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Abbreviations

BED Biologically effective dose

bid Twice a day

CTLA-4 Cytotoxic  T-lymphocyte-associated
protein 4

ENE Extranodal extension

FDG Fluorodeoxyglucose

fx Fraction

HNSCC Head and neck squamous cell
carcinoma

HPV Human papillomavirus

ICI Immune checkpoint inhibitor

iNOS  Inducible nitric oxide synthase

irAE Immune-related adverse effect

LA Locally advanced

MDSC Myeloid-derived suppressor cell

NK Natural killer

NSCLC Non-small-cell lung cancer

(0N} Overall survival

PD-1 Programmed cell death protein 1

PD-L1  Programmed death-ligand 1
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Key Points

e The immune system plays a critical role
in carcinogenesis.

* Radiotherapy has diverse immunomodu-
latory effects than can both stimulate and
inhibit an antitumor immune response.

* Preclinical studies in head and neck can-
cer models support synergy between
radiotherapy and immunotherapy and
suggest additional avenues to modulate
the interaction.

e Existing clinical data indicate that the
combination of radiotherapy and immu-
notherapy is relatively safe and well-
tolerated by patients, but efficacy results
have not yet matched those seen in other
tumor types.

* Ongoing clinical trials for both recur-
rent/metastatic disease and locally
advanced disease will provide further
insight on how to improve patient
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Introduction

Head and neck cancers comprise a significant
portion of the global cancer burden; when aggre-
gating subsites, they are the eighth most common
cancer worldwide by both incidence and mortal-
ity [1]. Although the vast majority of head and
neck cancers are squamous cell carcinomas
(HNSCC) and have traditionally been associated
with tobacco and alcohol use, human papilloma-
virus (HPV)-associated oropharyngeal squamous
cell carcinoma (SCC) has emerged as a new dis-
ease entity with markedly different biological
behavior [2].

Ever since the foundational work of Henri
Coutard, who was the first to use X-rays to treat
laryngeal cancer almost 100 years ago [3], radia-
tion therapy has played a key role in the treatment
of HNSCC. Radiation continues to be used exten-
sively in both the curative and palliative setting,
although the distinction between the two is now
sometimes blurred with growing recognition of
the oligometastatic state, where patients with
limited numbers of metastases can achieve pro-
longed survival, or even cure [4, 5]. Technological
advancements, in both imaging and treatment
delivery, have enabled more precise radiation
treatment that has reduced treatment-related mor-
bidity and improved patient outcomes. However,
even with the use of modern radiation techniques,
there are still opportunities for further improve-
ment [4].

The immune system has a critical role in tumor
development, and the development of immune
evasion by tumors is a key step in carcinogenesis
[6, 7]. Attempts to reinvigorate an antitumor
immune response have been widely integrated
into practice following the development of the
immune checkpoint inhibitors (ICIs) targeted
against the immune checkpoint receptors cyto-
toxic T-lymphocyte-associated protein 4 (CTLA-
4), programmed cell death protein 1 (PD-1), and
programmed death-ligand 1 (PD-L1). Since the
initial FDA approval of ipilimumab (a CTLA-4
inhibitor) in 2011 for the treatment of metastatic
melanoma based on a proven overall survival
advantage [8], antibodies blocking CTLA-4 and
PD-1/PD-L1 have been tested and approved

