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Chapter 14
Predicting Landslide Susceptibility 
of a Mountainous Region Using a Hybrid 
Machine Learning-Based Model

Amol Sharma  and Chander Prakash 

Abstract The Himalayan region of northern India has witnessed extensive devasta-
tion over the years due to numerous landslide incidents. Ever-increasing infrastruc-
ture development activities have continuously tempered the fragile Himalayan 
ecosystem without manifesting genuine concern for the environment, leading to 
increased landslide occurrences in the region. Landslide susceptibility analysis is 
carried out to determine the probability of landslide occurrence based on the regional 
geological and environmental settings. The landslide susceptibility maps are gener-
ated by integrating the historical landslide information with landslide causative fac-
tors using modeling algorithms. In this study, a hybrid integration of frequency ratio 
(FR) model and support vector machine (SVM) model is carried out to access the 
susceptibility of Mandi district of Himachal Pradesh. A set of 1723 historical land-
slides were mapped from various sources and split into 70% training and 30% vali-
dation datasets. A set of 11 landslide influencing factors were identified, and a 
spatial relationship was generated using individual FR and SVM models and their 
hybrid integrated model. The susceptibility maps thus generated were evaluated for 
performance based on receiver-operating characteristic (ROC) curves. The results 
concurred that the FR-SVM model had better accuracy in comparison to individual 
FR and SVM model having validation accuracies of 84.7%, 77.9%, and 81.2 %, 
respectively. Therefore, the FR-SVM model is considered suitable for analysis and 
is recommended in similar geophysical environment.
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14.1  Introduction

Landslides are an omnipresent global hazard incurring losses around the geophysi-
cal environment. The devastating impact of landslides is not limited to the socioeco-
nomic losses but extends up to swerve environmental implications. The global 
disaster reports confirm that landslides are responsible for 4.9% of the total natural 
disasters [1]. The spatiotemporal occurrence of landslides is modulated by some 
triggering processes. These include earthquakes, extreme rainfall, snow/glacier 
melting, land-use/land cover (LULC) changes, various anthropogenic activities 
which cause vibrations, overburden on soil material, uprooting of supports laterally 
and change in moisture content of soil or rock structures, etc. [2, 3]. The global 
economic expansion and unplanned haphazard development activities, in the moun-
tainous areas, have exacerbated the socioeconomic impacts of landslides in recent 
times [4, 5]. Hence, for effective landslide risk management, the areas susceptible 
to landslides should be identified accurately so that adequate response and emer-
gency measures can be administered.

A detailed investigation of the various landslide influencing factors resulting in 
slope failure can provide relevant information regarding landslide occurrence. 
Landslide susceptibility mapping (LSM) is considered fundamental in a competent 
approach toward landslide hazard assessment, management, and mitigation [6, 7]. 
The susceptibility mapping is a complex process of establishing interdependence of 
historical landslide events and topographical, geological, and hydrological vari-
ables, which are expected to influence landslide occurrences on a regional scale [8]. 
The various stages of landslide susceptibility analysis include landslide inventory 
generation and identification of landslide causative factors (LCFs), spatially corre-
lating these variables using a modeling framework and model validation [9, 10]. 
The predictive potential of models is correlated with the quality and accuracy of 
landslide inventory and the optimal selection of LCF [4, 11]. For reliable and accu-
rate landslide susceptibility mapping of an area, accurate mapping of landslides and 
selection of causative factors should be conclusive and logical [12, 13]. Optimization 
of landslide causative factors is crucial for an effective prediction model [14, 15]. 
Researchers have used factor analysis, multicollinearity analysis, linear correlation, 
certainty factor approach, and multifactor set techniques for the optimal selection of 
LCF [10, 16]. Most of the time, these techniques were found to be inadequate or 
highly time-consuming. As such, no standard guidelines are available for the opti-
mal selection of LCF. Hence, there is a need to develop an adequate approach for 
optimal selection of the landslide causative factors (LCFs) to achieve high predic-
tive potential from the applied models within a reasonable time.

