) {
12 execute< i n i t f i e l d >(topo , va lue s ( topo ) ) ;
13 }

Listing 1.2 shows a continuation of Listing 1.1 that uses the execute method
to invoke a task (line 12). There are several things to observe about this code
example:

– Tasks are invoked using the execute function. FleCSI also provides the
reduce, and test functions. Invocations of reduce capture the task return
value in a future, which can be queried like f.get() to retrieve the reduced
value (distributed-memory). The test function executes a task as a reduc-
tion and returns the sum of the point task returns, i.e., a value of zero means
success.

– Privileges on accessors passed to the task, e.g., the rw in field<double>::
accessor<rw> (line 5), determine the memory consistency operations that
will be performed on the respective data upon the next task invocation. Valid
privileges are na (no access), ro (read-only), wo (write-only), and rw (read-
write). The privilege na can be used to defer consistency updates.

– The forall invocation (line 6) executes the loop body in shared-memory,
data-parallel over the specified iterator, e.g., t.entities(), potentially han-
dling any data motion that is required to move data to the correct address
space. Depending on the backend runtimes used, this code example can seam-
lessly execute a task in distributed-memory, data parallel over a collection of
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nodes, and in shared-memory, data parallel on attached GPU devices on each
node.

3 Core Topologies

Each core topology type supports a number of numerical methods with similar
data requirements. FleCSI itself implements these types in terms of internal
facilities that are not themselves exposed to clients. In contrast, FleCSI defines
only the few specializations used by those facilities; others may be defined by
applications or by libraries of specializations that are themselves suitably generic.

For example, consider the data representations for the following methods:
particle-in-cell (PIC), molecular dynamics (MD), material point method (MPM),
smoothed-particle hydrodynamics (SPH), and Monte Carlo. These methods are
all based on particles, but they vary as to whether interactions between the par-
ticles are direct or are mediated by fields stored on a mesh. Here, only MD and
SPH feature direct interactions; such methods typically need ghost particles to
calculate them, as well as efficient neighbor lookups. The topo::ntree topol-
ogy (Sect. 3.4) supports these methods, organizing the particles into an octree
for an O(logN) nearest-neighbor search.

For the non-interacting particle methods considered here, a primary concern
in parallel implementations is to identify active particles in the local memory
space, and to efficiently move particles between memory spaces. The topo::set
topology (Sect. 3.5) supports these methods, organizing the particles using the
particle layout (Sect. 2.3) for an O(1) step to the next active particle (using a
low-complexity jump-counting pattern skipfield data structure) [4,5].

Other combinations are possible. For example, many MD codes reduce search
complexity by imposing a Cartesian mesh on the domain with the mesh incre-
ments set to some cutoff metric. The particles for each cell in this approach
can be stored in a ragged field (Sect. 2.3) defined on an topo::narray topol-
ogy (Sect. 3.3).

In addition to allowing specialization of the core types, FleCSI’s data model
also allows easy composition of topologies into more complex types. Consider
the design of a data structure to support block-structured adaptive mesh refine-
ment (AMR). The topo::ntree topology is well-suited for tracking refinement
because of its fast neighbor lookup. This can be combined with a specialization
of topo::narray to provide a structured mesh interface at each node of the tree.
Field data registered at the nodes can be viewed using util::mdspan.

The primary take-away from this section should be that the FleCSI core
topology types and layouts provide data structure support for a wide variety
of applied methods, which can be composed to support complex, multi-physics
applications development. Table 2 in AppendixA provides some suggested appli-
cations of the core types for common numerical methods.
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3.1 Specialization Structure

The notion of a specialization is formalized in the FleCSI class structure with the
topo::specialization type, as shown in Listing 1.3. The specialization serves
both as a policy for the core topology and as an interface for the application; its
general structure is the same for all of the FleCSI core topologies, although the
specific details are different for each.

Listing 1.3. Specialization Structure

1 s t r u c t my topo : topo : : s p e c i a l i z a t i o n <topo : : topology , my topo> {
2

3 enum index space { v e r t i c e s , i n t e g r a t i o n } ;

4

5 template<c l a s s B>

6 s t r u c t i n t e r f a c e : B {
7 // I t e r a t o r over an Index Space

8 template<i ndex space IndexSpace>

9 auto e n t i t i e s ( ) {/∗ . . . ∗/}
10

11 // I t e r a t o r over e n t i t i e s at an en t i t y

12 template<i ndex space To , index space From>

13 auto e n t i t i e s ( topo : : id<From> from ) const {/∗ . . . ∗/ }
14 } ;

15

16 } ; // s t r u c t my topo

All FleCSI topology types define iterators over the entities of the topology,
with relational types, e.g., topo::unstructured, and topo::ntree, also defining
sub-entity iterators.

3.2 topo::unstructured

The topo::unstructured topology provides a graph-like data structure, suitable
for defining unstructured meshes. Specializations can define an arbitrary num-
ber of entity types and can control what connectivity information is stored (as
opposed to what must be computed), allowing flexibility in memory vs compute
complexity. Coloring utilities are provided with a mesh definition abstraction
for scalable distribution of input meshes. In addition to the standard entity, and
sub-entity iterators, topo::unstructured allows users to define custom iterators
using entity lists, which are useful for tracking, e.g., domain boundary interfaces.

3.3 topo::narray

The topo::narray topology is an n-dimensional array data structure, with
support for arbitrary halo and boundary depths, and optional periodicity in
each axis. Halo dependencies optionally include diagonal connections. Listing 1.4
shows an example of a two-dimensional, Cartesian mesh interface created using
topo::narray.
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Listing 1.4. Cartesian Mesh Example using topo::narray

1 void po i s son : : task : : smooth (mesh : : acce s so r<ro> m,
2 f i e l d <double > : : a cce s so r<rw , ro> ua ,
3 f i e l d <double > : : a cce s so r<ro , ro> f a ) {
4 auto u = m.mdspan<mesh : : v e r t i c e s >(ua ) ;
5 auto f = m.mdspan<mesh : : v e r t i c e s >( f a ) ;
6 const auto dxdy = m. dxdy ( ) ;

7 const auto dx over dy = m. xde l ta ( ) / m. yde l ta ( ) ;
8 const auto dy over dx = m. yde l ta ( ) / m. xde l ta ( ) ;
9 const auto f a c t o r = 1 .0 / (2 ∗ ( dx over dy + dy over dx ) ) ;

10
11 f o r ( auto j : m. v e r t i c e s<mesh : : y ax i s >()) {
12 f o r ( auto i : m. v e r t i c e s<mesh : : x ax i s >()) {
13 u [ j ] [ i ] = f a c t o r ∗
14 ( dxdy ∗ f [ j ] [ i ] +
15 dy over dx ∗ (u [ j ] [ i + 1 ] + u [ j ] [ i − 1 ] ) +
16 dx over dy ∗ (u [ j + 1 ] [ i ] + u [ j − 1 ] [ i ] ) ) ;
17 }
18 }
19 }

3.4 topo::ntree

The topo::ntree topology provides special 1, 2, or 3 dimensional hashed tree
support, e.g., n ≡ 3 ⇒ a hashed octree, based on the Barnes–Hut approximation
[2] with a hashing strategy derived from Warren & Salmon [22]. Particle dis-
tribution is supported using a naive coloring of a sorted Morton (Z-Order), or
Hilbert space-filling curve [1].

FleCSI provides several iterator patterns for accessing and modifying the tree.
In particular, direct entity and node access, and both Depth-First Search (DFS)
and Breadth-First Search (BFS) traversals are supported, with DFS support for
postorder, preorder, reverse postorder, and reverse preorder variants. Users can
also develop custom traversals using sub-entity or sub-node iterators. Listing 1.5
provides examples of DFS and BFS traversal iterators.

Listing 1.5. NTree Iterator Example

1 // Depth−F i r s t Traver sa l with r e v e r s e preorder
2 f o r ( auto n : t . dfs<r ev e r s e p r eo rde r >()) { /∗ . . . ∗/ }
3
4 // Breadth−F i r s t Traver sa l
5 f o r ( auto n : t . b f s ( ) ) { /∗ . . . ∗/ }

As with other FleCSI topology types, topo::ntree supports field definition
using the FleCSI data model (Sect. 2.3) and implicit dependency consistency
through accessor permissions. Neighbor interactions are controlled by the user’s
specialization through rules that define node-node, entity-entity, and node-entity
interactions. Using these rules, the runtime automatically retrieves dependencies
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from other colors as needed. The tree can be re-sorted and re-distributed as
needed to track particle evolution.

3.5 topo::set

The topo::set topology is designed to support non-interacting particle meth-
ods, i.e., those that do not have direct particle-particle interactions, using the
particle layout discussed in Sect. 2.3. The topology extends the basic iterators
and distributed-memory support of the underlying layout with customizable
interfaces for coloring and binning particles, and specialized accessors that can
be used to track local particles as they evolve, potentially leaving their origi-
nal color, with or without path-dependent trajectories. The topo::set topology
is dependent in FleCSI’s nomenclature because individual particles are colored
according to their relationship to an independent topology, e.g., a distributed
mesh.

4 Sample Applications

To demonstrate the use of FleCSI in implementing simulation codes, two appli-
cations are described representing disparate FleCSI topologies. In addition to
covering multiple FleCSI topologies, these applications demonstrate the imple-
mentation of important numerical methods relevant to many simulation codes. A
simple investigation of abstraction overhead in the context of these applications
is used to verify its minimal impact on application performance.

4.1 MPAS-O-FleCSI

MPAS-O-FleCSI is an FleCSI-based implementation of models from MPAS
(Model for Prediction Across Scales) [19]. It is part of the CANGA project,
that aims at investigating task-based approaches for Earth System Models
to achieve maximum performance and better manage architectural and scien-
tific complexity. Currently, several simulation applications are developed on the
MPAS-O-FleCSI framework, including the shallow water core. The shallow water
core of MPAS-O- FleCSI implements the numerical scheme from [20] to solve the
nonlinear shallow water equations using a C-grid finite-volume discretization on
Variable-resolution Spherical Voronoi Tessellations (SCVTs) [13]. The unstruc-
tured topology is used to support SCVTs for MPAS-O-FleCSI with mesh files
read using HDF5 (Fig. 5).

4.2 FleCSPH

FleCSPH [15] is a multiphysics Smoothed Particle Hydrodynamics (SPH) sim-
ulation code, using the FleCSI 2.0 topo::ntree topology, allowing efficient
computation of bulk transport and long-range interactions (Fig. 6). FleCSPH
is a capable simulation application, including initial data generators, particle
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relaxation with external potentials, weighted Voronoi tessellations (WVT) and
artificial pressure method (APM), flexible boundary conditions, and complexity
reduction using Fast Multipole Method (FMM) (up to 4th order). Angular and
linear momentum are conserved using a novel FMM algorithm.

With a primary focus on astrophysics, FleCSPH also includes support for
gravitational waveform extraction and gravitational radiation reaction, and both
analytic and tabulated equation of state (EOS) calculations. The application
is easily extended to support new features and user-specific problem setups.
Standard HDF5 formats based on H5part are used for input and output.

4.3 Abstraction Overhead

Through extensions of its underlying runtime models, FleCSI provides various
usability and portability benefits. Leveraging Legion and Kokkos, FleCSI enables
applications to be run on diverse hardware and in a heterogeneous environment.
Additionally, FleCSI provides type checking and iterators for tasks facilitating
increased usability. To be effective, however, the cost of such abstractions must
not significantly impact the performance of applications.

The shallow water core from MPAS-O-FleCSI is used to investigate abstrac-
tion overheads of FleCSI execution and data structures. To this end, we first
consider a vector triad from stream [16] (see Algorithm 1).

Algorithm 1. Vector Triad
1: for i = 1, . . . , N do
2: A[i] = B[i] + C[i] ∗ D[i]
3: end for

This provides a baseline for performance investigation as an expectation for
performance is easily obtained on a computation relevant to the memory bound
nature of second order finite-volume calculations.

Figure 2 shows performance of the vector triad computed over cells in an
MPAS mesh on a Power 9 CPU. The FleCSI line shows the vector triad imple-
mented in a FleCSI task using FleCSI fields, iterators (forall abstraction using
Kokkos with the OpenMP [8] backend), and accessors on the MPAS specializa-
tion of topo::unstructured. The OpenMP line shows the vector triad imple-
mented in OpenMP using sizes consistent with the number of cells in the given
MPAS mesh. Figure 2 demonstrates relatively small overhead when compared to
OpenMP.

Figure 3 shows performance of the vector triad on a Volta GPU. The FleCSI
line shows the performance of the vector triad implemented in a FleCSI task
using the forall abstraction with the MPAS unstructured topology specializa-
tion. The Kokkos line shows performance of the vector triad using Kokkos with
sizes consistent to the number of cells in the corresponding MPAS mesh. Figure 3
shows the abstraction overhead is largest for small mesh sizes with the highest
variability.
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Fig. 4. Shallow water core task execution and runtime overhead.

Figure 4 shows the run time of tasks in the time integration loop of the shallow
water core in MPAS-O-FleCSI. The FleCSI overhead associated with these tasks
is shown above each bar.

Overall, the FleCSI overhead associated with these tasks is insignificant rel-
ative to the run time of the task.

5 Conclusions and Future Work

FleCSI 2.0 offers many improvements, and extended capabilities over the origi-
nal FleCSI 1.4 release, including a completely C++17-compliant interface, new
topology types, more flexible topology instance control, better support for scal-
able topology colorings, a composable internal interface for developing and imple-
menting new topology types, full implementation of FleCSI’s explicit program-
ming model components, arbitrary launch domain support for M-to-N color
to process mappings (execution model only), improved profiling utilities, and a
fully serializable logging utility (FLOG) that can aid in code development and
debugging.