across a wide spectrum of malignancies. In
HNSCC, both pembrolizumab and nivolumab
(PD-1 inhibitors) have gained FDA approval for
use in recurrent/metastatic HNSCC after progres-
sion through platinum-based chemotherapy [9-—
11]. Pembrolizumab additionally has been
approved in the US for use in the first-line setting
in patients with recurrent/metastatic HNSCC,
either in combination with chemotherapy or alone
as monotherapy depending on tumor/tumor
microenvironment PD-L1 expression [12].
Unfortunately, overall response rates to PD-1
(inhibitors in unselected patients with HNSCC)
remain low at approximately 10-20% [9-12],
although patients who do respond can have long-
lasting, durable remissions, as has been the case
with other solid tumor patients who respond to
PD-1 blockade [13]. The possibility of durable
long-term response has been a driver of the rapid
uptake in clinical practice and has invigorated
efforts to develop predictive biomarkers. Tumor
mutational burden, a potential surrogate for
tumor neoantigens that can be recognized by the
immune system, is one such biomarker, leading
to the first ever histology-agnostic FDA approval
of the PD-1 inhibitor pembrolizumab for mis-
match repair deficient tumors of any histology
[14, 15], though there is increasing recognition
that the types of mutations and ability to generate
neoantigens may be as important as the number
of mutations present [16]. PD-L1 expression on
both tumor cells and infiltrated immune cells has
also been explored as a biomarker across several
histologies with varying results; in HNSCC, sub-
group  analyses of  Checkmate 141,
KEYNOTE-040, and KEYNOTE-048 all suggest
that higher PD-L1 expression does correlate with
the likelihood of survival benefit [10-12]. It is
less clear whether patients with low or no PD-L1
expression still benefit from PD-1 directed ther-
apy; analyses of Checkmate 141 and
KEYNOTE-048 show questionable benefit for
the PD-L1-negative subgroup when comparing
the treatment and control arms [11, 17]. Finally,
for HNSCC patients, HPV-associated malignan-
cies with relatively fewer tumor mutations as
compared to tobacco-associated malignancies
may also respond to immune checkpoint block-
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ade as novel viral-associated neoantigens might
be recognized by the immune system. Indeed,
subgroup analyses of the Checkmate 141 and
KEYNOTE-040 trials did not show any clear dif-
ferences in response or clinical benefit based on
pl6 expression status (a surrogate for HPV-
associated tumors) [10, 11, 18].

In addition to better patient selection through
the use of predictive biomarkers, augmenting the
antitumor immune response with other therapies
could also improve immunotherapy response
rates. Radiation therapy increasingly has been
recognized to have diverse immunomodulatory
effects, and there has consequently been interest
in possible synergism between radiotherapy and
immunotherapy. In the remainder of this chapter,
we will summarize the preclinical data that illus-
trate the immune effects of radiotherapy, review
the unique immune landscape of HNSCC, and
finally discuss both current preclinical and
clinical data relevant to the combination of radio-
therapy and immunotherapy specifically in
HNSCC (Fig. 7.1).

Immune Effects of Radiotherapy

Traditionally, the antitumor effects of radiother-
apy have been attributed to direct cytotoxicity
secondary to the induction of DNA damage, and
while it was known over 40 years ago that radio-
therapy also depends on an intact immune system
to exert its full antitumor effect [20], the interac-
tion between the immune system and radiother-
apy has garnered more interest in the past two
decades. It is now recognized that the immune
effects of radiation may contribute significantly
to an antitumor response; however, these immune
effects are also quite complex and can be both
immunostimulatory and immunosuppressive.
Radiation can induce immunogenic cell death,
which gives rise to adaptive immune responses
[21, 22]. Many mechanisms can be involved in
this process, and a full detailed review is beyond
the scope of this discussion. However, recent
studies have shown radiation can promote
immune activation via calreticulin-, ATP-, and
HMGB-mediated pathways [22, 23]. Radiation
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Fig.7.1 Opportunities for radioimmunotherapy in HNSCC. (With permissions from [19])
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also leads to the presence of cytosolic DNA,
which triggers the cGAS/STING pathway and
subsequent production of type-I interferon [24,
25]. Type-I interferon is crucial for the activation
of dendritic cells, which ultimately recruit and
prime T cells. These signals together are critical
for the initial development of an immune response
specific to tumor neoantigens.

Radiation can promote antitumor immunity
through additional mechanisms. Radiation can
diversify antigen presentation by tumor cells
through promotion of intracellular peptide degra-
dation as well as upregulation of MHC expression
[26, 27]. This ultimately can enhance recognition
and tumor cell killing by cytotoxic T cells [28].
Radiation has also been associated with increased
production of other immune stimulating cyto-
kines and chemokines, which together can pro-
mote the infiltration of T cells into tumors and
modulate the function of these T cells, as well as
dendritic cells and macrophages [23].

Radiation also has immunosuppressive effects
that could be detrimental to an antitumor immune
response. Lymphocytes are radiosensitive, with
in vitro studies demonstrating that 3 Gy of radia-
tion is enough to deplete 90% of human lympho-
cytes [29]. This may be overly simplistic,
however, as more recent work suggests differen-
tial radiosensitivity of T-cell subtypes. Preexisting
intratumoral T cells appear to be potentially more
radioresistant than either circulating T cells or
lymphoid tissue T cells; these intratumoral T
cells survive even high doses (20 Gy) of radiation
in preclinical studies and can develop a similar
transcriptomic profile to tissue-resident memory
T cells, which are also thought to be radioresis-
tant [30, 31]. These intratumoral T cells can
mediate some of the antitumor immune effects of
high-dose radiation. Regardless, clinical data
suggest that radiation-induced lymphopenia may
be a negative prognostic factor in patients treated
with PD-1 and CTLA-4 inhibitors [32].

