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Foreword to the Second Edition

The first edition of “Diffusive Spreading” appeared in 2017 in connection with a
conference entitled “Diffusion Fundamentals”. This series of meetings successfully
continued over many years so that it has now been organized for the ninth time. The
importance of this field has been underlined by the fact that in the meantime two of
the editors of the first edition were honored by the prestigious 2020 ENI Award “for
their work on diffusive molecule flows ... ”, and even more by the current worldwide
pandemic spreading which affected seriously the life of all of us. This latter aspect
is extensively discussed in the present volume in a series of new contributions. Thus
also the timeliness of the wide-ranging topic is strongly emphasized, and this book
will again be of great general interest.

Gerhard Ertl
Nobel Prize in Chemistry 2007

Fritz-Haber-Institute
Max-Planck-Society

Berlin, Germany
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Foreword to the First Edition

Everybody has observed how a piece of sugar dissolves in a cup of coffee or has
experienced the spreading of a rumor. Both processes propagate without external
influence, even if theymay be accelerated, e.g., by stirring or telecommunication. The
underlying principal phenomena are called diffusion whose mechanism was theo-
retically explored more than 100 years ago, mainly by Fick and Einstein. Although
frequently ignored in detail, diffusion is of fundamental importance for distribution
of matter and information. Even the formation of structures in living systems is
considered to be the result of interplay between chemical reaction and diffusion. A
series of conferences entitled “Diffusion Fundamentals” was started in Leipzig in
2005. The present volume originated from the contributions presented at the sixth
meeting of this series in 2015 and contains a unique overview on our knowledge
ranging from the natural sciences to the humanities. It should therefore be of interest
to a broad audience.

Gerhard Ertl
Nobel Prize in Chemistry 2007

Fritz-Haber-Institute
Max-Planck-Society

Berlin, Germany
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Preface to the Second Edition

Development of the worldwide pandemics has given forceful confirmation to the
initial sentence “Spreading phenomena are encountered almost anywhere in our
world” of the preface to the first edition. We would have gladly done without
this support. However, as has repeatedly been the case over the course of history,
spreading phenomena of this very kind will continue to occur, strongly influencing
our daily lives and confronting us with ever new challenges. For meeting them,
factual knowledge is among the most efficient means.

Bringing factual knowledge about the many phenomena of spreading occurring
in our world to a broad audience was one of our aims on preparing the first edition
of this book. Recognition with the Literature Prize 2019 of the Fund of Chemical
Industry raises our hopes that we have not completely failed in this endeavor.

We therefore saw it as an important task to give, in the second edition of the book,
muchmore attention and, hence, space to the phenomenon of pandemic spreading, in
addition to an updating of the existing contributions. The first edition dealt already—
one could almost say in wise foresight—in Dirk Brockmann’s contribution with
“Disease Dynamics on a Global Scale”. It is in search of a “geometry” best suited
for the recording of the worldwide spreading of diseases.

This is now followed by three further chapters. Benefitting from our advanced
knowledge about percolation phenomena, Armin Bunde, Shlomo Havlin and Josef
Ludescher explore, in greater detail, the mechanisms of epidemic spreading by
considering it as a percolation process. Klaus Kroy investigates the influence of
exceptional phenomena such as the occurrence of super-spreaders, which may easily
become dominating for the overall behavior. Finally, Jean-Philippe Platteau, Shlomo
Weber and Hans Wiesmeth address the gap that, on fighting pandemics, opens up
between epidemiologic and economic approaches.

As a result of the brisance of the topic, this extension has, once again, been
preceded by intensive discussions within the Saxon Academy of Sciences and
Humanities and, in particular, its Structural Commission “Spreading inNature, Tech-
nology and Society”, in which many of the contributors are involved. Thus, to a large
extent, the topics covered in this extension reflect the specific interests and expertise
of the authors. Exhaustive coverage can, in view of the complexity of the subject
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x Preface to the Second Edition

matter, anyway not be expected. We do, however, sincerely hope that our reflections
will provide inspiration for reflection and new insights.

In conclusion, it is our pleasure to repeat our many thanks, as already expressed
in the preface to the first edition. At Springer-Verlag, the main addressees are now
Dr. Zachary Evenson, Antje Endemann, and Ravi Vengadachalam, with our heartfelt
thanks for their competence and passion in accompanying this new edition. With the
increase in the number of editors, Gudrun is to be added to the names of our wives,
whom we have to thank for their continued patience, tolerance and support.

Giessen, Germany
Hanover, Germany
Leipzig, Germany
Leipzig, Germany
Vienna, Austria

Armin Bunde
Jürgen Caro

Christian Chmelik
Jörg Kärger
Gero Vogl



Preface to the First Edition

Spreading phenomena are encountered almost everywhere in our world. They may
concern ideas and conceptions aswell as real objects and range from sub-microscopic
up to galactic distances, with timescales in the blink of an eye to geological time.
With the existence of atoms and molecules, nature has provided us with a miraculous
playground for experiencing the fascination of spreading phenomena which, in this
context, are generally referred to as diffusion. Theoretical concepts developed in the
study of diffusion of atoms and molecules have proved to be of great benefit for
exploring spreading phenomena with a large spectrum of objects, irrespective of the
diversity of their properties and the underlying mechanisms. Treatises and reviews
of spreading phenomena therefore frequently exploit the common ground offered by
the similarities in their mathematical treatment. Such concepts are well suited for
developing skills in analyzing and modeling spreading data, but they often fail to
provide detailed understanding at a more fundamental level.

By aiming at an insightful introduction to the fascinating diversity of spreading
phenomena in nature, technology and society, the present textbook attempts to fill
this gap in the existing literature.

The roots of this bookmay be traced back to the breakdown of the BerlinWall and
the option of a workshop series, sponsored by theWilhelm and Else Heraeus Founda-
tion under the auspices of the Physical Society of reunited Germany, which brought
together scientists from both parts of Germany as well as from other countries. One
of these workshops, organized in Leipzig in autumn of 1996, was dedicated to “Dif-
fusion in Condensed Matter.” It dealt with that topic in unprecedented width and
depth. Two textbooks (J. Kärger, P. Heitjans, R. Haberlandt “Diffusion in Condensed
Matter,” Vieweg 1998, and P. Heitjans, J. Kärger “Diffusion in Condensed Matter:
Methods, Materials, Models”, Springer 2005) emerged from this initiative and are
still regarded as follow-ups to Wilhelm Jost’s famous textbook on “Diffusion in
Solids, Liquids and Gases,” Academic Press 1960.
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xii Preface to the First Edition

The idea of intensifying scientific exchange across the boundaries of the indi-
vidual disciplines gave rise to the establishment of the “Diffusion Fundamentals”
conference series, accompanied by an open-access online journal (diffusion-fundam
entals.org). Given the relevance of physical sciences for the development in the
field, it was certainly not by chance that the first conference in this series was held
in Leipzig in 2005 to celebrate the centenary of Albert Einstein’s annus mirabilis.
Subsequent meetings in L’Aquila 2007, Athens 2009, Troy 2011 and Leipzig 2013
strove to cover with increasing concern the large spectrum of diffusion and spreading
phenomena until, in 2015, the Diffusion Fundamentals activities were assigned to the
Saxon Academy of Sciences. As one of Germany’s regional Academies of Sciences
(with members of the three Central German Federal States Sachsen, Sachsen-Anhalt
und Thüringen), it stands in a great tradition (with, e.g., Werner Heisenberg as one
of its secretaries) and offers, with Classes of Mathematical-Natural, Philological-
Historical and Engineering Sciences, ideal conditions for cross-disciplinary scien-
tific exchange. The participants of the 6th Diffusion Fundamentals Conference in
Dresden 2015 no doubt benefited from this new level of interdisciplinary contact,
and we hope that, with the contributions to the present volume which largely follow
the contributions to the conference, this benefit may now be passed on to the readers
of the book.

With informative illustrations, we did our best to follow the saying that a single
picture tellsmore than a thousandwords. Thismay also be true for a singlemathemat-
ical formula—provided that the actual situation does indeed allow such a description
and that the underlying mathematics remains within certain limits of comfort.

In our contact with the authors of the different chapters, we became aware of
the criticality of both these issues. In some types of systems, such as human soci-
eties, the available information is not sufficient to provide meaningful predictions of
future developments. In such cases, the chapters have to be presented without precise
mathematical formulations. Other systems, notably those accessible by investiga-
tion with the highly sophisticated techniques of measurement provided by modern
physics and chemistry, offer a multitude of information so that data processing may
become quite ambitious. While all our chapters start their mathematical treatment
with nothing more (but, notably, with also nothing less) than school mathematics,
a few of the chapters progress to more advanced topics requiring more sophisti-
cated mathematics. We have intentionally chosen problems from the frontiers of
research, i.e., beyond the “diffusion main stream.” Topics such as “Phase Transitions
in Biased Diffusion” and “Hot Brownian Motion” might thus appear to be some-
what challenging. We trust, however, that the interested reader will take this as an
invitation to browse some of the more specialized literature.

With all chapters now in our hands, we have first to thank the authors for their
most agreeable cooperation. Looking back at the genesis of the book, we have to
thank all who have contributed to the development of the “Diffusion Fundamentals”
activities, including Leipzig University as the venue of the first conference, Dresden
Technical University as the location of the sixth conference from which this book is
derived, and the many colleagues all over the world who have cooperated with us
as members of the Diffusion Fundamentals Editorial Board. We appreciate generous

https://www.diffusion-fundamentals.org/
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support from the Saxon Academy of Sciences and, over the course of the whole
Diffusion Fundamentals Conference series, from the German Research Foundation,
the Alexander von Humboldt Foundation and the Fonds der Chemischen Industrie.
It has been a pleasure to collaborate with the staff of Springer-Verlag, notably with
Dr. Claus Ascheron and Britta Rao, who handled the editing and publication with
commendable efficiency. Finally, we would like to thank our wives Eva, Marion,
Birge and Senta for their continued patience, tolerance and support.

Giessen, Germany
Hanover, Germany
Leipzig, Germany
Vienna, Austria

Armin Bunde
Jürgen Caro
Jörg Kärger
Gero Vogl
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Part I
Introduction



Chapter 1
What the Book Is Dealing With

Armin Bunde, Jürgen Caro, Jörg Kärger, and Gero Vogl

Early in the nineteenth century, Robert Brown, a British botanist, found that pollen
immersed in a liquid performed an unceasing motion [1]. As a careful scientist he
conducted experiments under varying conditions and hence could exclude that this
motion was “vitality”, as argued in the beginning, and suspected that it was physics.
About thirty years after Brown’s observation Adolf Fick, a German physiologist,
dissolved salt in water, studied the change of salt distribution in time and wrote
down the equations governing the phenomenon of diffusion along a concentration
gradient [2]. It was not until 1905 that Albert Einstein found an ingenious description
of the “Brownian motion” and was able to connect it to Fick’s equations of diffusion
[3].

In this book, we bring together scientists from disciplines as different as arche-
ology, ecology, epidemics, linguistics, and sociology with natural scientists from
biology, chemistry, physics, and technology. What is common to all these scientists
is that all are interested in the motion of a certain object or phenomenon in space
and time. This motion is named diffusion by physicists and chemists and some-
times called spread by ecologists and linguists. Brown and Fick were both neither
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mathematician nor physicist. So why should the phenomena of endless motion and
diffusion be a domain of mathematics or physics?

The moving objects can be very different: they can be particles, e.g., atoms, they
can be living beings, humans, animals, plants, and bacteria. But they can also be
abstract terms: ideas, rumors, information, innovations, or linguistic features. In the
case of the spread or diffusion of abstract objects, the spacewherein the objects spread
may not be local, it may rather be an abstract “space”, e.g., a group of people, the
entity of words, the sum of preoccupations or the bulk of technological environment.

It appears daring to treat all these phenomena with related methods, to force them
into the same corset, but we are definitely not the first to attempt a synopsis. In
1951, Skellam [4] who was not a physicist but rather what was called a biometrist
at that time wrote: “It is apparent that many ecological problems have a physical
analogue and that the solution of these problems will require treatment with which
we are already very familiar.” For more than thirty years there have been textbooks
written mostly by mathematicians, reporting on the work on spread and diffusion
not performed by themselves but rather by scientists from disciplines as different
from physics as biology and ecology. The authors of these textbooks amply describe
that the same analytical approaches as have been developed for the diffusion of
particles in physics and chemistry can operate for treating the migration and spread
of animals and plants. To the best of our knowledge the present book is, however,
the first where scientists from the different very disparate disciplines report on their
work on diffusion and spread in the fields of their professions. What is contained in
the book you have at hand should therefore be first-hand information.

Before we enter themultifaceted world of spreading and diffusion, with numerous
examples from nature, technology, and society, the theoretical foundations are
summarized inChap. 2. All subsequent chaptersmake use of the presented formalism
so that references to this chapter are “spread” throughout the book. The mathemat-
ical formalism remains within the common framework known from school and is,
in addition, supported by numerous informative figures.

Already here we have to ask which framework serves best for reflecting spreading
phenomena within a given system. While classical diffusion—as occurring, e.g.,
during dissolving a piece of sugar in a cup of coffee—is easily understood to be
adequately described by using a Cartesian coordinate system, problems are imme-
diately seen to arise if such complicated situations as the spreading of innovations
over a continent (as during the transition from hunting-gathering to farming and
stockbreeding in Europe) are considered.

In fact, also in such cases, complemented by “gain” and “loss” rates (associated
with birth and death of the considered species), one may make use of essentially the
same mathematical formalism as applicable to the spreading of sugar. The options of
approaching reality along these lines are further improved by considering diffusivities
and gain and birth rates as functions of space and time including, notably, their
dependence on the given “concentration”, i.e., the population density, rather than as
by taking them as mere constants.
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Alternatively, the complexity of the system may be taken into account by subdi-
viding the system into various “regions” and by considering the entity of the popu-
lation numbers of each individual region. Further evolution can then be predicted by
considering birth and death rates within and exchange rates between the individual
regions. This latter approach (with the populations of the individual regions operating
as “agents”) offers ideal conditions for taking account of the system’s complexity
by increasing the graticule subtlety. The establishment of parameter sets for reli-
ably reflecting the internal dynamics, however, is a challenging task, with the risk of
unjustified biasing.

While it is probably beyond debate that spreading phenomena occur in nature
just as in technology and society, the attribution of a particular phenomenon to
one of these fields is not always easy. Our attempt to sub-structure the book by
attributing, in the subsequent parts, the various spreading phenomena considered to
one of these fields is, therefore, not without ambiguity. In fact, for essentially any
of the subsequent chapters there would be good reasons to include them in at least
one of the other two parts. We assume that, on reading the different chapters, you
will become aware of this issue and will take it as one of the many indications of the
benefit of a comprehensive consideration of spreading phenomena!

We start our journey through spreading phenomena in Nature by following
Michael Leitner and Ingolf Kühn in their report about the evolution of ecosystems,
with special emphasis on the dispersal of newly arrived plants and animals, and an
illuminating comparison of diffusive dynamics in physical sciences and ecology. It
is essentially the climatic habitat which is recognized as a driving agent of advance-
ment and invasion. Examples include the particular case of Ambrosia artemisiifolia
or ragweed as an allergenic plant which, since its arrival from North America, has
led to a substantial increase in medical costs for allergenic treatment. The spatio-
temporal dynamics of animals is also in the focus of Rainer Klages when he describes
how one is able to simulate—by analytical methods—the outcome of sophisticated
experiments dealing with foraging flights of bumblebees to collect nectar and how,
in the presence of predators, the dynamics are modified.

Still within the field of biology, but on a much smaller scale, Wilfried Konrad,
Anita Roth-Nebelsick, and Christoph Neinhuis consider transport phenomena on
plant surfaces. Evolution over hundreds ofmillions of years gave rise to the formation
of a multifunctional, self-repairing surface layer which—in parallel with ensuring
proper metabolic exchange with the surroundings—protects the plant against uncon-
trolled evaporation. Also with Charles Nicholson we remain within microscopic
dimensions—this time within the human brain. We are, in particular, invited to
share the fascination of analogies in the functionality of our brain tissue with the
organization of transport in a big city like New York.

The scale of observation is enhanced bymore than five orders of magnitude when,
in their chapter, Manfred Wendisch and Armin Raabe consider mass transfer in our
atmosphere. They introduce into the complexity of the relevant phenomena, notably
during turbulent motions, from which it becomes immediately understandable that
weather forecast is still associated with significant uncertainties.
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Complicated physical situations are likewise considered in the last two chapters of
this second part of the book dedicated to spreading in nature. In fact, both phenomena
considered bring us back to biology. They deal with the question how irregular
thermalmotionmay give rise to directed transport phenomena since the occurrence of
directed motions is among the prerequisites for the functionality of living organisms.
Klaus Kroy and Frank Cichos consider how local heating influences the movement
of particles suspended in a fluid. Such heating is immediately seen to give rise to a
bias in molecular motion if it is initiated by the use of the so-called Janus particles,
i.e., of particles where, by covering only one half of the surface by a gold layer, only
this half of the surface gives rise to temperature enhancement.

Philipp Maas, Marcel Dierl, and Matthias Wolff model the bias in motion by
implying asymmetric jump probabilities, in the extreme case with jump attempts
into only one direction and the (obvious) requirement that jumps are only possible
if a jump attempt is directed to a site which is still unoccupied. Models of this type
introduce the principles that can explain how sudden standstills on a highway may
disappear suddenly, for no obvious reason, to yield regular traffic flow. The chapter
provides an impression of how complicated the whole matter becomes if mutual
interactions between the various particles are considered.

Part 3, scheduled for highlighting the various aspects of spreading phenomena
of relevance in Technology, starts with an introduction by Christian Chmelik and
co-authors into the relevance of diffusion for the performance of many technologies
based on the application of nanoporous materials. The annual benefit worldwide by
the exploitation of these technologies in petroleum refining has been estimated to at
least 10billionUSdollars—and thegain in value-addedproducts byperformance can,
obviously, never be faster than allowed by the rate of diffusion from the catalytically
active sites in the interior of these materials to the surroundings.

Marc-Olivier Coppens and Guanghua Ye illustrate in the subsequent chapter how,
on their search for optimum technologies, process engineers may gain inspiration
from nature. Here, through billions of years of evolution, plants and animals have
acquired highly effective transport systems, crucial to their survival. Although a
chemical engineering application is different from a biological one in terms of
materials and operating conditions, they share fundamental features in, notably,
connecting the action at microscopic scales with those in the overall system.

There is scarcely another measuring technique that offers such a wealth of infor-
mation on transport phenomena and, hence, on the key process inmany technologies,
as nuclear magnetic resonance (NMR). After introducing the fundamental principles
of this almost universal analytical tool, William S. Price and his colleagues present
an impressive array of applications, ranging from diffusion measurement in porous
media to magnetic resonance imaging (MRI), currently the most powerful of the
imaging techniques in medical diagnosis.

A survey over the many systems of technological relevance where mass transfer
occurs under solid-state conditions is provided in their chapter by Boris S. Bokstein
and Boris B. Straumal. They cover metals, amorphous alloys and polymers and
include, as an attractive topic of current material research, the investigation of severe
plastic deformation brought about by material straining under spatial confinement.



1 What the Book Is Dealing With 7

Spreading phenomena in technology are considered from a much more global
perspective in the final two chapters of this part. Albrecht Fritzsche pursues the
question how novel technologies are becoming part of the knowledge of humankind.
Here technologies are understood as an embodiment of any instrumental action that
occurs repetitively in our world. This rather broad definition creates the need for
different operational measures for the diffusion of innovations, including the impact
of both the innovating institution and public acceptance. In the subsequent chapter,
Armin Grunwald takes us a step further ahead by investigating the role of visions as
an established part of scientific and technological communications and by asking for
the conditions under which they may indeed fulfill their potential as a major driver of
scientific and technological advance. He reminds us that robots, e.g., entered society
in this very way long before they came to exist in reality, where they now may be
found with many of the anticipated functions and meanings. The contributions by
Fritzsche and Grunwald mark the borderline with part 4 of our book, dealing with
spreading phenomena in Society.

Here, into humanities and, notably, into archeology, analytical diffusion equations
have been introduced in already the early seventies of the last century through the
famous work by Ammerman and Cavalli-Sforza [5]. Standing, mathematically, on
the shoulders of Fisher [6] and Skellam [4] they described the invasion of farmers,
the people of the Neolithic, between 8000 and 6000 years ago, from the Near East
by a one-dimensional “wave of advance” from south-east towards the north-west
of Europe. But was it really people or just technology that advances—“demic” or
“cultural” diffusion? Still a hot topic! At that time the authors had no more genetics
at their hand than blood groups and archeological indications for adapting their
diffusion equations.

The tremendous progress of genetics has recently accelerated that field. In this
book the diffusion of the Neolithic is dealt with by Joaquim Fort with more and more
refined diffusion equations. Already Skellam had stressed “Unlike most of the parti-
cles considered by physicists, living organisms reproduce and interact. As a result,
the equations of mathematical ecology are often of a new and unusual kind.” Fort has
amply expanded the field of “reaction diffusion” being able to now incorporate cohab-
itation, cultural transmission and anisotropic expansion. Fort stresses that all models
considered by him operate with a minimum of parameters. The demic model, for
instance, needs only three parameters which have been estimated from ethnographic
or archeological data. He mentions further on that, with such constraints, one is able
largely to avoid any unjustified bias in modeling which may easily occur by the use
of more parameters.

In the subsequent chapter, Carsten Lemmen and Detlef Gronenborn deal once
again with the spread of Neolithic culture and the question for demic or cultural
diffusion. However, rather than applying analytical methods as done by Fort, they
treat the problem with a technique, sometimes referred to as the method of cellular
automaton. Here the system under study is subdivided into different regions (“cells”),
with the interaction between the populations of the different cells via trade and
migration taken account of by suitable mathematical expressions. Simulating the
dynamics of local human populations’ density and sociocultural features (“traits”)
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needs more parameters than Fort’s model, in particular a couple of habitat parame-
ters, which—with hopefully more data from archeology—in future will have to be
reconsidered

Back to modern times, Anne Kandler and Roman Unger consider the variation
in the use of languages, with the focus on the retreat of the Gaelic language in
North-Western Scotland. They combine their analysis with the search for reasonable
measures enabling the preservation of linguistic diversity in our world [7] and with
estimating the expenses and probability of success of such efforts.

While in most contributions collected here the spreading phenomena considered
refer to the movement of “objects” in space, in their chapter Louis M. Shekhtman,
Michael M. Danziger and Shlomo Havlin talk about a totally different situation
when they consider the spreading of failures in complex systems such as power
grids, communication networks, and financial networks. Here one failure is seen to
easily trigger further ones, giving rise to cascades wherein the failure may spread
over also other parts of the system. Failure spreading, finally, ends up in blackouts,
economic collapses and other catastrophic events. Exploration for the underlying
“physical” mechanisms is, once again, illustrated as an important issue in searching
for suitable means for mitigating such disastrous developments.

Dirk Brockmann describes the spread of diseases with reaction-diffusion equa-
tions by introducing effective distances and effective times thus considering the
distance for a contagion not purely geographically but rather by considering the
probability for overcoming the given distances. He shows that, for a contagion on
the global scale, Frankfurt may be effectively closer to New York than a village
in New Jersey only 150 km away. Here we encounter the probabilistic capabilities
of the use of diffusion equations and their “descendants” and, jointly with it, an
impressive example of how medical sciences are already successfully applying this
unconventional approach for mitigating or even preventing epidemics.

In the following chapter,ArminBunde, ShlomoHavlin, and Josef Ludescher focus
on the spread of epidemics not between populations as has been done by Brockmann,
but among the individuals of one population. They consider a population as a network
of individuals connected bymutual contacts and show, in a quite general and partially
analyticalway, howadisease can spreadbetween connected individuals. Theydiscuss
explicitly under which conditions an epidemic evolves and how an epidemic can be
brought to a halt by optimizing contact andmobility restrictions aswell as vaccination
strategies. Crucial is the role of the best connected individuals in the population who
serve as superspreaders in the outbreak of an epidemic.

In their chapter on “the fight against COVID-19: the gap between epidemiologic
and economic approaches”, Philippe Platteau, Shlomo Weber, and Hans Wiesmeth
illuminate the influence of social and economic aspects in epidemic spreading, The
problem is considered in terms of game theory implying that, in a given situation,
people act according to what they think others will do. Even the simplest model
encompassing epidemics and economics finds that there is a conflict between health
and production, a balance between egoistic (and also altruistic) and economic moti-
vations. Moreover, modeling turns out to be difficult not only because of the very
complexity of the problem but also because of the numerous assumptions required at



1 What the Book Is Dealing With 9

the level of human behaviors and their dynamics and at the level of the constraining
instruments available to the government.

In his reflections on “superspreading and heterogeneity in epidemics”, Klaus
Kroy focuses on the influence of spatial, social, and biological heterogeneity of the
population on epidemic spreading. Though commonly modeled and analyzed using
rate equations, it shares certain characteristics with more complicated phenomena
characterized by high tail risk, such as earthquakes, hurricanes, traffic jams, and
stock market crashes. The fact that they arise from improbable chains of small
random events, in which fluctuations and microscale uncertainties can get signif-
icantly increased, makes their accurate prediction and control inherently and noto-
riously difficult. Emphasis is, accordingly, given on the influence of spatial and
probabilistic heterogeneity on epidemic spreading.

Some of you might regard our endeavor as too daring and ask “cui bono?” if
phenomena far away from physics have been treated bymethods of clear provenience
in physical sciences. We are aware of the risk of oversimplified approaches and the
danger of reductionism is pending. But, please, have also in mind that, for science,
it should be allowed if not even required as an imperative, to transgress the limits of
one’s own discipline. That is what we have attempted.

Throughout the book we have attempted to keep explanations simple, ideally with
as littlemathematics as possible.We therefore hope that the bookwill appeal not only
to specialists, but to anyone interested in looking for the many impressive analogies
of spreading and diffusion throughout many different disciplines. We trust that, with
the book in your hands, youwill find plenty ofmotivation for enjoying the fascinating
world of spreading phenomena and, notably, to track and to deeper explore them in
your own disciplines.
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Chapter 2
Spreading Fundamentals

Armin Bunde, Christian Chmelik, Jörg Kärger, and Gero Vogl

2.1 Diffusion Step by Step

Stimulated by their thermal energy, atoms and molecules are subject to an irregular
movement which, in the course of history, has become known under the term diffu-
sion. Today, in amore generalized sense, essentially any type of stochasticmovement
may be referred to as diffusion.

Diffusion sensu stricto is the motion of individual objects by way of a “random
walk”. For simplicity, we start with the one-dimensional problem: our randomwalker
is assumed tomove along only one direction (the x coordinate) and to perform steps of
identical length l in either forward or backward direction. Both directions are equally
probable and the direction of a given step should in no way affect the direction of a
subsequent one (Fig. 2.1).

Such sequences of events are called uncorrelated. The mean time between subse-
quent steps is denoted by τ . Obviously, nobody can predict where exactly this random
walker will have got to after n steps, this means, at time t = n τ .

The randomness of the process allows predicting probabilities only. Let us
consider a large number of random walks, all beginning at the same point. The
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Fig. 2.1 Random walk in one dimension. a Step to the left and step to the right equally probable.
b Possible displacement after five steps

probability that at time t, a random walker shall have got to position x is then simply
the ratio between the number of random walks leading to this point and the total
number of walks.

We are going to derive the “mean square displacement”
〈
x2(t = nτ)

〉
as a char-

acteristic quantity of such a distribution. It denotes the mean value of the square
of the net displacement after n steps, corresponding to time t = nτ . Mean values
are determined by summing over all values and division by the number of values
considered. For our simple model we obviously have

〈
x2(t = nτ)

〉 = 〈
(x1 + x2 + x3 + · · · + xn)

2
〉

= 〈
x21 + x22 + x23 + · · · x2n + 2x1x2 + 2x1x3 + · · · + 2xn−1xn

〉
(2.1)

where x i denotes the length of the i-th step. The magnitude of xi can be either +l
(step in (+x) direction, i.e., step ahead) or −l (step in (−x) direction), so that all of
the first n terms in the second line become equal to l2. Let us now consider the mean
value of each of the subsequent “cross” terms xi xj, with i �= j. For a given value of
xi, according to our starting assumption, the second factor xj shall be equal to +l
and to −l with equal probability. Hence, the resulting values xi xj, with i �= j, will be
equally often +l 2 and −l2, leading to a mean value of zero.

Equation (2.1) is thus seen to simply become

〈
x2(t)

〉 = nl2 = l2

τ
t, (2.2)

with themost important message that a diffusant departs from its origin not in propor-
tion with time as it would be the case with directed motion. It is rather the square of
the displacement which increases with time, so that the (mean) distance often called
xrms (rms meaning root of the mean square) increases with only the square root of
time.

Quite formally, we may introduce an “abbreviation”

D = l2

2τ
(2.3)

so that now Eq. (2.2) may be noted in the form
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〈
x2(t)

〉 = 2Dt. (2.4)

We shall find in the subsequent section that the thus introduced parameter D is a
key quantity for quantifying the rate of the randommovementwhichwe have referred
to as diffusion. We may rearrange Eq. (2.4), leading to its general definition,

D =
〈
x2(t)

〉

2t
. (2.5)

D is referred to as the self-diffusivity (or coefficient of self-diffusion or self-
diffusion constant). The considerationsmay be extended to two and three dimensions,
where the factor 2 on the right-hand side of Eq. (2.3) (and, correspondingly, in
Eqs. (2.4) and (2.5)) has to be replaced by 4 and 6, respectively.

Abandoning the simplifying condition of equal step lengths with essentially the
same reasoning as exemplified with Eq. (2.1), Eq. (2.3) may be shown to be still
valid, now with l 2 as the mean squared step length.

2.2 From RandomWalk to Fluxes

Though today it is possible to follow the diffusion path (“trajectory”) of an indi-
vidual molecule [1], the relevance of diffusion becomes more obvious if ensembles
of diffusing particles are considered. This situation is schematically presented in
Fig. 2.2. In the following, we shall explain that it illustrates the situation typical
of the three most important ways to measure and characterize diffusion. The circles
represent the diffusing particles and the lattice indicates that the process occurswithin
some “framework” formed by, e.g., open spaces (vacancies) in a solid-state lattice,
interconnected pores or territorial areas, which may serve as a reference system.
Correspondingly, the scheme has to be modified (see, e.g., Chap. 13 and Fig. 13.1)
when diffusion of the lattice constituents (as in solid-state diffusion) is considered.

Let us start our discoursewith Fig. 2.2a, with the concentration of diffusants delib-
erately chosen to decay from left to right. This gradient in concentrations effects that,
irrespective of the random (and, notably, undirected!) movement of each individual
particle, the superposition of their movement leads to a directed flux. Macroscop-
ically, this particle flux abolishes existing concentration gradients, following the
general tendency toward equilibration in nature.

Doubling the concentration gradient will obviously affect the doubling of the
difference between the numbers of particles passing from left to right and from right
to left, giving rise to a twofold enhancement of the flux. This leads to the famous
Fick’s 1st law

jx = −DT
∂c

∂x
. (2.6)



14 A. Bunde et al.

Fig. 2.2 Microscopic situation corresponding to themeasurement of the transport (chemical) diffu-
sivity (a) and of the self- (tracer) diffusivity (b, c) by either observing the flux of a labeled fraction
(see, e.g., [2] and Chap. 13) (b), or by recording the individual displacements, e.g., by methods
such as PFG NMR ([3] and Chap. 12), quasi-elastic neutron scattering [4, 5], Mössbauer spec-
troscopy [5] or X-ray photon correlation spectroscopy XPCS [6] (c). Examples of typical particle
distributions on top and corresponding spatial dependencies of concentration below. Reproduced
with permission from Ref. [7], copyright (2013) Wiley-VCH Verlag GmbH & Co. KGaA

jx denotes the flux density in x direction, where the x coordinate is chosen to
indicate the direction of falling concentration and the index T indicates “transport”.
The flux density jx = �N/(�A · �t) is defined by the number �N of particles
passing an area �A (perpendicular to the flux direction) during a time interval �t,
divided by �A and �t. In Eq. (2.6), the concentration gradient is represented as the
so-called partial derivative, which has to be introduced whenever a quantity (here
the particle concentration c, i.e., the particle number per volume) is a function of
various parameters, such as location (x) and time (t) in our case. This twofold depen-
dence is expressed by the notation c(x, t). Partial derivation means that one considers
derivation with respect to one parameter (here x) while the other one(s) is (are) kept
constant. Theminus sign in Eq. (2.6) indicates that the particle flux is directed toward
decreasing concentration. The factor of proportionality,DT , is referred to as the coef-
ficient of transport diffusion (as indicated by suffix T ). Alternatively, also the terms
chemical or collective diffusion are used.

Let us return to Fig. 2.2, where we will now look for an option to quantify diffu-
sion under equilibrium conditions, i.e. for uniform concentration. In this case, obvi-
ously, the irregular particle movement does not lead to any net flux. As illustrated in
Fig. 2.2b, however, again amacroscopically observable effect may be generated if we
are able to effect a distinction between the particles of the system without affecting
their microdynamic properties. In Fig. 2.2b it is simply achieved by considering
spheres in two different shades of red, with both of them assumed to behave iden-
tical and the respective concentrations given below in the figure.With this distinction,
again fluxes become macroscopically observable. In complete analogy to Eq. (2.6)
we may note
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j∗x = −D
∂c∗

∂x
(2.7)

where the asterisk (*) indicates that only one sort of the differently labeled particles
(i.e., either the red or the pink spheres) is considered. In experiments, such a situation
maybe realizedbyusing (two) different isotopes as diffusingparticles.With reference
to the use of labeled molecules (“tracers”), the thus defined quantity D is referred to
as the tracer diffusivity. It might come as a surprise that, at the end of this section,
the thus defined tracer diffusivity will be found to coincide with the self-diffusivity
introduced in the previous section.

A macroscopically existing concentration gradient (Fig. 2.2a) will generally give
rise to an additional bias, as a consequence of the difference in the “surroundings”
depending on whether the diffusant is moving into the direction of higher or smaller
concentration. The rate of propagation of the diffusants depends on the existence of
“free sites” in the range where they try to get to. While in “highly diluted” systems,
this should not be a problem since “free sites” can be assumed to be anywhere easily
(and hencewith equal probability) available, the situation becomesmore complicated
with increasing density of the diffusants. This is true, e.g., for diffusing molecules,
if the cavities in a porous material are occupied already by other guest molecules,
for diffusion in solids where generally the concentration of free sites (vacancies) is
very low, or if a new generation of farmers is forced to leave their home ground in
search for new farming areas, getting into even more densely populated districts.

Such type of bias does not exist in the absence of macroscopic concentration
gradients (Fig. 2.2b). Hence, reflecting two different microdynamic situations, the
coefficients of tracer and transport diffusion cannot be expected to coincide quite
in general. We shall return to some general rules for correlating these two types
of diffusivities in Sect. 2.3. Before, however, we are going to illustrate why the
coefficients of self-diffusion (as introduced by Eq. (2.5) and as resulting with a
measuring procedure as illustrated by Fig. 2.2c) and of tracer diffusion (Eq. (2.7)
and Fig. 2.2b) are one and the same quantity.

Figure 2.2c takes us back to Sect. 2.1 with Fig. 2.1 and Eq. (2.2) illustrating the
evolution of the probability distribution of diffusing particles. Now we are going
to show that this very problem may as well be treated within the frame of Fick’s
first law (Eq. (2.6)). For this purpose, we consider the change in the number of
particles within a volume element due to diffusion. The way of reasoning is sketched
in Fig. 2.3, where again we have made use of the simplifying assumption that the
flux is uniformly directed into x direction (which implies uniform concentration
in any y-z plane). For an extension to three dimensions, with the option of also
orientation-dependent diffusivities, we refer to Chap. 12 and, notably, Sect. 12.5.2.

As is evident: particles entering (flux j) into a given volume must leave again
or—if they do not leave again—will increase the density (c) in the volume:

∂ j

∂x
= −∂c

∂t
(2.8)
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Fig. 2.3 Particle balance in a volume element�V = �x · A for diffusion in x-direction. The change
in the number of particles within this volume element per time is equal to the differences of the
fluxes leaving and entering. Reproduced with permission from Ref. [9], copyright (2014) Leipziger
Universitätsverlag

This relation is termed the continuity equation.
Inserting Eq. (2.8) into Eq. (2.6) yields

∂c

∂t
= D

∂2c

∂x2
(2.9)

where, for simplicity, the diffusivity is assumed to be uniformanywhere in the system.
Equation (2.9) represents Fick’s 2nd law, stating simple proportionality between the
change in concentration with time and the “gradient of the concentration gradient”,
i.e., the curvature of the concentration profile. We do, moreover, disregard the suffix
T having in mind that our reasoning applies to both transport and tracer diffusion.

The mathematics to treat the evolution of such a system is provided by Eq. (2.9).
The readerwith somebackground in differential calculuswill easily convince himself
that the function

c(x, t) ≡ P(x, t) = 1√
4πDt

exp

(
− x2

4Dt

)
, (2.10)

namely, the so-called Gaussian, obeys this equation (Fig. 2.4). It may be shown that,
as a consequence of the central limit theorem of statistics, a Gaussian results quite
generally for the distribution function of particle displacements after a sufficiently
large series of uncorrelated “elementary” displacements (“steps”) if they are of iden-
tical distribution, symmetric, and of finite variance, i.e., of finite mean squared “step
length” (see also Sects. 3.5.1 and 4.1 and Chap. 2 in [8]). Figure 2.1 illustrated a
most simple example of such a series.

With the probability distribution given by Eq. (2.10), the mean square displace-
ment can be noted as



2 Spreading Fundamentals 17

Fig. 2.4 Evolution of the probability distribution for the end points of a “random walk” starting at
t = 0 at x = 0. l is the step length of the random walker. τ is the mean time between subsequent
steps. The curves represent the so-called probability density P(x,t). Reproduced with permission
from Ref. [9], copyright (2014) Leipziger Universitätsverlag

〈
x2(t)

〉 =
x=∞∫

x=−∞
P(x, t)x2dx =

x=∞∫

x=−∞

1√
4πDt

exp

(
− x2

4Dt

)
x2dx = 2Dt, (2.11)

which leads to a standard integral. The analytical solution yields the expressionwhich
has been given already by Eq. (2.4) where, via Eq. (2.3), D has been introduced as
a “short-hand expression” for l2/(2τ ) and, by Eq. (2.5), has been defined as the self-
diffusivity. This expression is now, in fact, seen to coincide with the tracer diffusivity
as introduced by Fick’s 1st law. It was in one of his seminal papers of 1905 [10]
that Albert Einstein did find this bridge between Fick’s law and random particle
movement. Thus, Eq. (2.5) is often referred to as Einstein’s diffusion equation. For
a more profound appreciation of this achievement, we refer to the presentation of
“hot” Brownian motion in Chap. 8.

Diffusive fluxes in our real world are, as a matter of course, often accompanied by
fluxes emerging from directed rather than from random motion. Such situations do
occur in the examples considered in our book when, e.g., diffusive fluxes in plants
(Chap. 5) and turbulences in our atmosphere (Chap. 7) have to be considered in
superposition with phenomena of bulk motion, referred to as advection. The combi-
nation of mass transfer by advection and diffusive fluxes is commonly referred to as
convection.

Throughout the book, we shall be wondering about the “driving forces” giving
rise to the various types of fluxes occurring within the systems under considera-
tion. With Fig. 2.2, we have seen already that, under the existence of concentration
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Fig. 2.5 The most probable
place to find a drunken man
who is at all capable of
keeping on his feet is
somewhere near his starting
point

gradients, diffusive fluxes emerge already as a simple consequence of randommove-
ment. In multicomponent systems of interacting particles, the situation becomes
more intricate. Chapter 10 gives an example that illustrates how then the gradient of
the “chemical potential” may most conveniently be applied as a “driving force” of
diffusion. Borrowing a conception in common use in hydrogeology, Chap. 5 deals
with directed water fluxes in plants by means of Darcy’s law, with the gradient in
water potential as the driving force.While thus, in physical sciences and engineering,
the search for the driving forces and the quantitation of fluxes is among the tasks of
today, equivalent efforts on considering spreading phenomena in, e.g., humanities
appear to be still far before maturity.

In problems of ecology and alike and in many problems in cultural science,
spreading phenomena occur in two rather than in only one dimension as consid-
ered in our introductory example. For diffusion now

〈
r(t)2

〉 = 4Dt and again the
most probable place to find a “random walker” is at the origin. As Pearson [11] put
it already in 1905: “The most probable place to find a drunken man who is at all
capable of keeping on his feet is somewhere near his starting point.” That is what
can be seen from the cartoon Fig. 2.5 and has already been the message of Fig. 2.4
(which preserves its pattern also in two- and more-dimensional presentation): the
maximum in the probability distribution of the location of a random walker remains
in his starting point.

In two dimensions it is appropriate to use polar coordinates and Fick’s 2nd law is
written

∂c(r, t)

∂t
= D

r

∂

∂r

(
r
∂c(r, t)

∂r

)
(2.12)

with r = √
x2 + y2 denoting the distance between the origin of the spreading process

and the considered area. Just as Eq. (2.10) resulted from Eq. (2.9), the solution of
Eq. (2.12) is found to be

c(r, t) = n

4πDt
exp

(
− r2

4Dt

)
. (2.13)

n is the number of representatives of a certain species at the origin.
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2.3 Interaction, Growth, and Conversion

So far, all our considerations were based on the simplifying assumption that the
propagation probability of our diffusants is uniform all over the system under study.
This implies uniformity of the medium in which the process of diffusion (spreading)
occurs, as well as the absence of any interaction between the diffusants.With the lack
of interaction, a distinction between equilibrium and non-equilibrium phenomena
becomesmeaningless [12]. The coefficients of self- and transport diffusion as consid-
ered so far do, therefore, coincide (given by Eq. (2.3) for the considered step model)
and Eq. (2.9) does hold for both self- (=tracer) and transport diffusion. Due to this
coincidence, there was, up to this point, no real need for distinguishing between the
two different types of diffusivities. On considering such interactions, however, this
distinction will become necessary.

On considering molecular interactions, the diffusivity D = D(c) becomes a func-
tion of the diffusant concentration c so that Fick’s 2nd law is not correct anymore in
the form of Eq. (2.9). Inserting Eq. (2.6) into Eq. (2.8) does now rather yield (again
for the simple one-dimensional problem)

∂c

∂t
= ∂

∂x

(
D(c)

∂c

∂x

)
= D(c)

∂2c

∂x2
+ ∂D(c)

∂c

(
∂c

∂x

)2

. (2.14)

The particular dependence D(c) of the diffusivity is determined by the system
under study. Considering a variety of different types of random movement in nature,
technology, and society, the book presents a rich spectrum of possibilities for this
dependence.

Starting with Eq. (2.8) we considered, so far, only the change in concentration
of the diffusants in a certain range as resulting from in- and outgoing fluxes. On
considering in particular biological species, however, we do have to consider a second
mechanism, namely the generation of new species. In first order approximation this
growth may be assumed to be proportional to the amount of species already present
at a given instant of time. By correspondingly completing Eq. (2.12) we arrive at

∂c(r, t)

∂t
= D

r

∂

∂r

(
r
∂c(r, t)

∂r

)
+ αc(r, t) (2.15)

with the newly introduced parameter α referred to as the growth rate. By insertion
into Eq. (2.15), the expression

c(r, t) = n

4πDt
exp

(
− r2

4Dt
+ αt

)
(2.16)

is easily seen to be its solution.We note that Eq. (2.16) differs from Eq. (2.13) in only
the additional term αt in the exponential on the right-hand side of Eq. (2.16). This
term gives rise to an increase in concentration with increasing time. For quantifying
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the speed of spreading, we may now consider a distance R from the origin which we
define by the requirement that there is a well-defined number of spreading species
outside of a circle of this radius R, which is assumed to be negligibly small in
comparison with their total amount. This radius R can now, as a second peculiarity,
be shown to linearly increase with time [13, 14]. One finds R(t) = 2

√
Dαt , from

which the speed of spreading following what Fisher called a “wave of advance” may
be noted immediately as

v = 2
√
Dα. (2.17)

Nature does clearly forbid unlimited growth as would occur as a consequence
of Eq. (2.16) as discussed above. Most remarkably, a simple correction of the term
added to Fick’s 2nd law does allow a reasonable first-order description of many
phenomena occurring in nature:

∂c(r, t)

∂t
= D

r

∂

∂r

(
r
∂c(r, t)

∂r

)
+ α

(
1 − c(r, t)

c∞(r, t)

)
c(r, t). (2.18)

That type of growth, eventually reaching the limiting concentration c∞(r, t) (satu-
ration), is termed “logistic growth”. Spreading does, correspondingly, occur with
concentrations eventually arriving at the limiting concentration c∞(r, t) as schemat-
ically shown in Fig. 2.6. The propagation rate of the concentration front (speed of
spreading) is still given by Eq. (2.17). A more detailed introduction to the formalism
around the “logistic growth” is provided in Sect. 3.4.

Fig. 2.6 Scheme of
propagation (“wave of
advance”) of the
concentration (number per
area) of a species on
spreading according to
Eq. (2.17) at subsequent
instants of time (t1 < t2 < t3)

If the spreading species (as, e.g., molecules during a catalytic reaction) are subject
to chemical conversions or reactions, these conversions as well contribute to changes
in local concentration, in addition to the influence of diffusion. Equation (2.19) gives
an example of the corresponding extension of Fick’s 2nd law, Eq. (2.9), so-called
reaction-diffusion equations, for sake of simplicity in the one-dimensional scenario:
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∂c1
∂t

= D1
∂2c1
∂x2

− k21c1 + k12c2

∂c2
∂t

= D2
∂2c2
∂x2

− k12c2 + k21c1 (2.19)

for a monomolecular reaction between species 1 and 2 (of local concentrations
ci(x, t) with i= 1, 2) with the reaction rate constants kij for conversion from j to i. For
simplification, the diffusivities Di of the two species are assumed to be independent
of either concentration and the diffusive fluxes on the concentration gradient of the
other component. These are coupled partial differential equations which can easily
be solved by computer programs.

The idea to use coupled reaction–diffusion equations and to consider interactions
in addition to growth was soon applied to the spread of living beings and even to the
spread of abstract objects, in particular, languages (see, e.g., Chap. 18).Already,more
than 30 years ago, Okubo [15] and, a little later, Murray [16] have reported on such
applications. From the considerable number of more recent applications, wemention
the description of diffusion (demic vs. cultural) of the Neolithic transition (see, e.g.,
[17]) and of the spread and retreat of language [18] by coupled reaction–diffusion
equations.

It is obvious, however, that one reaches limits in the analytical treatment. The
subsequent sections introduce to the options on how these limitations may be over-
come. Now spread need not follow the dispersal logics of the random walk, i.e., it is
not necessarily of Gaussian type.

2.4 Extending the Tools

With increasing complexity of the system, in particular of the platform on which
spread occurs (network or “habitat”), it becomes increasingly complicated to obtain
analytical solutions such as those given by Eqs. (2.10), (2.13) and (2.16), and simple
reaction–diffusion models are inadequate for the description of complex, spatially
incoherent spreading patterns. The global spread of epidemics, innovations, etc.,
are processes on a complex network. In such cases, it is common praxis to rely on
numerical solutions of the equations, by which these processes are reflected.

When a network of starting points and destinations is the basis for the spread,
for the travel of individuals between nodes n and m, of the network, the continuity
equation ∂c/∂t = −∂j/∂x (Eq. (2.8)) is replaced by a rate equation

∂cn
∂t

=
∑

m �=n

(pnmcm − pmncn) (2.20)

where pnm cm stands for the outgoing flux from node m to node n and pmncn for
the flux in opposite direction. We shall encounter exactly this type of analysis in
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Chap. 20whereBrockmann applies such network logics for demonstrating the spread
of diseases [19].

Another set of interesting but complex problems is the diffusional movements of
animals in search of food. For randomly distributed food sources, the Lévy flight
hypothesis predicts that a random search with jump lengths following a power law
minimizes the search time. Such patterns end upwith relations deviating from simple
proportionality between the mean square displacement and the observation time.
Examples of this type of motion referred to as “anomalous diffusion” may be found
in Chaps. 4 (“Levy flights”), 6 (diffusion in brain “interstitials”) and 10 (“single-file”
diffusion).

However, Lenz et al. [20] find for bumblebees that the crucial quantity to under-
stand changes in the bumblebee dynamics under predation risk, when the insects
obviously try to avoid meeting predators, is the correlation of velocities v. These
correlations correspond exactly to the sums of cross-terms in Eq. (2.1), which
for the bumblebees do not cancel out. The authors reproduce these changes by a
Langevin equation in one dimension adding a repulsive interaction U of bumblebee
and predator:

∂v(t)

∂t
= −ηv(t) − dU

dx
x(t) + ξ(t) (2.21)

where ï is a friction coefficient and ξ(t) a fluctuating force (Gaussian white noise).

2.5 Agent-Based Models of Spread

An alternative possibility of modeling and eventually predicting spreading under
complex conditions is Monte Carlo simulation on the basis of cells occupied by
diffusants, the so-called agents, which can be men, animals, plants, bacteria or even
abstract concepts such as innovations and ideas. The method is sometimes called
cellular automaton. This has, e.g., been done in ethnology for the spread of agricul-
turalists in the neolithicum [21], in ecology for the spread of neobiota [22] and in
linguistics [23] for language competition, just to give a few examples.

The idea of Monte Carlo simulations is as follows: One reserves, in the computer,
a sufficiently large number of memory cells designated i. These cells refer to the
possible positions of the random walker introduced in Sect. 2.1. One considers a set
of numbers mi,j which indicate the occupation number of cell i after time step j.

In the introductory example (Fig. 2.1), after each time step (of duration τ ) the
random walker was required to definitely step to one of the adjacent sites. Thus, one
half of the given population of a certain cell (of number i) would have to be passed,
after one step, to the next one (to cell number i + 1), the other to the previous one
(cell number i − 1). In our computer simulation this would correspond to the relation
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mi, j+1 = 1

2
mi−1, j + 1

2
mi+1, j (2.22)

correlating the cell populations after subsequent steps. After 100, 300, and 1000
steps, one would arrive at the occupation distributions as shown in Fig. 2.4 (where
the values given in Fig. 2.4 have to be additionallymultiplied by the number of agents
starting at the origin).

We may come closer to the reality of the elementary steps of propagation by a
modification of the simulation procedure. Rather than rigorously requiring that, after
each time step τ, the agents have to definitely jump to one of the adjacent sites, one
may introduce the probability pi,k that, during one time step, an agent gets from site
k to i. This probability may include the suitability of the cell. In this case, Eq. (2.22)
is replaced by a relation of the type

mi, j+1 = mi, j +
∑

k

mk, j pi, k − mi, j

∑

k

pk, i (2.23)

where the terms appearing on the right-hand side, in addition to the given occupation
number mi,j, are easily recognized as population increase of cell i by agents entering
from other cells k and population decrease by agent transfer from cell i to other ones.

With k equal to i − 1 and i + 1 and pi,k = �t/2τ , during a time interval �t, an
agent will leave the cell with the probability �t/τ , with equal probabilities for both
directions. This probability definition serves as a meaningful definition of a mean
residence time τ .

The need for computer simulations is illustratedwith the representation in Fig. 2.7,
which refers to the spreading of a biological species, namely ragweed (Ambrosia

Fig. 2.7 Algorithm for determining the occurrence of a species in space at subsequent instants of
time. The 4×4 squares (“grid cells”) symbolize the different areas intowhich the space is subdivided.
Redrawn from [22]
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artemisiifolia), a plant which has “invaded” from North America and continues to
enhance its density of occurrence in Europe [22].

In the top of the figure, cells populated by ragweed are shown in black. The
number of cells in black will continuously increase with spread of ragweed. The
simulations aim at determining the probability bywhich, at further instants of time, so
far unpopulated areas shall become populated (“infested”). In the starting assumption
that infested cells remain infested, one notably deviates from the situation considered
with the introductory random walker example. In fact, by considering infestation
spreading, one is already following the situation typical of growing populations as
considered in Sect. 2.3.

A successful step of “spreading” (the probability of which has been just consid-
ered) is not automatically assumed to warrant infestation. In fact, environmental
conditions (“habitat suitabilities”) might be quite different leading to different
survival probabilities. The grid on the bottom left provides the numbers considered
to be relevant for the given example. The products of both probabilities, representing
the “total infestation probabilitys” are given below in themiddle.Whether infestation
will indeed occur depends on the relation between the random numbers (between 0
and 1) produced by the computer and the total infestation probabilities. Correspond-
ingly, in the right grid, all these cells appear in black for which the random number
is exceeded by the total infestation probability.

Figure 2.8 shows, as example, the predicted infestation of grid cells (about 5 ×
5 km) by the spread of ragweed over Austria and Bavaria.

Fig. 2.8 Left: Distribution of ragweed in Austria and Bavaria in 2005. Red squares symbolize
infested grid cells. Right: Predicted infestation probability indicated by colors from red (highest
probability) down to blue (lowest probability) in 2050, if no action against ragweed spread is taken.
Redrawn from [24]
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2.6 Epidemic Spreading

The SIR model is the most widely used toy model for describing epidemics by a
system of three equations (see Chap. 20 by Brockmann or 21 by Bunde et al.), S
meaning the fraction of susceptibles in the population, I the fraction of infected and
R the fraction of removed people, either recovered or dead. A modified model is
called SEIR taking account of the fraction E which is exposed (see Chap. 22 by
Platteau et al.).

The SIR equations can be modified by including processes such as spreading
(diffusion). In Chap. 20, Brockmann considers spreading starting with two-
dimensional reaction–diffusion equations based on conventional Fick’s equations
completed by a continuous diffusion term.

Brockmann continues by treating global epidemics. He stresses that for global
diffusion, the strong heterogeneity in population density, e.g., the fact that human
populations accumulate in cities that vary substantially in size, the connectivity
between them being provided by data on air traffic, makes a discrete treatment neces-
sary. To this aim, Brockmann replaces the diffusion fluxes with the probabilities that
susceptible, infected, and recovered persons move from one location to another one
and back.

Brockmann compares data of air traffic between airports all over the world with
the possible spread of epidemics replacing the traditional geographic distance with
the notion of an effective distance derived from the structure of the global air-
transportation network. If two locations in the air-transportation network exchange a
large number of passengers, they should be effectively close because larger number
of passengers implies that the probability of an infectious disease being transmitted
between them is comparatively higher than if these two locations were linked only
by a small number of traveling passengers.

Similar to a reaction obeying simple reaction–diffusion dynamics, which spreads
as a wave of advance with constant speed over distance, infection processes spread
at a constant speed over effective distance. One can predict the arrival time of an
epidemic wavefront, knowing the speed of the effective wave of advance and the
effective distance. For example, if the spreading commences shortly after an epidemic
outbreak and the initial spreading speed is determined, arrival times can be forecasted.

Brockmann discusses the dispersion of SARS, the severe acute respiratory
syndrome, an epidemic caused by a virus, which indeed did not progress by means
of a geographical wave. It sprang up in China and infected victims in the USA and in
Europe earlier than in geographically much closer countries such as Korea or India.

The chapter is particularly interesting in that it has been written three years before
the outbreak of Covid-19. It describes what may happen with long-distance transfer
of epidemics and predicts—one may say—what in fact has happened.

In the following Chap. 21 by Bunde et al. the authors treat the spread of epidemics
by looking in detail at the fate of particular agents, even though not over great
distances as has been done by Brockmann but rather from the point of connection in
networks by applying percolation theory.
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Percolation describes how originally disconnected elements (or members of
society susceptible to the Covid-19 virus) form large-scale structures (in the case
interesting us here: clusters of infected people) when the connectivity between the
elements of the system is gradually enhanced.

The authors start from the simplest system, idealizing the members of the society
as positioned on the nodes of a square lattice. By cutting part of these links, one
finds that percolation is interrupted when more than fifty percent (one half) of the
links are cut. For the case of an epidemic, assuming that every member of the society
is susceptible for the virus, calling q the probability that an infective person infects
others (the “infection probability”) and assuming that any member of the society can
be infected, the epidemic will spread for q > 0.5, the so-called percolation threshold
qc.

It is clear that idealizing a society by members on a square lattice is an over-
simplification. As a more realistic system, Bunde et al. consider the members of
the society of susceptible people as positioned on a tree-like structure, the so-called
Bethe lattice. Infection proceeds only in the forward direction. The members are
connected to neighbors by a variable number of links k. Now qc is no longer 0.5
but rather a function of k. Bunde et al. receive qc=1/(k-1) implying that for on the
average, say, four links per person, epidemic will start at qc = 1/3, i.e., already when
only 1/3 of the links remains as transmitters of the virus, i.e., considerably earlier than
in the simplest model of the square lattice. The reason for this difference is: in the
square lattice, back-contacts (called loops or cycles) to already infected people are
possible, leading to no further spread of the virus, whereas on the Bethe lattice, every
contact to a susceptible person leads to the spread of the epidemic, and therefore, to
a lower threshold for mitigating the spread.

Here (immunizing) vaccination comes into play: for the “critical” fraction of
the population, i.e., the fraction which needs to be immunized one receives vc(q)=
1−1/[(k−1)q].

Still, this is a rather simple model, since the number k is an assumption on the
average number of links of each member of the Bethe lattice.

Proceeding a step further, Bunde et al. consider a network of persons who have
unrestricted contacts with other persons, i.e., a scenario much closer to reality. Now
the number k of links of every person is varied, the persons being randomly connected
to others by many links. Bunde et al. argue that qc is now dominated by κ, the
maximum number of links a person may have: qc = 1/κ.

It is evident that qc can bemuch lower than predicted by the SIRmodel. Byway of
example: for the so-called “superspreader” who has 20 contacts infecting 20 people,
the threshold for causing an epidemic will be as low as five percent of the susceptible
population.

Finally, Bunde et al. consider a network with artificially introduced spatial
constraints. In the case of an epidemic on a network, one can account for the reduced
mobility in a population that is aware of the spreading virus. This results in an increase
in the epidemic threshold compared to the Bethe lattice. Bunde et al. symbolize the
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strength of the constraints connecting pairs of members with a probability domi-
nated by an exponent δ and find that the fraction of the population that needs to be
immunized drastically decreases with increasing δ.

Thus, percolation theory, appearing rather abstract for the newcomer, provides
realistic advice on how to act in a progressing epidemic: reducing contacts by
reducingmobility is an effective weapon against an epidemic. Furthermore, targeting
the superspreaders for contact reduction or immunization is much cheaper than
targeting randomly the total population.

Even though SIR or SEIR-models and the fundamental considerations inChap. 21
offer an excellent starting point for both analysis and policy thinking, it is evident
that a realistic model necessarily involves a lot of assumptions about social key
parameters.

These aspects are illuminated in Chap. 22 by Platteau et al. who consider the
consequences of the Covid-19 epidemic on the social aspects of human behavior
and the resulting economic consequences. The authors compare the recent work of
several groups.

Even the simplest model encompassing epidemics and economics finds there
is a conflict between health and production, a balance between egoistic (and also
altruistic) and economic motivations. Moreover, modeling turns out to be difficult
not only because of the very complexity of the problem, but also because of the
numerous assumptions required at the level of human behaviors and their dynamics
and at the level of the constraining instruments available to the government.

Platteau et al. describe this dilemma by methods of game theory. In the latter,
individuals act strategically, they hold beliefs regarding what others are going to do
in a particular situation and they then act upon their beliefs.

A general consequence is: Comparing predictions with data of the real outcome
(number of registered infections, hospitalized people, deaths) one finds that the level
of infections across the epidemic is lower than what a traditional non-economic
epidemiological analysis would suggest, thus indicating that the latter overstates the
severity of the epidemic by ignoring rational human responses.

The adaptive behavior of individuals seems to play a role, too. Thus one may
observe that the considered model produces overestimates whenever daily infections
are increasing or assume their peak values. Obviously, the models do not adequately
reflect the precautionary measures of the individuals. Epidemiologists sometimes
describe this observation as a “prediction paradox”.

One cited study states that taking into account the economic and social costs of a
lockdown, the social planner might decide it to be most efficient to reach an endemic
steady state with a positive share of infected people in the population. This is a major
contrast with the conclusions derived from oversimplified epidemiological models,
which recommend to eradicate the epidemic as quickly as possible. In other words,
even the simplest model encompassing epidemics and economics finds there is a
conflict between health and production.

Moreover, social optimum models do not say anything about the practicality of
optimal policies. Strict rules may lead to weariness which can affect people subject
to long periods of lockdown or to repeated lockdown episodes. Such weariness is
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unavoidably reflected in an erosion of civic norms with the effect of undermining
the efficacy of public health policies.

This leads to Chap. 23 where Kroy again points out that most models based
on the original SIR model completely disregard the spatial, social, and biological
heterogeneity of the population. Kroy regards the possibly over-optimistic treatment
of Covid-19 mitigation by official health politics with a proper portion of skepticism.
He again stresses that contrary to formal predictions of idealized models, originally
devised to elucidate some abstract principles, local details, and finite-size effects will
matter a lot.

Kroy recalls that, as is often disregarded in the calculations, only a fraction of
the population ever becomes infected during an infection wave, and therefore, miti-
gation measures are far more effective if they target specific cohorts rather than
the whole population. This implies that it is crucial to account for the population
heterogeneity with respect to both their vulnerability and their social mixing, e.g.,
the higher vulnerability of aged people, in particular, in nursing homes.

Kroy states that individuals will not spread the disease simply proportionally to
their pathogen load. Indeed, most do not spread the pathogen at all, but a few—
the so-called superspreaders—spread a lot. Therefore, it is of major interest to take
into account the heterogeneous spatial geometry and the heterogeneous mobility
patterns. Here, Bunde et al. (Chap. 21) have paved a mathematical way: they have
considered the effect of superspreaders to lower the percolation threshold, which
implies that the epidemic spreads more easily than in homogeneous models. Turned
around, this means that to counteract this effect, the best strategy is to target the
specific superspreaders or superspreading events rather than the whole population,
a route Kroy has in mind for reducing efforts and financial means in mitigating an
epidemic.

Already in the previous Chap. 22 by Platteau et al. the social and psycholog-
ical effects of imposed global measures were illuminated from different aspects. To
repeat just one aspect, the authors point out that extended periods of lockdown or
repeated lockdown episodes unavoidably create a weariness reflected in an erosion
of civic norms. In Chap. 23 Kroy again emphasizes the subtle effects of individual,
social, spatial, and genetic heterogeneities on epidemic spreading; indiscriminate
large-scale disease management practices bearing the risk of failure because they
promote uniformity in place of diversity of strategies required for optimization.
Kroy claims that a timely feedback and public sharing of accurate and meaningfully
contextualized information about an ongoing epidemic could be a major counter-
tactics to mitigate its impact as it can help to outsmart a spreading pathogen by the
swarm intelligence of the invaded population. He finally cites C. G. Jung’s insistent
warnings that there is no adequate protection against psychic epidemics, which are
infinitely more devastating than the worst of natural catastrophes.
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Chapter 3
Dispersal in Plants and Animals

Michael Leitner and Ingolf Kühn

3.1 Introduction

The biogeographical patterns of ecosystems and species distributions we know today
are, apart from other effects such as evolution or ecological interactions, the result
of a continuous progression of spatial processes since different species emerged.
These spatial processes accelerated tremendously with the advent of modern humans
and their effects on species and ecosystems, such as via trade, traffic, or habitat
modification [35]. Here we discuss general aspects of the resulting spatio-temporal
population dynamics and review pertinent models.

Dispersal refers to the movement of individuals, either from the site of birth to
the site of reproduction, or the movement between successive sites of reproduction
[1]. This pertains to any group of organisms (animals, plants, fungi, or bacteria) and
can occur in several stages, including adult individuals as well as propagules such
as spores, seeds, fruits, or vegetative fragments of an individual. It is the primary
mechanism of spatial gene flow, maintaining populations and fitness [36]. These
dispersal movements usually occur within the range of a species, i.e. within the
geographical area where the individuals of a species are commonly encountered.

Dispersal phenomena can happen at almost any temporal and spatial scale. At
evolutionary time scales, species evolve into new species and need to colonize a new
range distinct from their area of origin. Further, dispersal can be tied to geological
events. Consider for instance the Great American Interchange, bringing the conti-
nents of North and South America into contact, c. 10 Mio. years ago. Once both
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continents got connected, migration across the new continents was instantaneous
compared to the time scales of continental drift. The results of these processes are
the biogeographic patterns we know today with specific floristic or zoological king-
doms or realms, made up of regions with a similar composition of species, e.g. the
Holarctis (temperate and cool regions surrounding the North pole), Paleotropis (Old
World Tropics), or Neotropis (New World Tropics).

In our context more relevant, though, are much shorter time scales, specifically
those at which demographic processes such as birth, death, colonization, and extinc-
tion determine population dynamics. They happenwithin the life-span of an organism
or within a few generations. Movement of individuals beyond their current range
(that is, the region in which species successfully reproduce) and subsequent estab-
lishment will lead to range expansion. On the other hand, unfavorable conditions,
for instance at range margins, can lead to range contraction. In this chapter, we will
hence consider questions of how spatial patterns of populations temporally evolve on
these time scales. Specifically, we will not treat evolution in the Darwinian sense. As
indicated above, dispersal and the resulting range shifts are a natural aspect of popu-
lation dynamics. In the face of stochastic local extinctions due to natural disasters,
diseases, changing environmental conditions, increased competition, or predation, it
is vital for the survival of a species to be able to (re-)colonize suitable habitats as fast
as possible, before the specific populations become extinct themselves.

The dominant mode of dispersal is specific to species. Many animals disperse
actively, while most plant species as well as sedentary and floating aquatic animal
species are dispersed passively in specific life-stages, which with regard to modeling
necessitates to explicitly consider aspects such as river currents, marine currents (e.g.
gulf stream/North Atlantic Drift), air currents (e.g. the jet stream), or the movement
of dispersal vectors (such as animals dispersing plant seeds).

In addition, dispersal patterns depend on the properties (i.e. permeability) of the
ranges (large scale) and landscapes (smaller scale) to be traversed. At large scales,
climate matching [2] is crucial, i.e. the climatic conditions have to suit the individual
species’ preferences. Landscapes need to provide the habitat needed by a species
(e.g. forest or grassland in general, or specific forests and meadows). How well
these habitats are interconnected or whether there are barriers determines how fast
a species can disperse and which shape the resulting range will have. All biotic
and environmental conditions and resources needed by a species are jointly called
“ecological niche”. This niche is typically considered to be a high-dimensional region
in parameter space, where each dimension is characterized by a specific condition
or resource a species needs or uses [3, 37]. Nevertheless, methods exist to account
for these habitat properties in models, as well.

Already since neolithic times, when humans have started to modify land cover,
but especially since the beginning of long-distance trade and travel in the Age of
Discovery, range dynamics on unprecedented velocity have been happening. On
the one hand, the dispersal opportunities afforded by human innovations such as
intercontinental shipping traffic (on an ever-increasing volume especially in the last
decades with progressing globalization [4]) result in translocations of species. This
is a special case of colonization, facilitated by humans. The species in the new range
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are called “alien” or “exotic”, and in case the species spread rapidly and/or cause a
negative impact, they are called “invasive” [5, 39,]. On the other hand, the historically
drastic rate of climate change, witnessed in the last decades and likely to persist [6],
entails corresponding shifts in the habitable regions for many given species [7]. This
leads to a special case in which native as well as alien species undergo range shifts
and the distinction becomes partially ambiguous. Especially this aspect of dispersing
species due to global change is of special interest to ecologists: firstly to improve
the understanding of ecological processes by modeling dynamics that can currently
be observed, and secondly because such models can be the basis for management
applications in nature conservation.

The issues listed above hence motivate the large amount of attention questions
of animal and plant dispersal have been receiving within the last years. As detailed
above, this pertains primarily to dispersal onmacroscopic scales which has the poten-
tial to lead to range shifts or expansions. Our contribution will focus on these aspects,
and we will understand “dispersal” in this sense. To this end, we will follow an order
of sequential increase of model complexity, from models assuming “equilibrium
conditions” to complex dynamic systems considering ecological processes in more
detail.

3.2 Comparing Diffusive Dynamics in Physics and Ecology

Random walks in their purest form belong to the realm of physics. Paradoxically,
RobertBrown,whofirst observed the ceaseless randommotionof suspendedparticles
in a liquid and knownasBrownianmotion,whichwenowknow to be due to stochastic
collisionswith the fluid’smolecules,was a botanist. However, startingwithEinstein’s
and Smoluchowski’s explanation of the phenomenon, it was primarily physicists
who have studied random walks and the consequent spreading-out of concentration
gradients, which is known as diffusion. When related phenomena first came into
the focus of other fields of science, it was therefore natural to adopt the physical
concepts. However, we feel that the analogy is useful only up to a certain point,
and in this section, we discuss specific aspects of diffusive dynamics in physics and
ecology and point out the differences. Note that most of the statements regarding
the ecological case hold equally also for other non-physical examples treated in this
book, be it the spreading of cultural techniques and people in Chaps. 14, 16, and 17,
languages—whose evolution is indeed often compared to species [38]—in Chap. 18
or diseases (Chap. 20).

Mass conservation versus reactions: In physics, on the one hand, the diffusing
entities, be it atoms, molecules, or more abstract quantities such as heat, comply with
a conservation law. This means that concentration changes with time are purely due
to incoming and outgoing fluxes. Even in the case of chemistry’s diffusion-reaction
phenomena, where substances that have been brought together by diffusion react,
there is a clear distinction between diffusion and reaction (for example, see Chaps. 10
and 11). Specifically in ecology of plants or sedentary animals such as corals, on the
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other hand, such a distinction is not meaningful. Here spatial transfers happen by
means of propagules (seeds or vegetative dispersal unit), without affecting the popu-
lation density at the source. Therefore, the on-site aspect of dynamics (reproduction
and death) is intrinsically linked to the spatial aspect (dispersal).

Homogeneity: In physical diffusion, the governing relations in most cases do not
depend explicitly on time. In contrast, the activity of living organisms is typically
strongly structured by the diurnal or seasonal cycles, which naturally affects the
spreading behavior. The same holds for the spatial scale,where the habitats accessible
to plants or animals often display pronounced inhomogeneities, while for the physical
case of diffusion in a gas, liquid, or solid, space is homogeneous. Of course there are
important counter-examples, such as the case of grain-boundary diffusion in solid
diffusion (Chap. 13).

Isotropy: An analogous statement can be made with regard to the directional
symmetry of the governing relations: The diffusion equation of physics is invariant
with respect to spatial inversion, and often it is even isotropic, whichmeans that there
are no special directions. In contrast, the non-uniformity of the wind directions leads
to a bias in the transport of wind-dispersed seeds (see Chap. 7 for a discussion of the
aspects specific to this problem), and the same applies for the distinction between
upstream and downstream dispersal in and along rivers or upslope and downslope
dispersal in steep terrain.

Linearity: In physics, the diffusion equations can often be linearized, specifi-
cally when dealing with very diluted diffusants. Only for interacting diffusants at
sizable concentrations do non-linear effects come into play (see Chap. 2). Ecology,
on the other hand, is inconceivable without interactions. They can come in many
forms: Intra-specific interaction, for instance higher reproduction success at higher
densities due to increased mate-finding probabilities or increasing diffusivities at
higher densities due to decreasing foraging successes corresponding to competition,
or inter-species interactions as in predator-prey, host-parasite, or plant-pollinator
relationships. As a consequence, the governing relations in ecology are non-linear
as a rule.