A future minor release of FleCSI 2.0 will add support for arbitrary data
mappings, using color maps to extend the capability provided by our current
M-to-N execution model. This will enable straightforward implementations of
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complex mapping algorithms, e.g., parallel rendezvous [18]. Future work will also
include refinement and integration of a previously-developed model for multi-
material representations, additional topology support (In particular, support for
K-D Trees.), a new interface for controlling tuneables in conjunction with several
custom mappers targeting upcoming DOE supercomputers, e.g., Crossroads [10]
and El Capitan [21], and improved scalability and performance.
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A Topology Applications

As mentioned in Sect. 3, this table gives some suggestions for the particular
numerical methods that can be implemented with the various FleCSI core topol-
ogy types. This list is meant only as an example, and is by no means exhaustive.

Table 2. Suggested FleCSI Topology Applications

seigolopoTeroCdohteMdeilppA
Lagrangian Hydrodynamics topo::unstructured, topo::narray

Eulerian Hydrodynamics topo::narray, topo::ntree
Smoothed-Particle Hydrodynamics topo::ntree

Finite Element Method topo::unstructured, topo::narray

Finite Volume Method topo::unstructured, topo::narray

Discontinuous Galerkin topo::unstructured, topo::narray

Material-Point Method topo::set

Particle-In-Cell topo::set

Monte Carlo (particle coloring) topo::ntree

Monte Carlo (mesh coloring) topo::set

https://flecsi.org
https://github.com/flecsi/flecsi
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B Sample Figures

Fig. 5. Example of MPAS mesh used
to setup a standard shallow water test
case from [23].

Fig. 6. Simulation of a neutron star
merger disk outflow using FleCSPH.

References

1. Bader, M.: Space-Filling Curves: An Introduction with Applications in Scientific
Computing. Springer, Cham (2012)

2. Barnes, J.E., Hut, P.: A hierarchical O(n-log-n) force calculation algorithm. Nature
324, 446 (1986)

3. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, SC 2012,
Washington, DC, USA. IEEE Computer Society Press (2012)

4. Bentley, M.: The high complexity jump-counting pattern (2019). https://www.
plflib.org. Accessed 10 June 2021

5. Bentley, M.: The low complexity jump-counting pattern (2019). https://www.
plflib.org. Accessed 10 June 2021

6. Boehme, D., et al.: Caliper: performance introspection for HPC software stacks.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2016, pp. 550–560 (2016). https://doi.org/
10.1109/SC.2016.46

7. Technical Committee in-progress C++23 (2021). https://isocpp.org/std/the-
standard. Accessed 14 June 2021

8. Dagum, L., Menon, R.: OpenMP: an industry-standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998). https://doi.org/10.
1109/99.660313

9. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore perfor-
mance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202–3216 (2014). https://doi.org/10.1016/j.jpdc.2014.07.
003. Domain-Specific Languages and High-Level Frameworks for High-Performance
Computing

https://www.plflib.org
https://www.plflib.org
https://www.plflib.org
https://www.plflib.org
https://doi.org/10.1109/SC.2016.46
https://doi.org/10.1109/SC.2016.46
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003


FleCSI 2.0: The Flexible Computational Science Infrastructure Project 495

10. The Alliance for Computing at Extreme Scale (ACES): Crossroads: a critical ele-
ment for improved predictive capability (2021). https://www.lanl.gov/projects/
crossroads. Accessed 14 June 2021

11. Message Passing Interface Forum: MPI: a message-passing interface standard.
Technical report, USA (1994)

12. Holmen, J.K., Sahasrabudhe, D., Berzins, M.: A heterogeneous MPI+ PPL task
scheduling approach for asynchronous many-task runtime systems. In: Proceed-
ings of the Practice and Experience in Advanced Research Computing 2021 on
Sustainability, Success and Impact (PEARC21). ACM (2021)

13. Ju, L., Ringler, T., Gunzburger, M.: Voronoi tessellations and their application
to climate and global modeling. In: Lauritzen, P., Jablonowski, C., Taylor, M.,
Nair, R. (eds.) Numerical Techniques for Global Atmospheric Models. LNCSE,
vol. 80, pp. 313–342. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-11640-7 10

14. Kaiser, H., Brodowicz, M., Sterling, T.: Parallex an advanced parallel execution
model for scaling-impaired applications. In: 2009 International Conference on Par-
allel Processing Workshops, pp. 394–401 (2009). https://doi.org/10.1109/ICPPW.
2009.14

15. Loiseau, J., et al.: FleCSPH: the next generation fleCSIble parallel computational
infrastructure for smoothed particle hydrodynamics. SoftwareX 12, 100602 (2020)

16. McCalpin, J.D.: Memory bandwidth and machine balance in current high perfor-
mance computers. In: IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pp. 19–25, December 1995

17. Pérache, M., Carribault, P., Jourdren, H.: MPC-MPI: an MPI implementation
reducing the overall memory consumption. In: Ropo, M., Westerholm, J., Don-
garra, J. (eds.) EuroPVM/MPI 2009. LNCS, vol. 5759, pp. 94–103. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-03770-2 16

18. Plimpton, S.J., Hendrickson, B., Stewart, J.R.: A parallel rendezvous algorithm for
interpolation between multiple grids. J. Parallel Distrib. Comput. 64(2), 266–276
(2004). https://doi.org/10.1016/j.jpdc.2003.11.006

19. Ringler, T., Petersen, M., Higdon, R.L., Jacobsen, D., Jones, P.W., Maltrud, M.:
A multi-resolution approach to global ocean modeling. Ocean Model. 69, 211–232
(2013)

20. Ringler, T.D., Thuburn, J., Klemp, J.B., Skamarock, W.C.: A unified approach
to energy conservation and potential vorticity dynamics for arbitrarily-structured
c-grids. J. Comput. Phys. 229(9), 3065–3090 (2010)

21. Thomas, J.: LINI and HPE to partner with AMD on El Capitan, projected
as world’s fastest supercomputer (2021). https://www.llnl.gov/news/llnl-and-
hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer. Accessed 06
June 2021

22. Warren, M.S., Salmon, J.K.: A parallel hashed oct-tree n-body algorithm. In: Pro-
ceedings of the 1993 ACM/IEEE Conference on Supercomputing, Supercomputing
1993, pp. 12–21. ACM, New York (1993). https://doi.org/10.1145/169627.169640

23. Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N.: A stan-
dard test set for numerical approximations to the shallow water equations in spher-
ical geometry. J. Comput. Phys. 102(1), 211–224 (1992)

https://www.lanl.gov/projects/crossroads
https://www.lanl.gov/projects/crossroads
https://doi.org/10.1007/978-3-642-11640-7_10
https://doi.org/10.1007/978-3-642-11640-7_10
https://doi.org/10.1109/ICPPW.2009.14
https://doi.org/10.1109/ICPPW.2009.14
https://doi.org/10.1007/978-3-642-03770-2_16
https://doi.org/10.1016/j.jpdc.2003.11.006
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer
https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer
https://doi.org/10.1145/169627.169640


Enabling Support for Zero Copy
Semantics in an Asynchronous

Task-Based Programming Model

Nitin Bhat1(B), Sam White2, and Laxmikant V. Kale1,2

1 Charmworks, Inc., Urbana, IL, USA
nitin@hpccharm.com

2 Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL, USA

{white67,kale}@illinois.edu

Abstract. Communication is critical to the scalable and efficient per-
formance of scientific simulations on extreme scale computing systems.
Part of the promise of task-based programming models is that they can
naturally overlap communication with computation and exploit locality
between tasks. Copy-based semantics using eager communication pro-
tocols easily enable such asynchrony by alleviating the responsibility of
buffer management from the user, both on the sender and the receiver.
However, these semantics increase memory allocations and copies and
in turn affect application memory footprint and performance, especially
with large message buffers.

In this work we describe how the so-called “zero copy” messaging
semantics can be supported in Converse, the message-driven parallel
programming framework that is used by Charm++, by implementing
support for user-owned buffer transfers in its lower level runtime sys-
tem, LRTS. These semantics work on user-provided buffers and do not
semantically require copies by either the user or the runtime system.
We motivate our work by reviewing the existing messaging model in
Converse/Charm++, identify its semantic shortcomings, and define new
LRTS and Converse APIs to support zero copy communication based on
RDMA capabilities. We demonstrate the utility of our new communica-
tion interfaces with benchmarks written in Converse. The result is up to
91% of message latency improvement and improved memory usage. These
advances will enable future work on user-facing APIs in Charm++.

Keywords: Charm++ · Converse · RDMA · Parallel programming ·
Asynchronous tasking · Communication optimizations

1 Introduction

With the advent of Exascale computing, the importance of efficient data move-
ment is expected to increase greatly. In fact, the underlying technological factors
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that led to dramatic increase in within-node computational capacity, without a
proportionate increase in communication capabilities entail that even on small
clusters, communication issues present significant challenges. RDMA, which
stands for Remote Direct Memory Access, is a network capability that allows
a machine to read from or write to a remote machine’s memory without the
involvement of the Operating System or CPUs. One sided communication with
the help of RDMA supported hardware is the natural choice for large messages
as it has proven to reduce latencies and increase bandwidth for large payloads
in High Performance Computing (HPC) networks. RDMA also benefits from
so-called “zero copy” semantics, where the data being transferred is not copied
between the layers of the network stack (zero copy means no intermediate copies).
The bypassing of CPU along with the elimination of copies ensure lower latencies
and higher throughput for RDMA enabled networks over regular networks.

Since memory-bound operations are much slower in comparison to the CPU,
it has been observed that memory intensive operations act as the primary bot-
tleneck in numerous applications and thus reduce application performance and
increase energy consumption. For this reason, reducing memory pressure by sav-
ing the cost of allocations and copies helps in improving application performance
significantly.

2 Background, Motivation and Contributions

Converse [6] is a complete but low level message-driven (i.e. task based) parallel
programming system. It supports a scheduler that handles user-level threads
as well as stackless tasks. The latter may be created locally or from remote
processors, which is similar to active messages. Each such task has a handler
reference and a data payload, and possibly other metadata such as priorities. In
its current usage, on the source PE (processing element, typically used to denote
a CPU core), the data payload has to be copied from the user data structure
to a contiguous message that includes the message metadata. Similarly, on the
destination PE, the payload has to be copied from the received message into the
user data structure. It is this copying on both the source and destination that
we wish to optimize.

Converse is designed to be used as a substrate for implementing parallel
languages, but Charm++ is the most well-known system that uses it. Charm++
is an asynchronous parallel programming model and runtime system based on the
idea of overdecomposition and migratable objects [1]. A Charm++ program is
expressed in the form of interacting migratable C++ objects called chares, which
interact via asynchronous method invocations. In such a method invocation, the
passed parameters are copied (”marshaled”) into a Converse message along with
required metadata to encode information such as recipient object and handler
references. This copying ensures that the user passed parameters are safe to be
overwritten immediately on the source chare after the entry method invocation.
On the destination chare, such copying from the received Converse message into
the user data structures is again required to use the received data beyond the
scope of the entry method since the runtime system frees the message for safe
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memory management. Thus the optimization we aim at is useful (necessary but
not sufficient) to optimize Charm++ and its myriad applications.

Now consider a situation in which a user of Converse (either end programmer
or the Charm++ runtime) needs to send multiple large data arrays, along with
other scalar data. All the large arrays must be copied into a Converse message
on the sending processor and on the receiving processor they typically have to
be copied into application data structures. With large buffers, these copies come
at the price of increased memory footprint, higher latency, and lower bandwidth.
In this work, we aim to address the limitations of the current messaging seman-
tics in Converse and propose a new zero copy messaging model that will allow
communicating data “in-place”. This will allow the user to avoid additional allo-
cations and copies, and facilitate reuse of user buffers while still benefiting as
much as possible from the asynchrony that underlies Converse (and Charm++)
execution model.

3 Design and Implementation

The Charm++ software stack consists of three primary software layers:
Charm++, Converse, and LRTS, with support for various networking layers
beneath LRTS. Charm++ is the high level layer interfacing with the user code
to support processor virtualization through the idea of coarse grained task and
data objects called chares. Converse is a portability layer beneath Charm++
that supports message handling and uses a scheduler to enqueue received mes-
sages and invoke message handlers by using an appropriate dequeueing strategy.
The networking layer which is below Converse is called the Low Level Run-
time System (LRTS). The LRTS represents a set of APIs used by Converse
to perform networking operations like sending and receiving messages. Each
networking machine layer implements this set of APIs using provider-specific
implementations, hiding their implementation details from the upper layers of
the Charm++ software stack.

3.1 LRTS API

The basic functionality for performing a zero copy transfer of a buffer is depen-
dent on the underlying network and its capabilities. HPC specific networks
like UCX, OFI, GNI, and Verbs provide native support for RDMA operations,
whereas network libraries like TCP and UDP used primarily over ethernet, do
not natively support RDMA operations. Since each networking layer has its own
implementation for supporting zero copy transfers, we define a unified LRTS API
for zero copy transfers and implement the API for each networking layer. We
provide the following LRTS methods for implementing zero copy functionality:

– void LrtsSetRdmaBufferInfo(void *info, const void *ptr, int size, int mode)
– void LrtsDeregisterMem(const void *ptr, void *info, int pe, int mode)
– void LrtsIssueRget(NcpyOperationInfo *ncpyOpInfo)
– void LrtsIssueRput(NcpyOperationInfo *ncpyOpInfo)
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LrtsSetRdmaBufferInfo is used to set the network specific metadata infor-
mation for a buffer or a memory region that is intended to be used for an
RDMA operation. For most RDMA supported layers, this involves registra-
tion of the memory region and storing that information in the info object.
LrtsDeregisterMem is used to deregister an already registered region of mem-
ory. LrtsIssueRget is used to perform an RDMA Get or Read operation from
a remote buffer. Similarly, LrtsIssueRput is used to perform an RDMA Put or
Write operation to a remote buffer. Since buffer information pertaining to both
the local and the remote buffer is required to perform a Get or Put operation, the
wrapper object NcpyOperationInfo is used to store the metadata information of
both the buffers, including completion handling information which is used to call
the registered higher level completion function on completion of a Get or Put.
These low-level LRTS APIs described above will provide the infrastructure for
higher-level abstractions in Converse and Charm++. In this section, we briefly
describe the implementation of the LRTS APIs for different networking layers
and for the special case of transfers within a physical node.