Within the local tumor microenvironment, a
variety of inhibitory immune cells, such as
T-regulatory cells (Tregs), myeloid-derived sup-
pressor cells (MDSCs), and tumor-associated
macrophages (TAMs, and specifically M2 mac-
rophages), are often already present. In several

studies, radiation increases recruitment of these
inhibitory immune cells and can also modulate
their function toward an even more immunosup-
pressive phenotype [23]. There may also be dose-
dependent effects of radiation; for instance,
Vanpouille-Box et al. demonstrated that as radia-
tion doses were escalated to 12—18 Gy, there was
induction of Trex1, a DNA exonuclease which
degrades cytosolic DNA and thus prevents acti-
vation of the cGAS/STING pathway [25]. The
balance between competing activating and inhib-
itory immune responses, then, likely plays a key
role in the probability of a successful antitumor
immune response and provides opportunity for
therapeutic intervention.

Immune Landscape of HNSCC

Work over the past decade has helped character-
ize the immune landscape of HNSCC. As noted
above, HPV-associated oropharyngeal SCC is a
different disease entity from other non-HPV-
driven, tobacco-associated HNSCC, with a dis-
tinct immune profile. Using data from The Cancer
Genome Atlas, Mandal et al. showed that HPV-
positive tumors were significantly more immune
infiltrated than HPV-negative tumors [33].
However, both HPV-positive and HPV-negative
HNSCC had the highest rate of immunosuppres-
sive Treg infiltration among ten different cancer
types. There was a correlation between the
molecular smoking signature of HNSCC tumors
and increased tumor mutational burden, but also
conversely an inverse association between the
molecular smoking signature and immune infil-
tration, despite this higher tumor mutation bur-
den (and therefore presumably increased
neoantigen load). This suggests that tobacco-
associated tumors can still be immunologically
cold even with their higher mutational load.
Further work has demonstrated that HPV-positive
tumors are associated with increased T-cell
receptor diversity, higher levels of immune cyto-
lytic activity, and an overall enriched inflamma-
tory response [34, 35]. The anatomic subsite
where head and neck cancer develops likely plays
a key role in tumor immunity as well; the oro-
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pharynx contains particularly lymphoid-rich tis-
sue, and this unique immune environment may
explain why the improved prognosis for HPV-
driven HNSCC is largely limited to oropharyn-
geal tumors [36]. Additional work on
oropharyngeal SCC has confirmed a higher
degree of infiltration of CD8+ T cells in HPV-
positive vs. HPV-negative tumors [37]. Overall,
these studies suggest that the increased sensitiv-
ity of HPV-associated oropharyngeal SCC to
chemotherapy and radiotherapy may at least in
part be mediated through immune mechanisms
[38, 39] and that differing immunotherapeutic
approaches may be optimal for HPV-positive and
HPV-negative HNSCC.

HNSCC also appears to be uniquely associ-
ated with high levels of natural killer (NK) cell
infiltration, even when compared to other highly
immune infiltrated cancer types [33, 37]. Patients
with high levels of NK-cell infiltration were also
found to have improved survival compared to
those with low levels of infiltration [33]. The
potential antitumor effects of NK cells is an
emerging area of research and has been reviewed
elsewhere [40]; currently, there is limited clinical
data on their role in HNSCC, or whether opportu-
nities for synergy between NK-directed therapies
and radiation exist.

Preclinical Evidence
for Radioimmunotherapy in HNSCC
Models

Augmenting Antitumor Cellular
Immunity

Preclinical work in HNSCC models has demon-
strated synergy between radiotherapy and immu-
notherapy. In a poorly immunogenic orthotopic
HNSCC mouse model, Oweida et al. demon-
strated effective tumor cell killing when both
10 Gy of radiation and an anti-PD-L1 antibody
were administered together, but not for either
treatment individually [41]. Tumor control was
correlated with increased tumor T-cell infiltration
and was abrogated when CD4+ and CD8+ T cells
were depleted. In addition, although much of