The LSM modeling process has evolved over the years from qualitative models 
such as weight of evidence (WOE) [17, 18], analytical hierarchy process (AHP) [19, 
20], etc. toward data-driven models such as the evidential belief functions (EBF) 
[21, 22], frequency ratio (FR) [23, 24], certainty factor (CF) [25, 26], etc. These 
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techniques have performed satisfactorily for landslide prediction but sometimes 
lack functional correlations between LCFs [4]. Another drawback of bivariate mod-
els is that hypothesis must be accepted before modeling [27].

The recent advancements in machine learning (ML) algorithms and their integra-
tion with Python or R programming have proved to be an articulate tool for mapping 
and analyzing natural hazards [28]. Traditional ML algorithms include logistic 
regression (LR) [4, 29], artificial neural networks (ANN) [30, 31], decision tree 
(DT) [17, 32], support vector machine (SVM) [28, 33], fuzzy logic (FL) [34, 35], 
Naïve Bayes (NB) algorithm [36, 37], kernel logistic regression (KLR) [38, 39], 
random forest (RF) [21, 29], etc. The ML algorithms can rearrange their internal 
structure according to landslide data type and have the potential to analyze and 
update the factor contribution automatically and continuously [37, 40]. However, 
the results of ML techniques are prone to errors and sometimes lack ease of inter-
pretation concerning the individual contribution of subclasses of LCF.  In recent 
times, various ensemble or hybrid learning techniques are being used, combining 
multiple modeling approaches to improve the overall predictive potential of the 
model [41]. Some commonly used ensembling techniques in landslide susceptibil-
ity analysis include bagging, stacking, and boosting approaches. A hybrid bagging- 
based kernel logistic regression (BKLR) approach was adopted by [42] using two 
kernel functions. Hence, the objective of the current study is to integrate the fre-
quency ratio (FR) statistical model with radial kernel-based support vector machine 
(SVM) learning models to analyze and predict the potential landslide-prone areas. 
The accuracy of prediction and validation for FR, SVM, and hybrid FR-SVM mod-
els is analyzed using ROC curves.

14.2  Study Area

The study area constitutes the Mandi district of Himachal Pradesh lying between 
31°13′50″–32°04′30″ N and 76°37′20″–77°23′15″ E. The district has a total area of 
3951  km2 with a population of 901,344. A major part of the district falls in the 
Lesser Himalayan region comprising of steep and rugged mountain ranges and flu-
vial valleys. The regions’ altitude varies between 500 m and 3400 m from low-lying 
valleys to higher-elevation mountain ranges. With a forest cover of 45%, scrub, sal, 
and bamboo forests are found at lower elevations, while the alpine forests are char-
acteristics of higher elevations. The Siwaliks and Lesser Himalayan soils are mainly 
found in the district, which are generally high in organic matter and characterized 
by rugged topography. The district has two distinct and well-defined hydrogeologi-
cal units, that is, the porous formations constituted by unconsolidated sediments and 
the fissured formations. The study area is drained by Beas and Sutlej rivers. The 
density of roads for the region is 155 km per 100 km2, which is higher than the 
state’s average density.
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A landslide inventory is a prerequisite for analyzing the spatial distribution of 
landslides, which is necessary to identify potential landslide zones in the study area 
[43]. The primary landslide inventory was generated from visual interpretation 
through high-resolution Google Earth images and analyzing the terrain characteris-
tics derived from Advanced Land Observing Satellite (ALOS) Polarimetric Phased 
Array L-band Synthetic Aperture Radar (PALSAR) Digital Elevation Model 
(DEM). The published landslide inventories from Himachal Pradesh State Disaster 
Management Authority (HPSDMA), Geological Survey of India (GSI), and NASA 
along with numerous newspaper articles and previous landslide studies of the study 
area [44–46] were the auxiliary data sources. The spatial information of the land-
slides was extracted, and an inventory was compiled by incorporating geomorpho-
logic, LULC, landslide magnitude (length and area) and other characteristics. A 
total of 1723 landslides with an average area of 1425 m2, the area of landsides varies 
from a minimum of 2.5 m2 to maximum 2.9 × 105 m2, were mapped. The landslide 
inventory was further split individually for both districts into 70% training and 30% 
validation datasets, as suggested by [47–49] in ArcGIS (Fig. 14.1).