Continuity versus discretization: An important distinction lies in the scale
of the fundamental translocations. While it is true that also in the physical case
of random walks, be it the Brownian motion of suspended particles in a gas or
a liquid or the jumps between neighboring sites of atoms in a crystal, there is a
fundamental discretization, on length and time scales observable to the unaided eye
the movement appears continuous. Again plant ecology provides the most striking
difference, where there is apart from a few exceptions only one translocation event
per generation, which can be considered to happen instantaneously. Also for animals,
the granularity of the translocations leads to non-Gaussian spread kernels, as will be
discussed in more detail below.

Determinism versus stochasticity: Due to the fact that in physical cases the
number of considered diffusing particles is typically extremely large (a cubic meter
of air holds more than 1025 molecules), it is neither possible nor would it be useful to
track the position of every particle. Rather, the state of the system at any given time is
describedbyparticle densities. Further, the fundamental displacements’ large number
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and microscopical scale as discussed above completely average out their random-
ness. As a consequence, the particle densities follow deterministic partial differential
equations. This does not hold for most ecological cases, where any detailed model
has to treat the stochasticity of the fundamental processes. Specifically very rare
events can have a stochastic effect on the resulting species distributions, such as
long-range displacements of seeds or individuals coupled with non-linear growth
leading to colonizations of hitherto unreached areas, or the introduction of diseases
or predatory species, which can result in (local) extinction.

The above points can be summarized in the statement that the models that have
to be used to adequately describe dispersal processes in ecology are typically more
complex than those used in physics. This shall not claim that the physical problems are
in any way trivial or not interesting, and in fact, the physical cases treated in various
chapters in this book often are counter-examples to the simplified distinctions given
above. However, in this they are exceptions that capture the scientists’ interest, while
the complexity in the ecological cases is rather a rule.

3.3 Static Spatial Distributions

Frequently, dynamical systems are in equilibrium at the temporal or spatial scale
considered. This is the case for animal species moving in order to forage or mate
or for plant species where seed dispersal will not necessarily result in average range
changes nor in average changes of population densities. Such stable conditions can
result for species that are in equilibrium with the given environmental conditions,
i.e. those that occur everywhere where environmental conditions are suitable [8]. In
other cases, species are not in equilibrium with their environmental conditions but
cannot realize range increases due to dispersal limitation. For instance, Svenning
and Skov [9] showed that many species hardly changed their range after the last
glaciation due to dispersal limitation. For the sake of modeling, though, systems
are often assumed to be in equilibrium. In such cases, the microscopic workings,
i.e. the underlying processes, are subsumed in phenomenological dependencies, and
the interest lies rather in describing the pattern. The model parameters are hence
typically determined from observed population dynamics by methods of statistical
inference, as will be treated below.

Nevertheless, even under equilibrium conditions, process knowledge can be rather
detailed, with the resulting model covering all these details and considering all
processes on a microscopic basis, so that the corresponding parameters can be
determined independently. This is then called a mechanistic model. For modeling
stochastic dynamics (Sect. 3.5.2), mechanistic models are often preferred.
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3.3.1 Species Distribution Models (SDMs)

In principle, Species Distribution Models (also called ecological niche models, bio-
climatic envelope models, or habitat suitability models) describe the occurrence
of species under static conditions, allowing to derive their range under specific
assumptions. In their simplest form, they build on the linear predictor

η = Xβ (3.1)

understood as matrix-vector multiplication, where X is a matrix of environmental
conditions sampled at a number of locations and β is the parameter vector of the
model. These conditions can be climatic factors such as temperature or precipitation,
land use or land cover such as arable land, grassland, forests, geological substrates,
or anything that determines where a species can thrive, and the variation of η with a
change in a given environmental condition is quantified by the respective entry in β.

Sometimes species abundance is known (such as counts of individuals, cover, or
biomass), but in most cases, the information on species occurrences is only known
in a binary way (species presence or absence). To link the linear predictor η to the
expected value of the occurrences, the link function g is introduced

g
(
E(y)

) = η = Xβ, (3.2)

where y denotes the species occurrences. The expression for the link function g
depends on the distribution model of the species occurrence data (e.g. binomial,
Poisson, or Gamma-distributed). Technically, parameter estimation is done by any
method of statistical inference (see Sect. 3.5.2). While Generalized Linear Models
as introduced above are the most frequently used SDMs, there are many other
approaches used.

TheseSDMsare frequently employed formodeling spread in caseswhere the envi-
ronmental conditions that determine the species distribution are not static or species
are not in equilibrium with environmental conditions. In the former scenario, tempo-
rally varying layers of environmental conditions (such as climate change scenario
projections) are used to predict future species ranges, inherently assuming that spread
(or retraction) takes place. SDMs are hence believed to predict the potential range
of a species correctly, and the difference of observed versus modeled range can
then be used to infer spread processes. Strictly speaking, though, this is not a valid
approach [8]. Non-native species have mostly not (yet) colonized all potentially
possible environmental conditions [10]. Hence their ecological niche (i.e. the n-
dimensional hypervolume describing all conditions they need) is frequently largely
underestimated, when suitable conditions are neglected because the species has not
yet colonized locations with such conditions (e.g. [11]).

As an example, the use of an SDM for predicting range shifts of a species under
varying climate conditions is illustrated for the case of the common walnut (Juglans
regia), which is native to mountain ranges of central Asia and has been introduced to
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Fig. 3.1 Modeled expected value for the presence of the common walnut today (left panel) and
predicted under climate change (right panel) in gray-level coding

theMediterranean in Antiquity. For both 38 bio-climatic parameters and 11 soil char-
acteristics, the six most important principal components were combined with four
land-use parameters to produce the matrix of environmental conditions X, having
2995 rows (corresponding to the number of cells) and 16 columns.Given the currently
realized binary distribution data, the corresponding 16-entry parameter vector β is
inferred.Under theA1FI scenario [12],which assumes that future policy is concerned
with stimulating economic growth as opposed to reducing carbon dioxide emissions,
a temperature increase of approx. 4 ◦C until the end of the century is projected for
Germany. The cell-wise expected value for occupation E(Y ) for the modified envi-
ronmental condition matrix is presented in Fig. 3.1 along with the model predictions
for the present conditions. It is seen that the plant will increase its naturalized range
from south-western Germany to most of southern and central Germany [13].

3.4 Spread Processes: Classical Approaches

The pioneering works on the spatio-temporal dynamics of plants and animals were
done before the advent of electronic computers. As a consequence, typically the
aim was to capture only qualitative aspects, and modeling was done by (partial)
differential equations, disregarding aspects such as spatial inhomogeneities. Here
we will briefly recapitulate those concepts. As mentioned already above, in ecology
reproduction and death are often integral aspects of dispersal. Therefore, wewill start
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here with a treatment of on-site population dynamics and in a second step augment
them by considering spatial dynamics.

3.4.1 On-site Dynamics

In agreement with the nomenclature of Chap. 2, we denote the local population
density at time t as c(t). We model the temporal evolution of the population density,
that is how the number of individuals of a given species changes with time, as

dc(t)

dt
= α

(
c(t)

)
c(t), (3.3)

where we allow for a density-dependent growth rate α(c). In this formulation, the
temporal change of the population density goes to zero as the population goes to zero
(provided α(c) is bounded), which is a sensible choice, as naturally both birth and
death incidence rate will go to zero in this case.

Unbounded Growth: The most simple model of population dynamics results
from choosing α(c) = α. For positive α, this has a simple exponential function as
solution

c(t) = c(0)eαt , (3.4)

corresponding to unbounded growth. After Thomas Robert Malthus, who introduced
this model and pointed out its consequences [14], it is called the Malthusian Growth
model. Note, however, that its main idea goes back at least to Leonardo Fibonacci’s
modeling of the population dynamics of rabbits [15], who, with differential calculus
still five hundred years away, formulated it as a difference equation giving rise to the
Fibonacci sequence.

Bounded capacities: As a rule, plants and animals produce more, sometimes
much more offspring than one individuum per parent. If conditions are favorable, a
large part of those survives to fertility, corresponding to potentially large population
growth rates.However, at higher population densities, the survival rateswill decrease,
due to factors such as competition for limited feeding or sunlight resources, higher
incidences of diseases, or increased predation (for an explicit treatment of this effect,
see below). In ecological systems in equilibrium, it is indeed necessarily the case
that the average number of surviving offspring is just one individuum per parent, or a
growth rate of zero. The simplest model to capture this issue is due to Verhulst [16],
who assumed a linearly decreasing growth rate

α(c) = α0(1 − c/K ), (3.5)

going to zero when the population density reaches the carrying capacity K.
Accordingly, the solution of the model



3 Dispersal in Plants and Animals 41

c(t) = c(0)K

c(0) + (
K − c(0)

)
e−α0t

, (3.6)

known as a logistic function, asymptotically approaches K (see also Fig. 16.3 and
the example given in Sect. 14.2.2 for the use of the logistic function for predicting
the spreading of innovations).

Inverse density effects: In addition to diminishing growth rates at high densities,
this can also be the case for low densities, for instance due to difficulties of finding
mating partners, if the species uses cooperative defence, hunting, or child-rearing
strategies, or if it is the preferred food for a species that can sustain high numbers
also when the species in focus diminishes, because it is not the only possible prey
of a more generalist predator. Such an effect has first been described by Allee [17]
and is therefore known as the Allee effect. The simplest corresponding expression
for the growth rate is

α(c) = α0(1 − c/K )(c − c′), (3.7)

with a parameter c′ that has the dimension of a population density. Here the sign of c′
distinguishes two regimes: For c′ < 0, the resulting qualitative features agreewith the
Verhulst model, only with decreased growth rates at small densities. This is called
the weak Allee effect. However, a positive c′ corresponds to a critical population
density below which the species would die out spontaneously. This constitutes the
strong Allee effect and has important implications: For instance, it suppresses the
establishment of colonization foci by small founder populations, as well as severely
reduces the speed of the invasion front (which will be defined below). Note that for
instance also the conversion toward the locally dominating languages, leading to a
decline of minority languages in linguistics (Chap. 18) can be seen as an example of
the Allee effect.

Explicit interactions: Finally, the explicit interaction between the densities of
different species can be considered. In the simplest case of a two-species predator-
prey system, this can lead to the Lotka-Volterramodel (due toAlfred James Lotka and
Vito Volterra), where the population densities of a prey c1 and a predator c2 species
are described by coupled differential equations. Specifically, the growth rate of the
prey decreases linearly with the predator concentration, while the predators’ growth
rate grows linearly with the prey concentration [18, 19]. Under these conditions, the
ecological system performs an oscillatory motion through two-dimensional phase
space, where the predators multiply during periods of high prey populations, leading
to their decline and a subsequent decline of the predators. Under these low-predator
conditions, the prey population will recover, starting the next oscillation. Of course,
in actual ecosystems, species typically will interact with a number of other species,
either in a predator-prey relationship or competing for the same resources. This can
give rise to very non-linear effects, for instance when a predator species special-
izes on a specific prey due to their increasing numbers. Note that for many-species
ecosystems, which indeed are the typical case, simulations show that generic model
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parameters lead to chaotic dynamics, and stable situations likely arise only due to
natural selection [20].

3.4.2 Reaction-Diffusion Approaches

In the case of spatially inhomogeneous population densities, such as during the colo-
nization of hitherto unoccupied areas (or, equivalently, range contractions), the clas-
sical approach is to augment the on-site dynamical term as discussed in the previous
section by a diffusive term, describing the fluxes due to concentration gradients via
second derivatives. This is treated in more detail in Chaps. 2 and 16, so we will state
here only the fact that the resulting equations of the form

∂c(x, t)

∂t
= α

(
c(x, t)

)
c(x, t) + D

∂2c(x, t)

∂x2
, (3.8)

where x is the spatial variable to account for variations in the population density,
have solutions that at long times take the form of traveling fronts. Specifically, along
the direction of propagation, they can be written as

c(x, t) = c∗(x − vt), (3.9)

with a constant propagation velocity v [21].
J. G. Skellam was the first to compare this model to an actual case of species

invasion: His iconic illustration of the spread of muskrats after having been imported
from Northern America and released in central Bohemia in 1905 is reproduced in
Fig. 3.2 [22]. He showed that their range grows quadratically in time, corresponding
to a propagation velocity of about 11 km/year. However, a closer look reveals already
in this prototypical example deficiencies of the model. Specifically, inhomogeneities
in the landscape lead to deviations from the ideally expected circular shapes, where
for instance the hill and forest chains around Bohemia retarded the propagation,
while rivers in lower Bavaria and Saxony seem to have favored the dispersal of the
waterbound muskrats.

3.5 Spatio-temporal Population Modeling: State of the Art

After briefly reviewing in the previous section how classically the spatio-temporal
dynamics of population densities have been modeled by (partial) differential equa-
tions, here we will indicate some directions of recent improvements. Interestingly,
these modern developments can be traced back to some of the differences between
the physical and the ecological cases of dispersal as already discussed in Sect. 3.2.
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Fig. 3.2 Range populated by muskrats as function of time during their invasion of central Europe
drawn after [22]. Today’s political borders are dashed

Specifically, in the following, we consider finite lengths of displacement, spatial
inhomogeneities, and stochasticity.

3.5.1 Spread Kernels

In Chap. 2, it was derived in some detail how the probability density of a particle
performing a random walk is given by a Gaussian distribution of increasing width.
Mathematically, this result is just the central limit theorem, which in its simplest form
states that the probability density after a large number of uncorrelated displacements,
drawn from some fixed but arbitrary distribution with finite variance, converges
toward a Gaussian distribution. However, if those preconditions are not fulfilled,
specifically if themacroscopic displacement is not the sumof a large number of uncor-
related microscopic displacements, there is no reason for the probability densities to
have Gaussian shapes.

This is often the case in ecology (and also in the case of human mobility, as
considered by way of equivalent models in Chaps. 16 and 18): When animals move,
they normally do so in order to cover distance to, for instance, find genetically
different mates or new feeding grounds as opposed to movement for its own sake (cp.
sharks swimming to keepup thewaterflow through their gills).Of course,with respect
to this goal, it is most efficient to move in a straight line, for which even the least
developed animal lifeforms have evolved abilities. For example, nocturnal insects
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navigate by bright lights and somemotile bacteria canmove along chemical gradients
(chemotaxis). In other words, their movement is correlated over time. A detailed
discussion of these effects and their consequences for the statistical properties of
animal motion is given in Chap. 4.

The main dispersal modes of plant seeds are either within or attached to animals,
in which case the discussion above applies, or by way of wind or water, which again
corresponds to correlated movement. Also dispersal mediated by human activities,
be it intentionally or unintentionally, e.g. as load in shipments (for quite a number
of species this is the dominating mode of long-distance transport [23, 24]), is clearly
not composed of many small independent displacements.

To account for this complication on the level of the reaction-diffusion approaches,
one can replace the partial differential equation (8) by an integro-differential equation

∂c(x, t)

∂t
= α

(
c(x, t)

)
c(x, t) +

∫
dyK (y)c(x − y, t) − c(x, t)

∫
dyK (y),

(3.10)

where K(y) is the probability density per unit time that an individual is translocated
by y. Note that the last term due to the outflux of individuals can formally also be
subsumed in the reaction term. Mathematically, in this equation, K(y) has the role of
a convolution kernel. It is therefore called the spread kernel, also in frameworks that
go beyond deterministic reaction-diffusion approaches as will be discussed below.

Due to the correlated movement as discussed above, in ecology spread kernels
typically have positive excess kurtosis, that means, for a given standard deviation,
the distribution has more weight in the extreme values than a normal (or Gaussian)
distribution. Such kernels are called leptokurtic or fat-tailed. Specifically, the Lévy
flight hypothesis would constitute a microscopic motivation for fat-tailed kernels,
but its validity has recently been questioned (see Chap. 4). A different scenario
resulting in non-Gaussian kernels has been proposed to explain for instance the
spread of the horse chestnut leafminer moth over Germany [25, 26], with the spread
kernel being composed of a small-scale contribution corresponding to dispersal of the
airborne individuals by wind and a large-scale contribution due to human-mediated
transportation.

3.5.2 Stochastic Dynamics

The (partial) differential equations as used in Sect. 3.4 imply a deterministic evolution
of the population densities. Of course, when fitting the resulting models to observed
data, the agreement will not be perfect, but in a deterministic framework, these
deviations are understood to be due to fluctuations around some inherent “true”
value, which is indeed assumed to strictly follow the governing equations. Note that
this is always the implicit assumption when fitting curves to time-resolved data.
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This has to be contrasted with a stochastic approach. Here one does not assume
the observable data to be noisy representatives of hidden quantities that evolve deter-
ministically, rather one admits stochasticity as an inherent property of the process.
What distinguishes between the validity of either point of view are the scales of the
problem: If many individuals participate and displacement happens only over small
distances, a deterministic description via densities can be adequate. However, when
the consequences of individual stochastic events are visible on the scales of interest,
a stochastic treatment is needed. Note that even for the invasion of central Europe by
the muskrat as considered above, a deterministic treatment is only appropriate for the
later stages: The initial release of the five individuals could equally have happened
at a different location or decades earlier or later, shifting the subsequent process in
space and time. Trying to model also this initial event by deterministic equations
would obviously not afford much insight into the process.

3.5.2.1 Stochastic Model Formulations

To fill these concepts with life, we will now first formulate the general model and
then consider a specific example: Let σ(., t) be the state of the system at time t,
specifically let σ(x, t) be the occupancy of site x at time t. This “occupancy” shall
include all information that is relevant for the considered problem, such as population
densities for the considered species, optionally resolved with respect to additional
state variables such as age. The model is then represented by a probability density

P
(
σ(., t + 1)|σ(., t)

)
. (3.11)

In words, this expression corresponds to the probability for a system in state σ(., t)
to evolve to the state σ(., t + 1) during one timestep. Note that the arguments to P
are functions varying over space, not their point-wise evaluations. This makes the
occupancy at some specific site x depend not only on the previous occupancy at
this site, but also on all other sites. For simplicity, time is here discretized, which
can be either the natural choice, for instance for annual plants, or an approximation
to a temporally continuous evolution. Also the spatial variable x can be continuous
or discretized, optionally with an explicit dependence of the transition probabilities
on x. It can also be adequate to discretize space non-regularly, for instance in the
so-called metapopulation models, where the study range decomposes naturally into
patches within which movement for the species is easy, while dispersal between
patches happens only rarely [27], e.g. for an aquatic species in disconnected water
bodies [28] or grassland butterflies in forest-dominated regions [29]. Note finally
that the random process defined by Eq. (11) is a Markov process, which means the
transition probabilities to the next state depend only on the present state and not on
earlier states. This, however, is no restriction, as any dependence on earlier states can
be captured by extending the considered state variables to explicitly include those
earlier states.
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The degrees of freedom in modeling are on the one hand qualitative features,
i.e. the mathematical form of the expressions, and on the other hand quantitative
parameters.

For an exemplary realization of this general setting, we consider a model of the
spread of the North American weed Ambrosia artemisiifolia (common ragweed)
across central Europe [30, 31]: Here space is discretized along lines of constant
latitude or longitude into a regular grid, time is discretized into annual steps, the
system state σ is the simplest conceivable, namely a given cell x at time t is either
occupied (σ(x, t) = 1) or unoccupied (σ(x, t) = 0), and only cell transitions from
unoccupied to occupied are considered, which furthermore are independent of each
other. The transition probability density P depends on two auxiliary functions, which
are the seed influx I(x, t) in a given year t into cell x and the spatially varying habitat
suitability function H(x), which can be seen as the probability that incoming seeds
find favorable conditions and establish a stable population. The seed influx follows
from the current occupancies via the spread kernel S(y). All these functions depend on
themodel parameter vectorβ, which describes thewidth and area of the spread kernel
as well as the quantitative effect of, for instance, mean precipitation, temperature, or
land use on the habitat suitability.

Specifically, the seed influx has the form

Iβ(x, t) =
∑

y

Sβ(y)σ (x + y, t), (3.12)

giving a probability for a given unoccupied cell x to stay unoccupied during one
timestep of

p0→0
β (x, t; σ) = exp

(−Hβ(x)Iβ(x, t)
)

(3.13)

and to become occupied of

p0→1
β (x, t; σ) = 1 − p0→0

β (x, t; σ). (3.14)

This corresponds to transition probabilities

Pβ

(
σ(., t + 1)|σ(., t)

) =
∏

x∈�t+1\�t

p0→1
β (x, t; σ)

∏

x /∈�t+1

p0→0
β (x, t; σ), (3.15)

where �t = {x : σ(x, t) = 1} is the set of all cells occupied at step t.

3.5.2.2 Stochastic Simulations

Given a model and an initial state, a representative sequence of future states can
be generated by iteratively drawing random occupancies according to the proba-
bility density defined by Eq. (11). For instance, this can be used to assess how the
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system will evolve in the long term or to test the effect that specific variations of
anthropogenic parameters have [31].

As was already briefly treated in Chap. 2, performing a stochastic simulation for
a model as the one considered above is conceptually quite easy, with Fig. 2.8 as an
informative example of the outcome of such investigations. This is due to the fact that
the probabilities for any cell becoming occupied at a given timestep are independent
of whether any other cell becomes occupied at the same timestep. Therefore, in this
case, the problem of finding a new high-dimensional occupancy conforming to the
general probability density defined by Eq. (11) separates into finding a number of
Bernoulli randomvariables.Numerically, this is doneby computing a pseudo-random
number rx with uniform distribution in the range [0, 1] for any unoccupied cell x and
comparing it to p0→1

β (x, t; σ). If rx is smaller than this probability, σ(x, t + 1) is set
to occupied; otherwise, it is left unoccupied.

3.5.2.3 Statistical Inference

In phenomenological models, one typically has observational data about the process
and some idea about the qualitative form of the governing stochastic equations, and
one wants to deduce information about the parameters of the model. This problem is
called statistical inference, which conceptually can be done either in the frequentist
or Bayesian framework. These two schools differ in the way the notion of probability
is interpreted, which with respect to statistical inference leads to two ways the model
parameters are treated.

Specifically, in the frequentist approach the observation σ is considered as a
random variable whose distribution is determined by an unknown but deterministic
parameter vector β. The value of this unknown parameter vector is to be estimated
in some way, with the most popular method being Maximum Likelihood Estimation
(MLE).On the other hand, in theBayesian approach, one considers also the parameter
vector β as a random variable. Here, the goal is to derive a probability density for
this parameter vector.

Consider a stochastic model determined by some parameter vector β. The proba-
bility for the random process to give some specific outcome σ is called the likelihood
of σ with respect to β. In our setting, we have

P(σ |β) =
∏

t

Pβ

(
σ(., t + 1)|σ(., t)

)
. (3.16)

TheMaximumLikelihood estimator ofβ is then the value thatmaximizes P(σ |β) for
the fixed observed occupancy σ , which is an intuitive choice and numerically often
quite easy. For instance, the common technique of least-squares fitting of curves to
data points is justified as maximum-likelihood estimation of the curve parameters
assuming Gaussian errors on the data points.

To see the potential issues with this approach, consider the problem of estimating
the frequency of some rare events. If the distinct events are independent, their number
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within someobservation interval is given by aPoissonian distribution. If it should now
be the case that in a given experiment not a single event is observed, the Maximum
Likelihood estimator of the Poissonian distribution’s parameter would be equal to
zero. However, this is not meaningful as it was known beforehand that the considered
event has some finite probability.

The Bayesian framework provides a consistent way to include such prior knowl-
edge. Here one assumes the model parameters β themselves to be realizations of
a random variable, which allows to incorporate any information about the param-
eters via their associated probability densities. Specifically, any information on the
parameters available before analyzing the experiment, such as the results of previous
experiments, is conceptually encoded in the prior probability density Pprior(β). This
prior information is updated by the results of the considered random experiment (i.e.
by the observation σ ) according to Bayes’ formula

P(β|σ) = Pprior(β)P(σ |β)

P(σ )
. (3.17)

The resulting quantity P(β|σ), which is the probability density of β given the
outcome of the random experiment being the observation σ , is called the poste-
rior distribution. Turning back to the didactical example of estimating the frequency
of a rare event, we see that in the Bayesian approach an observation of zero events
would only shift the posterior distribution to smaller values compared to the prior
distribution (as the likelihood in this case is an exponentially decaying function),
which is much more in line with common sense.

In the case of the above-mentioned study of Ambrosia artemisiifolia’s invasion
of Europe [30], the model parameter vector β was determined by MLE. In this
case, MLE was preferred over Bayesian inference as the latter method’s advantages
are only significant when the information content of the observation is low, so that
the posterior distribution is strongly influenced by the prior distribution. For high
information content, the posterior distribution will be very narrow and concentrated
around the maximum in the likelihood, rendering it equivalent to the MLE result. On
the other hand, Bayesian inference is typically computationally much more expen-
sive: In any non-trivial case, the likelihood and in turn the posterior distribution are
complicated functions, necessitating them to be sampled for further interpretation,
for instance by the Metropolis-Hastings algorithm [32, 33]. In contrast, for MLE
only its maximum has to be found, which for the case reported above takes a few
seconds.

3.6 Conclusions

Historically, the study of processes of spread and dispersal has often been initiated
from the point of view of the life sciences such as ecology and biology. However, over
the course of the last century, it was foremost in mathematics and physics under the
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subjects of randomwalk and diffusion, respectively, that the theoretical groundworks
have been laid and experimentally verified in a quantitative manner. Only within the
last decades these concepts have been transferred back to ecology for describing
processes of species dispersal, which are of increasing relevance.

It is the aim of this book to bring together scientists from all disciplineswhere such
issues are relevant and to promote interdisciplinary transfer of ideas and concepts.
The chapter at handwaswritten in this spirit, with the intention to present the essential
aspects of dispersal in ecology, the arising problems, and themethods the community
has come up with to solve them.

We have started with a point-by-point discussion of generic features of dispersal
processes in ecology and compared them to the physical case. Our main message
was that quite generally the ecological case is more complex, so that it typically
cannot be described by simple, linear equations, let alone that explicit solutions to
them could be given. We then have developed ecological models in rising degrees of
sophistication, considering either only spatial variations, only temporal variations, or
the full spatio-temporal problem. Further, we have treated the problem of statistical
inference in some detail, as due to the scarcity of dispersal events and spatial and
temporal inhomogeneities the observable data are related to the model parameters
only in a stochastic sense.

Wewant to closewith a final comment on the timely relevance of ecological spread
processes. A priori, these processes have been happening naturally since the dawn of
time, as we have argued in the introduction, and therefore are neither good nor bad.
However, the time scales of dispersal processes have accelerated drastically during
the Holocene, both due to direct human impact such as intercontinental transport as
well as promoted indirectly by, e.g. land use or climate change. Formerly, dispersal
events were so rare that evolutionary species differentiation was able to keep up
and maintain a rich regional variation within and among ecosystems. Today, the
situation is different: perhaps contrary to intuition, the introduction of alien species
can lead to a loss of species diversity. Most of the introduced species will not be
able to establish viable populations, but those that are able to can easily have much
higher reproduction successes than established species, for instance because they
have no natural enemies present, and thereby disrupt the whole native ecosystem. It
is true that, if only species transport were increased under constant environmental
conditions, adaptation and the introduction of additional species over time would
again lead to differentiated ecosystems. However, the regional variation would still
be lost [34]. In physical parlance, this corresponds to a loss of entropy, which, as the
physicists know, cannot be recovered without the investment of effort.
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Chapter 4
Search for Food of Birds, Fish,
and Insects

Rainer Klages

4.1 Introduction

When you are out in a forest searching for mushrooms, you wish to fill your basket
with these delicacies as quickly as possible. But how do you search efficiently for
them if you have no clue where they grow (Fig. 4.1)? The answer to this question is
not only relevant for finding mushrooms [1, 2]. It also helps to understand how white
blood cells kill efficiently intruding pathogens [3], how monkeys search for food in
a tropical forest [4], and how to optimize the hunt for submarines [5].

In society the problem to develop efficient search strategies belongs to the realm
of operations research, the mathematical optimization of organizational problems
in order to aid human decision-making [6]. Examples are the search for landmines,
castaways, or victims of avalanches. Over the past two decades, search research [5]
attracted particular attention within the fields of ecology and biology. The new disci-
pline ofmovement ecology [7, 8] studies foraging strategies of biological organisms:
Prominent examples are wandering albatrosses searching for food [9–11], marine
predators diving for prey [12, 13], and bees collecting nectar [14, 15]. Within this
context, the Lévy Flight Hypothesis (LFH) became especially popular: It predicts that
under certain mathematical conditions on the type of food sources long Lévy flights
[16]minimize the search time [9, 10, 17]. This implies that for a bumblebee searching
for rare flowers, the flight lengths should be distributed according to a power law.
Remarkably, the prediction by the LFH is completely different from the paradigm
put forward by Karl Pearson more than a century ago [18], who proposed to model
the movements of biological organisms by simple random walks as introduced in
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Fig. 4.1 Illustration of a typical search problem [1, 2]: a human searcher endeavors to find mush-
rooms that are randomly distributed in a certain area. It would help to have an optimal search
strategy that enables one to find as many mushrooms as possible by minimizing the search time

Chap. 2 of this book. His suggestion entails that themovement lengths are distributed
exponentially according to a Gaussian distribution; see Eq. (2.10) in this section. The
Lévy and Gaussian processes represent fundamental but different classes of diffusive
spreading. Both are justified by a rigorous mathematical underpinning.

More than 60 years ago Gnedenko and Kolmogorov proved mathematically that
specific types of power laws, called Lévy stable distributions [19, 20], obey a central
limit theorem. Their result generalizes the conventional central limit theorem for
Gaussian distributions, which explains why Brownian motion is observed in a huge
variety of physical phenomena. But exponential tails decay faster than power laws,
which implies that for Lévy-distributed flight lengths there is a larger probability to
yield long flights than for flight lengths obeying Gaussian statistics. Consequently,
Lévy flights should be better suited to detect sparsely, randomly distributed targets
than Brownian motion, which in turn should outperform Lévy motion when the
targets are dense. This is the basic idea underlying the LFH. Empirical tests of it,
however, are hotly debated [11, 21–24]: Not only are there problems with a sound
statistical analysis of experimental data sets when checking for power laws; their
biological interpretation is also often unclear: For example, for monkeys living in a
tropical forest who feed on specific types of fruit, it is not clear whether the observed
Lévy flights of the monkeys are due to the distribution of the trees on which their
preferred fruit grows, or whether the monkeys’ Lévy motion represents an evolu-
tionary adapted optimal search strategy helping them to survive [4]. Theoretically,
the LFH was motivated by random walk models with Lévy-distributed step lengths
that were solved both analytically and in computer simulations [10]. Very recently,
this analysiswas revisited based on amore general approach,which led to questioning
the theoretical foundations of the LFH [34].
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This chapter introduces to the following fundamental question cross-linking the
fields of ecology, biology, physics, and mathematics: Can search for food by biolog-
ical organisms be understood by mathematical modeling? [8, 17, 20, 25] It consists
of three main parts: Sect. 4.2 reviews the LFH. Section 4.3 outlines the controversial
discussion about its verification by including basics about the theory of Lévymotion.
Section 4.4 illustrates the need to go beyond the LFH by elaborating on bumblebee
flights. We summarize our discussion in Sect. 4.5.

4.2 Lévy Motion and the Lévy Flight Hypothesis

4.2.1 Lévy Flights of Wandering Albatrosses

I n 1996,GandhimohanViswanathan and collaborators published a pioneering article
in the journal Nature [9]. For albatrosses foraging in the South Atlantic, the flight
times were recorded by putting sensors at their feet. The sensors got wet when the
birds were diving for food; see the inset of Fig. 4.2. The duration of a flight was
thus defined by the period of time when a sensor remained dry, terminated by a dive
for catching food. The main part of Fig. 4.2 shows a histogram of the flight time
intervals of some albatrosses. The straight line represents a Lévy stable distribution
proportional to ∼ t−μ with an exponent of μ = 2. By assuming that the albatrosses
move with an average constant speed, one can associate these flight times with a
respective power law distribution of flight lengths. This suggests that the albatrosses
were searching for food by performing Lévy flights.

For more than a decade, albatrosses were considered to be the most prominent
example of an animal performing Lévy flights. This work triggered a large number
of related studies suggesting that many other animals like deer, bumblebees, spider
monkeys, and fishes also perform Lévy motion [4, 10, 12, 13, 17].

4.2.2 The Lévy Flight Hypothesis

In 1999, the group around Gandhimohan Viswanathan published another impor-
tant article in Nature [10]. Here the approach was more theoretical by posing, and
addressing, the following general question:

“What is the best statistical strategy to adapt in order to search efficiently for
randomly located objects?”

To answer this question, they introduced a special type of what is called a Lévy
walk [20] in two dimensions and studied it both by computer simulations and by
analytical approximations. Theirmodel consists of point targets randomly distributed
in a plane and a (point) forager moving with constant speed. If the forager spots a
target within a pre-defined finite vision distance, it moves to the target directly.
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Fig. 4.2 Histogram where ‘scaled frequencies’ holds for the number of flight time intervals of
length ti (in hours) normalized by their respective bin widths. The data is for five albatrosses
during 19 foraging bouts (double-logarithmic scale). Blue open circles show the data from Ref. [9].
The straight line indicates a power law ∼ t−μ with exponent μ = 2. The red filled circles are
adjusted flight durations using the same data set by eliminating times that the birds spent on an
island [11]. The histogram is reprinted by permission from Macmillan Publishers Ltd: Nature
Ref. [11], copyright 2007. The inset shows an albatross catching food; reprinted with permission
from Macmillan Publishers Ltd: Nature Ref. [5], copyright 2006

Otherwise, the forager chooses a direction at random with a jump length � randomly
drawn from a Lévy stable distribution ∼ �−μ , 1 ≤ μ ≤ 3. While the forager is
moving, it constantly looks out for targets within the given vision distance. If no
target is detected, the forager stops after the given distance and repeats the process.

Although these rules look simple enough, there are some subtleties that exemplify
the problem of mathematically modeling a biological foraging problem:

1. Here we have chosen what is called a cruise forager, i.e., a forager that senses
targets whenever it is moving. In contrast, a saltaltory forager would not sense
a target while moving. It needs to land close to a target within a given radius of
perception in order to find it [26].

2. For a cruise forager, a jump is terminated when it hits a target; hence, this model
defines a truncated Lévy walk [13].

3. One has to decide whether a forager eliminates targets when it finds them or not,
i.e., whether it performs destructive or non-destructive search [10]. As we will
see below, whether a monkey eats a fruit thus effectively eliminating it, at least
for a long time, or whether a bee collects nectar from a flower that replenishes
quickly defines mathematically different foraging problems.

4. We have not yet said anything about the density of the targets.
5. We have deliberately assumed that the targets are immobile, which may not

always be realistic for a biological foraging problem (e.g., marine predators [12,
13]).
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6. Ifwe ask about thebest strategy to search efficiently, howdowedefineoptimality?

These few points illustrate the difficulty to relate abstract mathematical random
walk models to biological foraging reality. Interestingly, the motion generated by
these models often sensitively depends on right such details: In Ref. [10], foraging
efficiency was defined as the ratio of the number of targets found divided by the
total distance traveled by a forager. Different definitions are possible, depend on the
type of forager and may yield different results [26, 35]. The foraging efficiency was
then computed in Ref. [10] under variation of the exponent μ of the above Lévy
distribution generating the jump length. The results led to what was coined the Lévy
Flight Hypothesis (LFH), which we formulate as follows:

Lévymotion provides an optimal search strategy for sparse, randomly distributed,
immobile, revisitable targets in unbounded domains.

Intuitively this result can be understood as follows: Fig. 4.3 (left) displays a typical
trajectory of a Brownian walker. One can see that this dynamics is ‘more localized’
while Lévy motion shown in Fig. 4.3 (right) depicts clusters interrupted by long
jumps. It thus makes sense that Brownian motion is better suited to find targets
that are densely distributed while Lévy motion outperforms Brownian motion when
targets are sparse, since it avoids oversampling due to long jumps. The reasonwhy the
targets need to be revisitable is that the exponent μ of the Lévy distribution depends
on whether the search is destructive or not; cf. the third point on the list of foraging
conditions above: For non-destructive foragingμ = 2 was found to be optimal while
for destructive foragingμ = 1maximized the foraging efficiency,which corresponds
to the special case of ballistic flights [20]. The reason for these different exponents is
that destructive foraging changes the distribution and the density of the targets thus
selecting a different foraging strategy to be optimal.

Fig. 4.3 Brownian motion (left) versus Lévy motion (right) in the plane, illustrated by typical
trajectories
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4.3 Lévy or Not Lévy?

4.3.1 Revisiting Lévy Flights of Wandering Albatrosses

Many years passed before the experimental and theoretical results byViswanathan
et al.[ 9, 10] were revisited, first in another Nature article led by Andrew Edwards
[11]: When analyzing new, larger, and more precise data for foraging albatrosses,
the old results of Ref. [9] could not be recovered; see Fig. 1 in Ref. [11]. This led
the researchers to reconsider the old albatross data. A correction of these data sets
yielded the result shown in Fig. 4.2 as the red filled circles: One can see that the Lévy
stable law with an exponent of μ = 2 for the flight times is gone. Instead the data
now seems to be fit best with a gamma distribution.

What happened is explained in Ref. [21]: For all measurements the sensors were
put onto the feet of the albatrosses when the birds were sitting on an island, and at this
point, the measurement process was started. However, to this time the sensors were
dry, and in Ref. [9], these times were interpreted as Lévy flights. The same applied
to the end of a foraging bout when the birds were back on the island. Subtracting
these erroneous time intervals from the data sets eliminated the Lévy flights.

However, in Ref. [27], yet new albatross data was analyzed, and the old data from
Refs. [9, 11] was again reanalyzed: This time truncated power laws were used for
the analysis, and furthermore, data sets for individual birds were tested instead of
pooling together the data for all birds. In this reference, it was concluded that some
individual albatrosses indeed do perform Lévy flights while others do not.

More recently, Levernier et al. [34] performed a detailed analytical and numer-
ical test of the theory put forward by Viswanathan et al. [10] that coined the
LFH. By employing new techniques of stochastic theory to analyze target search
processes, they confirmed that Lévy walks with power law exponent µ = 2 are
optimal in one dimension. However, in any dimension higher than one, which is the
biologically realistic situation, the optimization by Lévy walks was found to be at
best marginal, and not universal, in the sense that the existence of any maximum in
the search efficiency sensibly depends on the choice of parameters controlling the
foraging motion. It was thus argued that in Ref. [10] the correct result for one dimen-
sion had been incorrectly reproduced in higher dimensions. Accordingly, the authors
concluded that theoretically “the founding result of the Lévy hypothesis is incor-
rect”. However, see the debate that emerged from this analysis in terms of comment
and reply to Ref. [34]. Whatever position one takes in the discussion ensuing from
the LFH, one may summarize that both the original experimental as well as theo-
retical evidence leading to the LFH has been profoundly questioned in subsequent
literature.
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4.3.2 The Lévy Flight Paradigm

The controversy about the LFH created a surge of publications further testing it
both theoretically and experimentally; see Refs. [8, 17, 20, 25] for reviews. But
experimentally it is difficult to verify the mathematical conditions on which the LFH
formulated in Sect. 4.2.2 is based. Often the LFH was thus interpreted in a much
looser sense by ignoring any mathematical assumptions in terms of what one may
call the Lévy Flight Paradigm (LFP):

Look for power laws in the probability distributions of step lengths of foraging
animals.

We illustrate virtues and pitfalls related to the LFP by data from Ref. [13] on
the diving depths of free-ranging marine predators. Impressively, in this work, over
12 million movement displacements were recorded and analyzed for 14 different
species. As an example, Fig. 4.4 shows results for a blue shark: Plotted at the bottom
are probability distributions of its diving depths, called move step length frequency
distribution, where a step length is defined as the distancemoved by the shark per unit
time. Included are fits to a truncated power law and to an exponential distribution.
Since here Lévy distributions were used whose longest step lengths were cut off, the
fits do not consist of straight lines but are bent off, in contrast to Fig. 4.2. The top of this
figure depicts the corresponding time series from which the data was extracted, split
into five different sections. Each section is characterized by profoundly different
average diving depths. These different sections correspond to the shark being in
different regions of the ocean, i.e., either on-shelf or off-shelf. It was argued that on-
shelf, where the diving depth of the shark is very limited, the data can be better fitted
with an exponential distribution (sections f and h) while off-shelf the data displays
power-law behavior with an exponent close to two (sections g, i and j). Figure 4.4
thus suggests a strong dependence of the foraging dynamics on the environment in
which it takes place, where the latter defines the food distribution. Related switching
behavior between power law-like Lévy and exponential Brownian motion search
strategies was reported for microzooplankton, jellyfish, and mussels.

The power law matching to the data in the off-shelf regions was interpreted in
support of the LFH. However, note the periodic oscillations displayed by the time
series at the top of Fig. 4.4. Upon closer inspection they reveal a 24 h day-night
cycle: During the night, the shark hovers close to the surface of the sea while over
the day it dives for food. For the move step length distributions shown in Fig. 4.4,
the data was averaged over all these periodic oscillations. But the distributions in
sections g, i, and j all show a ‘wiggle’ on a finer scale. This suggests to better fit
the data by a superposition of two different distributions [14] taking into account
that day and night define two very different phases of motion, instead of using only
one function by averaging over all times. Apart from this, one may argue that this
analysis does not test for the original LFH put forward in Ref. [9]. But this requires
a bit more knowledge about the theory of Lévy motion; we will come back to this
point in Sect. 4.3.5.
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Fig. 4.4 Top: time series of the diving depth of a blue shark. The red lines split the data into
different sections (a–e), where the shark dives deep or the diving depth is more constrained. These
sections match to the shark being off-shelf or on the shelf, respectively. Bottom: double-logarithmic
plots of the move step length frequency distribution (‘rank’) as a function of the step length, which
is the vertical distance moved by the shark per unit time, with the notation (f–j) corresponding to
the primary data shown in sections (a–e). Black circles correspond to data, red lines to fits with
truncated power laws of exponent μ, and blue lines to exponential fits. This figure is reprinted with
permission from Macmillan Publishers Ltd: Nature Ref. [13], copyright 2010

4.3.3 Two Different Lévy Flight Hypotheses

Our discussion in the previous sections suggests to distinguish between two different
LFHs:

1. The first is the ‘conventional’ one that we formulated in Sect. 4.2.2, originally put
forward in Ref. [9]: It may now be further specified as the Lévy Search Hypoth-
esis (LSH), because it suggests that under certain conditions Lévy flights repre-
sent an optimal search strategy. Here optimality needs to be defined rigorously
mathematically. This can be done in different ways given the specific biological
situation at hand that one wishes to model [26, 35]. Typically optimality within
this context aims at minimizing the search time for finding targets. The inter-
esting biological interpretation of the LSH is that it has evolved in biological
organisms as an evolutionary adaptive strategy that maximizes the success for
survival. The LSH version of the LFH became the most popular.

2. In parallel there is a second type of LFH, which may be called the Lévy Envi-
ronmental Hypothesis (LEH): It suggests that Lévy flights emerge from the
interaction between a forager and a food source distribution. The latter may be
scale-free thus directly inducing the Lévy flights. This is in sharp contrast to the
LSH,which suggests that under certain conditions a forager performsLévyflights
irrespective of the actual food source distribution. Emergence of novel patterns
and dynamics due to the interaction of the single parts of a complex system with
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each other, on the other hand, is at the heart of the theory of complex systems.
The LEH is the hypothesis that to some extent was formulated in Ref. [9], but it
became more popular rather later on [4, 12, 13].

Both the LSH and the LEH are bound together by what we called the Lévy
Flight Paradigm (LFP) in Sect. 4.3.2. The LFP extracts the formal essence from both
these different hypotheses by proposing to look for power laws in the probability
distributions of foraging dynamics by ignoring any conditions of validity of these
two hypotheses. Consequently, in contrast to the LSH and LEH, the mathematical,
physical, and biological origin and meaning of power laws obtained by following
the LFP are typically not clear. On the other hand, the LFP is motivated to take a
fresh look at foraging data sets by not only testing for exponential distributions. It
widened the scope by emphasizing that one should also check for power laws in
animal movement data.

4.3.4 Intermittent Search Strategies as an Alternative to Lévy
Motion

Simple randomwalks as introduced inSect. 2.1 represent examples ofunimodal types
of motion if the random step lengths are sampled from only one specific distribution.
For example, by choosing a Gaussian distribution, we obtain Brownian motion while
a Lévy-stable distribution produces Lévy flights. Combining two different types of
motion like Brownian and Lévy yields bimodal motion. A simple example is shown
in Fig. 4.5: Imagine you have lost your keys at home, but you have a vague idea of
where to find them. Hence, you are running straightforwardly to the location where
you expect them to be. This may be modeled as a ballistic flight during which you
quickly relocate, say, from the kitchen to the study room. However, when you arrive
in your study room you should switch to a different type of motion, which is suitably
adapted to locally search the environment. For this mode, you may choose, e.g.,
Brownian motion. The resulting dynamics is called intermittent [25]: It consists of
two different phases of motion mixed randomly, which in our example are ballistic
relocation events and local Brownian motion.

This type of motion can be exploited to search efficiently in the following way:
You may not bother to look for your keys while you are walking from the kitchen to
the study room. You are more interested to get from point A to point B as quickly
as possible, and while doing so your search mode is switched off. This is called a
non-reactive phase in Fig. 4.5. But as you expect the keys to be in your study room,
while switching to Brownian motion therein you simultaneously switch on your
scanning abilities. This defines your local search mode called reactive in Fig. 4.5.
Correspondingly, for animals one may imagine that during a fast relocation event, or
flight, they are unable to detect any targets while their sensory mechanisms become
active during slow local search. This is close to what was called a saltatory forager
in Sect. 4.2.2, but this forager did not feature any local search dynamics.
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Fig. 4.5 Illustration of an intermittent search strategy: A human searcher looks for a target (key)
by alternating between two different modes of motion. During fast, ballistic relocation phases, the
searcher is not able to detect any target (non-reactive). These phases are interrupted by slow phases
of Brownian motion during which a searcher is able to detect a target (reactive) [25]

Intermittent search dynamics can bemodeled bywriting down a set of two coupled
equations, one that generates ballistic flights and another one that yields Brownian
motion. The coupling captures the switching between both modes. One furthermore
needs to model that search is only performed during the Brownian motion mode.
By analyzing a respective ballistic-Brownian system of equations, it was found that
this dynamics yields a minimum of a suitably defined search time under parameter
variation if a target is non-revisitable, i.e., it is destroyed once it is found. Note
that for targets that are non-replenishing, the Lévy walks of Ref. [10] did not yield
any non-trivial optimization of the search time. Instead, they converged to pure
ballistic flights as being optimal. The LSH, in turn, only applies to revisitable, i.e.,
replenishing targets. Hence, intermittent motion poses no contradiction. A popular
account of this result was given by Michael Shlesinger in his Nature article ‘How to
hunt a submarine?’ [5].

4.3.5 Theory of Lévy Flights in a Nutshell

We now briefly elaborate on the theory of Lévy motion. This section may be skipped
by a reader who is not so interested in theoretical foundations. We recommend
Ref. [16] for an outline of this topic from a physics point of view and Chap. 5 in
Ref. [19] for a more mathematical introduction. We start from the simple random
walk on the line introduced in Chap. 2 of this book,

xn+1 = xn + �n, (4.1)

where xn is the position of a random walker at discrete time n ∈ N moving in one
dimension, and �n = xn+1−xn defines the jump of length |�n| between two positions.
In Chap. 2, the special case of constant jump length |�n| = � was considered, where
the sign of the jump was randomly determined by tossing a coin with, say, plus for
heads and minus for tails. The coin was furthermore supposed to be fair in the sense
of yielding equal probabilities for heads and tails. This simple random walk can be
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generalized by considering a bigger variety of jumps.Mathematically, this ismodeled
by drawing the random variable �n from some more general probability distribution
than featuring only probability one half for each of two outcomes. For example,
instead we could draw �n at each time step n randomly from a uniform distribution,
where each jump between −L and L is equally possible given by the probability
density ρ(�n) = 1/(2L) , −L ≤ �n ≤ L and zero otherwise. Alternatively, we
could allow arbitrarily large jumps by drawing �n from an unbounded Gaussian
distribution; see Eq. (2.10) in Chap. 2 (by replacing x therein with �n and setting t
constant). For both generalized random walks, Eq. (4.1) would still reproduce in the
long time limit the fundamental diffusive properties Eq. (4) discussed in Chap. 2,
i.e., the linear growth in time of the mean square displacement, and Eq. (2.10) in
Chap. 2, the Gaussian probability distribution for the position xn of a walker at time
step n. This follows mathematically from the conventional central limit theorem.

We now further generalize the random walk Eq. (4.1) in a more non-trivial way
by randomly drawing �n from a Lévy α-stable distribution [19],

ρ(�n) ∼ |�n|−1−α (|�n| � 1) , 0 < α < 2 , (4.2)

characterized by power law tails in the limit of large |�n|. This functional form is
in sharp contrast to the exponential tails of Gaussian distributions and has impor-
tant consequences, as it violates one of the assumptions on which the conventional
central limit theorem rests. However, for the range of exponents α stated above, it
can be shown that these distributions obey a generalized central limit theorem: The
proof employs the fact that these distributions are stable, in the sense that a linear
combination of two random variables sampled independently from the same distri-
bution reproduces the very same distribution, up to some scale factors [16]. This in
turn implies that Lévy stable distributions are scale invariant and thus self-similar.
Physically, one speaks of �n sampled independently and identically distributed from
Eq. (4.2) as white Lévy noise. As by definition there are no correlations between the
random variables �n , the stochastic process generated by Eq. (4.1) is memoryless,
meaning at time step (n + 1) the particle has no memory where it came from at any
previous time step n. In mathematics, this is called a Markov processes, and Lévy
flights belong to this important class of stochastic processes.

What we presented here is only a very rough, mathematically rather imprecise
outline of how to define an α-stable Lévy process generating Lévy flights. Especially,
the function in Eq. (4.2) is not defined for small �n , as the given power law diverges
for �n → 0. A rigorous definition of Lévy stable distributions is obtained by using
the characteristic function of this process, i.e., the Fourier transform of its probability
distribution, which is well-defined analytically. The full probability distribution can
then be generated from it [16, 19]. For α = 2, this approach reproduces Gaussian
distributions; hence, Lévy dynamics suitably generalizes Brownian motion [16, 19].

Another important property of Lévy stable distributions is that the mean squared
flight length of a Lévy walker does not exist,
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〈�2n〉 =
∞∫

−∞
d�n ρ(�n)�

2
n = ∞ . (4.3)

The above equation defines what is called the second moment of the probability
distribution ρ(�n). Higher moments are defined analogously by 〈�k〉 , k ∈ N, and
for Lévy distributions they are also infinite. This means that in contrast to simple
random walks generating Brownian motion, see again Chap. 2, Lévy motion does
not have any characteristic length scale. However, since moments are rather easily
obtained from experimental data, this poses a problem to Lévy flights as a viable
physical model to be validated by experiments.

This problem can be solved by using the very related concept of Lévy walks [20]:
These are random walks where again jumps are drawn randomly from the Lévy
stable distribution Eq. (4.2). But as a penalty for long jumps the walker spends a
time tn proportional to the length of the jump to complete it, tn = v�n , where the
proportionality factor v, typically chosen as |v| = const., defines the speed of the
Lévy walker. This implies that both jump lengths �n and flight times tn are distributed
according to the same power law. In contrast, for the Lévy flights introduced above,
a walker makes a jump of length |�n| during an integer time step of duration�n = 1,
which implies that contrary to a Lévy walker a Lévy flyer can jump instantaneously
over arbitrarily long distances with arbitrarily large velocities.

Lévy walks belong to the broad and important class of continuous time random
walks [19, 28, 29], which further generalize ordinary random walks by allowing
a walker to move by non-integer time steps. We do not discuss all the similarities
and differences between Lévy walks and Lévy flights, see Ref. [20] for details, but
instead highlight only one important fact: While for Lévy flights the mean square
displacement 〈x2〉, see Eq. (1) in Chap. 2, does not exist, which follows from our
discussion above, for Lévy walks it does. This is due to the finite velocities, which
truncate the power law tails in the probability distributions for the positions of a Lévy
walker. However, in contrast to Brownian motion where it grows linearly in time as
shown in Chap. 2, see Eq. (2), for Lévy walks it grows faster than linear,

〈x2〉 ∼ tγ (t → ∞) , (4.4)

with γ > 1. If γ 
= 1 one speaks of anomalous diffusion [19, 28]. The case γ >

1 is called superdiffusion, since a particle diffuses faster than Brownian motion,
correspondingly γ < 1 refers to subdiffusion. There is awealth of different stochastic
models exhibiting anomalous diffusion, and while superdiffusion appears to be more
common among foraging biological organisms than subdiffusion [35], the whole
spectrum of anomalous diffusion is found in a variety of different processes in the
natural sciences, and even in the human world [19, 28, 30].

Often the difference between Lévy walks and flights is not quite appreciated in
the experimental literature, see, e.g., Fig. 4.4, where move step length frequency
distributions were plotted. By definition a move step length x per unit time corre-
sponds to what we defined as a jump length �n by Eq. (4.1) above, x = �n . Hence,



4 Search for Food of Birds, Fish, and Insects 65

a truncated power law fit ∼ x−μ to the distributions plotted in Fig. 4.4 corresponds
to a fit with a truncated form of the jump length distribution Eq. (4.2) with expo-
nent μ = 1 + α testing for truncated Lévy flights [20]. The truncation cures the
problem of infinite moments exhibited by random walks based on ordinary Lévy
flights mentioned above. However, this analysis does not test the LFH put forward in
Ref. [10], which was derived from Lévy walks. But checking for Lévy walks requires
an entirely different data analysis [3, 20].

4.4 Beyond the Lévy Flight Hypothesis: Foraging
Bumblebees

The LFH and its variants illustrated the problem to which extent biologically rele-
vant search strategies may be identified by mathematical modeling. What we then
formulated as the LFP in Sect. 4.3.2 motivated to generally look for power laws in
the probability distributions of step lengths of foraging animals. Inspired by the long
debate about the different functional forms of move step lengths probability distri-
butions, and by further diluting the LFP, an even weaker guiding principle would
be to assume that the foraging dynamics of biological organisms can be understood
by analyzing such probability distributions alone. In the following, we discuss an
experiment, and its theoretical analysis, which illustrate that one may miss crucial
information by studying only probability distributions. In that respect, this last section
provides a look beyond the LFH that focuses on such distributions.

4.4.1 Bumblebees Foraging Under Predation Risk

In Ref. [31], Thomas Ings and Lars Chittka reported a laboratory experiment inwhich
environmental foraging conditions were varied in a fully controlled manner. The
question they addressed with this experiment was whether changes in environmental
conditions, in this case exposing bumblebees to predation threat or not, led to changes
in their foraging dynamics. This question was answered by a statistical analysis of
the bumblebee flights recorded in this experiment on both spatial and temporal scales
[14].

The experiment is sketched in Fig. 4.6: Bumblebees (Bombus terrestris) were
flying in a cubic arena of ≈75 cm side length by foraging on a 4 × 4 vertical grid
of artificial yellow flowers on one wall. The 3D flight trajectories of 30 bumblebees,
tested sequentially and individually, were tracked by two high frame rate cameras.
On the landing platform of each flower nectar was given to the bumblebees and
replenished after consumption. To analyze differences in the foraging behavior of
the bumblebees under threat of predation, artificial spiders were introduced. The
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Fig. 4.6 Illustration of a laboratory experiment investigating the dynamics of bumblebees foraging
under predation risk: a Sketch of the cubic foraging arena together with part of the flight trajectory
of a single bumblebee. The bumblebees forage on a grid of artificial flowers on one side of the box.
While being on the landing platforms, they have access to nectar. All flowers can be equipped with
spider models and trapping mechanisms simulating predation attempts as shown in (b), (c) [14, 31]

experiment was staged into several different phases of which, however, only the
following three are relevant to our analysis:

1. spider-free foraging;
2. foraging under predation risk;
3. a memory test one day later.

Before and directly after stage 2, the bumblebees were trained to forage in the
presence of artificial spiders, which were randomly placed on 25% of the flowers.
A spider was emulated by a spider model on the flower and a trapping mechanism,
which briefly held the bumblebee to simulate a predation attempt. In stages 2 and
3, the spider models were present but the traps were inactive in order to analyze
the influence of previous experience with predation risk on the bumblebees’ flight
dynamics; see Ref. [31] for full details of the experimental setup and staging.

It is important to observe that neither the LSH nor the LEH can be tested by this
experiment, as the flight arena is too small: The bumblebees always sense the walls
and may adjust their flight behavior accordingly. However, there is a cross-link to the
LEH in that this experiment studies the interaction of a forager with the environment,
and its consequences for the dynamics of the forager, in a very controlled way. The
weaker guiding principle derived from the LFP that we discussed above furthermore
suggests that the main information to understand the foraging dynamics may be
contained in the probability distributions of flight step lengths only. On this basis, one
may naively expect to see different step lengths probability distributions emerging
by changing the environmental conditions, which here is the predation risk.
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Fig. 4.7 Semi-logarithmic plot of the distribution of velocities vy parallel to the y-axis in Fig. 4.6a
(black crosses) for a single bumblebee in the spider-free stage 1. The different lines represent
maximum likelihood fits with a Gaussian mixture (red line), exponential (blue dotted), power law
(green dashed), and single Gaussian distribution (violet dotted) [14]

4.4.2 Velocity Distributions Versus Velocity Correlations:
Experimental Results

Figure 4.7 shows a typical probability distribution of the horizontal velocities parallel
to the flower wall (cf. the y-direction in Fig. 4.6a) for a single bumblebee. This
distribution is in analogy to the move step length frequency distributions of the shark
shown in Fig. 4.4, which also represent velocity distributions if the depicted step
lengths are divided by the corresponding constant time intervals of their measure-
ments as discussed in Sect. 4.3.5. The distribution of bumblebee flights per unit
time is characterized by a peak at low velocities. Only a power law and a Gaussian
distribution can immediately be ruled out by visual inspection asmatching functional
forms. However, a mixture of twoGaussian distributions and an exponential function
appear to be equally possible. Maximum likelihood fits supplemented by respective
information criteria yielded the former as the most likely functional form matching
the data. This result can be understood biologically as representing two different
flight modes near a flower versus far away from it, which is confirmed by spatially
separated data analysis [14]. That the bumblebee switches to a specific distribution of
lower velocities when approaching a flower reflects a spatially adapted flight mode
to accessing the food sources. As a result, here we encounter another version of
intermittent motion: In contrast to the temporal switching between different flight
modes discussed in Sect. 4.3.4, this one is due to switching in different regions of
space.

Surprisingly, when extracting the velocity distributions of single bumblebees at
the three different stages of the experiment and comparing their best fits with each
other, qualitatively and quantitatively no differences could be found in these distri-
butions between the spider-free stage and the stages where artificial spider models
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were present [14]. This means that the bumblebees fly with the very same statis-
tical distribution of velocities irrespective of whether predators are present or not.
The answer about possible changes in the bumblebee flights due to changes in the
environmental conditions is thus not given by analyzing the probability distributions
of move step lengths, as one may infer from our diluted LFP guiding principle. We
will now see that it is provided by examining the correlations of horizontal velocities
vy(t) parallel to the wall for all bumblebee flights. They can be measured by the
velocity autocorrelation function

vac
y (τ ) = 〈(vy(t) − μ)(vy(t + τ) − μ)〉

σ 2
. (4.5)

Here μ and σ 2 denote the mean and the variance of the corresponding velocity
distribution of vy , respectively, and the angular brackets define an average over all
bumblebees and over time. This quantity is a special case of what is called a covari-
ance in statistics. Note that velocity correlations are intimately related to the mean
square displacement introduced in Chap. 2 of this book: While the above equation
defines velocity correlations that are normalized by subtracting themean and dividing
by the variance, unnormalized velocity correlations emerge straightforwardly from
the right hand side of Eq. (2.1) inChap. 2 by rewriting it as products of velocities. This
yields the (Taylor-)Green-Kubo formula expressing the mean square displacement
exactly in terms of velocity correlations [32]. Note that the velocity autocorrelation
function is defined by an average over the product between the initial velocity at
time τ = 0 and the velocity at time lag τ along a trajectory: By definition, it is
maximal and normalized to one at τ = 0, because the initial velocity is maximally
correlated with itself. It will decay to zero if on average all velocities at time τ are
randomly distributed with respect to the initial velocities. Physically this quantity
thus measures the correlation decay in the dynamics over time τ by giving an indi-
cation to which extent a dynamics loses memory. For example, for a simple random
walk as defined in Chap. 2 and by Eq. (4.1) in our section, the velocity correlations
would immediately jump to zero from τ = 0 to τ 
= 0, which reflects that these
random walks are completely memory-free. This property was used in Chap. 2 to
derive Eq. (2.2) from Eq. (2.1) by canceling all cross-correlation terms.

Figure 4.8a shows the bumblebee velocity autocorrelations defined by Eq. (4.5)
for all three stages of the experiment. While for the spider-free stage the correlations
remain positive for rather long times, in the presence of spiders they quickly become
negative. This means that the velocities are on average anti-parallel to each other, or
anti-correlated. In terms of flights, when predators are not present, the bumblebees
thus fly on average more often in the same direction for short times while in the pres-
ence of predators on average they often reverse their flight directions for shorter times.
This result can be biologically understood as reflecting a more careful search under
predation threat: When no predators are present, the bumblebees forage with more
or less direct flights from flower to flower. However, under threat the bumblebees
change their direction more often in their search for food sources, rejecting flowers
with spiders. Mathematically, this means that the distributions of velocities remain
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Fig. 4.8 Velocity autocorrelation function Eq. (4.5) for bumblebee velocities vy parallel to the
wall at three different stages of the experiment shown in Fig. 4.6: a Experimental results for stage
1 without spiders (red), 2 under predation threat (green), and 3 under threat a day after the last
encounter with the spiders (blue). The data show the effect of the presence of spiders on the
bumblebee flights. The inset presents the resampled autocorrelation for the spider-free stage in the
region where the correlation differs from the stages with spider models, which confirms that the
positive autocorrelations are not a numerical artifact. b Theoretical results for the same quantity
obtained from numerically solving the Langevin equation (4.6) by switching off (red triangles,
upper line)/on (green circles, lower line) a repulsive force modeling the interaction of a bumblebee
with a spider. These results qualitatively reproduce the experimental findings in (a)

the same, irrespective of whether predators are present or not, while the topology,
i.e., the shape of the bumblebee trajectories changes profoundly being on average
more ‘curved’.

In order to theoretically reproduce these changes, wemodel the dynamics of vy by
aLangevin equation [33]. Itmay be calledNewton’s Lawof stochastic physics, as it is
based onNewton’s Second Law: F = m ·a, wherem is themass of a tracer particle in
a fluid moving with acceleration a = d2x/dt2 at position x(t) (for sake of simplicity,
we restrict ourselves to one dimension). Tomodel the interaction of the tracer particle
with the surrounding fluid, the force F on the left-hand side is written as a sum of
two different forces, F = FS + Fb: a friction term FS = −ηv = −η dx/dt with
Stokes friction coefficient η, whichmodels the damping by the surrounding fluid, and
another term Fb that mimics the microscopic collisions of the tracer particle with the
surrounding fluid particles, which are supposed to be much smaller than the tracer
particle. The latter interaction is modeled by a stochastic force ξ(t) of the same type
as we have described in Sect. 4.3.5 for which here one takes Gaussian white noise.
Interestingly, the stochastic Langevin equation can be derived from first principles
starting from Newton’s microscopic equations of motion for the full deterministic
dynamical system of a tracer particle interacting with a fluid consisting of many
particles [32].

At first view, it may look strange to apply such an equation for modeling the
motion of a biological organism. However, for a bumblebee the force terms may
simply be reinterpreted: While the friction term still models the loss of velocity due
to the surrounding air during a flight, the stochastic force term now mimics both the
force actively exerted by the bumblebee to perform a flight and the randomness of
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these flights due to the surrounding air and to sudden changes of direction by the
bumblebee itself. In addition, for our experiment, we need to model the interaction
with predators by a third force term. This leads to Eq. (2.21) stated in Chap. 2, which
for bumblebee velocities vy we rewrite as

dvy(t)

dt
= −ηvy(t) − dU (y(t))

dy
+ ξ(t) . (4.6)

Here, we have combined the mass m with the other terms on the right-hand side.
The term Fi = −dU (y(t))/dy with potential U mimics an interaction between
bumblebee and spider, which can be switched on or off depending on whether a
spider is present or not. Data analysis shows that this force is strongly repulsive [14].
Computing the velocity autocorrelation function Eq. (4.5) by solving the above equa-
tion numerically for a suitable choice of a repulsive force qualitatively reproduces a
change from positive to negative correlations when switching on the repulsive force;
see Fig. 4.8b.

These results demonstrate that velocity correlations can contain crucial informa-
tion for understanding foraging dynamics, here in the form of highly non-trivial
correlation decay emerging from the interaction of a forager with predators. This
experiment could not test the LSH, as the mathematical assumptions on its validity
were not fulfilled. However, conceptually these results are in line with the idea
underlying the LEH: Theoretically, the interaction between forager and environment
was modeled by a repulsive force, to be switched on in the presence of predators,
which qualitatively reproduced the experimental results. Together with the spatially
intermittent dynamics when approaching the food sources as discussed before, these
findings illustrate a complex spatio-temporal adjustment of the bumblebees both to
the presence of food sources and predators. This is in sharp contrast to the scale-free
dynamics singled out by the LFH.

Of course, modeling bumblebee flights by a Langevin equation like Eq. (4.6)
ignores many fine details. A more sophisticated model that reproduces bumblebee
flights far away from the flowersmore appropriately has been constructed in Ref. [15]
based on the same data as discussed above. The importance to assess the impact
of memory on foraging dynamics, as amply captured by correlation functions,
has recently been highlighted by studying search theoretically with a generaliza-
tion of classical Brownian motion, so-called fractional Brownian motion, which
features strong memory effects [35].

4.5 Lévy Flights Embedded in Movement Ecology

The main theme of our chapter was the question posed at the end of the introduc-
tion: Can search for food by biological organisms be understood by mathematical
modeling? While about a century ago this question was answered by Karl Pearson
in terms of simple random walks yielding Brownian motion, about two decades
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ago the LFH gave a different answer by proposing Lévy motion to be optimal for
foraging success, under certain conditions. Discussing experimental results testing
it, we arrived at a finer distinction between two different types of LFHs: The LSH
captured the essence of the original LFH by stating that under certain conditions
Lévy flights represent an optimal search strategy for finding targets. In contrast,
the LEH stipulates that Lévy flights may emerge from the interaction between a
forager and possibly scale-free food source distributions. A weaker version of these
different hypotheses we coined the LFP, which suggests to look for power laws in
the probability distributions of move step lengths of foraging organisms. An even
weaker guiding principle derived from it is to assume that the foraging dynamics of
biological organisms can generally be understood by analyzing step length proba-
bility distributions alone. We thus have a hierarchy of different LFHs that have all
been tested in the literature, in one way or the other.

By elaborating on experimental and theoretical results, exemplified by selected
publications, we outlined a number of problems when testing the different LFHs:
miscommunication between theorists and experimentalists leading to incorrect data
analysis; the difficulties to mathematically model a specific foraging situation by
giving proper credit to all relevant biological details; problems with an adequate
statistical data analysis that really tests for the theory by which it was motivated; and
a more rigorous analysis of the underlying theoretical models. We highlighted that
there are alternative stochastic processes, such as intermittent search strategies, that
may outperform Lévy strategies under certain conditions, or at least lead to similar
results, such that it may be hard to clearly distinguish them from Lévy motion. We
also discussed an experiment on foraging bumblebees, which showed that relevant
information to understand a biological foraging process may not always be contained
in the probability distributions that are at the heart of all versions of the LFH, as
they do not capture memory. These experimental results suggested that biological
organisms may rather perform a complex spatio-temporal adjustment to optimize
their search for food sources, which results in different dynamics on different spatio-
temporal scales. This is at variance to Lévy motion, which by definition is scale-free.

However, these results are well in line with another, more general approach to
understand the movements of biological organisms, called the Movement Ecology
Paradigm [7]: This theory aims at more properly embedding the movements of
biological organisms into their biological context as shown in Fig. 4.9. In this figure,
the theory centered around the LFH is rather represented by the region labeled
‘random’, which focuses on analyzing movement paths only. However, movement
paths of organisms cannot properly be understoodwithout embedding them into their
biological context: They are to quite some extent determined by the cognitive abili-
ties of the organisms and their biomechanical abilities; see the respective two further
regions in this diagram. Indeed, only on this basis the question about optimality may
be asked, cf. the fourth region in this diagram, which here is rather understood in a
biological sense than as purely mathematical efficiency. Physicists and mathemati-
cians are used to think of diffusive spreading, which underlies foraging, primarily in
terms of moving point particles; however, living biological organisms are not point
particles but interact with the surrounding world in a very different manner. The aim
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Fig. 4.9 Sketch of the Movement Ecology Paradigm: It cross-links four other existing paradigms
representing different scientific disciplines, which describe specific aspects of the movements of
biological organisms. The aim is tomathematicallymodel the dynamics emerging from the interplay
between these different fields by an equation like Eq. (4.7); from [7], copyright (2008) National
Academy of Sciences, U.S.A.

of this approach is to model the interaction between the four core fields sketched in
this diagram by a state space approach. This requires to identify relevant variables,
cf. the diagram, by establishing functional relationships between them in form of an
equation

ut+1 = F(Ω,Φ, rt ,wt ,ut ) , (4.7)

where ut is the location of an organism at time t. A simple, boiled-down example
of such an equation is the Langevin equation Eq. (4.6) that we proposed to describe
bumblebee flights under predation threat. Here dut+1/dt = vy(t) and the potential
term is related to the variable rt above while all the other variables are ignored.
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4.6 Conclusions

The discussion about the LFH is still very much ongoing. As an example, we refer
to research on movements of mussels, where experimental measurements seemed
to suggest that Lévy movement accelerates pattern formation [22]; however, see the
controversy that emerged about these findings as comments and replies to the above
paper, which mirrors our discussion in the previous sections. A second example is
the debate about a recent review by Andy Reynolds [24], in which yet another new
version of a LFH was suggested; again, see all the respective comments and the
authors’ reply to them. While these two articles are in support of the LFH, we refer
to a recent review by Graham Pyke [23] as an example of a more critical appreciation
of it.

We conclude that one needs to be rather careful with following power law
hypotheses, or paradigms, for data analysis, here applied to the problem of under-
standing the search for food by biological organisms. These laws are very attractive
because of their simplicity, and because in certain physical situations, they repre-
sent underlying universalities. While they clearly have their justification in specific
settings, these are rather simplistic concepts that ignore many details of the biolog-
ical situation at hand. This can cause problems when biological processes are more
complex. What we have outlined represents not an entirely new scientific lesson;
see, e.g., the discussion about power laws in self-organized criticality. On the other
hand, the LFH did pioneer a new way of thinking that goes beyond applying simple
traditional random walk schemes to understand biological foraging.

Financial support of this research by theMPIPKSDresden and the Office of Naval
Research Global is gratefully acknowledged.
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Chapter 5
Epicuticular Wax Formation
and Regeneration—A Remarkable
Diffusion Phenomenon for Maintaining
Surface Integrity and Functionality
in Plant Surfaces

Wilfried Konrad, Anita Roth-Nebelsick, and Christoph Neinhuis

5.1 Introduction

Diffusion processes are ubiquitous in organisms, varying from being essential short-
distance transport phenomena to posing threats, such as uncontrolled leakages of
substances. A membrane, consisting of a phospholipid double layer with integrated
proteins and other additional functional molecules envelops all cells, the smallest
units of life. This membrane represents the device to reconcile the need of protecting
the cell interior from its environment while maintaining intracellular conditions
with the necessary exchange of substances with the surroundings (see Fig. 5.1).
This exchange occurs—apart from processes such as endo-/exocytosis where whole
membrane patches are used as transport vehicles—often via “controlled diffusion”,
involving pores or channels formed by proteins. In this manner, the membrane is
semipermeable allowing diffusion of water and uncharged small molecules, whereas
other substances are hindered from passing through.