research on antitumor immunity has focused on
the role of T cells, work from Kim et al. in a
mouse model of HPV-associated HNSCC sug-
gests that the combination of radiation and PD-1
inhibition also promotes maturation and activa-
tion of B cells, leading to the development of
memory B cells, plasma cells, and antigen-
specific B cells, as well as increasing formation
of B-cell germinal centers in tumor draining
lymph nodes [42]. Finally, there is growing inter-
est in harnessing additional molecular pathways
to promote antitumor immunity. For instance, in
a mouse model of HPV-driven carcinoma, Dillon
et al. demonstrated that inhibitors of ATR, a key
protein in the DNA damage response pathway,
significantly sensitized tumors to radiation, and
this effect was correlated with the upregulation of
interferon-stimulated genes and a significant
increase in innate immune cell infiltration into
the tumor microenvironment [43]. Xiao et al.
showed that ASTX600, an inhibitor of TIAP1/2
and XIAP, proteins that modulate apoptosis and
the tumor necrosis factor signaling pathway, sig-
nificantly enhanced T-cell-mediated tumor cell
killing when combined with radiation and PD-1
inhibition in a mouse model of oral cavity carci-
noma [44].

Decreasing an Inmunosuppressive
Microenvironment

The immunosuppressive microenvironment
remains a challenge even with combined radio-
therapy and immunotherapy. Following up on
their initial study demonstrating synergy between
radiation/PD-1 inhibition [41], Oweida et al.
demonstrated that the antitumor immune
responses to combined radiation and PD-1 inhi-
bition in their HNSCC mouse model were ulti-
mately transient, as compensatory mechanisms
of immune evasion were activated, including
upregulation of another immune checkpoint,
TIM-3, as well as increased tumor infiltration of
Tregs [41, 45]. Adding an anti-TIM-3 antibody
further delayed tumor growth, but the response
was still not durable; only targeted depletion of
Tregs was able to induce durable immunologic
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memory. Another group has explored the use of
cyclophosphamide and an inhibitor of inducible
nitric oxide synthase (iNOS) as immunomodula-
tory agents in a mouse model of HPV-associated
HNSCC. When combined with traditional
chemoradiation, addition of these two agents
increased the CD8+ T-cell/Treg ratio and
decreased immunosuppression [46]. In this par-
ticular model system, the combination of radia-
tion with PD-1 and CTLA-4 inhibition only
minimally altered the immunologically cold
tumor microenvironment, but the addition of
cyclophosphamide and the iNOS inhibitor shifted
the balance of infiltrated immune cells away from
immunosuppressive types (such as MDSCs) to
those more associated with antitumor immunity
(such as dendritic cells and antitumor M1 macro-
phages). This led to an increased CD8+ T-cell-
dependent response and complete tumor rejection
in more than 70% of the treated mice [47]. This is
now being investigated in a clinical trial,
NCT03844763, which explores the use of cyclo-
phosphamide, avelumab (a PD-L1 inhibitor), and
radiation therapy in the treatment of recurrent/
metastatic HNSCC.

Radiation Dose and Fractionation
Effects

Additional studies have demonstrated the impor-
tance of radiation dose and fractionation in gen-
erating an effective antitumor immune response.
Consistent with work in other diseases [48],
Morisada et al. showed in a syngeneic mouse oral
cavity carcinoma model that hypofractionated
radiation (16 Gy in two fractions) was associated
with preservation of both peripheral and tumor-
infiltrating lymphocytes, reduction of both
peripheral and tumor-associated MDSCs, and
increased expression of interferon genes, when
compared to conventionally fractionated radia-
tion (20 Gy in ten fractions) [49]. Moreover,
analysis of the draining lymph nodes (which
notably were included within the radiation fields)
suggested that 20 Gy in ten fractions suppressed
local tumor-specific T-cell ~ responses.
Consequently, only 16 Gy in two fractions dem-

onstrated synergy with an anti-PD-1 antibody in
these mice. Additional work by this group sug-
gests a dose-dependent effect of radiation on both
antigen release and T-cell priming, with 8 Gy ina
single fraction enhancing these pathways com-
pared to 2 Gy in a single fraction, resulting in
increased tumor cell susceptibility to T-cell-
mediated killing [50]. However, the doses used in
these preclinical models differ from those used in
clinical practice, as do the size of the treated
tumors, and so it is uncertain how these findings
might translate to the treatment of HNSCC
patients.