Networking Layers. Native networking layers provide explicit control to the
user to design and tune the usage of the network library’s API as intended.
Such layers also typically require the user to explicitly manage pinned or reg-
istered memory. In our work, we have chosen to implement the basic func-
tionality for performing zero copy operations on four popular native HPC
networking layers that require explicit pinned memory management. These
include Unified Communication X (UCX) [8], OpenFabrics Interfaces (OFI)
[4], uGNI or GNI, and Verbs. For these networking layers, in our implemen-
tation, inside LrtsSetRdmaBufferInfo, we use the network library provided
method to register the buffer and store the memory handle (or memory region)
along with any additional information (like rkey) in the info object. Similarly,
in LrtsDeregisterMem, we use the method to deregister the buffer using the
memory handle available in the info object. Since all these networking layers
natively supports RDMA operations, we directly use the Get and Put meth-
ods provided by each of the network libraries to perform RDMA Get and Put
operations inside LrtsIssueRget and LrtsIssueRput respectively. Completion
handling is performed by polling a completion queue and calling an appropriate
higher level completion function using a heap object in the case of OFI, GNI,
and Verbs. UCX supports a ucp_send_callback_t argument provided in the
Get and Put calls, which can be set to a specific function, which is invoked
on completion. Inside the ucp callback function, the common higher level com-
pletion function is invoked. In addition to native networking layers, Charm++
also provides an MPI networking layer to be used for interoperation with MPI
or on new machines without reliable support yet for a native layer. Since MPI
internally manages pinned memory, our implementation is simplified and simply
uses matching MPI_Isend and MPI_Irecv calls to perform “zero copy” reads and
writes. For networking layers that do not natively support RDMA, like TCP and
UDP, we have also provided a copy based implementation in order to maintain
API consistency.
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Intra-node. Communication between endpoints that are on the same physical
node is common on many-core nodes. We use Cross Memory Attach (CMA) [10]
for performing reads and writes between processes within the same host. CMA
is a mechanism that was introduced in Linux kernel version 3.2 to improve
communication performance between processes of the same physical node. A
process_vm_readv call is used in LrtsIssueRget and a process_vm_writev
call is used in LrtsIssueRput to perform CMA read and write operations. These
calls are synchronous and complete inline, allowing us to perform completion
handling immediately upon returning from the CMA call. For transfers within
the same process, we further optimize the communication with a user-space
memcpy operation for optimal performance.

3.2 Converse API

The API for zero copy semantics in Converse is built on top of the basic func-
tionality of the lower level, which is unified by the LRTS API. Since the meta-
data information of both the local and remote buffer is required to perform
an RDMA operation, we support a 2-phase protocol: rely on the existing mes-
saging API in Converse to transfer the metadata information, followed by the
one-sided (say, get) API to execute the large data transfer. The metadata associ-
ated with a buffer includes information like the pointer, size, home PE, memory
registration information (which is required for most RDMA networks), and any
other data fields used for notifying the user on completion of the zero copy
transfer. This metadata information in encapsulated into a class we provide
called CmiNcpyBuffer. This class contains methods such as get and put to per-
form RDMA Get and Put operations respectively. Additionally, methods called
registerMem and deregisterMem perform memory registration and deregistra-
tion. registerMem is called from the constructor of CmiNcpyBuffer to perform
memory registration of the buffer during declaration of this object. The user
is responsible for invoking deregisterMem after the completion of the RDMA
transfer.

The above public methods of CmiNcpyBuffer constitute the zero copy API
in Converse. The user is required to first construct and send the metadata object
CmiNcpyBuffer of one PE to the other participating PE, using the existing mes-
saging API in Converse. This is illustrated in Fig. 1 where destMetadataHandler

Fig. 1. CmiNcpyBuffer object creation and handover



Enabling Support for Zero Copy Semantics 501

is the target handler for the message. This handler on the destination constructs
a local CmiNcpyBuffer and calls the get method as shown in Fig. 2.

Fig. 2. Remote PE performing Get operation

On completion of zero copy transfers in Converse, the runtime system invokes
the handlers passed by the user in the CmiNcpyBuffer object constructors. When
the source handler srcDoneHandler is called, the buffer can be safely modified
or freed as shown in Fig. 3. Similarly, inside destDoneHandler, the user is guar-
anteed that the data transfer into the destination buffer is complete and the
user can begin operating on the newly available data as shown in Fig. 3. The
runtime invocation of these handler functions on completion enables the user to
be asynchronously notified about reuse of source buffer and arrival of data in
the destination buffer. This is essential to integrate our protocol in a message-
driven execution model and makes it more efficient in comparison to the MPI
model, which requires the user to make a blocking MPI_Wait call or repeatedly
call MPI_Test to determine completion. This scheme also allows one to wait
modularly for multiple data transfers, even across library boundaries.

Fig. 3. Source and Destination Handler function

The implementation of the Direct API is relatively straightforward. The user
is responsible for explicitly sending over the remote metadata information using
a CmiNcpyBuffer object as seen in Fig. 1. When the get method is called on
CmiNcpyBuffer by passing the source object, the Converse implementation cre-
ates a NcpyOperationInfo object from the two CmiNcpyBuffer objects and sim-
ply makes a call to LrtsIssueRget. The converse completion function registered
with LRTS initiates the invocation of both the source and destination handler
functions passed by the user. PUT based one sided operations are supported in
a similar manner.
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4 Results

Table 1. Benchmarking machines and their configuration

Machine Cores/Node Memory/Node Network Charm build

iForge 40 192 GB Infiniband ucx, verbs

Stampede2 68 96 GB Omni-Path ofi

Cori 32 128 GB Aries gni, mpi

Linux workstation 4 8 GB Ethernet netlrts(udp)

We conducted our performance experiments on three HPC machines and
one general purpose linux machine as summarized in Table 1. All our converse
builds are configured to use the non-SMP version, which uses one CPU core
as a single PE for one process. For benchmarking, we use 2 PEs on 1 node for
intra-node messaging and 1 PE each on 2 nodes for inter-node messaging. In our
experiments, we use a point-to-point ping-pong benchmark written in Converse.
This measures the one-way messaging latency for different message sizes between
two processes that exchange messages using their user buffers for a fixed number
of iterations. Since our ping-pong benchmark requires exchange of data directly
from the user buffers, in the Regular API we explicitly make a copy from the
received message into the user owned buffer. This is not required in the zero copy
API because the data transfer always happens directly from the sender owned
buffer to the receiver owned buffer. Across iterations, since the same buffers are
used for a particular message size, it is only required to register the buffer at
the beginning of all the iterations corresponding to that size. This allows the
zero copy API to perform the get operation persistently using the same buffer
information objects.

Figures 4 and 5 illustrate the improvements in intra-node and inter-node
latency with zero copy API on four different machines. As seen in all the latency
plots, the regular messaging API performs better than the zero copy API for
smaller messages. This is because of the time taken for the extra memory allo-
cation and copy performed in the regular API being small in comparison to the
additional latency incurred in sending the metadata information message for the
zero copy API. Starting from medium to large messages, we see that the zero
copy API begins to perform better than the regular API and the improvement
increases with message size. This can be again explained by the cost of perform-
ing the additional allocation and copy, which begins to proportionally increase
with message size, whereas the metadata message latency remains constant. The
range of performance improvements in latency and the threshold message sizes
above which the zero copy API begins to perform better than the regular API is
summarized in Table 2 for intra-node transfers and Table 3 for inter-node trans-
fers.
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(a) ofi on Stampede2 (b) gni on Cori (c) netlrts on a Workstation

Fig. 4. Comparison of intra-node latency between regular and zero copy API

(a) ucx on iForge (b) verbs on iForge (c) ofi on Stampede2

(d) gni on Cori (e) mpi on Cori

Fig. 5. Comparison of inter-node latency between regular and zero copy API

Cross Memory Attach (CMA) is supported on Stampede2, Cori and the com-
modity linux workstation. Figure 4 highlights the performance between the regu-
lar API and the zero copy API with both CMA and RDMA on intra-host trans-
fers between 2 PEs. On Stampede2, CMA performs better than RDMA (using
ofi) for most message sizes, esp in the medium message size range because of
the expensive network operations in comparison to using shared memory. How-
ever, on Cori, CMA outperforms RDMA (using gni) only upto a threshold size.
Beyond this, the advantage of bypassing the CPU as done in the case of RDMA
outweighs the benefit of using shared memory, which still requires kernel inter-
vention. On the linux workstation as seen in Fig. 4c, because of no support for
RDMA, we use the copy based implementation underneath to maintain API
consistency. The additional overhead of sending the metadata message incurred
in the zero copy API, leads to the poorer performance as compared to the regu-
lar API for smaller message sizes. As the message size increases, this additional
overhead becomes minuscule in comparison to the cost of allocations and copy-
ing, leading to similar performance between regular and the copy-based zero
copy API, and much better performance for CMA based zero copy API.
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Table 2. Improvement in intra-node latency with zero copy messaging API.

Metric Stampede2 Cori Workstation

CMA ofi CMA gni CMA

SpeedUp 1.2x – 3.72x 1.4x – 3.7x 1.13x – 3.5x 1.2x – 5.8x 1.3x – 26x

Threshold size 8K 16K 1K 16K 512

Table 3. Improvement in inter-node latency with zero copy messaging API.

Metric iForge Stampede2 Cori

ucx verbs ofi gni mpi

SpeedUp 1.1x – 11.4x 1.2x – 8.4x 1.3x – 11.5x 1.2x – 7.8x 1.07x – 4.7x

Threshold size 16K 32K 32K 16K 32K

5 Related Work

RDMA has been well studied and applied to numerous parallel programming
models over time. MPI’s library model meant it has always operated on user-
owned memory rather than explicit message objects. This has allowed library
implementors to hide eager and rendezvous protocols behind two-sided send/recv
operations [7]. PGAS models, such as UPC [9] and Chapel [3], aim to hide
communication from users, so incorporating RDMA into those models has mostly
been done in the lower levels of the runtime system and not in the user-facing
API. GasNet serves as a lower level communication substrate for various task-
based programming systems and has had RDMA incorporated into its design.
Legion [2], which builds on top of GasNet, strives to hide communication from
users and manage data movement automatically based on task dependencies.
HPX [5] is another example of a tasking model that hides communication behind
higher-level abstractions such as futures and executors.

6 Conclusion

With the growing complexity of exascale software applications and hardware
architectures, task-based programming models appear promising. Asynchrony
and the ability to migrate tasks and data around the system to balance com-
putational load will be important for overall performance and scalability. In
this work, we identified the shortcomings with the current messaging API in
Charm++ for sending and receiving large buffers. We also added support for
zero copy messaging in Converse and LRTS to enable the development of zero
copy user APIs in Charm++.

Future work includes implementing Charm++ user-facing APIs on top of this
work and improving the performance of our new APIs. We plan to implement
two key optimizations. First, by adding a registration cache that will intelligently
handle memory registrations and deregistrations. Second, by developing a generic
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memory pool for allocating all the small sized heap objects that we use in our
implementation. We believe these optimizations will allow us to extract better
performance from our new APIs.
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Abstract. Overlapping communications with computations in dis-
tributed applications should increase their performances and allow to
reach better scalability. This implies, by construction, communications
are executed in parallel of computations. In this work, we explore the
impact of computations on communication performances and vice-versa,
with a focus on the role of memory contention. One main observation is
that highly memory-bound computations can have a severe impact on
network bandwidth.

Keywords: HPC · MPI · Memory contention

1 Introduction

Doing in parallel communications and computations (with non-blocking MPI
calls or even more complex systems such as task-based runtime systems) is an
increasing trend to get higher performances. It has been observed [2,3], that,
sometimes, when computations and communications are executed side by side,
communications are slower than nominal performances and computations can
also be degraded.

Since possible interactions between communications and computations, and
especially the impact on communication performances, are not well detailed in
the literature (but only mentioned), we propose in this work to study the possible
causes of these interferences and measure their impact on both communication
and computing performances. Reported observations here deal with the impact of
memory contention. Since we target HPC systems, we consider only fast networks
(here, InfiniBand) as well as inter-node communications.

We describe here our experimental protocol, provide first results and then
discuss future work.
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2 Methodology

Our goal is to measure performances of communications and computations when
they are run side by side. To achieve this, we have designed a multithreaded and
parallel benchmark using MPI+OpenMP. Per MPI process, one thread is dedi-
cated to communications (it submits communication instructions and ensures
MPI progression) and other threads (driven by OpenMP) do computations.
This configuration mimics how some runtime systems work. The communication
benchmark performs ping-pongs to measure network latency and bandwidth.

2.1 Benchmarking Protocol

We need to compare performances of communications and computations when
they are executed alone and when they are executed together. Therefore we
decomposed our benchmark into the following steps:

1. Computation without communication
2. Communication without computation
3. Computation with side by side communication

Computations and communications use different data and hence are com-
pletely independent. Plots to represent results compare performance of commu-
nications and computations when they are executed separately or simultaneously.
The former are represented by plain curves and the later by dashed curves.

Regarding performances of communications, we use two metrics: latency by
exchanging 4 bytes of data (one float), and bandwidth evaluated for 64 MB
message size.

According to which effect we want to observe, instructions done by computing
threads will be different. Computations have to be embarrassingly parallel to
always get the maximum level of parallelism and avoid an overhead caused by
scheduling and dependencies. Moreover we use weak scalability to easily change
the number of computing cores (and thus change the level of parallelism).

To see the impact of memory contention caused by data used for computa-
tions and data used for communications, we generate memory contention by
computing cores doing memory-bound kernels: COPY (b[i] ← a[i]) and TRIAD
(c[i] ← a[i] + C × b[i]) from the STREAM benchmark suite [4]. Moreover, to
really produce memory contention, we allocate memory on a single NUMA node,
to increase the traffic on the memory bus between cores belonging to different
NUMA nodes. The performance of the computing benchmark is measured using
the memory bandwidth per core (hence higher is better).