Controlled diffusion processes are thus central for managing cell metabolism
and—in the end—the metabolism of multicellular plants and animals. Originally,
water was the only immediate surroundings of unicellular and multicellular organ-
isms, since there is general agreement that life evolved within the oceans, and there-
fore, within an aquatic environment. During evolution, however, life moved on land
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Fig. 5.1 Schematic summary of the most prominent functions of the cuticle as represented by a
hydrophobicmicrostructured plant surface. a Transport barrier: limitation of uncontrolledwater loss
or leaching from the interior and b against foliar uptake. cWater repellency: control of surface water
status. Anti-adhesive, self-cleaning properties: d reduction of contamination, e pathogen attack
and f control of attachment and locomotion of insects. g Spectral properties: protection against
harmful radiation. h Mechanical properties: resistance against mechanical stress and maintenance
of physiological integrity (modified after [1])

andwas confrontedwith the problemof a strong humidity gradient, namely the differ-
ence between water-saturated cells and tissues and the much drier air [2]. The water
vapor deficit even at high relative humidity is huge and results in desiccation within a
short time, lest there are anymeans to prevent this from happening. In fact, plants and
animals are enveloped by desiccation barriers, which hinder water from rapid and
uncontrolled loss into the atmosphere. There are, however, some exceptions, notably
desiccation-tolerant organisms, such as mosses, some ferns, and a few seed plants,
which can dry out and recover upon wetting without damage. All other organisms
are necessarily equipped with a kind of “skin” preventing rapid desiccation.

To conserve water by suppressing water vapor diffusion into the atmosphere, the
envelope has to be hydrophobic. Terrestrial plants developed a hydrophobic layer
covering the outermost cells called epidermis [3]. This hydrophobic layer consists
of two main components, the polymer cutin and soluble waxes, described further
below, and is termed “cuticle” [4, 5] (see Figs. 5.1 and 5.2).

Due to its key importance for maintaining the hydrated state, the cuticle evolved
during early stages of land plant evolution [7]. Cuticles are already present in 400
million year old plant fossils from the Lower Devonian, a time during which the
vegetation consisted of quite small and leafless axes (Fig. 5.3). In fact, cuticle-like
remains can be found in much older fossil material, dating back to the earliest times
of land plant evolution from which only microfossil fragments are preserved [8].

Also, terrestrial animals need a protective cover against uncontrolled evaporation.
In this respect, arthropods are interesting since they show a hydrophobic cover similar
in many aspects to the plant cuticle. This is particularly the case for insects, since
both plants and insects exchange gases with the atmosphere via their body surface.
Land plants cannot be completely isolated from the atmosphere since they have to
absorb CO2 for photosynthesis and to evaporate water to maintain internal transport
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Fig. 5.2 Simplified scheme of the structural features of the plant cuticle and theirmajor components
(modified after [6])

Fig. 5.3 A section through a piece of Rhynie Chert sediment (Scotland, near Aberdeen), containing
axes of early land plants from the Lower Devonian, approximately 400 million years old. On the
right, cross-sections of two plant axes are shown in detail. They belong to the so-called “rhynio-
phytic” plants thriving during that time on land. These plants were up to 20 cm high and consisted
of leafless axes already covered by a cuticle
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Fig. 5.4 A scanning
electron microscope image
of the lower leaf surface of
Helleborus niger, showing
stomata (bar: 100 μm).
These micropores can be
closed to control the
exchange of CO2 and water
vapor between atmosphere
and plant interior

processes. Plants are, therefore, forced to allow for a limited and controlled gas
exchange and transpiration, facilitated by micropores, called stomata, which can be
closed, according to the environmental conditions (Fig. 5.4). How micropore-based
technologies in chemical engineering have, quite generally, been inspired by nature
is referred to in great detail in Chap. 11.

The cuticle thus reconciles two conflicting tasks, namely suppression of outward
diffusion of water vapor and uptake of CO2. The solution is to pierce the isolating
cover, the cuticle, with pores whose aperture can be regulated.

Terrestrial insects are very much under the same constraint, and consequently
also developed a hydrophobic cuticle, which simultaneously serves as a gateway for
respiration by being equipped with openings, the spiracles, leading to an internal
tubing system, the tracheae. In fact, plants and terrestrial arthropods share many
similarities with respect to evolutionary solutions against desiccation [9].

Conspicuous for both groups is the occurrence of wax blooms deposited upon the
cuticles [1, 10, 11] (see Fig. 5.5). For both, essential functional roles are indicated.

For different plant species, cuticles can show quite different thicknesses, with
plants fromarid environments often showing considerably thicker cuticles than plants
from humid habitats. The reason for that is not fully understood since the suppression
of water vapor loss appears to be not dependent on cuticle thickness but on its chem-
ical composition [12]. A thick cuticle can also contribute to mechanical stabilization
[13] whereas wax crystals on plant cuticles are often associated with the famous
Lotus effect, forming structured hydrophobic surfaces resulting in vigorous water
repellency (contact angle � 150◦) [14].
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Fig. 5.5 Scanning electron microscopic images of epicuticular waxes from plants. a Nonacosanol-
based tubules (bar: 1 μm). b Irregularly shaped wax crystals (bar: 2 μm). c Transversely rigid
rodlets based on palmitone (bar: 1 μm). dMembraneous platelets (bar: 1 μm). e Irregularly shaped
platelets (bar: 2μm). f Tubules based on β-diketones (bar: 2μm). Photographs: Institut für Botanik,
TU Dresden
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5.2 Qualitative Explanation of Self-repairing Wax Layers

5.2.1 Chemical Properties of the Cuticle

The cuticle may be regarded as a natural composite comprising two major
hydrophobic components: an insoluble polymer fraction composed of cutin and,
in some species, cutan as well as soluble lipids of diverse chemistry, collectively
called waxes. In addition, a certain amount of polysaccharides is present (overview
in [15, 16]). The outer very thin region (usually less than 100 nm), called cuticle
proper, contributes 99% of the barrier efficiency [17], while the region determining
the thickness of up to 20 μm, is called the cuticle layer [18, 19]. The chemical
composition and internal structure of the cuticle seem to show a high degree of
variability during ontogeny and among different plant species and organs. Whereas
intra-cuticular waxes may be either amorphous or crystalline, epicuticular waxes
(Fig. 5.5) are assumed to be of crystalline nature [20–22].

5.2.2 Wax Transport and Cuticle Self-repair

The crystal nature of epicuticular waxes imply self-assembly as the driving force for
the formation of such structures. This has been proven after extraction and recrystal-
lization of waxes from organic solvents revealing morphologically similar structures
as compared to the plant surface [20, 21, 23–29]. To allow self-assembly of complex
three-dimensional structures, the individual molecules must be mobile within a suit-
able matrix or solvent in which they are free to find an energetically favorable posi-
tion, which also includes phase separation of different components or component
classes found in wax mixtures. Recrystallisation of extracted waxes from a solution
is considerably influenced by temperature, chemical nature of the solvent and the
underlying substrate resulting in a large structural variability [20, 22].

The most intriguing problem, however, was the process of wax deposition onto
the surface, as the molecules have to move from inside the cell through a hydrophilic
cell wall and the hydrophobic cuticle and finally onto the ridges and edges of the
growing crystals. Several hypotheses have been published from ectodesmata to the
involvement of transport proteins [30–32]. One obvious hypothesis is the existence of
some kind of channels or pathways, but no evidence of trans-cuticular structures that
could serve as pathways for wax molecules has yet been found in the plant cuticle by
Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM)
or Atomic Force Microscopy (AFM) investigations [28, 33].

While studying the various phenomena related to water repellency and self-
cleaning of natural and artificial surfaces, one particular interest was the ability
of plants to reestablish these properties after damaging the surface. Wax crystals
are weak structures very susceptible to mechanical influences, and therefore, easily
altered or completely removed. Since plants are able to maintain the functionality of
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Fig. 5.6 Exposed cuticular
surface after applying and
peeling off the glue prior to
regeneration of wax layers

the surface over quite a considerable period of time, the question turned upwhether at
all and if, how quick and to which extent wax layers and structures are re-established.
To address this question, we performed a number of experiments with different plant
species, from bud break to senescence, i.e., when the leaves are shed. The experi-
mental setup was rather simple: during one vegetation period we applied glue, not
containing organic solvents to the leaves, let it dry, and peeled it off (Fig. 5.6). Subse-
quently samples were taken on a regular basis to check for regeneration of wax layers
and crystals.

Generally, a wide range of species was able to regenerate waxes after removal
within a few days or up to 2 weeks. Many species could achieve that only in the
young stages of leaf development, while others maintained this capability during the
whole lifespan. Only very few species showed wax regeneration confined to later
stages of development. Interestingly, the regeneration was confined to the area from
which the wax layer has been removed, independently of cell borders, meaning that
the reestablishment of a wax cover happened within the area of one cell (Fig. 5.7).

During these experiments, we faced the problem that very young and delicate
leaves were destroyed during the attempt to peel off the glue. So we waited for the
leaves to expand expecting that the glue would fall off by itself. However, since the
material was highly elastic, the polymer film expanded together with the expanding
leaf without being dropped. So we waited even longer expecting that the glue would
be separated by the emerging wax cover that should act like a separating agent.

However, to our biggest surprise, this did not happen as well but now the wax
cover emerged on the surface of the glue (Fig. 5.8).

This accidental and unexpected result of our experiment allowed only one conclu-
sion: the transport of wax molecules must be independent of the living cell, since no
transporters, channels or other cellular components can be involved in the movement
through the polymer (i.e. the glue).

As a consequence, we isolated the cuticle enzymatically to remove every compo-
nent of the living protoplast, covered it with a pure polyurethane film, and span the
resulting specimen over a diffusion chamber filled with water (Fig. 5.9).
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Fig. 5.7 Upper:Glue applied to the leaf surface. Center: Leaf surface after removingwax by peeling
off the glue. Lower: Wax regeneration occurring in the areas only where the wax has been removed,
independently of cell borders

Fig. 5.8 Wax regeneration—the observation on young leaves. Waxes move through the glue and
crystallize similar in size and distribution as on the leaf surface

Fig. 5.9 In vitro experiments with isolated cuticles in a diffusion chamber
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The result was basically the same as was observed on leaves. The wax moved
through the polymer membrane following the transpiration gradient built up by evap-
orating water. The structures formed on the polymer surfaces again were virtually
identical to those found on leaves in situ. In a final approach, we also removed the
cuticle and replaced the latter with a polymer membrane alone that was applied to a
filter paper, replacing the cell wall. The latter was loaded with wax and the sandwich
was again placed on top of a diffusion chamber (Fig. 5.10).

The experiment again revealed the same result.Waxesmoved through the polymer
and crystallized on the surface. These results were independent of the type of polymer
(e.g., PU, PP, PE, PC) or the used wax (e.g., plant waxes, montan waxes, artificial
waxes). In case of plant waxes, the size, individual morphology, and distribution was
virtually the same as on the leaf surface (Fig. 5.11).

Fig. 5.10 Completely artificial approach in which a filter paper was loaded with wax of different
origin that moved through a polyurethane membrane together with water

Fig. 5.11 Wax tubules, based on β-diketones recrystallized after movement through artificial
polyurethane membranes. Size and distribution are not distinguishable from plant surfaces (left),
while a higher density is achieved by a longer diffusion time (right)
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Neinhuis et al. [34] consequently proposed a co-transport ofwax componentswith
water that constantly is lost via the cuticle, although in very small amounts. Assuming
such a process is appealing since no pathways, carrier molecules or sensors are
needed. Since cuticular waxes are the main permeability barriers, the transport to the
outside slowsdownwhilemorewax is deposited on the surface, so it is self-regulating.
In addition, it easily explains the intriguing phenomenon of wax regeneration. Since
removal of epicuticular wax also partly removes the water barrier, more wax is able
to move through the cuticle in this particular spot and builds up a new layer without
affecting neighboring area. AFM in situ demonstrated the rather quick reassembly
of new wax layers after their removal under environmental conditions in vivo. AFM
time-series pictured the formation of mono- and bi-molecular wax films and the
growth of three-dimensional platelets, either directly on the cuticle or on already
existing wax layers within minutes [28, 35].

5.2.3 Summary of Sect. 5.2

Thequalitative explanation of cuticle self-repair andwax transport to the plant surface
can be summarized as follows:

• Intact cuticles are very efficient barriers against evaporation of water from the
plant interior. Hence, if the wax layer is degraded, evaporation from this zone
increases, generating a current of liquid water from the plant interior.

• This water current transports the wax molecules from the epidermal cells (where
they are presumably produced) toward the outer fringe of the cuticle. There
the water evaporates. Being much heavier than the water molecules, the wax
molecules do not evaporate, they rather form wax crystals rebuilding hereby the
damaged cuticle layer by layer.

• As this repair process proceeds, both evaporation and the evaporation-drivenwater
current decrease and smaller amounts of wax molecules are transported to the
damaged cuticle. Finally, the cuticle attains its original thickness and the repair
process comes to a halt.

The advantages of this self-regulating model over other hypotheses are:

• Neither distinct pathways (such as micro-channels or ectodesmata) nor the exis-
tence of lipid transfer proteins have to be postulated. The waxes move through
the cuticle due to the presence of the water flow, hence neither organic solvents
nor special receptors are necessary.

• It explains almost all phenomena we have observed, including some which were
hitherto hard to explain, such as the wax regeneration and the appearance and the
distribution patterns of epicuticular wax in distinct leaf areas.
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5.3 Quantitive Explanation of Self-repairing Wax Layers

In this section, we present a condensed version of a quantitive model of cuticle
repair, i.e., notably of the movement of the wax molecules deployed for this purpose.
It emerged from the qualitative scenario outlined in the previous section. A detailed
account can be found in [36].

5.3.1 Equation of Mass Transfer Through the Cuticle

Wemake use of a few assumptions which keep themathematics manageable, thereby
providing insight into the model structure: We employ the porous medium approxi-
mation, allowing us to restrict the mathematics to one dimension (the z-direction in
Fig. 5.12), thus largely following the introductory remarks on diffusive movement
in Chap. 2, Eqs. (2.6)–(2.11); we assume that the properties of the biological struc-
tures along the z-axis are (approximately) constant within each of the four different
layers depicted in Fig. 5.12; and we assume stationary conditions, that is, none of
the transport processes involved depends explicitly on time.

In the framework described in Sect. 5.2, the wax molecules are transported
from the places where they are formed (presumably the epidermal cells depicted
in Fig. 5.12) to the epicuticular wax layer where they are deployed by “swimming”
passively in the midst of (liquid) water molecules. These vaporize at the plant surface
into the atmosphere, causing hereby the flow of the liquid water molecules which is
ultimately fed by soil water ascending through the plant’s vascular water system. In
addition to “swimming” with the flux of water, wax molecules are also subject to the

Fig. 5.12 Plant cuticle structure. Schematic diagram highlighting the major structural features of
the cuticle and underlying epidermal cell layer. he, hi , hw and hc denote the thicknesses of the
various layers, ze, zi , zw and zc the z-coordinates of their outer fringes. (Typical) numerical values
of these quantities are given in Table 5.1. (Not drawn to scale, modified after [3]). For photographs
of epicuticular waxes, see Fig. 5.5
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Table 5.1 List of variables and numerical values. Subscripts c,w, i, e refer to the different structural
layers depicted in Fig. 5.12. Numerical data for diffusion coefficients and thicknesses of cutin layer
and wax film layer are partly based on Tables 2 and 3 in [37] for cultivar “Elstar” and partly derived
by educated guessing. Similarly, the value of Kc is based on [38]. The diffusion coefficient of the
polysaccharide layer has been set arbitrarily to one tenth of the diffusion coefficient of the cutin
layer

Quantity Value Quantity Value

hc 16 μm R 8.314 J/mol/K

hw 0.5 μm T 20 ◦C
hi 11.93 μm g 9.81 m/s2

he 4.14 μm Vw 18.07 × 10−6 m3/mol

Sc 4.33 × 10−12 m2/s Vwax 404 × 10−6 m3/mol

Sw 7.16 × 10−11 m2/s ρw 18.07 × 10−6 m3/mol

Si 7.16 × 10−10 m2/s wrel 0.6

Se 3.03 × 10−10 m2/s ψleaf −204 m

Kc 1 × 10−14 m/s ξ 4 /s

Kw 1.69 × 10−15 m/s cs 10 mol/m3

Ki 1.69 × 10−14 m/s ct 5.53 mol/m3

Ke 7.18 × 10−15 m/s

transport mechanism emerging from their Brownian motion, i.e., to a diffusive flux
in the direction of decreasing wax concentrations (see Fig. 2.2a). With Fig. 5.12, wax
concentration is easily understood to assume its maximum value, namely its satu-
ration concentration cs , at z = ze, given the immediate vicinity of the epicuticular
wax crystals. Wax concentration is thus expected to decrease from the leaf surface
into its interior, giving rise to a diffusive flux just opposite to the flux of the water
molecules. As it turned out, both transport mechanisms are equally important and
indispensable in order to formulate a coherent mathematical model.

Considering both transport mechanisms, the flux j(z) of wax molecules of
concentration c(z) is given by the expression (see, e.g., [39, 40])

j = −S
dc

dz
+ cJ. (5.1)

The first term on the right-hand side describes diffusion. S = Dn/τ denotes the
(effective) diffusion coefficient in a porous medium, n and τ are porosity and tortu-
osity of that medium, respectively, and D is the diffusion coefficient in bulk liquid.
The second term refers to the movement of the wax molecules within the flux J(z)
of (liquid) water, referred to (see also Sect. 2.2) as advection.

We assume that the wax molecules originate only within the epidermal cells, i.e.,
within the interval 0 < z < zc (cf. Fig. 5.12). We further assume that the wax
production rate can be described by the function
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q = ξ [ct − c(z)] (5.2)

where ct denotes a threshold concentration of the wax molecules and ξ is a rate
constant. Depending on whether ct > c(z) or ct < c(z) is realized, q acts as source
term (i.e., producing wax molecules, q > 0) in the first case and as sink term
(removingwaxmolecules, q < 0) in the second case. Outside the interval 0 < z < zc
we set q = 0. Obviously, the maximum production rate of wax molecules amounts
to qmax = ξct .

Transport equation (5.1) and wax production rate (5.2) are connected by the conti-
nuity equation (see alsoEq. (2.8))which is simply themathematical version ofmolec-
ular bookkeeping: any change in the number of waxmolecules within any (fictitious)
volume of space is caused by inflowing molecules, outflowing molecules, and—
possibly—generation (or destruction) of wax molecules within the volume. Due
to the simplifying assumptions, stationarity and one-dimensionality, the continuity
equation reads in our case

0 = −d j

dz
+ q. (5.3)

Since we know already wax flux (5.1) and wax production rate (5.2), we can insert
these expressions into (5.3) and obtain

0 = S
d2c

dz2
− d(cJ )

dz
+ ξ(ct − c) if 0 < z < zc (5.4a)

0 = S
d2c

dz2
− d(cJ )

dz
if zc < z < ze. (5.4b)

The first line applies within the epidermal cells (where the wax is presumably
produced), whereas the second line is valid outside the epidermal cells (no wax
production, thus q = 0 in the continuity equation (5.3)). Both lines represent linear
differential equations of second order for the wax concentration c(z).

As noted above, we assume that the properties of the plant tissue—represented by
the variablesD, n and τ , which are amalgamated to the effective diffusion coefficient
S = Dn/τ—are approximately constant within each of the four different layers of
Fig. 5.12. They may, however, vary from one layer to the next. This implies that
Eq. (5.4a) has to be solved with S equated with Sc while (5.4b) has to be solved
separately for the three layers between z = zc and z = ze, with S adopting the
values Sw, Si and Se. Since the differential equation (5.4) is of second order, each
of these piecewise solutions comes with the two so-called “integration constants”,
adding up to altogether 4 × 2 = 8 arbitrary constants, which can (and must) be fixed
according to the boundary conditions which specify the definite system (for details
see below).

Once Eq. (5.4) have been solved for c(z) in this way, the wax flux j(z) follows by
inserting the result into (5.1).
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However, before solving Eq. (5.4), the still unknown water flux J(z) between the
epidermal cell and the outer fringe of the cuticle must be determined.

5.3.2 Solution of the Water Flux Equation

Because the plant tissues we deal with can be treated as porous media and because
the fluid velocities inside these are low it is reasonable to describe J(z) by means of
Darcy’s Law (see Sects. 2.3 and 11.3.2 and, e.g., [39–41]). In one dimension, it reads

J = −K
dψ

dz
. (5.5)

K(z), the hydraulic conductivity, contains information about theflowing liquid (which
is in our case water loaded with wax crystals) and the conductivity of the structures
through which the liquid flows. Similarly as before, we assume that K(z) is constant
within each of the four tissue layers of Fig. 5.12 but may vary from layer to layer.

ψ(z) denotes the water potential whose gradient dψ/dz is the driving force of the
water current. Water potential is closely related to the chemical potential of water
(see also Sect. 10.4): it represents the work needed within a given system to move
one mole of pure water at atmospheric pressure to some other point (at the same
temperature and pressure). In the fields of hydrogeology and plant physiology, it is
a very useful concept because it allows to treat certain aspects of liquid water and
water vapor within the same formalism (see e.g. [41]).

Within epidermal cells (i.e., for liquid water), typical values of ψ are around
ψlea f ≈ −2MPa. The water potential of atmospheric water vapor depends strongly
on temperatureT and relative humiditywrel ; for T = 20 ◦Candwrel = 0.5 it amounts
toψwv ≈ −93.5MPa, for instance. In soil research and hydrological research, water
potential is usually expressed in units of pressure head. In these units, the equivalent
values are ψleaf ≈ −204m and ψwv ≈ −7028m. The latter value is obtained from
the expression [41]

ψwv = RT

Vwρwg
logwrel, (5.6)

where R, g, ρw and Vw denote the gas constant, the gravitational acceleration, and the
density and molar volume of liquid(!) water, respectively. In what follows, we will
express water potential in units of pressure head (Pressure units (Pa = kg/m/s2) are
obtained by multiplying pressure head (units m) by ρwg ≈ 9.81 × 103 kg/m2/s2,
as can be seen from (5.6)).

The water flux equation is derived from the continuity equation for liquid water
which reduces due to our assumptions to 0 = d J/dz. Insertion of (5.5)—while
keeping in mind the assumption that K(z) is constant within each layer—yields the
differential equation
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0 = d2ψ

dz2
. (5.7)

Similarly as in the case of (5.4), this equation has to be solved separately for each
layer. Each of the four solutions of equation (5.7) contains two arbitrary constants.
These are determined from the condition of continuity for the water potential ψ(z)
and the water flux J(z) at the layer margins at zc, zw and zi and from two boundary
conditions for ψ(z): We require ψ(0) = ψleaf and ψ(ze) = ψwv with ψwv as given
in (5.6).

Application of this procedure is straightforward. It results, however, in lengthy
expressions for ψ(z); since we do not need them in what follows we give here only
what results if we insert ψ(z) into expression (5.5) for J(z):

J = ψleaf − ψwv

hc
Kc

+ hw

Kw
+ hi

Ki
+ h

Ke

. (5.8)

he, hi , hw and hc denote the thicknesses of the various layers, as indicated in Fig. 5.12,
and Ke, Ki , Kw and Kc are the respective water conductivities. J > 0 indicates a
water flux toward positive z-values, i.e., toward the plant surface. In what follows, he
denotes the thickness of the intact epicuticular wax film, while h denotes its actual
thickness during any stage of the repair process (thus, 0 ≤ h ≤ he).

Several features of expression (5.8) are noteworthy:

• It shows a close analogy to Ohm’s law in electrodynamics: if water flux J is
identified with electric current and water potential difference ψleaf − ψwv (the
driving force of water flux) with voltage, then the four terms in the denominator
of the right hand side of (5.8) represent four resistances connected in series.

• J is independent of z, simplifying the solution of the differential equation (5.4) for
the wax flux j considerably. (This property was to be expected from the physics
of the situation: no water sources or sinks are present).

• Thewater flux J depends roughly reciprocally on the thicknessh of the epicuticular
wax film. This corroborates the qualitative conception developed in Sect. 5.2: the
water flux decreases while the repair process proceeds (i.e., h → he) and the wax
layer regains its original thickness he.

5.3.3 Solution of the Transport Equation

By inserting the expression (5.5) determined for the water flux J into Eq. (5.4),
we are now able to determine the concentration c(z) of the wax molecules and,
subsequently, by inserting into Eq. (5.1), their flux j. Solving a differential equation
of second order in four adjacent layers gives rise to eight integration constants which
may be determined by taking account of the respective boundary conditions, ending
up in a number of quite lengthy expressions. All these relations and how they have
been determined may be found in [36]. Here we confine ourselves to the graphical
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representation of the solution in three characteristic situations as resulting with the
parameters summarized in Table 5.1

Figure 5.13 displays the wax concentration c(z) and the wax flux j(z) along the
pathway of wax molecules between epidermal cell and epicuticular wax film (cf.
Fig. 5.12) and the wax production rate q = ξ [ct − c(z)] within the epidermal cells
as resulting as a solution of equations (5.4) and (5.1).

Subfigure (c) shows the (net) wax flux j(z). It is the sumof the diffusive component
(represented by the first term in expression (5.1)) and of the advective component (the
second term in (5.1)). These two are displayed in subfigure (d); the upper three curves
represent advective components, cJ, the lower three curves depict the diffusional
parts,−S dc/dz. Positive fluxes are directed toward the cuticle, negative fluxes point
to the leaf interior. Blue curves are related to a damaged cuticle (the outer fringe is
located at z = zi ), green curves represent an intact cuticle (the outer fringe is at
z = ze), and red curves represent the fictitious case of an epicuticular wax film
which is twice as thick as it ought to be (the outer fringe is at z = ze + he).

Comparison between the blue and green curves allows to visualize the repair
scenario:

• As long as the cuticle is undamaged, the green curves in subfigures (a), (c), and
(d) terminate at z = ze, and the green curves representing advection and diffusion
(subfigure (d)) have for all points with z > zw the same distance to the z-axis,
thus adding up to a vanishing net wax flux (green curve in subfigure (c)).

• When the cuticle is damaged the repair process begins. This is illustrated by the
blue curves which terminate at z = zi : the absolute values of both advection and
diffusion flux have increased, compared to the intact cuticle (see subfigure (d)),
but now results a net flux toward the cuticle (see subfigure (c)).

• During cuticle regrowth, all blue curves “migrate” toward the green curves, that is,
the absolute values of advection and diffusion flux decrease and converge slowly
until they have merged with the green curves; then the net flux ceases and the
repair process is completed.

Notice, that the model predicts also what happens to (fictitious) protrusions of
height h > he, extending from the epicuticular wax film: This case is represented
by the red curves. The one representing the net flux (subfigure (c)) runs for z > zw

below the z-axis, indicating a negative net flux directed toward the plant interior;
this means that the protrusions are dissolved and transported to the leaf interior. This
process stops when the cuticle has been eroded to thickness he and the red curve has
migrated to and merged with the green curve.

Comparison of subfigures (b) and (c) of Fig. 5.13 illustrates the continuity equation
(5.3)which states that the gradient of the netwaxflux equals the injection (or removal)
of wax molecules: The region 0 < z � 8μm acts as a wax source (indicated by
q > 0). Wax molecules that are generated in the region z � 2μm flow toward
the plant interior (indicated by j < 0, subfigure (c)), those produced in the interval
2μm � z � 8μm flow a short distance toward the cuticle (indicated by j > 0).
In the case of an intact cuticle (green curves), all of them are removed from the cell
liquid in the region 8μm � z < zc which acts as wax sink (q < 0). If the cuticle
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Fig. 5.13 Wax concentration (a) andwax fluxes (c, d) along the pathway ofwaxmolecules between
epidermal cell and epicuticular wax film (cf. Fig. 5.12). The (net) wax flux j(z) in subfigure (c) is
the sum of the diffusive component (lower three curves in subfigure (d)) and of the advective
component (upper three curves in subfigure (d)). Positive fluxes are directed toward the cuticle,
negative fluxes point to the leaf interior. (For detailed explanation, see text.) Vertical lines delineate
the tissue layers defined in Fig. 5.12; the horizontal lines in subfigure (a) denoted cs and ct mark the
saturation and the thresholdwax concentrations. Subfigure (b) depicts thewax insertion (or removal)
rate q = ξ [ct − c(z)] within the epidermal cells. Positive values indicate insertion, negative values
indicate the removal of wax molecules. Notice that the graph depicts three nearly identical curves.
Blue curves are related to a damaged cuticle (the outer fringe is located at z = zi ), green curves
represent an intact cuticle (the outer fringe is at z = ze), and red curves represent the fictitious case
of an epicuticular wax film which is twice as thick as it ought to be. Numerical values are as in
Table 5.1



92 W. Konrad et al.

is damaged (blue curves), however, a certain fraction of the injected wax molecules
reaches and repairs the cuticle.

5.3.4 Restoration of the Wax Layer as a Function of Time

Provided the restoration proceeds slowly, compared to the travel time τ of a wax
molecule between epidermal cell and epicuticular wax layer, the solution of the
wax transport equation (5.1) can be exploited to derive the temporal development of
the wax layer repair, although it has been derived under the assumption of station-
arity. The values given in Table 5.1 imply for the velocity of the water current
J ≈ 2.17μm/s and thus τ = ze/J ≈ 15 s for the travel time of a wax particle
between the epidermal cell and the cuticle. Hence, if the repair process lasts perhaps
1 h, this approach is certainly justified.

In order to calculate the temporal development of the epicuticular wax layer
restoration, we assume that it has been eroded completely before the restoration
process begins. That is, at the starting point t = 0 of the restoration process the outer
fringe of the cuticle is located at z = zi , equivalent to h = 0 (h denotes the actual
thickness of the wax layer, he its thickness when it is intact, cf. Fig. 5.12).

The water brought there by the water flux J evaporates from the eroded area,
leaving behind the much heavier wax molecules that came by the wax flux j. The
wax molecules organize themselves as crystals, thus restoring the wax layer until it
reaches its original thickness he whereupon the wax flux j ceases.

If Vwax denotes themolar volume of the waxmolecules, the thickness h of the wax
layer regrows with the velocity dh/dt = Vwax j (h). In view of the structure of the
expressions for j(z) and J(z) (cf. (5.8)), this is an ordinary but non-linear differential
equation for h(t).

Its non-linearity precludes a straightforward solution but an approximation
approach (for details, see [36]) allows to calculate the thickness of the wax layer
h as a function of time, resulting in

h(t) = he
[
1 − e( j1Vwax t)

]
, (5.9)

with j1 := (∂ j/∂h)|h=he . Notice the implication h(0) = 0, that is, the cuticle layer
started to (re-)grow at time t = 0. Its original thickness he approaches the wax
crystal layer asymptotically, as t → ∞. Thus, the repair process lasts—in principle—
infinitely long; the time which is necessary to rebuild for instance 95% of the layer
is, however, finite and amounts to the value t95 := ln(20)/(− j1Vwax ).

Figure 5.14 illustrates the result (5.9) for two different cases:

• In subfigure (a), temperature is kept constant and the relative atmospheric humidity
wrel adopts three different values. The time spans t95 increasewith increasingwrel :
this is to be expected because the water potential difference

∣∣ψleaf − ψwv

∣∣which is
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Fig. 5.14 Growth of the wax layer with time according to expression (5.9). The intersections
with the gray, horizontal line indicate the time it takes to rebuild the wax layer to 95% of its
original thickness of he = 4.14μm. a Temperature is kept constant at T = 293 K = 20 ◦C while
the relative atmospheric humidity wrel and the threshold concentration ct of wax molecules in
epidermal cell assume the values (wrel , ct ) = (0.8, 7.78mol/m3) (blue, dotted line), (wrel , ct ) =
(0.6, 5.53mol/m3) (green, broken line) and (wrel , ct ) = (0.4, 3.48mol/m3) (red, continuous line).
The related time spans are t95 = 8.13 h (blue line), t95 = 4.20 h (green line) and t95 = 3.19 h (red
line). b wrel = 0.6 is kept constant, T and ct assume the values (T, ct ) = (30 ◦C, 5.65mol/m3)

(blue line), (T, ct ) = (20 ◦C, 5.53mol/m3) (green line) and (T, ct ) = (10C, 5.42mol/m3) (red
line). The three curves are nearly indistinguishable; their common t95 time amounts to t95 = 4.20 h.
Other numerical values are as in Table 5.1. t95 is defined in the text

the driving force of evaporation decreases if wrel is increased, according to (5.6).
Accordingly, the wax supply for restoration decelerates.

• In subfigure (b), relative atmospheric humidity is kept constant and temperature
is varied (T = 10, 20 and 30 ◦C). The related curves are nearly indistinguishable.

5.4 Conclusions

The model presented here corroborates, extends and quantifies the conjecture of
Neinhuis et al. [34] which explains almost all phenomena observed in connection
with cuticle repair.

They proposed the co-transport of wax components with water which relies on
comparatively simple physics instead of postulating sophisticated living structures
such as carrier molecules or specialized pathways for wax molecules; they were
also able to confirm their hypothesis qualitatively by carrying out experiments with
isolated cuticles and artificial membranes.

Adding diffusion as a transport mechanism which counteracts water transport of
the wax components leads to a further clarification of the observations: the presence
of two antagonistic transport mechanisms allows for the scenario that the two driving
forces are balanced in the case of intact cuticles and that a damaged cuticle causes
an imbalance resulting in net wax transport and cuticle self-repair which lasts until
the balance is readjusted.
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The model explains these findings in detail: its mathematical structure allows, for
instance, to conclude that the thickness of the epicuticular wax layer and the typical
restoration time after degradation (which are the result of two physical processes that
are independent of living structures) are nonetheless controlled by living structures,
namely the epidermal cells which generate the wax molecules. In the framework of
the model, the cells have two degrees of freedom at their disposal to regulate the wax
production: they can predefine both the thickness he and the restoration time t95 of
the epicuticular wax layer by fine-tuning the parameters ct and ξ of expression (5.2).
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Chapter 6
Brain Interstitial Structure Revealed
Through Diffusive Spread of Molecules

Charles Nicholson

6.1 Introduction

Freshly removed from the skull, the human brain looks like a cauliflower with the
consistency of a crème caramel flan (Fig. 6.1a). This mundane object conceals the
most complex structure ever discovered. When the interior of the brain is examined
with a resolution of a few micrometers, using appropriate staining techniques and
light microscopy, it is seen to be composed of a vast number of cells (Fig. 6.1b),
although the apparent space between the cells in this illustration is misleading. The
full complexity of the ensemble of cells is only finally revealed at the submicron level
using electron microscopy (Fig. 6.1c). This chapter will show how the application of
methods and models based on diffusion can lead to an understanding of how brain
cells pack together and some of the remarkable properties of the narrow spaces that
separate them.

Brain cells comprise two types: neurons and glia; some examples of neurons are
shown in Fig. 6.1b. The neurons formvast networks that convey and process electrical
signals. The connections in the networkmostly take place at junctions called synapses
that provide a separation of about 20 nm. At these junctions the electrical signals
are converted into packets of chemicals that diffuse across the narrow space. The
diffusion properties of the synapse could be the basis for the whole chapter but
will not be discussed further, except to note that this physical separation of neurons
ensures the structural isolation of each cell.

Glia cells lack electrical signaling capability and are something of an enigma.They
appear to support neurons in several ways and new properties are being revealed at
a rapid pace. Neurons and glia are intermingled in the brain; they are present in
roughly equal numbers and both cell types have many different forms in different
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Fig. 6.1 a The human cortex exposed in a drawing by Versalius published in his book De Fabrica
in 1543. b Nerve cells (neurons) of the cortex taken from layers 1–3 of the precentral gyrus of a
one-month-old human infant. The cells and their extensions have dimensions that range from about
50–300 μm. Cells stained with the Golgi method and drawn by S. Ramón y Cajal; published in his
two-volume work Histologie du Systéme Nerveux in 1909. c Electron micrograph of a small region
of the cerebral cortex of a rat with a prominent synapse. The black areas between cells indicate the
interstitial space (IS), which may have been reduced in size as a consequence of the histological
processing. The scale bar under the figure represents a distance of about 1μm. Electron micrograph
kindly supplied by Dr. C. B. Jaeger. Figures reproduced from [1]

brain regions. All this complexity will be ignored here where the focus will be on
the spaces between the cells. This space is called the interstitial space (IS) while the
entire space that lies outside the cell and includes the IS as well as blood vessels
and ventricles is the extracellular space. Often the distinction between the terms is
ignored and ‘extracellular space’ is used even when ‘interstitial space’ would be
more accurate.

The IS is filled with a salt solution that closely resembles the cerebrospinal fluid
(CSF) that is found in the cavities in the center of the brain and the narrow canal
that runs down the middle of the spinal cord. In human CSF, the predominant ion
is Na+ (~150 mM); other critical ions include K+ (~3 mM) and Ca2+ and Mg2+

(~1.2 mM each). These cations are largely balanced by the anions Cl− (~120 mM)
and bicarbonate (~20 mM). There are many other compounds, often in very small
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amounts but which nonetheless serve important functions as neuromodulators and
signals. In addition to the salt solution there is an extensive extracellular matrix
of long-chain glycosaminoglycan and proteoglycan molecules. Many are anchored
in cell membranes and among the predominant molecular species are chondroitin
sulfate and heparan sulfate, both of which carry numerous negative charges. A third
major component of the matrix is hyaluronan, which often forms a scaffold for other
components of the matrix. The distribution and the function of the matrix are still
uncertain but it resembles a hydrogel insofar as it does not seem to greatly impede
the movement of molecules, although components of the matrix may interact with
specific substances (see Sect. 6.7).

There are several reasonswhy there is a significant IS in the brain. Neurons require
a reservoir of Na+, K+, and Ca2+ on the outside of their membranes to maintain a
resting potential across the membrane and enable action potentials and synaptic
transmission. The IS also functions as a communication channel where the signals
are mediated by neuroactive substances; this communication mode is often known
as volume transmission. More controversially, it has been suggested that the IS is a
conduit for the removal of waste products from the brain [2–5].

6.2 Biophysical Properties of Interstitial Space

Imagine looking down at a large city in the late afternoon when people are leaving
their offices and workplaces (Fig. 6.2). The streets become crowded because the
volume available for movement is limited to the spaces between the buildings. These
spaces have been engineered to be sufficient to allow a reasonable density of people
and other forms of traffic, such as cars and buses but the travelers still may become
quite concentrated. Suppose the buildings were replaced by an open plaza and the
same people were introduced, then the concentration would be less—it would be
reduced in proportion to the volume fraction defined as the ratio of the area occupied
by the streets to the area of an open plaza with the same perimeter.

Now think about the destination of the people leaving work. Many head to rail
stations, bus terminals, car parks, or some may be close enough to walk home. They
cannot walk directly the way they might in the open plaza but must follow the streets
and so they walk further and take more time to reach their destination than if they
moved in a straight line. Sometimes they may encounter an obstruction and have to
retrace their steps. Thus the motion of the people is hindered by the structure of the
city. This hindrance can be measured by a parameter called tortuosity that will be
defined below.

Other fates may befall our travelers. After a hard day they may stray into a bar
and relax with a drink or two before continuing to their destination. This introduces
an additional delay in their passage. To an external observer they appear to be held
for a short time in the bar before being released. So long as the time in the bar
is brief compared to the overall journey this process may be likened to fast equi-
librium binding and to somebody awaiting the arrival of the traveler this delay is
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Fig. 6.2 North-facing view
of New York City from the
observation deck of the
Empire State Building.
Photo: C. Nicholson

indistinguishable from increased hindrance arising from a longer path. If the sojourn
in the bar accounts for most of the traveler’s journey time then the journey will be
dominated by the binding kinetics and the rest of the trajectory will be less important.

In all the cases described so far, the number of travelers in play remains constant.
This may not always hold true, however. Returning to the bar scenario, if the person
enters but does not leave or if some other fate befalls them that removes them from
the moving population, then there will be irreversible loss and the traveler will never
arrive home.

These metaphors may be translated into concrete terms for brain tissue. To begin
we define a Representative Elementary Volume (REV) that contains a sufficient
number of cellular elements and IS to allow the average properties to be reproducible
(Fig. 6.3a).

We start with volume fraction, represented by α in the discipline of brain
biophysics (more often called porosity and represented by φ in porous media
research):

α = VIS/VTotal (6.1)

whereVTotal is the volume of thewholeREVandV IS is the volume of the IS contained
in the REV. It follows that 0 ≤ α ≤ 1. Typically α is about 0.2; in other words 20%
of the brain volume is found in the gaps between cells. How this is measured will be
explained later.

Tortuosity is a more complex parameter than volume fraction. The operational
definition is simple; take a small ‘probe’ molecule with a hydrodynamic diameter
that is much less than the typical width of the IS and measure the effective diffusion
coefficient,D*, of themolecule in brain tissue.Measure the free diffusion coefficient,
D, of the same molecule in water or a very dilute gel. Then the tortuosity, denoted
by λ, is given by:
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Fig. 6.3 a1–a3. Volume averaging in brain tissue. a1 depicts the intracellular phase (no shading)
and the IS phase (dots). A line, aa′, drawn in the medium alternately intersects the two phases. a2.
For a substance that only distributes in the IS phase (dots), the profile is discontinuous. To remove the
problem, aREV(VTotal, PanelA1) is selected and the IS concentration is averaged over the IS volume
(V IS, Panel A1). a3As the averaging volume moves along the line, the average concentration

〈
Caa

′〉

now varies continuously. The volume averaging process also yields the macroscopic parameters
α and λ. Reproduced from [1]. b. Plot of concentration of TMA+ (tetramethylammonium ions)
in the brain (solid line) and agarose (a polysaccharide polymer material in common use as a low
concentration gel to provide an anti-convection medium, dotted line) computed for a location r
= 100 μm from a micropipette that initiates an instantaneous source at 10 s and computed using
Eqs. (6.5) and (6.6). Here U = 25 pL and Cf = 100 mM. c Similar plots of TMA+ concentration
using iontophoresis and Eqs. (6.7) and (6.8). Here I = 50 nA, nt = 0.5, and the duration of current
is 50 s, commencing at 10 s. Common parameters for plots in B and C are as follows. D = 1.31 ×
10–5 cm2 s−1 for TMA+ at 37 °C. For agarose α = 1, λ = 1, k′ = 0; for brain α = 0.2, λ = 1.6, k′
= 0.005 s−1. Panels B and C, unpublished data from C. Nicholson

λ =
√
D

/
D∗. (6.2)

Note that in porous media theory, tortuosity may be represented by a different
symbol and may simply be the ratio of the two diffusion coefficients, not the square
root. The volume fraction may also enter the definition, depending on how concen-
tration is measured (see, e.g., Chap. 11 and Eq. (11.9)). Sometimes use of the relative
diffusivity, also known as the diffusion permeability, θ = D∗/D, is preferable [6].
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The subtlety in the tortuosity arises from the fact that more than just geometry
may contribute to this parameter. As an example, fast equilibrium binding will be
indistinguishable from an increase in tortuosity (Sect. 6.7) provided that the binding
and unbinding kinetics (typically a bimolecular reaction) are much faster than the
local diffusion process. Obviously this requires a more rigorous definition but the
concept is clear.

Irreversible loss is a separate process, often represented by a first-order kinetic
process, with constant k′ where the loss is proportional to the concentration of a
molecule in the IS. Awell-known example is the loss of molecules into the numerous
blood vessels that run through the brain [7]. This loss occurs across the so-called
blood-brain barrier that surrounds each blood vessel in the brain and only allows
certain classes of molecules to cross. Other types of loss may occur through irre-
versible binding to cell surfaces or extracellular matrix, enzymatic degradation, or
active transport into cells. These processes may be subject to complex kinetics,
sometimes involving a Michaelis-Menten formulation [8].

Finally there is another transport process that might affect the behavior of probe
molecules in brain tissue: bulk flow. Returning to the metaphor of the city, if the
city lies close to the water and the water rises excessively because of heavy rain, a
hurricane, or a tsunami, flooding will occur. As the water rushes down the streets it
may carry the people with it. It has been postulated for many years that bulk flow
may occur in the IS [9]. Recently there has been renewed interest in the topic leading
to the concept that waste products may be removed from the brain by a bulk flow
based on the so-called glymphatic pathway [2–5]. Here, the rate of flow versus the
rate of diffusion will be important; this may be assessed to a first approximation
using the appropriate Péclet number [10] (see also Sect. 11.4). For small or medium
sized molecules, over periods of tens of minutes, diffusion is likely to dominate. If
the molecule is very large, the diffusion is slow, or the period of observation involves
a timescale of hours, then flow may have a significant role [11]. The glymphatic
hypothesis has been subject to critical discussion and modeling [3, 4, 10, 12–14].

6.3 Diffusion Analysis Reveals Properties of Interstitial
Space

These considerations lead us to the central question: how can a study of the diffusion
of small probe molecules in the brain reveal the properties described in Sect. 6.2? To
answer this requires an appropriate diffusion equation. The grounds for this equation
will not be discussed here. Suffice to say that the use of volume averaging justifies its
use (Fig. 6.3a1–a3; [1, 15]).One important definition is that ofC,which is the volume-
averaged concentration of the probe molecule referenced to the IS. In other contexts,
the concentration may be referenced to the whole tissue. These two definitions differ
by a factor α. The reason for using the concentration in the IS is that this is the
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concentration actually experienced by a molecular receptor or transporter in the cell
membrane or at the blood-brain barrier.

The modified diffusion equation is:

∂C

∂t
= D

λ2
∇2C + Q

α
− k ′C − f (C)

α
+ v · ∇C (6.3)

The symbol∇2 represents the three-dimensional second spatial derivative inwhat-
ever coordinate system is being used. The new variables appearing in Eq. (6.3) are a
source term Q, representing the release of molecules into the IS, a function f (C) that
accounts for reversible binding or other kinetics and which, under some conditions,
may be absorbed into λ. The bulk flow velocity vector is v and forms a scalar product
with the concentration gradient if bulk flow is deemed significant.

If several terms are set to zero, namely Q (which often may be accounted for via
suitable boundary conditions), f (C), k′ and v, Eq. (6.3) becomes

∂C

∂t
= D∗∇2C (6.4)

where D∗ = D
/

λ2, the effective diffusion coefficient in the tissue. This is the
diffusion equation (Chap. 2 and Eq. (2.9)) otherwise known as Fick’s Second Law.

The solutions to Eq. (6.3) are well-known for a variety of situations [1, 15, 16].
Here only two will be illustrated; the first is for a source consisting of molecules
released instantaneously at a point in the tissue. It is assumed that f (C) = 0 and v
= 0 but there is loss (k′ > 0). Then the molecules diffuse in a spherically symmetric
cloud so the solution may be written in terms of the radial distance from the source,
r, and time, t:

C(r, t) = Q

α

λ3

(4Dtπ)
3/2

exp

(
−λ2r2

4Dt
− k ′t

)
. (6.5)

The source term Q may be written as:

Q = UCf , (6.6)

whereU is the volume ofmolecules injected andCf is the concentration. This implies
that a finite volume of molecules is released from an infinitesimal point. In practice,
for small spherical release volumes of radius rf there is little error in the concentration
predicted by Eq. (6.5) so long as r ≥ 2rf. For precise work or closer distances, an
extension of Eq. (6.5) is available that takes into account the finite radius of the
injected volume [1, 17].

The plot of this equation for realistic parameters is shown in Fig. 6.3b. Equa-
tion (6.5) is essentially a Gaussian curve (see Eq. (2.10) for the one-dimensional
version) reminding us that the diffusion equation considered here may be thought of
as being generated by molecules leaving the source and executing random walks in
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three dimensions in the IS subject to occasional destruction represented by k′. Note
how much smaller the curve in a free medium (agarose, a polysaccharide polymer
material in common use as a low-concentration gel to provide an anti-convection
medium) is compared to that in the brain. This mainly reflects the difference in
volume fraction although the shape is also altered by the difference in tortuosity in
the two media.

If the point source is switched on at time zero and emits molecules at a constant
rate thereafter, then the solution to Eq. (6.3) is arrived at by integrating Eq. (6.5)
from time zero up to t, yielding:

C(r, t) = Q

α

λ2

8πDr

⎡

⎢⎢⎢⎢
⎣

erfc

(
rλ

2
√
Dt

+ √
k ′t

)
exp

(

rλ

√
k ′

D

)

+erfc

(
rλ

2
√
Dt

− √
k ′t

)
exp

(

−rλ

√
k ′

D

)

⎤

⎥⎥⎥⎥
⎦

. (6.7)

In Eq. (6.7) ‘erfc’ refers to the complementary error function, which relates to
the area under a Gaussian curve. The source is terminated after some time (typically
50 s) and the falling phase of the diffusion curve is arrived at by subtracting a delayed
version Eq. (6.7) (see [1, 16]). A plot of this equation, with both rising and falling
phases, is shown in Fig. 6.3c. Again there is a striking difference between agarose
and brain.

The source termQ in Eq. (6.7) is usually generated by iontophoretic release from
a micropipette. A current I is applied to the ionic solution in the micropipette but
only a fraction nt of the current expels the ion of interest (the rest of the current
moves the counter-ion in the opposite direction); nt is called the transport number.
Then:

Q = I nt
/
zF (6.8)

where z is the valency of the ion, and F is Faraday’s Electrochemical Equivalent that
relates mass to charge. Equations (6.3), (6.5), and (6.7) are readily generalized to
accommodate anisotropic diffusion [1, 16].

Equations (6.5) and (6.7) both represent the consequences of the spread of
molecules from a point source. This ‘point-source paradigm’ has led to the
development of experimental methods that will be described in Sects. 6.4 and 6.6.

In an earlier phase of research into diffusion in the brain, use was made of radiola-
beled compounds that were perfused into the ventriculocisternal spaces of the brain
[1, 7, 18]. Animals were sacrificed after various periods and the penetration of the
tracer was determined. Both the volume fraction and tortuosity were obtained (the
latter from the one-dimensional solution to the diffusion equation). Sucrose gave
the best results (Table 6.1) and the data are in good agreement with the more recent
studies. The primary advantage of the radiotracer method is that it may be used to
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study the diffusion of a wide variety of substances, so long as they can be radiola-
beled. The main shortcomings are that there is only one-time point per animal and
the method has a low spatial resolution.

6.4 Measuring Volume Fraction and Tortuosity with Real
Time Iontophoresis

The solutions to Eq. (6.3) may be put to good use to provide a means to measure α,
λ, and k′. Equations (6.7) and (6.8) form the basis of the Real-Time Iontophoresis
(RTI) method. This method was introduced in detail in 1981 by Nicholson & Phillips
[15] and has evolved over the years (Fig. 6.4), however the concept has remained
the same. Two micropipettes are inserted into brain tissue. The first is filled with
a solution containing a suitable small ion, typically tetramethylammonium (TMA),
a cation with about twice the molecular weight of K+. The TMA+ is released by
passing a current through the micropipette according to Eq. (6.8) and the counter-ion
is usually Cl−. The second micropipette is placed about 100 μm from the first and
contains an ion-exchanger that makes it an ion-selective microelectrode (ISM). With
an appropriate choice of exchanger this micropipette can be made highly selective to
TMA+ versus other major ions in the IS of the brain (Na+, K+, Ca2+, Mg2+, and Cl−).
The TMA+ ions emitted from the first micropipette diffuse throughout the IS and a
few arrive at the second micropipette where they are sensed and, providing the ISM
has been properly calibrated, the local IS concentration of TMA, C, is measured as
a function of time. Although TMA is the most commonly used probe ion with the
RTI method, other anions and cations may be employed [15].

Using non-linear curve fitting, Eq. (6.7) may be fitted to the concentration versus
time curves and the three parameters α, λ, and k′ extracted. The first two parameters
are the ones of interest and some representative values are shown in Table 6.1. The
table lists a variety of molecules along with their relative molecular weight (Mr)
and hydrodynamic diameter (calculated from D, the free diffusion coefficient, using
the Stokes-Einstein-Sutherland Equation—see Eq. (6) in Ref. [16] and Chap. 12,
Eq. (12.3)). Table 6.1 goes on to show values of α and λ measured in different brain
regions and in different species. Earlier radiotracer measurements favored large brain
regions next to the ventricular cavities, such as the caudate nucleus of the rabbit.Most
measurements, however, have been made in the cerebral cortex of rats using a point-
source paradigm (e.g., RTI, RTP, or IOI methods; see later for further descriptions).
Measurements demonstrating diffusion anisotropy were made in the molecular layer
of the turtle cerebellum.

Table 6.1 shows that small molecules, such as sucrose (uncharged), TMA+ (mono-
valent cation), and α-NS− (monovalent anion) all reveal tortuosities of 1.54–1.67 in
isotropic brain regions. Small molecules in strongly anisotropic brain regions deviate
from this range (TMA+ in turtle cerebellar molecular layer). Molecules with much
larger hydrodynamic diameters (e.g. Dex70, BSA, and IgG) show larger tortuosities,
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Fig. 6.4 Evolution of the RTI-TMAmethod. aOriginal design showing iontophoresis micropipette
on left and TMA ion-selective microelectrode (ISM) on the right lowered into cerebellar cortex of
the rat. In practice the two micropipettes were glued together with a known spacing between tips.
A trough of dilute agarose sits above the brain with known α = 1, λ = 1 to enable D and nt to
be measured. Reproduced from [15]. b Implementation by Syková and co-workers in rat cerebral
cortex showing RTI micropipettes on the right and an ISM measuring K+ or pH on the left. Repro-
duced from [19]. Reprinted by permission of SAGE Publications, Ltd. c Adaptation to brain slices.
Micropipettes were introduced independently with robotic manipulators under a microscope and
water-immersion objective enabling precisemeasurement of spacing betweenmicropipette tips. The
use of the microscope also permitted the IOIMethod to be simultaneously employed (see Sect. 6.6).
Reproduced from [20]. Reprinted with permission from Elsevier. d RTI-TMAmethod employed in
awake mouse cortex. Micropipettes were inserted independently and contained a fluorescent dye,
so tip spacing was measured with a two-photon light microscope (2PLM). Reproduced from [5].
Reprinted with permission from AAAS

most likely because of significant interaction with the cell walls that form the bound-
aries of the IS. The divalent cation Ca2+ and the protein lactoferrin both interact with
the extracellular matrix and this increases their effective tortuosity (see later). The
small molecules also reveal that the volume fraction of the IS ranges between 0.18
and 0.23; the value in the anisotropic cerebellar molecular is higher, although we
do not have an explanation for this. It appears that the volume fraction in the awake
state is smaller compared to the sleeping state, anesthetized state, or brain slices
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[5, 29]. The parameter k′ is only measured with RTI to account for the small loss
of TMA+ from the IS during the measurement; this increases the accuracy of the
method. Typically for TMA+ in the rodent brain k′ ~ 5 × 10–3 s−1 (Table 5 in [1]).

The IS probably varies inwidth but inmany parts itmay be very narrow (~40 nm—
see Sect. 6.6) and the tip of an iontophoresis micropipette or ISM is 1–5μm in diam-
eter.Hence, itmay be askedwhy themeasured value ofC represents the concentration
in the IS. The answer is that the tip of each micropipette creates a small cavity in the
tissue, of the same order of magnitude as the tip, that very rapidly equilibrates with
the local IS [15].

Although the basic RTI method has remained unchanged, the supporting software
has evolved considerably as the power of personal computers has increased. The
present software consists of two custom programs written inMATLAB [30, 31]. The
first is called Wanda and is responsible for controlling the experiment and acquiring
and storing the data. The second program is called Walter and performs the curve-
fitting and parameter extraction. The RTI-TMA method is visualized and described
in detail elsewhere [32].

The RTI-TMAmethod has been used extensively to interrogate the IS structure in
various brain regions and species under normal and pathophysiological conditions
(see [16] for a comprehensive review). In the anesthetized animal and in brain slices
the typical parameter values are α ~ 0.2 (20% volume fraction) and λ ~ 1.6 (Table
6.1). This means that 20% of brain tissue resides in the IS and that the diffusion
coefficient of a small molecule will be reduced to about 40% of its value in water. A
recent study suggests that the volume fraction in the cortex of the awake mouse is
about 14% and expands to around 23% when the animal sleeps, possibly facilitating
the clearance of waste products from the brain [5]. It is thought that brain pathways
involving adrenergic inputs are responsible for the changes in α between sleep and
wakefulness [5] and support for this conjecture has been obtained in brain slices
[29]. The finding that there is an appreciable IS in all brain regions and species so far
studied (including invertebrates with sufficiently large brain mass—see [33]) implies
that the IS is essential for brain function.

There are at least two examples of systematic deviation from the parameters listed
in the last paragraph. Just after birth, the rat cortex has a volume fraction of 40%,
which declines to the adult value of 20% by postnatal day 21 [34]. Interestingly,
during this developmental period the tortuosity has already reached the adult value
(~1.6). The second example is when the brain undergoes ischemia (loss of blood
flow) or severe hypoxia (loss of oxygen supply). Under these circumstances, the
volume fraction falls to about 5% and tortuosity measured with TMA increases to
about 2.0 [16].

Equations (6.5) and (6.6)may also be employedwithTMA+ or another ion, such as
Ca2+ (see Sect. 6.7) using the Real-Time Pressure (RTP) method. In this technique a
brief pulse of nitrogen or other inert gas is used to expel the ion from themicropipette.
Because the volume released is difficult to quantify, only the tortuosity is obtained
by the curve-fitting method. The RTPmethod is useful, however, when iontophoresis
is not reliable or when there is a reason to expel more than one substance from the
micropipette (e.g. [35]).
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6.5 Modeling with MCell to Test Hypotheses About
Structure

The finding of widespread similarities in the values of volume fraction and tortuosity
has led to many attempts to construct models of brain cell aggregates that would
yield these values. Unfortunately the results have not been always consistent and
some models have been overly simplistic (see [16] for a brief survey of models).
One approach to resolving these issues is to use Monte Carlo simulation methods to
estimate the value of λ for a given α based on ensembles of cells with shapes that are
capable of packing three-dimensional space while maintaining a uniform IS width.
This packing property ensures that α can be varied in the range 0 ≤ α ≤ 1. The
simplest cell type that meets these requirements is the cubic cell (Fig. 6.5) and Tao
and Nicholson [36] used theMCell program (www.mcell.org) to perform this type of
simulation and this study was extended recently [37]. This software was originally
developed by Stiles and Bartol [38] for modeling diffusion of transmitter molecules
at the neuromuscular junction where nerve fibers connect to muscles. Surprisingly,
modeling brain tissue as an ensemble of cubic cells it was found that the tortuosity
never exceeded λ = 1.225 even when α → 0. The simulations were repeated with
cells in the shape of truncated octahedra and with mixtures of rhombicuboctahedra,
cubes, and tetrahedra [36]. Both of these choices pack three-dimensional space,
however the results were always the same and could be well-represented by the
equation:

λ =
√

(3 − α)
/
2. (6.9)

This is related to the result obtained by James Clerk Maxwell in 1873 for the
resistivity of a dilute suspension of non-conducting spheres in a conducting medium
(see [36]). Recently Nicholson and Kamali-Zare revisited the cubic cell model with
high-resolution Monte Calo simulation and showed a very small deviation from the
Maxwell result [37].

In light of these findings there had to be another explanation for the higher tortu-
osity routinely seen in the brain. On the basis of experiments involving ischemic
tissue [39] it was postulated that brain tissue harbored dead-space microdomains
that transiently trapped molecules as they diffused through the brain so delaying
them [6, 40] and leading to a lower effective diffusion coefficient. This was duly
tested using MCell with models that incorporated cavities or invaginations in the
cell wall, meaning that cells were no longer convex. Other models featured local
enlargements of the IS, meaning that the IS no longer had a uniform width [6, 31,
40]. It was shown that such dead-spaces could indeed generate the tortuosity seen
in brain tissue (Fig. 6.5). These studies resulted in a semi-empirical extension of
Eq. (6.9) that estimated λ in the presence of dead-spaces [40]:

λ =
(
3 − α

2

)1/2(
α

α − αc

)1/β

. (6.10)

http://www.mcell.org
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Fig. 6.5 Monte Carlo simulations using MCell. a1 Basic cell represented by a cube of side 1.9 μm
with an ‘atmosphere’ of IS (red dashed line). a2 These pack together with a uniform separation
of 147 nm to give a volume fraction α = 0.2. TMA molecules are released from a point location
in the IS and diffuse randomly between cells. In practice, an ensemble of at least 32 × 32 × 32
cubic cells are simulated. a3 After t = 0.1 s the distribution of molecules is measured and the mean
square distance of all the molecules calculated. Using Eq. (6.11) the effective diffusion coefficient,
D*, is calculated and the appropriate distribution curve generated. This is seen to accurately fit the
histogram of particle position confirming that it is a Gaussian, however λ, calculated from Eq. (6.9)
is smaller than the value measured experimentally. b1 By introducing dead spaces by creating
cavities at each corner of every cube, while reducing the separation between cubes to 50 nm, it is
possible to keep α = 0.2. b2 The simulation is run with an ensemble of modified cubes. b3 Again,
a Gaussian fit is obtained but now λ = 1.6, in conformity with experimental data. Unpublished data
from C. Nicholson

where αc is the volume fraction of the cavity or void space and β is an empirical
‘exit factor’ that informally captures the probability that molecules leave the cavity.
Usually, 2 < β < 3 (see Table 1 in [40]). To calculate αc, α0 is defined as the volume
fraction in the absence of dead-spaces, then α = α0 + αc.

In the initial studies of λ using Monte Carlo simulations and the MCell software
[36, 40], this parameter was estimated by counting all the molecules in a series of
concentric boxes that included many cubic cells, at a sequence of times. A simple
integration of Eq. (6.5) with k′ = 0 provided the required estimate of D* [31, 36, 40]
and hence λ. This approach was also used by Kinney et al. [41] in their study of a
reconstruction of a block of brain tissue visualized with electron microscopy. Later
work [31, 37] utilized the mean square position, < r2 >, of all diffusing molecules
at different times and used this to estimate D* from the well-known equation for an
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ensemble of molecules undergoing a random walk (Chap. 2, Eq. (2.5)):

〈
r2

〉 = 2nD∗t (6.11)

where n is the dimension of the space (typically n = 3). This approach easily lends
itself to computing the tensor form of D* in an anisotropic medium and also appears
more accurate than the integral method.

Further work from Hrabětová and co-workers has suggested that glial cells in
the granule cell layer of the cerebellum may wrap around neurons also producing
an IS geometry that delays the movement of molecules [42]. This study combined
experimental measurements using the IOI technique that will be detailed in Sect. 6.6
together with MCell modeling and showed that over short times and distances the
diffusion of molecules was anomalous. Anomalous diffusion is described by the
equation:

〈
r2

〉 = 2nDt
2
dw (6.12)

where dw is the anomalous diffusion exponent. When dw > 2, the phenomenon is
classified as anomalous subdiffusion; when dw = 2 the process is classical diffusion
as described in Eq. (6.11). Xiao et al. [42] found that dw was as high as 4.8 in
the granule cell layer of the rat cerebellum. This was likely because of the unusual
glomerular anatomy of this brain region [42, 43].

6.6 Measuring Tortuosity with Macromolecules Using
Integrative Optical Imaging

The RTI method may be used with a few small ions other than TMA, including some
anions (Table 6.1; [15]) but is restricted to compounds for which an ISM may be
fabricated. Many biologically important molecules are much larger than TMA and
yet still move through the IS. Consequently it was important to devise a method
of measuring the diffusion properties of macromolecules. This was achieved when
Nicholson and Tao introduced the Integrative Optical Imaging (IOI) method [44].
The concept is to take a macromolecule to which has been attached a fluorescent
dye, release it from a micropipette by using a brief pressure pulse (because many
macromolecules are not charged) and then image the diffusing cloud of molecules
as they spread through the IS, using an epifluorescent microscope (Fig. 6.6). The
three-dimensional image is projected onto the two-dimensional sensor of a suitable
digital camera and it was shown that fitting a solution of the diffusion equation based
on Eq. (6.5) with k′ = 0 to this projected image would accurately extract the effective
diffusion coefficient and hence λ [44, 45]. The IOI data are acquired and analyzed
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Fig. 6.6 a1,a2 Experimental setup for IOI diffusion measurements. Images of fluorescent probe
diffusion were captured by a cooled charge-coupled device (CCD) camera through a microscope
with a× 10 water-immersion objective after pressure ejection from a micropipette into either dilute
agarose (a1) or somatosensory cortex (a2). bDextran diffusion in rat cortex. Representative pseudo-
color images (red indicates high concentration, blue low) after 3 kDa dextran labeled with Texas
Red (TR-dex3) ejection into agarose or cortex. Scale bars 200μm. c Fluorescence intensity profiles
and theoretical fits for the images yielding D = 2.3 × 10−6cm2 s−1 and D* = 4.5 × 10−7cm2 s−1.
Reproduced from [24]

with custom MATLAB programs [30, 31]. As with the RTP method, the volume
fraction α cannot be obtained because pressure injection is used.

The IOI method has been employed to measure λ for dextran molecules with
Mr ranging from 3000 to 525,000 [16, 46] and for a variety of albumins, including
bovine serum albumin (BSA) with Mr = 66,000 [26]. More recently Thorne and
co-workers [28] measured the diffusion of Immunoglobulin G (IgG) antibody (Mr

= ~150,000) in rat cortex. For molecules with an approximately spherical shape
the value of λ increases with size (Table 6.1) suggesting that interaction with the
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‘walls’ of the IS may become a factor. This conjecture was tested in a study of
the cortex in the anesthetized rat that included quantum dots with a hydrodynamic
diameter of 35 nm. Using the theory of restricted diffusion in pores [47, 48] it was
shown that the typical width of the IS was between 38 and 64 nm, depending on
whether the IS was modeled as a set of intersecting planes or intersecting tubes [24].
As the MCell simulations (Sect. 6.5) and many electron micrographs suggest, the
spaces are probably not uniform. Some support for the non-uniformity of the IS has
come from simulating molecular diffusion in a three-dimensional reconstruction of
electron micrographs [41]. Previously, electron micrographs had been interpreted to
imply that the IS was about 20 nmwide, but it is now recognized that the IS is almost
always greatly reduced in the preparation of such material [24, 49–51]. Based on the
quantum dot data mentioned above and restricted diffusion theory together with data
suggesting the reptation of dextrans [46], a consensus is beginning to emerge that
the typical width of the IS is about 40 nm [52], although the meaning of this value
is not clear because evidence is mounting that the ECS width shows a substantial
variation (see Sect. 6.8).

Attempts have been made to apply two-photon microscopy for IOI imaging [53,
54] but the small volume sampled by this technique seems to lead to a poor signal-
to-noise ratio, so the results have been disappointing to date.

6.7 Probing the Extracellular Matrix

The IS contains not only a salt solution but also an extracellular matrix of
glycosaminoglycans and proteoglycans. Typical constituents are chondroitin sulfate,
heparan sulfate, and hyaluronan alongwith numerous proteins thatmay link elements
of the matrix together or anchor them to cell membranes. An important feature of the
extracellular matrix is that it has many negative charges associated with the sulfate
groups and an obvious question iswhether these affect the diffusion of ions or charged
molecules.

In a study that used the Real-Time Pressure (RTP) method, divalent Ca2+ ions
were pressure ejected from a micropipette and its diffusion was measured with Ca2+-
selective ISMS (Fig. 6.7; [23]). The analysis was based on Eqs. (6.5, 6.6) (Fig. 6.7a).
It was found that D* was unusually low (i.e. tortuosity was unusually high) but was
increased when the charged sites on the chondroitin sulfate molecules were removed
with a suitable enzyme (Fig. 6.7b, c). In contrast, the application of the enzyme did
not affect the diffusion of the monovalent TMA+. This suggested that the negative
sites on the matrix normally may be screened by the high concentration of Na+ in
the IS (~150 mM), but the higher charge density of divalent Ca2+ is able to displace
the Na+ and transiently bind to the chondroitin sulfate component of the matrix.

In another set of experiments using the IOI technique with fluorescently labeled
lactoferrin, amolecule withMr = 80,000, there was reason to think that this molecule
was transiently bound to the heparan sulfate component of the matrix [27]. The
evidencewas thatwhen lactoferrinwas complexedwith heparin, forwhich lactoferrin
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Fig. 6.7 Diffusion of Ca2+ before and after chondroitin sulfate had been cleaved with enzyme. a
Control record of Ca2+ diffusion curves in brain slice from neocortex using the RTP method (blue
line data, black line fit with Eq. (6.5)) under normal conditions. b Comparison of measurements
of D* in control conditions and after the enzyme chondroitinase ABC had been applied to the
brain slice. Diffusion in the treated slice is significantly faster. c Immunohistochemical staining of
oligosaccharide stubs confirms the cleavage of the chondroitin sulfate component of the extracellular
matrix with chondroitinase ABC. Reproduced from [23]

had a higher affinity thanwith heparan sulfate, the larger complex diffused faster than
the un-complexedmolecule. This suggested that when the lactoferrin was complexed
it was no longer transiently bound to the heparan groups in the extracellular matrix.

These results lend themselves to simulations using MCell, which incorporates
bimolecular reactions. Because the experimental data may be fitted to the diffu-
sion equation, it may be assumed that the interaction of either Ca2+ or lactoferrin
with components of the extracellular matrix should be represented by fast reversible
binding through a fast-equilibrium reaction scheme (see Chap. 14 in [55]).

The development of this argument may be sketched as follows (see also [27]). Let
C represent the concentration of the diffusing substance in IS, B, the concentration of
binding sites of thematrix and S, the concentration of complex between substance and
matrix, then the binding and unbinding processes can be described by a second-order
(bimolecular) reaction scheme:

C + B
kf−→ S, (6.13a)

S
kb−→C + B, (6.13b)
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where kf is the forward rate constant and kb is the backward rate constant. Omitting
the source, loss, and flow terms, and following [55], the diffusion equation may be
written as:

∂C

∂t
= D∗∇2C − kfC(B − S) + kbS (6.14)

and the kinetics described by:

∂S

∂t
= kfC(B − S) − kbS. (6.15)

Locally, the reaction process is assumed to be much faster than the diffusion
process and there is equilibrium between the mobile and complexed molecules, so
the derivative on the left-hand side of Eq. (6.15) is zero; it is also assumed that
B >> C so:

S = RC, (6.16)

where R is the dimensionless parameter R = kf B/kb. Note that this may be written R
=B/KD whereKD = kb/kf is the equilibrium dissociation constant. This is essentially
the Law of Mass Action applied to an appropriate local region.

Comparing Eqs. (6.14) and (6.15) it is clear that the diffusion equation with the
reaction process may be written as:

∂C

∂t
= D∗∇2C − ∂S

∂t
, (6.17)

then substituting for S in Eq. (6.17) using Eq. (6.16) results in

∂C

∂t
= D∗

1 + R
∇2C, (6.18)

and the basic diffusion equation is recoveredwith a new effective diffusion coefficient
D∗

mat = D∗/ (1 + R). There is a lack of consistency in this argument because the time
derivative of S is regarded as zero in Eq. (6.15) but non-zero when the substitution is
made in Eq. (6.17). The result may be derived more rigorously, taking into account
appropriate time and length scales and the approach to local equilibrium [56, 57].
The result is also quoted byCrank (Chap. 14 in [55]) who simply assumes the validity
of Eqs. (6.16 and 6.17).