Clinical Evidence
for Radioimmunotherapy in HNSCC

Recurrent/Metastatic Setting

Despite the widespread use of ICIs in advanced
malignancies, prospective clinical data on their
combination with radiotherapy remain scarce,
particularly in HNSCC. The unique immune-
related adverse effects (irAEs) that have been
observed with ICIs are now well established [51],
and there have been concerns that the pro-
inflammatory effects of radiation could enhance
toxicities when combined with ICIs. Reassuringly,
however, most of the available clinical data to
date suggests that the combination of radiation
and ICIs is generally well tolerated [52]. For
instance, in a cohort of 133 patients with meta-
static melanoma, non-small-cell lung cancer
(NSCLC), or renal cell cancer who received pal-
liative radiation to a wide range of anatomic sites,
Bang et al. demonstrated numerically higher
rates of irAEs when radiation was given within
14 days of immunotherapy, but the toxicities
were generally mild with rates of grade 3+ toxic-
ity less than 10% [53]. Similarly, a prospective
phase I trial of pembrolizumab and stereotactic
body radiotherapy (SBRT) in patients with a vari-
ety of metastatic solid tumors also demonstrated
a grade 3+ toxicity rate of less than 10% [54].
Notably, this study did include four patients with
HNSCC, and radiation was delivered to two dis-
tinct anatomic sites in more than 60% of the
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cohort. Finally, a phase 2 trial which randomized
62 patients with metastatic HNSCC to nivolumab
with or without SBRT to a single metastatic site
did not find a significant difference in either
grade 3-5 adverse events (13% for nivolumab
alone vs. 10% for nivolumab with SBRT,
p = 0.70) or any grade adverse events (70% for
nivolumab alone vs. 87% for nivolumab with
SBRT, p = 0.12) with the addition of SBRT [55].
Nevertheless, a few key issues must be consid-
ered when interpreting these and other safety
data. Just as dose and fractionation likely affect
potential antitumor immunity induced by radia-
tion (as demonstrated in preclinical work), it is
probable that these parameters influence potential
toxicities when combined with ICIs. The relative
timing of radiation and immunotherapy is likely
to be important as well; notably, radiation recall,
arelatively rare, unpredictable, and poorly under-
stood phenomenon wherein an inflammatory
reaction can develop in previously irradiated tis-
sue following administration of a new systemic
agent [56] has now been reported following ICI
administration [57, 58]. Additionally, the ana-
tomic site treated with radiation could influence
the side effect profile of combination treatment;
for instance, the landmark PACIFIC trial, which
demonstrated a significant overall survival bene-
fit to adjuvant durvalumab (an anti-PD-L1 anti-
body) after definitive chemoradiation for stage II1
NSCLC, also showed an increase in any-grade
pneumonitis with the addition of durvalumab
(although rates of clinically relevant pneumoni-
tis, i.e., grade 3+, were similar between treatment
groups and low overall) [59]. Within the brain,
there is a potential increased risk of developing
radiation necrosis after treatment of brain metas-
tases with combined ICIs and radiation [60, 61].
Finally, as discussed earlier, in certain settings,
radiation can induce lymphopenia, which could
ultimately interfere with the efficacy of ICIs [32].
These data highlight the importance of collecting
robust radiation treatment and toxicity data to
facilitate future analyses as we study combina-
tion radiation and immunotherapy treatments.
There are very few efficacy data relevant to
the addition of radiation to ICIs in patients with
recurrent or metastatic HNSCC. In general, the

primary rationale for radiation in this setting is to
help stimulate a systemic antitumor immune
response or abscopal effect. This is particularly
difficult to study retrospectively, as disentangling
a true abscopal effect from a delayed response to
immunotherapy is challenging [62]. The only
available prospective data for HNSCC comes
from the randomized phase 2 trial noted above, in
which 62 patients with metastatic HNSCC were
randomized to nivolumab with or without SBRT
to a single metastatic site (9 Gy x 3 fractions,
between the first and second doses of nivolumab).
Ultimately, there was no improvement in overall
response rate (34.5% for nivolumab alone vs.
29.0% for nivolumab with SBRT, p = 0.86) [55].
In NSCLC, a similarly designed phase 2 trial of
pembrolizumab with or without SBRT to a single
metastatic site in patients with advanced NSCLC
also failed to meet its primary endpoint, although
it did demonstrate a doubling of overall response
rate with the addition of SBRT that was not sta-
tistically significant (18% for pembrolizumab
alone vs. 36% for pembrolizumab with SBRT,
p = 0.07) [63]. Differences between the designs
of these two studies include the anti-PD-1 agent
used (nivolumab vs. pembrolizumab), the type of
cancer (HNSCC vs. NSCLC), timing of SBRT
(between first and second dose of nivolumab vs.
prior to starting pembrolizumab), and dose of
SBRT (9 Gy x 3 fractions vs. 8 Gy x 3 fractions).
Given the results of these trials, further research
is clearly needed; Table 7.1 summarizes ongoing
trials that will help address these questions spe-
cifically in patients with recurrent/metastatic
HNSCC. Notably, however, only a few of these
studies are randomized, and so any efficacy data
will require confirmation in larger, phase 3
trials.