2.2 Experimental Environment

We ran our own benchmark suite1 on several clusters with different character-
istics: from small experimental clusters to large production ones. We present
1 Available on https://gitlab.inria.fr/pswartva/memory-contention.

https://gitlab.inria.fr/pswartva/memory-contention
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here the results obtained on henri nodes which are dual Intel Xeon Gold 6140
at 2.3 GHz with 36 cores split across 4 NUMA nodes and 96 GB of RAM and
equipped with InfiniBand ConnectX-4 EDR. henri nodes run Linux 5.7.7
with Debian 10, gcc 9.3. We show results obtained with MadMPI, the MPI
interface of NewMadeleine [1]; we observed similar results with other MPI
implementations, such as OpenMPI 4.0.

3 First Observations

Our first hypothesis was that data accessed for computations and for communi-
cations may create contention on the memory bus, thus reducing performances.
To test this hypothesis, we applied protocol described in previous section.

Fig. 1. Network latency (for 4B) with memory-bound computations in parallel

Fig. 2. Network bandwidth (for 64MB) with memory-bound computations in parallel
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Figure 1 shows that network latency is impacted by the STREAM opera-
tions when there are at least 22 computing cores and this impact can double
the regular latency when all available cores are computing. However, STREAM
operations are not impacted by the ping-pong benchmark. The network band-
width is impacted sooner, from 3 computing cores (Fig. 2). When all available
cores are computing, the network bandwidth is reduced by almost two third from
the regular network bandwidth. Memory bandwidth measured by the STREAM
benchmark is lower when network bandwidth is measured at the same time as
when network latency is measured, which is expected because one bandwidth
ping-pong transfers more data than a latency ping-pong (64 MB vs 4 B).

4 Conclusion

Overlapping communications with computations is a well-known technique to
increase performance of applications. However, our first experiments report
memory contention caused by data used for communications and for compu-
tations can reduce performances of communications and computations.

The rest of our study explores parameters impacting interferences between
communications and computations such as the placement of data and threads,
the size of the data transmitted through the network and the arithmetic intensity
of instructions executed by computing threads. We also measure the effect of the
variations of processor frequencies and the effect of using a task-based runtime
system.

As future works, we would like to better understand origins of these interfer-
ences to predict and quantify them. We would also like to measure the impact of
data movements between main memory and GPUs. This knowledge could then
be used in runtime systems to better predict performances and thus better sched-
ules tasks to minimize the impacts of the interferences between computations
and communications.
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Abstract. Recently Artificial Intelligence (AI) has demonstrated a huge
progress in solving complex problems such as image classification, text
generation, translation... Its success is due to a development of hard-
ware and algorithms making possible the emergence of Deep Neural Net-
works (DNNs). Such DNNs are composed of a number of operations from
numerical linear algebra, whose order is defined with a Directed Acyclic
Graph (DAG). These DNNs operate at the limit of the computational
resources, and to go to deeper and more complex neural networks it
is necessary either to design more powerful computational resources or
optimize their usage. In our work, we address in particular the problem
of lowering memory usage during the training of DNNs.

Keywords: Neural networks · Rematerialization · Offloading · Model
parallelism

The functioning of DNNs in practice can be described in the following way:
an input (e.g. a batch of images) is passed to the DAG of the neural network,
processed further with all operations in the correct order and at the end the pre-
dictions (outputs of the DAG) are returned. Then the predictions can be applied
for solving the problem of interest. The execution of the DNNs for obtaining the
predictions is called inference. On the other hand, before the model can be used
for the inference, this model should be trained. Training is performed within
several iterations and during each iteration the weights (model parameters) are
updated so that the prediction error was small.

Inference and training have different resource requirements. Inference is usu-
ally done on embedded devices like smartphones. In contrast, training is more
memory and computationally expensive, usually done on clusters of machines
and take hours or sometimes days to be finished. In our work we propose meth-
ods that help to limit the memory consumption of the training in two settings:
training on a single machine and distributed training.
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1 Training on a Single Device

There are two major sources of memory consumption during the training phase.
The first one comes from storing the model weights, while the second one comes
from the activations (intermediate outputs of the DAG). To understand why it
is important to keep activations, let us notice that one training iteration consists
of two passes over the DAG: forward and backward propagations. During the
forward propagation the inputs are propagated through the DAG to compute
predictions, which is then followed by the evaluation of the loss function, showing
how close the predictions are to the true target values. At the same time, updat-
ing weights requires the gradients of the loss with respect to the weights, which
are computed during the backward propagation. The backward propagation first
computes the gradient of the loss with respect to the predictions and then these
values are propagated through the graph in the reverse order to evaluate the gra-
dients of other weights using the chain rule. Gradient computation often requires
the corresponding activation as an input: if y = wg(x) and L = f(wg(x)), while
a = g(x) is the activation of the operation g, L is loss and w is the weight,
then ∂L

∂w = ∂f
∂y

∂y
∂w = ∂f

∂y a. As a consequence, the combination of forward and
backward propagation results in complex data dependencies depicted in Fig. 1.
It shows an example of data dependencies of a simple DNN with L sequential
layers (operations in DNNs), where the activations of forward operations Fi are
the inputs of backward operations Bi+1 and Bi.

F1 F2 · · · FL−1 FL FLoss

B1 B2 B3 · · · BL BLoss

a0 a1 a2 aL−2 aL−1 aL aL+1

δL+1 = 1δLδL−1δ3δ2δ1δ0

a0 a1 a2 aL−1 aL

ā1 ā2 ā3 āL−1 āL āL+1

Fig. 1. Data dependencies induced the training phase of Sequential Deep Neural Net-
works.

Activations are not needed to be present in the memory all the time. Instead,
they can be discarded and recomputed later (Rematerialization) or offloaded
to the larger memory and prefetched later (Offloading). Solving the respective
optimization problem can help significantly reduce the memory usage.

Rematerialization is the technique that allows to reduce memory consump-
tion by discarding some activations, in particular the ones with a long lifetime,
and recomputing them afterwards from the values that have been kept. This
problem was well studied in Automatic Differentiation (AD) community in appli-
cation to adjoint chains. Adjoint chains can be depicted as in Fig. 1, where all
forward steps and backward steps have the same execution costs and each acti-
vation occupies only one unit of memory m (homogeneous chains). This problem
is solved with a simple dynamic programming [4], whose complexity is O(L2m),
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where L is the number of layers (normally L < 1000). Due to the similarity
between the computational graphs, the same solutions can be adapted for DNNs
[3]. Still, the DNNs are more complex than adjoint chains because of their het-
erogeneity and more general DAG structure, hence the direct application of
AD approaches results in the sub-optimal performance. Our work, despite not
covering the DAG case, investigates the case of heterogeneous chains, which cor-
respond to many practical DNNs. We found a dynamic programming algorithm
that yields optimal rematerialization schedules in O(L6m) and also proposed its
relaxation which finds a solution in O(L3m). In practice, this relaxed version
proved to provide as good solutions as optimal ones under reasonable time (<1
min). The experiments confirmed the better performance of our algorithm with
respect to the previous state-of-the-art. Based on it, we also designed a tool
compatible with PyTorch1. The detailed results can be found in [5].

An alternative to the Rematerialization is Offloading. It exploits the two-level
memory hierarchy that, for example, takes place between a GPU performing the
training and a CPU. The modern GPUs have much smaller memory than CPUs,
therefore when a GPU is running out of memory, the surplus can be sent to the
CPU for a temporary storage. It is especially helpful when dealing with the first
activations that may stay idle for a long time. As there are no additional recom-
putations, an overhead can be avoided by overlapping the communications with
the computations. However, often the bandwidth being not very high prevents
from hiding entirely the communications, leading to idle times when waiting
for the end of transfers to release the memory. Thus, the careful selection and
scheduling of the transfers is required. The naive approach [7] that offloads all
activations and synchronizes after each operation may suffer from huge delays.
We formulate the problem of finding the minimal overhead as an optimization
problem which depends on the choice of activations to be offloaded and the sched-
ule of the data transfers. In our paper [1] we proved that this problem is strongly
NP-complete. In addition, we proposed two relaxations of this problem that can
be solved optimally in polynomial and pseudo-polynomial times respectively.
Their solutions can become heuristics for solving the general problem. We com-
pared them with the previously known techniques through experiments, which
showed that our heuristics overcome other known tools in most cases.

2 Training on Multiple Nodes

It is common to perform training on several machines to speed up the conver-
gence. The most practiced in this regard is Data Parallelism, which replicates the
model across all resources and in this way processes several images in parallel.
The operations are performed independently, including the updates. Still, for the
model to converge, it is important to do regular weight synchronizations, which
are costly if weights are large. Furthermore, such an approach may suffer from
memory issues as each worker has its own copy of weights and activations. In this
case Data Parallelism should be combined with Rematerialization or Offloading.
1 https://gitlab.inria.fr/hiepacs/rotor.
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On the other hand, memory load can be significantly alleviated if both
weights and activations are distributed across the available machines. Model
Parallelism achieves it by assigning each processor to a part of a DNN. However,
as the execution of the DNN is very sequential, there is no much opportunity
to parallelize it and most of time the resources remain idle. Nevertheless, this
method can be combined with pipelining: once a GPU executes forward oper-
ations on one batch, it can proceed to the next batch, without waiting for the
backward operations to be available. When no processor is idle, then perfect scal-
ability is reached. PipeDream [6] implements this idea and finds a load balancing
with a dynamic programming. If the perfect load balancing is found, then in
case of zero communication PipeDream can keep the resources constantly busy.
Still, to ensure the validity of the training, it requires to store several copies
of the weights and activations per processor, almost canceling the benefits of
distributing them in the first place. In our work, we addressed the downsides
of PipeDream and proposed improvements of the load balancing and scheduling
(see [2]).

3 Future Works

We plan to continue working on improving memory saving methods. One promis-
ing direction is the combination of Offloading and Rematerialization, that can
profit from the strong points of both methods. Moreover, we are going to test
our tools on real use cases, one of which is training Pl@ntNet2, an application for
plant recognition. Because of memory limit, training deeper models with large
images is not possible, hindering its further development. With our methods this
obstacle can be overcome, creating new opportunities for further growth.
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Abstract. OpenMP is a parallel programming model widely used on
shared-memory systems. Over the years, the OpenMP community tries
to extend the OpenMP Specification to adapt it to modern architec-
tures and expand its usage to other domains such as Embedded Systems.
Our work focuses on improving the OpenMP tasking model by reduc-
ing the task runtime overhead. To do so, we propose a new OpenMP
framework, namely, taskgraph, based on the concept of task dependency
graph, where nodes are OpenMP tasks and edges describe the depen-
dencies among them. The new framework is shown to be particularly
suitable for fine-grain parallelism. It can be extended to other program-
ming models with ease, improving the interoperability of OpenMP with
different programming models, such as CUDA.

Keywords: OpenMP · Fine-grain parallelism · GPU · CUDA

1 What Is Missing and What We Propose

With the increasing complexity of embedded applications (e.g., ADAS for
Advanced Driver-Assistance Systems), there is a rising need in the Safety-Critical
Embedded System industry to utilize modern multi-core or many-core processing
units. Consequently, the existing serial code must be parallelized, and OpenMP
is considered as a candidate to ease this process. However, originally introduced
to be used in the HPC domain, OpenMP specification is not conforming with
the Predictability and Determinism requirements for Safety-Critical Embedded
Systems.

To cope with this limitation, the OpenMP tasking model has been extensively
studied in the Embedded System domain by virtue of the similarities between
OpenMP Task Dependency Graph (TDG) and DAG (Directed Acyclic Graph)
representation of Real-Time tasks. M. Serrano et al. analyzed the timing aspect
of OpenMP tasks [5]. S. Royuela et al. shared their insights into the OpenMP
4.5 specification and the modifications needed to make it functional-safe [4].
Roberto E. Vargas [6] and A. Munera [3] proposed different frameworks capable
of reducing OpenMP tasking model’s memory consumption for embedded sys-
tems by statically generating the TDG corresponding to the OpenMP program
annotated with task directive.
c© Springer Nature Switzerland AG 2022
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Inspired by their work, we propose a new OpenMP framework, namely
taskgraph, targeting fine-grain parallelism [8]. The framework is based on gen-
erating the Task Dependency Graph corresponding to an OpenMP taskified
region, that is, a block of user code solely composed of control-flow statements
and OpenMP tasks, no sequential code is declared between them. The generation
can be static at compile-time if all task data is known beforehand. Otherwise, the
TDG will be recorded at runtime, when the taskgraph region is executed for the
first time. In cases where the TDG is run multiple times after being generated,
we name such an execution model as define-once-run-repeatedly. According to
our experiments, the TDG execution reduces the runtime overhead related to
the shared resource contention and the task management (such as task creation,
dependency resolution, etc.). Consequently, this increases the performance of the
OpenMP tasking model, an important aspect that the aforementioned work did
not accomplish.

Fortunately, other parallel programming models also use TDG representation
to express the workflow, as is the case for CUDA Graph1 introduced by Nvidia.
Although demonstrated to be more efficient, CUDA Graph demands considerable
effort from application developers to build: on average, to set one graph node,
8 CUDA Runtime API function calls are needed2. This incites us to build a
mechanism in OpenMP capable of transforming an OpenMP TDG into a CUDA
Graph. By doing so, we enhance the interoperability of OpenMP with CUDA
and improve the CUDA Graph programmability, alleviating the effort needed to
run applications at scale on Nvidia GPUs.

We propose to add taskgraph as an OpenMP clause to task and target
directives. Listing 1 shows an example of using this clause.