The forgoing may be interpreted as saying that the final tortuosity is the product
of the tortuosity arising from the geometry (λg) multiplied by the tortuosity arising
from the interaction with the matrix (λm):

λ =
√

D

D∗
√
1 + R = λg × λm. (6.19)
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6.8 New Horizons: Time-Resolved and Super-Resolution
Techniques

The last few years have seen several welcome technical advances in studies of the
IS. These fall roughly into two classes: firstly, improvements in the time resolu-
tion of existing techniques, and secondly the application of super-resolution optical
techniques.

Chen et al. [58] improved the time resolution of the RTI method using a sinu-
soidal iontophoretic source while Hrabe and Hrabĕtová [59] improved the time reso-
lution of the IOI method by extending the theoretical basis. Both these studies used
spreading depression (a.k.a. spreading depolarization) as a test phenomenon; Hrabe
and Hrabĕtová showed that diffusion of a 3000Mr dextran molecule came to a brief
standstill at the peak of the spreading depression wave [59].

Colbourn et al. [60] showed that a rapid volume pulsation, representing a transient
decrease in the volume fraction of the IS, accompanies epileptiform activity, both
in vivo and in brain slices in mice. These investigators measured changes in the
concentration of a background of TMA+ and showed that the IS transiently shrank
by as much as 15% in vivo [60].

In another study that made use of a background extrinsic molecule, though in a
static context, Kuo et al. [61] employed two-photon imaging of calcein dye equi-
librated in the IS to map the local volume fraction of the mouse retina; this varied
markedly across retina with a minimum volume fraction of α ~ 0.025 in the inner
nuclear layer and a maximum volume fraction of α ~ 0.122 in the inner plexiform
layer.

Turning now to super-resolution optical imaging, i.e., resolution beyond the
diffraction limit of a conventional light microscope. Zheng et al. [62] employed time-
resolved fluorescence anisotropy imaging (TR-FAIM) with a small dye molecule
(AlexaFluor 360,Mr =349) to estimate the viscosity of the IS in the rat hippocampus.
The average viscosity corresponded to a tortuosity ofλ~1.2. If this result is confirmed
in other brain regions, then the geometrical component of the typical λ ~ 1.6 tortu-
osity, as measured with the RTI method, will be ~ 1.33, which would still require the
presence of dead-spaces to account for the value.

In another pioneering study, Nägerl and co-workers employed super-resolution
shadow imaging (SUSHI) to visualize the IS [63] in mouse organotypic brain slice
cultures. They concluded that the ISwidthwas non-uniformwithmany regions larger
than 100 nm and some regions as large as 1 μm. Note, however that the method
could not resolve widths below 50 nm in the x–y plane, with a lower resolution in
the vertical z-axis. The local volume fractions ranged from 5 to 36% with a mean of
19%. The presence of local expansions would constitute a dead space of the IS and
are consistent with the conclusion from Monte Carlo modeling that such spaces are
necessary to obtain the measured tortuosity, even after factoring in the contribution
of viscosity. The SUSHImethod has also revealed local remodeling of astrocytes and
the IS after osmotic challenge in organotypic cultures [64]. It remains to be shown
that the IS in cultured slices is similar to that in the intact animal.
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A different super-resolution measurement of IS properties was provided by
Cognet’s research group using single particle tracking of carbon nanotubes (CNTs)
[65]. These measurements were made in rat brain slices and confirmed the local
inhomogeneity of the IS at a scale of tens of nanometers. A comparison of results in
rat orgaonotypic brain slices with acute slices cut from the adult mouse brain showed
that the IS had a looser structure in the organotypic slices compared to the acute slices
[66]. This might reflect the difference in slice preparation or might indicate a species
difference. Further applications of CNTs revealed a significant role for hyaluronan
in organizing the IS and pointed to the potential of this super-resolution technique
for probing the extracellular matrix [67].

These new approaches bring much-needed innovation to the study of the IS but,
because they are recent developments, they have usually only been applied in a single
lab, in limited preparations, and often are only represented by one or two publications
andmore time is needed to fully assess their value. Some earlier attempts to introduce
new methods [68] (see also [52]) have yet to be exploited. A survey of techniques
for investigating the IS has been provided by Soria et al. [69].

6.9 Conclusions

A molecule executing random walks in a structured environment will, over time,
explore the entire connected space. If its progress can be tracked, then the structure
will be revealed. Modern single-particle tracking methods do just that but necessi-
tate the observance of a great many trajectories to arrive at meaningful information
[70]. The recent studies with carbon nanotubes (CNT) as well as visualization with
the SUSHI method (See Sect. 6.8) suggest that it may be possible to measure the
nanoscale organization of the IS.

At a scale of tens of micrometers, the established ‘point-source paradigm’
approach is based on the release of the vast number of molecules from a single
location and the sampling of the resulting concentration in space and time. This
effectively reveals the structure, embodied in the two parameters, volume fraction
(α) and tortuosity (λ), because there is a rigorous relationship through the diffu-
sion equation between the microscopic behavior of a wandering molecule and the
macroscopic concentration. The most informative parameter revealed by diffusion
is the tortuosity, which measures the hindrance imposed on a diffusing molecule by
the obstacles, dead-spaces, reversible binding reactions, and other factors (Fig. 6.8).
The volume fraction is a simpler parameter but often of great interest to a biologist.
Deviations from a pure diffusion process may also demonstrate loss or clearance of
molecules from the IS, or suggest that other processes are at work. One process that
remains unresolved is bulk flow, or advection of molecules, in the IS. The fact that
the RTI and IOI methods are not perturbed by such flow indicates that, if flow exists,
it is slow. The importance of such flow for the removal of waste products by the
postulated glymphatic system is presently undecided.
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Fig. 6.8 Several factors influence the diffusion of a molecule in the IS: a geometry of the spaces,
which imposes a delay on a diffusing molecule compared with its behavior in a free medium; b
dead-space microdomain where molecules lose time exploring a dead-end (such a microdomain
may resemble a “pocket” as shown, but it may also take the form of local enlargement of the IS or
glial wrapping of a neuron); c obstruction by extracellular matrix molecules such as hyaluronan;
d binding sites for the diffusing molecule either on cell membranes or extracellular matrix; and
e fixed negative charges, also on the extracellular matrix, that may affect the diffusion of charged
molecules. Reproduced from [16]

An underlying assumption involved in the interpretation of data and modeling
of the IS is that a molecule within the IS that is not in contact with the bounding
cell walls or with the extracellular matrix, moves in an essentially free medium. As
noted in Sect. 6.8, a measurement of local viscosity in the IS suggests that this may
contribute to the tortuosity measured with the RTI method.

Results from improved electron microscopy and super-resolution imaging both
suggest that the IS is not uniform in width but has local expansions or voids. These
would constitute dead-spaces where diffusing molecules are delayed. Monte Carlo
modeling confirms that such dead-spaces are able to increase tortuosity to the values
measured with the RTI method, i.e., when measured with an essentially ‘point
molecule’. Finite-sizedmacromolecules suffer additional hindrance, probably caused
by more frequent interaction with the ‘walls’ of the IS and which may be accounted
for by restricted diffusion theory.

Improved time-resolution of recent methods is revealing that the IS is dynamic.
The local volume fraction may vary over seconds during epileptic seizure, over
minutes in spreading depression, and over hours in the sleep-wake cycle. Such
variations are most likely mediated by alterations in the volume of glial cells.

Apart from revealing the structure of the IS, these parameters arrived at through
an analysis of diffusion have great utility in designing paradigms for drug delivery
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to the brain [71]. Unfortunately, getting drugs into the brain is difficult. The blood-
brain barrier (BBB) around the penetrating blood vessels keeps out most substances
unless theBBBhas specific transporters (e.g. for glucose). Relatively small lipophilic
molecules can cross the membranes of the cells forming the BBB but the factors that
govern permeability are complex [72]. Methods of drug delivery, such as convection-
enhanced delivery,which is based on introducing a cannula into the brain and pressure
injecting the drug, rely on a combination of induced bulk flow and drug diffusion
and have some utility, especially when combined with magnetic resonance imaging
(MRI—see also the introduction toMRI given in Sect. 12.5, notably Fig. 12.14) [73].

Studying the spreading of molecules in the interstitial (or extracellular) space of
the brain is revealing much new information about this hitherto inaccessible region
that suggests it is not just a ‘space’ but a complex and essential microenvironment.
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Chapter 7
Turbulent Diffusion in the Atmosphere

Manfred Wendisch and Armin Raabe

7.1 Introduction

For good reasons, meteorology is often referred to as physics of the atmosphere. The
motions of air parcels (called wind) and several other atmospheric processes, such as
photon transport through the atmosphere, phase transitions during cloud evolution
(water vapour diffusion growth of cloud droplets and ice crystals), and many others
are of stochastic nature. They can often be considered and quantitatively described
as diffusion phenomena.

In this context, the term ‘turbulent diffusion’ is commonly used in meteorological
applications. It refers to the fact that, in addition to the mean motion of air parcels
(mean wind), they are subject to irregular (stochastic) fluctuating movements, which
takes the air parcel both in wind direction and perpendicular to it. Since more than
a century, meteorologists have attempted to quantify this problem. However, even
today, using powerful computers and sophisticated measurement techniques, the
atmospheric turbulent system is too complicated to allow a stringent description and
prediction of turbulent atmospheric motions. This is one of the major reasons why
weather forecast is still associated with significant uncertainties.

This chapter deals with an approach towards a physical description of the
spreading of pollution in a turbulent atmosphere. We may witness this phenomenon
quite commonly by, e.g. following the smoke of a chimney or the steam emerging
from a power plant. It is remarkable that the equations to quantify atmospheric turbu-
lence reveal close similarities with the formalism provided by Fick’s diffusion laws,
Eqs. (2.6) and (2.9).
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7.2 Fick’s Laws Applied for Turbulent Diffusion

The key problem is the prediction of the temporal changes of the concentration
distribution c of a pollutant as a function of time and space. In our considerations,
we follow Reynolds [1] who was one of the first describing the mass transfer in a
turbulent atmosphere.

The pollution is represented by its concentration c(�r , t) (in kg m−3), which is
a function of space (represented by the position vector �r ) and time (indicated by
the symbol t). For the components of the position the two equivalent notations are
applied in the following: xi , with i = 1, 2, 3, and {x, y, z}. The components of the
wind vector (air velocity) �v(�r , t) will be denoted by the two following notations: vi ,
with i = 1, 2, 3, and {u, v, w}.

Local changes of the concentration of a pollutant are caused by sources and sinks
P(�r , t) as well as by movements of air for non-uniformly distributed pollution:

∂c

∂t
= P −

3∑

k=1

uk(�r) ∂c

∂xk
. (7.1)

The latter influence is represented by the second term on the right-hand side of
Eq. (7.1), from where flux in, e.g. +x direction is seen to give rise to increasing local
concentration

(
∂c
∂t > 0

)
for decaying concentration in x direction (i.e. for ∂c

∂x < 0).
This second term in Eq. (7.1) is the scalar product of the wind vector and the gradient
of the pollutant concentration representing the advection/convection of the pollutant.
For further treatment, Reynolds considered the stochastic character of turbulence by
decomposing the physical variables

c = c̄ + c′

uk = ūk + u
′
k

P = P̄ + P ′
(7.2)

into their averaged values c̄, ūk, P̄ and the deviations c′, u′
k, P

′ from the average due
to turbulence.

With these relations, Eq. (7.1) is rearranged to:

∂c

∂t
= P −

3∑

k=1

uk
∂c

∂xk
−

3∑

k=1

∂
(
u′
kc

′
)

∂xk
(7.3)

Derivation of Eq. (7.3) assumes the following premises:

(i) Though the time dependence of the respective quantities can be measured with
high precision, it is still their average value one is generally interested in.

(ii) After inserting Eqs. (7.2) into Eq. (7.1), deviations from the average disappear
due to the averaging (c′ = 0, u′

k = 0, P ′ = 0). This, however, does not hold
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for non-linear products such as u′
k(�r) ∂c′

∂xk
since the two factors are, mutually,

correlated.
(iii) For attaining the third term on the right-hand side of Eq. (7.3), the equation of

continuity (Eq. 2.8) has to be applied for velocities within an incompressible

fluid,
∑3

k=1
∂u′

k
∂xk

= 0. This relation indicates that the wind divergence vanishes.
This relation is equivalent to the reasonable requirement that there are neither
sinks nor sources in the movement of air in the atmosphere.

The last term of Eq. (7.3) describes the temporal changes of the averaged field

of concentration c̄ by the divergence
∑3

k=1

∂
(
u′
k ·c′

)

∂xk
of a quantity

(
u′
k · c′

)
, which is

referred to as a turbulent flux (density) of the pollutant with physical unit of (kg m−2

s−1). The turbulence causes a spreading of the various air parcels including the
pollutant. Adapting the scheme of Fig. 2.2a to the present situation, the turbulent
fluxes may immediately be assumed to be proportional to the spatial concentration
gradient (see the second term on the right-hand side of Eq. (7.3)). In analogy with
Fick’s first law (Eq. 2.6), the following relation is obtained:

u′
k · c′ = −Kc,k

∂c

∂xk
(7.4)

with Kc,k referred to as the turbulent diffusion coefficient in units of m2 s−1.
In Sect. 7.3, the mechanisms of turbulent diffusion will be considered in more

detail. It should already be noted, however, that the resulting diffusivities vary with
both the height z and the space direction considered.

With Eq. (7.4), the explicit notation of Eq. (7.3) becomes:

∂c

∂t
= P − u

∂c

∂x
− v

∂c

∂y
− w

∂c

∂z
+ ∂

∂x

(
Kc,x

∂c

∂x

)
+ ∂

∂y

(
Kc,y

∂c

∂y

)
+ ∂

∂z

(
Kc,z

∂c

∂z

)

(7.5)

This equation represents the diffusion equation of an atmospheric constituent with
concentration c in a turbulent atmosphere. It will be used, in the remainder of this
chapter, to introduce some diffusion-related atmospheric phenomena.

First, a coordinate system is chosen, which drifts with the mean wind vector,
i.e. ū = v̄ = w̄ = 0. An initial, instantaneous source emitting an amount Q* (in
kg) of pollution at position �rQ is assumed. It is represented by the initial condition
c(x, y, z, t = 0) = Q∗δ

(�r − �rQ
)
, with δ

(�r − �rQ
)
denoting the Dirac delta func-

tion (with
∫

δ
(�r − �rQ

) · dxdydz = 1). The turbulent diffusion coefficients Kc,k

are assumed constant over the considered space scale so that ∂
∂x Kc,x = ∂

∂y Kc,y =
∂
∂z Kc,z = 0. In this way, following, e.g. Etling [2], Eq. (7.5) is transferred into the
well-known diffusion equation, Fick’s second law, Eq. (2.9):

∂ c̄

∂t
= Kc,x

∂2c̄

∂x2
+ Kc,y

∂2c̄

∂y2
+ Kc,z

∂2c̄

∂z2
, (7.6)
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with the solution, see also Eq. (2.10):

c̄(�r , t) = Q∗

(4 · π · t)3/2 · (
Kc,x · Kc,y · Kc,z

)1/2 ·

exp

[
−

(
x − xq

)2

4 · Kc,x · t −
(
y − yq

)2

4 · Kc,y · t −
(
z − zq

)2

4 · Kc,z · t

] (7.7)

Equation (7.7) describes the distribution of the pollutant by turbulence over an
enlarging volume. The range of pollution scales with the Einstein law of diffusion,
Eq. (2.11), following the relation 〈(xk − xkq

)2〉 = 2Kc,k t . The concentration at the
position of the source is diluted in proportion with t−3/2.

As a next step the more realistic scenario of a continuous chimney emission with
a stationary point source is considered, where the resulting concentration has to obey
the condition of stationarity ∂ c̄

∂t = 0. Transport is assumed to occur in x direction
only, so that v = w = 0. The flow in x direction is assumed to exceed turbulent

diffusion (
∣∣∣Kc,x

∂2 c̄
∂x2

∣∣∣ � ∣∣ū ∂ c̄
∂x

∣∣) so that, starting with Eq. (7.5), one ends up with:

ū
∂ c̄

∂x
= Kc,y

∂2c̄

∂y2
+ Kc,z

∂2c̄

∂z2
. (7.8)

The structure of Eq. (7.8) is easily reestablished from Eq. (7.6), considering that
differentiation with respect to the x coordinate disappears on the right-hand side, and
that differentiation with respect to time t is replaced by that with respect to x, with an
additional factor u appearing on the left-hand side. Correspondingly, in the solution
of Eq. (7.8),

c̄(x, y, z) = Q̇

4 · π · x · (
Kc,y · Kc,z

)1/2 · exp
[
− ū

4x
·
(

y2

Kc,y
+ (z − h)2

Kc.z

)]
(7.9)

the structure of Eq. (7.7) is also maintained. Instead of the quantity zq the height h
is introduced, which could represent, e.g. the height of a smoke-emitting chimney.
t is replaced by x/u which constitutes the time needed for covering the distance
x at travelling speed u. The value Q̇ (in kg s−1) quantifies the efficiency of the
source of pollution, which is positioned at x = 0, y = 0 and z = h (the height of the
pollution source). Equation (7.9) is widely used in applied meteorology to assess the
concentrations of pollutants in the surroundings of a continuous point source. Two
ways for illustrating its significance are shown in Fig. 7.1.

Figure 7.1a shows the simplest pattern where the turbulent diffusivities in hori-
zontal and vertical directions are equal. A more detailed illustration is provided
in (Fig. 7.1b). Here, it is taken into account that the centreline of the plume does
not start with the mouth of the chimney. Immediately after emission, smoke rather
continues to be shifted upwards by buoyancy, till final temperature equilibration
with the surroundings. Turbulent spreading differs notably in vertical and horizontal
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Fig. 7.1 Spatial distribution of pollution originating from a continuous source of emission,
predicted by Eq. (7.9) for turbulent diffusion (“Gaussian Plume”): Schematic overview (a after
Etling [2]) and detailed representation (b after Stockie [3]), which also demonstrates the over-
shooting (H) of the emission height (h) and the contact of the plume with the Earth surface. This
allows to describe the deposition of emitted substance in the surroundings of a continuous source

directions and is, moreover, a function of height z. It is, in particular, considered that
the pollution will eventually reach the surface with all the negative consequences
known from regions suffering under negligence of environmental protection.

Figure 7.2 illustrates some of the scenarios resulting from turbulence under the
various atmospheric conditions. These scenarios aremainly controlled by the vertical
gradient of the temperature in the atmosphere, which determines the atmospheric
stratification (i.e. the temperature profile in vertical direction). These gradients are
related to the change in temperature of a rising air parcel as compared to the respective
ambient temperature of the environment. During the ascent of an air parcel in the
atmosphere, the parcel is adiabatically cooled (adiabatic refers to a process with
negligible heat exchange between the air parcel and its surrounding air, which is
well met for rising air parcels in the atmosphere due to the low thermal conductivity
of air). The energy needed for the expansion of the air parcel during the ascent is
consumed on the expense of the internal energy of this parcel, leading to a decrease
in its temperature. This is the situation illustrated in Fig. 7.2 with the lines in red.
The actual scenario depends on the stratification.

In the case of the uppermost example shown in Fig. 7.2, the temperature change
in the surrounding ambient air exceeds that of the rising air parcel. A rising air
parcel will thus be surrounded by air, which (as compared to the air parcel) will
become progressively colder during ascent. This results in a continuous increase of
the buoyancy of the rising air parcel, just as in a continuous decrease of buoyancy
for downward movement, with the effect of an essentially unlimited movement of
the air parcel both up- and downwards.

This unrestrictedmovement in either direction is, obviously, inhibited in the oppo-
site case shown further below. Now, with the temperature gradient in atmosphere
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Fig. 7.2 Differently shaped plumes for visualizing the different conditions in stratification (vertical
thermal structure of atmosphere) causing turbulent diffusion (schemes from Bierly and Hewson [4]
see Hupfer and Kuttler [5])

below that of the rising air, the plume is stabilized in vertical direction. Fume confine-
ment to a certain range becomes more stringent with further decreasing of the atmo-
spheric temperature gradient (third representation), resulting in fan-like distributed
plumes.

Temperature profiles in the atmosphere may exhibit a vertical inversion as exem-
plified in the bottom of Fig. 7.2. Such situations may result from different winds
(shear) at different heights. As an example, the wind may carry warmer air on top
of colder air. Under these conditions, smoke is kept below a certain altitude. Such
situations are well known for enabling beautiful views over the tops of themountains,
with a sea of fog in the valleys in between.

7.3 Quantification of Turbulent Diffusion

So far the stochastic character of movement in the atmosphere was discussed without
worrying about its origin. To establish a quantitative correlation between the fluctu-
ating velocities in air, the law of continuity is applied to the density of the mechanic
momentum flux in space:

ρ · �v = ρ̄ · (�v + �v′)
[
kg m

s

m3

]
, (7.10)
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rather than to the spatial density of particles, i.e. concentration c, as considered in
Eq. (7.1). By replacing the concentration c by the momentum flux and assuming
incompressibility (ρ = ρ̄ = const.), analogous reasoning (see Eq. (7.3) and items
(i)–(iii) following this equation) leads to:

ρ
∂ ū

∂t
= P̄u − ρ · ū · ∂ ū

∂x
− ρ · w̄ · ∂ ū

∂z
− ρ · ∂

(
u′ · u′)

∂x
− ρ · ∂

(
w′ · u′)

∂z
(7.11)

To simplify the situation, a two-dimensional wind �v(u, 0, w) with a horizontal
component in x- and a vertical component in z-direction is assumed, which varies
with altitude z.We furthermore consider the idealized conditions of horizontal homo-
geneity and of stationarity. The latter condition implies that the averaged momentum
flux ρu does not change with time (the wind has a constant velocity). There should
be neither sources nor sinks and, finally, it is taken into account that the averaged
vertical velocity w̄ near the Earth surface must be zero. Then Eq. (7.11) is easily seen
to reduce to:

ρ · ∂
(
w′ · u′)

∂z
= 0 (7.12)

This means that under such conditions the quantity τ = ρ · w′u′, referred to as
the vertical flux of turbulent momentum, remains invariant with both time (due to
the required stationarity) and altitude z.

Since the vertical gradient ∂u
∂z is easily recognized as the driving force for the

generation of turbulent momentum fluxes one may note (see also Boussinesq [6])

τ = ρ · ∣∣w′u′∣∣ = ρ · Ku,z · ∂ ū

∂z
(7.13)

, where the factor of proportionality Ku,z has the dimension of a diffusivity and may,
moreover, be understood to assume the role of the turbulent diffusion coefficient,
similar that introduced with Eq. (7.4).

Following Prandtl [7], velocity fluctuations may be understood as being caused
by the ascent or decline of air masses over a certain length l referred to as the Prandtl
mixing length. The magnitude u′ of velocity fluctuation may thus be estimated as

u′ = u(z + l) − u(z) = u(z) + l · ∂u

∂z
+ · · · − u(z) ≈ l · ∂u

∂z
(7.14)

where, in the second equation, we have made use of a Taylor expansion. With the
approach given by Eq. (7.14), fluctuations in velocity are seen to become larger, the
larger the gradient in mean velocity is. Taking into account that, as a consequence
of continuity, u′ = w′, Eq. (7.13) is transformed into:
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τ = ρ · ∣∣w′u′∣∣ = ρ · l2 ·
(

∂ ū

∂z

)2

(7.15)

By comparison with Eq. (7.13) the expression for the turbulent diffusivity is
obtained:

Ku = l2 · ∂u

∂z
(7.16)

Since turbulent mixing is commonly diminished approaching the surface, Prandtl
implied, as a first-order estimate, a direct proportionality between the mixing length
l and the height z above the surface. In flow-dynamic experiments v. Karman [8]
determined a value of 0.4 for the factor of proportionality. The factor is referred to
as the v. Karman constant κ:

l = κ · z (7.17)

It is common to abbreviate the ratio τ
/

ρ = u2∗
[
m2/s2

]
. The parameter u∗ is the

so-called friction or shear stress velocity:

u∗ =
√

τ

ρ
=

√
|w′u′| = l · ∂u

∂z
= κ · z · ∂u

∂z
. (7.18)

By inserting u∗ into Eq. (7.16), the turbulent diffusivity appears in the form:

Ku = l · u∗ = κ · z · u∗. (7.19)

By comparing Eq. (7.19) with the corresponding gas diffusion, as provided by
conventional gas-kinetic theory, the positions of the mean free path and of the mean
thermal velocity are represented by the mixing length and the shear stress velocity
(representing a measure of the velocity fluctuations).

Assuming that the dependence of the mean velocity u(z) on height z above the
ground exceeds that of the shear stress velocity and the v. Karman constant, Eq. (7.18)
can be transferred into the following integral relation:

u∗
κ

z∫

z0

dz

z
=

ū(z)∫

ū=0

dū, (7.20)

which is solved yielding:

u(z) = u∗
κ

· ln
(

z

z0

)
. (7.21)
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z0 is referred to as the aerodynamic roughness of the ground; it denotes the height
above the ground (i.e. above z = 0) where the mean velocity of wind may be consid-
ered to be zero. It is a function of surface texture and may vary with the condi-
tions, such as the roughness over sea surface, which increases with increasing wind
velocity (as a consequence of increasing turbulences of the water waves), while the
opposite could be true with a meadow of high grass when—at stormy weather—the
leaves/grass haulms are bent to the ground, which decreases surface roughness.

Equation (7.21) constitutes a so-called logarithmicwind profile (Prandtl [7]) under
near neutral stratification. Extensions of this theory to stable and unstable stratifica-
tion conditions (see discussion of Fig. 7.2) are described using the Monin–Obukhov
similarity theory (Monin and Obukhov [9]).

As a prerequisite of the dependence given by Eq. (7.21), u∗ (and thus the flux of
mechanic momentum) is assumed constant over the considered layer in the atmo-
sphere. Via Eq. (7.21), a measurement of the increase of wind velocity, u(z), with
increasing height z provides a direct measure of both u∗ and z0. Furthermore, by
inserting the resulting value of u∗ into Eq. (7.19), the turbulent diffusivity is derived,
which increases linearly with height z.

Figure 7.3 illustrates an example of such measurements and the subsequent data
analysis, which comply with the formalism developed above. The measurement
results confirm, in particular, the predicted logarithmic wind profile. The aerody-
namic roughness z0 of the ground is determined to be 1 mm, based on the two
measured profiles. The surface of the sandy ground in the considered example is
essentially unaffected by the considered wind velocities. The turbulent diffusivi-
ties increase with increasing wind velocity (comparing the two profiles P2 with P1)
and with increasing height z. The latter dependence is in close agreement with the
prediction given by Eq. (7.19). The turbulent diffusivities, moreover, exceed the gas
diffusivities (which are, in the atmosphere, of the order of 10−5 m2 s−1) by several
orders of magnitude. As a consequence of the turbulences, atmospheric mixing is
thus seen to occur at much higher rates than it would be expected due to mere gas
phase diffusion (Table 7.1).

7.4 Conclusions

The formalism presented in this chapter to quantify stochastic mass transfer in the
atmosphere by turbulent diffusion is based on themixing theory introduced byPrandtl
almost a century ago. It implies the definition of a mixing path length. Reasonable
agreement between observations and theorywas attained by assuming that themixing
path length is proportional to the height above ground, with a factor of proportion-
ality (referred to as the v. Karman constant) κ = 0.4. There are numerous attempts
to determine the v. Karman constant on the basis of theoretical estimates, which
contributes to a stringent theory of turbulent diffusion. Baumert [10], e.g. succeeded
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Fig. 7.3 Measurement of wind profiles over sandy ground. Wind velocity is measured by five
sensors (U1–U5) at five different altitudes ( z1– z5). At two times of measurement (P1, P2), the
recorded gradients in wind velocities are exploited for determining the shear stress velocity u∗ and
the aerodynamic roughness z0. All data are summarized in Table 7.1, jointly with the coefficients
of turbulent diffusion determined via Eq. (7.19)

Table 7.1 Primary data of the measurement of wind velocity illustrated by Fig. 7.3 and values
of shear stress velocity u∗ and turbulent diffusivity Ku derived from these data on the basis of
Eqs. (7.18) and (7.19) at different altitudes z (with the aerodynamic roughness z0 in both cases
determined to be 1 mm)

U(z = 10 m) u∗ z: 0.5 m 1 m 2 m 4 m 10 m 20 m

P1 4.8 m/s 0.21 m/s Ku (m2/s) 0.042 0.084 0.168 0.336 0.84 1.68

P2 15.7 m/s 0.68 m/s Ku (m2/s) 0.136 0.272 0.544 1.088 2.72 5.44

in developing a self-consistent system of differential equations for describing turbu-
lent diffusion in the atmosphere, yielding a value of κ = (2π)−1/2 = 0.399, in
remarkable agreement with the observations.

However, irrespective of a time period of more than a century between Reynolds
[1], Prandtl [7], Monin and Obukhov [9] and Baumert [10], even today a generally
accepted theory to describe (atmospheric) turbulence is in discussion (e.g. Kraus
[11]).

At this point should be added, that other atmospheric turbulence models are based
on approaches where turbulent fluxes are described by the superposition of turbulent
eddies of different sizes. Conceptions of this type were promoted by Richardson [12]
and Kolmogorov [13]; they conclude with spectral turbulent diffusivities, which take
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into account that a turbulent flow consists of different whirls of different sizes—a
so-called spectrum of turbulent eddies. Models of spectral turbulent diffusion are
nowadays exploited for the analysis and interpretation of turbulence measurements
of high spatial and temporal resolution. They are, thus, an important constituent
of weather prediction models considering turbulence in the atmosphere (large eddy
simulation, Sagaut [14]).

By the conceptions of Reynolds/Prandtl and of Richardson/Kolmogorov, the same
phenomenon is described from different perspectives. A unified view on turbulent
diffusion might be based on either of them.

According to Baumert [10], any turbulent process can be subdivided into a
geometric placement of elementary eddies, whose interact in different ways, which
then resulting in a diffusion or dissipation of turbulent motion. As a consequence, the
Karman constant in the Prandtl relations aswell as theKolmogorov constant, which is
necessary to describe the spectral turbulent diffusion, are deducible using only some
geometric assumptions. The verification of such an all-embracing view, however,
will continue to remain a challenging task for both observational measurement and
theoretical modelling (Örlü et al. [15]).
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Chapter 8
Hot Brownian Motion

Klaus Kroy and Frank Cichos

8.1 Introduction

Brownian motion, as characterized by Albert Einstein in 1905 [1], is the thermal
motion of suspended particles that are small enough to jiggle perceptibly, but large
enough to be visible in the microscope. This sort of “motion from heat” is not
forbidden by the second lawof thermodynamics, as incorrectly suggested byWilhelm
Röntgen in a letter to Einstein, but rather reveals its atomistic origin. Indeed, Jean
Perrin received the Nobel prize in 1926 “for proving atoms real”, on this basis, so
that even the “Energetiker” group aroundWilhelm Ostwald no longer openly denied
their existence.And some35years later, Richard Feynman started his famous lectures
[2] with the words: “If, in some cataclysm, all of scientific knowledge were to be
destroyed, and only one sentence passed on to the next generation of creatures, what
statement would contain the most information in the fewest words? I believe it is
[...] that all things are made of atoms—little particles that move around in perpetual
motion, attracting each other when they are a little distance apart, but repelling upon
being squeezed into one another”.

In the following, we give a non-technical introduction1 to recent developments
that extend Einstein’s work and the notion of Brownian motion to conditions very far
from equilibrium. In particular, we consider colloidal particles in non-isothermal
solvents, i.e., under conditions arising whenever either the particles themselves,

1 For further introductory reading see Refs. [3–6]. The names of our collaborators (partly funded by
the Deutsche Forschungsgemeinschaft and the Humboldt foundation), who did much of the original
work reviewed here, can be found in the references, at the end.
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selected container walls, or any other embedded (nano-)structures are locally heated
above the ambient temperature. Such “hot” conditions invalidate, in one stroke, all
of our conventional statistical mechanics tools, such as equilibrium ensembles and
Boltzmann factors. The latter are the main tools used to leapfrog over the forbid-
dingly complicatedmicroscopic dynamics of many-body systems, yet to still achieve
quantitative control on an atomistic basis. But they generally cease to work far from
equilibrium. So it seems as if hot Brownian motion destroys all the nice concepts that
Brownian motion once helped to establish. It is not quite that bad, in the end. Below,
we explain how to deal with such complicated non-isothermal situations, even if they
involve directed autonomous particle motion, viz., active swimming.

Although there is no lack of motivation for studying the physics of swimmers
[7], hot Brownian motion provides compelling intrinsic reasons to do so. Namely, in
absence of special symmetries, any nanoparticle in a non-isothermal solvent is auto-
matically a “hot Brownian swimmer” and thereby a realization of a most promising
swimmer design in terms of potential (scalable, biocompatible, sustainable, steerable,
...) applications [8]. Vice versa, all so-called active Brownian particles ormicroswim-
mers (heated or not) are “hot” in the sense that their diffusion is strongly enhanced by
their non-equilibrium self-propulsion [9]. Swimming moreover gives rise to uncon-
ventional inelastic interactions with other particles and container walls. These may
cause unusual effects akin to those observed in agitated granular gases [10] or even
cell colonies [11], and they seriously undermine apparently unimpeachable thermo-
dynamic notions such as pressure and surface tension [12]. In general, hot Brownian
particles and swimmers are thus not easily treated along the same lines as conven-
tional colloids. And a world made of such objects as its “atoms” may seem infinitely
more complicated than our actual physical world. Yet, it actually is a very good toy
model for livingmatter, which relies on amost delicate interplay between nonequilib-
rium (“active”) and equilibrium (“passive”) Brownian motion to fulfill its complex
tasks (see e.g., [5, 13–15]). Such models should thus bring us a good step closer
to linking the notions of Brownian motion and diffusion to fluctuation phenomena
studied in other disciplines, some of which are addressed in this volume.

8.2 Brownian Motion

To understand hot Brownian motion, it is useful to first recall a few facts about
ordinary equilibrium Brownian motion. A qualitative understanding on the level of
Einstein’s pioneering work [1] will suffice for the remainder. Einstein looks at small
particles suspended at low concentration in an isothermal solvent, which could for
example be pollen grains in water or aerosols in still air. Assuming the particles
themselves to be made out of a somewhat denser material than the surrounding
solvent, gravity always pulls them downwards. As a consequence, if you follow
a particle over time, you will always find it drifting downwards, on average. Yet,
randomBrownianfluctuations prevent the particle ensemble from settling completely
to the ground. They give rise to an osmotic pressure p proportional to temperature
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T and particle number concentration c, very much as for a dilute gas.2 This pressure
thus increases near the ground such as to exactly balance the gravitational force
density. Replicating the conventional arguments for the atmospheric pressure and
density as a function of altitude, one finds the very same result, namely that pressure
p and particle concentration c both decrease exponentially as a function of height h,

p(h) ∝ c(h) = c(h′)e−[U (h)−U (h′)]/kBT . (8.1)

The potential energy difference U (h) − U (h′) between heights h and h′ could
explicitly be written as particle mass times gravitational acceleration times height
difference. Boltzmann’s constant kB (historically the gas constant over Loschmidt’s
number) in the exponent actually made this “Brownian barometer equation” so
exciting for Einstein and Perrin, since it implicitly refers to the number of atoms
per mole and therefore bears witness of the atomic structure of all matter.

Now, in a second ingenious step, Einstein suggests to revisit the classical argu-
ment leading to Eq. (8.1) from a different perspective. Consider, so he says, the same
situation not in terms of a static force balance (gravity versus osmotic pressure)
but in terms of the corresponding balancing particle fluxes. According to Stokes’
law, gravity excites a downward drift flux −c∇U/ζ (concentration × velocity),
inversely proportional to the friction ζ of the particles with the solvent. This is the
flux witnessed by an observer concentrating on the average motion of an individual
particle. According to Fick’s law, Brownian fluctuations give rise to an opposing

diffusion flux −D∇c
(8.1)= Dc∇U/kBT , quantified in strength by the diffusion coeffi-

cientD, and directed from high to low solute concentrations c. As for the static forces,
the dynamic fluxes have to be precisely balanced everywhere, in equilibrium. This
condition of detailed balance allows Einstein to infer a most remarkable relation,
first obtained by William Sutherland, namely

D = kBT/ζ. (8.2)

It constitutes a universal link between a measure of the fluctuations (the diffusivity)
and a dissipative transport coefficient (the friction) of a dilute solute, and can therefore
be called the mother of all fluctuation-dissipation relations. Again, the remarkable
thing for Einstein and Perrin was that two transport coefficients appearing in two
mesoscopic equations, namely the diffusion equation for the solutes and Stokes’
equation for a particle dragged through a fluid, are somehow linked to Loschmidt’s
number, and hence to the notion of atoms. In the joints between some unsuspicious
smoothmacroscopic continuumequations lurked,much to the dismayofOstwald, the
grotesque face of the atomic world. In this sense, Eq. (8.2) is comparable to another
famous equation put forward by Einstein at about the same time, namely E = �ω,
which relates the two classical notions of energy and frequency via the microscopic
Planck constant. In a more practical reading, Eq. (8.2) allows a Brownian particle to

2 The analogy might seem compelling, but the opponents of the atomistic world view would have
objected to the application of thermodynamic notions to colloidal particles.
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be used as a thermometer, if its friction coefficient ζ is known, or as a rheometer for
the fluid viscosity η, if the functional form of ζ(η) is known.

Finally, towards the end of his paper [1], Einstein pushes his analysis of Brownian
motion one step further, proposing a microscopic model (in modern language “a
random walk”) to argue that the dynamics of a Brownian particle of mass m is
indeed diffusive at late times t � m/ζ (in modern language “in the Markov limit”),
where inertial effects have been damped out. Thereby, he underpins the interpretation
of Eq. (8.2) as a fluctuation-dissipation relation by demonstrating that D indeed
characterizes the particle fluctuations. He first shows that the particle concentration,
which he identifies with the probability for finding a single particle released at the
origin at position r after time t, obeys the diffusion equation (see also the notations
in Eqs. (2.9) and (2.12) for diffusion in one and two dimensions)

∂

∂t
c(r, t) = D∇2c(r, t). (8.3)

As an important consequence, the particle velocity, which is the central observable
in Newtonian mechanics, turns out to be ill-defined (formally divergent) for the
commonly accessible times t � m/ζ (Fig. 8.1, left panel). It is therefore not a good
idea to try andmeasure a Brownian particle’s velocity, as experimentalists commonly
did inmany futile attempts throughout the late 19th century. Instead, as Einstein finds,
the mean-square displacement and the diffusivity,

�r2(t) ≡
∫
dr r2c(r, t) and D ≡ 1

6

∂�r2(t)
∂t

, (8.4)

are well-behaved (good observables) over a wide range of time scales.

Fig. 8.1 Principle of hot Brownian motion. Left: the trajectory of a hot Brownian particle (at late
times t � m/ζ ) is a “diffusive” fractal (see, e.g., Sect. 11.4 for a more general introduction to
fractals), as for ordinary Brownian motion, just traversed faster; it is nowhere differentiable, hence
the velocity is ill-defined. Center: snapshot of an atomistic non-equilibrium molecular dynamics
simulation featuring a hot nanoparticle in a Lennard–Jones fluid (particles color-coded for their
kinetic energy or “molecular temperature”). Right: coarse-grained co-moving molecular tempera-
ture and viscosity fields, T (r) and η(r), around a uniformly heated spherical nanoparticle of radius
R (courtesy of M. Selmke)
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8.3 Hot Brownian Motion

Hot Brownian motion is simply the Brownian motion of colloidal particles that are
hotter than their solvent.More generally, onemay speak of non-isothermal Brownian
motion, if any spatially varying temperature profile is somehow maintained in the
solvent around the particle. The recent advances in measuring, manipulating, and
theoretically characterizing the motion of hot Brownian things heavily exploit that
“Brownian”means “small enough to jiggle perceptibly, but large enough to be visible
in the microscope”. Even more importantly, they exploit that it means “large enough
to admit some systematic coarse-graining”, or, briefly, thatBrownian particles belong
to a mesoscopic “middle-world” [5].

This crucial property allows some universal (i.e., independent of microscopic
details) and practically useful (as opposed to merely formal) exact mathematical
statements about Brownian motion to be formulated, without tinkering with atoms.
And it is the main reason why Einstein’s paper from 1905 has started an unfinished
“slower revolution” [3] that makes it very popular3 and relevant till today [4]. As a
consequence, the theoretical arguments put forward by Einstein in 1905 only need
very little amendment to generalize the laws of Brownian motion from the important
(but conceptually very special) class of equilibrium conditions to situations very far
from equilibrium. Moreover, much like their equilibrium counterparts, the resulting
predictions are still of a universal character, although less than in equilibrium. And
they may also still serve as a paradigm for fluctuations in many other, apparently
unrelated mesoscopic devices, e.g., in electrical engineering and nanophotonics [16,
17], and even for living matter [6, 18]. The ability to coarse-grain is the key to make
progress in all these directions, and, quite generally, our most important tool to bring
an infinitely complicated world within reach of analysis and comprehension [19].

The heat emanating from a hot particle rapidly diffuses into the surrounding
solvent and thereby establishes a comoving temperature gradient around the compar-
atively slowly moving particle, as sketched in Fig. 8.1 (center and right). This inval-
idates the conventional discussion of isothermal Brownian motion, which predicts
the particle dynamics directly from equilibrium thermodynamics, i.e., on a coarse-
grained level, without ever referring to the complicated dynamics of interacting
atoms. We cannot directly copy this elegant trick, here, since the fluid viscosity and
thermal fluctuations vary spatially in the vicinity of the particle, so that it is not a priori
clear which temperature or viscosity should be relevant for the particle motion, and
whether we can apply conventional thermodynamic arguments, at all. How can we
then know howmuch the translational and rotational Brownian motion are enhanced
by heating? Does Eq. (8.2) still hold? And what is then meant by T and ζ?

Universal answers (independent of molecular details) to these questions are
provided by the theory of hot Brownian motion [20, 21]. In order to avoid the
complexity of the general results, we focus on the Markov limit (t � m/ζ ), here. In
other words, as Einstein, we consider only late times, where we can neglect memory
effects arising from the slow solvent hydrodynamics [22, 23]. It can be shown that

3 At the time of writing, Google Scholar lists more than 6000 citations.
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the non-equilibrium effects can then actually be subsumed into a small number of
effective transport coefficients, chiefly an effective reduced friction coefficient ζHBM
and an effective Brownian temperature THBM. These two quantities together deter-
mine the effective diffusivity DHBM according to a generalized Einstein relation
[20, 24]

DHBM = kBTHBM/ζHBM. (8.5)

In the Markov limit, hot Brownian motion can thus be mapped onto equilibrium
Brownian motion in a solvent with an effective temperature and viscosity. This is
reminiscent of a classical trick in thermodynamics, where a nonequilibrium process
is replaced by an equivalent equilibrium process effecting the same state change,
except that there is no state change, here. The generalized Einstein relation implies,
in particular, that a hot Brownian particle can still be employed as a thermometer or
as a rheometer, in the Markov limit, if one is aware of the fact that it measures an
effective temperature or viscosity, respectively. In general, the effective quantities are
complicated functions of the local “molecular” temperature and viscosity fields, T (r)
and η(r), throughout the whole fluid, but they can be calculated to good precision,
for many practical purposes.

For example, to estimate the effective friction of a hot sphere, one needs to
generalize the classical calculation by Stokes for the friction coefficient ζ to a radi-
ally varying temperature T (r) and viscosity η(r). If the equation of state η(T ) is
known, explicit predictions for the effective translational (t) and rotational (r) friction
coefficients ζ

t,r
HBM of a hot sphere can then be computed [24–26].

It is conceptually (and also practically)more interesting to understand the effective
temperature that characterizes the thermal agitation of a hot Brownian particle. By
virtue of the Brownian scale separation, a local thermal equilibrium can still be
assumed to hold, even when the molecular temperature T (r) varies appreciably over
distances comparable to the particle diameter but long compared to themolecule size.
This allows a consistent linear theory of non-isothermal fluctuating hydrodynamics to
be constructed, based on the non-isothermal Stokes equation for the solvent dynamics
[21]. The theorydetermines how the local solvent fluctuations dictatedby the spatially
varying molecular temperature field T (r) throughout the whole solvent volume are
propagated by hydrodynamic interactions to the Brownian particle and contribute to
its apparent Brownian temperature THBM. For a hot Brownian sphere,4 the result can
be written as the weighted average [24]

THBM =
∫
φ(r)T (r) dr∫

φ(r) dr
. (8.6)

The weight φ(r) is the so-called dissipation function—essentially the product of
the viscosity and the squared velocity gradient. Due to the different flow fields for

4 The general expression for a non-spherical particle in an arbitrary temperature field is slightly
more complex than Eq. (8.6), but its basic structure is the same [20].
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translational (t) and rotational (r) motion of the particle, this prescription leads to
different effective temperatures for translation and rotation, namely [24, 25]

T t
HBM ≈ T0

(
1 + 5

12
�T

)
, T r

HBM ≈ T0

(
1 + 3

4
�T

)
. (8.7)

Here �T is the difference between the solvent temperature at the particle surface
and the ambient temperature T0 (cf. Fig. 8.1), and higher order terms in �T are
usually small in actual applications. The effective temperatures can in turn be related
to effective diffusivities Dt,r

HBM for translation and rotation, via Eq. (8.5).
In hot Brownian thermometry, one thus measures different effective temperatures

for different degrees of freedom, which can provide hints at the spatial structure of
the molecular temperature field T (r). Note that these effective temperatures are not
merely postulated, as in some other areas of non-equilibrium statistical mechanics,
but can systematically be calculated from the underlying non-isothermal fluctuating
hydrodynamic theory [21]. Along the same lines, it is even possible to deal with
Brownian memory effects, and to show that the effective temperature Eq. (8.6) is
merely the low-frequency limit of an equivalent formula in which all terms are
frequency dependent [20]. The corresponding temperature spectrum replaces THBM
outside theMarkov limit. One thenfinds that the translational and rotational velocities
are systematically hotter than the corresponding position- and orientation-coordinate
degrees of freedom, respectively. All this eventually leads to the fancy notion of
hot Brownian thermospectrometry [27], which means that one can, in principle,
indirectly infer the molecular temperature field T (r) in a non-isothermal solvent
from observations of the Brownian fluctuations of a suspended particle, over a large
frequency range.

So far, a number of predictions of the theory of hot Brownian motion could be
validated experimentally and in numerical simulations [24, 28, 30, 31]. We specif-
ically mention the experimental verification of the translational effective tempera-
ture from Eq. (8.7). Interestingly, the experiment can take advantage of the solvent
heating due to the hot particle to achieve a highly sensitive and background-free
detection of its Brownian motion, as described in Sect. 8.5. Figure 8.2 (left panel)
provides a parameter-free comparison of the average diffusion time τD of a Brownian
particle heated within a laser focus, which has been obtained by this method, with
the prediction from T t

HBM in Eq. (8.7). An even more comprehensive analysis of the
various temperatures, i.e., the conventional local molecular solvent temperature and
the effective temperatures characterizing the Brownian dynamics of various degrees
of freedom (rotational, translational positions and velocities) of the particle is in prin-
ciple possible in atomistic simulations (Fig. 8.2, right panel). But the high compress-
ibility of the Lennard–Jones solvent causes technical difficulties that currently still
impede the validation of several aspects of the theory by computer simulations.
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Fig. 8.2 Practice of hot Brownian motion (plots adapted from Ref. [8], with kind permission of
The European Physical Journal (EPJ)).Left: parameter-free experimental test of Eq. (8.7) employing
the Twin-PhoCS method (Sect. 8.5) to measure the average time τD for crossing the laser focus
[28]. Right: non-equilibriummolecular dynamics simulations [29] deduce the effective temperature
THBM from the particle diffusion via Eq. (8.5); lines indicate the predictions for the rotational (solid)
and translational (dot-dashed) effective Brownian temperatures from Eq. (8.7)

8.4 Hot Brownian Swimming

The study of microswimmers has a long history dating back to the 17th century,
when they were first studied under the microscope by the Dutch draper Antoni van
Leeuwenhoek. Only much later, starting with systematic investigations as those by
Robert Brown and Adolphe Brogniard in the early 19th century, researchers slowly
became aware of the interference of Brownian motion with micro-scale swimming,
and much of the pioneering work was devoted to disentangling both effects. So the
study of so-called “animalcules” and their self-propulsion predated that of molecules
and their thermalmotion, andwhat started as an investigation of the former eventually
furnished proof of the existence of the latter.

As pointed out in the introduction, there are compelling intrinsic reasons to retrace
the historic path backwards and extend the (by now established) analysis of Brow-
nian motion to swimming. Non-isothermal conditions automatically turn all ther-
mally asymmetric particles into hot swimmers. An archetypal example for a hot
microswimmer is provided by a Janus sphere half covered with gold [32], as illus-
trated in Fig. 8.3 (left). Such a particle heats up asymmetrically and therefore excites
an asymmetric temperature gradient in the surrounding solvent, when illuminated
by a green laser. The temperature gradient, in turn, excites a boundary-layer flow
along the particle surface [8, 33], which gives rise to a net drift motion of the particle
along its symmetry axis. The same mechanism is responsible for thermophoretic
motion in an external temperature gradient, but here the gradient is caused by the
hot particle itself. This is why one also speaks of self-phoresis [34]. A very conve-
nient coarse-grained description condenses the boundary-layer flow into a simple slip
boundary condition for the hydrodynamic solvent velocity on the particle surface.
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This acknowledges that phoresis, as any kind of swimming, is a force-free type of
motion or self-propulsion, and it allows for a good analytical control over mutual
hydrodynamic interactions of swimmers and related interesting behavior near walls
and obstacles [35].

Swimming thus contributes a systematic “ballistic” drift along the instantaneous
particle axis û(t) to the random Brownian motion. As any systematic drift, it is
outpaced by the diffusive translational Brownian motion at short times but prevails
over it at late times. However, the particle axis û(t) is itself subject to rotational
Brownian motion, which randomizes the motion again, at very late times, so that
it becomes once more diffusive. The particle dynamics for t � m/ζ is therefore
well-captured by the two Langevin equations

d r
d t

= vpû +
√
2Dt

HBMξt ,
d û
d t

= √
2Dr

HBMξr × û , (8.8)

for the position r(t) and orientation û(t) of the swimmer. Here ξt(t) and ξr(t) repre-
sent the translational and rotational thermal noise. More precisely, the values at any
time are independently drawn from Gaussian distributions of vanishing mean and
unit variance. Langevin equations are simply an alternative formalism to describe
diffusive dynamics. In fact, the first Eq. (8.8) is equivalent to a diffusion equation
with a drift given by the swim velocity of magnitude vp and direction û. Similarly,
the second equation is equivalent to a diffusion equation for the particle axis, which
is a unit vector and thus diffuses on a unit sphere.

In the Markov limit, hot Brownian motion thus merely enters the discussion of
the swimmer’s motion through the effective translational and rotational diffusivi-
ties, Dt

HBM and Dr
HBM. In unbiased hot Brownian motion (for a homogeneous hot

sphere), one usually only notices the former. But for the swimmer, Dr
HBM is more

easily noticeable via the randomization of the swim direction. Accordingly, Eq. (8.8)
predicts a crossover in the mean-square displacement

�r2(t) = 6Dt
HBMt + 2v2

p

(Dr
HBM)2

[
Dr

HBMt + e−Dr
HBMt − 1

] ∼
{

v2
pt

2

2v2
p t/D

r
HBM

(8.9)

The motion is “ballistic” at short times t 	 1/Dr
HBM (upper line) and diffusive at late

times t � 1/Dr
HBM (lower line), corresponding to distances shorter/longer than the

persistence length vp/Dr
HBM. The particle trajectories thus resemble conformations of

semiflexible polymers. An experimental confirmation is provided in Fig. 8.3 (right).
The late-time diffusivity v2

p/3D
r
HBM � Dt

HBM is strongly enhanced by the propulsion
and therefore increases strongly upon heating.
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Fig. 8.3 Principle of hot Brownian swimming. Left: electron microscopy image of a 1 µm
polystyrene Janus particle coveredwith a 50nmgoldfilmononehemisphere.Center: the streamlines
around a realistically modeled (force-free) hot Janus swimmer with a heated gold cap, calculated
in the boundary-layer approximation, exhibit a pronounced near-field structure that is responsible
for its directed self-propulsion (adapted from Ref. [8], with kind permission of The European
Physical Journal (EPJ)). Right: the trajectories of hot Brownian swimmers are persistent random
walks, resembling semiflexible-polymer conformations; rotational hot Brownianmotion limits their
persistence, giving rise to a crossover from a “ballistic” to a diffusive form of the mean-square
displacement (msd), Eq. (8.9), at lag times t 
 1/Dr

HBM (near dotted line)

8.5 Detecting and Steering Hot Brownian Particles

Awell controlled and well defined model system for studies of hot Brownian motion
is provided by a gold nanoparticle suspended in water. Gold nanoparticles strongly
absorb visible light due to a surface plasmon resonance, a collective excitation of
their conduction band electrons. It is this effect, which gives gold suspensions their
distinct reddish color. The excited electrons thermalize within femtoseconds and
release their energy within picoseconds to the metal ions, from where it spreads
further via thermal vibrations. The heat conductivity of gold exceeds that of typical
solvents by more than two orders of magnitude, so that a gold sphere that has a
radius R of some tens or hundreds of nanometers can be represented as an essentially
isothermal nano heat source in an infinite heat bath of ambient temperature T0. If
the temperature increment of the solvent at the particle surface is denoted by �T ,
Fourier’s law5 yields the stationary temperature profile

T (r) = T0 + �T R/r. (8.10)

This solution is practically attained within hundreds of nanoseconds. As heat diffu-
sion is several orders of magnitude faster than Brownian diffusion, the tempera-
ture profile around a hot Brownian particle can be treated as a comoving field. The
associated radial heat flow is responsible for the nonequilibrium character of hot
Brownian motion. But it also allows for a very efficient detection of its motion by
optical microscopy, which would otherwise be difficult to achieve because of the
faint optical contrast. The scattered intensity scales with the square of the volume for

5 Joseph Fourier assumed heat to diffuse, an idea adapted to particles by Adolf Fick in 1855.
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small scattering sources, so that non-fluorescent nanometer-sized objects are opti-
cally very hard to detect. The absorbed heat scales linearly in the particle volume and
moreover modifies the density and refractive index n(r) of the surrounding medium,

n(r) = n0 + (∂n/∂T )�T R/r (8.11)

The long-ranged temperature profile of Eq. (8.10) thus gives rise to an associated
long-ranged “mirage” or “thermal lens” around a small heat source. The refractive
index changes are quite small (−∂n/∂T 
 10−3 − 10−4 K−1, with n commonly
decreasing upon thermal expansion) but can be probed very sensitively by optical
means. The deflection of a laser beam by such a thermal lens is the principle behind
the methods of photothermal microscopy andphotothermal spectroscopy (PhoCS).
Such photothermal techniques have first been developed in the 1960s [36, 37] but
have only more recently been refined to achieve single-particle and single-molecule
sensitivity [38–41].

Light scattering from the thermal lens created by a point-like heat source has a
perfect microscopic analogue that is very familiar from atomic physics and quantum
mechanics, namely Rutherford or Coulomb scattering. As such it sparked much of
our current understanding of the inner structure of atoms [43]. In its photothermal
variant, the dielectric permittivity profile ε(r) = n2(r) plays the role of the Coulomb
potential. Since the second terms on the right-hand sides of Eqs. (8.10) and (8.11)
are small compared to the first (n0), ε(r) also decays with the inverse distance from
the heat source. The alternative mathematical descriptions of the phenomenon by
Fermat’s principle (ray-optics) and by Helmholtz’s equation (wave optics) find their
perfect analogues in the classical (as adopted by Rutherford) and the full quantum
mechanical (using Schrödinger’s equation) treatments of the Coulomb scattering
problem. Photons are deflected by the photonic potential ε(r) in the very same
manner as Rutherford’s α-particles were deflected by Coulomb interaction with the
atomic nuclei.

The left panel of Fig. 8.4 shows a macroscopic setup for a demonstration experi-
ment of photonic Rutherford scattering. A green laser beam entering the cube from
the left heats a small metal sphere embedded in an acrylamide block. The emerging
refractive index profile around the metal sphere is probed by a red laser beam passing
at a distance b from the scattering center, corresponding to the impact parameter in
Rutherford’s analysis of his experiment. The beam is deflected by an angle θ related
to the scattering parameter by cot(θ/2) ∝ b. Photonic Rutherford scattering thus
probes the refractive index profile in the same way as Rutherford probed Coulomb’s
law (and possible deviations from it) [42], except that there is no sizable backscat-
tering, as the refractive index changes relative to the vacuum value are typically very
weak.

The role of themirage as a diverging lens is easily demonstrated in themacroscopic
experiment, as well, as seen from Fig. 8.4 (center), which shows a photo of the
distorted image of a rectangular grid positioned behind the acrylamide block. In
the same manner, a tightly focused probe laser beam, which does not itself excite
surface plasmons, is defocussed by the thermal lens around a hot nanoparticle. This
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Fig. 8.4 Principle of photothermal detection (Partly adapted fromRef. [42]). Left: amacroscopic
experiment demonstrating the photothermal version of Rutherford scattering: ametal sphere of 1 cm
diameter, embedded in an acrylamide cube with edge length of 10 cm, is heated by a green laser
beam from the left; the emerging “mirage” is detected by a red laser.Center: it distorts a rectangular
grid photographed through the acrylamide block (courtesy of M. Selmke and M. Braun). Right:
by the same principle, photothermal scanning microscopy images tiny gold nanoparticles (10 nm)
embedded in a polymer via their defocusing of a probe beam

defocussing is the actual signal measured in photothermal microscopy by a lock-in
detection scheme [42, 44]. The long-range character of the refractive-index profile
allows very small absorbers such as quantum dots [45] or even single molecules [40]
to be detected with high contrast.

The time-scale separation between heat diffusion and Brownian motion allows
a perfect detection of the latter by photothermal microscopy. In particular, one can
record and analyze the fluctuations of the photothermal signal caused by particles
traversing the focal volume of a photothermal microscope. Each particle crossing
the focal volume causes a photothermal burst much like the fluorescence bursts in
fluorescence correlation spectroscopy (FCS) [46]. The length of these bursts corre-
sponds to the time spent by the hot Brownian particles within the focal volume (see
Fig. 8.5 left). Its average determines the decay of the autocorrelation function of the
photothermal signal. Based on this principle, photothermal correlation spectroscopy
(PhoCS) was independently developed and applied to single gold nanoparticle diffu-
sion by diverse groups [47–49]. A refined version, called twin-PhoCS [28], exploits
the peculiarities of the lensing mechanism in a more sophisticated way. It is based
on the insight that a lens placed exactly in the focal plane of the focussed probe
beam leaves the divergence of the probe beam unchanged, whereas a positioning
slightly below or above the focal plane changes the divergence of the probe beam
in opposite directions. In other words, the effective photothermal detection volume
splits up into two sharply separated lobes giving a positive/negative photothermal
signal S+/S− corresponding to diminished/enhanced beam divergence, as exempli-
fied by Fig. 8.5. (The twin-focus splitting naturally occurs in axial direction, but can
be created in the focal plane, as well [44].) Importantly, the statistics of the sign
changes of the photothermal signal are independent of the precise size and shape of
the two lobes, allowing for considerably improved quantitative control. As an addi-
tional benefit, drift components in the particle motion, as e.g., due to swimming or
radiation pressure, are readily revealed by an analysis of the sign changes. Figure 8.5
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Fig. 8.5 Principle of twin-PhoCS. Left: a particle diffusing through the focal volume of a
photothermal microscope and heated by an intensity-modulated laser (typically at 200 kHz), gener-
ates a photothermal lens probed by a second laser.Center: the lensing mechanism creates a splitting
of the focal volume into two parts (“twin-focus”). Right: time trace of the photothermal signal
from a hot gold nanoparticle; negative/positive signals S−/S+ correspond to enhanced/diminished
probe-beam divergence by its surrounding thermal lens

displays the signal from a single particle entering the lower lobe and briefly visiting
the upper lobe before eventually escaping. A detailed analysis of such photothermal
microscopy time traces by auto-correlation and cross-correlation methods allows
for very precise tests of the theory of hot Brownian motion, as shown in Fig. 8.2.
What requires more experimental effort is to test the more complex dynamics at short
times, and to test the rich theoretical predictions for hot Brownian motion beyond the
Markov limit, alluded to in Sect. 8.3. Even ordinary Brownian motion in isothermal
fluids is not easily studied on such short timescales. It has only recently become
possible to push the resolution down to a few nanoseconds, so that a quantitative
experimental characterization of its complex hydrodynamic memory and inertial
effects could be achieved for the first time [23, 50].

Completely new experimental opportunities arise for the self-propelling (i.e.,
asymmetric) hot particles, discussed in the preceding section. Single-particle tracking
can be used to detect the position and orientation of Janus particles. Advanced real-
time detection and feedback techniques put the modern experimenter in the posi-
tion of a Maxwell demon, who literally knows the positions and orientations of all
his “atoms”. This knowledge can be exploited to switch the laser light that fuels
the swimmers’ engines on and off at the right time, in order to impose complex
swimming patterns and force-free particle steering onto hot Brownian particles by
so-calledphoton-nudging techniques [51, 52].
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8.6 Exact Symmetry of Hot Brownian Swimming

As recalled in Sect. 8.2, Einstein invoked the condition of detailed balance for the
thermodynamic forces andfluxes in order to arrive at theBrownianbarometer formula
and the fluctuation-dissipation relation, Eqs. (8.1) and (8.2), respectively. Thereby,
he imposed strong symmetries on the motion of the Brownian particle. One may ask
what survives of all this in situations far from equilibrium, when the mesoscopic
physics is still stationary, but the underlying dynamics is not time-symmetric any
more, so that detailed balance is broken. (Time symmetry may for instance be broken
by persistently shearing a colloidal suspension or, more severely, by shining a laser
on it to turn the suspended particles into self-propelled hot Brownian swimmers.) The
answer to this question is provided by the so-called fluctuation theorem, which is a
generalization of the second law of thermodynamics and the fluctuation-dissipation
theorem, contained in Eqs. (8.2) and (8.12). Like them, it comes in several closely
related formulations [53]. Its essence is that the entropy production provides an
objective metric for the “distance from equilibrium” (the degree of time-reversal
symmetry breaking) of nonequilibrium processes. However, “hard to compute, and
even harder to measure experimentally, it has been little studied in active systems”
[54]. Luckily, for a hot Brownian swimmer in the Markov limit, a fully quantitative
analytical formulation of the fluctuation theorem can be worked out. Moreover, with
dedicated experimental techniques, such as described in Sect. 8.5, the theory can be
testedwith high precision, as demonstrated inRef. [31], and outlined in the remainder.

The key to generalizing the equilibrium detailed-balance relation to a nonequilib-
rium fluctuation theorem is its reformulation in terms of the mesoscopic thermody-
namic energy, heat, and entropy changes associated with fluctuating particle paths
and their probabilities [55]. Consider the probabilities P(h → h′) and P(h′ ← h) for
particle paths starting at height h > h′ and ending at height h′ and their time-reversed
paths, respectively. In equilibrium, they must be identical:

1 = P(h → h′)
P(h ← h′)

= P(h → h′|h)c(h)

P(h ← h′|h′)c(h′)
(detailed balance). (8.12)

This amounts to the time-reversal symmetry of all particle currents between any
two positions h and h′. The second equality provides an alternative formulation
employing the conditional probabilities P(h → h′|h) and P(h ← h′|h′) for the
particle to go from height h to h′ and vice versa, given that it started in either of
these two heights. Now, one notices that the ratio of the probabilities for the starting
positions is nothing but the ratio c(h)/c(h′) = e[U (h′)−U (h)]/kBT of the local particle
concentrations. And that, since no external work δW is performed on or by the
suspended particle, energy conservation6 allows the potential energy difference to
be rephrased as the heat �Q(rev) = −�Q(rev)

R = U (h′)−U (h) < 0 transferred from

6 We count incoming energies as positive in the first law of thermodynamics: dU = δQ + δW .
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the particle to the heat reservoir R (i.e., the solvent) when falling from h to h′. For
equilibrium Brownian motion, this heat exchange is fully reversible and therefore
amounts to the reversible entropy reduction/increase

�S(rev) = −�S(rev)R = [U (h′) −U (h)]/T = kB ln[c(h)/c(h′)], (8.13)

for the particle and its solvent, respectively. Accordingly, Eq. (8.12) implies

P(h → h′|h)

P(h ← h′|h′)
= e�Q(rev)

R /kBT (in equilibrium). (8.14)

Out of equilibrium, detailed balance is broken, so that the ratio in Eq. (8.12) will no
longer be unity for all h, h′. While a stationary probability ratio, such as Eq. (8.1),
will still obtain under stationary conditions, the detailed pairwise symmetry of the
individual particle trajectories between heights h and h′ will be replaced by more
complicated flux patterns. How is Eq. (8.14) then to be modified? If the barometer
distribution in Eq. (8.1) is unchanged and the solvent is isothermal, the answer is
obviously that the reversible entropy change has to be replaced by the total entropy
change, including the spontaneous entropy production that breaks the mesoscopic
reversibility or time-reversal invariance. In other words, the total heat�QR added to
the solvent contains some reversible contribution �Q(rev)

R and some “irreversible” or
dissipative contribution �Q(irr)

R . Thereby, we obtain P(h → h′|h)/P(h ← h′|h′) =
e�QR/kBT and from this the steady-state fluctuation theorem

P(h → h′)
P(h ← h′)

= e�Q(irr)
R /kBT ⇒ 〈e−�Q(irr)

R /kBT 〉 = 1. (8.15)

The last formulation follows by reshuffling the terms, such as to isolate the forward
path probability P(h → h′) and its associated dissipation �Q(irr)

R on the same side
of the equality. One then sums over all possible forward paths with the appropriate
boundary conditions and exploits the normalization of P(h ← h′). Note that the heat
�Q(irr)

R added irreversibly to the bath is nothing but the dissipated heat, also briefly
called “the dissipation”. The corresponding net entropy production associated with
the particle path is �Q(irr)

R /T . On average non-negative by virtue of the second law,
which is incidentally recovered from Eq. (8.15) by a first order Taylor expansion,
it fluctuates as a function of the path taken by the particle, such as to conform with
Eq. (8.15).

To eventually make Eq. (8.15) useful for a hot Brownian swimmer, we appeal
to the above mapping of the corresponding non-isothermal Brownian motion to an
equivalent equilibrium problem. In the Markov limit, it allows us to take over all of
the above formulas for a hot Brownian particle in a non-isothermal solvent by simply
writing THBM in place of the equilibrium bath temperature T (and similarly for the
friction, if wewant to explicitly write out the dissipated heat).With this modification,
Eq. (8.15) expresses an exact symmetry in the motion of a hot Brownian swimmer.
It reveals what is left over of the perfect symmetry imposed onto the space of path
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Fig. 8.6 Fluctuation theorem for a hot Brownian swimmer (adapted from Ref. [31]). Left:
statistics of longitudinal particle currents J‖ (formula in panel c) measured in simulation (a) and
experiment (b); average propulsion is along (‖) the swimmer’s axis û, but Brownian fluctuations
(↔) can displace it against the mean drift current 〈J‖〉 (→). Right: test of the fluctuation theorem,
Eq. (8.15), using histograms (a), b as proxies for path probabilities P(J‖); the logarithm of their
ratio P(J‖)/P(−J‖) for forward/backward motion is linear in J‖t , irrespective of the (different)
conditions prevailing in experiment/simulation

probabilities by the strict time-reversal invariance of normal diffusion, when the
particle becomes an active swimmer. In Ref. [31], we have tested this prediction
with high precision. Illuminating a large region of space by green laser light, which
is strongly absorbed by the gold cap of our Janus particles, we achieved a good degree
of stationarity for the swimming. As the data points lying on a straight line in Fig. 8.6
demonstrate, the logarithm of the probability ratio P(h → h′|h)/P(h ← h′|h′) is
a linear function of the Markovian particle velocity along its axis (here expressed
in terms of the longitudinal particle current J‖). To show that this is exactly what
is predicted by Eq. (8.15), the dissipation rate Q̇(irr)

R = vpζHBM J‖ was explicitly
calculated from the analytically known path weight for Eq. (8.8), in Ref. [31]. The
result is however easily deduceddirectly from thermodynamic arguments, as it has the
plainly obvious form “particle current J‖ times thermophoretic force ζHBMvp” (both
along the particle axis û). Although the “thermophoretic force” enters in the same
way as an external driving force, it should of course not be mistaken for one, since
the free swimmer moves by self-propulsion, entirely without the action of external
forces. Also note that the dissipation rate Q̇(irr)

R and its associated “hot Brownian
entropy production rate” Q̇(irr)

R /kBTHBM are virtual quantities, referring to a virtual
equilibrium bath defined by the theory of hot Brownian motion, while the actual
bath is non-isothermal and bears a substantial housekeeping heat flux (from the hot
swimmer into the cool ambient solvent), not included in Q̇(irr)

R .
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8.7 Conclusions

WehavediscussedhotBrownianparticles and swimmers, twoexamples forBrownian
motion very far from equilibrium. Thanks to the strong scale separation between the
Brownian particles and their atoms, substantial theoretical progress could be made
along the lines first laid out by Einstein, yielding exact analytical predictions for the
hot Brownian dynamics by systematic coarse graining. Wherever these predictions
were tested so far, they were found to be in excellent agreement with experimental
observations and simulation data. In fact, the basic ideas are readily generalized to
situations where the colloidal particles are cooled with respect to the solvent (so-
called “cold Brownian motion” [56]) or dissolved in gases instead of liquids, and
even to situations in ultra-high vacuum (the so-called Knudsen regime) [57, 58].
There remains the experimental challenge to explore the more intriguing features
of hot Brownian motion at shorter times, where hydrodynamic memory and inertia
come into play and give rise to the frequency-dependent noise temperature [20, 27,
31], alluded to in Sect. 8.3.

Good progress has already been made with another modification of equilib-
rium Brownian motion that is hard to avoid under general non-isothermal condi-
tions, namely self-propulsion. We have mentioned the steering of hot swimmers by
Maxwell-demon type methods summarily known as photon nudging. These methods
could in the future be harnessed for studying micron-sized artificial swarms of active
particles that mimic the interactions and behavior of schools of fish and flocks of
birds, thereby creating a microscopic laboratory for controlled studies of some most
amazing large-scale biological phenomena.