Finally, as noted above, there is growing rec-
ognition of an oligometastatic disease state.
Contrary to previous conceptualization of meta-
static disease as inevitably widespread and thus
incurable, the oligometastatic hypothesis sug-
gests that there is a wide range of metastatic
potential that varies among different cancers and
from patient to patient and that an intermediate
state likely exists between purely localized dis-
ease and widely metastatic disease, wherein a
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limited number of metastases might develop with
limited further metastatic potential [64].
Aggressive local treatment of patients with lim-
ited metastases would thus potentially offer a sig-
nificant survival benefit. Results from several
randomized phase 2 trials have supported this
hypothesis (though notably HNSCC was not rep-
resented in any of these studies) [65-69].
Consequently, there is interest in the addition of
IClISs to radiation in this population of patients to
improve outcomes [70]. In this setting, radiation
would be administered at ablative doses to all
metastatic sites, and so the addition of ICIs would
also be intended to augment the local effects of
radiation at each treatment site. To our knowledge,
no prospective clinical data has yet been pub-
lished on the combination of radiation and ICIs in
patients with oligometastatic HNSCC, though
there is at least one ongoing clinical trial
(NCT03283605, which examines the use of dur-
valumab, tremelimumab [a CTLA-4 inhibitor],
and SBRT in patients with HNSCC with fewer
than 10 metastases).

Related to the overall concept of oligometas-
tases is oligoprogression, or the development of a
limited number of progressive metastatic lesions
after a period of stability on systemic therapy
[71]. In the context of ICIs, oligoprogression may
herald general immune escape in patients who
had previously been responding to treatment.
However, in certain cases oligoprogression may
develop as a result of resistant tumor clones that
lack particular tumor antigens or antigen presen-
tation, or because of differences in the underlying
immune microenvironment of the anatomic site
that permit localized immune escape (e.g., brain)
[72,73]. If this is the case, local treatment such as
radiation to these oligoprogressive sites may
enable the patient to continue to derive benefit
from ICIs [74-76]. We are testing this paradigm
prospectively in SCCHN (NCT03085719).

Locally Advanced/Definitive Setting
ICIs are being investigated in the setting of cura-

tive treatment of earlier stages of disease across
all cancer types, including HNSCC. Addition of

IClISs to radiation in this setting would be intended
to potentially augment the local effects of radia-
tion (i.e., as a radiosensitizer) and address micro-
metastatic disease. Several possible combinations
are under investigation—immunotherapy added
to a chemoradiation regimen to intensify therapy
(for patients with currently poor outcomes),
immunotherapy given concurrently with radia-
tion instead of chemotherapy or with a lower
dose of radiation (potentially as a way to reduce
treatment morbidity while maintaining overall
efficacy), or immunotherapy administered adju-
vantly and/or as induction (i.e., sequential ther-
apy). To date adjuvant immunotherapy has
proven successful in NSCLC; as noted earlier,
the PACIFIC trial demonstrated a significant and
meaningful overall survival benefit for adjuvant
durvalumab starting within 6 weeks of complet-
ing standard chemoradiation for unresectable
stage III NSCLC, with an increase in 2-year over-
all survival from 55.6% to 66.3% [77]. Of note,
the magnitude of benefit was greater for patients
who were randomized within 2 weeks of com-
pleting chemoradiation. Adjuvant immunother-
apy also has newly demonstrated success in
esophagogastric cancer; Checkmate-577 demon-
strated a doubling of median disease-free sur-
vival (224 vs. 11.0 months) with the
administration of adjuvant nivolumab compared
to placebo following neoadjuvant chemoradia-
tion and surgical resection in patients with esoph-
ageal and gastroesophageal cancer, though full
trial results have yet to be published [78].