Fig. 14.1 Study area and landslide inventory with training and testing datasets
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14.3  Materials and Methods

14.3.1  Landslide Causative Factors (LCFs)

The predictive capabilities of the applied algorithms depend on the quality of pro-
cessing data derived from data sources such as DEM and satellite images. This 
study incorporates 11 independent factors influencing landslide occurrence. ALOS- 
PALSAR digital elevation model (DEM) of 12.5 m resolution was used to derive 
elevation, slope gradient, slope aspect, curvature, topographical wetness index 
(TWI), and drainage density whereas the Landsat-8 (OLI) imagery was used to 
derive the normalized difference vegetation index (NDVI) and lineament density 
maps. The rest of the thematic layers, such as distance from road, geology, and soil 
maps, were procured and mapped using data from various government repositories 
[50, 51]. The summary of data products and derived information is given in 
Table 14.1. The slope gradient measures the steepness of the hilly slopes and was 
subdivided into five categories using natural break classification. The plan curvature 
is defined as the angle of contours generated by their intersection with the horizontal 
surface. The plan curvature represents the direction of maximum slope and helps in 
identifying the morphology of topography of the area and differentiating between 
valleys and ridges [52, 53]. Although the relationship between landslides and aspect 
is still under investigation, the aspect has a direct relationship with discontinuities, 
vegetation covers, and soil moisture, which affects the landslide occurrences [36, 
54]. The elevation of a region signifies the altitude from mean sea level and is widely 
used in susceptibility analysis. The northern region of the study area has higher 

Table 14.1 Data purpose and source along with their scale/resolution

Data Purpose Source
Scale/
resolution

State Authority, Himachal 
Pradesh

Boundary of the study 
area

https://hpmandi.nic.
in/map- ofdistrict/

1:50000

H.P. Disaster Revenue 
Reports (2015–2019), GSI, 
NASA, etc.

Landslide mapping https://hpsdma.nic.in/ 1:50000

Digital elevation model 
(ALOS PALSAR)

Topographical and 
hydrological 
characteristics

https://search.asf.
alaska.edu

12.5 m

High-resolution Landsat-8 
imagery

Lineament density and 
NDVI

http://earthexplored.
usgs.gov

30 m visual
15 m 
panchromatic

Geological Survey of India 
(GSI)

Geology https://bhukosh.gsi.
gov.in/

1:50000

MORTH, NHAI, and GSI Road network https://morth.nic.in/ 1:50000
ICAR-NBSS and LUP Soil characteristics https://www.nbsslup.

in/
1:50000
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elevation varying from 3000 to 6000  m. The drainage density represents stream 
length per unit area in a drainage basin. It directly influences the erodibility of 
slopes that are dissected by channels and influences the surface runoff [55]. The 
topographical wetness index (TWI) is the measure of accumulation of water in areas 
having variable elevations. Higher TWI values signify greater tendency of slopes 
toward erosion [5, 53]. The TWI map of the study area was prepared by mathemati-
cal augmentation of drainage parameters, using equation TWI = [ln (FS)/Tan (α)], 
where FS represents the accumulation of flow and α represents the gradient of slopes. 
The lineament density represents the topographical surface and the underlying 
faults and fractures in the structures. The lineaments of the study area were derived 
from Landsat-8 imagery and line density tools in GIS [56]. The NDVI is a dimen-
sionless entity and gives information about the vegetation cover in an area. The 
NDVI map of the district was generated from Landsat-8 images by using image 
analysis in ERDAS IMAGINE software using NDVI = (ꞶNIR – ꞶRED)/(ꞶNIR + ꞶRED), 
where ꞶNIR represents near-infrared channel and ꞶRED represents red channel of the 
electromagnetic spectrum.