As we have discussed, such swimming (or flying) motion is subject to exact
symmetries that arise from the time-reversal symmetry breaking caused by the net
entropy production associated with the swimmer’s directed motion (not with the
operation of its engine). It is worthwhile to point out that the same mechanism also
applies to other broken symmetries, in particular spatial ones [59], as was also—
to the best of our knowledge for the first time—experimentally demonstrated in
Ref. [31]. This observation hints at a quite general underlying pattern governing the
nonequilibrium dynamics of any driven mesoscopic degrees of freedom. Indeed, the
symmetry breaking associated with the violation of detailed balance can be formu-
lated in a language familiar from quantum field theory. In this language, the net
entropy production takes the role of a gauge field [60, 61]. If integrated around a
loop in state space, reversible entropy changes will add up to zero, and only the dissi-
pative heat or irreversible entropy production will contribute, so that the subscript
(irr) can be omitted from expressions like those in Eq. (8.15), e.g.,

〈e− ∮
dt Q̇R/kBT 〉 = 1. (8.16)

Although the entropy of a state is only defined up to an additive gauge constant, and
although the reversible entropy change�S(rev) during a state change will change sign
upon time (or path) reversal, the dissipation and the associated net entropy production
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are both gauge invariant and independent of symmetry transformations, such as time
reversal, hence “objective”. The closed line integrals over the entropy change in the
heat bath thus play a role akin to Berry’s phase in quantummechanics or holonomies
(essentially, how much the sum of angles in a triangle deviates from 180◦) in differ-
ential geometry. The symmetry breaking due to thermodynamic irreversibility can
thereby be quantified objectively, in an analogous way as Wilson loops can help to
detect space-time curvature in relativistic quantum field theory. The symmetry rela-
tion (8.16) that constrains nonequilibrium processes is in this context also interpreted
as the consequence of a partial breaking of a supersymmetry that comprises time-
reversal invariance [62, 63]. How far this structure can be extended to short-time hot
Brownian motion is currently an open question [64, 65].
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Chapter 9
On Phase Transitions in Biased Diffusion
of Interacting Particles

Philipp Maass, Marcel Dierl, and Matthias Gries

9.1 Introduction

When traveling on a highway, we can make the unpleasant experience of getting
trapped in a jam like the one shown in Fig. 9.1. Or we see that a queue of cars comes
to a standstill and gets a bit later again into motion, without any apparent reason for
this strange behavior. This behavior may remind us of a liquid freezing and melting,
i.e. a phase transition between its liquid and solid states. In the case of the liquid, we
know that the transition is commonly initiated by the variation of the temperature or
pressure, or, more generally speaking, by the variation of parameters that control the
state of the system. In this chapter, we will see that jamming phenomena like that of
vehicles on a road can be understood quite similarly as a phase transition between
two non-equilibrium steady states (NESS) under variation of control parameters.

As a typical feature of the situation under consideration, we recognize that there
is a bias in motion and some sort of interaction. Cars are moving in one direction
and they change their speed in relation to the cars in front of them. This combina-
tion of biased motion and interaction is not restricted to vehicular traffic, but can
appear under quite different conditions [1]. Amazingly, it in particular arises on a
molecular level in a number of biophysical processes. A prominent example is the
biased motion of motor proteins, like kinesin and dynein, along filamentary tracks
in eucaryotic cells, the so-called microtubules [2], as illustrated in Fig. 9.1. Dyneins
are important for propelling sperm, bacteria, and other cells, and kinesins support
intracellular transport [3]. Other translocating motor proteins are myosins that move
along actin filaments in the cytoskeleton and are responsible for muscle contraction
[4]. Interactions between these motors become important, when many of them move
simultaneously along a single filament. Similarly, as for a traffic jam of cars, it may
be possible that a domainwall appears, which separates two phases of proteinmotors
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Fig. 9.1 Left: Cars moving along a highway with a jam in one direction (photography: Th. Rein-
hardt/pixelio.de). Right: Illustration of the directed motion of motor proteins along a microtubule.
Dynein motors move in the retrograde direction toward the minus ends of microtubules whereas
kinesin motors transport cargo in the anterograde direction toward the plus ends

on the microtubule, one, where the densities of motors are low (like in a gas), and
one, where the density of motors is high (like in a liquid) [5, 6]. In fact, an experi-
mental realization of such a state of coexisting phases has been realized in vitrowith
a fluorescently labeled single-headed kinesin motor [7]. Further examples of biased
motion of interacting particles in biophysical applications include biopolymerization
[8] and the directed motion of ions through channels in cell membranes [9–11].

The origin of phase transitions in equilibrium systems, as the liquid-gas or liquid-
solid transition of a fluid, can be traced back to an interplay of energy and entropy,
when the system settles down to its equilibrium state of minimum free energy . Can
certain generic mechanisms be identified also for the occurrence of phase transitions
in biased diffusion systems out of equilibrium? And is it really conceivable that
analogous underlyingmechanisms lead to the jammingof cars andmolecularmotors?
For answering such questions, physicists usually search for some kind of “minimal
model”, where the basic features, that means a biased transport and the presence of
interactions here, are introduced in a most simple way. It has turned out that already
a slight modification of the simple jumpmodel of Fig. 9.2 helps in understanding and
predicting the phase transitions. This is referred to as the asymmetric simple exclusion
process (ASEP) and corresponds to a driven lattice gas, where a biased stochastic
hopping of particles between nearest-neighbor sites on a one-dimensional lattice is
considered. Originally theASEP has been introduced to describe protein synthesis by
ribosomes [8] and it now appears as a basic building block in various applications. In
addition to the vehicular traffic and the biophysical processes mentioned above, this
includes, for example, charge transfer in photovoltaic devices [12, 13] and surface
growth phenomena [14, 15].

Moreover, the ASEP is of fundamental interest also for studying general proper-
ties of NESS [16–19], including fluctuation theorems for thermodynamic quantities
defined on a microscopic level (cf. Chap. 8). Generalizations of the ASEP have given
rise recently to the discovery of an intriguing set of universality classes in nonlinear
hydrodynamics [20]. In this set, which includes ordinary diffusions as one case, the
temporal spreading of particles, or density fluctuation, is characterized by dynamical
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Fig. 9.2 Illustration of the totally asymmetric simple exclusion process (TASEP) in one dimension
for a a ring system (periodic boundary conditions) and b an open channel coupled to two particle
reservoirs L and R to the left and right, from and to which particles are injected and ejected with
rates α and β. If α, β ≤ ν one can assign the particle densities ρL = α/ν and ρR = 1 − β/ν to the
left and right reservoirs, respectively (see Eq. (9.5) and text for details)

exponents that agree with the Kepler ratios 1/1, 2/1, 3/2, 5/3, 8/5, . . ., a sequence that
converges toward the golden mean (1 + √

5)/2 ∼= 1.618. The Kepler ratios follow
from taking ratios of consecutive numbers in the famous Fibonacci sequence 1, 1, 2,
3, 5, 8, . . ., where an element is constructed by taking the sum of the two preceding
ones.

In the following, wewill discuss how phase transitions in driven diffusion systems
arise and will review recent work on the implications of repulsive nearest-neighbor
interactions in driven lattice gases, with a focus on open systems coupled to particle
reservoirs. Results for thesemodels form a basis to explain the occurrence of recently
discovered phase transitions in more complicated periodically driven systems [21,
22] and to understand their consequences for Brownian pumps and motors, which
provide useful models for molecular machines [3].

Though starting with the most simple assumptions for the elementary steps of
motion, the methods applied will be shown to lead to remarkable insights enlight-
ening the peculiarities of such systems. It is noteworthy that there is no need for
the application of any advanced mathematical calculus. Probability considerations
turn out to be, as a rule, completely sufficient. The way of reasoning will, however,
sometimes deviate from conventional routes.

9.2 The Asymmetric Simple Exclusion Process (ASEP)

9.2.1 ASEP Along a Ring

Let us first consider the ASEP for particles that are driven along a ring of sites
by performing jumps to vacant nearest-neighbor sites, as illustrated in Fig. 9.2a.
A particle occupying a site hinders the other particles to occupy the same site, imply-
ing that each site can be occupied by at most one particle. In general, jumps occur
in both clockwise and counter-clockwise direction with rates ν+ and ν−, where
ν ≡ (ν+ − ν−) > 0 for a bias in clockwise direction. In this very simple setup,
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the ASEP already includes the key features of biased motion and interaction.
In Fig. 9.2a, we have, for simplicity, considered the extreme case of the totally
asymmetric simple exclusion process (TASEP), where particles jump solely in the
clockwise direction (ν− = 0). Actually, as we will see below, what is decisive is the
presence of a bias, while its strength (ν+ − ν−)/(ν+ + ν−) is not essential for the
occurrence of phase transitions. The reason is that the functional form of the particle
current on the density matters, but not the magnitude of the current.

To derive how the current depends on the particle density, let us specify the pos-
sible particle configurations C = {ni } on the ring by introducing the site occupation
numbers ni , where ni = 1 if site i is occupied and zero otherwise. In the NESS,
the current must be constant along the ring. We thus need to consider the current
between the sites i and (i + 1) only. It can be decomposed into a partial current in
clockwise and a partial current in counter-clockwise direction. A particle is able to
jump in clockwise direction from site i to (i + 1), if site i is occupied and site (i + 1)
empty. For the corresponding joint probability of the two occupation numbers, we
write p2(ni = 1, ni+1 = 0). Because the rate for a jump from i to (i + 1) is ν+, the
partial current in clockwise direction is p2(ni = 1, ni+1 = 0) ν+. Analogously, the
partial current in counter-clockwise direction is p2(ni = 0, ni+1 = 1) ν−. Hence, we
can write for the bulk current in the stationary state

jB = p2(ni = 1, ni+1 = 0) ν+ − p2(ni = 0, ni+1 = 1) ν−
= 〈ni (1 − ni+1)〉 ν+ − 〈ni+1(1 − ni )〉 ν− . (9.1)

In going from the first to the second line, we have used that 〈ni (1 − ni+1)〉 =∑
ni=0,1

∑
ni+1=0,1 p2(ni , ni+1)ni (1 − ni+1) = p2(ni = 1, ni+1 = 0), and analo-

gously 〈ni+1(1 − ni )〉 = p2(ni = 0, ni+1 = 1). This identification of joint probabili-
ties for specific sets of occupation numberswith averages over products of occupation
numbers is always possible because the ni are either zero or one. Here and in the
following, 〈. . .〉 refers to an average in the NESS.

Intuitively, one may expect that in the NESS none of the particle configurations
on the ring is preferred over the other. This is indeed the case and can be rationalized
as follows, where, for the sake of simplicity, we consider a totally asymmetric simple
exclusion process (TASEP). Under stationary-state conditions, the probability P(C)

for all configurations C must not vary with time.When introducing the transition rate
W (C → C ′) for a configuration C to change into another C ′ by one particle jump, this
implies

P(C)
∑

C′′
W (C → C ′′) =

∑

C′
P(C ′)W (C ′ → C) , (9.2)

because constancy of P(C) requires that the total rate
∑

C′ P(C ′)W (C ′ → C)of jumps
transferring configurations C ′ into C (gain terms) must be balanced by the total rate
P(C)

∑
C′′ W (C → C ′′) of jumps transferring C into configurations C ′′ (loss terms).

We now show that Eq. (9.2) indeed holds if all probabilities P(C) are equal. In
this case P(C) = P(C ′), and Eq. (9.2) simplifies to [19]
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∑

C′′
W (C → C ′′) =

∑

C′
W (C ′ → C) . (9.3)

Now, for proving the validity of this equation, we first realize that any configura-
tion C may be thought to be built up by chains (“clusters”) of particles occupying
nearest-neighbor sites, including the case where such a cluster consists of only a
single particle. The number of clusters in a configuration C is denoted as Ncl(C).
For the configuration C shown in Fig. 9.2a, for example, Ncl(C) = 6. There are six
new configurations C ′′ which can emerge from C by jumps of particles from the
clockwise ends of the clusters in the configuration C. Because these jumps have the
same rate ν , we find

∑
C′′ W (C → C ′′) = 6ν for the configuration in Fig. 9.2a, and∑

C′′ W (C → C ′′) = νNcl(C) in general. Correspondingly, there are as well six dif-
ferent configurations C ′, which could have generated the configuration C in Fig. 9.2a
via jumps of particles that joined the counter-clockwise ends of the clusters in C.
This also gives

∑
C′ W (C ′ → C) = 6ν, or

∑
C′ W (C ′ → C) = νNcl(C) in general.

It is straightforward to generalize this line of reasoning to the ASEP with jumps
to both clockwise and counter-clockwise directions. We thus showed that if all con-
figurations C are equally probable, the ASEP is in a steady state. One may expect
also that the ASEP actually approaches this steady state in the long-time limit. This
indeed can be proven by resorting to the complete mathematical description of the
ASEP dynamics, which is given by a master equation [23].

Because all configurations C are equally probable, we can replace the averages
over products of occupation numbers by the product of their averages. Applied to
the products appearing in Eq. (9.1), this yields 〈ni (1 − ni+1)〉 = 〈ni+1(1 − ni )〉 =
ρ(1 − ρ)where ρ = 〈ni 〉 is the mean occupation number or particle number density.
Hence, we obtain

jB(ρ) = (ν+ − ν−)ρ(1 − ρ) = νρ(1 − ρ) (9.4)

for the bulk current as a function of the density.
Strictly speaking, Eq. (9.4) is exactly true only if we neglect the constraint and

associated correlation implied by the fixed particle number Np on the ring. The joint
probability of finding a site occupied and a neighboring (or any other) site empty is
given by the probability of finding one site occupied times the conditional probability
of finding a site to be empty if one site is occupied. The probability of finding one
site occupied is Np/N , where N is the number of sites. The probability that the
(Np − 1) other particles leave one of the remaining (N − 1) sites empty is [1 −
(Np − 1)/(N − 1)]. Hence, in this exact treatment, one obtains 〈ni (1 − ni+1)〉 =
〈ni+1(1 − ni )〉 = (Np/N )[1 − (Np − 1)/(N − 1)]. In the “thermodynamic limit”
(N → ∞, Np/N fixed), this reduces to Eq. (9.4). Let us note that the replacement
of averages over products of occupation numbers by the corresponding products of
their averages is commonly referred to as the “mean-field approximation”.

In summary, we can say then that the mean-field expression for the current, in
which correlations between occupation numbers are factorized, is exact in a bulk
system and gives the parabola (9.4) plotted in Fig. 9.3a for the bulk current-density
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Fig. 9.3 aBulk current as a function of density in theASEP according to Eq. (9.4). b Phase diagram
of theASEPwith the low-density (LD),maximum current (MC), and high-density (HD) phases. The
solid line separating the LD and HD phases marks a first-order transition (jump in ρB when crossing
the line), and the dashed lines separating the MC phase from the LD and HD phases mark second-
order transitions (jump in the derivative of ρB as a function of the varying control parameters when
crossing the line). To demonstrate the application of the minimum and maximum current principles
given in Eq. (9.6), three densities ρ1 = 0.25, ρ2 = 0.6, and ρ3 = 0.9 are indicated by the dotted
lines in (a). If (ρL, ρR) = (ρ1, ρ2) or (ρL, ρR) = (ρ1, ρ3), the minimum current principle applies
and the ASEP is in the LD phase with ρB = ρ1 or in the HD phase with ρB = ρ3, respectively. For
(ρL, ρR) = (ρ2, ρ1) or (ρL, ρR) = (ρ3, ρ1), the maximum current principle applies and the ASEP
is in the MC phase with ρB = 1/2

relation in the NESS. The current vanishes in the limit of zero and complete occupa-
tion of the ring since then one of the two factors ρ or (1 − ρ) in Eq. (9.4) becomes
zero. It attains its maximum at half filling, when the two factors are equal to each
other. Let us remark that the current is symmetric with respect to a transformation
ρ → (1 − ρ), i.e. jB(ρ) = jB(1 − ρ). This is a consequence of particle-hole sym-
metry, which means that one can equivalently view the process as driving “mutually
excluding” vacancies with concentration (1 − ρ) in counter-clockwise directionwith
effective rate ν.

9.2.2 ASEP Coupled to Particle Reservoirs

Cars or motor proteins are not driven along a ring, but they are entering and leaving
a road or filament from some region. This motivates the study of an open ASEP
along a channel of sites, where the particles are injected from a reservoir L coupled
to the channel at its left boundary and ejected to a reservoir R at its right boundary,
as illustrated in Fig. 9.2b. If the site next to the left reservoir (left-boundary site) is
empty, injection takes place with a rate α, and if the site next to the right reservoir
(right-boundary site) is occupied, ejection takes place with a rate β. After some
transient time, a NESS evolves that depends on the injection and ejection rates,
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which act as control parameters. Here and in the following, we will always consider
corresponding stationary states.

The open ASEP coupled to reservoirs is much more interesting than the closed
ASEP along a ring, because it leads to phase transitions between NESS, where
the particle density can change abruptly with the variation of α and β, in analogy
to the abrupt change of the density of a liquid upon crystallization when varying
the temperature. Nevertheless, as will be discussed in connection with Eq. (9.6)
below, the result derived for the bulk current in Eq. (9.4) turns out to be useful for
understanding the origin of the phase transitions and for deriving the corresponding
phase diagram.

For values not exceeding ν, the injection and ejection rates can be associated with
particle number densities ρL and ρR in the left and right reservoirs as follows:

ρL = α/ν , (9.5a)

ρR = 1 − β/ν . (9.5b)

While these relations may be intuitively clear, it is instructive for our later analysis to
give a reasoning. To this end, let us note that the rate for filling of an empty site in the
bulk is given by ρν, i.e. by the probability ρ of finding the site next to the empty site
to be occupied times the rate ν for a jump. Consider now the corresponding rate νρL

for the filling of the left-boundary site from a reservoir site with a mean occupation
number ρL. By setting this rate equal to the injection rate α, we obtain α = νρL,
or ρL = α/ν, in agreement with Eq. (9.5a). Analogously, the rate of emptying an
occupied site in the bulk is ν(1 − ρ), and we can consider the corresponding rate
ν(1 − ρR) of emptying the right-boundary site, where (1 − ρR) refers to the mean
hole occupation number in the respective reservoir. Setting this rate equal to the
ejection rate β gives β = ν(1 − ρR), or ρR = 1 − β/ν in accordance with Eq. (9.5b).
This method of associating injection and ejection rates with reservoir densities by
resorting to the dynamics in the bulk will be referred to as the “bulk-adapted” way.
Because the reservoir densities in Eq. (9.5) cannot exceed one, the association is
limited to the regime α, β ≤ ν here.

In contrast to the ring, the probabilities of the particle configurations C in the
open ASEP (or TASEP) are no longer all the same. Recalling the line of reasoning
for Eq. (9.3) based on the clusters, this can be understood from the fact that near
the boundaries, the rates for feeding and decay of clusters become different, as a
consequence of the differences in the values of α and β. It was, however, exactly the
equality of the feeding and decaying rates from which, with Eq. (9.3), all configura-
tions could be concluded to be equally probable. The difference in the feeding and
decaying rate therefore implies that the distribution P(C) becomes non-uniform.

While in equilibrium systems, the probabilities Peq(C) of configurations are given
by Boltzmann weights, no general concept is yet available for predicting the P(C)

in NESS, as discussed also in Chap. 8 in connection with colloidal particles in
nonisothermal solvents. In statistical physics, it is thus of fundamental importance
to find examples of non-trivial NESS, where the P(C) can be exactly derived. The
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Fig. 9.4 Representative density profiles for a the LD, b the MC, and c the HD phase of the open
ASEP with N = 200 sites. The profiles were calculated from the exact recursion relations given
in [25]. In the MC phase, a bulk regime with nearly constant ρB = 1/2 is not seen, because of the
slow power law decay∼ 1/

√
r of the profile toward the bulk regime (strictly valid in the asymptotic

limit of infinite N ). The bulk value ρB = 1/2 can nevertheless be read off from the saddle point in
the profile

ASEP indeed constitutes one of these examples. For the reader interested in this
challenging topic, we mention that P(C) can be expressed by a matrix product form
[16, 19], and that it can be calculated also from recursion relations [24, 25] or the
Bethe ansatz [16, 18].

Here our focus is on the occurrence of phase transitions of the bulk density ρB

in the channel’s interior as a function of the controlling reservoir densities, which
were first reported in Ref. [26]. The corresponding phase diagram is displayed in
Fig. 9.3b. There appears a low-density (LD) phase for 0 ≤ ρL < min(1/2, 1 − ρR)

where ρB = ρL, a high-density (HD) phase for max(1/2, 1 − ρL) < ρR ≤ 1, where
ρB = ρR, and amaximum current (MC) phase for ρL > 1/2 ∧ ρR < 1/2, where ρB =
1/2 irrespective of ρL and ρR. Note that jB from Eq. (9.4) assumes its maximum at
ρB = 1/2.

How can we understand the origin of these different phases and the transitions
between them? For answering this question, it is helpful to reformulate the conditions
for the occurrence of the different phases, given above in terms of the densities ρL

and ρR, in terms of the rates α and β with the help of Eqs. (9.5). The condition
ρR < (1 − ρL) for the LD phase corresponds to α < β, the condition ρR > (1 − ρL)

for the HD phase to α > β, and for the MC phase to occur, both α and β must be
larger than 1/2 (see also Fig. 9.3b). Thus, with respect to the LD and HD phases, a
“hand-waving” argument would be to view the open ASEP as an assembly line and
to argue that the throughput of goods (particles) is governed by the slowest worker.
This would give us an idea why the LD phase is realized for α < β [ρR < (1 − ρL)]
and the HD phase for β < α [ρR > (1 − ρL)] in Fig. 9.3b, but it cannot help us to
understand why there is the MC phase if α and β are both larger than 1/2.

Abetter approach for understanding the phase diagram is to look at density profiles
in the different phases, for which representative examples are shown in Fig. 9.4 for
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a channel with N = 200 sites. These profiles were calculated from exact recursion
relations formerly derived in [25]. Looking at these profiles, we see that there are bent
parts because of boundary conditions to be fulfilled with respect to the reservoirs (see
below). In this situation, the particle flux is no longer solely generated by the bias. In
addition to the bias-induced drift (bulk) current jB, there is a diffusion current caused
by the concentration gradient, which, as in the situation of diffusion considered, e.g.
in Chap. 2, is directed toward decreasing concentration. The total flux jtot is the sum
of the drift and diffusion currents, and in the NESS, jtot must be the same everywhere
along the channel.

In the LD phase (Fig. 9.4a), the profile is flat except for a small region close to
the right boundary, and the bulk density in the flat part matches the reservoir density
ρL. In the region close to the right boundary, the density rapidly increases, but there
is no matching of the density ρN at the site i = N next to the right reservoir with
ρR, as one might first guess. In the example in Fig. 9.4a, we see that ρN

∼= 0.27,
while ρR = 0.4. What determines ρN is the requirement of constant total current.
Because jtot is constant, it can be calculated from the flat regime ρi = ρL, where the
diffusion current vanishes. Accordingly, jtot = jB(ρL) = νρL(1 − ρL) (cf. Eq. (9.4)).
The ejection current from site i = N is simply given by βρN = ν(1 − ρR)ρN and this
must equal jtot also, giving ν(1 − ρR)ρN = νρL(1 − ρL), or ρN = ρL(1 − ρL)/(1 −
ρR). For the parameters ρL = 0.2 and ρR = 0.4 in Fig. 9.4a, this yields ρN = 4/15 ∼=
0.27 in agreement with the data.

Similarly, in the HD phase (Fig. 9.4c), the profile is flat except for a small region
close to the left boundary, and the bulk density in the flat part matches the reser-
voir density ρR. When approaching the left boundary, the density rapidly decreases.
Its value ρ1 at the site i = 1 next to the left reservoir follows from equating the
total current jtot = νρR(1 − ρR) with the injection current α(1 − ρ1) = νρL(1 − ρ1).
This gives ρ1 = 1 − ρR(1 − ρR)/ρL. For the parameters ρL = 0.6 and ρR = 0.8 in
Fig. 9.4c, we obtain ρ1 = 11/15 ∼= 0.73, in agreement with the data.

In the MC phase (Fig. 9.4b), the current is at its maximum, jtot = ν/4. The
boundary conditions at the left boundary [νρL(1 − ρ1) = ν/4] and right boundary
[ν(1 − ρR)ρN ) = ν/4] then give ρ1 = 1 − 1/(4ρL) and ρN = 1/[4(1 − ρR)]. The
corresponding values ρ1 = 2/3 � 0.67 and ρN = 1/3 � 0.33 for the parameters in
Fig. 9.4b again agree with the data.

It can be further shown [25] that the bent profile parts in the LD and HD phases
decay exponentially toward the bulk value ρB (with possible power-law corrections in
sub-phases), while in theMCphase the profile decays very slowly as 1/

√
r towardρB,

meaning that |ρN/2±r − ρB| ∼ r−1/2. These different behaviors are clearly reflected
by the profiles shown in Fig. 9.4.

How can this insight into the behavior of the density profiles help us to under-
stand the occurrence of the phase transitions? Despite the missing matching with the
reservoir densities for the bent parts of the profiles, we can infer from our evaluation
that the density increases from the left to the right side of the channel for ρL < ρR,
while it decreases for ρL > ρR. The diffusion current thus is negative (flowing from
right to left) for ρL < ρR and positive (flowing from left to right) for ρR < ρL, and it
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7389 a 1920 7389 a
 


162 P. Maass et al.

is zero in the flat region of the interior channel part (which extends to the left or right
boundary in the LD and HD phases, respectively).

When the density starts to deviate from its constant value ρB in the interior part,
where jtot = jB, the concentration gradients give rise to a diffusion flux. This addi-
tional flux must be compensated by a change of the drift current jB to keep jtot
constant everywhere along the channel. For ρL < ρR, the diffusion current must be
compensated by an increase of jB, and for ρL > ρR, it must be compensated by a
decrease of jB. This implies that for ρL < ρR, jB = jB(ρ) must assume its minimal
value in the interval ρ1 ≤ ρ ≤ ρN , while for ρR < ρL, it must assume its maximal
value in the interval ρN ≤ ρ ≤ ρ1. The density corresponding to this minimal or
maximal jB is the bulk value ρB appearing in the channel’s interior. It is important to
emphasize that this reasoning requires monotonically varying profiles.

With the known ρ1 and ρN as a function of ρL and ρR from above, one can check
that ρ1 and ρN can actually be replaced by ρL and ρR in the reasoning, so as if the
profiles would monotonically decrease or increase between ρL and ρR. The reasoning
allows us to formulate the following rules for the determination of the phase diagram
[26, 27]:

ρB =
{
argminρL≤ρ≤ρR

{ jB(ρ)} , ρL ≤ ρR ,

argmaxρR≤ρ≤ρL
{ jB(ρ)} , ρR ≤ ρL .

(9.6)

Here, argminρL≤ρ≤ρR
{ jB(ρ)} and argmaxρR≤ρ≤ρL

{ jB(ρ)} return that values of the
(function argument) ρ, where, in the indicated interval, jB(ρ) assumes its minimum
and maximum, respectively. The rules in Eq. (9.6) are referred to as the minimum
and maximum current principles. Only jB as a function of ρ is needed for their appli-
cation. The application is demonstrated in Fig. 9.3 for three densities marked by the
dotted lines in Fig. 9.3a, which serve as possible values for the reservoir densities
(see the description in the figure caption for details).

Note that for ρL > ρR the particle density decreases in the direction of the
bias, implying that the diffusion current adds positively to the drift current. As
a consequence, the maximum current principle applies. In the MC phase, where
ρL > 1/2 > ρR, the value ρ = 1/2 at which jB has its maximum always lies in the
interval [ρR, ρL]. Accordingly, the current in this phase attains the largest possible
value ν/4 and the bulk density in this phase is ρB = 1/2 irrespective of the reservoir
densities.

For a more detailed characterization of the situation displayed in Fig. 9.3b and
the conditions giving rise to switches between different phases we recollect that,
in thermodynamics, one distinguishes between phase transitions of first and second
order. Well-known examples of first-order phase transitions are the freezing-melting
and boiling-condensing transitions ofmatter upon a variation of, e.g. the temperature.
First-order phase transitions are characterized by a discontinuity of the quantity
characterizing the different phases, commonly referred to as the “order parameter”.
Second-order phase transitions are characterized by a discontinuity of the derivative
of the order parameter with respect to a control parameter (e.g. the temperature),
while the respective quantity itself exhibits no discontinuity.
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In our case, the bulk density ρB is the order parameter characterizing the different
phases in Fig. 9.3b, and ρL and ρR are the control parameters. Transitions to the
maximum current phase are of second order, which means that ρB continuously
varies when passing the corresponding transition lines, while the derivative of ρB

with respect to ρL and ρR exhibits a discontinuity. For example, when increasing ρL

for fixed ρR = 0.2, the phase diagram in Fig. 9.3b tells us that ρB = ρL for ρL ≤ 1/2,
and that ρB = 1/2 for ρL ≥ 1/2. Hence, dρB/dρL jumps from one to zero when
passing the transition line at ρL = 1/2. By contrast, transitions between the low- and
high-density phase are of the first order, meaning that there is a discontinuity in ρB

when passing the transition line: ρB jumps from ρB = ρL to ρB = ρR when crossing
the line on a path from the LD to the HD phase (e.g. for ρR = 0.7 and ρL increasing).

Let us dwell for a minute to consider the situation when the reservoir densities
have values corresponding to points on the first-order transition line, i.e. ρL = 1 − ρR,
ρL ∈ [0, 1/2[. In this case, two phases with different ρB, namely ρB = ρL and ρB = ρR

can coexist. This may remind us of the situation of a liquid in equilibrium with its
vapor phasewithin a closedvessel. They are separated fromeachother by an interface,
i.e. the surface of the liquid. Thus, in analogy, we may in the ASEP as well expect
the occurrence of interfaces or “domain walls”, i.e. of boundaries between different
phases. Indeed these domain walls separating different phases appear for reservoir
densities on the first-order transition line. An example of a corresponding density
profile with a domain wall is shown in Fig. 9.5a. This profile was obtained from a
kinetic Monte Carlo (KMC) simulation, where the fluctuating occupation numbers
ni in the stationary state were averaged over a suitable time window. The domain
walls in the ASEP resemble shock fronts in Burger’s turbulence [28] and traffic jam
models.

Obviously, there is no reason why the sudden step in the mean site occupancy
(density) should occur at a certain position as, for example, the one shown in
Fig. 9.5a around the site 0.5N � 100. In fact, the domainwall position is not fixed but
fluctuates in time. These fluctuations have been analyzed in detail using aBoltzmann-
Langevin approach [29]. Except for very small times, the domain wall position fol-
lows a random walk (see Chap. 2) process with a diffusion constant Dw. Hence,
by exploiting the Einstein relation (Eq. 2.5), the typical time for the domain wall
position to visit all sites of the channel with approximately equal probability is of the
order N 2/Dw. This implies that after an averaging of the occupation numbers over
time scales larger than N 2/Dw, the corresponding profile in Fig. 9.5a would appear
as a linearly increasing function from ρL to ρR.

The phase transitions are not a peculiar feature of one-dimensional systems.
Figure9.5b shows a snapshot of the site occupancies (particle configuration) from a
KMC simulation of a TASEP in two dimensions. As in the one-dimensional channel
sketched in Fig. 9.2b, the bias was applied in the x-direction from left to right, and
particles were injected from a reservoir L at the left system boundary and ejected to a
reservoir R at the right boundary. In the orthogonal y-direction no bias was applied,
i.e. the rates for jump upwards (positive y-direction) and downwards (negative y-
direction) were equal. Periodic boundary conditions with respect to the y-direction
were used, meaning that a particle attempting to leave the upper boundary by a jump
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Fig. 9.5 a Snaphot of the time-dependent density profile for reservoir densities ρL = 0.1 and
ρR = 0.9 on the first-order transition line between the LD andHD phases (see Fig. 9.3b). The profile
was obtained from aKMC simulation of a TASEPwith N = 200 sites by an averaging of occupation
numbers in a time window τ with ν−1 � τ � N 2/Dw. It is plotted here as a function of the quasi-
continuous variable x = i/N (i : lattice site number). b Snapshot of the occupation numbers in
a two-dimensional TASEP with N × N⊥ = 150 × 40 sites for reservoir densities ρL = 0.2 and
ρR = 0.8 on the first-order transition line. The configuration was obtained from a KMC simulation
with periodic boundary conditions in the direction perpendicular to the bias (see text for further
details)

in positive y-direction is inserted at the opposing site at the lower boundary, if that
site is empty. This amounts to a TASEP on an open channel forming a torus. By taking
averages over the mean occupation numbers of sites along the y-direction, it is easy
to show that the phase diagram in Fig. 9.3b is valid also for this two-dimensional
system. In the example shown in Fig. 9.5b, the reservoir densities were chosen as
ρL = 0.2 and ρR = 0.8, corresponding to a point on the transition line as in Fig. 9.5a.
In Fig. 9.5b, however, we can visualize the transition directly in the snapshot of the
particle configuration because the domain wall is much slower fluctuating. One can
show that the diffusion coefficient Dw of its position decreases as 1/N⊥ with the
width (number of sites) in the y-direction [30].
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9.3 Driven Lattice Gases with Repulsive Interactions

What happens if particle interactions beyond site exclusions are present in the driven
lattice gas? This questionwas first addressed in a specificmodel [31] and later studied
in a more general context for repulsive interactions V > 0 between nearest-neighbor
particles [32–34]. In this case, a particle configuration C = {ni } has an energy

E(C) = V
∑

i

ni ni+1 . (9.7)

It was shown that one can again restrict the analysis to the extreme case of unidi-
rectional jumps in order to capture the essential features with respect to the phase
transition between NESS [34].

In the presence of the nearest-neighbor interactions, the rates Γi for a jump from
site i to a vacant neighboring site (i + 1) depend on the occupation numbers left to the
initial and right to the target site, as illustrated in Fig. 9.6a, i.e. Γi = Γ (ni−1, ni+2).
For example, if ni−1 = 1 and ni+2 = 0, a particle on site i is pushed by its neighboring
particle on site (i − 1), leading to an increased jump rate. To the contrary, if ni−1 = 0
and ni+2 = 1, a particle on site i has to jump against the repulsive interaction with the
particle at site (i + 2), leading to a decreased jump rate. Considering the four different
possibilities of the occupation of the sites (i − 1) and (i + 2), and introducing the
hole occupation numbers ñi = 1 − ni for shorter notation, the current flowing from
site i to site (i + 1) can, in generalization of Eq. (9.1), be written as

Fig. 9.6 a Illustration of the dependence of the jump rates on the occupation numbers in a one-
dimensional driven lattice gas with nearest-neighbor interactions. b Current-density relation for
three different strengths V = 0, V = Vc, and V = 2Vc of the repulsive nearest-neighbor interaction
in the case where the jump rates are given by the Glauber rates in Eq. (9.9); Vc is the critical value,
where the current-density relation develops a double-hump structure
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ji =
∑

l=0,1

∑

m=0,1

p4(ni−1 = l, ni = 1, ni+1 = 0, ni+2 = m)Γ (l,m)

= 〈ñi−1ni ñi+1ñi+2〉Γ (0, 0) + 〈ni−1ni ñi+1ñi+2〉Γ (1, 0)

+ 〈ñi−1ni ñi+1ni+2〉Γ (0, 1) + 〈ni−1ni ñi+1ni+2〉Γ (1, 1) . (9.8)

Here p4(ni−1 = l, ni = 1, ni+1 = 0, ni+2 = m) is the joint probability of finding site
i to be occupied, site (i + 1) to be empty, and the sites (i − 1) and (i + 2) to have
occupations according to the values l and m, respectively. As in Eq. (9.1), we have
replaced these joint probabilities in Eq. (9.8) with the corresponding averages over
products of occupation numbers in the NESS.

The system is considered to be in contact with a heat reservoir at temperature
T and we use the thermal energy kBT , where kB is the Boltzmann constant, as our
energy unit (kBT = 1, V/kBT = V ). The Glauber rates [35]

Γ (ni−1, ni+2) = 2ν

exp[(ni+2 − ni−1)V ] + 1
(9.9)

are taken as jump rates, which, in the absence of the interaction (V = 0), reduce to
Γ (ni−1, ni+2) = ν.

9.3.1 Current-Density Relation in the Bulk

In a bulk (ring) system, correlations and densities are translationally invariant (mod-
ulo N ) in the NESS. To derive the relation between the density and the current, we
need to express the correlations between occupation numbers in Eq. (9.8) by the
density ρ = 〈ni 〉. As mentioned above, this in general is a difficult task, because
there are no universal laws providing the probabilities for the particle configurations
C (or microstates) in NESS. However, we can take advantage here of a remarkable
fact that is valid in one dimension, namely that for rates satisfying the relations

Γ (0, 1) = Γ (1, 0) e−V , (9.10a)

Γ (0, 0) + Γ (1, 1) − Γ (0, 1) − Γ (1, 0) = 0 , (9.10b)

the probability distribution for the configurations in the NESS becomes the equilib-
rium Boltzmann distribution [34, 36, 37], i.e. P(C) ∝ exp[−E(C)] with E(C) from
Eq. (9.7). Since the Glauber rates in Eq. (9.9) satisfy Eqs. (9.10a) and (9.10b), the
correlations between occupation numbers in Eq. (9.8) equal the equilibrium correla-
tions in the corresponding one-dimensional Ising model, which can be calculated by
various means, as, for example, the transfer matrix technique [38]. As a result, one
finds [34]
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jB(ρ) = 2ν

[
(
ρ − C (1)

)2 2 f − 1

2ρ(1 − ρ)
+ (

ρ − C (1)
)
(1 − f )

]

, (9.11)

where f = 1/[exp(V ) + 1] = Γ (0, 1)/2ν, and

C (1) = 〈nini+1〉eq
= 1

2(1 − e−V )

[
2ρ(1 − e−V ) − 1 +

√
1 − 4ρ(1 − ρ)(1 − e−V )

]
(9.12)

is the average of the product of two occupation numbers at neighboring sites in
equilibrium.

Figure9.6b shows the current-density relation for three different interaction
strengths V . Because the bulk dynamics is particle-hole symmetric, jB(ρ) = jB(1 −
ρ). For V → 0, jB(ρ) approaches the parabola jB = νρ(1 − ρ) from Eq. (9.4) for
particles with site exclusion only. For large V , a minimum in the current must occur
at half filling ρ = 1/2, because the preferred particle configurations then correspond
to staggered arrangements of occupied sites and holes (antiferromagnetic order-
ing). In such configurations, jumps have a very small rate ∝ exp(−V ) that vanishes
in the limit V → ∞. Moreover, because jB(ρ) → 0 for ρ → 0 (or ρ → 1) and
jB(ρ) = jB(1 − ρ), the appearance of a minimum at ρ = 1/2 must go along with
the appearance of two maxima at densities ρ�

1,2 with ρ�
2 = 1 − ρ�

1 . An analysis of
Eqs. (9.11) and (9.12) yields that the corresponding double-hump structure in the
current occurs for V exceeding the critical value

Vc = 2 ln 3 ∼= 2.20 , (9.13)

and that the two maxima for V > Vc occur at

ρ∗
1,2(V ) = 1

2
∓

√
√
√
√3

4
− 1

2

√
2eV

eV − 1
. (9.14)

In Fig. 9.6b, the current-density relation is displayed for V = 0, V = Vc, and V =
2Vc.

9.3.2 Phase Diagram for Bulk-Adapted Couplings

How do the interactions influence the phase transitions between NESS if the driven
lattice gas is brought into contact with two particle reservoirs L and R at the left
and right boundary? One answer to this question is readily provided by applying the
minimum and maximum current principles, Eq. (9.6), to the current-density relation
(9.11). In the strong interaction regime V > Vc, this yields a phase diagram with
in total seven phases, where two of them are “left-boundary phase” with ρB = ρL,
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Fig. 9.7 NESS phase diagrams of driven lattice gases with nearest-neighbor interactions for a
bulk-adapted couplings and b equilibrated-bath couplings to the particle reservoirs. The interaction
strength is V = 2Vc. Solid lines indicate first-order transitions and dashed lines second-order tran-
sitions. The shaded area in (a) marks a region, where the two maximum current phases coexist. The
lines in (b) refer to analytical calculations based on the time-dependent density functional theory
of lattice fluids [34] and the circles mark the results from kinetic Monte Carlo simulations

two are “right-boundary phase” with ρB = ρR, two are maximum current phases with
either ρB = ρ�

1 or ρB = ρ�
2 , and one is a minimum current phase with ρB = 1/2. The

diagram for V = 2Vc, corresponding to the curve with the double hump in Fig. 9.6b,
is shown in Fig. 9.7a. Solid lines separating phases in this figure mark transitions of
the first order, and dashed lines indicate transitions of second order. As a consequence
of the particle-hole symmetry in the bulk dynamics, the phase diagram, as the one
in Fig. 9.3b, exhibits a symmetry with respect to the off-diagonal.

However, as discussed in Sect. 9.2.2, the application of the minimum and maxi-
mum current principles requires the density profiles to be monotonically varying. In
general, this condition is not fulfilled for the system-reservoir couplings in the pres-
ence of interactions. Analogous to the case of equilibrium systems, density oscilla-
tions typically occur at the system boundaries [32, 33] due to the effects of modified
interactions close to the boundaries, as, e.g. caused by missing neighbors. The mod-
ified interactions change the rates involved in the injection and ejection of particles
compared to the rates for jumps in the bulk, as illustrated in Fig. 9.8. At the left
boundary, these rates are the injection rate ΓL(n2) that for nearest-neighbor interac-
tion should depend on the occupation at site i = 2 and the rate Γ1(n3) that depends
only on the occupation at site i = 3 due to the missing neighbor to the left. Analo-
gously, at the right boundary, the modified rates are ΓN−1(nN−2) and ΓR(nN−1). A
physical choice of these rates is discussed in the next Sect. 9.3.3. It leads to another
phase diagram with ρL and ρR as control parameters, as exemplified in Fig. 9.7b.

An interesting question is whether it is possible to define the rates at the system
boundaries in such a manner that the phase diagram predicted by the minimum and
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Fig. 9.8 Illustration of the rates involved in the injection and ejection of particles in the driven
lattice gas with nearest-neighbor interactions and unidirectional bias

maximum current principles becomes valid. This is indeed possible as will be shown
now. The guiding principle is to adapt the dynamics near the reservoirs with densities
ρL,R to the bulk dynamics of a system with density ρ = ρL,R. To be specific, let us
consider the left reservoir with density ρL and the injection rate ΓL(n2) to a vacant
site n1 = 0, where the occupation n2 corresponds to the site right of the target site of
a jump. To adapt this rate to the bulk dynamics, we consider a bulk system of density
ρ = ρL and a jump in the system’s interior from a site i to a vacant site (i + 1) (ni+1 =
0)with neighbor occupation ni+2. Such a jump can occur only if the site i is occupied.
Its rate is either Γ (0, ni+2) for ni−1 = 0 or Γ (1, ni+2) for ni−1 = 1. For given occu-
pancies (ni+1=0, ni+2), the occupancies (ni−1=0, ni =1) and (ni−1=1, ni =1)
occur with the conditional probabilities p2|2(ni−1=0, ni =1|ni+1=0, ni+2; ρL, V )

and p2|2(ni−1=1, ni =1|ni+1=0, ni+2; ρL, V ), respectively, where the explicit des-
ignation ofρL andV reminds us that the conditional probabilities are for a bulk system
with densityρ = ρL and particle interactions V . Because these probabilities are trans-
lationally invariant in the bulk, we can write them simply as p2|2(01|0n2; ρL, V ) and
p2|2(11|0n2; ρL, V ), where we set ni+2 = n2. Accordingly, we obtain

ΓL(n2) = p2|2(01|0n2; ρL, V )Γ (0, n2) + p2|2(11|0n2; ρL, V )Γ (1, n2) . (9.15a)

With the same type of reasoning, we find

Γ1(n3) = p1|3(0|10n3; ρL, V )Γ (0, n3) + p1|3(1|10n3; ρL, V )Γ (1, n3) , (9.15b)

where p1|3(m1|m2 m3 m4) is the probability in a bulk system of finding an occupation
m1 at site (i + 1) for given occupations (m2 m3 m4) at sites (i + 2), (i + 3), and
(i + 4). Analogously, bulk-adapted rates ΓR(nN−1) and ΓN−1(nN−2) can be defined.

The specification of the bulk-adapted rates here extends the preliminary con-
siderations in Sect. 9.2.2. Its underlying concept can be generalized to even more
complicated situations including interactions of longer range and periodically driven
diffusion in time-dependent potentials [21]. In all these cases, KMC simulations
with the bulk-adapted rates have shown that phase diagrams of NESS agree with the
predictions of the minimum and maximum current principles.

Since the bulk-adapted couplings to the reservoirs are in general not physical
(except for the simplest case of the ASEP for α, β ≤ ν), one may ask why these
couplings should be useful. The reason is as follows. Having a bulk region of constant
(or nearly constant) density ρB in the system’s interior, a slightly enlarged regionmay
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be defined, where the density profile approaches the bulk region monotonically. The
densities at the boundaries of this enlarged region can be used as effective densities
[31]. Application of the minimum and maximum current principles with respect
to these effective densities as “boundary densities” then will consistently provide
the correct NESS phase with the order parameter ρB. This reasoning shows that
all possible phases are predicted by applying the minimum and maximum current
principles to the bulk current-density relation. The bulk-adapted specification of
the rates involved in the injection and ejection of particles then provides a means
to actually generate all these possible NESS phases in a systematic and controlled
manner.

We conclude this section by noting that a study of the density profiles in the various
phases of the diagram shown in Fig. 9.7a yielded characteristic features that agree
with that found in the phases of the ASEP for V = 0 [39]. In the boundary phases,
the profiles decay exponentially toward the bulk value ρB, with possible power-law
corrections, and in the minimum or maximum current phases, the decay follows
power laws.

A new phenomenon occurs in the parameter region ρL > ρ�
2 ∧ ρR < ρ�

1 marked
by the shaded area in Fig. 9.7a. In this region, the maximum current phases with
ρB = ρ�

1 and ρB = ρ�
2 coexist. Similar to the density profile for the case of the two

coexisting boundary LD and HD phases in Fig. 9.5a, a domain wall appears in the
system, but its mean position appears to be pinned at a location that depends on ρL

and ρR. Also, the width of the fluctuations around the mean position depends on the
value of the reservoir densities. A detailed analysis of this coexistence of two self-
organized phases, in particular of the mean positions and fluctuations of the domain
wall, is lacking yet and shall be pursued in the future.

9.3.3 Phase Diagram for Equilibrated-Bath Couplings

As discussed above, in the NESS of driven lattice gases with interactions, there
typically appear oscillations in the density profiles in regions close to the parti-
cle reservoirs, if the rates at the system boundaries are different from the particular
bulk-adapted ones. For example, when the particle reservoirs are represented by equi-
librated ideal Fermi gases with chemical potentials μL and μR, giving the reservoir
densities

ρL,R = 1

exp(−μL,R) + 1
, (9.16)

a natural form of the rates at the boundaries is [34]

ΓL(n2) = ρL

2ν

exp(n2V − μL) + 1
, (9.17a)
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ΓR(nN−1) = (1 − ρR)
2ν

exp(−nN−1V + μR) + 1
, (9.17b)

Γ1(n3) = 2ν

exp(n3V ) + 1
= Γ (0, n3) , (9.17c)

ΓN−1(nN−2) = 2ν

exp(−nN−2V ) + 1
= Γ (nN−2, 0) . (9.17d)

The rates in Eqs. (9.17c) and (9.17d) have the same form as the bulk rates given in
Eq. (9.9), where the missing neighbors are accounted for by vanishing occupation
numbers. The injection and ejection rates in Eqs. (9.17a) and (9.17b) correspond
to Eq. (9.9), if the particles in the reservoirs are assigned the “site energies” μL,R.
The additional factors ρL and (1 − ρR) in Eqs. (9.17a) and (9.17b) take into account
the filling of the baths. Overall, Eq. (9.17) gives transition rates that resemble forms
resulting from Fermi’s golden rule [40]. In the following, we will refer to these
system-reservoir couplings as the “equilibrated-bath rates”.

The phase diagram for equilibrated-bath rates looks quite different from that for
the bulk-adapted rates. As an example we show in Fig. 9.7b the diagram for the same
interaction strength V = 2Vc as in Fig. 9.7a. Compared to Fig. 9.7a, five instead
of seven phases appear, where one is a minimum current phase with ρB = 1/2, one
is a maximum current phase with ρB = ρ�

1, one is a left-boundary phase, and two
are right-boundary phases. Because of the mismatch between boundary and bulk
dynamics for the equilibrated-bath couplings, the bulk density ρB in the boundary
phases no longer equals one of the reservoir densities, but rather is a function of either
ρL and ρR, as indicated in Fig. 9.7b. Note also that the diagram in Fig. 9.7b is not
symmetric with respect to the off-diagonal, which seems to violate the particle-hole
symmetry in the system.

Although the phase diagram in Fig. 9.7b looks quite different from that in
Fig. 9.7a, there is in fact a general connection between all phase diagrams plotted in
dependence of the control parameters ρL and ρR. This is because from a theoretical
point of view, the NESS phases are in fact controlled by the complete set of rates Γη

(η = L , R, 1 or N − 1, cf. Fig. 9.8) governing the dynamics at the boundaries. In this
higher dimensional space of theoretical control parameters Γη, the phase diagram
is unique, and for nearest-neighbor interactions exhibits a symmetry reflecting the
particle-hole symmetry in the overall dynamics [34].

In applications, as, e.g. a molecular wire attached to some metal electrodes, the
system-reservoir couplingswill be given by some setup, and the experimentalist most
likely will be able to influence the boundary dynamics in a controlled manner by
changing ρL or ρR (or μL and μR). One thus can regard ρL and ρR as the experimental
control variables. The connection between the unique phase diagram in the Γη-
space and the non-unique diagrams in the (ρL, ρR)-space is given by the functional
dependence of the rates Γη on the reservoir densities. For example, in the case of
the bulk-adapted couplings, we have ΓL = hba

L (ρL) and Γ1 = hba
1 (ρL) with functions

hba
L (ρL) and hba

1 (ρL) defined by Eqs. (9.15) (note the conditional probabilities in these
equations are fixed onceρL and V are given), while in the case of the equilibrated-bath
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couplings, we have ΓL = heb
L (ρL) and Γ1 = heb

1 (ρL)with functions heb
L (ρL) and heb

1 (ρL)

defined by Eqs. (9.16) and (9.17). Analogously, ΓR and ΓN−1 are parameterized
by ρR. This means that reservoir densities (ρL, ρR) correspond to unique points in
the Γη-space, but these points are in general different for different system-reservoir
couplings. The distinct phase diagrams in Fig. 9.7a, b are thus originating from
different projections of submanifolds in the Γη-space onto the (ρL, ρR)-plane. For the
bulk-adapted couplings, all phases in the Γη-space appear in this projection.

The foregoing discussion explains why the phase diagrams in dependence of ρL

and ρR can be quite different for different system-reservoir couplings. It remains to
develop a theory, which can predict the (unique) phase diagram in the Γη-space.
To tackle this problem, a kinetic theory was developed [32, 34] based on the time-
dependent density functional theory of lattice fluids [41, 42] and exact results for
density functionals in one dimension [43]. The key assumption in this theory is
that relations between correlation functions and densities in the NESS can be rep-
resented on a local scale by the corresponding relations in equilibrium systems (for
details, see Ref. [34]). Representative results of this theory are marked by the lines in
Fig. 9.7b and agree well with the results from kinetic Monte Carlo simulations that
are represented by the circles.

9.4 Conclusions

Non-equilibrium steady states generated by driven diffusion show a rich variety of
self-organized structures. In this chapter, we have reviewed recent findings on the
phase structure of NESS in driven lattice gases coupled to the particle reservoirs.
After giving an introduction to the phase transitions between NESS in the asym-
metric simple exclusion process, we discussed the physics of these transitions if
repulsive nearest-neighbor interactions between the particles beyond site exclusions
are included in the process.

Our key findings can be summarized as follows: Due to the effect of modified
particle interactions at the system-reservoir boundaries, the minimum and maximum
current principles are no longer sufficient to predict phase diagrams of NESS based
solely on the current-density relation in the bulk. These principles are nevertheless
useful to predict all possible NESS phases that can appear in the driven diffusion
system. A systematic procedure exists to define bulk-adapted system-reservoir cou-
plings such that the phase diagram predicted by the minimum and maximum current
becomes valid. In this way, one can generate all possible NESS phases and investi-
gate their properties. In applications, there will be other system-reservoir couplings
present and the phase diagrams for these couplings, plotted as a function of the
experimentally controllable parameters, generally differ from that predicted by the
minimum and maximum current principles. From a theoretical point of view, one
can consider these differing phase diagrams as projections of submanifolds in one
unique phase diagram in a high-dimensional space onto a lower dimensional space
of the experimentally controllable variables. The high-dimensional space is spanned



9 On Phase Transitions in Biased Diffusion of Interacting Particles 173

by all parameters needed for the complete specification of the system-reservoir cou-
plings. To calculate the phase diagram for the repulsive nearest-neighbor interactions,
good results were obtained by using a kinetic approach based on the time-dependent
density functional theory of lattice fluids.

These findings and the underlying methods of analysis were recently shown to
be relevant also for understanding the occurrence of phase transitions in periodi-
cally driven NESS [21, 22]. This in particular has important consequences for the
physics of Brownian motors that have found widespread applications ranging from
cellular ion pumps to quantum ratchets [44, 45]. For Brownian motors operat-
ing on interacting particles, it was argued that the occurrence of phase transition
between NESS is a generic feature irrespective of its type. The knowledge of the
phase structure is important to determine control parameters for optimal motor effi-
ciencies, and extremal current phases can be utilized to make the motor-generated
particle flow robust against fluctuations of the control parameters. Further develop-
ments include the application to multiple-phase structures in traffic flows [46], to the
linear-response behavior of NESS [47], as well as future studies on the connection
between the non-equilibrium physics of classical driven diffusion systems and the
equilibrium quantum physics of strongly correlated spinless fermions [17, 48, 49].

Hopping models on lattices, as discussed here, correspond to a coarse-grained
description of continuous-space Brownian motion in periodic potentials with ampli-
tudesmuch larger than the thermal energy. The sites of the lattice in such a description
represent the minima of the periodic potential. For the diffusion of single particles,
the effective jump rate between sites, i.e. neighboring potential wells, is given by the
inverse Kramers time [50].

In view of this relation between discrete and continuous-space dynamics, driven
Brownian motion of hard spheres in a sinusoidal potential was studied as a gener-
alization of the ASEP on a lattice [51, 52]. This Brownian ASEP (BASEP) should
be directly explorable by experiments and it constitutes a minimal model for under-
standing collective particle transport through periodic structures, with applications
to microfluidic devices [53–55] and to particle motion generated by optical [56]
and/or magnetic fields [57–59]. Many-particle Brownian motion in fluids is affected
also by hydrodynamic interactions, which describe how the flow generated by the
motion of one particle is influencing the motion of another particle. These hydro-
dynamic interactions can effectively change the height of local potential barriers.
While in force-driven systems, a reduction of local barriers was reported [60], a
barrier enhancement has been found recently in flow-driven systems [61].

The character of NESS in the BASEP is strikingly different from that in the
ASEP. This is due to the role of the hard sphere diameter σ in the continuous-space
dynamics and how it compares with the wavelength λ of the periodic potential.
With respect to a system of non-interacting particles, the current in the BASEP is
enhanced for small σ/λ ratios due to a barrier reduction effect arising from multi-
occupation of potential wells. Larger σ/λ ratios cause a suppression of the current
because of blocking effects. For a narrow interval of particle diameters σ , these
blocking effects lead to current-density relations similar to those in the ASEP. An
exchange-symmetry effect causes the current to be identical to that of non-interacting
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particles for commensurable lengths σ = nλ, n = 1, 2, . . .. The versatile shapes of
current-density relations in the BASEP lead to phase diagrams of NESS with up to
five different phases, where the structure of the phase diagrams changes with varying
σ/λ ratio. Collective transport properties seen in the BASEP can be identified also
in the local dynamics of individual transitions between potential wells [62], and
they show up in driven diffusion of particles with interactions other than hardcore
[63, 64].

Recently, it has been found that periodic sequences of cluster movements appear
in the BASEP, where the clusters are formed by particles in contact [65, 66]. These
period collective movements represent propagating solitons of local density fluctua-
tions in overdamped Brownian motion. In overcrowded systems, where the number
of particles is larger than the number of potential wells, the solitons lead to surpris-
ingly high particle currents at low temperatures, where single-particle transport is
not possible [65]. These high currents occur if the particle size is close to certain
rational fractions of the wavelength of the periodic potential. For particle numbers
close to but below a complete filling of the potential wells, solitons are generated by
thermal fluctuations and give rise to a novel scaling behavior of currents with respect
to particle and system size [66].
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Part III
Technology



Chapter 10
Diffusive Spreading of Molecules
in Nanoporous Materials

Christian Chmelik, Jürgen Caro, Dieter Freude, Jürgen Haase,
Rustem Valiullin, and Jörg Kärger

10.1 Introduction

Materials with pore diameters in the range of 1–100 nm are referred to as
“nanoporous” [1]. They are found in nature and may be fabricated artificially with
both inorganic and organic frameworks. Their ability to interact with molecules
and ions on their large inner surface offers ideal prospects for their application in
matter upgrading, including catalysis, separation, purification and ion exchange (see
Fig. 10.1) [2, 3]. The purposeful design of such materials has given rise to tremen-
dous productivity enhancement. This is in particular true with zeolites, an inorganic
nanoporous material distinguished by its regular pore structure with extensions in the
range of molecular sizes. The annual benefit worldwide by their exploitation in only
petroleum refining has, e.g. been estimated to be at least 10 billion US dollars [4].
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Fig. 10.1 Nanoporous materials (bottom right), available as crystallites (bottom middle), often in
compressed form (bottom left), are key elements in refineries and other chemical plants for matter
upgrading (top). The top picture was cut from an image byWalter Siegmund, licensed under CCBY
2.5 [5]. Bottom pictures reproduced with permission from Ref. [6], copyright (2013) Chemiewerk
Bad Köstritz GmbH and Wiley-VCH Verlag GmbH & Co. KGaA

The gain in value-added products by the use of such materials can clearly never
be higher than allowed by the diffusion rate of the involved molecules. The intracrys-
talline diffusivity (i.e. the rate of molecular migration within the individual particles
of thematerial) does thus become a key number for the efficiency of the given process.

Simultaneously, however, within the context of the book, guest molecules in
nanoporous materials offer ideal opportunities for illustrating and quantitating
spreading phenomena. In what follows we shall be able to refer to quite a number
of items which have been mentioned already in Chap. 2 on introducing into the
theoretical foundation of spreading phenomena: Completely different from the situ-
ation with human societies or ecological systems, molecules in nanoporous mate-
rials offer the unique opportunity of observing spreading phenomena under “initial”
and “boundary” conditions which are largely controlled by the investigator. This
includes, in particular, the option of repeating experiments under essentially iden-
tical starting conditions as well as a thoughtful variation of the spreading conditions.
Such variations may quite easily be achieved by changes in temperature or molecular
concentration (“loading”), with the latter caused by a variation of the partial pressure
of the guest molecules in the surrounding atmosphere. Similarly, also variations in
the type of guest molecules (by considering, e.g. molecules of different diameter,
chain length or polarity) and of the host material (in particular by surface modifica-
tion) leads to a variation in the spreading conditions. The option of such variations
facilitates the search for fundamental laws and, eventually, their final proof.
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As a consequence of their thermal energy, atoms and molecules are subject to
a continuous irregular movement, referred to as diffusion, in all states of matter.
Thus, in addition to nanoporous host–guest systems, the book does as well deal with
diffusion and spreading phenomena in, e.g. solution and suspension (Chap. 8), solids
(Chap. 13), biological systems (Chaps. 5 and 6) and our atmosphere (Chap. 7). As
a common feature of condensed matter, it is often the structure of the system itself
which is affected bymass transfer. Nanoporous host–guest systems are distinguished
also in this respect since the host framework generally turns out to remain, in a very
good approach, unaffected by amount and nature of the guest molecules.

All what has been said so far necessitates, as a matter of course, the possibility
to obtain reliable and unambiguous information on mass transfer in such systems.
Diffusion measurements with molecules in nanoporous materials have been conven-
tionally performed by a (macroscopic) recording of mass gain or release upon pres-
sure variation in the surrounding atmosphere. Statements on diffusion had to be
based therefore on model assumption. The more recent application of microscopic
measuring techniques has shown that these assumptions have been unjustified in
numerous cases, giving rise to a paradigm shift in our understanding of molecular
spreading and diffusion in nanoporous materials [1, 7]. Sections 10.2 and 10.3 intro-
duce the fundamentals of these novel techniques. The examples given in the further
sections of this chapter have in particular been chosen for exemplifying some of
the fundamental laws of spreading and diffusion which have been introduced in
Chap. 2. They are, moreover, thought to introduce the more specific cases consid-
ered in Chap. 11 which deals, among others, with different strategies for technology
improvement by transport enhancement in nanoporous materials.

10.2 Monitoring Molecular Spreading by Pulsed Field
Gradient NMR

Here, we confine ourselves to a short introduction to the principles of diffusion
measurement by the pulsed field gradient (PFG) technique of NMR (also known as
pulsed gradient spin-echo (PGSE) NMR, NMR diffusometry and q-space imaging)
and refer, for a more extensive treatise, to Chap. 12. For illustrating the principle of
measurement it is sufficient to adopt the classical view of nuclear magnetic resonance
(NMR) [1, 7, 8]. At exactly the same result one would also arrive by a rigorous
treatment on considering the expectation values of the quantummechanical operators
corresponding to the relevant physical quantities. Most atoms, notably hydrogen
which is mainly considered in PFG NMR diffusion studies, possess a nuclear spin. It
bears both a magnetic dipolar moment (like the needle of a compass) and a mechanic
momentum (like a gyroscope). Thus, similarly to a spinning gyroscope under the
influence of gravity, nuclear spins perform a rotational (“precessional”) motion as
soon as they are placed in a magnetic field. The rotational frequency is given by the
relation
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ω = γ B. (10.1)

B and γ denoted, respectively, the intensity of the magnetic field and a factor of
proportionality characteristic of the given nucleus, referred to as the gyromagnetic
ratio. The superposition of many rotating nuclear spins gives rise to a rotating macro-
scopic magnetization. This rotatingmagnetization induces a voltage in a surrounding
coil, known as the physical principle of an electric generator. It is recorded as the
NMR signal.

In PFG NMR diffusion measurements, a constant magnetic field B0 is superim-
posed, over a short time interval δ, by an additional, inhomogeneous field

Badd = gx, (10.2)

the “field gradient pulses”. By combining Eqs. (10.1) and (10.2), the resonance
frequency is seen to become, during this time interval, a well-defined function of the
spatial coordinate x

ω(x) = γ (B0 + gx) = γ B0 + γ gx . (10.3)

With the second equation, the rotational frequencies of the spins are seen to vary
with their location x within the sample, with values above and below the average
value γ B0 if the zero point (x = 0) of the space scale is placed in the centre of the
sample. These differences lead to a spreading of the direction of the individual spins.
The macroscopic magnetization resulting as a superposition of the magnetizations
of the individual spins does, correspondingly, decrease. It vanishes totally when,
eventually, the spins show in all directions.

In combination with an appropriately chosen sequence of high-frequency pulses
(with the frequency as given by Eq. (10.1)), however, one is able to re-establish the
macroscopicmagnetization by applying an identical second field gradient pulse. This
re-establishment is caused by refocusing the individual spins. As a prerequisite of
complete refocusing, each spin has to remain fixed in space. Otherwise, there remains
a phase difference γ gxδ, with x now denoting the difference in the positions which
the given nuclear spin (and, hence, the atom/molecule, to which it belongs) occupies
during the first and second gradient pulses. The thus displaced spin does contribute to
the macroscopic magnetization with only its projection on the mean direction of all
spins, i.e. with cos( γ gxδ). The attenuation of the NMR signal, i.e. the ratio between
the signals with and without gradient pulses applied, is thus immediately seen to be
given by the relation

S(gδ, t)

S(0)
=

∞∫

−∞
P(x, t) cos(γ gxδ)dx . (10.4)
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P(x, t) denotes the probability that an arbitrarily selected molecule within the
sample is shifted (during t, given by the separation between the two gradient pulses)
over a distance x (in the direction of the field gradient applied). We recollect that
exactly this probability has been considered already in Fig. 2.4 of Chap. 2 where, for
homogenous systems, it has been calculated to be (Eq. 2.10)

P(x, t) = 1√
4πDt

exp

(
− x2

4Dt

)
. (10.5)

Inserting Eq. (10.5) into Eq. (10.4) yields

S(gδ, t)

S(0)
= exp

(−γ 2g2δ2Dt
)
. (10.6)

The diffusivityD is thus seen to immediately result from the signal attenuation in
PFG NMR experiments.

In the context of PFGNMR, P(x, t) is referred to as the mean propagator [8–10].
With Eq. (10.4), it is seen to be nothing else than the Fourier transform of the PFG
NMR signal attenuation. In this way, it becomes directly experimentally accessible.
Figure 10.2 illustrates the various facets of information on molecular spreading thus
attainable with beds of nanoporous particles.

Fig. 10.2 Propagator representation of PFG NMR for visualizing diffusive molecular spreading
(ethane) in beds of nanoporous crystals (zeolites of type NaCaA) of two different sizes (radius R).
The plots show the increase in spreading with increasing time. Due to symmetry, only one half of the
distribution curves are shown (after [9]). Ethane concentration in the gas phase between the crystals
is negligibly small in comparison with the intracrystalline concentration. Gas and adsorbed phase
are in equilibrium (measurement with fused sample tubes). Reproduced with permission from Ref.
[11], copyright (2010) The Royal Society of Chemistry
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Though nanoporous materials, i.e. holes in a framework, are not homogeneous
in the strict sense of the word, Fig. 10.2a is seen to reveal the pattern as intro-
duced already with Fig. 2.4 in Chap. 2 for spreading in homogeneous systems. This,
however, is an immediate consequence of the given experimental conditions ensuring
that the molecular displacements are large enough in comparison with the pore diam-
eters and sufficiently small in comparison with the extension of the nanoporous
particles/crystals [12].

It is no problem, therefore, to discuss mass transfer in terms of concentrations and
fluxes (as appearing in Eqs. 2.6–2.13) by considering unit volumes and areas which
notably exceed the pore sizes, but are small enough in comparison with the crystal
sizes. The situation becomes completely different in Fig. 10.2b, where molecular
displacements are confined to the crystal sizes. Here, the PFGNMR is seen to provide
information on structural parameters (like the size of the crystals/compartments
which the diffusants are confined to), operating not unlike a microscope. Hence,
this type of analysis has become popular under the term dynamic imaging [8, 10].

At sufficiently high temperatures, in Fig. 10.2d, the guest molecules are shown
to leave, during the covered observation times, the individual crystals. Now, a suffi-
ciently large amount of them is able to get, from the lower level of potential energy
within the nanoporous crystals to the higher one in the surrounding atmosphere.
Correspondingly, one is following molecular spreading over the whole batch of crys-
tals rather than within only the interior of each individual crystal as considered in
Fig. 10.2a, b. With the larger crystals considered in Fig. 10.2c, one is even able to
distinguish between two constituents of the distribution curves, namely a narrow one
referring to those molecules which, during the observation time, did not exchange
their positions between different crystals, and a broad one, referring to the other ones.
Their fraction (given by the area under the broad constituent) is, expectedly, seen to
increase with increasing time.

The measurement of short mean molecular displacements, typically in the
range of a few micrometres and below, has remained a challenging task into our
days.Measurement of diffusion path lengths which are significantly exceeded by
the crystal sizes, however, is an imperative necessity for an unambiguous measure-
ment of genuine intracrystalline diffusion. Thus, it was a most fortunate coincidence
that the first PFG NMR diffusion measurements in Leipzig could be performed
with zeolite crystallites with diameters up to 100 µm,produced in Prof. Zhdanov’s
famous laboratory in Leningrad, Soviet Union. Nowhere in the world, at this time,
larger zeolite crystallites could be synthesized [13, 14]. Among the NMR techniques
used with the aim of being able to detect the shortest possible diffusion pathways
(see also Chap. 12), the application of pulsed field gradients under “magic angle
spinning”(MAS) conditions is particular promising [15] since it also allows selec-
tive diffusion measurements in multicomponent systems [16]. The investigation of
multicomponent diffusion is the focus of Sect. 10.5.
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10.3 Recording the Evolution of Concentration Profiles
by Microimaging

Knowledge of the molecular propagation probabilities as accessible by PFG NMR
does not automatically allow the prediction of the evolution ofmolecular distributions
within nanoporous materials. This type of information has most recently become
available by the introduction of microimaging by interference microscopy (IFM) and
IR microscopy (IRM) [1, 7, 17]. Figure 10.3 introduces their measuring principles.

IRM is based on the operation of a set of detectors arranged in a plane (“focal
plane array detector”) allowing the determination of the IR signal from areas of
ideally as small as 2.7 µm × 2.7 µm. Unavoidable disturbance by sample thickness
reduce spatial resolution, in reality, often to values around 5–10 µm. Characteristic
vibrational frequencies are employed for finger-printing the molecules under study
so that the intensity of the respective band in the spectra (figure top right) may
immediately be transferred into the corresponding concentrations (for more details,
see [11, 18]).

The determination of guest concentrations by IFM is based on their proportion-
ality with the refractive index of the material. Changes in guest concentrations do,
therefore, immediately appear in changes of the difference between the optical path-
ways through the crystal and the surroundings which are determined, as the primary
quantity, by the images of interference microscopy. Note that, as a consequence of
both measuring principles, it is in either technique the integral over the local concen-
tration in the observation direction rather than the local concentration itself which is

Fig. 10.3 Measuring principles of the techniques of microimaging: IR microscopy (IRM) and
Interference microscopy (IFM). Having placed the crystal under study (bottom centre) under the
microscope (left) information about intracrystalline concentration is deduced in IFM (top centre)
by comparing optical path lengths through the crystal and the surroundings and in IRM (top right)
from the intensity of the IR bands. As a result, one obtains a map of the concentration integrals in
z direction in the (x, y) observation plane (bottom right)
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recorded. Both coincide, however, as soon as guest fluxes in observation direction
are negligibly small in comparison with the perpendicular ones, since, in such cases
(implying the quite common case of parallel crystal faces on top and bottom), the
concentration remains uniform in observation direction and the concentration inte-
gral is simply the product of the local concentrationswith particle thickness.Absolute
values of the concentrations need anyway comparison with the data of measurements
of adsorption equilibria or theoretical predictions [3, 19]. Fluxes in observation direc-
tion may be excluded for nanoporous materials with channels arranged in only one
or two direction(s) or, in 3d pore systems, by sealing top and bottom faces.

For illustrating the wealth of information thus attainable, we refer to Fig. 10.4. It
shows, with different examples, the evolution of the distribution of guest molecules
within a nanoporous material. The situation in the chosen system is particularly
simple since molecules get into or leave this material mainly via a set of parallel
channels (referred to as 8-ring channels since their circumference is formed by 8
silicon (aluminium and phosphorous) atoms connected by oxygen bridges). Molec-
ular spreading may thus be represented in the simple 1d representations of Fick’s
first and second laws as given by Eqs. (2.6) and (2.9) or (2.14), respectively. The
cases considered are molecular uptake (i.e. filling of the material by increasing gas
pressure in the outer atmosphere: (a, c) and release (i.e. emptying by reducing the
external pressure): (b, d). The pressure steps applied are between 5 and 10 mbar
(a, b) and 0 and 40 mbar, respectively. The final concentrations of uptake are those
established in dynamic equilibrium with the outside atmospheres at the respective
pressure. Equilibrium concentrations in the given case are, at 40mbar, notably higher
than at 5mbar. At the boundary between the nanoporousmaterial and the surrounding
atmosphere, in addition, we have to take into account the possible existence of an
additional transport resistance. Such resistances prevent the guest concentration close
to the boundary from instantaneously assuming the equilibrium value. It is quantified
by the relation

jx = α
(
ceq − c(x = 0)

)
(10.7)

for guest fluxes leaving or entering the material, with c(x = 0) and ceq denoting,
respectively, the actual concentration close to the boundary and the concentration
in equilibrium with the external atmosphere. We note that infinitely high surface
permeabilities (α = ∞) automatically require boundary concentrations coinciding
with the equilibrium values (c(x = 0) − ceq = 0). Only then fluxes through the
surfaces (resulting, with Eq. (10.7), as 0× ∞) remain finite which, for a physically
reasonable quantity, has to be required.