As shown in Table 7.2, ongoing trials are eval-
uating various combinations of radiation and
ICIs for HNSCC in the definitive setting, and sev-
eral have now reported safety data. In general,
combinations of PD-1/PD-L1 inhibitors with
definitive radiation appear well tolerated with no
unexpected toxicities. KEYCHAIN is a random-
ized phase 2 study of radiation combined with
concurrent and adjuvant pembrolizumab com-
pared with radiation and concurrent cisplatin in
intermediate-risk pl6-positive HNSCC; the
safety lead-in phase of the study found only one
dose-limiting toxicity (grade 4 adrenal insuffi-
ciency) among eight patients in the pembroli-
zumab arm, and so the trial has proceeded to its
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phase 2 component [79]. A single-arm phase 2
trial of radiation administered with concurrent
and adjuvant pembrolizumab in cisplatin-
ineligible patients with locally advanced HNSCC
similarly demonstrated relatively low toxicity in
the first 12 enrolled patients, and 11 of 12 patients
received all planned cycles of pembrolizumab
[80]. Finally, PembroRad is a randomized phase
2 trial of radiation combined with concurrent
pembrolizumab versus radiation combined with
concurrent cetuximab, again in cisplatin-
ineligible patients with locally advanced
HNSCC. There have been 133 patients random-
ized in a 1:1 fashion, and the pembrolizumab arm
was found to have significantly less mucositis or
dermatitis within the radiation field than the
cetuximab arm [81].

Early results also suggest that intensification
of existing chemoradiation regimens with the
addition of ICIs is reasonably safe. In a small
phase 1 trial of concurrent and adjuvant avelumab
added to standard cetuximab/radiation in 10
cisplatin-ineligible patients with locally advanced
HNSCC, no grade 4-5 toxicities were observed,
and only one of eight evaluable patients discon-
tinued avelumab for toxicity [82]. REACH is a
phase 3 trial that is also comparing concurrent
avelumab, cetuximab, and radiation, followed by
12 months of adjuvant avelumab, against either
standard bolus cisplatin with radiation or cetux-
imab with radiation (depending on if the patient
is judged to be fit for cisplatin or not) in patients
with locally advanced HNSCC; results for the 82
patients randomized during the safety phase of
the trial suggested that addition of avelumab was
tolerable, with 88% of patients completing con-
current avelumab as per protocol, and rates of
grade 4+ events similar between control and
experimental arms [83]. Similarly, a single-arm
phase 1b study of the addition of concurrent and
adjuvant pembrolizumab to standard radiation
and weekly cisplatin in patients with locally
advanced HNSCC demonstrated in 59 patients
that concurrent pembrolizumab did not prevent
patients from completing chemoradiation, and
only 5 of 59 patients ultimately discontinued
treatment because of irAEs [84]. Finally, RTOG
3504 is a four-arm phase 1 trial in patients with

intermediate- or high-risk HNSCC that is exam-
ining the addition of concurrent and adjuvant
nivolumab to either radiation alone or radiation
with weekly cisplatin, bolus cisplatin, or cetux-
imab; safety results from the latter three arms
again demonstrated that nivolumab did not pre-
vent timely completion of chemoradiation, and
rates of dose-limiting toxicities were low [85].

Efficacy data are now just starting to be
reported from some of these ongoing trials. One
of the single-arm phase 2 trials noted above [80]
of radiation with concurrent and adjuvant pem-
brolizumab in cisplatin-ineligible patients with
locally advanced HNSCC ultimately enrolled 29
patients, and reported 1-year progression-free
survival (PFS) and overall survival (OS) of 76%
and 86%, respectively [86]. More recently, effi-
cacy results from PembroRad were presented,
with oncologic outcomes found to be not signifi-
cantly different between the pembrolizumab vs.
cetuximab arms (2-year PFS 42% vs. 40%,
p=0.41; 2-year OS 62% vs. 55%, p = 0.49) [87].
Finally, Javelin 100 was a double-blind, placebo-
controlled phase 3 trial that randomized 697
patients with locally advanced HNSCC to stan-
dard of care cisplatin-based chemoradiation with
or without concurrent and adjuvant (for
12 months) avelumab, with PFS as the primary
endpoint. The trial was terminated early for futil-
ity following a planned interim analysis, in which
PFS was found to favor the placebo + chemora-
diation arms (hazard ratio 1.21, p = 0.92), and
rates of grade 3 or higher adverse events were
also slightly higher in the avelumab arm com-
pared to placebo (88% vs. 82%) [88]. Exploratory
analyses did not reveal any improvement for
either time to locoregional failure or distant met-
astatic failure, and the PFS results were generally
consistent across subgroups as well. One possible
exception was the results for the PD-L1 high sub-
group (defined as >25%), where avelumab
seemed to confer a PFS benefit compared to pla-
cebo; however, the number of patients was small,
and the study did not stratify on the basis of
PD-L1 status, so this observation remains purely
hypothesis generating.