The geology of an area represents the topographical aspects of the underlying 
surface of an area along with its mineral and rock types [53]. The Jutogh formation 
of Mandi district comprises of slates, schists, and quartzite with hematite. Mandi- 
Darla volcanic is also known to occur, which represents lava flows in the past. The 
Shah formation is characterized by salt grit, dolomite, limestone, quartzite, and red 
shales [57, 58]. The soil properties influence the landslide occurrence in the region 
[53]. The study area’s soil map procured from the National Bureau of Soil Survey 
and Land Use Planning (ICAR-NBSS and LUP), digitized in GIS environment. 
Five categories of soils were identified based on their geomorphological and erosion 
characteristics. The lesser Himalayan soils of side and reposed slopes are predomi-
nant in both the districts having coarse loamy and skeletal loamy soils and facilitat-
ing moderate to swerve erosion [59]. Additionally, Siwalik soils of fluvial valleys 
are widespread in Mandi district having sandy to loamy structure facilitating moder-
ate erosion.

The unplanned road construction activities often involve disruption of the natural 
bed slopes which results in higher probability of slope failures [48, 52]. The details 
of road network distribution of national highways, state highways, and major dis-
trict roads in the study area were procured from MORTH and GSI database, digi-
tized in GIS software. The Euclidian distance from roads was calculated using 
distance from line operation in GIS and was classified into five categories from 0 to 
500 m at an interval of 100 m each to analyze the influence of road construction on 
landslide occurrence. The methodology adopted for the study area is described 
through a flowchart as shown in Fig.  14.2, and the maps of thematic layers are 
shown in Fig. 14.3.
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Fig. 14.2 The methodology adopted for the susceptibility analysis

14.3.2  Bivariate Frequency Ratio (FR) Model

The FR represents the ratio between the pixel data with and without landslides and 
pixels of input raster data layers of causative factors. The FR values are computed 
for each class of causative factors using Eq. (14.1). The correlation is high if the FR 
value is greater than 1, while less than 1 value of FR represents lower correlation of 
landslides with causative factors [60]. A study to access landslide susceptibility 
using the frequency ratio method was carried out by [61], which incorporated nine 
predictor variables. The FR model is considered a good modeling algorithm due to 
its easier applicability and production of better results than similar models [62]:

 
FR i N N N NLP TP LP TP( ) = ∑ ∑( )( / / /

 (14.1)
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Fig. 14.3 Landslide causative factors: (a) slope gradient, (b) plan curvature, (c) slope aspect, (d) 
elevation, (e) drainage density, (f) lineament density, (g) geology, (h) NDVI, (i) soil, (j) distance 
from roads, and (k) TWI
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where:

NLP, landslide pixels in each class of landslide factors
NTP, total number of pixels in each class
∑NLP, total landslide pixels in the study area
∑NTP, total pixels in the whole study area

The FR values calculated for all landslide factors are combined to produce the 
final LSM map using Eq. (14.2):

 LSM FR FR FR FRFR = + + +…+1 2 3 n  (14.2)

14.3.3  Support Vector Machine (SVM) Model

The SVM algorithm is a set of supervised machine learning algorithms used to ana-
lyze nonlinear data for regression as well as classification [63]. SVM is a nonpara-
metric approach which uses classification hyperplane along with a set of data points 
that are closer to the hyperplane called support vectors to maximize classification 
margin [33]. The SVM is considered a robust algorithm and is widely used in land-
slide susceptibility analysis.

The kernel tricks convert nonlinear datasets and project them into higher- 
dimensional dataset by applying Lagrangian multipliers. These functions can be 
categorized as radial, linear, or polynomial and sigmoid [10, 64] and are mathemati-
cally expressed as Eq. (14.3):

 
k x y f x f yi j i j,( ) = ( ) ( ) ,

 (14.3)

where xi and yj are the dimensional inputs for kernel function k in an n-dimensional 
environment. The optimum hyperplane is generated using the decision function 
given in Eq. (14.4):

 
y x x b( ) = ( )( ) +α ρ. ,

 (14.4)

where α represents the orientation vector of the hyperplane, ρ(x) is the input sample 
x which is to be converted, and b represents the distance of hyperplane from 
the origin.
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14.4  Result and Discussion