In the representations shown in Fig. 10.4, the boundary concentrations are in
fact seen to notably deviate from the equilibrium values. Since the equilibrium and
boundary concentrations appear immediately from the profiles and since the flux
entering the system results by dividing the area between two subsequent profiles by
the respective time interval, surface permeabilities become immediately accessible
via Eq. (10.7) by direct measurement. The rate of molecular uptake and release was
in numerous nanoporous host–guest systems found to be affected by both the finite
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Fig. 10.4 Relative molecular uptake and release of methanol in ferrierite-type zeolites along the
8-ring channels: Comparison of simulated and experimental profiles for pressure steps a 5–10
mbar, b 10–5 mbar, c 0–40 mbar and d 40–0 mbar (after [20, 21]). The points refer to experimental
measurements, the lines are numerical solutions of Fick’s second lawwith concentration-dependent
transport diffusivities and surface permeabilities. By plotting the concentrations from top to bottom
for adsorption, in plots e and f profiles after selected times during ad- and desorption are shown in
a unified representation. Here, for simplicity, only one half of the profiles (starting with x = 23.8
µm in the crystal centre) is shown. Reprinted with permission from Ref. [22], licensed under CC
BY 3.0
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rate of permeation through the external surface and intracrystalline diffusion [23].
The existence of “surface barriers” did thus turn out to be the rule rather than the
exception.

As part of the discussion of the mechanisms that can lead to the formation of
surface barriers, also a model concept of asymmetric barriers was developed [24]. In
this model, the diffusion paths of the molecules are assumed to be different during
their adsorption and desorption so that the rates of adsorption and desorption might
be expected to be differently influenced by diffusion resistances in the surface layer.
This reasoning, however, is in conflict with the principle of microscopic reversibility
[25, 26]. Correspondingly, molecular dynamics (MD) simulations provided clear
evidence that any barrier-initiated reduction in the number of adsorption paths was
accompanied by an equivalent reduction in the number of desorption paths [27, 28].

Transient concentration profiles as shown in Fig. 10.4 are well known from stan-
dard diffusion textbooks [29] where they are used for visualizing the solutions of
the diffusion equation, Fick’s second law (Eqs. (2.9) and (2.14)) (coinciding, in its
mathematical form,with Fourier’s law of heat conduction). Their directmeasurement
with guest molecules within nanoporous materials, however, has become possible
during only the last few years, owing to the potentials of microimaging [1, 7, 17].
Depending on the uptake and release times of the host–guest systems under study,
such sets of profiles may be recorded in the time span of minutes to hours. This
means, in comparison with, e.g. the serial sectioning techniques applied in solid-
state diffusion studies [30], a dramatic enhancement in the speed of measurement
and, thus, in also the wealth of information.

In the context of our book, it might be allowed trying to transfer the phenomena
displayed in Fig. 10.4 into a totally different field. Specialists may forgive us for
our audacity. Let us consider, in a thought experiment, large woodland crossed by
two parallel rivers. The woodland is populated by a certain species (either animal or
plant) with an essentially constant population density (measured in species per unit
area) everywhere, except for the area between the two rivers (our “mesopotamia”,
which assumes the role of the zeolite crystallites in Fig. 10.4). The species are
unable to cross these rivers. Moreover, the population density in the range beyond
the two rivers (equivalent to the surrounding atmosphere in the uptake and release
experiments) is ensured to remain—by whatever mechanism—constant. Starting
with time 0, the species under consideration are able to cross the river via suitably
constructed “bridges” and, thus, to penetrate into “mesopotamia” where they, so far,
did not occur. Under such conditions the distribution of the new species may be
expected to follow the patterns shown in Fig. 10.4a, c. The reverse phenomenon of
molecular release might be simulated, in our hypothetical “habitat”, by replacing
the mechanism, we just implied for ensuring population constancy by another one
ensuring complete extinguishing of the species outside of “mesopotamia”. Now,
species distribution within “mesopotamia” should evolve similarly to the desorption
patterns shown in Fig. 10.4b, d.

As a main message of this comparison, spreading phenomena outside physics
and chemistry are immediately seen to be much more complicated. It is worthwhile
emphasizing therefore that, after efforts of research over more than a century [31], it
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was only owing to the quite recent advent of the microscopic techniques of diffusion
measurement that our modern view on molecular spreading in nanoporous materials
was established.

The evidence of information thus accessible becomes particularly obvious in the
3d plots shown in Fig. 10.4 e, f. Here, opposite for Fig. 10.4a, c, the increase
(c – c0) in concentration is plotted from top to bottom, resulting in plotting of
(c∞– c0) – (c – c0) ≡ c∞ – c. Thus, relative changes in concentration during adsorp-
tion, (c∞ – c)/(c∞ – c0) appear with exactly the same notation as applied for desorp-
tion in Fig. 10.4b, d. Plotted in this way, the curves with the small pressure steps
(Fig. 10.4e) are seen to essentially coincide or, in other words, the amounts adsorbed
and desorbed are similar. This is the situation well known from tracer exchange
experiments where one observes the exchange of labelled with unlabeled molecules
(which might be different isotopes with, essentially, identical diffusion properties).
Here, the total concentration (being the sum of the concentrations of both isotopes)
remains constant anywhere in the sample. The observation may be correlated with
the fact that Fick’s second law in the form of Eq. (2.9) is a linear differential equa-
tion. For this type of equation, the sum of solutions is a solution again. Therefore,
adding adsorption and desorption profiles initiated by reversed pressure steps must
be expected to also lead to a solution, i.e. a physically reasonable scenario. In the
given case, superposition reflects the simple case of invariance in surroundings and,
hence, in guest concentration.

Reciprocity in uptake and release does not appear anymore with the large pressure
step considered in Fig. 10.4c, d, f. Since the guest concentration, at equilibrium, must
be expected to increase with increasing pressure in the surroundings, the range of
concentrations considered in Fig. 10.4c, d, f does notably exceed that of Fig. 10.4a,
b, e. For our further discussion, we have to recollect that the diffusivity may, quite
generally, be a function of the concentration of the diffusants. With the diffusion
model considered in Sect. 2.1, Eq. (2.3), this concentration dependence might be
brought about by the dependence of the mean time between successive steps and/or
of the step length on the “density” of the diffusants. The effect of any concentration
dependence on the diffusivity (and, similarly, on the permeability) shall clearly be
the smaller, the smaller the covered concentration range. Thus, for the small pressure
step between 5 and 10 mbar, assuming a constant diffusivity may in fact be expected
being a good approximation. This is not the case anymore with the larger pressure
step from 0 to 40 mbar so that Fick’s second law must be applied in the form of
Eq. (2.14). In comparison with the smaller pressure step from 5 to 10 mbar, molec-
ular uptake is seen to be accelerated by about one order of magnitude while, most
astonishingly, the desorption rate remains essentially unchanged. The remarkable
impact of concentrations on diffusivity will concern us in more detail when, in the
subsequent section, we are going to ask for the “driving forces” of diffusion.
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10.4 The Driving Force of Diffusion

With Fick’s first law, Eq. (2.6), diffusion fluxes are seen to be caused by a gradient in
the concentration of the diffusing species under study. Onemight, therefore, consider
gradients in concentration quite generally as the “driving forces” for diffusive fluxes.
Though this is clearly true for homogeneous systems, just as a prerequisite for the
final equilibration of the diffusing species all over the system, it is not the case
anymore in heterogeneous systems. As a most illustrative example, we may think of
a liquid in equilibriumwith its vapour phase. Here, dramatic differences in concentra-
tions between the liquid and gaseous phases do, obviously, not give rise to diffusive
fluxes in the direction of decreasing concentration. The situation is thus seen to be
different from that considered by Fourier’s laws of heat conduction. Here, under
equilibrium conditions, the temperature is known to be uniform all over the system
so that gradients in temperature may in fact be considered as the “driving forces” for
heat fluxes.

In our search for the driving force of diffusion, we may adopt this reasoning
by starting with a quantity which—similarly to the local temperature with respect to
thermal equilibration—indicates equilibrium in composition. This quantity is known
as the chemical potential μ. From elementary thermodynamics, the chemical poten-
tial of a molecular species in an ideal gas phase at partial pressure p and temperature
T is known to be given by the relation

μg(p) = μg0 + RT ln (p/p0) (10.8)

with μg0 denoting a standard (coinciding with the chemical potential for pressure
p0). Being equal in all phases under equilibrium condition, the chemical potential
μ(c) of the guest molecules at guest concentration c in the adsorbed phase, i.e. within
the nanoporous host material, may thus—via Eq. (10.8)—be immediately noted as

μ(c) = μ0 + RT ln[p(c)/p0]. (10.9)

Here, p(c) stands for the (partial) pressure of the guest molecules in the
surrounding atmosphere in equilibrium with the actual guest concentration c. The
correlations p(c)—or, vice versa, c(p), referred to as the adsorption isotherm—are
experimentally accessible, e.g. by gravimetric measurement.Wemay now follow the
concept of diffusion as introduced by Maxwell [32], Stefan [33] and Einstein [34]
and put, later on, into the formalism of irreversible thermodynamics [19, 35–37] and
note the steady-state requirement for the flow velocity uA of component A (see, e.g.
Chap. 1 of Ref. [1])

f uA = −∂μA

∂x
(10.10)

as resulting by implying equality between the gradient of the chemical potential as
the driving force and an opposing frictional force. μA and f stand for the chemical
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potential of component A and a friction coefficient. Inserting Eq. (10.9) into (10.10)
and noting the flux as the product of concentration and velocity yields

jAx = uAcA = − RT

f

dlnpA

dlncA

dcA
dx

. (10.11)

The logarithmic derivative dlnpA
dlncA

≡ dpA/dcA
pA/cA

appearing in this relation is referred
to as the thermodynamic factor. Having noted the spatial derivative of the partial
pressure pA as the product of its derivative with respect to concentration and the
concentration gradient, Eq. (10.11) is seen to be of the structure of Fick’s first law,
Eq. (2.6). Comparing Eqs. (2.6) and (10.11) yields, for the transport diffusivity,

DT = RT

f

dlnp

dlnc
(10.12)

where the subscript A has been omitted since, in the given case, only a single
component is considered.

For self-diffusion (i.e. for tracer exchange between microdynamically completely
identical species A and A′ under uniform overall concentration c(x) = cA(x) +
cA′(x)), we have cA ∝ pA all over the sample, so that the relevant thermodynamic
factor dlnpA

dlncA
becomes 1. Now a comparison with Fick’s first law for self-diffusion,

Eq. (2.7) yields

D = RT

f
. (10.13)

Comparing Eqs. (10.12) and (10.13), the transport and self-diffusivities are seen
to be correlated by the relation

DT = D
dlnp

dlnc
. (10.14)

This relation has been introduced inRef. [36] andwas, subsequently, often referred
to as the Darken relation [38], owing to its similarity with a relation used by Darken
[39] in his study of interdiffusion in binary metal alloys. With Eq. (10.13), the self-
diffusivity is explicitly seen to be nothing else than a measure of mobility, i.e. of
the reciprocal value of the friction which the diffusants overcome on their trajec-
tory. Most importantly, with Eq. (10.14), the transport diffusivity (also referred to,
in another context, as collective, chemical or Fickian diffusivity) may be considered
being subject to essentially two influences, namely the mobility of the diffusants
(represented by D) and an extra driving force (above referred to as the thermody-
namic factor) which, in the present context, is seen to emerge for a non-linear inter-
dependence between (partial) pressure and guest concentration. In a more general
context, one would consider the fugacity f A rather than the partial pressure pA (which
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only for an ideal gas coincides with the fugacity). With the activity coefficient γ A

introduced by the relation f A = γ AcA, the thermodynamic factor would then assume
the form (1 + dlnγA

dlncA
).

Coming back to Eq. (10.14), we have to mention that this simple relation is only
correct if the “friction” between the individual molecules on their trajectories is
negligibly small. Within the frame of irreversible thermodynamics, this requirement
is equivalent to the absence of any cross-correlations between the fluxes and the
gradients of the chemical potential of different types of molecules (or of differently
labelled ones).

Exactly such a situation is given with the host–guest system considered in
Fig. 10.5. Here, molecular passages through the “windows” between adjacent cages
are, as a consequence of their small size, the rate-controlling steps in the trajectories.
Simultaneously, passages through the individual windows may be considered to be
such rare events that the possibility of mutual molecular encounters within these
windows may be neglected. Exactly this had to be required as a prerequisite for the
validity of Eq. (10.14).

Fig. 10.5 Ethanol in a nanoporous host (metal–organic framework (MOF) of type ZIF-8): a Exper-
imental data of self-diffusivity (D) and transport diffusivity (DT) and self-diffusivities predicted via
Eq. (10.14) from the transport diffusivities and the inverse dlnc/dlnp of the thermodynamic factor,
plotted as a function of fractional loading � = c

cmax
and b the adsorption isotherm used for the

determination of the thermodynamic factor. The cartoon illustrates the mechanism of interaction by
which, over the respective concentration range, molecular propagation is dominated. The transition
point between the two mechanisms appears in (b) as the point of coincidence in the slope of the
isothermwith that of the connecting line towards the origin. After Refs. [6, 18], Fig. 10.5a translated
and reproduced with permission from Ref. [6], copyright (2013) Wiley-VCH Verlag GmbH & Co.
KGaA
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With the reciprocal values of the thermodynamic factor (broken line in Fig. 10.5a)
as determined from the plots of the guest concentrations c as a function of the
equilibrium pressure p in the surrounding gas phase (Fig. 10.5b), Eq. (10.14) is in
fact found to provide an excellent means for correlating self- and transport diffusion.

In complete agreement with our expectation, self- and transport diffusivities are
seen to coincide at sufficiently low loadings, since any significant interaction between
the diffusants may in fact be neglected. With increasing loading, the transport diffu-
sivities are seen to drop even below the self-diffusivity. With the schematics of
transport and self-diffusion as provided by Fig. 2.2 in mind, this finding appears, at
a first glance, counter-intuitive: It is scarcely imaginable that molecular fluxes (from
left to right in Fig. 2.2a, b) are enhanced by a counter-flux (self-diffusion, situation
of Fig. 2.2b) rather than mitigated. We must have in mind, however, that within our
formalism the “friction” between the diffusants was anyway assumed to be negli-
gibly small—brought about by the dominating role of window passages in molec-
ular propagation. Molecular behaviour is thus dominated by the attractive forces
between the diffusants (caused by their dipolar moment) by which they “prefer”
sticking together (see left cartoon on bottom of Fig. 10.5) rather than exploring the
less populated part of space. This situation is, obviously, changed at sufficiently high
loadings where (within the frame of thermodynamics one would say by entropic
reasons) the molecules, given the lack in free space, “prefer” passing into the region
of lower guest concentration. In complete agreement with this view, at high concen-
trations the transport diffusivities are in fact found—both by experimental evidence
and in the more rigorous theoretical prediction via Eq. (10.14)—to notably exceed
the self-diffusivities.

For these larger concentrations, moreover, a significant increase in the transport
diffusivities with increasing loadings may be noted. This behaviour is a quite general
feature of transport diffusivities since the factor dlnp

dlnc ≡ dp/dc
p/c as appearing in Eq.

(10.14) increases dramaticallywhen, on approaching complete pore filling (� → 1),
the slope dp/dc of p(c) is progressively exceeding the slope of the connecting line
towards the origin, p/c.

With this result in mind, we may easily rationalize the pronounced difference in
also the shape of transient concentration profiles during uptake and release as shown
in Fig. 10.4: Diffusivities increasing with loading do automatically lead to steeper
decays in the diffusion front during uptake, given the notably higher diffusivities
on its top (namely, at high concentration) in comparison with those of the very
first molecules of the front, at lowest concentrations. Exactly the reverse is true on
desorption where the efflux rate from the crystal centre towards the boundary is
continuously reduced by the decreasing diffusivities, tending to an equilibration.
Correspondingly, in comparison with uptake and release with essentially constant
diffusivities (Fig. 10.4a, b), the profiles with concentration-dependent diffusivities
are found to be notably steeper for uptake (Fig. 10.4c) and shallower for release
(Fig. 10.4d).

Though, owing to the emerging potentials of microimaging [17], these measure-
ments had become possible quite recently, the theoretical framework applied for
their analysis is well established for decades already, with the introduction of the
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formalism of irreversible thermodynamics [35, 40]. It is important to emphasize,
however, that already such apparently simple objects like nanoporous host–guest
systems are full of challenges from also the viewpoint of their theoretical interpreta-
tion. This includes, in particular, the influence of the guest molecules on the structure
of the host material if it cannot be assumed to be inert anymore. Such a situation may
indeed be found with nanoporous host–guest systems [17, 41] and is the situation,
quite in general, on considering the mutual diffusion of the various compounds in
solids since here—apart from the observation of pure tracer exchange—diffusion is
by its very nature always accompanied by a structural variation of the whole system.

10.5 Multicomponent Diffusion

In their main technological applications, notably including separation, purification
and chemical conversion, nanoporous materials are accommodating mixtures rather
than single components. Both microscopic measuring techniques presented in this
chapter may be exploited for selective diffusion measurements with the individual
components of such mixtures.

The option of selective diffusion measurement via PFG NMR is based on the
resonance condition, Eq. (10.1). Distinction between different molecular species
is particularly easy if the measurements may be based on different nuclei, besides
protons (1H) notably on deuterium (2H) and the “NMR active” isotopes of carbon
(13C), nitrogen (15N), fluorine (19F), phosphorous (34P) and xenon (129Xe) [42].
Moreover, in recent PFGNMR studieswith hydrated LSX zeolites (zeolites of typeX
of low silicon content, containing exchangeable lithium cations) by using both 1H and
7Li NMR [43], even cation diffusion has become accessible by direct measurement.
Most interestingly, spreading of both thewatermolecules and the cations as appearing
in the PFG NMR diffusion data (i.e. in the evolution of the respective propagators—
see Fig. 10.2) was observed to be retarded by transport resistances existing in also
the interior of the individual particles. This is illustrated in a cartoon-like manner by
Fig. 10.6b. 1H and 7Li PFG NMR yielded similar spatial dimensions for the spacing
between the internal barriers which, moreover, were of the order of the sizes of the
individual crystallites which the zeolite particles (Fig. 10.6a) consist of.

The principle of mass separation of a binary mixture by permeation through
nanoporous membranes may be easily rationalized on the basis of Fick’s first law,
Eq. (2.6). The partial pressures of the gas mixture at the “feed” side of the membrane
are, respectively, pA and pB. The flow of a “carrier” gas ensures partial pressures
of essentially zero on the “permeate” side. With the simplifying assumptions that,
over the considered range of concentrations, the diffusivities DA and DB within the
membrane are independent of concentration (and composition) and that there is a
linear relation cA(B) = KA(B)pA(B) between the partial pressures and the concentra-
tion, Eq. (2.6) yields for the ratio of the fluxes of the two components through the
membrane under steady-state conditions
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Fig. 10.6 a Scanning electronmicrograph of a sample of zeolite LSX and b scheme of an individual
zeolite particle with typical diffusion paths covered by lithium cations and the water molecules
during comparable time intervals. Reprinted with permission from Ref. [44], copyright (2013)
Elsevier (a) and from Ref. [43], copyright (2013) American Chemical Society (b)

jA
jB

= DAcA
DBcB

= DAKA pA

DBKB pB
. (10.15)

As a prerequisite of the validity of this relation, we have moreover implied the
absence of any surface resistance on both the feed and permeate sides.

Satisfying this requirement becomes increasingly critical with decreasing
membrane thickness [45, 46] since intracrystalline molecular lifetimes scale with
the square of the thickness under diffusion control, but only with the thickness itself
under barrier limitation (see, e.g. Table 13.1 in [1].

As a reasonablemeasure of the separation capability of themembranewith respect
to components A and B, we may consider the enhancement in the ratio of the perme-
ating fluxes (which is nothing else than the ratio of the concentrations of the two
components “behind” the membrane, i.e. in the “permeate”) in comparison with the
concentration ratio (and, hence, the ratio of the partial pressures) on the feed side:

jA/jB
pA/pB

= DA

DB
× KA

KB
. (10.16)

“Membrane separation selectivity” is thus found to be the product of “diffusion
selectivity” DA

DB
and “adsorption selectivity” KA

KB
[1, 19]. We note in parentheses that

the separation efficiency does, clearly, as well depend on the rate of separation, i.e. on
the amount of “separated” gas passing the membrane. With reference to Fick’s first
law, Eq. (2.6), this amount is easily seen to be inversely proportional to themembrane
thickness. Thoughnot explicitly appearing inEq. (10.16),membrane thickness is thus
among the key parameter of membrane efficiency. Ensuring simultaneously small
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Fig. 10.7 a ZIF-8 membrane and b comparison of the membrane permeation selectivity for
CO2/CH4 mixture (asterisks) with an estimate (squares) based on the adsorption (circles, data
by molecular modelling) and diffusion (triangles) selectivities resulting from IRM measurements
with (c) a “giant” ZIF-8 crystal. Reproduced with permission from Ref. [48], copyright (2010)
Wiley-VCH Verlag GmbH & Co. KGaA

thicknesses and mechanical stability is the great challenge of membrane production
[45–48].

Both adsorption selectivity (by adsorption measurement or molecular modelling)
and diffusion selectivity (by IRM or PFG NMR) on the one hand and membrane
permeation selectivity, by flux measurement, on the other, have become experimen-
tally accessible. The results of such a comparison presented in Fig. 10.7 show an
order-of-magnitude agreement. Remaining differences may be easily referred to the
influence of surface resistances and guest–guest interaction which both are neglected
in Eq. (10.16).

While PFG NMR allows access to such interactions by selective two-component
self-diffusion measurement under equilibrium conditions [49], microimaging is able
to selectively follow molecular diffusion of the various mixture components under
non-equilibrium conditions. These potentials are illustrated in Fig. 10.8 showing the
results of two-component uptake measurements with zeolite DDR [50].

For rationalizing the outcome of these studies, we have to return to Sect. 10.4,
where the gradient of the chemical potential rather than the (mere) gradient of the
concentration was identified as the “driving force of diffusion”. Starting with Eq.
(10.10), consideration of the spatial dependence of the chemical potential (known
via Eq. (10.9) as a function of the spatial dependence of the concentration) leads—in
the case of single-component adsorption—to Eq. (10.11). Now, however, on consid-
ering two-component diffusion, the chemical potential of a certain species (A) must
be considered to be a function of the concentration of both components A and B.
This new situation is immediately rationalized by having in mind that the chemical
potential of A is related, via Eq. (10.9), to the pressure of A in the surrounding
atmosphere which is necessary for keeping the concentration of A at the given value.
Under the conditions of two-component adsorption, however, this pressure does,
obviously, depend not only on the given concentration of A but also depend on
the local concentration of B. Quite intuitively, the partial gas pressure of A in the
surrounding atmosphere required to maintain the local guest concentration cA will
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Fig. 10.8 Evolution of intracrystalline concentration profiles during guest overshooting in zeolite
DDR: b Recording of buildup with ethane as the “driven” component initiated by a pressure step
from 0 to 200 mbar in the surrounding atmosphere. a Before, the “driving” component propene
was presorbed for 7 h at a pressure of 10 mbar. The propene profile (shown in the plot) remained
essentially unaffected during ethane uptake. c Equilibration after overshooting with ethane as the
“driving” and d CO2 as the “driven” component during two-component adsorption with a step from
0 to 200 mbar in the partial pressures of either component in the surrounding atmosphere. Reprinted
with permission from Ref. [50], licensed under CC BY 4.0

be expected to be the higher, the higher the local concentration cB. This means, in
other words, that the chemical potential of guest component A at a given concen-
tration cA tends to increase with increasing concentration cB. In this reasoning, we
easily recognize a confirmation of also the validity of our assumption of simple addi-
tivity at sufficiently small concentrations (as exploited, as a first approximation, on
considering membrane permeation) since there is, clearly, no interaction between
the different guests so that the behaviour of A does in fact remain unaffected by the
presence of B.

Following the procedure having led from Eqs. (10.9) and (10.10) to Eq. (10.11),
for two-component adsorption we arrive at

jAx = uAcA = − RT

f

(
∂lnpA

∂lncA

dcA
dx

+ ∂lnpA

∂lncB

dcB
dx

)
= −DAA

dcA
dx

− DAB
dcB
dx

.

(10.17)
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where, with the last equation, Fick’s first law is now presented in matrix notation.
With this notation, molecular fluxes of a given component (A) are seen to be—
at least potentially—driven by the gradients of both concentrations. The “driving
efficiency” depends on the magnitudes of the elements DAA and DAB of the diffu-
sion matrix which, with Eq. (10.17), are given by the logarithmic partial derivatives
of the pressure of the component under consideration with respect to either guest
concentration.

With Eq. (10.17), we do, in particular, note that diffusion fluxes of a certain
species may even occur “uphill”, i.e. into the direction of increasing concentration.
This shall become possible as soon as the first term on the right of Eq. (10.17)
(which, in such cases, is negative) is exceeded by the second one. Exactly such a
situation may be recognized in Fig. 10.8. Figure 10.8b shows the evolution of the
concentration of ethane in a crystal of zeolite DDR during adsorption within an
external ethane atmosphere, following a pre-positioning of the crystal over 7 h in
a propene atmosphere with the final propene distribution shown in Fig. 10.8a. As
a consequence of the vast difference in the diffusivities of the two components in
zeolite DDR, propene concentration may be assumed to remain invariant during the
whole process of ethane uptake.

As, at first sight, a rather astonishing result, we note that, after about 600 s (or 10
min), ethane concentration in the interior of the zeolite crystal continues to increase,
irrespective of the fact that this increase necessitates an “uphill” diffusion flux,
namely ethane fluxes into the direction of increasing ethane concentration. With
Eq. (10.17), however, exactly such a behaviour is predicted by the influence of the
propene concentration gradient (Fig. 10.8a, second term on the right-hand side of
Eq. (10.17)).

For an intuitive appreciation of this remarkable situation, we refer to Fig. 10.9:
Irrespective of an increase in ethane concentration, the equilibrium pressure and thus,
via Eq. (10.9), the chemical potential is seen to decrease towards the crystal interior,
driving the ethane diffusion flux in “uphill” direction. As a consequence of the low
propene diffusivities in the given type of zeolites, final equilibration (i.e. attainment
of uniform concentration in propene and, thus, in also ethane) would require too
large time spans. With the choice of the other “pair”, namely with ethane now as the
“slow” and CO2 as the “fast” molecule, exactly this process of equilibration could
be recorded. Thus, with their very first profile, the representations in Figs. 10.8c and
d begin with the situation shown with the last one in Fig. 10.8b. With the subsequent
profiles in Fig. 10.8c, it is shown how the slower component continues to equilibrate
over the crystal and how, correspondingly, the concentration of the faster component
(CO2) decreases. This decrease is the consequence of normal “downhill” fluxes into
the direction of decreasing CO2 concentration since, together with ethane equilibra-
tion, also the ethane concentration gradients are fading and, thus, also the second term
on the right side of Eq. (10.17). The phenomenon of “overshooting”, i.e. the observa-
tion of transient molecular uptake where individual components may, intermediately,
exceed their equilibrium, has well-known predecessors with, e.g. methane–nitrogen
mixtures in zeolite 4A [51], heptane/benzene mixtures in zeolite NaX [52] and, quite
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Fig. 10.9 Rationalizing “uphill diffusion” of ethane: Cartoon showing the distribution of propene
(bulky and, hence, less mobile molecules represented by large bullets in grey) and ethane (small
yellow bullets) close to the crystal boundary (centre right), corresponding to the concentration
profiles shown on the bottom right. The top right shows the ethane pressure required for estab-
lishing, at equilibrium, the ethane concentrations shown on bottom right. Similarly as, by the
influence of propene, the ethane molecules are driven to diffuse into the direction of increasing
ethane concentration, the presence of the voracious big animals (bottom left) might be imagined
to make the smaller (and more mobile) ones (top left) preferentially move into the direction of
increasing populations of their conspecifics. Reprinted with permission from Ref. [54], copyright
(2016) GDCh, Frankfurt am Main

recently, n-alkane/iso-alkane mixtures in MFI [53]. However, only quite recently,
with the advent of microimaging, could the relevant profiles be directly recorded.

10.6 Diffusion and Conversion

Since their use as highly selective, environmentally benign catalysts is among the
most important technological applications of nanoporous materials, the investigation
of both diffusion and conversion and the search for transport-optimized materials is
a challenging task of both fundamental and applied research. In fact, with the options
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of microimaging by IRM, catalysis research today disposes of a most powerful
technique for the in situ investigation of diffusion and conversion [55].

Figure 10.10 introduces into the scheme of measurement, exemplified with the
hydrogenation of benzene to cyclohexane, i.e. the transformation of an unsaturated
hydrocarbon into the corresponding saturated one within a nanoporous host material
(porous glass), serving as a support of metallic nickel (the catalyst). The process
is initiated by bringing a mixture of benzene and hydrogen in contact with the
initially empty host material. Diffusive spreading of benzene as the reactant molecule
is accompanied by conversion to cyclohexane, following Eq. (2.19) with 1 and 2
referred to as benzene and cyclohexane, respectively. Hydrogen is offered in excess
and may, owing to its high mobility, be assumed to be anywhere instantaneously
present. The backward reaction rate is negligibly small, whence k12 = 0.

Figure 10.11 shows, together with the experimental data, also the solution of the
diffusion-reaction equation as given by Eq. (2.19), with the simplifying assump-
tion that the diffusivities of both components are independent of concentration and
composition and coincide. Initial and boundary conditions to be obeyed due to the
chosen experimental conditions are, respectively, c1(x, t = 0) = c2(x, t = 0) = 0
and c1(x = ±L , t) = 1, c2(x = ±L , t) = 0, with 2L denoting the distance
between the two faces (platelet edges opposing each other), which are in contact
with the surrounding atmosphere.With the given boundary condition it is, further on,
assumed that the total amount of benzene in the gas phase (and its diffusivity) is high

Fig. 10.10 Schematics ofmonitoring reactant andproduct profiles during the conversionof benzene
(red) into cyclohexane (blue) in nanoporous materials by microimaging, with the arrows in green
indicating the spatial extensions relevant to the experiments. Bottom and top faces are covered
by an IR-transparent layer, impermeable to the reactant and product molecules. Reproduced with
permission from Ref. [55], copyright (2015) Wiley-VCH Verlag GmbH & Co. KGaA
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Fig. 10.11 Transient concentration profiles during hydrogenation of benzene to cyclohexane at 75
°C. The experiments are started by contacting an initially empty catalyst with a benzene–hydrogen
atmosphere (pbenzene = 27 mbar; phydrogen = 977 mbar). Data points represent the experimental the
results obtained by IR microimaging (circles: benzene (A), diamonds: cyclohexane (B)), reflecting
meaningful concentrations for x ≥ 50 µm). The solid (benzene (A)) and dashed (cyclohexane (B))
lines are results of the analytical solution of Eq. (2.19) with the relevant initial and boundary condi-
tions. Reproduced with permission from Ref. [55], copyright (2015) Wiley-VCH Verlag GmbH &
Co. KGaA

enough so that, during the whole of the reaction, the concentration of cyclohexane—
though emerging, during the reaction, within the nanoporous material—remains
negligibly small in the gas phase.

Together with reasonable agreement between measurement and prediction, the
data in Fig. 10.11 show the expected trend. Reactant benzene penetrates into the host
material, following the direction of decreasing concentration. Simultaneously, a frac-
tion is converted into cyclohexane. The emerging flux of cyclohexane, following the
direction of its decaying concentration, is directed towards the external surface. The
cyclohexanemolecules leaving the catalyst spread sufficiently fast in the surrounding
atmosphere so that, also during the course of the experiment, their concentration in
the gas phase may be assumed to remain negligibly small in comparison with that of
benzene. The boundary conditions do thus coincide with those usually met in flow
reactors as conventionally used in catalysis research. Steady state is attained when
benzene influx is compensated by cyclohexane efflux, with the latter being identical
with the total amount of cyclohexane (i.e. of product molecules) within the catalyst
host particle “produced” per unit time. This amount is the key quantity of the process
and, in technical applications, pursued to be as large as possible.
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The highest overall reaction rate is obviously achieved if the reactant molecules
attain highest concentrations all over the catalyst. This implies the absence of any
diffusion resistance so that the product molecules can instantaneously disappear out
of the catalyst, leaving space for new reactantmolecules. The ratio between the actual
overall reaction rate and the maximum possible one is referred to as the effectiveness
factor. Though this factor is crucial for catalytic conversion, its direct measurement
was so far impossible. This appears already in the given definition since it refers
to conditions—namely, the absence of any transport resistance—which cannot be
fulfilled in reality. Rather than by comparison with reaction rates under total exclu-
sion of transport resistances, effectiveness factors are conventionally determined by
measurements with varied transport resistances. From the effect of such variations
on the reaction rate, the effectiveness factor may in fact be estimated [1, 2]. As a
prerequisite of such measurements, all other parameters must be kept constant. In
addition to the need of performing several measurements rather than only a single
one, data analysis is thus based on assumptions which are scarce to be confirmed.

Both these constraints do not exist with the options of microimaging as demon-
strated with Fig. 10.11. Here, the effectiveness factor of the chemical reaction results
immediately as the area under the (normalized) concentration profile of the product
molecule under steady-state conditions. It becomes, in this way, accessible by a
one-shot experiment in a most direct way. It reminds of the expression “Poren-
Nutzungsgrad” (degree of pore space exploitation) used as the German translation
of “effectiveness factor”. This term nicely recollects the way how microimaging is
able to determine effectiveness factors, namely by recording exactly this part of the
pore space which is occupied by the reactant molecules and which is, thus, exploited
for the reaction.

The solution of the rather simple Eq. (2.19) nicely reflects the experimentally
observed behaviour, irrespective of all inherent approaches. Slight deviations may
easily be referred to as a feature discussed already in analysing the shape of the
concentration profiles shown in Fig. 10.4c: Diffusivities increasing with concentra-
tion lead to a sharpening of the diffusion front. And exactly such an (even if only
slight) increase of the diffusivities with increasing loading may be also expected
for benzene in porous glass. It is important to emphasize, however, that agreement
between measurement and prediction is in no way a prerequisite for the determina-
tion of effectiveness factors by microimaging. It is rather the great advantage of IR
microimaging that effectiveness factors result directly from experimental evidence,
without the need of any modelling!

For the determination of the effectiveness factor, knowledge of the total content
of reactant (and product) molecules is required. This type of information may be
provided by operating with an IR single-element detector (see, e.g. Sect. 12.2.1 in
[1]).This type of measurement does not require anymore the application of catalyst
particles of well-defined shape as considered in Fig. 10.10 and may be performed
with,essentially, catalyst particles of any shape. A recent example of such studies
may be found in [56].
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10.7 Transport Enhancement in Pore Hierarchies

In the examples of technological application for matter upgrading by separation
and conversion, process efficiency was found to be affected by the rate of exchange
between intracrystalline pore space and the surroundings. Transport enhancement is
thus among the key options of efficiency enhancement. Transport enhancement may
be clearly achieved by operatingwith larger pores and, correspondingly, with reduced
diffusional resistances. However, this option is in general not applicable since it is—
in both separation and (selective) conversion—the intimate contact between the inner
surface of the porous material and the molecules, on which performance is based.
This contact would get lost with increasing pore radii.

Alternatively, onemight consider applying the nanoporousmaterial as sufficiently
small crystals/particles, with correspondingly small uptake and release times of the
guest molecules. For spherical particles, the time constant of diffusion-controlled
uptake and release is known to be [1]

τuptake, release = R2

15D
(10.18)

with R denoting the particle radius. Except for the factor 1/15, the validity of Eq.
(10.18) may immediately be rationalized as the only option for combining D and
R to yield a quantity with the dimension of time. Equation (10.18) yields a good
approach for even particles of arbitrary shape if R is understood as an “equivalent”
radius

Req = 3V

A
, (10.19)

with A and V denoting the (external) surface area and the volume of the particle.
With this relation, Req is immediately seen to be the radius of a sphere with the same
surface-to-volume ratio. There are, however, narrow limits to transport enhancement
through particle size reduction since too small particles enhance the risk of pipe
plugging, with influx and efflux impediment.

Processes with hierarchically organized pore spaces have therefore, over the past
few years, attained particular concern [57, 58]. In such arrangements, the space of
micropores (with pore diameters in the range of the diameters of the molecules) is
traversed by larger pores. Following the ingenious examples given by nature (see
Ref. [59] and Chap. 11), these large pores serve as “highways”, ensuring fast matter
exchange between micropores and surroundings.

It was the complexity of such systems which, over many years, has prohibited
the treatment of mass transfer with analytical expressions as introduced in Sects.
2.1–2.3 and used,so far, also in this chapter. As an alternative one has rather largely
adopted the option of simulating spread on cellular grids as introduced in Sects.
2.4 and 2.5. A scheme of such simulations is presented in Fig. 10.12. Here, the
diffusivitiesDmicro andDmeso in the space of micro- andmesopores are quantitated by
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Fig. 10.12 Scheme for simulating molecular uptake by a hierarchically organized, regular pore
network. A continuos microporous phase (top right) is penetrated by mesoporous channels (outer-
most right). Corresponding with the potential landscape on bottom right, the micropores (shaded
area bottom left) are distinguished from the mesoporous by a higher population density and reduced
jump rates. For visual convenience, only 5 (rather than the actually considered 18) channels in
parallel are considered. Reproduced with permission from Ref. [60], copyright (2015) Wiley-VCH
Verlag GmbH & Co. KGaA

Eq. (2.3) (with 2 replaced by 6, correspondingwith the 3 dimensions considered). The
difference in the magnitudes (Dmicro 	Dmeso) is taken account of by corresponding
differences in the mean lifetimes (τmicro 
 τmeso) between subsequent “jumps”.
Spacing (“jump length” lmicro = lmeso = l) is assumed to be uniform throughout the
simulation grid. Differences in lifetimes correspond to the differences in the energetic
barriers between adjacent sites shown bottom right. The difference in the energy
levels in micro- and mesopore space corresponds to the heat of adsorption which the
guest molecules have to afford on leaving the intracrystalline space. Concentration
in micropores is, correspondingly, much larger than in mesopores. This is ensured,
in our model, by a corresponding choice of the exchange probabilities between the
respective grid nodes (Pmicro→meso 	 Pmeso→micro) at the interface between micro-
and mesopores.

Molecular spreading in such systems is, in general, a rather complex process. In
addition to the pore architecture, it depends on the diffusivities (Dmicro and Dmeso)
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and the relative populations (pmicro and pmeso ≡ 1 − pmicro). As a first-order estimate,
it is often possible to consider one of the two limiting cases of “fast exchange” and
“slow exchange” between the two pore spaces [58, 60]. Estimates are in either case
based on Eq. (10.18), however, with different meanings.

For exchange rates sufficiently fast in comparison with overall uptake and release,
R (= Rcryst) is the crystal radius and D (= pmesoDmeso + pmicroDmicro) is the mean
value of the diffusivities in the two pore spaces. With propane in zeolite NaCaA,
e.g. transport enhancement in the limiting case of fast exchange was found to give
rise to transport enhancement over more than two orders of magnitude in compar-
ison with the purely microporous zeolite [61]. Further increase in the contribution
pmesoDmeso to overall diffusion (e.g. by temperature increase and corresponding
increase in pmeso) is thus seen to lead to further transport enhancement.

During uptake in the opposite extreme, guest molecules are assumed to be essen-
tially instantaneously spread over the whole of the internal surface of the meso-
pores, with uptake by the micropores occurring as a second step. This means, in
terms of Eq. (10.18), a dramatic reduction in the extension (R) of the range over
which, in the course of uptake, the guest molecules are now going to be distributed,
while D maintains its meaning as the micropore diffusivity. Equation (10.19), with
A and V now denoting the total area of the interface between the two pore spaces
(= inner mesopore surface) and the crystal volume occupied by the space of meso-
pores (= crystal volume minus total mesopore volume), once again, yields a reason-
able estimate [60]. Opposite to fast exchange, transport enhancement is a function
of only the pore space geometry and remains unaffected by any further enhancement
of mesopore mass transfer.

In the last few years, eventually also the way to a comprehensive analytical treat-
ment of mass transfer in hierarchical pore systems has been opened up. It is based
on an approach, which has been introduced for the quantitation of diffusion through
beds of nanoporous and, notably, for diffusion measurement by NMR [62, 63]. This
“two-region model of diffusion” has meanwhile found widespread application for
diffusion in compartmented systems quite in general [64], notably including organic
tissues [65], where the term “Kärger model” (see also Chap. 12 of this book) has
been coined for this approach [66].

On applying the “two-region model” to hierarchically porous materials
with a network of meso- (“transport”) pores permeating a microporous bulk
phase,molecular concentrations are conveniently referred to unit volumes accom-
modating both micro- and transport pores. Unit volumes are implied to be large
enough so that, in a statistical sense, they are of identical topography. This is the
condition, under which in ref.[12] the broad applicability of Fick’s 2nd law for mass
transfer in monodisperse nanoporous materials has been proven. Within the two-
region model,temporal variation of the concentration in transport pores (c1) and
micropores (c2) is expressed by the relations

∂c1
∂t

= D1
∂2c1
∂x2

− c1
τ1

+ c2
τ2

(10.20)
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∂c2
∂t

= D2
∂2c2
∂x2

− c2
τ2

+ c1
τ1

(10.21)

withDi and τ i (i= 1,2) denoting,respectively, the diffusivities and themean lifetimes
of molecules in the transport (micro-) pores. For hierarchical pore systems where a
microporous continuum is permeated by a network of transport pores,Eqs. (10.20)
and (10.21) obviously take over the function of Fick’s second law for monodisperse
pore systems. For the sake of simplicity, with Eqs. (10.20) and (10.21), we have
confined ourselves to one-dimensional diffusion, with the diffusivities and mean
lifetimes implied to be independent of concentration. In refs. [67, 68] Eqs. (10.20)
and (10.21) are shown to serve as a versatile basis for the theoretical treatment and,
hence, for optimization of mass transfer and catalytic conversion in hierarchical pore
systems. These results do nicely confirm the conclusions about the various regimes
of mass transfer as predicted already with the simple random walk model introduced
with Fig. 10.12 [69, 70].

10.8 Anomalous Diffusion

With Sect. 2.4, we have introduced the reasons which may lead to spreading mech-
anisms deviating from the simple logic of random walk and, thus, of normal diffu-
sion, as introduced in Sect. 2.1. As an important feature leading to the occurrence
of anomalous diffusion, we did recognize the diffusant’s “memory” [71]. Though
mass transfer in nanoporous materials is in general subject to normal diffusion, in the
broad context of this book a celebrated deviation, referred to as single-file diffusion
[72, 73], should be mentioned. Mass transfer under single-file conditions is subject
to the restriction that the diffusants keep their sequential arrangement, just like pearls
on a neckless (or geese in “single file”). In nanoporous host–guest systems single-file
diffusion occurs as soon as within channel pores adjacent molecules are unable to
mutually exchange their positions [74]. Figure 10.13a illustrates such a situation. A
rather unconventional way of simulating single-file diffusion is shown in Fig. 10.13b.

Let us start with considering an infinitely large single file, with known particle
positions at a certain instant of time. Since the particles are not allowed to change their
order, displacement of an arbitrarily selected molecule into one direction requires a
corresponding shift of all particles “in front of it”. As a consequence, particle density
in front of the particle (i.e. in the direction where it is shifted to) will, in general,
be higher than “behind”. Hence, for a particle shifted in one direction, further shifts
are more likely to occur in backward direction than into the direction to which it
has been shifted already since the presumably higher particle densities in front of it
will more likely impede further particle propagation into this direction than shifts
backwards. This tendency increases with increasing shifts (corresponding with the
increase in density “in front” of a particle with increasing shifts). Subsequent shifts
are therefore not uncorrelated anymore. The starting assumption of randomwalk and,
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Fig. 10.13 “Particle” transport under the constraint of single-file diffusion: a As soon as guest
molecules in channels are too bulky to pass each other, mass transfer is subject to the requirement of
invariable order in “particle” arrangement. bUnconventional way of simulating single-file diffusion
in the tiers of the physics lecture hall of Leipzig University: “Particle jump attempts”, with the
direction determined by throwing coins, are only successful if directed to a vacant seat. Reproduced
with permission from Ref. [75], copyright (1998) Wiley-VCH Verlag GmbH & Co. KGaA

hence, of normal diffusion with mean square displacements increasing linearly with
time, must thus be dropped. It rather turns out that the mean square displacement
increases with only the square root of time. The distribution function remains a
Gaussian (Eq. (2.10), now, however, with Dt replaced by F

√
t and F referred to as

the single-file mobility [72, 76]).
A totally different reasoning is necessary on considering mass transfer in single

files of finite extension. This is the common situation with nanoporous particles of
single-file structure. Though being still subject to the confinement just described in
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the channel interior, molecules at the file ends are allowed to leave and newmolecules
to enter. Such events occur essentially uncorrelated, with equal probabilities on either
side. On considering the molecules initially in the file as labelled and all the other
ones, entering later, as unlabelled, the process of molecular entering and leaving is
easily seen to give rise to a random movement of the centre of mass of the labelled
molecules. This movement is, moreover, seen to be subject to the same statistics as
a random walker. For the corresponding (the “centre-of-mass”) diffusivity one finds
[77]

Dcm = D
1 − �

n
= D

1 − �

�

λ

L
. (10.22)

D is the diffusivity of an isolated particle in a file of length L with site distance
(determining the jump length) λ. � denotes the site occupation probability and n the
number of particles in the file.D( 1−�) results as the so-called mean-field approach
of the diffusivity where, by the factor 1 − �, it is taken into account that only
jump attempts to vacant sites (occurring with just this probability) are successful.
We note with Eq. (10.22) that, for taking account of the confinement under single-file
conditions, this value must, in addition, be divided by the total number of particles
in the file.

As a most remarkable result, the cross-over from mean-square displacements
scaling with the square-root of time (typical of genuine single-file diffusion) to
displacements following the normal diffusion of the centre of mass (Eq. (10.22))
may be estimated to be

〈
�x2

〉
s f ↔cmdi f f

= 2

π

1 − �

�
λL . (10.23)

With Eq. (10.23), displacements over distances already much smaller than the
crystal extensions L are seen to be controlled by normal diffusion, with the (effective)
diffusivity giv en by Eq. (10.22). Exchange dynamics with nanoporous particles
subject to single-file confinement is thus seen to follow normal diffusion conditions
with, however, the “intrinsic” diffusivities replaced by the centre-of-mass diffusivity
given by Eq. (10.22). Combining Eqs. (10.18) and (10.22) yields the important result
that, under single-file constraint, molecular exchange rates (and, thus, processing
efficiency in separation and conversion) are reduced with even the third power of the
particle size [78] and not only their square as appearing from Eq. (10.18)! Since quite
a number of zeolite catalysts do in fact operate under single-file conditions, efforts for
reducing the extensions of the purely microporous ranges in nanoporous materials
as motivated in the previous section are thus seen to be of even larger relevance!
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10.9 An IUPAC Initiative

A look back at Fig. 10.1 gives an impression of the distances covered, in the large-
scale use of nanoporous materials, by the molecules on stream during their refine-
ment by separation and conversion, and of their variety, starting with the elemen-
tary steps of diffusion on the order of fractions of nanometres up to macroscopic
distances of metres within the various plant units. In principle, the overall rate of
mass transfer and,hence, the performance of matter upgrading may be controlled by
any of these processes. Given their complexity, it is in particular the rate of prop-
agation through the different structures shown in the bottom of Fig. 10.1, whose
determination requires particular efforts which, as a rule, are the more challenging
the smaller are the displacements to be considered.

Techniques of diffusion measurement for notably short displacements, operating
under both equilibrium and non-equilibrium conditions,were also in the focus of this
chapter. If the displacements that they are able to record are sufficiently small in
comparison with the crystal sizes, they are referred to as microscopic techniques.
Correspondingly, techniques covering diffusion path ways over distances notably
exceeding the crystal sizes are macroscopic ones. In between also the term meso-
scopic technique has been coined, with reference to techniques, which allow the
observation of diffusion phenomena within single crystals, without providing any
spatial resolution within the crystal. Finally, also the term “submicroscopic” has
come into use,with reference to measuring techniques, which are able to provide
insight into the elementary steps of diffusion, such as the jump length or the mean
time between subsequent jumps. A summary of the various techniques of diffusion
measurement with nanoporous materials and their attribution to the various ranges
of measurement is provided by Table 10.1.

As usual, the given classification is not without some arbitrariness. There are
numerous examples where, e.g. quasi-elastic neutron scattering allows the recording
of displacements into the range of nanometres so that it might also be considered
as a microscopic technique. For sufficiently large observation times and small crys-
tallites (see, e.g. Fig. 10.2 bottom left) PFG NMR is as well applicable for macro-
scopic diffusion measurement. If performed with only a small amount of adsor-
bent particles the information attained by some of the techniques mentioned in the
bottom right may be referred to as meso- rather than macroscopic. Equilibrium tech-
niques may as well be applied under non-equilibrium conditions and,by applying
suitably chosen isotope mixtures, non-equilibrium techniques may allow to provide
information about diffusion under equilibrium conditions.

Following the textbook [1], the compilation of all together 20 measuring tech-
niques applied for diffusion studies in nanoporousmaterials in [79]represents the first
step in the activity of an IUPAC (International Union of Pure andApplied Chemistry)
task group that has been established for providing a “comprehensive set of guidelines
for measurements and reporting of diffusion properties of chemical compounds in
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Table 10.1 Classification of the various techniques of diffusion measurement with nanoporous
host–guest systems with reference to the scale of observation (“Microscopic vs. Macroscopic”) and
the conditions, under which the measurements are (generally) performed (“Equilibrium vs.Non-
Equilibrium”). Details of the various techniques are presented in a Topical Issue of the Adsorption
Journal [79].Following preceding versions, such as those in [1], the table is adapted from [80],where
also complete citations for the table entries may be found.

Measurement Equilibrium Non-equilibrium

Submicroscopic Solid-State NMR
Quasi-Elastic Neutron Scattering
(QENS)

Microscopic Pulsed Field Gradient (PFG) NMR
Single-Particle Tracking (SPT)

Microimaging

Mesoscopic Dynamic Light Scattering (DLS) (Single-Crystal) Membrane
Permeation

Macroscopic Adsorption/Desorption Kinetics
Liquid-Phase Batch Kinetics
Column Breakthrough Dynamics
Zero Length Column (ZLC) Technique
Frequency Response (FR) Technique
NMR Imaging (MRI – see also
Chap. 12 of this book)
X-Ray Computed Tomography (XCT)

nanoporous materials” (see [81] and IUPAC Project Details at https://iupac.org/pro
ject/2015-002-2-100). The presentation of the various experimental techniques is
complemented by a review “Connecting theory and simulation with experiment for
the study of diffusion in nanoporous solids” [82; see also Chap. 11 of this book]. The
9th Diffusion Fundamentals Conference in Krakow in September 2022 is among the
catalysts to promote a formulation of these guidelines following existing concepts,
such as for the phenomenon of molecular adsorption [83].

10.10 Conclusions

Advent of the techniques of microscopic measurement has enabled insight into an
impressive wealth of transport phenomena accompanying and controlling molecular
spreading in nanoporous materials. The new options thus provided allow illustrating
quite a number of mechanisms relevant to diffusive mass transfer quite in general.
The presentations were mainly based on the possibility to record the evolution of
transient guest profiles with microscopic resolution provided by the techniques of
microimaging [17] and on the potentials of PFG NMR for exploring the propagation
patterns of molecular spreading by monitoring the probability distribution of molec-
ular displacements (the “mean propagator” [9]). In addition to these options, progress
in our knowledge of diffusion in nanoporous materials is based on the fascinating
developments in molecular modelling over the past few decades [1, 84, 85, 82; see

https://iupac.org/project/2015-002-2-100
https://iupac.org/project/2015-002-2-100
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also Chap. 11 of this book] as well as on the input by manifold variants and innova-
tions of conventional measurements based on recording uptake and release [86, 87]
and, notably, by quasi-elastic neutron scattering (QENS [85, 88]) and single-particle
tracking [89,90]. Complementing the information of PFG NMR, QENS is able to
trace spreading phenomena over nano- rather thanmicrometres, while single-particle
observation, notably in combination with the novel options of microspectroscopy
[91], is able to focus on individual molecules rather than on molecular ensembles.

Thus, by the simultaneous application of PFG NMR and single-particle tracking,
a very fundamental hypothesis of statistical physics has become, in the field of
diffusion, accessible by direct experimental investigation. As the very first equation
of the book, Eq. (2.1) considered themean value of the squared particle displacement.
There exist, however, twoways for determining such values: onemay take the average
of the displacements of either all particles during one and the same interval of time,
or of only one particle over several, subsequent intervals of time. It is required by the
theorem of ergodicity [92] that, under equilibrium, both averages have to coincide.
Applying both techniques to one and the same system, namely a suitably selected
fluorescing molecule as guest and the porous glass considered in already Sect. 10.6
as the host, the agreement of both types of averages could in fact be confirmed [93].

Concerted applications of various measuring techniques are doubtlessly among
the primary prerequisite of further progress in diffusion research with nanoporous
materials in both theory and application. This is mainly due to challenges rising with
the increasing complexity of the systems of interest and, hence, of the phenomena
inherent to such systems. With the hierarchical pore spaces, a most prominent
example has been introduced in Sect. 10.7, which shall be dealt with further on
in Chap. 11.

The increase in pore diameters is accompanied by a phenomenon which we have
completely left out in our presentation. It concerns the occurrence of phase transitions
in pore spaces, both between the solid and liquid and the liquid and gaseous states
and the preservation of such states outside of their thermodynamic equilibrium over
essentially infinitely long time spans [94]. Under such conditions, equilibration turns
out to necessitate the shift of molecular aggregates rather than of only individual
molecules as so far generally considered. Investigating the spreading and diffusion of
such aggregates [95] is among the great challenges of future researchwith nanoporous
materials.
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Chapter 11
Nature-Inspired Optimization
of Transport in Porous Media

Marc-Olivier Coppens and Guanghua Ye

11.1 Introduction

Transport of molecules across multiple length scales is of great practical importance,
from food products and building materials to the recovery, production and distribu-
tion of chemicals and energy. Many relevant processes involve porous media; these
include catalytic and separation processes, oil and gas recovery, and the delivery
of pharmaceuticals. An effective transport system should be scalable, efficient and
robust. These properties dependon themultiscale architecture of the transport system,
that is, its morphology (shape) and topology (connectivity) at multiple length scales.
An optimized transport system boosts production, saves time and cost, and reduces
waste. This holds true for the infrastructure for transporting goods and information, as
much as for the transport of molecules in porous media. To be optimal, the transport
system needs to be suited to serve the other processes in the system, where produc-
tion or consumption occurs. If these are not properly matched, transport limitations
occur. This includes processes involving porous catalysts in chemical engineering,
which we focus on in this chapter, although much of the discussion can be translated
to other processes involving porous media as well.

The optimized transport system for such technical applications is not easy to
obtain, but we can seek inspiration from biology. Indeed, through billions of years
of evolution, plants and animals have acquired highly effective transport systems,
crucial to their survival. Although a chemical engineering application is different
from a biological one in terms of materials (which could be inorganic instead of
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Fig. 11.1 The multiscale architecture of trees. Cells, 10–100 µm in size [1], are the basic building
blocks (microscale) containing “active sites” for photosynthesis (nanoscale), converting CO2 and
water into carbohydrates; leaves, 1–100 cm in size, function as “porous photo-catalysts”with a veinal
architecture for transport (mesoscale); the tree itself, with its water- and nutrient-transporting tree-
crown, 1–100m in size, functions as a living “reactor”, providingmechanical strength and scalability
during growth

organic) and operating conditions (which could involve high temperatures and pres-
sures instead of mild, ambient conditions), they share fundamental features. All rely
on effectively connecting the action at microscopic scales (of cells, in the case of
biology, or active sites, in the case of catalysts) with the overall system (the organism
in biology or the reactor in a catalytic process). Robustness and scale independence
are important in both instances. For this, they both rely on multiscale architectures,
an example of which is illustrated in Fig. 11.1, while the dominant transport mecha-
nism at each scale is governed by physics that are length scale dependent. Based on
these common features, it is desirable to seek guidance from nature, to help improve
the transport architectures of porous media for engineering applications. Another
reason is the ability to design and optimize porous materials for these applications
from scratch. This is possible in certain applications, like catalysis or fuel cells, as
opposed to applications where transport networks would have to be adapted from
existing plans, and are thus more difficult to change, as in city planning or in resource
exploration in porous rocks.

Unlike transport architectures in nature, which were introduced in Part II of this
book, transport pathways in artificial porous media are currently not the product
of organic evolution. However, they can be optimized by mathematical modeling
and computation, which could, for that matter, employ genetic algorithms inspired
by evolution. Incredible progress in materials synthesis and manufacturing methods,
with increasing control over structure extendingdown to ever-smaller scales, provides
the opportunity to boost the performance of processes employing these materials.
To do so effectively, requires guidance from theoretical insights and computational
optimization.

In this chapter, some fundamental features of transport networks in porous media
are introduced, and the structure-function relationships in these systems are briefly
reviewed to introduce the available “handles” that can be used to manipulate molec-
ular transport and improve the performance of processes that depend on it, like
catalysis and molecular separations. These two sections are presented first, because
a good understanding is essential to optimize transport phenomena in engineered
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systems. Subsequently, the nature-inspired chemical engineering (NICE) approach
for transport optimization is introduced, and applications to heterogeneous catal-
ysis and proton exchange membrane (PEM) fuel cells are given to illustrate this
methodology.

11.2 Fundamental Features of Mass Transport Phenomena
in Porous Media

Mass transport in porous media occurs primarily by two mechanisms, namely
convective flow and diffusion. In wide pore channels, convective, pressure-driven
flow is often the principal transport mechanism [2]. In narrower channels, diffu-
sion is the dominant transport mechanism. Self-diffusion is a result of the thermal
motion of molecules, while transport diffusion results from a chemical potential
gradient; for non-interacting molecules, at sufficiently low pressure, self- and trans-
port diffusivities are the same [3, 4]. For many processes in chemical engineering
and beyond, involving porous catalysts, membranes, building materials and pharma-
ceutical tablets, for example, diffusion takes place in porous materials containing
a hierarchical pore network, and diffusion can be subdivided into molecular diffu-
sion, Knudsen diffusion, surface diffusion, and configurational diffusion, according
to the interactions between the molecules and the pore walls [5–7]. Molecular diffu-
sion dominates when the mean free path of a molecule is much smaller than the local
pore size, so that the frequency of intermolecular collisions exceeds that of molecule-
wall collisions. Knudsen diffusion becomes dominant whenmolecule-wall collisions
are important. Surface diffusion describes the movement of adsorbed molecules
along pore wall surfaces, and becomes important for very narrow pores and strongly
adsorbed molecules [8]. Configurational diffusion dominates in zeolites and other
microporous materials [7, 9], in which the effect of pore walls on the movement of
molecules is so strong that diffusion is typically an activated process and, therefore,
can be well described in terms of a succession of hops. Some state-of-the-art tech-
nologies, like interference microscopy (IFM) and IR microscopy (IRM), are now
available to record such transport processes experimentally, even in single particles,
which is introduced in Chap. 10. In addition, viscous flow plays an important role
for transport in porous materials with wide pores, such as porous membranes for
microfiltration and ultrafiltration [6].

Depending on the length scale, different transportmechanisms are involved. These
different transport mechanisms often take place simultaneously, which complicates
the optimization of the transport network. Let us take mass transport and reactions in
a fixed-bed reactor packed with catalyst pellets as an example to illustrate this multi-
scale transport, shown in Fig. 11.2. Reactions take place on the so-called “active
sites”, which are of atomic or nanoscale dimensions, and dispersed on the internal
surface of the porous pellets. The geometric and electronic properties of the active
sites determine how some species are bound and converted on the catalyst surface.
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Fig. 11.2 Multiscale structure of a fixed bed reactor packed with zeolitic catalyst pellets and
the dominant mass transfer mechanisms on different length scales. Reproduced from [10], with
permission

The local physicochemical conditions around these active sites, like the local species
concentrations and temperature, affect the local reaction rates and, thus, the catalytic
activity and selectivity. This local environment is influenced by the multiscale trans-
port of reactant and product molecules toward and away from these sites, which
frequently leads to spatially non-uniform distributions of reactants and products:

(1) Reactants are transported into catalyst pellets from the bulk phase by over-
coming external film mass transfer resistance, and subsequently diffuse into
the macropore (>50 nm diameter) and mesopore (2–50 nm) network, where
molecular diffusion and Knudsen diffusion dominate. In, for example, the case
of zeolites, molecules further diffuse into the micropore network (pores < 2 nm
diameter), where surface diffusion and configurational diffusion become domi-
nant. Simultaneously, molecules adsorb and react on active sites on the pore
walls. Products desorbed from the active sites are transported out of the catalyst
pellets in the opposite direction. Intrinsically fast reactions may lead to trans-
port limitations, meaning that the resistance to molecular transport dominates
the overall rate of the combined process.

(2) The flow of molecules in the fixed-bed reactor removes products that have
been transported out of the catalyst pellets, and brings in reactants that enter
the catalyst pellets. This leads to a decrease in reactant concentrations and an
increase in product concentrations in the direction of the flow. Due to this, the
boundary conditions at the interface between the catalyst pellets and the bulk
flow in the reactor change from reactor inlet to outlet.

This multiscale transport of molecules is one of the most important, fundamental
features for various engineering processes, beyond the example of fixed-bed reactors.
In Sect. 11.6, the example of multiscale transport in PEM fuel cells is also depicted.
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Already, we can see a parallel with the tree shown in Fig. 11.1, something we will
come back to in Sect. 11.4.

11.3 Basic Description of Transport in Porous Media

The effective transport properties (permeability for viscous flow and diffusivity for
diffusion) depend on the structure of the porous medium, especially the pore size
distribution. This provides abundant room for designing porousmediawith optimized
transport properties. To do so, it is necessary to formulate relationships between
material structure and transport properties. There is a huge literature on this subject,
which will not be discussed here in detail. A brief introduction is given in order to
aid the understanding of the following sections in this chapter. Readers can refer to
a number of review articles for more details [5, 7, 11, 12].

11.3.1 Geometrical Description of Porous Media

Molecular transport networks can be ordered or disordered at different length scales.
For example, at the macroscale, fixed bed reactors typically consist of random pack-
ings of catalyst particles, in between which the various species flow through a disor-
dered void space. Other reactors employ structured packings, the most common type
of which are monolithic structures with parallel channels; the catalytic converter to
clean up car exhaust is an example of such a structured packing. In these monoliths,
the walls of the channels are porous themselves, or are covered by a catalytic wash-
coat. At smaller scales, within porous catalysts and other porousmaterials, molecules
diffuse through a network of macro-, meso- and/or micropores. In most amorphous
catalyst supports and adsorbents, this pore network is disordered. However, pores
can also form a regular network, such as in crystalline zeolites, metal-organic frame-
works, and amorphous materials with ordered mesopores [13]. It is easier to model
ordered systems and investigate the effects of the regular pore network properties on
transport than to model disordered transport networks.

To describe transport in disordered porous media, two types of models are used:
continuum models, which treat the porous medium as an effective continuum of
reduced permeability or diffusivity, and discrete models, which explicitly account
for the pores. Both have been extensively reviewed by Sahimi et al. [14] and Keil
[5]. One of the earliest pore models is the parallel pore model proposed by Wheeler
[15]. In his model, the pore space is represented by parallel pores with mean radius
r and length L . The sum of the surface areas of all the parallel pores is set equal to
the BET surface area of the particle, and the sum of the pore volumes is set equal to
the experimentally determined pore volume of the particle:
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r = 2Vg

Sg
σ(1 − ε) (11.1)

L = √
2Vp/Sx (11.2)

where: Vgand Vp are the specific pore volume and the total volume of the porous
particle, respectively; Sg and Sx are the BET specific internal surface area and the
external surface area of the porous particle, respectively; σ is the pore wall roughness
factor; ε is the particle porosity. After that, numerous other pore models (including
the cylindrical pore model [16], the tortuous pore model [17], the model of Wakao
and Smith [18, 19], the model of Foster and Butt [20], the grain model [21], and the
micro/macropore model [22]) have been proposed to account for more features of
real porous materials, such as the tortuosity of the pores or a bidisperse pore size
distribution.

Although these early models can describe certain morphological features and,
in some cases, account for the pore size distribution, they do not account for the
pore network connectivity (topology) and the spatial distribution of the pores. This
becomes possible by using pore network models, in which equations for diffusion,
adsorption and reaction are explicitly solved, kinetic Monte-Carlo simulations are
employed, or various approximations based on statistical physics, like the effective
medium approximation or renormalization group theory, are used [23–26].

However, evenmost pore network representations are still an abstraction of the real
porous structure, based on macroscopic data, such as the measured pore size distri-
bution, the porosity and the BET surface area. Recently, with the advent of powerful
computers andmore sophisticated experimental tools, it is becoming possible to digi-
tally reconstruct a real porous structure with increasing accuracy. Some computa-
tionalmethods, including statisticalmethods (e.g.,MonteCarlomethod) andprocess-
based methods (e.g., discrete element method) [27, 28], have been developed to
digitally reconstruct porous materials with high accuracy, as shown in Fig. 11.3a.
Cutting-edge experimental technologies, such as X-ray microtomography, directly
provide us with three-dimensional (3D) images of porous materials, without even
destroying the samples [29, 30], as shown in Fig. 11.3b. X-ray nanotomography and
electron tomography allow to push the boundaries even further, to unprecedented
resolution, although sample sizes are still limited, and care needs to be taken for
samples that are anisotropic or macroscopically heterogeneous. In each case, the
digitally reconstructed porous structure can be represented by the phase function
f (x), which takes the form of a 3D matrix, containing the information of the phase
state in each voxel:

f (x) =
{
1 i f x belongs to pore space
0 otherwise

(11.3)

where x is the position vector of a voxel from an arbitrary origin. The digitally recon-
structed pore structures can be successfully used to represent rocks [31], membranes
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Fig. 11.3 Porous media generated by a virtual particle packing and b X-ray microtomography
scans. From Refs. [29, 30], with permission

[32], fuel cell electrodes [33], porous catalysts [30], fixed beds [29], and many
other porous media. Furthermore, these digitally reconstructed pore structures can
be reduced to pore networks, using network extraction algorithms, such as the thin-
ning algorithm [34], the medial axis based algorithm [35, 36], and the maximal ball
algorithm [37, 38]. Such digital reconstruction techniques have become a powerful
tool for investigating various processes in porous media, especially mass transport.

11.3.2 Influence of the Structure of Porous Media
on Transport Properties

Using the geometrical models briefly introduced in Sect. 11.3.1, we are able to
describe transport in porousmedia, nomatter whether they are ordered or disordered.
As a prelude to the optimization studies discussed further on, it is important to
understand how the structure of the pore network changes the transport properties.
The effects of the geometry of a porous medium on viscous flow and diffusion
are briefly recalled. Viscous flow of simple fluids through a single channel or, by
extension, a porousmedium can be described byDarcy’s law, which has been derived
from the Navier-Stokes equations via homogenization.

v = − k

η
∇ p (11.4)

Here, v is the so-calledDarcy velocity (the average velocity over a volume element
containing both fluid and solid matrix), η is the viscosity of the fluid, ∇ p is the
pressure gradient, and k is the permeability of the (part of a) porous medium under
consideration. The permeability for a cylindrical capillary can be calculated using
Poiseuille’s law [39]:
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k = d2/32 (11.5)

where d is the diameter of the capillary. For a suspension of spheres with diameter
d0, the permeability can be obtained from the Richardson-Zaki correlation [40]:

k = (d2
0/18)ε

2.7 (11.6)

For an aggregated bed of spheres with diameter d0, the Carman-Kozeny relation
can be used to calculate the permeability [6]:

k = (d2
0/180)

[
ε2/(1 − ε)2

]
(11.7)

These are approximations; if more is known about the geometry of the porous
medium, the permeability can be estimated more accurately. Structures in which
viscous flow occurs, vary in morphology, topology, and randomness, resulting in
different equations for the permeability. With advances in techniques to reconstruct
the pore space, such as X-ray tomography, and to model flow in porous media, such
as Lattice Boltzmannmodelling, mesoscopic structural information can be employed
to estimate macroscopic viscous flow, including that of complex fluids that can no
longer be represented by Darcy’s law [29].

Transport diffusion in porous materials, such as porous catalysts and adsorbents,
is phenomenologically described by Fick’s first law:

J = −De∇c (11.8)

De = εDm/τ (11.9)

where: J is the diffusion flux; ∇c is the concentration gradient; De is the effective
diffusivity in the porous medium; Dm is the bulk diffusivity; and τ is the tortuosity,
lumping various geometrical (and, possibly, also non-geometrical) factors that affect
diffusion in porous materials. Pore size affects the diffusivity through molecule-wall
interactions. Inmicropores, this influence can be so significant that (11.9) is no longer
valid and the diffusivity is typically 4–10 orders of magnitude smaller than the one
in the bulk phase. The statistical and spatial distributions of pore size also affect the
effective diffusivity and tortuosity. Diffusion of molecules tends to be slower when
the pore size distribution is wider [41, 42]. Tortuosity values as high as 138 have
been calculated for a pore network with a connectivity of 3 [43], when the wide and
narrow pores of a bimodal pore-size distribution are spatially randomly distributed
within the same network; however, this value would be much smaller if a connected
network of wide pores surrounds particles with narrow pores, as is more typical in
catalyst pellets [43]. The effective diffusivity decreases with decreasing connectivity,
but is less dependent on the pore network topology when the connectivity is high
enough [42]. The randomness of pore networks also affects the effective diffusivity,
especially when the connectivity is low [43–45]. The effective diffusivity of a regular
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pore network is larger than the one of an irregular pore network, because the diffusion
path in the irregular pore network is more tortuous [44].

Amorphous porousmaterials have a disordered framework, so that their porewalls
are not smooth, as is assumed in common cylindrical and spherical pore models, but
rough. For many amorphous materials used as catalyst supports and adsorbents, the
surface roughness can be described by fractal geometry, similar to natural coastlines
[46–52]. Fractals possess scale invariance, that is, they look similar at multiple length
scales: magnifying certain parts reveals a structure similar to the whole.

Benoit Mandelbrot coined the word “fractal,” when he discovered that there is a
commonmathematical language describing such rugged objects, which are infinitely
fragmented (like the Cantor set), are lines that are almost nowhere differentiable
(like the Koch curve) or are nets with an infinite power law distribution of holes (like
the Sierpinski gasket or the Menger sponge) [46]. Each of these objects is strictly
self-similar, whatever the magnification. Most importantly, however, what seemed
esoteric examples by mathematicians are, in fact, prototypes for similar shapes in
nature, like those shown in Fig. 11.5 further on; examples of natural fractals are as
diverse as ore distributions, broccoli, clouds, trees, bread, turbulent flow, mountains,
or natural coastlines. These are statistically self-similar or self-affine, within a finite
range of magnification (self-affine meaning that the similarity under magnification
is different along perpendicular directions). Mandelbrot introduced the concept of
fractal dimension, D; without going into detail, this number conveys, for example,
for fractal lines (like the Koch curve or a coastline) the property that such lines have a
length that depends on the resolution following a power law, becausemagnification of
parts reveals similar features to the whole. Thus, in the limit of infinite magnification,
fractal lines in a plane tend to become infinitely long, yet they still fill less than the
plane; thus, they have a dimension that is generally larger than 1 but less than 2:
a fractal dimension is usually a broken number. Some fractal lines, like the Peano
curve or Brownian motion, are so twisted that they ultimately fill the plane, and have
a dimensionD= 2. Fractal surfaces have a dimension larger than 2, but always lower
than 3, the dimension of the space the surface is contained in.