#pragma omp parallel
#pragma omp single
#pragma omp task/target taskgraph
for (i=0; i<M; i+=BS) {

for (j=0; j<N; j+=BS) {
if (i==0 && j==0)

#pragma omp task depend (out: Mat[i+BS-1][j+BS-1])
processing_block (i,j);

...
}

}

List. 1. Excerpt of HOG (Histogram of Oriented Gradients) object detection algorithm

1 https://developer.nvidia.com/blog/cuda-graphs/.
2 https://github.com/NVIDIA/cuda-samples/tree/master/Samples/

simpleCudaGraphs.

https://developer.nvidia.com/blog/cuda-graphs/
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/simpleCudaGraphs
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/simpleCudaGraphs
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2 Implementation and Preliminary Results

The lowering of taskgraph is implemented on top of the Mercurium compiler3,
a modular and lightweight compiler developed by Barcelona Supercomputing
Center. The runtime implementation of taskgraph is based on the GCC 7.3.0
GOMP library. Main runtime improvements comprise i) introducing a new set
of lightweight data structures to manage tasks within a taskgraph region, ii)
updating existing queueing mechanism to handle the new data structures, iii) a
recording mechanism that captures all task data at runtime and creates a TDG
from this information.

2.1 Performance of taskgraph

Taking Listing 1 as an example, if M , N and BS (Block Size), variables deter-
mining the control flow, are known at compile-time (referred to as Dataless task-
graph case), we will be able to create a TDG with the correct task dependencies
before execution. This allows the resolution of task dependencies at compile-
time, resulting in runtime overhead reductions. Moreover, if all data needed by
tasks can be captured at compile-time (referred to as taskgraph case), it is possi-
ble to create task instances while compiling. Consequently, the runtime overhead
can further be alleviated.

Both scenarios are presented in Fig. 1(a), where we show the speedup
obtained by executing the HOG application with a fixed problem size. Hence, in
the x-axis, by increasing the number of tasks, we reduce the task granularity. The
experiment was realized on a node of Marenostrum 4 cluster [1], equipped with
2 Intel Xeon 8160 CPUs, having 24 physical cores each. As the figure depicts,
our method provides similar performance for coarse-grain tasks, and it delivers
better speedup when the task granularity is small.

Figure 1(b) shows the benefits of taskgraph in another scenario, where the
same set of tasks needs to be executed multiple times. This often occurs in sim-
ulation applications, iterative problem solvers and applications used on embed-
ded systems: e.g., N-body simulation, Gauss-Seidel iterative method, etc. In
this experiment, the repetitive execution of the same taskgraph reduces task-
related overhead (task creation and task dependency resolution) at every itera-
tion, resulting in a better speedup.

2.2 taskgraph for Heterogeneous Computing

Although OpenMP already supports device tasks with its target directive, the
performance of offloaded work is often worse than the manually written code.
Our work tackles this problem by generating CUDA code from the target
taskgraph directive [7]. In Fig. 2, we compare the performance of original
OpenMP offloading using target directive and the taskgraph generated CUDA

3 https://pm.bsc.es/mcxx.

https://pm.bsc.es/mcxx
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Fig. 1. Speedup comparison with taskgraph and the original GOMP runtime

code. The experiment used an embedded Xavier GPU and a node of CTE-
POWER cluster [2] of Barcelona Supercomputing Center, with 2 Power9 8335-
GTH CPUs and 4 V100 as GPUs. The chart shows that the original OpenMP
offloading performance is one order of magnitude slower than the generated
CUDA code.
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3 Conclusion and Future Perspectives

In this work, we present our new OpenMP framework taskgraph that reduces
OpenMP tasking model’s overhead by using Task Dependency Graph. The
results show that this method provides better performance in different scenarios:
i) when the TDG can be created at compile time, ii) and when the TDG is built
at run time and is executed multiple times. In both cases, taskgraph allows us
to define-once-run-repeatedly, delivering promising performance compared to the
original GOMP runtime. As a future objective, we plan to implement taskgraph
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on LLVM, we expect a performance gain of the same magnitude as for GCC run-
time, since both OpenMP implementations are impacted similarly by the task
granularity.

Acknowledgements. This work has been supported by the EU H2020 project
AMPERE under the grant agreement no. 871669.
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Abstract. We propose an auto-scheduling mechanism to execute count-
ing queries in machine learning applications. Our approach improves the
runtime efficiency of query streams by selecting, in the on-line manner,
the optimal execution strategy for each query. We also discuss how to
scale up counting queries in multi-threaded applications.

Keywords: Data access queries · Auto-scheduling · Machine
learning · SABNAtk

1 Introduction and Problem Formulation

Counting data records with instances that support some specific configuration
of the selected variables is one of the basic operations used by machine learning
algorithms. The problem manifests itself each time a probability distribution
has to be estimated, and spans applications ranging from Bayesian networks
learning through association rule mining and classification [2,4] all the way to
deep learning [6] and information retrieval [5].

Counting is typically viewed as a black-box procedure, and implemented
using simple and not necessarily efficient strategies, e.g., contingency tables. At
the same time, in many applications it accounts for over 90% of the total exe-
cution time [1]. Consequently, improving performance of counting can directly
translate into better performance of these applications. The current specialized
approaches based on data indexing, such as ADtrees [3], have limited applicabil-
ity due to the significant preprocessing and memory overheads. Recently, Karan
et al. [1] proposed SABNAtk, a new strategy in which counting queries and their
context of execution are abstracted such that the counts can be aggregated as a
stream, irrespective of the user-defined downstream processing.

Consider a set of n categorical random variables X = {X1,X2, . . . , Xn},
where the domain of variable Xi is represented by ri states [xi1, . . . , xiri

].
Let D = [D1,D2, ...,Dn] be a complete database of instances of X , where
Di, |Di| = m, records observed states of Xi. Given the set of input variables

c© Springer Nature Switzerland AG 2022
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{Xi,Xj , . . .} ⊆ X represented by database D, the counting query Count((Xi =
xi) ∧ (Xj = xj) ∧ . . .) returns the size of the support in D for the specific
assignment [xi, xj , . . .] of variables {Xi,Xj , . . .}. For example, the result of exe-
cuting query Count((X1 = 3) ∧ (X2 = 1) ∧ (X3 = 2)) over database D shown
in Fig. 1 is 2, because there are two instances matching the query condition.
Simple counting query generalizes to a set of queries over the same set of vari-
ables COUNT(Xi,Xj , . . .), in which we want to retrieve all non-zero answers
to queries Count((Xi = xi) ∧ (Xj = xj) ∧ . . .) for all possible assignments of
query variables. We will say that individual queries within COUNT query share
context. For example, the answer to query COUNT(X1,X3) would return the
following list of counts: [((1, 2), 2), ((2, 1), 2), ((3, 2), 3)], where each entry is in
the form ((xi, xj),Count((X1 = xi) ∧ (X3 = xj))).

The starting point for our work are counting strategies proposed in [1], and
implemented in the open-source C++17 library SABNAtk. In SABNAtk, the
counting queries COUNT can be answered using one of three strategies: 1) sim-
ple contingency table (CT), in which contingency table over all possible states
of query variables is constructed, 2) bitmap counter (BC) in which input data is
represented via bitmaps and counting is reduced to bitmap intersecting and bit
counting, and 3) radix counter (RC) in which counting is based on columnar data
partitioning similar to radix sorting. Which of the strategies is the best depends
on many factors (e.g., query variables, data complexity, etc.) and hence it is
not possible to state a-priori that one strategy dominates the others (see Fig. 2).
In this work, we focus on scaling up SABNAtk in multi-threaded applications.
Specifically, we seek to introduce a new auto-scheduling mechanism that learns
online strategy to select optimal query processing counter.

Fig. 1. Toy example of
database D with three
variables.

Fig. 2. Execution time of counting queries by differ-
ent query strategies depending on the number of query
variables (shorter is better). Each point represents an
average time of ten randomly generated queries



Parallelization and Auto-scheduling of Data Access Queries 527

2 Proposed Approach and Preliminary Results

To enable multi-threaded execution, we focus on two main questions: 1) how to
efficiently execute any individual query, and 2) how to deal with a batch of queries
generated concurrently by multiple threads? The strategies implemented within
SABNAtk are stateless. Consequently, the simplest approach is to execute a query
within the thread that issued it. However, in the real-world applications, it is
common that consecutive queries share some of the query variables (i.e., context).
Hence we propose to introduce a queuing and query rewriting mechanism to
mitigate redundant data accesses.

To address the first question, we first experimentally assess and then theoreti-
cally characterize performance of each of SABNAtk’s counting strategies. Figure 2
shows one representative example of execution profile. From the figure, it follows
that the choice of the optimal strategy is non-trivial. At the same time, choosing
the right counter offers significant reduction in the query execution time.

Our key idea is to pose the problem of selecting the optimal query execution
strategy as an online regression problem. To this end, we first analytically derive
the asymptotic average complexity of each counter as a function of the query size
and the query complexity. The regression function is fit on-the-fly concurrently
with serving the queries. Initially, the choice of strategy is random to mitigate
overfitting, and as the execution proceeds, it becomes guided by our trained
regression function.

Consider a single query COUNT(X1,X2, . . . , XN ) of size N . Additionally,
let q =

∏N
i=1 ri be the product of arity of query variables. The cost of the CT

strategy is given by N · m + q in both worst and average case. The average
complexity of BC depends directly on the input data and hence is difficult to
characterize exactly. Therefore, we make a simplifying assumption that each
variable Xi ∈ X is derived from a multinomial distribution with K equiprobable
states [xi1, ..., xiK ]. Then from the Bernoulli scheme and the properties of expec-
tation we can derive the cost as m × ∑N

L=0 KL · (1 − (1 − 1
KL )m). Finally, the

cost of RC is asymptotically linear and amounts to N · m. The derived average
complexities allow us to define the following functions as query execution cost
predictors:

CT (N,K,m,β) = β1 · N · m + β2 · Kβ3·N + β4

BC(N,K,m,β) =

⎧
⎨

⎩

β1 · m · (Kβ2·N+1 − 1)
(K − 1)

N ≤ N0

BC(N0,K,m, β1, β2) + β3 · (N − N0) · m + β4 N > N0,

RC(N,m,β) = β1 · N · m + β2,

where N0 is a number satisfying the condition: KN0 < m ∧ KN0+1 > m. The
parameter K follows from the assumption about input data, and in practice,
can be replaced by the arithmetic mean of the arity of variables included in the
query (or any other meaningful statistics, e.g., median, etc.).

We use defined functions to build online regression model Y = f(X,β)+ε for
each counter. Our approach assumes a stream of incoming queries that initially
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are performed by randomly selected counters. We count cycles needed for their
executions using Performance Application Programming Interface (PAPI) and
apply them to the regression model as observations of the dependent variable
Y . For a given query, we choose a counter with the smallest estimated cost of
execution. We update the values of vector β after each query realization what
results in better knowledge about the efficiency of counters depending on the
query complexity.

In Table 1 we outline our preliminary results. Here the improvement factor
shows how the auto-scheduling mechanism improves the overall performance. To
obtain the baseline, we executed 1000 randomly generated queries for each of
the presented configurations, and collected the total realization time of these
queries using a randomly selected counter for each of them. Then we processed
exactly the same query stream using our proposed auto-scheduling mechanism.
The improvement factor is the ratio of the two runtimes. As shown in Table 1,
our strategy offers improvement from 10.74× to 778.21× depending on the input
data. These are very significant improvements considering that in real-world
scenarios average ML application has to handle billions of queries.

Table 1. Improvement factor with respect to random strategy

Dataset n Improvement factor

m = 1K m = 10K m = 100K

Child 20 778.21 87.95 22.62

Insurance 27 533.30 63.15 16.64

Mildew 35 282.58 19.17 26.69

Alarm 37 311.74 18.24 10.74

Barley 48 145.81 15.22 17.04

Currently, we work on query queuing and rewriting mechanism for multi-
threaded environments. The problem is challenging as it requires careful choice
of on-line strategies to decide when sufficient number of queries are queued to
improve average query processing speed while maintaining acceptable latency.
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Abstract. Large scale architectures provide us with high computing
power, but as the size of the systems grows, computation units are
more likely to fail. Fault-tolerant mechanisms have arisen in parallel
computing to face the challenge of dealing with all possible errors that
may occur at any moment during the execution of parallel programs.
Algorithms used by fault-tolerant programs must scale and be resilient
to software/hardware failures. Recent parallel algorithms have demon-
strated properties that can be exploited to make them fault-tolerant.
In my thesis, I design, implement and evaluate parallel and distributed
fault-tolerant numerical computation kernels for dense linear algebra.
I take advantage of intrinsic algebraic and algorithmic properties of
communication-avoiding algorithms in order to make them fault-tolerant.
I am focusing on dense matrix factorization kernels: I have results on LU
and preliminary results on QR. Using performance evaluation and formal
methods, I am showing that they can tolerate crash-type failures, either
re-spawning new processes on-the-fly or ignoring the error.

Keywords: Fault tolerance · High Performance Computing · Linear
algebra · Matrix factorizations · LU

1 Introduction

High Performance Computing (HPC) systems continue growing exponentially;
the number of processors and nodes is increasing. Top500 is a statistical list with
ranks and details of the 500 world’s most powerful supercomputers. The Novem-
ber 2020 Top500 ranking shows that 5 machines feature more than a million of
cores and all 500 machines listed have more than 10 000 cores (not including
accelerators). Meanwhile, as the number of hardware components increases, the
overall system Mean Time Between Failures (MTBF) is reduced to only a few
hours [12]. For instance, the supercomputer Blue Waters located at the National
Center for Supercomputing Applications (NCSA) at the University of Illinois had
an MTBF of approximately 4.8 h [11]. Therefore, fault tolerance is necessary for
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such large scale systems to ensure that computational intensive applications can
survive failures with a small overhead.

The total number of hardware and software components, the complexity
of these components and the system reliability, availability and scalability are
factors to deal with in HPC systems, because hardware or software failures may
occur anytime during the execution of high parallel applications [9].

I am working in the context of fail-stop failures. Several approaches exist to
handle failures. System-level fault tolerance is transparent to the user: the dis-
tributed run-time environment implements mechanisms such as rollback recovery
and the application does not need to be modified [5]. In my thesis, I am following
an application-based approach: my goal is to provide computation kernels that
can survive failures. I use the User-Level Failure Mitigation model [2]. Moreover,
in order to make sure that the application can survive failures at any moment
of the execution, I verify reliability properties of my algorithms with formal
methods.