The disappointing results of Javelin 100 invite
comparison to the successful incorporation of
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PD-L1 blockade into the treatment of locally
advanced NSCLC as evidenced by the PACIFIC
study. Given the high risk of lymph node metas-
tases in patients with locally advanced HNSCC,
standard radiation generally entails elective treat-
ment of the draining cervical lymph node chains
(in contrast to NSCLC, where elective lymph
nodes are not intentionally irradiated). These
draining lymph nodes are precisely where
antigen-presenting cells migrate to for T-cell
priming, following radiation to the primary tumor
[23, 27]. Correlative positron emission tomogra-
phy—computed tomography (PET-CT) studies
from a recently published clinical trial of neoad-
juvant ICIs (nivolumab or nivolumab and
ipilimumab) prior to surgery in patients with oral
cavity SCC provides further support for the
importance of the draining lymph nodes; follow-
ing initiation of neoadjuvant ICIs, there was a
high rate of increased fluorodeoxyglucose (FDG)
uptake in the draining cervical lymph nodes on
an interval PET-CT, which ultimately on surgical
pathology demonstrated only reactive findings
without any evidence of cancer. This observed
increase in FDG uptake may therefore represent
radiographic evidence of a mounting immune
response [89]. Given the radiosensitivity of lym-
phocytes, then, it seems possible that radiation
(particularly longer conventionally fractionated
regimens) that electively treats the draining
lymph nodes following the receipt of ICI could
actually hinder T-cell priming. Indeed, as noted
above, there is some preclinical data to support
this, as Morisada et al. demonstrated in an synge-
neic mouse model of oral cavity cancer that
20 Gy in ten fractions compared to 16 Gy in two
fractions to both the primary tumor and the drain-
ing lymph nodes blunted tumor-specific CD8+
T-cell responses within those draining lymph
nodes (although notably tumors were implanted
in the mice legs, and thus, this is not a perfect
model for head and neck lymphatics) [49]. The
phase 2 trial reported by Weiss et al. also noted a
rate of grade 3+ lymphopenia of 58.6% [86].
Another notable issue is that the design of Javelin
100, as well as many of the other trials described
above, incorporated both concurrent and adju-
vant ICIs in the experimental arm, whereas

PACIFIC (and Checkmate-577) only tested the
value of adjuvant immunotherapy. Timing and
sequencing of ICIs and radiation remains a criti-
cal issue that requires further study, although the
concerns regarding radiation-induced T-cell
death may be particularly problematic when ICI
is administered concurrently as compared with
sequentially [90]. Finally, as demonstrated in the
preclinical work above, radiation dose and frac-
tionation are also likely critical to successful syn-
ergy between radiation and ICIs; however, the
hypofractionated regimens that appear to have
the greatest immunologic potential in preclinical
models differ tremendously from the long con-
ventionally fractionated regimens (1.8-2 Gy/
fraction) used in the current standard manage-
ment of HNSCC. PACIFIC did also employ con-
ventional fractionation, though standard total
doses for NSCLC are somewhat lower than for
HNSCC (54-66 Gy versus 70 Gy). Overall, given
the years of experience supporting the current
standard radiation regimen and fields used in the
definitive management of HNSCC, careful stud-
ies will be required to determine what kinds of
modifications to elective nodal irradiation, tim-
ing/sequencing, dose, and/or fractionation are
required to maximize synergy with ICIs and ulti-
mately improve patient outcomes. There is
already significant heterogeneity among the
ongoing trials in Tables 7.1 and 7.2 with regard to
these parameters, and so examining the results
collectively will hopefully be informative.

Conclusions/Future Directions

There remains excitement for the possibility of
combining radiotherapy and immunotherapy to
improve  outcomes  for  patients  with
HNSCC. Ongoing trials will help advance this
emerging field, and the developing paradigm of
oligometastatic disease provides further opportu-
nity to integrate improving systemic and local
therapies. Biomarker studies conducted in paral-
lel will also inform optimal patient selection for
combined treatment approaches. Moreover,
while this chapter has largely focused on ICIs
(and PD-1/PD-L1 targeted therapies in particu-
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lar) given their widespread use, immunothera-
peutic agents targeting other checkpoints and
pathways are in development as well [91], as are
trials testing their combination with radiation
(e.g., NCT04220775). Nevertheless, significant
work remains to be done in both the preclinical
and clinical space to determine the dose, fraction-
ation, timing, target, and field size of radiation
that will be the most synergistic with immuno-
therapies. Finding the optimal balance between
the immunostimulatory and immunosuppressive
effects of radiotherapy is key and hopefully will
herald continued improvement in outcomes for
patients with HNSCC.
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