Many amorphous porousmaterials have such a fractal, self-similar surface.Hence,
the accessible surface area for amolecule depends on itsmolecular diameter, δ (effec-
tively, the resolution of observation), following a power law, ~δ2−D , where D is the
fractal dimension of the surface, a number between 2 (for a smooth surface—here
the surface is seen to be independent of the size δ of the molecules used as a measure)
and 3 (for a space-filling surface). Clearly, forD > 2, the surface area becomes larger
for smaller probe molecules, indicating that smaller and smaller irregularities along-
side the pore walls become accessible, like fjords upon fjords along the Norwegian
coastline are accessible to a small boat. The fractal scaling range, within which self-
similarity holds, is too narrow to significantly affect molecular diffusion, but it has
a considerable influence on Knudsen diffusion, because molecule-wall interactions
dominate the diffusion behavior. The effect of surface roughness on the Knudsen
diffusivity, DK , can be approximated by:

DK = DK0δ
D−2 (11.10)
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where DK0 is the Knudsen diffusivity when the pore wall is smooth; a more detailed
expression is presented in [51].

11.4 Nature-Inspired Engineering Approach

Some of the challenges faced by biological organisms are similar to those we seek
to solve for manmade systems. This includes the problem of maintaining efficient
operation across length scales, and the related need to efficiently transport molecules
across awide range of length scales. Through billions of years of evolution, biological
organisms have developed traits that are particularly effective, especially where these
are related to functions essential for survival. Unraveling the fundamental mecha-
nisms underpinning these traits not only helps us to better understand life, and, in
medicine, to discover ways to combat disease, but it can also serve as a source of
inspiration to solve parallel challenges in technology.

To do the latter in the most effective manner, it is essential to appreciate both the
context and the constraints of the biological model and the engineering application.
Properties like remarkable efficiency, adaptability, scalability and resilience in nature
maygive us pause,when compared to the sameproperties ofmanmade systems.Blind
imitation of natural features will, however, be highly ineffective. One reason is that
the environment of living organisms is often not the same as that of engineering
applications, whether it be temperature, pressure or chemical environment. Natural
systems are immensely complicated, but not all biological components are neces-
sary in a technical application, because the boundary conditions (available resources,
ways to grow or build the system) differ. Also, most solutions need to satisfy multiple
objectives simultaneously, while, again, these frequently differ between a biological
and a manmade construct. The sources of complexity differ, where constraints of
manufacturability, desired time scales, chemical building blocks and scale of oper-
ation are often vastly different. Therefore, while the remarkable efficiency of a cell
membrane, the agility of a bird or the incredible selectivity of an enzyme may hold
valuable information on improving the performance of artificialmembranes, aircrafts
or catalysts, respectively, purely imitating shape or other all-to-obvious features will
rarely lead to a workable, let alone better solution than existing ones.

It is this combination of learning lessons from nature, by seeking to understand
the fundamental mechanisms behind desirable features, and applying these mech-
anisms within the context of a technical application, cognizant of differences in
boundary conditions, thatwe call “nature-inspired engineering” or, for chemical engi-
neering applications, nature-inspired chemical engineering (NICE). It differs from
biomimicry in its narrow sense, eschewing direct translation of biological features,
seeking a deeper understanding of mechanisms and applying these to build a work-
able technical solution that is acceptable within the constraints that the product or
process demands (economics, safety, practical applicability, manufacturability, etc.).
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Thus, our NICEmethodology is verymuch rooted in fundamental physics and chem-
istry, and combines a holistic approach looking at natural systems with the solution-
oriented reductionism and pragmatism of engineering. Our NICE methodology is
discussed in a few recent papers [12, 53–56], and aims to be a resource for innova-
tion, guiding solutions to challenging problems related to energy, water, health and
sustainability in human society.

The complexity of nature is daunting. Its diversity is a fascinating source of
beauty, but can also be overwhelming to those seeking to build solutions inspired
by nature. Biologists tend to embrace this complexity in all its forms, cataloguing
and categorizing it with increasing detail, aiming to be comprehensive. There is
value in seeking exceptional behavior that can help us understand evolution as well
as reveal rare mechanisms, exceptions to the rule, pushing the boundaries of the
biologically achievable—the miracle of the platypus or the bombardier beetle. Such
outliers can also inspire out-of-the-box ideas for engineering solutions to technical
problems. However, in our NICE approach, in first instance, we look for universal
mechanisms that are highly common, and, while biological organisms and systems
come in different forms and shapes, the abstraction of physics and mathematical
modeling reveals striking similarities.

One of those most striking, universal features in biology is hierarchically struc-
turing, which is also crucial in technology, yet nature is vastly superior in how hierar-
chical structures are organized, bridging scales from atoms and molecules to organs
and organisms, in a way that is essential to their functioning. For example, bone has
a hierarchical structure containing seven levels of organization with distinct chem-
ical properties. This allows bone to have unique mechanical properties and transport
properties to sustain physiologically important cells, while keeping the overallweight
of the bone low [57, 58]. Fratzl and Weinkamer [59] illustrate the structure-function
relation of biological tissues, such as bone, tendon, and wood, at various hierarchical
levels, and the importance of this adaptation to fracture healing. Such hierarchical
biological structures are a great source of inspiration to materials scientists, seeking
to emulate similar properties.

Inspired by the hierarchical structure of the femur, Gustave Eiffel designed the
eponymous tower with a minimum amount of iron, but strong enough to rise 324 m
into the air. It is important to emphasize that Eiffel, quite obviously, did not copy
the entire structure of the bone, but understood that it is the multi-scale balancing
of forces in its trabecular structure that holds the secret to combining high strength,
flexibility and low weight, as illustrated in Fig. 11.4. The size, shape, and materials
used in the construction of the Eiffel tower are different from those of a bone, but it
is the hierarchical design with balanced forces at each scale that lends the tower its
uniquemechanical properties. Scores of similar architectural examples could be cited
that are nature-inspired in their design, in the engineering sense, from the work of
Gaudí toBuckminster-Fuller andCalatrava. Themost successful onesmarry a nature-
inspired design to other properties desired in their application, from functional in the
technical sense, to esthetics.

Insights into hierarchical structures in biology provide us with a lot of ideas for
the optimal design of hierarchically structured materials for processes that rely on
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Fig. 11.4 The hierarchical structure of the femur (left [60]) and its inspiration to design of the
Eiffel tower (right)

efficient mass transport. A hierarchical network is widely adopted in biology to meet
the challenge of transporting nutrients toward cells and products, including waste,
away from cells through multiple length scales. At macroscopic scales, many of
these networks have a fractal, self-similar branching structure, which interpolates
between the scale of the organ or entire organism and a minimum length scale, the
inner cutoff of the fractal scaling range. Examples are tree crowns (see Fig. 11.5a),
the upper respiratory tract of the lungs (see Fig. 11.5b), and the vascular network (see
Fig. 11.5c). Crucially, the lower bound or inner cutoff of the fractal scaling range
also defines a cross-over in the dominant transport mechanism, from flow at large
(macroscopic) scales, to diffusion at small (mesoscopic to microscopic) scales.

This is well illustrated by human and other mammalian lungs. The airway tree
of a human adult lung repeatedly branches over approximately 23 generations. The
upper airway tree is fractal; it consists of 14–16 levels of self-similar branching,
counting from the trachea via the bronchi to the terminal bronchioles [64, 65]. The
walls of these upper generations of bronchi are impermeable, and air through the
bronchial tree is mainly transported via convective flow. As air flows through the
bronchial tree, it gradually slows down from the trachea to the terminal bronchioles.
This is because the radius of each branch only gradually decreases from generation
to generation. More specifically, at each generation, (rp)� = m(rd)�, where rp is the
radius of the parent branch and rd is the radius of one of the m daughters; in many
cases,m= 2. The length of the branches decreases similarly from parent to daughter:
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Fig. 11.5 Examples of fractal structures in the nature. a Tree crown; b lung [61]; c a vascular
network of the human liver [62]; d Lena river delta [63]

(lp)D =m(ld)D. Thus, the upper airway tree is a space-filling, self-similar fractal with
fractal dimension D = 3, which also has a diameter exponent � = 3 [46, 66, 67].
If this diameter exponent, �, had been 2, as it is in most botanical trees (something
da Vinci already showed), the flux and the transport velocity would remain constant,
because the total cross-sectional area of all daughters remains constant, throughout
all branching generations of the tree. However, for the lung, this cross-sectional
area progresses with a factor 24/3 from generation to generation, while the velocity
decreases, correspondingly, by a factor 2−1/3. Ultimately, after about 14 genera-
tions, air has slowed down so much that diffusional transport, by the random motion
of molecules, is as fast as convective transport; any further restriction in channel
diameter would make diffusion more rapid than convection. At that point, the Péclet
number, Pe, comparing convective with diffusive transport, crosses over from a value
above 1 to one below 1. It is around this branching generation that the structure of
the airway tree changes to one that is very compact, as shown in Fig. 11.5b: air enters
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the acinar airways, lined by alveoli, where exchange of oxygen and carbon dioxide
with the bloodstream occurs. Throughout these lower 7–9 space-filling generations
of acini, the channel diameter no longer changes much; there would be no advantage
to such change, given that, unlike convective flow, diffusive transport by Brownian
motion is not affected by the local channel diameter.

In summary, the airway tree acts as a fractal distributor and collector with a self-
similar architecture between the macroscopic scale of the trachea to the mesoscopic
scale of the bronchioles [68], while the channel size within the acini remains almost
constant and the alveoli are uniformly distributed atmesoscopic length scales. A tran-
sition in dominant transport mechanism from convection to diffusion, corresponding
to Pe ~ 1, occurs in parallel to this radical change in geometry, and the lower cutoff
of the fractal scaling regime defines the cross-over between macroscopic and the
mesoscopic length scales. This is a key insight that appears widely valid in biology,
where characteristic length scales are tied to cross-overs in function, here exempli-
fied by transport properties. Fractal interpolation between cross-over points bridging
the mesoscopic and the macroscopic is common, because it enables preservation of
function [56].

Trees show a similar cross-over in hierarchical structure to lungs (Fig. 11.1). The
tree crown has a fractal, self-similar branching structure, which distributes water and
nutrients, with leaves supported by its branch tips [46]. This self-similar structure is
so advantageous in adaptability and scalability that it enables tree crowns to spread
tall and wide, without change in structure at the micro- to mesoscale. The branches
thicken and the number of branching generations advances with the age of the tree,
while the size of the twigs and leaves does not change very much. In deciduous
trees, the veinal architecture of leaves transitions from fractal to uniform, again
corresponding to a change in dominant transport mechanism from flow to diffusion,
where Pe ~ 1, similar to the case of lungs.

Thus, a key nature-inspired design principle emerges for artificial hierarchical
transport networks in chemical reaction engineering applications and separation
processes involvingporousmaterials, namely to combine a fractal geometry atmacro-
scopic scales, and a uniform one at mesoscopic scales, with the reaction, adsorption
or exchange process occurring at microscopic scales. This particular hierarchical
structure leads to inherent scalability, as the operation is scale independent, but, in
addition, the system is also particularly efficient, if not optimal, as we will now
discuss.

The ubiquity of transport networks that combine a fractal geometry at larger scales
with uniformity at small scales, suggests the importanceof understanding thephysical
reason behind a particular geometry before mimicking it to attempt optimization.
Almost a century ago, it was already pointed out by Murray that there is, what he
called a “physiological principle of minimumwork” [69, 70]. He proposed to use the
concept of “fitness” as a premise for physiological deductions, and hypothesized that
physiological organization is such that the energetic cost of operation is minimized.
More specifically, he showed that the hierarchical structure of the human vascular
network is such that oxygen transport is most efficient. If the blood vessels are too
narrow, too much work is needed for blood to flow through, due to high friction.
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If the vessels are too broad, however, the blood volume is similarly large, which
is difficult to sustain as well. Efficiency is a compromise between the factors of
work against friction, and the “cost” of upkeep of blood itself, which also requires
metabolic energy. Minimizing the total amount of work (per unit of time and per
unit of blood volume) as a function of the radius of the blood vessels led Murray to
a similar value for the “cost” of blood (energy per unit time and per unit volume)
for all arteries and capillaries. Although Murray does not use this term, it is very
interesting to note that this implies equipartition of energy over the entire system of
the vascular network, which is a thermodynamic principle.

We have shown a similar result for the architecture of the lung, and derived it
in a different way, using irreversible thermodynamics, that is, second-law energy
efficiency or minimization of entropy production [66]. In full agreement with physi-
ological data for the respiratory network, the architecture of the lung is such that the
pressure drop over each of the bronchi is the same, and the concentration drop over
the acini is the same aswell. This implies equipartition of thermodynamic forces over
all constituting channels of the respiratory network. The space-filling architecture
of the lung, D = 3, hence, (lp)3 = 2(ld)3, with also � = 3, hence (rp)3 = 2(rd)3,
throughout the bronchial tree, leads to minimum power dissipation, given a desired
membrane surface area in the acini for exchange with the blood stream. This is a very
important principle, which wewill use in Sect. 11.6, when discussing nature-inspired
fuel cells.

Underlying this analysis is the observation that we should be very cautious when
learning from nature, and blind biomimetics should be avoided. Manmade designs
that copy features of biological structures visually or intuitively to achieve similar
properties are often referred to as biomimetics or biomimicry. The examples of the
lung and the vascular network demonstrate that a physical analysis is necessary to
understand the structural features leading to high efficiency and scalability. Straight-
forward biomimicry might, for example, assume that an infinitely self-similar fractal
network is best, while our study showed a marked cutoff corresponding to Pe ~ 1.
This adds to the different boundary conditions and context in technological appli-
cations, which must be accounted for when using the NICE approach to design and
optimize artificial transport systems. We will now illustrate the NICE approach to
optimizing transport in porous media, in the case of catalysts and fuel cells.

11.5 Nature-Inspired Optimization of Porous Catalysts

Desired properties of porous catalysts include high activity, selectivity, and stability.
The geometric and electronic structure of the active sites determines the intrinsic
kinetics (microscale), but the pore network structure significantly affects the
apparent, effective kinetics (mesoscale), which, in turn, affects overall reactor yields
and product distributions (macroscale), via the multiscale hierarchy illustrated in
Fig. 11.2. Rational design at the mesoscale has not nearly received as much attention
as the microscale, where spectroscopy, quantum chemistry and statistical mechanics
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have allowed for significant progress. Nevertheless, in a catalyst pellet, the concen-
trations of certain components might not be uniform, due to their long diffusion
path, leading to considerable diffusion resistance. This, in turn, leads to a decreased
volume-averaged reaction rate, compared to if the concentrations were uniform
throughout the pellet and, therefore, the same to those at the outer surface. The
effectiveness factor is defined to quantify the utilization of active sites in a catalyst
pellet:

η = rate of reaction wi th di f f usion limitation

rate of reaction at outer sur f ace conditions
(11.11)

η =
∫
r(C)dV

r(CS)Vt
(11.12)

where r(C) is the reaction rate per unit volume at a (key) reactant concentration C
at any position in the catalyst pellet, r(CS) is the reaction rate per unit volume at
reactant concentration CS at the external surface of the catalyst pellet, and Vt is the
total volume of the catalyst pellet. A method to determine effectiveness factors by
direct experimental inspection via IR imaging was given in Sect. 10.6.

Rational design at the microscale must be complemented by similar attention at
the mesoscale. Indeed, an important objective is to maximize the effectiveness factor
of a desired reaction, without changing the active sites themselves, thus preserving
the intrinsic properties. A straightforward method is to shrink the size of the pellet.
However, this method is rarely feasible in the chemical industry, because pellet
size is typically dictated by reactor engineering requirements, such as pressure drop
for fixed-bed reactors (increased for smaller pellets) and the minimum fluidiza-
tion velocity in fluidized beds (controlled by particle size). Optimal design of the
pore network, without affecting the pellet size, is, therefore, necessary to boost the
effectiveness factor [71, 72].

Here, we can turn to nature for guidance. As illustrated in Fig. 11.2, a leaf bears
similarities to a catalyst pellet, catalyzing carbon dioxide and water to sugar and
oxygen, for which it is crucial to efficiently transport reactants and products in the
leaf. To achieve fast transport, leaves have developed a hierarchical channel system,
which we can use as a source of inspiration for the design of hierarchical pore
networks in catalysts, as illustrated in Fig. 11.6. A hierarchical pore network in a
nanoporous catalyst, like a zeolite, is generated by introducing macro- and meso-
pores, which act as “highways” for fast transport (see also Sect. 10.7). However,
important questions for the optimal design of these “highways” require an answer:
Should they be distributed in a uniform or in a nonuniform way? Should they be of
the same size or distributed in size according to an optimal distribution?What should
the optimal macro- and mesoporosity be? How sensitive is the design to variations
in these textural parameters? Should the optimal pore network be different if deacti-
vation by fouling occurs at the same time? To address these questions, which guide
the synthesis of improved catalysts, general features of the optimal pore network in
porous catalysts were studied, using computational methods [73–79]. In a leaf, as in
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Fig. 11.6 Applying the NICE approach to optimal catalyst pellet design. aA leaf has a hierarchical
network of veins to quickly transport reactants and products. b Inspired by the hierarchical trans-
port network, a ZSM-5 zeolite catalyst was transformed into a hierarchically structured composite
with microporous ZSM-5 nanocrystals embedded in a well-connected mesoporous matrix, thus
facilitating diffusion. The zeolite composite was synthesized using the route reported in [80, 81]

the lower airway of the lung, the transport network changes from fractal at large scale
to uniform at small scales, where diffusion limits transport. The cells are strikingly
uniformly distributed amongst the veins in a leaf. The theoretical and computational
analysis that now follows does not prove that the leaf has an optimized structure,
but we will see that similar features emerge from optimizing a hierarchical porous
catalyst.

Gheorghiu and Coppens [73] used a two-dimensional model to computationally
explore diffusion with first-order, isothermal reaction (A → B) in hierarchically
structured catalysts, in which a wide-pore network is introduced into a nanoporous
catalyst. They found that the catalyst with a fractal-like wide-pore network and broad
pore size distribution operates very near optimality, in the sense that the effectiveness
factor is maximized. However, the optimum is shallow, and, in these simulations, a
constant number of large pores was assumed. This also does not guarantee that the
total yield in the pellet is maximized.

Wang et al. [74] relaxed this constraint and compared monodisperse, bidisperse,
and bimodal pore networks in a nanostructured catalyst for a first-order, isothermal
reaction. For the bidisperse pore network, the large pores all have the same size; in
the bimodal pore network, large pores vary in size throughout the pellet, as shown
in Fig. 11.7. The computations showed that an optimized bidisperse catalyst could
have a yield at least an order of magnitude higher than the one of the monodisperse
catalyst (see Fig. 11.7), but also that local variations in pore diameter and porosity of
the large pore network, as in general bimodal networks, do not appreciably increase
the yield. Transport ofmolecules results from twodiffusionprocesses, partly in series,
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Fig. 11.7 Monodisperse (left), bidisperse (center), and bimodal (right) structures (nanoporous
catalytic material: black; large diffusion channels: white). The monodisperse structure has a pore
network with only narrow pores. The bidisperse structure has a hierarchical pore network, with
narrow nanopores only in the black “islands” of the same size and wide pores of the same
size surrounding these “islands”. The bimodal structures are assemblies of N × N bidisperse
substructures; in the illustration, N is 3. From [74], with permission

partly parallel: (1) diffusion in the large pores penetrating the whole catalyst pellet,
(2) local diffusion in the nanoporous “islands” surrounded by the large pores. In the
optimal catalysts, the slowest, rate determining process is diffusion in the large pores,
because the diffusion path in large pores is orders of magnitude longer than the one in
narrowpores.Kärger andVasenkov [82] reached a similar conclusion experimentally,
based on PFG NMR, for catalysts used in fluidized bed catalytic cracking (FCC),
namely that diffusion at the (high) reaction temperature in composite faujasite zeolite-
containing particles is governed by diffusion in the large pores, rather than in the
intracrystalline micropores, despite the intrinsically much smaller diffusivity in the
latter. This is because the crystals are so small. Wang et al. [74] also found that
the value of the total macro- and mesoporosity is essential, while the distribution
of the wide (macro-/meso-)pore size is of secondary importance in determining the
yield for the optimized hierarchical catalyst. In other words, a spatially uniform, wide
pore distribution with uniform pore size (schematically represented by the bidisperse
structure in Fig. 11.7) is preferred if the number of wide pores is large enough, while
a fractal-like wide pore network may lead to higher yield and effectiveness factor if
the number of wide pores is limited. This conclusion is also valid for the optimization
of porous adsorbents [83].

Introducing macroporosity facilitates molecular transport, on the one hand, and
reduces the amount of active catalytic material per unit volume, on the other hand.
Hence, there is an optimal macroporosity when the objective is to maximize yield.
Johannessen et al. [77] optimized the macroporosity analytically for a periodic
bimodal porous catalyst (see Fig. 11.8) using optimal control theory and an effec-
tive one-dimensional model, with the assumptions of pure molecular diffusion in the
large pore channels and first-order, isothermal reaction in the catalyst. For this model
catalyst, the macroporosity (εmacro) can be calculated by:
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Fig. 11.8 Illustration of the bimodal catalyst (left) and one of its subunits (right). This bimodal
catalyst is formed by repeating the subunit in the y direction. The white parts are nanoporous
catalytic material; the black parts are large diffusion channels. L is half of the thickness of the
catalyst, w is the thickness of the channel wall (i.e., the catalytic material), d is the diameter of the
large channels. From [76], with permission

εmacro = d

d + w
(11.13)

whered is the diameter of large channels andw is the channelwall thickness, as shown
in the right part of Fig. 11.8. The simulations show that the optimal macroporosity
should always be less than 0.5.When channel diameter and channelwall thickness are
optimized, concentration gradients are indistinguishable in the y (vertical) direction,
which is consistent with the conclusion reached by Wang et al. [74]. Based on this
result, a one-dimensional effective (continuum) model was developed; it was shown
that this model is almost as accurate as the two-dimensional pore network model
when optimizing the macroporosity of a bimodal catalyst.

The Thiele modulus method can be used to optimize the hierarchically structured
porous catalysts. Wang and Coppens [76] defined a generalized distributor (i.e.,
macropore-based) Thiele modulus (Φ0):

Φ0 = V

S

r(C0)√
2

⎡
⎣

C0∫
Cc

Dmr(C)dC

⎤
⎦

−1/2

(11.14)

and related Φ0 with the optimal effectiveness factor (ηopt ) of the catalyst for a single
reaction with general kinetics. In (11.14), V is the volume (3D) or area (2D) of the
catalyst pellet; S is the external surface area (3D) or perimeter (2D) of the catalyst
pellet; r is the reaction rate;C0 is the concentration of a key reactant in the bulk phase;
Cc is typically assumed to be zero for an irreversible reaction or the concentration
in equilibrium for a reversible reaction; Dm is the diffusivity in macropores, rather
than the effective diffusivity used in the conventional generalized Thiele modulus
( Φ). They found that the ηopt − Φ0 relationship (see Fig. 11.9a) is analogous to
the classical, universal η − Φ relationship (see Fig. 11.9b), that is, the effectiveness
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Fig. 11.9 a Effectiveness factor of a porous catalyst (η) as a function of the generalized Thiele
modulus (Φ) for a single reaction with different reaction kinetics and in catalyst pellets of different
shapes. b Optimal effectiveness factor of a porous catalyst (ηopt ) as a function of the generalized
distributor Thiele modulus (Φ0) for a single reaction with different reaction kinetics and in catalyst
pellets of different shapes. From Ref. [76], with permission

factor η is seen to decrease from 1 for a small Thiele modulus (corresponding to high
diffusivities and low intrinsic reaction rates) to an inverse proportionality to Φ at
high Thiele modulus. This yields a back-of-envelope approach to design a bimodal
catalyst, because ηopt can be estimated solely from the value of Φ0 without the need
for case-by-case optimizations.

This ηopt −Φ0 relation was applied to optimize a mesoporous deNOx catalyst for
the pseudo-first-order, isothermal reaction, 4NO + 4NH3 + O2 → 4N2 + 6H2O,
which is used to reduce NOx pollutants from power plant emissions [76]. By intro-
ducing an optimal macropore network (occupying 20–40% of the total volume of the
catalyst) into the washcoat consisting of the mesoporous deNOx catalyst, its overall
activity can be increased by a factor of 1.8–2.8. Wang and Coppens [75] also opti-
mized a commercial, mesoporous Ni/Al2O3 catalyst for the autothermal reforming
of methane by introducing a macropore network. This process produces syngas (a
mixture of, mostly, CO and H2), which is the precursor to methanol, ammonia, artifi-
cial fuels andmore, so it is one of themost important chemical processes. The compu-
tations show that the overall activity can be increased by a factor of 1.4–4 by only
adjusting macroporosity and macropore size of the bimodal (or macro-mesoporous)
catalyst. In addition, a larger macroporosity typically favors a lower CO/H2 ratio (or
a higher selectivity toward hydrogen), which indicates that the macroporosity can be
used as a handle to control the CO/H2 ratio.

When optimizing porous catalysts, the sensitivity of the catalyst performance to
the structural parameters matters, as this shows how tightly the pore structure should
be controlled during synthesis. Wang et al. [74] found that the optimal value of the
macroporosity matters the most, while the distribution of large pore size around the
optimal large pore size is less important than the size itself. Coppens and Wang [12]
investigated how the effectiveness factor reacts to changes in channel diameter d
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Fig. 11.10 Sensitivity of the
effectiveness factor to the
variations of channel
diameter d (0.5dopt–1.5dopt)
and channel wall thickness w
(0.5wopt–1.5wopt), as labeled
in Fig. 11.8. The colors
indicate the loss in the
effectiveness factor (i.e., a
percentage of the optimal
effectiveness factor). From
Ref. [12], with permission

and channel wall thickness w around the optimal values; Fig. 11.10 shows that the
loss in effectiveness factor is less than about 5% within a rather broad region around
the optimum. These results are important for the preparation of industrial catalysts,
because it is much easier to precisely control the macroporosity, rather than the large
pore size.

The performance of a catalyst often changeswith time on stream, due to the deacti-
vation of the catalyst by fouling, which covers active sites and blocks pore channels.
Deactivation can be mitigated by optimizing the pore network of the catalyst, as
suggested by Keil and his colleagues [84, 85]. Rao and Coppens [78, 79] compu-
tationally optimized a mesoporous hydrodemetalation catalyst by introducing an
optimal hierarchical pore network, to maximize overall catalytic activity and robust-
ness to deactivation over a given time on stream. This hierarchical pore network
structure is illustrated in Fig. 11.11. A random sphere model was used to describe
diffusion and reaction in the catalyst pellet. The results show that the lifetime of
the hierarchically structured catalyst could be extended by 40%, while using 29%
less catalyst than a non-optimized, purely mesoporous catalyst. Local variations in
macroporosity and large pore size only negligibly change the overall yields, which
is consistent with the optimization results of the porous catalysts without deactiva-
tion [74, 77]. Fouling in a porous catalyst particle can plug pores where continuum
models break down. A discretemodel was developed byYe et al. [100] to describe the
pore plugging by coking during propane dehydrogenation in a Pt-Sn/Al2O3 catalyst
particle. The effects of reaction temperature, composition and pore network struc-
ture on the catalyst deactivation by coking were studied. They found that the reaction
temperature and composition can change the coking rate and apparent reaction rate,
but they do not change the maximum loading of coke. On the other hand, the pore
network structure affects themaximum capacity of a catalyst to contain coke. Ye et al.
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Fig. 11.11 Illustration of the pore structure of the catalyst before and after deactivation. a The hier-
archically structured catalyst before deactivation is composed of overlapping mesoporous grains
separated by a macropore network. Each grain consists of overlapping solid catalyst spheres sepa-
rated by mesopores. b The catalyst after deactivation has a similar hierarchical structure as the one
in Fig. 11.11a, but metal sulfide deposits (black spheres) cover the internal surface of the catalyst
and can block pores. From [78], with permission

[101] also compared and optimized the unimodal and bimodal pore networks in the
catalyst particles for propane dehydrogenation. They found that the overall yields of
hierarchically structured catalyst particles can be improved by 2.8 times through such
optimization, while about 45% less catalytic material is needed, when compared to
a mesoporous benchmark catalyst. Catalytic performance may also be affected by
phase change, caused by capillary condensation in the pores. Ye et al. proposed a
pore network model to investigate diffusion, phase change, and reaction in a porous
catalyst pellet. Hydrogenation of benzene to cyclohexane in the Pd/Al2O3 catalyst
pellet was selected as a model reaction. Their results show that pore blocking by
liquid can significantly affect the performance of the multiphase catalyst , indicating
that pore blocking must be accounted for when modelling multiphase reactions. Ye
et al. also investigated the influence of pore network structure on the performance of
the multiphase catalyst. These structural parameters include pore size distribution,
connectivity, pellet size, spatial distribution of pores, and bimodal pore structure.
The results show that the performance of the multiphase catalyst is very sensitive to
these structural parameters, which indicates that the pore network structure should
be well controlled to achieve a desired performance of the porous catalyst for multi-
phase reactions. Liu et al. [102] studied the deactivation of catalysts for the Claus
process (used to produce sulfur from hydrogen sulfide). Deactivation is caused by
sulfur condensation, so that these catalysts need to be regenerated. They found that
the apparent activities during deactivation are always higher than the ones during
regeneration at the same reaction conditions. This phenomenon can be attributed
to the inconsistent contents of liquid sulfur in the catalyst particle when changing
reaction conditions in different ways, an effect that can be reduced by optimizing the
particle shape and pore network structure.

These studies demonstrate that an appropriate hierarchical catalyst pore network
structure can substantially increase catalytic performance, whether it is in terms of
activity, selectivity or stability. Within the context of NICE, our conclusions are in
striking agreement with models in nature, such as leaves and the alveolar sacs of
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the lower airways of the lung: A uniform distribution and constant size of “cells”
(translated to, e.g., zeolite crystal size) and wide pore channels (translated to macro-
/mesopores) leads to maximum performance. The optimal porosity and pore channel
size matters, as does the cell/crystal size, avoiding undesired further diffusion limi-
tations within the crystals that would affect the (intrinsic) product distributions and
prevent scalability, so important in nature and technology. The benefits are signifi-
cant and should guide synthesis efforts. From a practical viewpoint, the optimum is
shallow enough to allow for robust results, as some distribution around the optimum
size distribution can be tolerated.

In recent years, there has been increasing evidence that resistance to molecular
transport in hierarchically structured porous catalysts that consist of nanoporous
grains may also depend on the finite molecular permeability through the surface of
those grains. Especially when the nanoporous grains are zeolite crystals, this had
been speculated since the late 1970s, due to the large difference between apparent
diffusivities for crystals of different sizes, as measured by molecular uptake exper-
iments [103, 112–115], as well as evidence from molecular dynamics simulations
[111, 117, 116, 119–121]. However, detailedmicro-imaging techniques have allowed
to more directly observe the existence of crystal surface barriers [104, 123]. Surface
barriers could be external or internal, in twinned [121] or polycrystalline samples
[106]. In addition, comparing multiscale calculations with experiments has shown
that zeolite crystal surface barriers may well become the dominating resistance for
small enough crystals for transport limited reactions, especially when optimising
the hierarchically structured zeolite catalysts in the aforementioned manner [105,
107–109]. This is not unlike biological systems, where selective transport may be
governed by a cell membrane, or a skin. The optimization of the transport network
architecture should thus include the “skins” of the constituting particles as well,
which need not only impose surface barriers, but could be controlled through the
material synthesis process [109] to make them more or less permeable [122], and
even selective to particular molecular species [118], opening up entirely new oppor-
tunities for nature-inspired optimization of hierarchically structured porous media
[110]. For more details on this fascinating subject, we refer to a recent review on the
nature-inspired, computationally assisted design of hierarchically structured zeolites
[110].

11.6 Nature-Inspired Optimization of PEM Fuel Cells

Proton exchangemembrane (PEM) fuel cells are devices that convert chemical energy
into electricity by electro-catalytic oxidation, at the anode, of hydrogen to protons,
which diffuse through a membrane and electro-catalytically reduce, at the cathode,
oxygen to water. Electrons produced at the anode move through an external circuit
(where they are used to power a device) to the cathode, where they are consumed.
Rather thandirect combustion of hydrogen, the electro-catalytic route avoidsCarnot’s
thermodynamic efficiency limit, thus, while more complicated, is potentially much
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more efficient, even at low temperatures. A PEM fuel cell consists of electrodes
(anode and cathode), catalysts, proton exchange membrane, and gas diffusion layers
for gas distribution on both sides of the electrodes. Since the average electric power
from a single PEM fuel cell is limited to around 0.5 W/cm2 [88], several cells must
be stacked and bipolar plates are used to connect these cells, in order to achieve
the desired power output in applications. During discharge, hydrogen (oxygen) are
distributed over the anode (cathode) of the PEM fuel cell through the flow channels
on bipolar plates, and then diffuse through the anode (cathode) gas diffusion layer
and porous catalyst layer (often, Pt/carbon) before reaching the Pt active sites, where
the reactions occur. At the same time, the product, water, is transported through
the cathode catalyst and gas diffusion layer, to be collected and removed through
the flow channels on the bipolar plates. Severe mass transfer limitations can cause
rapid loss of voltage under high loads and significantly reduce power output [89].
Condensed water can clog the pores, but sufficient humidity of the membrane is
necessary for the proton exchange to occur. Water management and alleviating, in
particular, oxygen mass transfer limitations at the cathode is of great importance in
PEM fuel cell design. Such problems have persisted over many decades. Can we
turn to nature for inspiration in tackling them and redesign PEM fuel cells? We will
discuss one aspect of this problem, taking the lung as a source of inspiration.

The required transport systems in PEM fuel cells and in lungs share some funda-
mental features: a hierarchy of transport channels is used, and dominant transport
mechanisms include flow and diffusion. Hence, it is worthwhile to learn from lungs
to guide the optimization of transport in PEM fuel cells, which is illustrated in
Fig. 11.12. As mentioned in Sect. 11.4, the upper respiratory tract (from trachea to
bronchioles) has a self-similar, fractal architecture in which flow dominates. This
fractal architecture connects the microscopic elements (i.e., the acini of the lung)
to a single macroscopic element (i.e., the trachea of the lung) via equal hydraulic
path lengths, leading to equal transport rates and minimized entropy production
while breathing. Besides, this fractal architecture can be extended by simply adding
a branching generation, without changing the microscopic building units (i.e., the
acini). In the acini of the lung, transport ofmolecules is dominated by diffusion via the
cell walls. Cell size is remarkably constant across mammals, in spite of considerable
differences in size between organisms. As discussed, these fundamental properties
of the hierarchical structure of the lung are tied to scalability and efficiency of the
lung as a gas distributor and collector [66], and so can be utilized to design PEM fuel
cells.

Inspired by the lung, a design was proposed to improve the energy efficiency and
save the amount of expensive catalyticmaterial in a PEM fuel cell [90]. In this design,
the flow channels of a bipolar plate and the pore network architecture of a catalyst
layer are optimized. The two parts can be decoupled and subsequently combined.
To optimize the flow channel, criteria for minimum entropy production should be
satisfied; to optimize the pore network structure, an optimized macroporosity should
be introduced; both parts are ideally matched when Pe ~ 1 at the interface, as in the
lung.
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Fig. 11.12 Applying the NICE approach to the optimal design of PEM fuel cells. The hierarchical
transport network of the lung, transitioning from fractal to uniform (left) inspired the design of a
fractal distributor as bipolar plate (right top) and hierarchically structured nanoporous catalyst with
uniformly distributed macropores (right bottom). From [55], with permission

In the rest of this section, some examples of biomimetic and nature-inspired
designs of flow channels of a bipolar channel are given and compared. An extension
to electro-catalysis of the methodology discussed in Sect. 11.5 is used to optimize
the design of the catalyst layer.

Some biomimetic designs of the flow channel pattern have been proposed to
improve the flow of reactants and water in a PEM fuel cell [91–93]. Some designs
combine the typically used serpentine (snake-like) and interdigitated patterns to form
a “leaf-inspired” or “lung-inspired” channel pattern [91, 92], as shown in Fig. 11.13.
The computations show that the leaf and lung flow channel patterns have a lower
pressure drop and a more uniform pressure distribution, compared to the commer-
cial serpentine and interdigitated designs. Experimental studies [91, 92] of these
biomimetic designs show that the overall fuel cell performance can be increased by
30%. These biomimetic designs are important contributions to the improved design
of PEM fuel cells, however, they only mimic certain natural features, without using
the rigorous criteria behind the effectiveness of transport in leaves and lungs. Hence,
they are essentially empirical, similarities with biology are superficial, and there is
no reason for them to be optimal.

On the contrary, nature-inspired designs of the flow channels rely on fundamental
properties of pulmonary architecture and theories, such as Murray’s law [69, 70].
A first step is to build flow channels into a fractal-like structure, just like the upper
respiratory tract of the lung. Figure 11.14 shows a two-dimensional fractal distributor
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Fig. 11.13 a Leaf-inspired and b lung-inspired, biomimetic flow channel patterns. The inlet is at
the top and the outlet is at the bottom. From [91], with permission

Fig. 11.14 Fractal flow distributors with single inlet and a 16 and b 64 outlets. c Polarization curves
(that is, voltage as a function of current density) and power density (product of voltage and current
density) of PEM fuel cells for three fractal (here, called constructal) distributors as bipolar plates.
The legend “Constructal N” refers to a distributor with N outlets. From [97], with permission

as bipolar plate, which can be built by rapid prototyping (Fig. 11.12). Reactants
enter this distributor through a single inlet, flow through the branching channels,
and eventually exit the distributor through a square array of outlets, which have
the same hydraulic distance from the inlet. The diameter of the channels gradually
changes, following a power law with exponent, �, as discussed in Sect. 11.4. In
fractal distributor networks in nature, this exponent is different for botanical trees
(� = 2) [46, 94, 95], arteries (� = 2.7) [46, 96] and lungs (� = 3) [46, 96],
because the function and transport mechanism in these natural distribution systems
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differ. Murray’s law, where � = 3, leads to the extraordinary efficiency of the
lung. Ramos-Alvarado et al. [97] computationally compared the designs of fractal
distributors with 16, 64, and 256 outlets. The fractal distributor with 256 outlets
enhanced power generation by 200 and 50% over the ones with 16 and 64 outlets,
respectively, because flow distribution was more uniform and the pressure drop was
lower. Our own work [98] has used � = 3 in a design that includes a number of
branching generations guided by the boundary condition, Pe ~ 1, thus convective
transport out of the last generation matches diffusion in the gas diffusion layer and
the catalyst layer adjoining the bipolar plates—similar to the lung (Fig. 11.12).

The inefficient usage of expensive platinum catalyst caused by diffusion limita-
tions not only adds to the total cost, but also decreases the power output. Marquis and
Coppens [98] computationally optimized the microstructure by adjusting the plat-
inum loading, platinum-to-carbon ratio, and catalyst layer void fraction. The results
show that the optimization of catalyst microstructure can increase platinum utiliza-
tion 30-fold over existing catalyst layer designs while maintaining power densities
over 0.35 W/cm2. An optimal large pore network should thus be introduced into
the catalyst layer to further increase performance, similar to the results obtained in
Sect. 11.5. Cho et al. [124] optimized the overall architecture of lung-inspired fuel
cells, which confirmed that the optimal number of fractal generations in the flow
plates corresponds to transition from flow to diffusion in the gas diffusion layer
(GDL) and the catalyst layers at the electrodes [98]. Their calculations showed that a
thinner GDL could be used, with the potential to increase the volumetric power
density by 80%, when using a lung-inspired design. In addition, thanks to alternative
manufacturing methods to selective laser sintering (metal-based 3D printing), such
as the use of printed circuit boards and computerized numerical control (CNC), the
implementation of such nature-inspired designs becomes much cheaper and leads to
lighter devices [125]. As in nature, all length scales need to be considered holistically
to achieve robust, efficient and scalable designs. The tremendous opportunities of
such a holistic. nature-inspired design of electrochemical devices like batteries and
fuel cells, from enzyme-inspired catalysts to the device scale has been reviewed by
Trogadas and Coppens [126].

11.7 Conclusions

This chapter discussed a nature-inspired (chemical) engineering (NICE) approach
to optimize mass transport, and illustrated it via a few examples relevant to chem-
ical engineering, for catalytic systems employing porous media. In technology, as
well as in nature, efficiently transporting molecules over multiple length scales,
while maintaining scale-independent results, is of great importance. In each case,
the performance of the transport systems is significantly affected by their structure
over different length scales, which provides abundant room to optimize transport
through manipulating the multiscale structure, such as transport channel size and
distribution. Meanwhile, a fundamentally rooted methodology is still required to
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rationally design these transport systems for technological applications. Trees and
mammalian lungs have evolved a hierarchical channel network for transport, which is
efficient, robust, and scalable. At the macroscale, where flow dominates, the channel
network is a self-similar fractal; at meso- to microscales, where diffusion dominates,
the channel size becomes almost uniform. That these structural features are inter-
twined with functional optimality is a powerful basis for rational, nature-inspired
design, beyond biomimicry by superficial imitation. We illustrated this for porous
catalysts and PEM fuel cells.

Inspired by hierarchical diffusion networks in biology, an optimal large pore
network can be introduced into nanoporous catalysts to maximize the usage of the
catalyst, aswell as overall yield. Computational and analytical studies indicate that an
optimal hierarchically structured catalyst contains uniformly distributed wide pores
in betweennanoporous catalyst grains; the optimalmacro/mesoporositymattersmore
than the optimal macro/mesopore size, and some distribution around the optimum
is allowed, hence the result is robust. The same conclusions hold, irrespective of the
reaction kinetics, and such a structure mitigates effects of deactivation by fouling.
In addition, there could be internal or external surface barriers in nanoporous grains,
such as zeolite crystals; these might even dominate the overall transport in hierar-
chically structured porous materials. There are opportunities to optimize selective
surface permeability, inspired by biological membranes, and thus control yields and
product distributions in catalysis. Learning from the fractal architecture of lungs and
trees for fast transport across length scales where transport occurs by flow, bipolar
plates with a fractal geometry and employingMurray’s lawwere designed to improve
the performance of PEM fuel cells, boosting their power output.

Rapid progress in synthesis and manufacturing technologies, from nanomate-
rials synthesis and microtemplating methods to additive manufacturing and micro-
machining, increasingly allow to put theoretically optimized, three-dimensional,
hierarchical architectures of porous materials and flow distribution networks into
practice. Practical implementation of optimal transport networks, guided by the
nature-inspired chemical engineering (NICE) approach, is no longer a distant dream.
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Chapter 12
Expanding NMR Versatility

Scott A. Willis, Tim Stait-Gardner, Allan M. Torres, Gang Zheng,
Abhishek Gupta, and William S. Price

12.1 Introduction

Whether molecules (or ions) are in free solution or in some sort of composed porous
system, translational diffusion (i.e., random thermal or Brownian motion) can be
viewed as the most fundamental form of motion—Nature and Technology depend
on it. In the presence or absence of other forms of motion (e.g., flow, convection, and
mutual diffusion) diffusion is always occurring [1, 2]. It is the background level of
dispersion at the molecular level. Consequently, translational motion is fundamen-
tally involved in most chemical reactions from the gas phase to those in condensed
matter including those involved in metabolism. In general, diffusion brings reactants
together and/or to the active site in the case of a catalyst or enzyme, and similarly
moves the reactants away. Indeed, in very rapidly reacting systems it may even be that
the kinetics are limited by the diffusion of the reactants to or the products from the
point of reaction (see, e.g., the discussions in Sects. 10.6 and 11.5). Thus, to under-
stand reaction kinetics it is necessary to be able to probe the diffusive properties of
the various species.

In addition to the direct role of diffusion in chemically based processes, there are
other very important reasons for wishing to be able to probe diffusion andmuch of the
following considerations assumes knowledge of Chap. 2 Spreading Fundamentals.
In particular, it is possible to obtain enormous information on the interactions of
the diffusing species with each other (e.g., self-association, hydrogen bonding) and
other species (binding, hydrogen bonding), and their interactions with the boundaries
that such species may be diffusing within (e.g., cell walls). Naturally, the sort of
information that can be obtained depends on the nature of the system, for example,
whether it is a pure substance or diffusing within some kind of porous material.
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Conceptual diagrams of diffusion in three systems of increasing complexity are
shown in Fig. 12.1. In a pure liquid, the measured diffusion coefficient D0 corre-
sponds to the so-called bulk diffusion coefficient. Diffusion coefficients range from
~10–6 m2s−1 in the gas phase to <10–15 m2s−1 in large polymers. Diffusion in solids
(see Chap. 13) is thus very slow although even in crystals, albeit over enormous
timescales, it is not completely zero [3]. More generally real systems are mixtures
of different species (e.g., biological milieu and polymer systems) and the diffusion
coefficient of a species will be reduced due to inter-particle interactions, including
binding and obstruction. We can think of systems of interest in increasing order
of complexity going from a pure substance (i.e., gas, liquid, or solid), an essen-
tially homogeneous mixture (e.g., ethanol and water), a structurally heterogeneous
mixture (e.g., an emulsion) to ultimately some sort of composed system containing
both diffusing and non-diffusing species (e.g., a porous medium such as biological
tissue or zeolite).

To be able to extract information from the diffusion of a species requires both
a means of measuring diffusion and a pertinent model to the specific environment
so as to extract the information from the diffusion data. A detailed consideration
on the information obtainable from diffusion measurements can be initiated from
a few simple equations as largely introduced in Chap. 2. Firstly, the mean squared
displacement (MSD) of a species diffusing isotropically with a diffusion coefficient
D over a time t, is given by

〈
R2

〉 = 2nDt (12.1)

Fig. 12.1 Conceptual diagrams of three different diffusing systems. A The free solution system
is representative of a pure liquid or a gas, except that in the case of a gas the distance between the
species and their diffusion coefficients will be far greater. B A solute dissolved in a solvent. The
diffusive behavior of the solute is more complicated as it depends on both its interaction with the
solvent (i.e., solvation and charge) and the relative sizes and shapes of the solute to the solvent
species. Further, depending on the concentration of the solute and the size and diffusion coefficient,
it is possible that the diffusive paths of the solute molecules will be self-obstructed.C Small species
diffusing in a porous medium. When the mean squared displacement is of similar order to the
characteristic distances of the porous media (pores and throats) the interpretation of the diffusion
coefficient can be strongly observation time dependent. Further, if the throats are narrow “single
file” diffusion can occur (see, e.g., Sect. 10.8 and Fig. 10.13)
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where n = 1, 2 or 3 for one, two or three dimensions, respectively.
In essence, this equation tells us the volume of a diffusing species samples over t.

Thus, for the same t the MSD of a gas is vastly greater than that of a liquid by virtue
of its diffusion coefficient being orders of magnitude larger. Importantly, as shown
by Eq. (12.1), the MSD scales linearly with t. For Eq. (12.1) to hold there are some
underlying assumptions: (i) any inter-particle interactions are completely averaged
at a timescale much shorter than t and (ii) the diffusing particles are diffusing in an
infinite medium (i.e., no interactions with boundaries). In the absence of these two
assumptions there will be a non-linear dependence of the MSD on t. Obstruction of
the diffusive path of a small molecule by a large molecule will lead to a decrease
in the MSD over a time t, and in turn the measured diffusion coefficient (D(t)). The
decrease in the measured diffusion coefficient can be characterized by an obstruction
factor,

OD = D(t)
/
D0. (12.2)

Obstruction can be thought of as diffusion in a complex time-dependent geometry.
Relatedly if diffusion is occurring in a porous medium it is possible to observe
a time-dependence of the measured diffusion coefficient of the diffusing species
which depends in a complicated way on the geometry and connectivity of the voids
(Fig. 12.2).

Another means of interpreting diffusion coefficients is through the Stokes–
Einstein-Sutherland equation [4–8] (see also Sect. 8.2)which provides a link between
molecular size and diffusion, viz.,

Fig. 12.2 Apparent time-dependence of the mean square displacement (MSD) for a species under-
going diffusion in a pore (i.e., a restricted geometry—in this case a sphere). The MSD can then be
correlated to the diffusion coefficient through Eq. (12.1). At very short timescales the diffusion is
unaffected by the pore boundaries and so analysis of the MSD will give the bulk diffusion coeffi-
cient. When collisions with the boundary become significant, the MSD increases less than linearly
with t resulting in a time-dependent diffusion coefficient. At long time the MSD is described solely
by the pore dimensions
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D = kT

ζπηr
(12.3)

where k is the Boltzmann constant and T is temperature (i.e., the numerator is
the thermal energy) and ζ , which describes the solute–solvent interactions ranges
between 4 (“slip” condition) and 6 (“stick” condition). The denominator of Eq. (12.3)
is the friction coefficient of a spherewhere r is the Stokes (or effective hydrodynamic)
radius of the diffusing species and η is the solvent viscosity. Although widely used to
interpret diffusion of species at finite concentrations, Eq. (12.3) strictly only holds at
infinite dilution, hence η refers to the solvent viscosity and not the solution viscosity.
Further, it is assumed that a solute is sufficiently large that the solvent can be seen as
a continuum. Other considerations for the radius of molecules and ions in solution
and the applicability of the Stokes radius can be found in Ref. [8].

Equations (12.1–12.3) provide the conceptual basis of what can be probed with
diffusion. For a particle diffusing in a finite medium (e.g., a “pore”, like water
diffusing in a biological cell), as t increases, more and more particles would have the
possibility of colliding with the boundaries (this occurs when the root mean square
(RMS) displacement approaches the characteristic length scale of the bounding
geometry). As a consequence, the MSD would no longer scale linearly with t as
specified by Eq. (12.1). As will be discussed below it is often experimentally difficult
to probeD (and thus RMS displacement) at sufficiently short t to probe inter-particle
interactions. Equation (12.3) states that in the case of a pure substance (gas, liquid,
solid) diffusion reports on molecular size (and thus binding and exchange) and the
solvent viscosity.

As can be understood from the above discussion, providing there is an applicable,
accurate, non-invasive method for measuring diffusion then structural data may be
extracted. However, there must be a defined measurement timescale (i.e., t) such
that the RMS displacement probed is known. Diffusion measurements can provide
a wealth of information including:

• The size of the diffusing species
• Activation energies of diffusion
• The environment that the species is diffusing in
• Ordering of the environment
• Geometry that a molecule is moving within
• Information on porous systems (e.g., characteristic distances, tortuosity, volume

fraction, and obstruction)
• Macromolecular crowding and confinement.

In the next section, we will discuss methods of measuring diffusion and the NMR
method in particular. Then, in order of increasing complexity we will explore the
versatility and richness of information that can be obtained from NMR diffusion
measurements (also known as NMR diffusometry and pulsed gradient spin-echo
(PGSE) NMR or pulsed field gradient (PFG) NMR).

Diffusion measurement is far from straightforward and presents particular chal-
lenges. Due to the generally small size of diffusing species and low energies involved
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onlymethods that do not perturb the generally delicate thermodynamics of the system
being studied are useful. Many methods exist for measuring diffusion including light
scattering, centrifuge, and capillarymethods (see Table 4.1 in Ref. [8]). And it should
be noted that there is some confusion in the literature between those that measure
translational (or self-) diffusion and mutual (or concentration) diffusion in which
the driving force is a chemical potential gradient. But most of these methods have
limited applicability and this is even more pronounced when applied to biological
systems and clinical studies. In essence, we require a technique that is non-invasive
and chemically selective. For example, many systems are not easily amenable to
be radio-labeled or others are only applicable over a limited concentration range or
are capable of being measured over a certain timescale or within a limited range of
diffusion coefficients.

As will be seen below NMR provides a powerful technique for rapidly measuring
diffusion which obviates most of the problems associated with other techniques and
can, in general, be applied directly to samples (i.e., without labeling) and under a
rangeof conditions (e.g., temperature andpressure). Further, the necessary equipment
is widely available as almost any recent NMR spectrometer includes the requisite
hardware for performing basic NMR diffusion experiments. It is this combination of
properties which makes NMR diffusion measurements so versatile.

12.2 NMR Diffusion Measurements

12.2.1 Basics of Diffusion NMR Measurements

NMR provides a particularly elegant and convenient approach to measuring transla-
tion diffusion [9]. Detailed accounts of the technique are given elsewhere including
[10–17]. Here, we give only a brief coverage of the most salient points.

Traditional (i.e., non-diffusion) NMR experiments are conducted in a homoge-
neous static magnetic field (B0)—thence all spins of the same type resonate at the
same frequency (i.e., the Larmor frequencyω0) irrespective of their position (r) in the
sample. In an NMR diffusion measurement, in addition to the homogeneous static
field, a magnetic field gradient is applied in pulses of duration δ during an echo-
based NMR pulse sequence. The simplest PGSE NMR pulse sequence is depicted
in Fig. 12.3. In the presence of the pulsed field gradients, the Larmor precession
frequency of a nuclear spin is given by

ω(r) = ω0 + γ g · r. (12.4)

where γ is the gyromagnetic ratio (rad s−1 T−1) and g (Tm−1) is the appliedmagnetic
field gradient. In future discussion the ω0 is ignored as it is common to all spins.
What is important is the second term in Eq. (12.4). It indicates that the precession
frequency changes both with respect to the position of the spin and the direction
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Fig. 12.3 The simplest PGSENMR pulse sequence—the modified Hahn spin-echo. This sequence
is often referred to as the Stejskal and Tanner sequence [9]. The π/2 rf pulse transforms the initial
magnetization into coherent transverse magnetization which is then wound into a helix by the first
gradient pulse of duration δ and amplitude g. Theπ rf pulse negates the spin phase acquired up until
t = τ, as a consequence the second gradient pulse is effectively of opposite sign to the first. Thus,
in the absence of diffusion the helix created by the first gradient pulse is perfectly unwound by the
second gradient pulse to give a spin-echo signal S0 of maximum intensity which is acquired at t
= 2τ. In the presence of diffusion, the magnitude of the acquired echo signal is reduced (i.e., S <
S0). Typically the sequence is repeated multiple times and the acquired signal co-added to achieve
acceptable SN. A recycle delay of 5 times the longitudinal relaxation time (T1) is typically allowed
between each scan. The mechanism of the diffusion measurement is most easily visualized and
modeled in the short gradient approximation where the gradient pulses are infinitely short (i.e., δ →
0) but with finite area (i.e., δg is finite) since then diffusion during the gradient pulses can be ignored.
The delay � defines the timescale of the diffusion measurement. The rf pulses and acquisition are
run through a phase cycle (not shown). The PGSE sequence is the progenitor for all other diffusion
NMR sequences

of the applied gradient (NB a vector quantity). This term ultimately not only gives
NMR the ability to measure diffusion, but it also provides the ability to measure
diffusion in a certain direction. The basic concept of the diffusion measurement is
easily visualized in the short gradient pulse approximation, where it is assumed that
the gradient pulses are so short that diffusivemotion during the pulses can be ignored.
Although the direction of the gradient pulse can, hardware permitting (e.g., a triple
axes gradient or imaging probe), arbitrarily be set to any direction, for the purpose
of our present discussion it will be assumed that g = gzk (where k is the unit vector
along z).

The π/2 radio frequency (rf) pulse in the PGSE sequence converts the initially
longitudinal spin magnetization into coherent transverse magnetization. This is then
wound into a helix by the first gradient pulse and at a time t = � later a gradient
pulse of equal magnitude but opposite direction is applied. If there has been no
diffusive motion along the direction of the gradient pulse, then the winding effect of
the first gradient pulse is exactly counteracted by the second gradient pulse. Thus, the
initial coherent transverse magnetization less any loss due to spin relaxation [18, 19]
(transverse relaxation in the case of the PGSE sequence)—as detected—constitutes
a maximum echo signal, S0. Diffusive motion during the diffusion time � causes
irreversible attenuation of the magnetization helix resulting in an attenuated echo
signal, S. Analysis of the NMR data is facilitated by using the spin-echo attenuation
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E (=S/S0) since the attenuation due to spin relaxation is normalized out leaving only
the attenuation due to diffusion. In the case of free diffusion, it is possible to arrive
at an analytical result, even including the effects of finite length gradient pulses,
connecting the experimental parameters, D and the signal attenuation,

E = S

S0
= exp

(−γ 2g2Dδ2
(
� − δ

/
3
)) = exp(−bD). (12.5)

Equation (12.5) also defines the diffusion weighting factor b(=γ 2g2δ2
(
� − δ

/
3
)
).

The units of b are rad2 m−2 s but since radians are dimensionless this is more simply
written as having units of inverse diffusion (m−2 s) and thus the product bD is
dimensionless consistent with it being the argument of an exponential function. In
clinical settings, b is often simply referred to as the “b factor” or the “b value” and
is commonly expressed in mm−2 s or μm−2 ms.

The dephasing effect of the gradient pulse, essentially the area of the gradient
pulse scaled by γ , is sometimes referred to as q, viz.,

q = γ δg
2π

(
m−1). (12.6)

And thus, q−1 defines the pitch of the magnetization helix wound by the first gradient
pulse—that is the distance along the direction of the g to complete one revolution of
the helix.

In principle a diffusion measurement can be conducted by measuring the spin-
echo attenuation at only two values of g (as is usually the case in clinical imaging).
In practice, due to signal-to-noise (SN) limitations, a typical measurement of a freely
diffusing species proceeds by measuring the echo attenuation for an array of around
10–16 g values with the largest g chosen to achieve an attenuation of ~90% (i.e., E
= 0.1). Achieving 90% signal attenuation, which requires bD ~ 2.3, becomes more
difficult with (any combination of) slower diffusion, lower γ nuclei, or more rapid
spin relaxation. Given that the pulse sequence must be repeated at each g value to
provide sufficient SN, the total experimental time normally ranges from minutes to
hours.

Further analysis reveals that in the short gradient pulse limit the PGSE NMR
experiment is sensitive to theMSDaveraged over all of themeasured species 〈Z2(�)〉,

E ≈ exp

(

−(2πq)2

〈
Z2(�)

〉

2

)

. (12.7)

Note, Eq. (12.7) is most accurate in the limit of small q values. Thus, if the diffusion
is measured in a restricted system and the timescale of the measurement, �, is
such that boundary effects become important then the attenuation will no longer be
given by a simple single exponential. In such a case the shape and characteristic
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distance(s) of the restricting geometry will impart particular signatures to the echo
attenuation profile, and it may be necessary to increase the number of g values used
in the experiment to accurately sample the attenuation profile. Further, if the data is
(naively) analyzed using the equation for free diffusion (cf. Fig. 12.2) the measured
diffusion coefficient will be in reality an apparent diffusion coefficient (ADC) and
its value will be a function of �.

Consideration of Eq. (12.5) in conjunction with the spectroscopic properties of
NMR reveals why NMR has become such a dominant force in diffusion measure-
ments. To begin with, most species naturally contain an NMR sensitive isotope
and thus do not require labeling that may not only be difficult to do but also may
change the system being measured. Thus, sample preparation may be as simple as
loading the sample into the NMR spectrometer. As the various isotopes resonate
within distinct frequency ranges there is no ambiguity as to which nucleus is being
detected. The NMR isotopes suited for use in NMR diffusion measurements include
many of biological and industrial significance (e.g., 1H, 2H, 7Li, 13C, 17O, 19F, 23Na,
31P). Further, as only very small energies are used in NMR measurements they
are unlikely to have any significant effects on the delicate thermodynamics of the
system. Modern NMR spectrometers are capable of accurate temperature control.
NMR has also two other extraordinary abilities that set it apart from all competing
techniques: (i) in general full chemical shift information is acquired and so it is
possible to probe the diffusive motion of more than one and sometimes all species
present and (ii) it is possible to combine diffusion measurements with imaging. This
is particularly relevant to spatially heterogeneous samples. And thus, it is possible
to obtain information from specific areas. There are some caveats with respect to
concentration and relaxation behavior—that is on a sample-by-sample basis. NMR
measurements are ultimately limited by sensitivity and the relaxation properties of the
measured species. However, the advances in NMR technology (esp. static magnetic
field strength, hyperpolarization, and applied magnetic field gradient performance)
means that more nuclei or measurements in less favorable samples become more
practicable from almost solid samples to those in the gas phase.

Some hardware and experimental developments are considered in Sect. 12.2.2.
The power of NMR for measuring diffusion in freely diffusing systems, for probing
various composed samples, and in combination withMRI is illustrated in Sects. 12.3,
12.4, and 12.5, respectively.

12.2.2 Advancing Capability

12.2.2.1 Hardware

Before around 1990 NMR diffusion measurements were only possible through the
addition of home-made accessories (i.e., gradient coils, current amplifier, and control-
ling hardware) to an NMR spectrometer. An example of a home-made PGSE system
is shown in Fig. 12.4.
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Fig. 12.4 Home-made additions to allow the performance of PGSE NMR experiments on a Varian
XL400 spectrometer ca 1988. A a first attempt at a gradient generator—a car battery connected to
a gradient coil via field effect transistors to provide current switching. B A modified heteronuclear
NMR probe. The top part of the probe casing was replaced with Perspex in an attempt to remove
conducting surfaces from the vicinity of the gradient coil and, thereby, reduce the chance of eddy
currents being generated by the gradient pulses. C The top of the NMR probe with the casing
removed. The gradient coil is positioned around the rf (radio frequency) coil and sample—note
the NMR tube inserted into the top of the probe. D A series of 31P PGSE NMR spectra showing
attenuation of the echo signal with increasing gradient pulse duration. The spectrum acquired with δ

= 3.5ms is particularly badly affected by rf interference to which this modified probewas especially
susceptible. From W.S. Price PhD thesis Univ. Sydney 1990

The last two and a half decades have seen enormous progress in the hardware for
conducting diffusion measurements especially with respect to gradient coil design.
Now virtually all modern NMR spectrometers come as standard with some ability to
perform NMR diffusion measurements. A typical high-resolution probe will come
equipped with a gradient coil capable of generating a gradient of around 50 G
cm−1 with excellent settling times after a gradient pulse. Such a system will be
capable of measuring diffusion of molecules up to something like 50 kDa. Special
NMR probe/amplifier combinations capable of producing gradients up to about 3000
G cm−1 are now commercially available and afford the possibility of measuring
extremely slowly diffusing systems and/or rapidly relaxing systems or systemswhere
the observed nucleus has a very low γ .

The last decade has also seen a resurgence in interest in low field bench top NMR
spectrometers due to their industrial applications and portability, some of which now
incorporate gradient pulse generation capability and, consequently, the possibility
for diffusion measurement.

12.2.2.2 Optimizing Temporal Efficiency

Thedescriptionof theNMRdiffusionmeasurement inSect. 12.2.1 implicitly assumes
that the experiment is acceptably short and that the system being probed is time
stationary. Although higher static fields (i.e., B0) and more sensitive NMR probes
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can allow shorter experimental times, here we focus on generally applicable pulse
sequence improvements. Even for a concentrated sample capable of providing a
strong signal, the minimum number of scans required at each g value will be deter-
mined by the phase cycling requirements for coherence selection and removal of
machine artifacts. Optimized sequences (e.g., Refs. [20, 21]) incorporating magnetic
gradient-based coherence selection can greatly reduce the total experimental times
for strong samples. Experiments can be made more temporally efficient by reducing
the recycle delay to less than 5× T 1 and thereby running the sequence in steady state
mode (e.g., Ref. [22]) although this may entail more complicated analysis [23, 24].
Traditionally NMR diffusion experiments are run with the same number of scans at
each g (equiv. b) increment and consequently there can be more than sufficient SN
at low g (note the form of Eq. (12.5)). By tailoring the number of scans for each g
increment and normalizing the signal for each increment appropriately, it is possible
to shorten the experimental time by ~75% [25].

Changes in concentration or spin relaxation times of the different species in the
system during the timescale of the total experimental time lead to time dependent S0
values with consequent errors in diffusion coefficient determination. These delete-
rious effects can be ameliorated by shuffling the order of the g values (i.e., applying
in a random order instead of monotonically increasing or decreasing) and then taking
moving subsets (or “windows”) of the resulting attenuation values to determine the
diffusion coefficients [26, 27]. This “time resolved” approach significantly increases
the applicability of NMR diffusion measurements to reacting systems but particular
care must be taken to account for convection [28].

12.3 Applications to Gases, Liquids, and Gels

12.3.1 Chemically Diffusing Species

12.3.1.1 Gases, Pure Liquids and Simple Mixtures

Diffusion in pure gases has been widely studied using NMR diffusion measure-
ments. For instance, the diffusion of neat CO2 has been measured at pressures up to
200MPa between 223 and 450 K [29]. The diffusion of noble gases [30] in water and
as well as diffusion in supercritical mixtures [31] have also been measured. A partic-
ular problem with gas diffusion measurements is the low spin-density and thus low
SN. The rapidly emerging field of hyperpolarized gas NMR significantly obviates
this problem and opens the possibility for measurements performed under clinical
conditions (e.g., [32]).

Diffusion in pure liquids is still far from understood inmany cases. A case in point
is the diffusion of liquidwater due to its complicated transient hydrogen bonds.Diffu-
sion measurements provide an incisive means of studying the changing dynamics in
liquids with temperature. Due to NMR’s non-invasive nature, it presents one of the
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rare means of studying diffusion in metastable states. 1H and 2H have been used to
measure the diffusion of 1H2O and 2H2O down to 238 K and 244 K, respectively
[33, 34]. Later work looked at the diffusion of water in brine [35].

Equation (12.3) can be extended to other shapes and thus a diffusionmeasurement
can report on both the size and shape of a diffusing species. In fact this was put to
good effect in a pioneering work by Moll in 1968 in which the helix to random
coil transition of poly-L-glutamic acid was studied [36]. The literature now contains
many studies of using diffusion to investigate protein folding and denaturation (e.g.,
[37, 38]), protein association and crowding (e.g., [39, 40]) and self-stacking and
nanorod formation of platinum(II) intercalators [41].

12.3.1.2 Solution Structuring and NMR Diffusography

Diffusion is a powerful probe of solution structure. It might be naively assumed
that something like a water-alcohol mixture is homogeneous at the molecular level.
Yet, NMR diffusion measurements, with their ability to probe multiple components
simultaneously, reveal that in such a hydrogen bonded environment the solution is
far from homogeneous with concentration-dependent clustering of species. Further,
the differences in hydrogen bonding ability of isomers in such systems can in turn be
used to spectroscopically separate the isomers on the basis of diffusion coefficients as
shown in Fig. 12.5 (i.e., to partition the spectrum into groups of equivalent diffusion
coefficients).

Fig. 12.5 “NMRDiffusography”—separation of hydroxybenzene isomers on the basis of diffusion.
A plot of the diffusion coefficients of resorcinol (�), catechol (red ●), and hydroxyquinone (blue
▲) at ∼15 mM and t-BuOH (purple left-facing ▲) in samples containing various tert-butanol mole
fractions (xt-BuOH) in D2O measured at 298 K. The data for t-BuOH (green left-facing �) from the
H2O − alcohol system taken from Ref. [42] are shown for comparison. Reprinted with permission
from Codling et al. [43] copyright (2013) American Chemical Society
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12.3.2 Gels and Macroscopically Aligned Lyotropic Liquid
Crystals

12.3.2.1 Liquid Crystals and Alignment

Molecules in liquid crystals are free to move but are ordered about an axis (the
director), in contrast to in a liquid where there is neither positional nor orientational
order. Liquid crystals are typically classified as thermotropic or lyotropic liquid crys-
tals (LLC), the former has phase structures that depend on temperature (but also pres-
sure or applied forces/fields) while the later contains solvent/second component as
well as the liquid crystalmolecules, and phases are additionally dependent on concen-
tration. Themolecule responsible for order/structure in LLCs is typically a surfactant
(i.e., amphiphile) molecule where one end of the molecule is solvophilic (solvent-
loving) and the other solvophobic (solvent-hating). Note an additional distinction
between the thermotropic and lyotropic cases lies in the molecules and phase struc-
tures, where the molecules of thermotropic liquid crystals achieve order/display
phases through molecular shape while in LLCs the phases are based on aggregate
structures formed from the surfactantmolecules. Nevertheless, whether it is diffusion
of the ordered thermotropic liquid crystal molecules, the surfactant molecules in the
LLC aggregate, a probe molecule diffusing among the ordered thermotropic liquid
crystal molecules or a probe molecule diffusing around or in the LLC aggregates,
the diffusion will now be direction dependent (i.e., anisotropic; see Sects. 12.3.2.2,
12.4.1, and 12.5.2).

For LLCs, different phase structures form as the concentration of surfactant is
increased. For example, at low concentrations the surfactant molecules exist as
monomers, but form micelles, in the simplest case these are spherical aggregates of
surfactantmolecules (whether the solvophilic or solvophobic faces outwards depends
on the conditions), as the concentration is increasedwith the transitionoccurring at the
critical micelle concentration. The most common phase structures are the lamellar
and hexagonal phases. The lamellar phase is anisotropic and consists of stacked
bilayers with water in-between. The surfactant bilayers cover large distances (> μm)
and ideally the bilayers are planar and parallel but realistically there are defects
present. The hexagonal phase is also anisotropic and consists ideally of infinitely
long circular rods of the surfactant molecules in a hexagonal packing. Macroscop-
ically aligned lamellar or hexagonal LLC samples can be made by stacking glass
plates with films of the LLCs in between them, or with flow in a capillary or by shear
[44]. Samples may be aligned by a magnetic field [44] as well (Fig. 12.6) (e.g., Ref.
[45]) but there is the possibility of having a plane with undetermined director orien-
tation (consider the director orientations in Fig. 12.6 with respect to the magnetic
field). However, methods of avoiding this can be found in the literature (e.g., with
additives [46] or rotation [47]).
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Fig. 12.6 The alignment of the LLC aggregate in a magnetic field depends on the sign of the
anisotropic magnetic susceptibility, �χ = χ ||−χ⊥ of the surfactant molecules making up the
aggregate (i.e., the response of the molecule in a magnetic field—attracted or repelled—may be
different depending on the orientation of the molecule in a magnetic field). Normally the thermal
energy of the molecules outweighs the magnetic energy and so they are free to tumble but as the
size of an aggregate increases its overall magnetic energy results in a preferential alignment of the
aggregates (and hence constituent molecules) by the magnetic field.A If �χ > 0 then the aggregate
tends to align so that the long axis of the surfactant molecules aligns parallel to the magnetic field,
in this case the lamellar phase would be the most aligned as the direction of the long axis of the
cylinder in the hexagonal phase (i.e., the director) is undetermined in the plane perpendicular to the
magnetic field while normal to the bilayer of the lamellar phase (i.e., the director) is parallel to the
magnetic field. B If �χ < 0 then the aggregate tends to align so that the long axis of the surfactant
molecules aligns perpendicular to the magnetic field, in this case the hexagonal phase would be the
most aligned as the director of the lamellar phase is undetermined in the plane perpendicular to the
magnetic field while the director of the hexagonal phase is parallel to the magnetic field

12.3.2.2 Diffusion NMR as a Tool to Monitor the Alignment
and Transport in LLCs

Deuterium NMR spectra have long been used to study the phase transitions in LLCs
[48–50], and diffusion NMR can be used to determine the critical micelle concen-
tration [51]. If the spectrometer comes equipped with triple axis gradients, such as
with an imaging probe, then it is possible to measure diffusion in arbitrary direc-
tions. This capability allows the determination of diffusion tensors and direction (and
time) dependent diffusion coefficients. These can then be analyzed by comparison
with predictions with models that account for any structural/geometric obstruction
and obstruction due to the matrix surrounding the obstacles and knowledge of D0.
Note the term geometric obstruction here refers to an obstruction due to the shape of
boundaries/obstacles that themolecules diffuse around (e.g., suspended solid spheres
or cylinders) and the matrix obstruction refers to that arising from, for example, a
gel network surrounding solid spheres where there is obstruction due to the polymer
chains in addition to the geometric obstruction.