2 General Description

My work focuses on adding fault-tolerant mechanisms to dense linear algebra
algorithms to make them able to survive in volatile environments in spite of fail-
ures. My work is based on communication-avoiding algorithms, in which I take
advantage of properties that can be exploited to design new scalable and robust
fault-tolerant algorithms, for instance introducing redundancy of intermediate
results [3,7]. Fault-tolerant algorithms must be designed and evaluated consider-
ing how robust they are and how much computational overhead they introduce
with respect to a non-fault-tolerant algorithm [4].

To model and validate the robustness and the resilience of my algorithms,
I use formal methods (Coloured Petri Net model). A formal model developed
in this thesis [6] can be seen in Fig. 1b. It helps proving reliability and correct
functioning of a fault-tolerant tall and skinny algorithm.

To measure the cost of our fault-tolerant mechanisms on the performance, I
first consider a failure-free execution with no fault-tolerance mechanism as the
baseline; I measure the overhead of the fault-tolerance mechanism on a failure-
free execution; last, I measure the cost of the recovery procedure by injecting
a random failure during the execution. Results show that these fault-tolerant
algorithms introduce very little computational overhead.

3 LU Factorization Algorithms and Experiments

Many applications in linear algebra rely on a LU factorization, either for a tall-
and-skinny matrix or on a wider, potentially square, matrix. The TSLU algo-
rithm was designed for a tall and skinny input matrix (i.e. a matrix with M
rows and N columns, with M � N); the data is distributed between processes
along a 1D distribution, allowing each of them holding complete lines.
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The first phase consists of finding pivot rows to improve the numerical stabil-
ity of the computation. In TSLU we are using a specific algorithm, called tourna-
ment pivoting, in order to find the best row-pivots to factor the entire matrix at
low communication cost. The Communication-Avoiding LU (CALU) [10] algo-
rithm also factors a matrix as A = LU , taking a potentially square matrix as
input. It iterates over block-column sub-matrices called panels. A panel is the
leftmost block-column sub-matrix. Since a panel is a tall and skinny matrix,
CALU uses TSLU to compute the LU factorization of each panel. CALU uses
a 2D grid of processes dividing the square matrix into smaller sub-blocks and
assigning each sub-block to be calculated to one process on the grid [1]. At
each iteration, it takes the leftmost non-processed panel and computes its LU
factorization [8,13].

FT-TSLU and FT-CALU are the fault-tolerant versions of TSLU and CALU
proposed in this research. They can recover from crash-type process failures at
run-time and proceed with the computation beyond them. When an error is
detected by the run-time environment, they re-spawn all the failed processes at
once, repair the communicator used by the processes to exchange information
and the current state on the calculation of a matrix. To achieve this last property,
they keep track on the intermediate results obtained at each step backing them
up on memory or on a storage device. Hence, all processes are able to share their
previous known results with a process to be restored. The restoration procedure
proposed in this work has been designed to allow any process in the global
communicator to detect errors at any point of the algorithm, independently
from the task a process is in charge of.

Figure 1a shows execution times for CALU/FT-CALU, showing that our algo-
rithms scale satisfactorily as the number of processes increases. Also note that
non-fault-tolerant and fault-tolerant failure-free executions are similar. Thus,
added fault tolerance mechanisms generate a small overhead over non-fault-
tolerant algorithms, but it is minimal compared to the total execution time.

(a) Matrix size 100 200 × 100 200
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(b) Model corresponding to FT-TSLU

Fig. 1. FT-CALU execution times and FT-TSLU Petri Net

I have designed algorithms for QR and Cholesky factorizations following a
similar approach, and I am currently performing their performance evaluation.
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4 Conclusions and Perspectives

My work aims at handling failures, which cannot be avoided at extreme scale,
with the imminence of exascale. My goal is to design algorithms that can pro-
ceed with the computation in spite of failures. I have already designed and
implemented algorithms that validate my approach, since they have shown good
scalability and little overhead when failures occur. I am pursuing my efforts to
design new fault-tolerant mechanisms for other dense and sparse linear algebra
kernels: QR, Cholesky, and algorithms for sparse matrices. Compared with LU,
the main difference resides on the trailing matrix update phase. Also, a general
formal model for fault-tolerant communication-avoiding algorithms is still under
development. Its design is thought to prove how failures can be represented and
modeled using the abstraction provided by Coloured Petri Nets. It can also work
on the design of proofs for future fault-tolerant algorithms.
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Abstract. Preconditioned Conjugate Gradient (PCG) method has been
one of the widely used methods for solving linear systems of equations
for sparse problems. Pipelined PCG (PIPECG) attempts to eliminate
the dependencies in the computations in the PCG algorithm and overlap
non-dependent computations by reorganizing the traditional PCG code
and using non-blocking allreduces . We have developed a novel pipelined
PCG algorithm called PIPECG-OATI (One Allreduce per Two Itera-
tions) which reduces the number of non-blocking allreduces to one per
two iterations and provides large overlap of global communication and
computations at higher number of cores in distributed memory CPU
systems. PIPECG-OATI gives up to 3× speedup over PCG and 1.73×
speedup over PIPECG at large number of cores.

For GPU accelerated heterogeneous architectures, we have developed
three methods for efficient execution of the PIPECG algorithm. These
methods achieve task and data parallelism. Our methods give consider-
able performance improvements over PCG CPU and GPU implementa-
tions of Paralution and PETSc libraries.

Keywords: Preconditioned Conjugate Gradient · Overlapping
communication and computations · Distributed memory systems ·
Heterogeneous architectures

1 PIPECG-OATI for Distributed Memory Systems

1.1 Problem Statement

The main computational kernels in Preconditioned Conjugate Gradient (PCG)
[3] are Sparse Matrix Vector Product (SPMV), Preconditioner Application (PC),
Vector-Multiply-Adds (VMAs) and Dot Products. For distributed memory sys-
tems, the bottleneck in PCG are the three dot products per iteration. They
result in synchronization and waiting of the processors which cannot be over-
lapped with any independent computations. As the number of cores increase,
c© Springer Nature Switzerland AG 2022
R. Chaves et al. (Eds.): Euro-Par 2021, LNCS 13098, pp. 535–539, 2022.
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the time taken for allreduce increases and the cores wait for a longer time. The
pipelined PCG method (PIPECG) [2] was introduced for distributed memory
systems. It reduces the number of allreduces in PCG to one per iteration and
overlaps it with one PC and one SPMV. While this is a reasonable strategy for
smaller number of cores, executions of the PIPECG code at larger number of
cores show that the time taken by the allreduce can not be fully overlapped by
the PC and SPMV.

As we are moving to the exascale era, in order to obtain good performance
at larger number of cores, we must reduce the number of allreduces in the PCG
method even more and remove dependencies between computations so that non
blocking allreduce can be used to overlap global communication with more com-
putations.

1.2 Methodology

In order to solve the aforementioned problem, we propose a novel algorithm,
PIPECG-OATI (PIPECG-One Allreduce per Two Iterations) [5], which com-
bines two iterations of PIPECG, reduces the number of non-blocking allreduces
to one per two iterations and then overlaps them with two PCs and two SPMVs.
This is done at the cost of introducing extra VMA operations.

The primary challenge in combining two iterations of PIPECG and pipelining
it is that it has dependencies that require an extra PC and an extra SPMV for
each combined-iteration. So, a total of three PCs and three SPMVs would be
required in a combined-iteration as opposed to two PCs and two SPMVs in two
uncombined iterations. Since the PC and SPMV are the most computationally
intensive kernels in each iteration, an extra PC and SPMV would degrade the
performance of PIPECG-OATI. To deal with this challenge, we introduced new
non-recurrence computations in each iteration of PIPECG-OATI which brings
down the number of PCs and SPMVs to two per combined-iteration.

For achieving PIPECG-OATI from PIPECG, we follow the below steps:

1. Collect the PCs and SPMVs of two iterations at one point in the combined-
iteration by introducing recurrence relations.

2. Collect the dot products of two iterations at one point in the combined-
iteration by expressing the vectors as recurrence relations.

3. As the new dot products will need results of PC and SPMV beforehand,
introduce recurrence relations for these PC and SPMV.

4. To deal with extra PC and SPMV, introduce new non-recurrence computa-
tions.

An elaborate derivation can be found in [5].

1.3 Experiments and Results

We have implemented our PIPECG-OATI method along with optimizations like
merged vector operations in the PETSc library [1]1. We ran tests on our Insti-
1 Available as KSPPIPECG2. URL: https://www.mcs.anl.gov/petsc/petsc-master/

docs/manualpages/KSP/KSPPIPECG2.html.

https://www.mcs.anl.gov/petsc/petsc-master/docs/manualpages/KSP/KSPPIPECG2.html
https://www.mcs.anl.gov/petsc/petsc-master/docs/manualpages/KSP/KSPPIPECG2.html
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tute’s supercomputer cluster called SahasraT, a Cray-XC40 machine which has
1376 compute nodes. Each node has two CPU sockets with 12 cores each, 128 GB
RAM and connected using Cray Aries interconnect. We use Jacobi precondi-
tioner in all tests.

Figure 1 shows the strong scaling of different methods on a 125-pt 3D Poisson
problem with 2M unknowns on up to 110 nodes (2640 processes). Our method,
PIPECG-OATI, is compared with PCG, PIPECG and other pipelined variants
like PIPECG3 method available in PETSc. We observe from Fig. 1 that PCG
reaches 21× speedup and PIPECG reaches 26× speedup after which speedup
degrades due to increased allreduce costs which are not overlapped with either
any or enough computations. We see that PIPECG3 reaches 34× speedup.
PIPECG-OATI reaches 36× speedup. It performs better than PCG and PIPECG
because at higher number of cores, the overlap provided by PIPECG-OATI
becomes more than the overlap provided by PIPECG. It performs better than
PIPECG3 because of lesser number of FLOPS.

Fig. 1. Strong scaling of different methods on a 125-pt Poisson problem with 2M
unknowns.

2 PIPECG Executions for GPU Accelerated
Architectures

We have developed three methods for efficient execution of PIPECG method for
GPU accelerated systems so that we can make use of all the resources available in
the GPU node. The first two methods, Hybrid-PIPECG-1 and Hybrid-PIPECG-
2, achieve task parallelism by executing dot products on the CPU while executing
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the PC and SPMV kernels on the GPU. The third method, Hybrid-PIPECG-
3 achieves data parallelism by decomposing the workload between CPU and
GPU based on a performance model. The performance model takes into account
the relative performance of CPU and GPU using some initial executions and
performs 2D data decomposition. Our methods give up to 8× speedup over PCG
CPU implementation of Paralution [4] and PETSc libraries for different matrices
as shown in Fig. 2. Our methods give up to 5× speedup speedup over PCG GPU
implementation of Paralution and PETSc libraries. Hybrid-PIPECG-3 method
also provides an efficient solution for solving problems that cannot be fit into the
GPU memory and gives up to 2.5× speedup for such problems. Further details
can be found in [6].

Fig. 2. Comparison of hybrid methods with various CPU versions.

3 Conclusion and Future Work

In this work, we have presented PIPECG-OATI, which reduces the number of
allreduces to one per two iterations and overlaps the allreduce with two PCs
and two SPMVs. We have also presented Hybrid PIPECG methods for GPU
accelerated systems. We are working on developing further pipelined methods
which will provide greater overlap than PIPECG-OATI. We are also developing
multi-node multi-GPU version for efficient executions of pipelined CG methods
on GPU accelerated architectures to explore very large problem sizes.
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Abstract. Incomplete LU (ILU) preconditioners are widely used to
improve the convergence of general-purpose large sparse linear systems
in computational simulations because of their robustness, accuracy, and
usability as a black-box preconditioner. However, the ILU factorization
and the subsequent triangular solve are sequential for sparse matrices in
their original form. Multilevel nested dissection (MLND) ordering can
resolve that issue and expose some parallelism. This work investigates
the parallel efficiency of a hybrid parallel ILU preconditioner that com-
bines a restricted additive Schwarz (RAS) method on the process level
with a shared memory parallel MLND Crout ILU method on the core
level. We employ the GASPI programming model to efficiently imple-
ment the data exchange on the process level. We show the scalability
results of our approach for the convection-diffusion problem.

Keywords: Sparse linear systems · Parallel ILU preconditioner ·
Domain decomposition · GASPI · METIS · Task-level parallelism

1 Research Problem

Solution of the large sparse linear system Ax = b, arising after discretization
of the partial differential equations (PDE), is one major computational task of
chemistry, physics, and engineering-based simulations. Krylov subspace-based
iterative methods are preferred over direct methods due to lesser time com-
plexity and memory requirements. These solvers use preconditioners to accel-
erate their convergence. Incomplete LU (ILU) is widely used as a precondi-
tioner because of its robustness, accuracy, and usability as a black-box pre-
conditioner for general purpose (asymmetric, indefinite) linear systems. On the
other hand, parallel Krylov solvers with good scalability features are required to
fully exploit the increasing parallelism provided by modern hardware. Scalability
measures the parallel efficiency of an implementation. Better scalability allows
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simulation of more detailed models, more precise parameter studies, and more
cost-efficient resource utilization. The scalability of ILU-preconditioned Krylov
solvers is restricted due to the sequential nature of preconditioner operations
such as factorization and solution to the triangular systems. We combine the
thread-level parallelism approach described in [1] with Schwarz preconditioners
at the distributed level to address the scalability challenges in ILU preconditioner
on modern hardware.

2 Methodology

We propose a two-level domain decomposition (DD) preconditioner following
a hybrid execution model which fits the memory hierarchies of modern hard-
ware architectures well. For distributed memory parallelism, we use the GASPI
communication API [3] since it provides fine-grained communication across pro-
cesses. The communication is single-sided, asynchronous, and is complemented
by lightweight synchronization primitives. For shared-memory parallelism, we
use data dependency-driven task-based parallelism using pthreads.

