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Abstract. Materials’ requirements for 3D concrete printing centre around print-
ability and buildability. The concrete must be pumpable, extrudable, yet retain
its shape after extrusion (fresh state) and stack over each other without yield-
ing and buckling failure (plastic state). The nature of 3D printed concrete mate-
rials has driven research into adapting various test methods to assess these
requirements. This study reports selected test methods evaluated for 3DCP in
its fresh and plastic state — rheometry, unconfined compression tests, gravity-
driven (slug) tests and slow penetration tests. The study further highlights their
correlations, applications, and practicality for the two main types of printable
materials — enhanced-thixotropic and accelerated-hydration concrete.
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1 Introduction

The major requirements for 3D concrete printing (3DCP) can be categorised into pumpa-
bility, extrudability, printability, and buildability [1]. Two major approaches of materials
formulation are widely used to achieve these — enhanced-thixotropic and accelerated-
hydration concrete. The former allows for a time-limited reversible moderate increase in
yield strength (structuration) of the fresh material by enhancing their thixotropy, using
viscosity modifying admixtures, while the latter finds its origin in hydrates nucleation
leading, in time, to an irreversible structuration of the material [2] using set accelerator
near the printing head/nozzle.

These stringent requirements give rise to generally stiff fresh concrete with fast-
changing materials properties that are not easily compatible with existing test methods.
Therefore, new test methods are being developed by researchers to evaluate the material
properties and guarantee that the target requirements are satisfied. Some of these selected
test methods include rheology tests, unconfined compression, gravity-driven tests, and
cone penetration tests [3].
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The rheometry tests are generally undertaken to evaluate if the printable material is
pumpable. In addition, materials that are not too stiff can also be tested for rheology
to ascertain that they retain their shape and have adequate structuration for buildability.
The compression tests most often evaluate material properties for buildability, especially
stiff materials. Accelerated materials are generally out of the scope of the former tests
and easily lend themselves to penetration tests. Gravity-driven tests are targeted at the
material’s properties obtainable at the print nozzle for shape retention evaluation. The
present study applied the selected test methods on two printable mixtures, enhanced-
thixotropic and accelerated-hydration concrete for comparative purposes and application
emphasis.

2 Materials and Methods

The mortar for printing consists of preblended dry (powder) materials of Portland cement,
fly ash, silica fume (70, 20, 10%, respectively) and fine sand formulated for high-
performance 3D concrete printing (Fig. 1a) [4, 5]. The enhanced-thixotropic mixture
was formulated to allow satisfactory structuration and an open time of about 2 h. For
printing, the mixture is pumped through a @33 mm and 5 m length pipe to a 20 mm
nozzle attached to a robotic arm. For the accelerated-hydration mixture, a secondary
dynamic mixer is attached to the printer head where an accelerator is dosed as a two-part
system. These mixtures have been tested at Loughborough University laboratories to
satisfy the requirements of 3DCP for targeted printing (e.g., Fig. 1b), and the results of
their properties evaluation are reported in this paper.
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Fig. 1. (a)Materials’ constituents for the high-performance 3D concrete printing (b) 2.5 m column
build height within 3 h and cantilever build at 20, 30, 40 & 50° to the vertical

2.1 Rheometry and Plastic-State Compression Tests

HAAKE Viscotester iQ with a rotor vane in cup geometry was used to evaluate the
rheological properties such as yield stress, modulus, plastic viscosity and structuration.
A flow curve test was used to evaluate the dynamic yield stress and plastic viscosity [6].
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This test is usually targeted at the pumpability of the mixtures. The static yield stress and
its development over time (structuration), targeted at the extrudability and buildability
(yielding failure) of thixotropic mixtures, was evaluated up to 60 min concrete age
using a single sample [6—8]. The shear modulus of the thixotropic mixture, targeted at
the buildability (buckling failure), was evaluated using the small amplitude oscillatory
shear (SAOS) [8, 9] up to 2 h of concrete age.

The unconfined compression of the thixotropic mixture, targeted at the buildability
(yielding and buckling failure), was evaluated to determine the compressive strength and
modulus up to 2 h of concrete age (Fig. 2a) using a @70 x 140 mm mould. True strain
measurements of the specimens under a 1 kN load cell were captured by a LaVision DIC
measurement system.