14.4.1  Test for Multicollinearity

A test to identify multicollinearity among independent variables was carried out to 
check for the presence of any correlation among landslide causative factors. The 
problem of multicollinearity can result in reduced accuracy of the model. The toler-
ance values less than 0.1 and variance inflation factor (VIF) values greater than 10 
suggest higher correlation between independent variables, and such variables should 
be removed from dataset. The results for multicollinearity of 11 landslide factors 
indicate that the VIF and tolerance values are within the acceptable limits as shown 
in Table. 14.2.

14.4.2  LSM Using FR Model

All the classes of landslide causative factors were rasterized and reclassified in the 
GIS environment for analysis. The FR values were calculated for 11 landslide caus-
ative factors, and their spatial relation to landslide factors is analyzed. The resultant 
FR values of each subclass of the landslide factors were calculated in GIS as shown 
in Table 14.3. The analysis indicates that drainage density, geology, NDVI, distance 
from road, and TWI were the critical factors affecting the study area’s landslide 
susceptibility. While analyzing the hydrological parameters, areas with moderately 
high, high, and very high drainage density and TWI values were prone to landslides. 
Also, it was found that areas near the vicinity of roads were found to be more land-
slide susceptible. In the current study, the distance from the road class of 0–100 m 

Table 14.2 Multicollinearity analysis

Model
Coefficients of multicollinearity
Tolerance VIF

Elevation 0.698 2.451
Slope aspect 0.775 1.165
Curvature 0.514 8.793
Slope gradient 0.231 3.037
Drainage density 0.282 8.525
Lineament density 0.149 6.785
Geology 0.336 2.976
NDVI 0.131 7.631
Soil 0.472 5.270
Roads 0.287 7.638
TWI 0.312 4.686
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Table 14.3 Landslide occurrences and their spatial relation with landslide causative factors

Class 
pixels

Percent of 
pixels

Landslide 
pixels

Percent of 
pixels

Frequency 
ratio
(FR) values

Landslide causative 
factors
Slope gradient
Flat 435014 0.102 9 0.008 0.079
Moderate 948259 0.222 85 0.076 0.341
Moderately steep 1374272 0.322 304 0.271 0.842
Steep 1047813 0.245 490 0.437 1.780
Very steep 466470 0.109 234 0.209 1.910
Plan curvature
Convex 94610 0.022 55 0.049 2.213
Flat 1953189 0.457 254 0.226 0.495
Concave 166377 0.039 73 0.065 1.671
Slope aspect
Flat 33660 0.008 4 0.004 0.452
North 484657 0.113 126 0.112 0.990
Northeast 515422 0.121 115 0.102 0.849
East 497821 0.117 81 0.072 0.619
Southeast 503993 0.118 108 0.096 0.816
South 545067 0.128 175 0.156 1.222
Southwest 647098 0.151 238 0.212 1.400
West 546964 0.128 195 0.174 1.357
Northwest 497146 0.116 80 0.071 0.613
Elevation (m)
Low 995824 0.233 212 0.189 0.811
Moderate 1624309 0.380 266 0.237 0.623
Moderately high 1028156 0.241 539 0.480 1.996
High 537465 0.126 101 0.090 0.715
Very high 86074 0.020 4 0.004 0.177
Drainage density
Very low 1299831 0.305 150 0.134 0.439
Low 1908487 0.448 229 0.204 0.456
Moderate 877782 0.206 337 0.300 1.459
High 179820 0.042 393 0.350 8.307
Very high 5908 0.001 23 0.020 14.797
Lineament density
Very low 585993 0.138 67 0.060 0.434
Low 1093925 0.257 113 0.101 0.392
Moderate 1109204 0.260 329 0.293 1.126
High 1085918 0.255 407 0.363 1.423
Very high 396788 0.093 206 0.184 1.971

(continued)
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Table 14.3 (continued)