2.1 Distributed Memory Parallelism

We use the Additive Schwarz (AS) method at the first level of DD and asso-
ciate one sub-domain with each GASPI process. Thereby, the vertex set V of the
graph corresponding to the matrix A is decomposed into N non-overlapping sub-
domains V 0

i such that V =
⋃N

i=1 V 0
i and V 0

i

⋂
V 0

j = ∅ for i �= j. This decomposi-
tion may be augmented by a so called δ-overlap to generate partitions V δ

i (δ ≥ 1),
where V δ

i ⊃ V 0
i is obtained by including all the immediate neighboring vertices

of the vertices in V 0
i up to distance δ. Restriction operators Rδ

i ∈ R|V δ
i |×|V |

and scaling operators Dδ
i ∈ R|V δ

i |×|V δ
i | associated with each V δ

i and can be
defined such that a partition of unity 1 =

∑N
i=0(R

δ
i )

T Dδ
i R

δ
i is formed. Here, the

transpose (Rδ
i )

T corresponds to the expansion operator. Then, AS decomposes
the global problem Ax = b into sub-domain solve problems Aixi = bi, which
can be solved in parallel and whose solutions are patched together a posteriori.
The sub-domain matrix Ai is defined as Ai := (Rδ

i A(Rδ
i )

T ). Depending on the
sub-domain partitioning, different preconditioners can be implemented:

1) Non-overlapping AS preconditioner: M−1
AS =

∑N
i=1(R

0
i )

T A−1
i R0

i

2) Restricted AS (RAS) preconditioner: M−1
RAS =

∑N
i=1(R

0
i )

T Dδ
i A

−1
i Rδ

i .

We use δ = 1 in RAS which is known to converge faster than AS method [2].

2.2 Shared Memory Parallelism

The global matrix A loses coupling information across sub-domains in the first
level of the DD approach. This effect becomes more severe with the increas-
ing number of sub-domains. To prevent this, we introduce the second level of
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DD that partitions the distributed memory subdomain further using multilevel
nested dissection (MLND) as described in [1]. MLND preserves the informa-
tion of the matrix Ai and allows to obtain fine granular parallelism. We use the
multi-threading version of METIS to generate the MLND permutation Π in our
implementation. MLND reorders Ai into Ai,perm such that Ai,perm = ΠT AiΠ.
Independent local matrices are extracted from Ai,perm which are then factor-
ized in a task-parallel way. Similarly, we solve the triangular system using the
same MLND task tree structure exploiting the local dependency in the tasks. We
provide a custom data structure SPA to handle sparsity during the Crout ILU
factorization. Our SPA based implementation is significantly faster than C++
STL based data structures such as std::map and std::unordered map [4].

3 Preliminary Results

We discretize the following 3D convection-diffusion PDE using second order finite
differences on a regular rectangular mesh in an unit cube (x, y, z) ∈ Ω = (0, 1)3.

Δu + k2 ∗ x2(
∂u

∂x
+

∂u

∂y
+

∂u

∂z
) = f(x, y, z), k2 = 100 (1)

We set f(x, y, z) such that the solution u(x, y, z) of the above PDE is equal
to exp(xyz) ∗ sin(πx) ∗ sin(πy) ∗ sin(πz) and use Dirichlet boundary conditions
as u(∂Ω) = f(∂Ω). We solve the linear system using GMRES(30) solver with
termination criteria of relative residual as 10−9. The performance is evaluated
on a cluster of 2.4 GHz Intel(R) Xeon(R) Gold 6148 CPU dual socket nodes,
each socket with 20 cores which are connected by EDR Infiniband interconnects.
We start one GASPI process per socket in our experiments.

Fig. 1. GMRES runtime(s) for matrix size 8 million and MLND tree height as 5
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First, we investigate the shared memory performance. On 1 GASPI process
with 20 cores, MLND Crout ILU preconditioned GMRES achieves the parallel
efficiency of 47.21%. This allows to obtain 3.58x gain in preconditioned GMRES
run-time compared to plain GMRES on 20 cores (Fig. 1).

Second, we evaluate the performance of the hybrid implementation. On
64 GASPI processes each having 20 cores, RAS preconditioned GMRES(30)
achieves a parallel efficiency of 83.61%. This is superior to the AS precondi-
tioned GMRES(30) parallel efficiency of 65.60% and is because RAS has limited
the increase of GMRES(30) iterations for the higher number of GASPI processes
(Table 1). We obtain 3.88x gain in GMRES(30) run-time using MLND Crout
ILU based RAS preconditioner in comparison to no preconditioner on 64 pro-
cesses each having 20 cores (Fig. 2).

Table 1. GMRES iterations with different Schwarz preconditioners

# GASPI processes # Iterations using AS # Iterations using RAS

1 326 326

8 390 333

16 452 348

32 539 378

64 724 425

Fig. 2. GMRES runtime(s) for matrix size 64 million and 20 cores per process
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4 Future Outlook

The parallel efficiency of the MLND Crout ILU-based RAS preconditioner is
promising. To handle real-world large problems, we have introduced more robust
features such as row and col-based permutation, inverse-based droppings, and
MC64 matching and currently testing them on various real-world linear systems.
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Abstract. When solving compute-intensive tasks, CPU/GPU hardware resources
and specialized Grid, Custer, Cloud infrastructure are commonly used to achieve
high performance. However, this requires a high initial capital expense and ongo-
ing maintenance costs. In contrast, ARM-based mobile devices regularly see
improvement in their capacity, stability, and processing power daily while becom-
ing ever more ubiquitous and requiring no massive capital or operating expen-
ditures thanks to their reduced size and energy efficiency. Given this shifting
computer paradigm, it is conceivable that a cost- and power-efficient solution for
our world’s HPC processing tasks would include ARM-based mobile devices,
while they are idle during recharging periods. We proposed, developed, deployed
and evaluated a distributed, collaborative, elastic and low-cost platform to solve
HPC tasks recycling ARM mobile resources based on Cloud, microservices and
containers, efficiently orchestrated via Kubernetes. To validate the system scala-
bility, flexibility, and performance a lot of concurrent video transcoding scenarios
were run. The results showed the system allows for improvements in terms of
scalability, flexibility, stability, efficiency, and cost for HPC workloads.

Keywords: Kubernetes · Containers · Video transcoding ·Microservices · Cloud
computing ·Mobile computing · Distributed and collaborative computing

1 Introduction

To build a high-quality, distributed, collaborative, and scalable platform that was able
to process processing-intensive tasks requires the adoption of the newest techniques,
technologies, tools, and infrastructure patterns that allow taking advantage of all the
available benefits on today’s computing resources (On-Premise, Cloud and Mobile). We
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implemented the following features: a) Lightweight and scalable services (Microser-
vices), b) Auto-scalable infrastructure to guarantee a cost and power-efficient usage of
resources (Container and Container Orchestration), and c) Reusage of processing cycles
from idle, low-priced, cost-efficient and powerful mobile devices [1–3].

To accomplish the research goals, the following activities were carried out: 1) A bib-
liographical review from research papers, postgraduate thesis, articles, among others.
2) A review of distributed systems’ current state and best practices to build distributed
platforms (development tools, techniques and technologies). 3) Design, development
and implementation of the HPC system modules. It covered: 3.a) Development of x86
andmobile Android ARMWorker. 3.b) Platform administration andmanagement Dock-
erized microservices modules. 3.c) Dockerized queue (tasks) and database (statistics)
services modules. Finally, 3.d) Kubernetes orchestrator integration to manage, imple-
ment and automate container deployments in a flexible, efficient and optimized way.
4) To define and analyze the relevant features to support the integration of video com-
pression as the HPC task. For that aim, it was necessary to study digital video features,
codecs, formats and qualities, likewise, to analyze distributed transcoding mechanisms
and the open-source tools. In addition, determine representative audiovisual resources
to perform transcoding tasks. 5) To define metrics and experimentation scenarios and
choose x86 platforms and ARM devices to run the experimentation scenarios. Finally,
6) analyze the results and derive a conclusion from the data.

2 Collaborating Computing Network Architecture for HPC

Based on features we described earlier, the architecture developed and deployed is com-
posed by: a) Dockerized administration and management microservice platform; b)
Dockerized queue (tasks) and database (statistics) services; c) Kubernetes framework
for orchestration, scaling, replication and container automation and d) x86 and Android
ARM mobile workers (Fig. 1), as it is shown below.

Fig. 1. Collaborating computing network architecture diagram.

We adopted SaaS Kubernetes (K8s) [4] on AWS (EKS) and Azure (AKS) to host,
orchestrate, heal and monitor our distributed Dockerized services. We configured an
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auto-scalability mechanism based on CPU and memory container resources utilization
thresholds, guaranteeing services (pods) high availability, efficient distribution and scal-
ing across the cluster nodes. Lastly, we configured DNS to interconnect containers,
expose public services (frontend) and provide traffic routing and load balancing.

The front-end service allows clients to upload video files and select the encoding
parameters. It also allows users to visualize information about their ongoing and finished
tasks. Once the source files are received in the backendmicroservices, they are converted
into a Video Transport Stream File (ts) due to it being the recommended format for video
streaming [5]. In testing, its usage impacts positively on latency, playback compatibility
and viewing experience [6]. Once converted, files are split into smaller chunks [7] and
stored in a low-cost blob cloud storage [8]. We used both Azure Storage and Amazon
S3 to store data reliably and cheaply, upload and download stream files, and distribute
files via Content Delivery Networks for lower latency and caching.

Using Bitnami RabbitMQ and MariaDB Kubernetes helm charts, we built an auto-
scalable and fault-tolerant queue and database system where jobs and statistics are pub-
lished respectively. RabbitMQ is used to securely and asynchronously store, publish and
distribute backend service jobs to worker processing nodes. High Availability is guar-
anteed by RabbitMQ Policies and non-losing tasks are guaranteed by implementing a
manual ACKmode model where should a server error, client-side issue, execution time-
out happen, RabbitMQ thread moves the task back to queue. MariaDB is used to register
job information (parameters, chunks, completed tasks and storage endpoint). Further-
more, it stores information about executed tasks (task, worker node and executed time).
We use this data to evaluate the platform and worker efficiency in different scenarios.
High Availability is configured via Galera active-active mode.

Meanwhile, workers are continuously pulling from the RabbitMQ queue to obtain
tasks and compress using the FFmpeg library. When chunks are completely processed,
the Joiner backend microservice gathers parts and uploads them to the cloud storage
endpoint. Both worker and joiner, process tasks parallelly using Linux pipelines. While
the source is stream downloaded via HTTP GET curl request, is also processed by
FFmpeg and parallelly streamed to the cloud storage via HTTP PUT curl request. As a
result, disk and memory operations are reduced, improving system performance.

3 Platform Test and Obtained Results

We defined two test scenarios to validate platform capabilities when solving HPC tasks.
The first one verifies and compares the performance and power consumption for both
x86 and ARM-based worker processing devices via Effectiveness Index (EI) metric. EI
was based on power-usage metrics (watts) and processing time metrics (ms) for each
transcoding job. As a result, its value can be higher, equal or lower than 1. When higher,
it indicated that mobile devices have a better power-usage/performance index than their
x86 counterparts. When EI is lower, x86 wins out. Equal values mean a similar result.
The results obtained on [9], showed that the EI index was always higher than 5 (5–16
range, depending on the tasks performed) meaning ARM devices were able to process
these tasks at a significant efficiency advantage compared to by their x86 counterparts.

The second test scenario was envisioned to be a validation of platform behavior,
efficiency, performance, scalability and flexibility when executing heavy concurrent
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workloads [10]. Based on three load environments (E1, E2 and E3), the platform services
were stressed by validating cluster and horizontal auto-scaling features and analyzing
its impact in execution time. E1 defines a fixed workload and changes the worker nodes
number and capacity. On the contrary, E2 sets a fixed configuration for worker nodes
and varies the amount and size of source files. Finally, E3 proved the system flexibility,
running concurrent curl requests using the same video source file.

For E1, the results showed time is reduced whenever node capacity is increased
(31%–47%). When the number of nodes is doubled, the response time is nearly halved
by about 40–45%. In E2, the total processing time increases according to f(x)= a * x+
c. Despite this, it was verified that the platform remained stable. Lastly, in E3, job time
for concurrent tasks was related to nodes capacity and networking.

4 Preliminary Conclusions

Based upon the aforementioned experiments, the platform could be considered an inter-
esting alternative infrastructure for HPC tasks. Thanks to K8s integration, the results
showed stability, scalability, good response time, efficiency, and cost-optimized results
for a variety of scenarios. Regarding mobile workers, we tested ARM devices that are
capable of encoding video with a competitive performance/cost advantage over tradi-
tional x86 workers. We have recently improved, via Linux pipeline implementation,
worker stability, performance and efficiency.
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Abstract. In many applications there is a gap between the accuracy
provided by the platform and the accuracy that is required by the appli-
cation to produce good-enough results. Exploiting this gap specifically
is the concept of Approximate Computing, where a small reduction in
accuracy is traded for better performance or a reduction in energy con-
sumption. We assess applications regarding their suitability to be approx-
imated. We propose a novel approach for memory-aware perforation of
GPU kernels. The technique is further optimized, and we show its appli-
cability on embedded GPUs. In order to fully utilize the opportunities
of our approach, we propose a novel framework for automatic loop nest
approximation based on polyhedral compilation. Our approach gener-
alizes state-of-the-art perforation techniques and introduces new multi-
dimensional perforation schemes. Moreover, the approach is augmented
with a reconstruction technique that significantly improves the accuracy
of the results. As the transformation space is potentially large, we pro-
pose a pruning method to remove low-quality transformations.

Keywords: Approximate Computing · Compiler · GPU · Loop
optimization · Kernel perforation

1 Introduction

Applications often provide inherent resilience towards small errors [2]. We
observe a gap between the accuracy required by these applications on one
hand and the accuracy provided by a system on the other hand. Exploiting
this gap explicitly is known as Approximate Computing. Good candidates are
applications that already have to deal with inexact data such as signal process-
ing algorithms, e.g., employed in image processing applications. Many different
approaches that leverage the aforementioned gap have been presented in the last
years, ranging from hardware-based techniques such as approximate storage [10],
lossy memory compression [3] to software and software-based techniques such as
loop perforation [4] and precision tuning [1].