=—5mm

IS

TE
3

Ny,

® ©

Fig. 2. (a) Plastic-state compression setup, (b) Slug test setup, (c) Slow penetration test set up

2.2 Gravity-Driven (Slug) and Slow Cone Penetration Tests

For both the thixotropic and accelerated mixtures, an automated “slug” test system built
at Loughborough University ABCE laboratory (Fig. 2b) [3, 10] was used to estimate the
yield stress at the nozzle inreal-time (Eq. (1a) for the evaluation of the extrudability/shape
retention. Slow penetration of @100 x 200 mm samples under a needle attached to a
10 kN load cell (Fig. 2c) was also used to estimate the yield stress evolution (structura-
tion) up to 2 h and is usually targeted at the buildability (yielding failure). Estimation of
the yield stress is based on Eq. (1b) [11].

1= 28, (1a)

V3A'
F
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where m — slug mass, g — acceleration due to gravity, A — nozzle cross section area, T—
residual yield stress, F — force, r — radius of cone needle, h — height of cone needle.

T (1b)
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3 Results and Discussion

The steady-state properties (Fig. 3a) of the mixtures is such that segregation is avoided.
The rheology tests seem to be sensitive to capture the two-stage material behaviour — the
initial stage of restructuration and later stage of lower structuration rate. The plastic-
state compression tests are not sensitive enough to capture the initial restructuration.
These stages are critical during printing because this is when the deforming loads from
overlaying filaments are resisted by the underlayers.
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Fig. 3. (a) Flow curve test results (b) stress growth result (c) SAOS results (r g — dynamic yield
stress, |up — plastic viscosity, Arestruc — rate or restructuration, Agiryc — rate of structuration).

As noted earlier, the application of rheometry to accelerated concrete is unrealistic
but is adaptable to penetration test. Question arises on how penetration yield stress values
correlate with rheometry values. Within the limits of this study, Fig. 4f shows that a factor
of about 2.5 exists between the structuration rates of both methods. This can be traced
to the origins of internal friction of the mixture, adhesion to cone and heave of displaced
mortar. Assuming similar internal friction (particle interaction) within the accelerated
concrete, this will yield a structuration rate of 8.2 kPa/min instead of 20.4 kPa/min.
The compressive strength seems to have a similar structuration rate (67 Pa/min) with
the shear static yield strength from the rheometry (69 Pa/min), but the relation of their
stiffness (modulus) evolution seems unclear. The slug test results in Fig. 4a reveal that
the yield stress at the printer’s nozzle (786 Pa) is quite dissimilar to the dynamic yield
stress envisaged at the rotor-stator of the pump (53 Pa in Fig. 3a). At the flow rate of
1.4 kg/min, there is a lag of about 7 min between the pump and nozzle, allowing for
some sort of structuration within the pipe. This should be considered in the extrudability
of 3DCP, which is obtainable from the 7 min yield stress evolution of Fig. 3a.
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Fig. 4. (a) Slug test results (b) Compressive strength of the thixotropic mix (c) Compressive
modulus of the thixotropic mix (d and e) Penetration results of the thixotropic & accelerated
mixtures (f) Relation between results.

4 Roadmap for Application and Conclusion

Table 1 highlights the application and suitability of the selected test method for evalu-
ating the requirements of 3DCP. “Difficult” represents a situation where it is practically
impossible or a struggle to yield reliable results. The table is subjective to the authors’
experience, and the figure of the broken shear vane highlights the difficulty of trying
SAOS with the accelerated concrete for a few minutes.

The rheometry is fairly easy to execute for a trained specialist but limited in the range
of materials it can be tested with; very stiff, highly thixotropic and rapid setting materials
usually exceed the torque limit of classical rheometers within tens of minutes. Plastic-
state compression tests tend to be practicable for stiffer materials, and due to the plastic
nature of the tested material can make the evaluation of compressive modulus quite
tricky. The slug test is a new method for estimating yield stress and requires a specialist
setup for its automation. It physically evaluates the material properties as it is obtained
from the nozzle, unlike others that simulate the process. The slow penetration test result



Selected Test Methods 465

Table 1. Test method application and suitability for HP-3DCP requirements

3DCP mixture Thixotropic  Accelerated Suitability E

Rheometry Rotational & SAOS — Pumpability, extrudability, ;‘
SAOS - good difficult printability, buildability

Plastic-state Fair Very difficult  Buildability

compression

Slug test Good Good/fair Extrudability, shape retention

Slow penetration  Difficult Good Buildability

test

can be subjective and higher in value due to influencing factors; within the limits of this
study, its value deviated by a factor of 2.5 from the well-established rheometry method.
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