Class 
pixels

Percent of 
pixels

Landslide 
pixels

Percent of 
pixels

Frequency 
ratio
(FR) values

Geology
Larji group 17112 0.004 6 0.005 1.335
Shali group 480871 0.113 99 0.088 0.784
Jaunsar group 90819 0.021 6 0.005 0.252
Middle Siwalik group 77936 0.018 37 0.033 1.808
Salkhala group 1020010 0.239 326 0.291 1.217
Hazaribagh granite 481719 0.113 77 0.069 0.609
Dharmasala group 761109 0.178 186 0.070 1.679
Upper Siwalik group 258408 0.060 4 0.004 0.059
Lower Siwalik group 61338 0.014 3 0.003 0.186
Sundernagar formation 100192 0.023 33 0.119 0.650
Malani Volcanic Suite 15813 0.004 1 0.007 0.112
Simlipal ultramafics 368975 0.086 144 0.128 1.486
Kulu formation 534747 0.125 200 0.178 1.424
NDVI
Waterbodies 16242 0.004 33 0.029 7.736
Urban 492012 0.115 286 0.255 2.213
Barren land 470706 0.110 152 0.135 1.230
Shrubs and grassland 1933318 0.453 399 0.356 0.786
Sparse vegetation 1204917 0.282 219 0.195 0.692
Dense vegetation 154633 0.036 33 0.029 0.813
Soil
Lesser Himalayan soils of 
side/reposed slopes

2736453 0.641 899 0.801 1.251

Lesser Himalayan soils of 
fluvial valleys

280750 0.066 124 0.111 1.682

Siwaliks soils of side/
reposed slopes

1083902 0.254 79 0.070 0.278

Siwaliks soils of fluvial 
valleys

62713 0.015 16 0.014 0.971

Lesser Himalayan soils of 
summits

108010 0.025 4 0.004 0.141

TWI
Very low 3192586 0.747 349 0.311 0.416
Low 1031330 0.241 436 0.389 1.610
Moderate 37036 0.009 208 0.185 21.383
High 9038 0.002 105 0.094 44.232
Very high 1838 0.000 24 0.021 49.715
Distance from road (m)
0–100 240721 0.056 406 0.362 6.421
100–200 196740 0.046 297 0.265 5.747
200–300 172030 0.040 111 0.099 2.456
300–400 156805 0.037 80 0.071 1.942
400–500 145918 0.034 43 0.038 1.122
>500 3359614 0.787 185 0.165 0.210
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Fig. 14.4 Landslide susceptibility maps: (a) FR model, (b) SVM model, and (c) FR-SVM model

had the highest FR values and hence requires special attention while planning con-
struction activities. The LSM map generated was reclassified as areas with very low, 
low, moderately high, and very high susceptibility zones as shown in Fig. 14.4a.

14.4.3  LSM Using SVM Model

The SVM model was incorporated in GIS environment using R-integration and was 
utilized to calculate the spatial prediction of landslides in the study area. The LSM 
map generated was reclassified as areas with very low, low, moderately high, and 
very high susceptibility zones, as shown in Fig. 14.4b. It was observed that the slope 
gradient, drainage density, lineament density, soil, and distance from the road were 
the vital parameters that influence landslide occurrences. The slope gradient influ-
ences the landslide occurrence as steeper slope facilitates maximum slope failures. 
The results also show that the slope gradient classes, namely, steep (35°–45°) and 
very steep (>45°), are susceptible to landslides, whereas landslide occurrences were 
minimum for flatter slopes (<15°). Similarly, due to modest terrains at lower eleva-
tions (400 m–1000 m), these regions also witness less landslides. The highest prob-
ability of landslides was observed for moderate (1000 m–1500 m) to moderately 
high (1500 m–2000 m) elevations, but at high (2000 m–2500 m) to very high eleva-
tions (2500 m–3500 m), the probability of landslides again decreases.