We study the potential of general-purpose applications to be approximated
using loop perforation. We explore how loop perforation can be refined to exploit
local memory on GPUs in order to improve the accuracy. Then, we adapt these
techniques, so they can be also employed on embedded GPUs. Finally, we show
how the Polyhedral Model can be used to perforate loop nests using multidi-
mensional perforation schemes.
c© Springer Nature Switzerland AG 2022
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2 Potential Applications to be Approximated

We study the potential of a wide range of applications to be approximated
using loop perforation. Loop perforation is a general-purpose technique where
some iterations of compute-intense loops are skipped. In Fig. 1, we assess the
suitability of applications from PolyBench/C [8] to be approximated using loop
perforation. Each column corresponds to a specific error budget. A shadowed
square represents one or more solutions for an error budget. The shading indi-
cates the speedup that can be achieved, darker colors indicate a higher speedup.
Groups of applications are indicated using horizontal lines, and they are labeled
on the right side.

Fig. 1. Suitability of applications for approximation (Color figure online)

We observe that applications show different outcomes. Remarkably, for
almost all applications, there is an approximation with low error. For data-
mining applications, the pattern of approximations is similar. Some approxima-
tions have low or medium error, and most have higher error.

For the group of kernel applications, we find heterogeneous results. Appli-
cations based on matrix multiplication like 2mm, 3mm, gemm, gemmver show
few approximations with low error. This outcome is likely due to the far-ranging
influence of local errors due to the way row/column-based matrix multiplication.

The two solver applications show different pattern: durbin has few approxi-
mations with medium speedup; lu has many approximations, which are spread
evenly across the error budget. Some approximations have a very high speedup.

For the stencil applications, there are fewer approximations in general, which
can be attributed to a smaller number of loops in the applications. jacobi-1d
and jacobi-2d have only a few approximations with low error.
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Fig. 2. Local memory-aware kernel perforation.

3 Local Memory-Aware Kernel Perforation

We introduce a novel approximation technique that is specifically designed to
approximate general-purpose GPU kernels [5]. Our approach extends state-of-
the-art approximation techniques such as the row-/column-based schemes used
in Paraprox [9] by exploiting the fast local memory to deliver more accurate
solutions. A typical GPU application (Fig. 2a) first loads data from the input
buffer (I) in the GPU global memory. Then it executes the kernel (II). Finally,
the result is written to the output buffer in global memory (III).

On GPUs, the latency for accessing the global memory is very high. GPUs
hide this latency by their massively parallel architecture and by using the sched-
uler. Performance can be improved by using the fast local memory to reduce
the number of global memory accesses. Local memory has a significantly lower
latency than global memory, however its size is limited. We exploit local mem-
ory to improve the accuracy of approximations. We introduce two additional
steps (in Fig. 2b): data perforation (Ia) and data reconstruction (Ib). During the

(a) Accu-
rate

(b) Stencil

(c) Rows1 (d) Rows2

Fig. 3. 2D perforation schemes.
(Color figure online)
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data perforation phase, we partially load the input data. Which parts are loaded
and which parts are skipped are determined by perforation schemes. In the data
reconstruction phase, data elements that were not loaded are reconstructed by
interpolation. We introduce three schemes shown in Fig. 3. Colored elements are
loaded from memory and white elements are omitted. The stencil scheme (b)
is designed specifically for stencil applications. The rows schemes (c and d) are
universally applicable. Our results show that we can achieve speedups of 1.6×–
3× given an error budget of 6% on average. In Fig. 4, we show selected results
for the Median application. We mark state-of-the-art Paraprox’ results using a
dot and our approach using x. The dashed line indicates the Pareto front.

4 Approximating Memory-Bound Applications
on Embedded GPUs

We evaluate Kernel Perforation on embedded GPUs [7]. Embedded GPUs are a
challenging platform for kernel perforation, as the computing capabilities are fun-
damentally different from desktop GPUs. Furthermore, some embedded GPUs
are not equipped with local memory. We compare performance of approximated
applications on two embedded GPUs (Qualcomm Adreno 506 and ARM Mali
T860 MP2) with a desktop GPU (AMD FirePro W5100).
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Fig. 5. Speedup on embedded and desktop GPUs.

Our results, depicted in Fig. 5, show that our technique improves performance
on embedded GPUs (a and b) by up to 38%. Even when there is no dedicated
local memory mapped in hardware, as it is the case for the ARM Mali GPU (b),
kernel perforation can still be used to accelerate memory-bound applications.

5 Automatic Loop Nest Approximation
with Reconstruction and Space Pruning

Polyhedral compilation has been proven to be an effective way to reason about
loops. We explore how the polyhedral model can be effectively used for the
implementation of automatic approximation techniques targeting loop nests [6].



Model-Based Loop Perforation 553

The Polyhedral Model represents loops by points on a lattice that are bounded by
affine inequalities. Loop transformations are expressed as operations that operate
on the lattice. These transformations can be applied subsequently. Finally, the
optimized loop code is synthesized in the code generation phase. Results are
shown in Fig. 6.

Fig. 6. Configurations generated by ALONA and state-of-the-art techniques.

We identify loop perforation as a loop transformation. Consequently, we use
the Polyhedral Model to perforate loop nests. We implement loop perforation
in two steps: First, we shrink the iteration domain. Then, we adjust memory
accesses in order to achieve uniform perforations across the iteration domain.
The number of possible perforated code versions grows with the number of loop
nests and is potentially very large. In order to reduce the number of code versions
required to be analyzed, we use our pruning method that allows for ordering
the configurations by a Barvinok-based score. This score represents the ratio of
perforated and accurate loop iterations.
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Fig. 7. Effects of reconstruction

As reconstruction has shown to have
a big impact on accuracy [5], we aug-
ment the code generation phase with a
reconstruction step. We perform a case-
study and study the effects of recon-
struction. The results are shown in
Fig. 7. We evaluate the effects of recon-
struction by comparing performance
and accuracy of approximations with
reconstruction and without reconstruc-
tion. We find that reconstruction is very
effective: on average, we improve the
error by 30% while retaining 60% of the
speedup.

6 Conclusion

We assess applications regarding their suitability to be approximated using a
general-purpose approximation technique. The suitability of applications to be
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approximated varies when given different error budgets. We present kernel per-
foration, a novel approach for approximating applications specifically tailored
to the memory architecture of GPUs. We demonstrate how the technique can
be employed on embedded GPUs. Furthermore, we show how model-based loop
perforation and reconstruction can be integrated in compilers and used in a way
that is compatible to traditional loop optimizations. When compared to state-
of-the-art solutions, our optimization space is much larger and contains many
superior solutions both in terms of performance and accuracy. Finding good solu-
tions in the large optimization space is a new challenge which we have started
tackling using our optimization space pruning. Future work can explore how to
intelligently pick promising configurations without testing many code versions.
We show that reconstruction is very powerful in terms of improving the accuracy
of the approximations. Further research in this direction is required in order to
fully exploit the opportunities opened up by our work.
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Abstract. With the increase in core count in multicore systems, data
movement is one of the main sources of performance slowdown in parallel
applications and data locality has become a critical factor in application
optimization. One of the important locality metrics is reuse distance,
which shows the likelihood of a memory access to be a cache hit. In this
work, we propose a low-overhead reuse distance profiling tool for multi-
threaded applications. Our method relies on available hardware features
in commodity CPUs, namely, Performance Monitoring Units (PMUs)
and debug registers, to detect data reuse in private and shared caches by
considering inter-thread cache line invalidations. Unlike prior approaches,
our tool is fast, accurate, does not change the program behavior and can
also handle shared cache accesses. Though it has low runtime (2.9×) and
memory overheads (2.8×), our tool achieves 92% accuracy.

Keywords: Reuse distance · Hardware performance counters · Debug
registers · Address sampling

1 Introduction

Data locality is a crucial performance indicator in shared-memory multicore
machines, and it impacts energy consumption and performance more than com-
putation [6]. One widely used locality metric is reuse distance – the number of
unique memory locations that are accessed between the current access to a loca-
tion (reuse) and the previous access to the same location (use). Reuse distance
shows the prospect of a memory access to hit in a cache. If the reuse distance of
an access is larger than the cache size, the access is likely to become a cache miss.
Reuse is also affected by cache line invalidations in a multicore system as inval-
idated cache lines can no longer be accessed in local caches. Due to its ability
to detect capacity and coherence misses in caches, reuse distance can be used to
predict cache miss rates of certain applications running on machines with known
cache configurations. Another possible use is to determine sizes of caches that
can minimize costly memory accesses to DRAM for a given application. Because
of these reasons, performance programmers and computer architects can benefit
from tools or techniques that profile reuse distance.
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Fig. 1. One possible execution scenario when profiling reuse distances in L1 caches:
(0) Every thread sets its PMUs to sample its memory accesses. (1) Thread T1’s PMU
counter overflows on a load or a store that accesses address m1. (2) T1 arms its watch-
point and a watchpoint of the other threads (e.g. T2) with address m1 in debug registers.
(3) T1 accesses address m1 again before any other threads, the watchpoint traps, reuse
distance is computed. (4) Cache line invalidation occurs if T2 stores to address m1

before T1 accesses m1 again.

Even though there are several studies in the literature on reuse distance
analysis [1,4,7,8], they have serious shortcomings and disadvantages. Hardware
simulator and binary instrumentation-based solutions incur large overheads [1,4,
8]. For example, Loca [8], a binary instrumentation-based reuse distance profiler,
introduces 49× time and 40× memory overheads. Binary instrumentation-based
solutions can also undesirably alter the parallel schedule thus the application
behaviour of the monitored threads [2]. To our knowledge, there are only two
publicly available open-source tools that measure reuse distances [7,8], both of
which can detect reuse distances only for individual threads and cannot be used
for multithreaded programs.

Due to the limitations of existing techniques in profiling multi-threaded appli-
cations, we need a fast and accurate tool to analyze reuse distance in multi-
threaded codes. In this work, we develop a profiling tool that leverages commonly
available hardware features in modern CPUs, i.e. PMUs and debug registers. Our
tool incurs low overhead as it relies on existing hardware features without requir-
ing any extra software layer. To profile multi-threaded codes, we propose two
algorithms that measure reuse distances in private and shared caches. Our pre-
liminary results are promising on Intel architectures and we plan to extend our
tool to AMD and ARM-based multicore systems that support address sampling.

In the rest of this paper, we consider OS threads to be pinned to CPU cores
and each core is not oversubscribed. Therefore, we use the words “threads” and
“cores” interchangeably. Also, for simplicity, we assume threads do not share
private caches (no simultaneous multi-threading [5]).

2 Profiling Algorithms and Preliminary Results

We propose an algorithm that measures reuse distances in L1 caches and shared
L3 caches. The workflow of the algorithm is as follow. In the beginning, each
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Fig. 2. One possible execution scenario when profiling reuse distances in L3 caches: (0)
Each thread configures its PMUs to sample its memory accesses. (1) Thread T2’s PMU
counter overflows on a load or a store to address m1. (2) T2 sets up watchpoints on
other threads that share the same L3 cache with type WP RW and on other threads that
do not share the same L3 cache with type WP WRITE. (3) T1 accesses address m1 before
any other thread, its watchpoint traps, and time reuse distance in L3 is calculated.
(4) Cache line invalidation at L3 level happens if T3 or T4 stores to m1 before m1 is
accessed by T1.

Fig. 3. Expected and estimated histograms of a bell-shaped and a multi-modal reuse
distance patterns on 32 threads running on Intel Xeon Gold 6148 Skylake CPU.

thread configures its PMUs to sample load and store accesses. When a thread
encounters a PMU counter overflow, the accessed effective address is collected
as sampled data.

To profile reuse distances in L1 caches, the thread that faces a PMU counter
overflow, say T1, sets a watchpoint in all threads to monitor the sampled address.
The reuse of that address is detected if the first trap after the watchpoint creation
happens in T1. If the first trap happens in another thread, say T2, due to a store
access, then a cache line invalidation is detected between T1 and T2, and any
following trap in T1 is no longer considered as a reuse. One possible execution
scenario is shown in Fig. 1.

To profile reuse distances in a shared cache, the thread whose PMU encoun-
ters a counter overflow, say T2, sets a watchpoint in a debug register in all of
the other threads. When the first trap happens in any thread Ti that shares the
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same L3 cache, reuse distance is computed between T2 and Ti. Otherwise, if the
first trap occurs because of a store access in any thread Tj that does not share
the same L3 cache with T2, a cache line invalidation at L3 cache level is detected.
One possible execution scenario is shown in Fig. 2.

The accuracy of our tool is verified by running it on synthetic benchmarks
with known reuse distance patterns. Figure 3 displays the bell-shaped and multi-
modal patterns produced by our tool on 32 threads. By comparing the patterns
generated by our tool against the expected patterns, the tool’s accuracy is shown
to be 92% when running with 32 threads. Due to the sampling-based nature of
our tool, the patterns generated by our tool do not exactly match the expected
patterns, particularly the pattern in Fig. 3b. One way to improve the accuracy
of our tool is by increasing sampling rate at the cost of performance degrada-
tion. The overhead numbers are obtained by running the tool on 10 PARSEC
benchmarks.

We refer the readers to [3] for more details on our profiling algorithms, the
accuracy verification experiment, and some use cases that demonstrate how our
tool can be used for performance tuning on profiled applications.

3 Future Directions

Our current tool works using the PMU architecture of recent Intel processors.
Other common architectures including ARM and AMD have somewhat different
PMUs, the use of which requires further research. We will leverage the knowledge
gained and target emerging multicore platforms, because no such tool exists for
those architectures yet, and all the prior work focused on Intel x86. With the
increased interest in ARM and AMD multicores, the outcomes of this thesis will
be very valuable and impactful to the computing community. Moreover, one of
the expected outcomes is to produce recommendations to the vendors on how to
improve the cache coherency protocols, performance monitoring and instruction
sampling capabilities of their chips. This provides invaluable information while
assessing the functionalities of emerging multicore systems.
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