14.4.4  LSM Using FR-SVM Model

The landslide causative factors were reclassified using FR model values, and the 
landside causative factors were reclassified according to these FR values. The 
radial-based SVM algorithm was applied to these factors to generate final LSMFR- 

SVM map. The LSM produced using the FR-SVM model was classified into five 
categories as shown in Fig.  14.4c. The LSMFR-SVM map analysis indicated that 
15.28% of the total area falls into high landslide susceptibility zone, whereas 6.49% 
of the total area falls into very high landslide susceptibility zone. The analysis con-
firmed that TWI, drainage density, and NDVI were highly correlated to landside 
occurrence in the region.
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14.5  Discussion

The disaster caused by landslides is not limited only to the socioeconomic loss but 
has a profound and everlasting impact on the overall demographic upliftment of the 
area. The effective management of landslide risk relies predominantly on the accu-
racy of the area’s landslide susceptibility maps. This study aims to carry out the 
comparison of FR, SVM, and hybrid FR-SVM models for their accuracies in pre-
dicting landslides.

The analysis of the LSM’s produced using FR, SVM, and hybrid FR-SVM mod-
els indicated that areas in the vicinity of roads (0–100  m) having high drainage 
density and having steeper slopes are more susceptible to landslides. In hilly regions 
such as Mandi district, the unplanned road construction activities continuously 
employ with the natural bed slope of the region. The areas with lower elevation have 
extensive developmental activities in comparison to higher regions of the study 
area. Since the regions constituting higher elevations are less approachable, there-
fore, less landslide incidences are reported.

The remaining landslide factors, that is, slope aspect, NDVI, geology, etc., had 
moderate to low influence on landslide occurrence. The results of this study are in 
accordance with similar landslide susceptibility studies of mountainous regions [30, 
38, 51, 65].

The SVM is considered as a robust model and has been applied in wide varieties 
of landslide susceptibility analyses. However, it lacks in assigning effective relative 
weights to subclasses of causative factors. The SVM predictive power is maximized 
when the sample datasets are nonlinear and uses kernel functions for classification 
which sometimes leads to overfitting. The FR is a quantitative statistical model that 
can easily assign factor importance to subclasses of causative factors in mini-
mal time.

While comparing the results obtained from the models, the FR-SVM model per-
formed better than individual FR and SVM models. The FR-SVM model obtained 
a higher AUC value (84.7%) for model prediction as compared to FR model (77.9%) 
and SVM model (81.2%) as shown in Fig. 14.5. Hence, the use of hybrid model for 
predicting landslide susceptibility helps in eliminating the shortcoming of individ-
ual methods and improves the overall accuracy of the model.

Fig. 14.5 ROC curves with AUC values: (a) FR model, (b) SVM model, and (c) FR-SVM model
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14.6  Conclusion

Landslides constantly threaten the communities residing in landslide-prone moun-
tainous regions. The planning of landslide management and mitigation activities in 
such regions requires adequate knowledge of the location and probable impact due 
to landslides. The Mandi district of Himachal Pradesh is highly prone to landslides 
and has witnessed landslide-induced destruction for many years. In the present 
study, 1723 landslides were documented from various sources and field observa-
tions, out of which 1206 (70%) landslides were included in the training dataset and 
517 (30%) landslides were included in the testing dataset using random sampling. 
Also, it should be noted that all these landslide incidences were assumed to be trig-
gered from rainfall only, and other triggering factors like earthquakes, volcanic 
eruptions and rapid snowmelt, etc. were neglected. In this study, although indepen-
dent, the landslide causative parameters were chosen manually based on topograph-
ical and hydrological conditions of the study area. Eleven factors having high 
correlation to landslide occurrences were selected for identification of areas prone 
to landslides. The results of all models indicated that drainage density, slope gradi-
ent, and road distance are the three variables to be highly correlated to landslide 
occurrence. The results confirmed that the use of hybrid FR-SVM model produces 
robust model having better AUC values as compared to individual FR and SVM 
models. The process of integration of a bivariate and machine learning models pro-
vides highly accurate spatial correlation among variables with minimal overfitting 
of model. The outcomes of the present study should be considered during the plan-
ning of mitigation strategies in mountainous regions with similar topographic and 
hydrological conditions.
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