Consider the example of a macroscopically aligned lyotropic hexagonal phase
in the presence of a secondary polymer gel network (e.g., [45]), where the obstruc-
tion from the aligned cylindrical aggregates of the hexagonal phase is OD, Hex (e.g.,
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[52]) and the obstruction from the chains in the polymer gel network is OD, Matrix

(e.g., [53–55]) and the probe molecule diffuses in the spaces around the cylinders.
The diffusion coefficients expected for an off-axis direction in the principal frame
(here the principal axis frame and the gradient/laboratory frame are identical) can be
calculated using the corresponding principal diffusivities (i.e., Dx, Dy, and Dz; NB
diffusion perpendicular to the cylinder axes in a macroscopically aligned hexagonal
phase would be D = Dx = Dy and diffusivity parallel to the cylinder axes would be
DII = Dz) and direction cosines [10, 56]. Alternatively, using spherical coordinates
(i.e., the diffusion “peanut” [57–59]) this can be done with

Dθ,φ = Dx cos
2 φ sin2 θ + Dy sin

2 φ sin2 θ + Dz cos
2 θ, (12.8)

where θ and φ are the polar angle (0° along the principal frame z-axis), and azimuthal
angle (0° along the principal frame x-axis), respectively. The angular dependency
between any two principal axes n and m, i.e., x, y, or z is [56, 57]

Dθ = Dn sin
2 θ + Dm cos2 θ, (12.9)

where θ is defined as the angle fromm.Note an equation similar to this can be obtained
for the MSD [60]. The appearance of the two dimensional polar plot, or similarly a
three dimensional plot, is that of a “peanut” shape depending on the anisotropy of the
diffusion (e.g., see [57–59]). Compare this to the diffusion ellipsoid (see Sect. 12.5.2)
which shows the expected displacement for a given time in three dimensions—for
this reason the “diffusion” ellipsoid is actually the root mean squared displacement
(RMSD) ellipsoid. Hence, the equation to calculate the diffusion at any angle (i.e.,
from Eq. 12.9) using D0, OD, Matrix, and OD, Hex may be written as

Dθ (D
0, OD,Matrix, OD,Hex, θ) = D⊥ sin2 θ + D‖ cos2 θ

= D‖OD,Hex sin
2 θ + D‖ cos2 θ

= D0OD,Matrix(OD,Hex sin
2 θ + cos2 θ) (12.10)

where θ is defined as the angle from the cylinder axes as usual (but this can be applied
to any LLC system provided the structural obstruction and obstruction/binding from
the matrix is modeled). Note, OD, Hex is the ratio of D /DII since DII is the “free”
diffusion (the diffusion in the absence of geometric obstruction) in this instance,
and OD, Matrix is the ratio of D/D0 where D is equivalent DII and is the diffusion
coefficient reduced from D0 due to the matrix obstruction—with the assumption
that the gel network obstructs the diffusion of the probe molecule in all directions
equally. The obstruction from the matrix may also be modeled to include binding
to the matrix [61]. Among several assumptions for Eq. (12.10) is that the effects of
defects in the LLC structure and averaging at the microdomain boundaries are not
significant for the timescale the diffusion is measured over. Further, the obstruction
factors are likely to be solute dependent [61].
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12.3.3 Reacting, Binding and Exchanging Systems

The time resolved NMR diffusion approach has been used to study molecular
mobility in a variety of chemical systems (see [62] and references therein).

The measured diffusion coefficient of a species is sensitive to a change in the
physical environment of a species such that it binds to another or exchanges into a
region subject to different restriction of its motion as depicted in Fig. 12.7.

Fig. 12.7 Binding and exchange. Diffusion of a species between (A) a free (f) and a bound (b)
state as in ligand binding or (B) between the exterior (e) and interior (i) of a pore, can result in
differences in the observed diffusion coefficient. In the former case the ligand will have a different
diffusion coefficient (D), population (P), reorientational correlation time (τ) and longitudinal (T1)
and transverse relaxation (T2) times depending on whether it is in the free or bound state. Similarly,
a particle in the interior of a pore will likely have a different diffusion coefficient inside the pore—
for example, the viscosity inside a biological cell might be higher than in the exterior. Further, the
pore boundaries can contribute to a lower observed diffusion coefficient

In the case of two-site exchange, the signals from the free, Sf, and the bound, Sf,
sites can be modeled using the coupled differential equations [10, 63–65],

dSf
dt

= −(2πq)2DfSf − Sf
τf

− Sf
T2f

+ Sb
τb

(12.11)

and

dSb
dt

= −(2πq)2DbSb − Sb
τb

− Sb
T2b

+ Sf
τf

(12.12)

where Df and Db are the (true) diffusivities in the two domains. Similarly, T 2f and
T 2b denote the transverse relaxation times in the two domains. The initial conditions
are given by Sf|t=0 = Pf = (1 − Pb) and Sb|t=0 = Pb where Pf and Pb are the
free and bound populations, respectively. Ignoring relaxation differences between
the two domains, the solutions to these equations are well-known albeit complex
multi-exponential functions. Often the signals from the two sites (domains) cannot



262 S. A. Willis et al.

be separated and thus the solution is of the form

E(q,�) = Sb + Sf = P1 exp
(−(2πq)2D1�

) + P2 exp
(−(2πq)2D2�

)
(12.13)

with well-defined mathematical expressions correlating the population fractions
(relative signal intensities) P1 and P2 and the “apparent” self-diffusion coefficients
D1 and D2 with the “true” populations (Pf and Pb) and diffusivities (Df and Db).
Under fast exchange conditions (i.e., τ f, τ b → 0 and thus D2 → ∞) Eq. (12.13)
reduces to

E(q,�) = Sb + Sf = exp
(−(2πq)2〈D〉P�

)
, (12.14)

where

〈D〉P = (1 − Pb)Df + PbDb (12.15)

is the population-weighted average diffusion coefficient.
The emergence of this formalism, today generally referred to as the Kärger equa-

tions was as early as the late 1960s [66] and these equations provide the means for
studying an extraordinary range of binding and exchanging systems including esti-
mation of molecular exchange in beds of nanoporous particles between the particles
and the surrounding atmosphere [63, 67] (see also Chap. 10), binding of salicylate
to albumin [68], dextran in polyelectrolyte capsule dispersions [69], water in brain
tissue [70] and with a simple modification to account for restricted diffusion in one
domain, transport through biological cells [71].

12.3.4 Electrophoretic NMR and Flow

The possibility of electrophoretic NMR (ENMR) in which ionic velocities are
measured in the presence of electric fields using NMR was recognized by Packer in
1969 [72] and experimentally realized in 1982 [73, 74]. It opens up the possibility
of resolving NMR spectra according to the individual electrophoretic mobilities (or
drift velocities; μ) of the ionic species in the sample and has been widely reviewed
[15, 75, 76].

An ENMR experiment is in effect a PGSE sequence modified to include a pulsed
electric field (Edc). μ is related to the measured velocity (i.e., v) by

μ± = v±
/
Edc (12.16)

where the subscripts “+” and “−” related to the cationic and anionic species,
respectively. A simple ENMR pulse sequence is depicted in Fig. 12.8.

The complex attenuation (i.e., attenuation and phase shift) of the echo signal for
a particular species is given by [77].
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Fig. 12.8 A basic ENMR pulse sequence. The spins are first encoded spatially by the first magnetic
gradient pulse, then the encoded spins experience diffusion and more importantly induced flow due
to the electric field pulses. The dephasing effect due to diffusion, coherent phase shift due to flow,
and phase modulation due to thermal convection are all accumulated after the application of the
second pulsed gradient

E(Edc) =
Attenuation

︷ ︸︸ ︷
exp

(−γ 2δ2g2D
(
� − δ

/
3
))

Phase−shi f t
︷ ︸︸ ︷
exp(iγ δgEdc�μ) . (12.17)

Thus, diffusion results in echo signal attenuation as before and the electrophoretic
mobility (and direction) is then determined from the complex phase modulation of
the echo signal (Fig. 12.9).

Given that only charged species are affected by the pulsed electric field, it is
possible to use ENMR as a mobility filter such that in a complex NMR spectrum of
a multicomponent liquid mixture the resonances of the electrically charged species
can be selectively filtered [78, 79]. Similar to PGSE measurements being displayed
as DOSY plots (i.e., diffusion ordered spectroscopy plots in which one dimension
is the usual chemical shift and the second dimension is the diffusion coefficient),
it is possible to process the ENMR data to give a 2D plot (i.e., one dimension is
the usual chemical shift and the second dimension is intensity versus � or Edc)
[80, 81]. Recently, ENMR was used to study ion association in aqueous and non-
aqueous solutions [82]. Slice selection ENMR was used to investigate transport
processes (e.g., electro-osmotic drag) in a fuel cell, consisting of several layers of
Nafion [83]. Ion migration in bulk ionic liquid was measured by ENMR under the
influence of small electric fields similar to those used in electric devices [84]. Recent
improvements to the experimental hardware and protocol have increased the accuracy
of the technique [85].
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Fig. 12.9 1H (left) and 19F (right) ENMR spectra showing, as expected, phase shifts of oppo-
site signs for the cation and anion peaks in 10 mM aqueous solution of tetramethylammonium
hexafluorophosphate. Reprinted from Bielejewski et al. [79] copyright (2014) with permission
from Elsevier

12.4 Porous Systems

12.4.1 Anisotropic Geometries

Diffusion in restricted environments is expected to be slower than that in unrestricted
environments as the translational movements of diffusing molecules are hindered by
the walls of the confining geometry or obstructions. The difference in diffusion
between two types of environment is more pronounced when the diffusion time is
set to values that are sufficiently long to allow the diffusing molecules to traverse
the length of the confining geometry. In NMR, restricted diffusion can be observed
for cavity dimensions in the order of tens to hundreds of micrometers. The shape
and dimension of the confining geometry or pore and the type of surface wall all
affect diffusion so that the equation describing the signal attenuation in the restricted
geometry is much more complex than in free diffusion. For example, in restricted
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diffusion between two planes separated by length 2a and with surface relaxivity n,
the diffusion propagator is given by [11, 86],

P(z0, z1, t) = 1

2a
+ 1

a

∞∑

n=1

cos
(nπ z0

2a

)
cos

(nπ z1
2a

)
exp

(
−n2π2Dt

(2a)2

)
. (12.18)

This propagator represents an eigenfunction expansion and is composed of a time-
independent first term (from the zero eigenvalue) equal to the inverse of the charac-
teristic distance of the pore, whereas all of the latter terms are time dependent. The
echo signal attenuation based on this propagator is

E(q,�) = 2[1 − cos(2πq(2a))]
(2πq(2a))2

+4(2πq(2a))2
∞∑

n=1

exp

(
−n2π2D�

(2a)2

)
1 − (−1)n cos(2πq(2a))
[
(2πq(2a))2 − (nπ)2

]2

. (12.19)

The first term results from the time-independent part of the propagator (Eq. 12.18)
whereas the contribution of the second term, by virtue of containing a negative expo-
nential, eventually disappears leaving only the profile from the first term inwhich one
may, most impressively, recognize the pattern of the signals observed with radiation
diffraction. This is in distinct contrast to the single exponential attenuation observed
for free diffusion (Eq. 12.5)—and an immediate consequence of the similarity of
the expressions resulting from the respective mathematical analyses. Such diffrac-
tion patterns, for various idealized geometries such spheres, cylinders, and annular
geometries under a variety of boundary conditions (e.g., reflecting or absorbing),
have been obtained either by direct derivation (analytically or numerically) or by
simulation (e.g., [11, 12, 87–89]).

An experimentally derived “diffusive diffraction” echo attenuation for diffusion
between planes is shown in Fig. 12.10 for the model system of water in a Shigemi
NMR tube. This tube consists of an outer tube and inner piston-like insert which
was positioned to give a separation of ~140 μm. To be able to observe interesting
features in the NMR signal attenuation profile, a long diffusion time was required
so that the echo attenuation profile would be sensitive to the planar boundaries. The
gradient was directed perpendicular to the planes.

The observed echo attenuation profile is interesting as it shows repetitive maxima
and minima whose position is related to the interplanar separation and is well-
described by the theoretical prediction. This NMR diffusion phenomenon is analo-
gous to optical single slit diffraction patterns and is predicted by the cosinemodulated
terms in Eq. (12.19). It is easy to see that this NMR“diffusive-diffraction” pattern can
provide useful information about the nature and dimensions of the restricting geom-
etry. In fact, such repetitive NMR diffusion patterns have already been observed
experimentally in liquids containing samples of polystyrene beads, red blood cells,
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Fig. 12.10 Experimental verification of “diffusive diffraction” spin-echo attenuation (�) for water
diffusing between parallel planes separated by distance 2a plotted as a function of applied magnetic
field gradient q. The sample consists of water in a Shigemi NMR tube. The data were acquired
with � = 2 s and δ = 2 ms, which is very close to short gradient pulse conditions. The data were
simulated (solid line) using Eq. (12.19) using D = 3.69 × 10−9m2 s−1 and a separation of 2a of
128.4 μm. As the diffractive effects are only evident at high attenuations (i.e., E < 0.1) the ordinate
is plotted logarithmically. Modified from Price et al. [90] copyright (2003) with permission from
Elsevier

and capillaries [91–93]. This is possible in these particular cases because in that they
incorporate a large number of restricting geometries which are regular or homoge-
nous in size, shape, and orientation. For non-ideal systems such as cells in tissues
which are heterogeneous (e.g. they contain cells with various sizes and shapes), the
diffusion diffraction pattern may not be observed. For such systems, the “apparent”
diffusion coefficient (ADC) can be obtained; this is also very useful as it provides
information about the mean dimensions of the cells in a given sample. Although the
effects of spin relaxation have been normalized out (e.g., see Eq. 12.5), the upper
limit of usable� is determined by spin relaxation. In some cases, by using long lived
states, it is possible to greatly extend this so as to probe macroscopic distances [94].

12.5 Diffusion and Magnetic Resonance Imaging (MRI)

If the sample being investigated is relatively small and homogenous then the regular
NMR diffusion method can be used for characterization. However, in general most
matter, including interesting and relevant samples ranging from Biology, Medicine
to Chemical Engineering, are of a porous composition and are often heterogeneous
systems so that it is desirable to be able to obtain diffusion information for a localized
volume (or voxel) of a given sample and at the same time use diffusion as a form of
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contrast in imaging. Diffusion (esp. mutual diffusion and kinetics of adsorption) can
be gauged by measuring concentration profiles and this can be done directly using
NMR as an imaging method, referred to as MRI (magnetic resonance imaging, e.g.,
see [95–98] and Fig. 12.3 in [99] as early examples of its application in chemical
engineering) although it is also noted that other methods can be used to complement
MRI measurements to obtain information such as concentration profiles especially
at shorter length and timescales such as IRMicroscopy and Interference Microscopy
(see Fig. 10.3). Fortunately, theNMRdiffusion sequences can be readily incorporated
into theMRI pulse sequences as these twomethods are somewhat related in that both
utilize magnetic field gradients, radio frequency pulses and delays (see Fig. 12.11).
In diffusion MRI, Eq. (12.5) is often written as

E = S

S0
= exp(−b · ADC). (12.20)

Todate two important diffusion-basedMRImethods are nowcommonlyused inmany
facilities, namely Diffusion Weighted Imaging (DWI) [16, 100, 101] and Diffusion
Tensor Imaging (DTI) [16, 102, 103].

Fig. 12.11 A schematic representation incorporating the diffusion sequence into anMRI sequence.
The diffusion sequence gradient pulses are combined into the spin-echo imaging sequence
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12.5.1 DWI and Isotropic Diffusion

Together with T 2 and T 1-weighted imaging, DWI has been used as an MRI contrast
method to differentiate various regions in a given sample. Diffusion weighting can
be achieved simply by acquiring an image using a diffusion MRI pulse sequence
(e.g., see Fig. 12.11) with a nonzero b value. In such an image, the regions of the
sample which experience relatively free diffusion (thus larger diffusion coefficients
and higher signal attenuation) will appear darker (i.e., lower signal intensity) than
the regions where diffusion is restricted to limited volumes. Note that since MRI
sequences are of finite length, the image contrast in a diffusion weighted image is
still also affected by other factors such as differences in the T 1 and T 2 of different
voxels. This can complicate diffusion analysis based solely on the signal intensities
of a diffusion weighted image. Therefore, it is usual to acquire (at least) two images,
one with b > 0, and the other with b = 0, which then allows the determination of an
ADCmap (from Eq. 12.20), along with a diffusion weighted image. It follows that if
the image contrast was solely dependent on the spatial differences in diffusion, then
the brighter regions in a diffusion weighted image will appear darker in an ADCmap
and vice versa.

Note that in the case of isotropic diffusion, the above-mentioned DWI method
is sufficient. However, for anisotropic diffusion, if the diffusion gradients in DWI
are only applied along one direction, the diffusion-based contrast in the diffusion
weighted image and the corresponding ADC maps will be rotationally variant. That
is, they will change if the orientation of the anisotropic sample with respect to the
direction of applied diffusion gradient is changed. To obtain a rotationally invariant
diffusion weighted image, diffusion gradients are typically applied in at least three
(orthogonal) directions, so that a “combined” (or average) diffusion weighted image
can be obtained by taking the geometric mean of the signals from the individual
diffusion weighted images:

E = Saverage
S0

=
(
Sx · Sy · Sz

)1/3

S0
= exp

(−b · (ADCx + ADCy + ADCz)/3
)

= exp
(−b · ADCaverage

)
.

(12.21)

Here the subscripts x, y, z indicate the MRI signals (S) or the ADC values for
the diffusion weighted images acquired with the diffusion gradients applied in x,
y and z directions, respectively. And ADCaverage represents the rotationally invariant
“isotropic” diffusion map that would be obtained if diffusion in all directions is the
same [17, 104].

DWI has found many applications in differentiating between tissue samples, and
is now included in routine clinical MRI protocols for several cancers [105–108].
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However, the rotationally invariant ADCaverage only allows a simplistic interpretation
of diffusion behaviorwithin a sample by essentially ignoring the diffusion anisotropy.

12.5.2 DTI and Anisotropic Diffusion

DTI, on the other hand, is found to be a very versatile tool for measuring diffusion
anisotropy and is thus frequently used for Fiber TrackingMapping or Tractography in
MRI, however, the experimental time is longer than a simple DWI sequence because
more directions need to be acquired (at least six). The diffusion anisotropy is a result
of the restricted elongated geometry where the ADC in the long section is greater
than that in the short section as exemplified by diffusion in a cylinder, presented in
Fig. 12.12.

For taking account of diffusion anisotropy we have to realize that now the prob-
ability of molecular propagation (see Eq. 2.10) for unidirectional diffusion and/or
diffusion in an isotropic system) has become a function of the direction. As a most
important consequence of this situation, deviating from Fick’s 1st law in the simple
notation of Eqs. (2.6) and (2.7), diffusive fluxes are not anymore necessarily directed
in parallel with the concentration gradient. The position ofD in Fick’s law must now
rather be assumed to be occupied by a diffusion tensor D yielding,

j = −D∇c (12.22)

or, in explicit notation with the individual components in the x, y, and z directions
and the diffusion tensor appearing in matrix notation,

Fig. 12.12 Restricted
diffusion in a cylinder. The
apparent diffusion coefficient
(ADC) depends on the
orientation. Diffusion
measured across the cylinder
will appear to be slower
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⎛
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Note that in Eq. (12.23) the coordinate system is for an arbitrary frame of reference.
However, it is always possible to find a coordinate system in which the diffusion
matrix assumes a diagonal form, i.e., with all off-diagonal elements equal to zero
(i.e., a principal axis system). Concentration gradients in the x, y, and z directions of
the principal frame/coordinate system are easily seen to give rise to diffusive fluxes
in exactly these directions as required by Fick’s 1st law in the notations of Eqs.
(2.6) and (2.7), now, however, with different parameters, i.e., principal diffusivities,
Dx, Dy, Dz, in general. They are referred to as the main or principal tensor elements,
attributed to the principal tensor axes x, y, and z (for more on diffusion tensors see
also [58, 59, 109, 110]). For Fig. 12.12, the z’ axis represents an example laboratory
frame of reference while the cylinder axis would be the principal axis for the major
element of the principal diffusion tensor. In this case, the diffusion tensor is of
rotational symmetry, i.e., with coinciding principal tensor elements in the radial
direction which, moreover, are subject to restriction.

We are now going to determine the probability density of molecular shifts over a
distance r = {x; y; z} (with reference to a coordinate system given by the principal
axes of the diffusion tensor). This (combined) probability is simply given by the
product of the respective probabilities of displacements in the principal x, y and z
directions. With Eq. (2.10) and the principal tensor elementsDx,Dy, andDz in place
of the diffusivity D we thus obtain

P(r, t) =
(
4π t 3

√
Dx DyDz

)−3/2
exp

{
− 1

4t

[
x2

Dx
+ y2

Dy
+ z2

Dz

]}
. (12.24)

By adopting the procedure practiced already with Eq. (2.11), with Eq. (12.24) the
mean square displacement in the directions of each of the principal axes of the
diffusion tensor is easily found to follow the Einstein relation, now with the main
elements of the diffusion tensor in place of the diffusion coefficient. This gives
rise to a representation known as the “diffusion ellipsoid”—actually the RMSD
ellipsoid—and in the principal reference frame is represented by [58, 59],

(
x√
2Dxt

)2

+
(

y
√
2Dyt

)2

+
(

z√
2Dzt

)2

= 1, (12.25)

and an example diffusion ellipsoid is shown in Fig. 12.13. Note that in Fig. 12.13 the
laboratory frame of reference does not coincide with the principal frame of reference.
For the special case where the time for diffusion, t, equals 0.5 s it can be seen that
the major axes of the ellipsoid are given by the square root of the corresponding
main elements of the diffusion tensor. If t = 0.5 s, the effective diffusivity along an
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Fig. 12.13 The “diffusion” or RMSD ellipsoid deduced from a diffusion tensor. The major axes of
the ellipsoid are proportional to the square root of the corresponding main elements of the principal
diffusion tensor, Dx, Dy, and Dz, and length of time diffusion occurs, t. Here the principal axes are
x, y, and z, and the laboratory axes are x′, y′, or z′. The effective RMSD in any arbitrary direction
can easily be seen from the ellipsoid

arbitrary direction (i.e., in particular in the direction of the pulsed field gradient) can
be determined from the square of the value of the ellipsoid along that direction. The
“diffusion” ellipsoid may also be constructed using the diffusion tensor obtained in
an arbitrary reference frame (i.e., where the laboratory or gradient frame of reference
does not coincide with the principal frame of reference) but in this case all tensor
elements, Dxx, Dyy, Dzz, Dxy, Dxz, and Dyz, are required to plot the ellipsoid so that
orientation information is preserved/shown [103, 111]. The “diffusion ellipsoid” (i.e.,
the RMSD ellipsoid) can be plotted for a given MRI voxel size to easily visualize
the magnitude and direction of anisotropic diffusion. Recall that the effective diffu-
sivity along an arbitrary direction may also be determined via the diffusion “peanut”
(e.g., Eqs. 12.8 and 12.9) (NB: derivations of the PGSE attenuations for anisotropic
diffusion, i.e., with Eq. (12.24), can be found in [10]).

Fiber Trackingmaps of the brain can show its long rangewhitematter connectivity
as the maps created from data acquired in the DTI experiment shown in Fig. 12.14
illustrate.
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Fig. 12.14 One of the many applications of DTI is fiber-tracking in the brain. The fiber tracks are
calculated from the principal eigenvector orientation (which is obtained from the diffusion tensor)
in each voxel. Reprinted from Kubicki et al. [112] copyright (2007) with permission from Elsevier

The application of diffusion in the form ofDWI andDTI (or Fiber TrackMapping)
has gained popularity inMRI inMedicine in the last decade or so as it provides useful
information on the nature and structure of tissues which cannot be obtained by other
means.

12.5.3 Localized Diffusion

The applications of diffusion tensor imaging and diffusion MRI extend beyond
medicine. One such interesting application is to the study of grape berry morphology
and pathologies. Grape berries are particularly suited to MRI due to their high water
content and intricate internal structure.

Two studies of grape berries using DTI are described briefly here [113, 114]. The
first examined developmental changes in the Semillon grape tissue structure using
DTI. Twenty-one grape berries at different stages of development were scanned
with a standard PGSE echo-planar DTI sequence (see Fig. 12.15 where the diffu-
sion preference along the radial direction is quite evident). Also evident is the high
degree of anisotropywithin the grape seed. The anisotropy patterns correlate with the
known microstructure of the grapes at the various stages of development including
an increase in diffusion vector coherence at 28 to 41 days after flowering when the
mesocarp cells transition to a radially elongated state. The other study used MRI and
DWI to track the progression of berry splitting.

Fruit split or berry split is a particularly important grape pathology due to its
economic costs. During fruit split an excess uptake of water causes an increase in
turgor pressure within the grape berry eventually causing the skin to split. The berry
is then susceptible to pathogen infections and, in dryer conditions, to desiccation.
Splitting adversely affects berry quality and yield and is a significant cost to the
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Fig. 12.15 Diffusion tensor images of Semillon grape berries at seven different stages of berry
development (pre-véraison—prior to ripening—in A to post-harvest in G). Scale bar: 3 mm. The
color in the axial slices indicates the preferred diffusion direction where the “color sphere” beside
grape G correlates direction with color. (From Dean et al. [113])

viticulture industry. Climate change is expected to exacerbate the conditions under
which fruit splitting occurs in Australia.

Part of this study analyzed the development of a single split in the skin of a
ripe table grape (Thompson Seedless) and the effect of this split on the mesocarp
tissue using a sequence of ADC maps spaced over a period of eight hours. The ADC
increased near the split, and this splitting was linked to cell death.

Diffusion MRI can also be, and has been, applied to many other botanical species
(for example, olives, maize stems, barley seeds, carrot roots, celery, and asparagus
stems) [115–118].

12.6 Conclusions

The growth and range of application of NMR-based diffusion studies has been
phenomenal with applications spanning a vast range of sciences, engineering, and
clinical medicine. The advancements in both hardware and method development
have indeed propelled NMR/MRI as a popular analytical or clinical tool. No other
diffusion measuring technique can come close to NMR in its versatility and practi-
cality. Thus, the versatility of NMRmeans that its range of applications encompasses
much of nature and technology.

Not only is NMR a powerful method for chemical identification, it is also able to
study binding events and kinetics that are important for biochemical systems. Recent
advances in combining NMR/MRI with electrophoretic measurements allows visu-
alization of dynamics processes which underpin battery and electrolyte development.
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NMRdiffusionmeasurements not only provide information necessary to characterize
binding but also provide structural information of the environment the molecules are
diffusing within. NMR could therefore play a crucial role in advancing battery tech-
nology. This could have many benefits especially on the way society uses renewable
energy leading to a better future for mankind and the environment.

For most of the history of NMR the push has been to higher static field strengths as
this naturally gives greater sensitivity and affords greater resolution from an imaging
perspective. However, the last decade has also seen increasing interest in low field
equipment and the realization that in some cases not all of the information that
is obtainable from a high field machine is required. Naturally modern low field
equipment has far greater sensitivity and function than low field equipment from
the past and comes with advanced permanent magnets. This resurgence in low field
equipment has important consequences for the future of NMR. For example, low
field equipment is in general cheaper and more portable making it easier to adapt and
use directly in agricultural and industrial practices and advanced models now have
diffusion measuring capability. Thus versatile portable “benchtop” NMR with flow
and diffusion measurement capabilities in addition to chemical characterization will
become widespread not only in education but in industry as well.
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58. L. Minati, W.P. Węglarz, Concepts Magn. Reson. A 30, 278–307 (2007)
59. P.B. Kingsley, Concepts Magn. Reson. A 28, 101–122 (2006)
60. P.T. Callaghan, K.W. Jolley, J. Lelievre, Biophys. J. 28, 133–142 (1979)
61. S.A. Willis, G.R. Dennis, T. Stait-Gardner, G. Zheng, W.S. Price, J. Mol. Liq. 236, 107–116

(2017)



276 S. A. Willis et al.

62. L.L. Fillbrook, J.-P. Günther, G. Majer, D.J. O’Leary, W.S. Price, H. Van Ryswyk, P. Fischer,
J.E. Beves, J. Am. Chem. Soc. 143, 20884–20890 (2021)

63. J. Kärger, Adv. Colloid Interf. Sci. 23, 129–148 (1985)
64. A.R. Waldeck, P.W. Kuchel, A.J. Lennon, B.E. Chapman, Prog. NMR Spectrosc. 30, 39–68

(1997)
65. D. Wijesekera, T. Stait-Gardner, A. Gupta, J. Chen, G. Zheng, A.M. Torres, W.S. Price,

Concepts Magn. Reson. A 47, e21468 (2019)
66. J. Kärger, Ann. Physik. 24, 1–4 (1969)
67. J. Kärger, Z. Phys. Chem. 248, 27–41 (1971)
68. W.S. Price, F. Elwinger, C. Vigouroux, P. Stilbs, Magn. Reson. Chem. 40, 391–395 (2002)
69. T. Adalsteinsson, W.-F. Dong, M. Schönhoff, J. Phys. Chem. B 108, 20056–20063 (2004)
70. R.V. Mulkern, H.P. Zengingonul, R.L. Robertson, P. Bogner, K.H. Zou, H. Gudbjartsson,

C.R.G. Guttmann, D. Holtzman, W. Kyriakos, F.A. Jolesz, S.E. Maier, Magn. Reson. Med.
44, 292–300 (2000)

71. W.S. Price, A.V. Barzykin, K. Hayamizu, M. Tachiya, Biophys. J. 74, 2259–2271 (1998)
72. K.J. Packer, Mol. Phys. 17, 355–368 (1969)
73. M. Holz, C. Müller, Ber. Bunsenges. Phys. Chem. 86, 141–147 (1982)
74. M. Holz, J. Magn. Reson. 58, 294–305 (1984)
75. M.Holz,Field-AssistedDiffusion Studied byElectrophoreticNMR. in:Diffusion inCondensed

Matter, J. Kärger, and P. Heitjans, eds., (Springer, Berlin, 2005), pp. 717–742
76. P.C. Griffiths, A. Paul, N. Hirst, Chem. Soc. Rev. 35, 134–145 (2006)
77. Q. He, Z. Wei, J. Magn. Reson. 150, 126–131 (2001)
78. S.R. Heil, M. Holz, Angewandte Chemie (Int. Ed.) 35, 1717–1720 (1996)
79. M. Bielejewski, M. Giesecke, I. Furó, J. Magn. Reson. 243, 17–24 (2014)
80. C. S. Johnson, Jr., Electrophoretic NMR. in: Encyclopedia of Nuclear Magnetic Resonance,

D.M. Grant, R.K. Harris, eds., (Wiley, New York, 1996), pp. 1886–1895
81. E. Li, Q. He, J. Magn. Reson. 156, 181–186 (2002)
82. M. Giesecke, G. Meriguet, F. Hallberg, Y. Fang, P. Stilbs, I. Furó, Phys. Chem. Chem. Phys.

17, 3402–3408 (2015)
83. F. Hallberg, T. Vernersson, E.T. Pettersson, S.V. Dvinskikh, G. Lindbergh, I. Furó, Elec-

trochim. Acta 55, 3542–3549 (2010)
84. K. Hayamizu, Y. Aihara, J. Phys. Chem. Lett. 1, 2055–2058 (2010)
85. Y. Fang, P.V. Yushmanov, I. Furó, J. Magn. Reson. 318, 106796 (2020)
86. J.E. Tanner, E.O. Stejskal, J. Chem. Phys. 49, 1768–1777 (1968)
87. D.S. Grebenkov, Rev. Mod. Phys. 79, 1077–1136 (2007)
88. B.F. Moroney, T. Stait-Gardner, B. Ghadirian, N.N. Yadav, W.S. Price, J. Magn. Reson. 234,

165–175 (2014)
89. B. Ghadirian, A.M. Torres, N.N. Yadav, W.S. Price, J. Chem. Phys. 138, 094202 (2013)
90. W.S. Price, P. Stilbs, O. Söderman, J. Magn. Reson. 160, 139–143 (2003)
91. A.M. Torres, R.J. Michniewicz, B.E. Chapman, G.A.R. Young, P.W. Kuchel, Magn. Reson.

Imaging 16, 423–434 (1998)
92. L. Avram, Y. Assaf, Y. Cohen, J. Magn. Reson. 169, 30–38 (2004)
93. A.M. Torres, B. Ghadirian, W.S. Price, RSC Adv. 2, 3352–3360 (2012)
94. G. Pileio (ed.), Long-lived Nuclear Spin Order: Theory and Applications (Royal Society of

Chemistry, Cambridge, 2020)
95. W. Heink, J. Kärger, H. Pfeifer, Chem. Eng. Sci. 33, 1019–1023 (1978)
96. R. Kimmich, NMR: Tomography, Diffusometry (Springer Verlag, Berlin, Relaxometry, 1997)
97. S. Stapf, S.-I. Han (eds.), NMR Imaging in Chemical Engineering (Wiley, New York, 2006)
98. P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Oxford University

Press, Oxford, 1991)
99. J. Kärger, D.M. Ruthven, D. Theodorou, Diffusion in Nanoporous Materials (Wiley, New

York, 2012)
100. R. Bammer, Eur. J. Radiol. 45, 169–184 (2003)
101. S. Mori, P.B. Barker, Anat. Rec. 257, 102–109 (1999)



12 Expanding NMR Versatility 277

102. P.J. Basser, J. Mattiello, D. Le Bihan, J. Magn. Reson. B 103, 247–254 (1994)
103. P.J. Basser, J. Mattiello, D. Le Bihan, Biophys. J. 66, 259–267 (1994)
104. P. Mukherjee, J.I. Berman, S.W. Chung, C.P. Hess, R.G. Henry, Am. J. Neuroradiol. 29,

632–641 (2008)
105. D. Le Bihan, Radiology 268, 318–322 (2013)
106. C.Messina, R. Bignone, A. Bruno, A. Bruno, F. Bruno,M. Calandri, D. Caruso, P. Coppolino,

R. De Robertis, F. Gentili, I. Grazzini, R. Natella, P. Scalise, A. Barile, R. Grassi, D. Albano,
and on behalf of the Young SIRM Working Group, Cancers 12, 1493 (2020)

107. N.W. Schurink, D.M.J. Lambregts, R.G.H. Beets-Tan, Br. J. Radiol. 92, 20180655 (2019)
108. M. Connolly, A. Srinivasan, Magn. Reson. Imaging Clin. N. Am. 26, 121–133 (2018)
109. P.B. Kingsley, Concepts Magn. Reson. A 28, 123–154 (2006)
110. P.B. Kingsley, Concepts Magn. Reson. A 28, 155–179 (2006)
111. P.J. Basser, NMR Biomed. 8, 333–344 (1995)
112. M. Kubicki, R. McCarley, C.-F. Westin, H.-J. Park, S. Maier, R. Kikinis, F.A. Jolesz, M.E.

Shenton, J. Psychiat. Res. 41, 15–30 (2007)
113. R.J. Dean, T. Stait-Gardner, S.J. Clarke, S.Y. Rogiers, G. Bobek, W.S. Price, Plant Methods

10, 35 (2014)
114. R.J. Dean, G. Bobek, T. Stait-Gardner, S.J. Clarke, S.Y. Rogiers, W.S. Price, Aust. J. Grape

Wine Res. 22, 240–244 (2016)
115. N. Ishida, H. Ogawa, H. Kano, Magn. Reson. Imaging 13, 745–751 (1995)
116. C.H. Sotak, Neurochem. Int. 45, 569–582 (2004)
117. S. Boujraf, R. Luypaert, H. Eisendrath, M. Osteaux, Magn. Reson. Mater. Phys. Bio. Med.

13, 82–90 (2001)
118. J. Lätt,M.Nilsson, A. Rydhög, R.Wirestam, F. Ståhlberg, S. Brockstedt,Magn. Reson.Mater.

Phys. Bio. Med. 20, 213–222 (2007)



Chapter 13
Diffusion in Materials Science
and Technology

Boris S. Bokstein and Boris B. Straumal

13.1 Introduction

Diffusion in materials (i.e. the randommovement of molecules or atoms activated by
thermal fluctuations) is an extremely important process. Macroscopically it appears
in changes in the concentration profiles. Diffusion processes can be observed in
gases and liquids, just as also in amorphous or crystallinemetals, ceramics, polymers,
semiconductors etc. [1, 2]. The concentration profiles caused by the diffusion contain
important information about the atomic structure ofmaterials as well as about defects
within them. It is of particular relevance that diffusion can control the kinetics of the
synthesis of materials and their modification, just as the processes by which these
materials may fail.

The driving force of thermal diffusion in simple systems emerges from the random
distribution of its components, which by physicists is referred to as the “entropy of
mixing”. Diffusion takes place due to the thermal motion of atoms and molecules.
Therefore, its rate increases with increasing temperature. Themechanisms of thermal
motion in gases and liquids do, notably, lead to a mixing of the constituent compo-
nents. We refer here to the random collisions of atoms and molecules in gases (see,
e.g., Chap. 10) or to theBrownianmotion in liquids (see, e.g., Chaps. 8 and 12). To the
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contrary, mixing mechanisms of atoms in a solid are much more complicated and by
far not as obvious [2]. Thermal motion in solids is driven by the vibrations of atoms
around their equilibrium positions in a crystalline lattice. However, the amplitude
of such vibrations is usually very small, in comparison with the nearest-neighbor
distances. One would expect, therefore, that such thermal motions cannot lead to
interatomic mixing. Answering the question “how can atoms migrate in solids” is
thus by far not as simple as it might appear on first sight. It is the aim of this chapter
to introduce into the main approaches suggested and exploited for describing atomic
motion under such conditions.

13.2 Mathematical Description of Diffusion

The equations describing diffusion (see also Sects. 2.1 and 2.2 in Chap. 2) were
proposed by Adolf Fick in 1855 [3]. They originate from the equations of heat
transfer as suggested by Joseph Fourier in 1824 [4]. Fick replaced, in the Fourier
equations, (i) the amount of heat by the number of atoms, (ii) the thermal conductivity
by the diffusivity and (iii) the temperature by concentration.

First Fick’s law predicts the relationship between molecular or atomic fluxes
and concentration gradients. One can understand this relation by using the analogy
between diffusion and thermal or electrical conduction. Recollect that the heat flux
(in the simple one-dimensional case) is proportional to the temperature difference in
the same area, just like the electric flux is proportional to the difference in electric
potentials. Since fluxes are vectors, they are more generally noted as being (in the
given case) proportional to the gradients of temperature and electric potential. As a
main effect of diffusive motion and mixing, concentrations within a system become
homogeneous.

In solids one generally distinguishes between three types of diffusivity. They
correspond to three possible, physically different situations (Fig. 13.1). In the first
case, we follow the diffusion of “labeled” atoms. It is true that, generally, atoms are
undistinguishable. However, we can use a certain isotope (stable or radioactive) and
follow its spreading in a material, which is composed of a natural isotope mixture.
Typically, in such an experiment one deposits a film of radioactive isotopes on the
surface of a sample composed of the natural isotope mixture. Then one follows the
penetration of the radioactive isotope into the depth of a sample by measuring its
radiation. The nuclei of stable and radioactive isotopes have almost the same mass.
Therefore, they possess nearly the same physical and chemical properties and we
can call this case self-diffusion. The respective coefficient in Fick’s law is, corre-
spondingly, referred to as the self-diffusion coefficient. The second case shown in
Fig. 13.1 is the diffusion of one species in another, for example the diffusion of copper
in nickel. For following this kind of diffusion onemay coat a large nickel sample with
a copper film, followed by monitoring the succession of the concentration profiles
of copper in the nickel sample. This process is called hetero-diffusion, it can be
described by a hetero-diffusion coefficient. The third type of diffusion considers the
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Fig. 13.1 The three
situations under which
diffusion in solids is
generally considered

mutual diffusion of two different species into one another. For monitoring diffu-
sion in this case, one has to join, e.g., two large pieces of nickel and copper and to
monitor, subsequently, the evolution of the concentration profile on either side of the
interface. Such processes are commonly referred to as mutual diffusion and they are
quantitated by introducing a coefficient of mutual diffusion.

The presentations of Fig. 13.1 may be easily correlated with the scheme provided
by Fig. 2.2 in Chap. 2 for a quite general introduction of diffusivities.While Fig. 2.2b
is seen to reproduce the situation of self-diffusion as illustrated by Fig. 13.1(1),
Fig. 2.2c refers to a second possibility to determine self-diffusivities, namely by
measuring the mean square displacement of the individual diffusants. The situation
shown in Fig. 2.2a corresponds, in some way, with Fig. 13.1(2), since in both cases
diffusive mass transfer is seen to emerge from a non-uniform particle distribution.
However, while diffusion in solids implies the existence of another atomic species
in, e.g., nanoporous materials (see Chap. 10) diffusion experiments driven by a
concentration gradient may be performed with only a single molecular species (with
the “second species” being nothing else than the “holes” left by the guest molecules
in the pore space). As a matter of course, diffusive motion in pore spaces can also be
observed under the conditions of counter diffusion, yielding the exact counterpart of
the situation shown in Fig. 13.1(3).

It has been demonstrated in Sect. 2.2 of Chap. 2 that, by combination with
the continuity equation, i.e. with the law of matter conservation, Fick’s 1st law
is converted into Fick’s 2nd law (Eqs. 2.9) or 2.14). While Fick’s 1st law corre-
lates diffusive fluxes with existing concentration gradients, Fick’s 2nd law goes a
step further and allows predicting the evolution of concentration profiles based on
knowledge of their present stage.
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13.3 Diffusion as a RandomWalk Process

Section 2.2 of Chap. 2 did refer to the model developed by Einstein in 1905 for
molecular diffusion [5]. One year later, in 1906, Smoluchowski [6] extended this
model in such a way that it allowed the inclusion of atomic diffusion in crystalline
metals. According to Smoluchowski, diffusion is the result of random hops of atoms.
“Random”means that hops of different atoms as well as subsequent hops of the same
atom occur without any mutual correlation. A series of such random hops is called
a “random walk”. Figure 13.2 shows three examples of such “random walks”.

Atomsdo, clearly, also hop in complete absenceof concentrationgradients. In such
cases the average displacement becomes zero (see Fig. 13.3) and there is no net flux
of mass observable anymore. The mean value of the squares of the displacements,
however, assumes a value different from zero. As a most important result of the
random walk model (see Sect. 2.1 of Chap. 2), the mean square displacement is
found to increase linearly with time, following the Einstein relation in one dimension
(Eq. 2.4)

〈
x2(t)

〉 = 2Dt (13.1)

The diffusion length, i.e. the square root of the mean square displacement, is thus
seen to increase with only the square root of time. The “rate of diffusion”, defined
as the derivative of the “diffusion length” with respect to the “diffusion time” does,
correspondingly, decreases with time!

Fig. 13.2 Three examples of sequences of random hops illustrating a “random walk”
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Fig. 13.3 Scheme of a diffusion experiment within a lattice of spacing l showing an example of
particle distribution after n time steps of duration τ (right) when these particles are known to be
initially (at t = 0) positioned at the origin (x = 0, left). The location (x) of such particles does,
obviously, coincide with their displacement

The random walk model cannot, as a matter of course, specify the mechanism by
which the atoms hop. From detailed experiments, however, one has learned that self-
diffusion and hetero-diffusion in substitutional solutions are commonly promoted by
the existence and formation of “vacancies”, i.e. by holes in the scaffold constituting
the solid. The “vacancymechanism” has thus becomekey for understanding diffusion
in solids quite in general and, thus, for the exploration of such important processes as
diffusion creep, sintering, pore formation and annihilation, grain boundarymigration,
grain growth, phase transitions and precipitation.

On considering one-dimensional mass transfer with steps of length l and time
intervals τ between subsequent steps, the diffusivity is easily shown (see Sect. 2.1)
to be given by the relation

D = l2/2τ. (13.2)

The temperature dependence of the diffusivity follows, in most cases, the
Arrhenius law [7]

dlnD

dT
= E/RT 2 or

D = D0exp(−E/RT ). (13.3)

D0 andE denote, respectively, a pre-exponential factor and the activation enthalpy
and do not vary, as a rule, with varying temperature. The diffusivity is known to
increase with increasing temperature so that E (just like D0) has to be positive, quite
in general. For the majority of solid metals the self-diffusion coefficient close to the



284 B. S. Bokstein and B. B. Straumal

melting temperature is approximatelyD= 10−12 m2/s. It is interesting to compare this
value with the diffusivities in liquid metals (DL = 10−9 m2/s) and in gases (approx-
imately Dg = 10−5 m2/s under “normal” conditions) which, significantly deviating
from the diffusivities in solids, are almost temperature independent. The activation
enthalpy of self-diffusion in solid metals is, as another remarkable common feature,
roughly (i.e. with deviations of about±20%) proportional to themelting temperature,
following the relation E = 18RTmelt. With the melting temperatures of aluminum
(Tmelt = 933 K), copper (Tmelt = 1356 K) and nickel (Tmelt = 1728 K) one thus
obtains, as an estimate of the respective activation energies, values of, respectively,
140, 203 and 259 kJ/mole, in amazingly good agreement with the experimental data
of 142, 197, and 275 kJ/mole.

For estimating diffusivities we may use, for most solid metals, a value of D0 =
10−5 m2/s. From this and with the above given estimate of the activation enthalpy
we obtain, at temperatures T = 0.4Tmelt and 0.7Tmelt, self-diffusion coefficients of,
respectively, D = 10−23 m2/s and D = 10−16 m2/s.

The diffusion length, i.e. the square root of the mean square displacement as a
reasonable measure of the mean diffusion path length of the atoms under study, is,
with Eq. (13.1), seen to be given by the relation (2Dt)0.5. Using the above estimates of
the diffusivities at T = 0.4Tmelt, 0.7Tmelt, and Tmelt the diffusion lengths attained in
an experiment over 100 (!) hours amount to, respectively, 10 nm (which is just about
30 interatomic distances!), 10 μm, and 1 mm. We have to conclude that diffusion in
solids is, indeed, very slow, even at high temperatures!

13.4 Diffusion Mechanisms in Metals

We remember that at non-zero temperature atoms usually vibrate around their equi-
libriumpositionwith quite small amplitudes. They aremuch smaller than the distance
between nearest neighbors in a lattice. Thus, vibrations alone cannot give rise to the
diffusional motion of the atoms. There are several mechanisms which have been
proposed to ensure the elementary steps of diffusion in solids. The most important
ones are shown in Fig. 13.4.

Experiments show that self-diffusion and hetero-diffusion in substitutional solu-
tions commonly occur via the vacancy mechanism. The main hetero-diffusion mech-
anism in interstitial solutions is, obviously, the interstitial mechanism. Note that, in a
binary substitutional solution, sites are occupied by atoms of both types. The vacancy
mechanism was proposed by Frenkel [8]. He was the first to recognize that, in a solid
under equilibrium conditions, there have to exist vacancies or, in other words, that
the free energy assumes its minimum with a finite number of vacancies incorporated
in the system.

In the vacancy mechanism of diffusion, obviously, an atom can only jump if one
of the nearest-neighbor lattice sites is empty. The hopping frequency of an atom is
thus given by the relation
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Fig. 13.4 Main atomic mechanisms of diffusion in a crystal, including (1) simple exchange (a
couple of neighboring atoms exchange their positions), (2) cyclic exchange (several atoms change
their positions one after another in a four- or six-member ring), (3) exchangewith a vacancy (vacancy
is an empty lattice site), (4) interstitial jump (an atom in an off-lattice site between the lattice atoms
jumps to a neighboring, empty off-lattice site), (5) concerted movement by which an atom on an
interstitial site assumes the position of an atom sitting on a regular site which, in turn, is shifted
into an adjacent intersticial site, (6) atoms in a row are brought in closer contact due to an inserted
(“crowded in”) extra atom (to appear at the beginning of the row of arrows)

Γ = ZωXv, (13.4)

where Z is the coordination number, ω is the frequency with which an atom may
jump into an adjacent vacancy (coinciding with the “jump of a vacancy”) and Xv is
the vacancy concentration. The jump rate G appearing in Eq. (13.4) is easily seen
to be much less than the frequency ω of vacancy jumps, since Xv � 1 (otherwise a
crystal could not exist).

Experiments show that in most metals at the melting point there is, among 1000
occupied sites, about one vacancy, i.e. Xv = 10−3. This value decreases rapidly
with decreasing temperature. For copper at T = 300 K, e.g., one has Xv = 10−19.
With Eqs. (13.4) and (13.2), the diffusion activation enthalpy in the case of the
vacancy mechanism is the sum of the enthalpy of vacancy formation and the activa-
tion enthalpy of “vacancy migration” (i.e. for the jump of an atom into an adjacent
vacancy).

Let us now discuss the mechanism of interstitial diffusion. An interstitial atom is
shown in Fig. 13.4 under number (4). For self-diffusion, wemay follow the reasoning
applied already with the vacancy mechanism, with the concentration and jump rate
of vacancies now replaced by the equilibrium concentration of interstitials and their
migration rate. The physical picture for the diffusion of solved atoms in interstitial
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solid solutions, however, is quite different. Such atoms are small and they are already
in interstitial sites (number 4 in Fig. 13.4). For the diffusion of such solved atoms
there is no need for creating additional interstitials. Thus, the interstitial diffusion
has only a contribution of interstitial migration, since one does not need to create the
interstitial. In this case, the diffusivity of the small solved atoms can be much larger
than the diffusivity of the (big) matrix atoms.

13.5 Diffusion in Amorphous Alloys

Themost important difference between amorphous alloys and crystallinematerials is
that amorphous alloys do not have a regular crystalline lattice. The spatial distribution
of atoms in amorphous bodies is more similar to that in liquids than in solids. Never-
theless, diffusivities in amorphous materials are much smaller than in liquids and,
rather, comparable with those in corresponding solids [9, 10]. Amorphous materials
are usually metastable. Thus, upon heating, they will crystallize at a certain tempera-
ture, referred to as the crystallization temperature, T cr. In principle, as a consequence
of their metastability, amorphous materials could crystallize at any temperature. At
low temperatures, however, the rate of crystallization may become extremely small.
The T c value and the stability of amorphous alloys are thus largely controlled by
their kinetics, i.e. by atomic diffusion.

Wewill now discuss the diffusion in classical amorphous metallic alloys. Usually,
such alloys consist of noble and/or transition metals (like iron, cobalt, nickel, palla-
dium or gold) and non-metals (like boron, carbon, phosphorus, silicon or germa-
nium). Since amorphous materials do not have a unique structure as known from
crystalline materials, their actual texture—and hence their intrinsic diffusivities—
may most significantly depend on the manufacturing method materials. There may
exist, as a consequence, many different amorphous atomic arrangements for one and
the same alloy. Since some of them are, as a matter of course, more stable than
others, amorphous materials tend to change, upon heating, their structure toward a
more stable (though still amorphous) one. Given the possibility of such phenomena
of structural relaxation, it is frequently not easy to discriminate between effects of
structural relaxation and genuine diffusion. Such disturbing influences can be largely
excluded by preliminary annealing, e.g. at 0.96–0.98 T cr, with subsequent diffusion
experiments at temperatures below 0.9 T cr.

Also in amorphous alloys the temperature dependence of the diffusivity is usually
found to follow the Arrhenius law, Eq. 13.3. It is, indeed, a quite surprising observa-
tion! Recollect that the formation and migration of point defects has been identified
as a prerequisite for diffusional motion in solids. From this one may immediately
conclude that the activation energies of point defect formation and migration—and
thus also the enthalpy of diffusion—have certain exact values because all positions
in a crystalline lattice are equivalent! Amorphous materials, however, have an irreg-
ular structure. We would have to expect, therefore, a wide distribution of energies
of defect formation and migration. Thus, it appears to be very paradoxical that the
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temperature dependence of the diffusivity in an amorphous alloy may be properly
described by just one activation enthalpy. One should have in mind, however, that
the observation of an Arrhenius dependence for diffusion in amorphous alloys may
have another, simple explanation. Most diffusion studies in these materials have
been performed in a relatively narrow temperature interval (of typically not more
than 100 K). This restriction in the temperature range results from the conflict that
the temperature, on the one hand side, must be high enough to allow the proper
measurement of diffusion phenomena while, on the other hand, it must avoid getting
too close to the crystallization temperature.

For diffusion in amorphous alloys several mechanisms have been proposed, with
no consensus about the dominant mechanism. According to one suggestion, referred
to as the quasi-vacancy mechanism, diffusion in amorphous alloys is assumed to
follow a mechanism which is similar to the vacancy mechanism in crystals [11, 12].
One has, however, no real vacancies in an amorphous material. It accommodates
instead an excess free volume, giving rise to the formation of a continuous spectrum
of sizes of these free volume “clusters”. They can be either smaller or larger than the
atoms in an alloy. The density of an amorphous alloy is usually smaller than that of
the respective crystalline alloy. The quasi-vacancy mechanism suggests that atoms
can jump into such holes, just as they may jump into a vacancy in a crystalline lattice.
We have to recollect, however, that in an amorphous structure each hole has to be
associated with its own, specific activation energy of formation and migration!

A further suggestion is based on the assumption that the elementary process of
diffusion in an amorphous structure is a cooperative displacement of a group of
neighboring atoms. Such a step does, obviously, involve the movement of many
atoms. The resulting activation enthalpy represents, thus, an averaged value over the
entire group. This idea smoothly explains why there appears one single value for
the activation enthalpy and why the activation energies for diffusion in non-metallic
compounds and metals are comparable.

Diffusion of metal atoms within amorphous semi-conducting alloys is even more
complicated. Thus several metals (including lithium, nickel, iron, copper and palla-
dium) diffuse in amorphous silicon even slower than in crystalline silicon. We can
explain this fact as follows. All these atoms diffuse in crystalline silicon via an
interstitial mechanism. To the contrary, in amorphous silicon they can be trapped
in quasi-vacancies. We remember that interstitial diffusion proceeds usually much
faster than substitutional diffusion.

On the other hand, several metals (like gold, platinum or zirconium) diffuse in
amorphous silicon faster than in crystalline silicon. For rationalizing such a behavior
we have to recall that the atoms of gold, platinum or zirconium can occupy either
lattice or interstitial sites in crystalline silicon. Diffusion of these atoms does include,
therefore, periods of fast migration through the interstitials and of trapping. Diffusion
enhancement in amorphous silicon is thus a simple consequence of the fact that
trapping in amorphous silicon occurs much less frequently than in crystalline silicon.
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13.6 Diffusion in Polymers

The use of polymeric materials has really exploded during the last few decades. The
world production per anno for polymers (equally, by volume or mass) has recently
even overtaken that of metals! Diffusion in polymers may thus be regarded as even
more important than diffusion in metals [13].

On penetrating into a polymer, “alien” small molecules can give rise to a confor-
mational change of the polymer chains around them. Thus, the diffusion process
includes both penetration of “alien” molecules and the conformational relaxation
of the polymer chains. For a quantification of these two phenomena, the so-called
Deborah number De has been introduced. It is defined as the ratio tc/tp between the
time constants of conformational changes and particle propagation over the exten-
sion of the individual polymer molecules. If the Deborah number is small (De < 0.1)
the characteristic time tc of conformational relaxation is much shorter than the char-
acteristic diffusion time tp while for large Deborah numbers (De > 10), molecular
structures remain essentially nearly unchanged during diffusive displacements along
the extension of the individual polymeric chains. It is important to emphasize that
in both cases guest penetration can be described by Fick’s laws. In the intermediate
case, i.e. for values tc and tp of similar orders of magnitude (0.1 < De < 10), the
situation becomes much more complicated. Under such conditions, relaxation has to
be in particular expected to facilitate the trapping of penetrating “alien” molecules.
The total number of penetratingmolecules has thus become a variable quantity which
excludes the direct, unrestricted application of the Fick’s laws.

Summing up, there is so far no generally accepted understanding of the mecha-
nisms of metal diffusion in polymers. As an example of the still unsolved questions
we refer to the remarkable observation that noble metals, which are frequently used
for contacts in microelectronics, are found to diffuse slower than the gas molecules,
irrespective of the fact that their sizes are comparable with or even smaller than the
sizes of the molecules [14]. Two explanations of this phenomenon are under discus-
sion. One is based on the assumption that the metal atoms diffuse as clusters which
are considerably larger than single atoms. The second one implies that there exists a
particularly strong interaction between the noble metals and the polymer molecules.

13.7 Diffusion During Severe Plastic Deformation

Over the last few decades, material sciences have emerged as an own, extremely
promising field. Its development has most decisively been promoted by the invention
of the so-called severe plastic deformation (SPD) methods [15–17]. SPD permits to
strain amaterial in a confined spacewithout giving it the possibility to fail. Figure 13.5
illustrates the operation principle of one of the most frequently used techniques for
this purpose, the method of high pressure torsion (HPT). Here, a disk of the material
to be strained is pressed between two anvils with a pressure of 4 up to 12 GPa. One
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Fig. 13.5 Scheme of the
arrangement for high
pressure torsion (HPT)
experiments

anvil starts to rotate, so that the sample is strained by pure shear. Though the number
of rotations can be very high (sometimes up to 100), the sample, obviously, cannot
break. Torsion gives rise to the establishment of dynamic equilibrium between defect
production and sample relaxation. Steady state is usually attained after 2 rotations
so that the properties of the material do not change any more.

Under the given stress, an enormous amount of defects is produced in a material.
Quite logically, the concentration of defects (vacancies, dislocations, interfaces etc.)
cannot increase infinitely. It is due to this reason that relaxation sets in, giving rise
to the formation of a steady state. This dynamic relaxation (or recovery) involves
(sometimes very speedy) diffusion fluxes. The phases formed under steady-state
conditions are, as a matter of course, different from those, which were present in the
material before SPD treatment [18, 19]. In fact, composition and crystallographic
structure of these phases can serve as a probe describing the (very quick and intensive)
mass-transfer processes during SPD. The diffusion processes during SPD differ from
those which take place in traditional materials technologies and are close to the
equilibrium. The SPD-driven diffusion and diffusion-controlled phase transitions
take place far from equilibrium. Their description and explanation is a real challenge
for materials science.

SPD can drive different phase transitions in thematerials under treatment [18, 19].
They include such diverse phenomena like the dissolution of phases, the synthesis
of different allotropic modifications of elements (Fig. 13.6), the amorphization of
crystalline phases, the decomposition of supersaturated solid solutions or dissolu-
tion of precipitates, the disordering of ordered phases and the nanocrystallization in
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Fig. 13.6 HREM micrograph of an alloy of titanium containing 2 weight % of iron which had
been annealed at 800 °C for 270 h, quenched and subjected to HPT under a pressure of 7 GPa and
a total rotation of 36° (i.e. of around 1/10 of a full circle) with a rotational speed of 6° per second
(a). Titanium is seen to occur in three different phases (α-, β- and ω-Ti), with ω-Ti resulting as the
product of phase transformation during the HPT deformation. Evidence of the presence of these
phases (and of even the relationship of their mutual orientation [20, 21]) is provided by Fast Fourier
Transforms (FFT) (b–d) of the corresponding areas in the high resolution image (a)

amorphous matrices. The exploration of the manifold possibilities for the exploita-
tion of these phenomena for the fabrication of materials with optimized performance
characteristics is a hot topic of current research.

It can be observed that, after SPD, phases can be formed which usually appear
after annealing at a certain (in general notably elevated) temperature. Such a temper-
ature can be referred to as an effective temperature T eff. The concept of effective
temperatures has been originally suggested by George Martin for materials after
severe neutron irradiation [19]. It does now appear that this concept is useful and
applicable also for the phenomenon of severe plastic deformation (SPD) [22, 23].
In both cases, the atomic movements driven by external actions (i.e. by irradia-
tion or deformation) are accelerated in comparison with atomic movements during
conventional thermal diffusion. The material has, obviously, been shifted into a state
with a mobility which is otherwise only attained at a correspondingly increased (the
“effective”) temperature T eff.

Severe plastic deformation at room temperature TSPD can drive the phase tran-
sitions. This behavior is, obviously, caused by the high density of defects, namely
a density of defects comparable with that at a notably increased temperature, T eff.
Some of the SPD-driven phase transformations require the long-range mass transfer,
for other transitions only a small shift of constituent atoms is required. Usually,
the sequence of these SPD-driven phase transformations is not easy to explain by
the conventional bulk or even grain boundary diffusion at TSPD, since TSPD usually
remains only slightly above room temperature.
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For the phase transformations under SPD (like precipitation and dissolution of
precipitates, amorphization, transitions betweenvarious “Hume-Rothery” phases etc.
[24]) one usually requires a redistribution of components and, therefore, a certain
mass transfer. Such SPD-driven redistribution of components proceeds extremely
quickly, irrespective of the fact that it occurs at room temperature, without notable
temperature increase. Thus, steady-state conditions during HPT are usually attained
after not more than 2–5 min. As a measure of the SPD-driven mass-transfer one
may use the concept of the effective temperature, defined by the requirement that, at
this very temperature, the diffusivity under “normal” conditions (i.e. without SPD)
would coincide with the diffusivity under HPT conditions. As a matter of course,
this effective temperature usually exceeds the temperature of HPT treatment and
measurement (TSPD) [17, 24].

Thus, one can conclude that George Martin’s idea [19], in its extended form,
can be also applied for SPD-driven phase transitions. George Martin supposed [19]
that the atomic displacements driven by the irradiation are similar to those which
take place by thermal diffusion (like the jumps into a neighboring vacancy). In
case of SPD such a suggestion is no longer valid. We suppose instead that, under
similar SPD conditions, SPD-driven atomic movements are comparable in all alloys.
The “natural” atomic movement, however, is quite different because the melting
temperatures Tm of the considered materials are quite different. If TSPD is almost
the same (~300 K) and the diffusion coefficients for “natural” diffusion are low for
alloys with high Tmelt atomic movements driven by SPD can be much larger than
diffusion by atomic jumps, corresponding with large values of T eff as predicted by
G. Martin. If the melting temperature Tmelt of the considered material is low (as in
the case of aluminum alloys), T eff would be low. It can be even close to TSPD, i.e. to
room temperature [16].

13.8 Conclusions

Diffusion can control the rate of a wide range of important technological processes
in materials manufacturing. These are also processes of materials modification,
resulting in properties by which the materials may work properly—or fail. Examples
include diffusion creep, sintering, pore formation and annihilation, grain boundary
migration, grain growth, phase transformations, and precipitation. The present
chapter introduces into the variety of phenomena associated with these processes.
Though all of them, consistently, are based on thermal motion, i.e. on the random
walk of the individual atoms of the material under study, the conditions under which
movement occurs are manifold. As manifold are also the elementary steps by which,
eventually, the overall rate ofmass transfer is controlled. The spectrumof phenomena
and processes thus considered ranges from the classical view on diffusion in metals
up to such comparatively new topics as diffusion in amorphous alloys, polymers and
during severe plastic deformation.
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Chapter 14
Innovation Management
and the Purposive Design of Diffusion
Processes

Albrecht Fritzsche

14.1 Introduction

In order to understand the research interest of innovation management in diffusion, it
is first of all necessary to make a clear distinction between different types of knowl-
edge that scientific studies aim to produce. In line with the traditional paradigm
of natural science, most other chapters in this book are concerned with the proper
description of natural phenomena, as they proceed independently from a human
observer. Management research takes a different approach. It is much more inter-
ested in the effects of individual or collective human action and the possibilities of
purposive interventions in the course of socio-economic development. The difference
can be illustrated with an example concerning terminology that has been discussed
in the preparation of this book: the references to artefacts in scholarly works. Natural
scientists usually consider artefacts as disturbances of observations, which are caused
by cameras and other technical devices that they use. For scholars in management
science and related fields such as information systems research, artefacts are themain
subject matter of their studies. They are objects that do not belong to what we call
nature but are brought about by the actions of human beings, which need to be better
understood to improve planning and control. In this context, Schumpeter makes a
distinction between invention and innovation that can further help to demarcate the
domains of engineering andmanagement [16]. The term invention refers to new arte-
facts, concepts, products, or processes, independently from their impact in society.
Innovation, as scholars in management and related disciplines use the term, takes the
impact on society into account as well, turning the attention to the advancement in
socio-economic practices as a result of the implementation of new ideas.

It is commonly assumed that every innovation is preceded by an invention.
Someone—usually a specialist in academia or industry—creates something new,
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which is then introduced to a broader audience and starts to spread across society.
Looking at innovations this way has several advantages. Most importantly, it allows
us to attribute an innovation to an author, who can then claim rights on the revenue
that is created from its application. The efforts that have been spent on the inven-
tion can be remunerated, which gives institutions and individual actors good reason
to invest in research and development. Furthermore, the idea that an innovation is
preceded by an invention opens up many opportunities to apply diffusion models in
order to understand how the invention takes effect. This has already been done for a
long time, starting with Gabriel Tarde’s work on the spread of novelty in society at
the turn to the twentieth century [1]. Studies on the diffusion of innovations continue
to play an important role today, as they enable managers to plan production and
supply processes, develop marketing strategies, justify investments and much more.

This chapter introduces the most basic formal models of diffusion in management
research, which do not reach the level of sophistication that can be found in other
fields of enquiry. In view of the complexity and dynamic of social systems, this
may look insufficient. For management practice, however, simple models of diffu-
sion have a strong pragmatic advantage, as planning and controlling interventions in
complex diffusion processes is very challenging. Wherever possible, business opera-
tions are advised to avoid excessive complexity and organise work in such a way that
the manageable can be managed and the rest ignored. Max Weber speaks accord-
ingly about asceticism as fundamental pattern in business and industry [17], seeking
out or purposively creating conditions under which planning and control become
possible. The same thought can also be extended to the diffusion of innovations. The
following considerations therefore approach diffusion from a different point of view
than most other contributions in this volume. Nevertheless, the work presented here
may prove interesting to a wider audience as well, inasmuch as it raises questions
about complexity and constructivist epistemologies that also play a role beyond the
domain of management.

Tarde’s early work on diffusion holds interesting information about the effects
of blind obedience, explanation and training on the speed and direction in which
novelty spreads. Contemporary research has added deeper layers of reflection on the
purposive designof the conditions underwhich innovations take effect in business and
society. In consequence, increasing attention is drawn to the topological foundations
of diffusion models. Contemporary diffusion research in innovation management
can therefore be associated with the so-called spatial turn in the social sciences
(e.g. [18, 19]). During the last decades, scholars have started wondering about the
extent to which human experiences of space rely on any given reality and the extent
to which they are instead shaped by cultural dynamics [20]. Following Lefebvre’s
seminal work [21], space is nowadays widely considered all by itself as an artefact
produced by human beings to align activities and enable cooperation. One might
argue that Weber has already anticipated this with his metaphor of the iron cage of
business and industry. At Weber’s time, this cage could be illustrated by the walls
and fences around production facilities and other professional workspaces that are
purposively designed for a specific range of determinate action (see also [22]). In
today’s world, digital technology can be said to have virtualised the iron cage. All
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areas of human life are permeated bybusiness-related activities. Interestingly enough,
this development is mirrored by changing innovation activities, which disassociate
from singular inventions that took place in a specific institution in academia or
industry. Instead, innovations seem to come up at multiple locales at the same time,
and the geography underlying their diffusion is hard to determine. Management has
therefore developed a very broad design repertoire to get actively involved in the
construction of places where innovations can emerge and spatial structures for their
controlled diffusion. On the following pages, this design repertoire is discussed in
more detail.

14.2 Theoretical Background

14.2.1 Conceptual Foundations

Innovation is a soft concept and referred to in many different ways. Appeals to
innovation can be found in numerous discourses among professionals and in the
general public. Broadly speaking, innovation is frequently defined as “creating value
from ideas”, an intentional act of improvement [23, 24].Wherever the term innovation
is used with an article or in plural, it designates the result of this act. In line with
the romantic notion of creative genius and audience, ideas leading to innovation are
usually expected to emerge from theminds of professionals in academia and industry,
whose inventions are then presented to a broader public. From a business perspective,
the diffusion of innovation therefore tends to be associated with the introduction of
newproducts on amarket. The diffusion process is often documented by sales figures,
an approach that was popularised by Griliches’ work on the economics of technical
change [2]. Another approach is taken by Gort and Klepper [3], who investigate the
number of producers engaged in manufacturing a new kind of product instead of
the customers. The underlying principle of an audience that adopts an invention and
remains otherwise passive remains the same.

Figure 14.1 visualises this principle in a way that makes the correspondence to
diffusion studies in the natural sciences rather clear.

Adoption behaviour has been researched quite extensively during the last decades.
For the adoption of new technology, a popular acceptance model distinguishes two
different aspects [12]:

• the perceived ease of use, which concerns the effort that users have to spend on
handling a device in such a way that they achieve a satisfying result;

• the perceived usefulness, which concerns the added value that the users think to
gain from the application of the device.

Further research has shown that the perceived usefulness is influenced by a large
number of different factors, such as the qualitative assessment of the output, its
perception and appreciation in public and the behaviour of others towards those
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Fig. 14.1 Simplified visualisation of innovations from industry/academia spreading on a market

who use it. Empirical evidence indicates a higher relevance of perceived usefulness
for decision-making process compared to perceived ease of use [13]. This can be
explained by the willingness of potential adopters to spend some time to learn how a
device works, expecting that its use will become easier after a while. The perceived
usefulness, on the other hand, seems to be considered as a static attribute of the
device.

Another dynamic that requires attention in the study of adoption processes is
related to the so-calledNimby Syndrome [25]. Nimby stands for not-in-my-backyard
and describes the fact that many people welcome innovation and social change in
general, but strongly oppose anything that affects them in their personal lives. In
other words, there is a difference between the acceptability of change in society and
the acceptance of change concerning one’s own life. Divergences of acceptability
and acceptance pose a huge problem in many areas, such as the implementation of
healthcare measures or the transition to renewable energy sources.

In order to understand individual adoption decisions, it is therefore important to
engage in a deeper analysis of human decision-making. There are three factors of
influence that innovation research tends to distinguish in this context [14]:

• personal attitudes towards a certain action;
• social norms referring to its execution and outcome;
• the perceived level of control by the actor.

The perceived level of control is a particular problem wherever human beings
are confronted with systemic implementations of innovation, including everything
related to social security and safety, finance, and networked data processing. Recent
studies on artificial intelligence highlight trust as a moderating variable [26].

14.2.2 Mathematical Modelling

Mathematical models of diffusion in innovation research are commonly based on
the assumption that there is a target group of potential adopters for whom a new
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Fig. 14.2 Normal distribution of adoption times

product can be useful. Avoiding all questions regarding individual decision-making,
most models focus exclusively on individual adoption times. For every innovation,
there are a few early adopters who set the trends for broader parts of the population.
Furthermore, there are also some people who take a very long time before they adopt
a technology. They are often addressed as laggards. All other adopters can be found in
between these two extremes on the timeline, following the pattern of a normal distri-
bution (see Fig. 14.2). The normal distribution of adoption times can be explained
by a large number of different factors of influence that take effect as independent
stochastic variables on the population in such a way that their aggregation results in
the typical bell curve.

Numerous studies support the model, documenting a constrained exponential
growth of adoption numbers over time (e.g. [2, 5]). This is visualised in Fig. 14.3 by
the S-shaped curve of the so-called logistics function (see Sect. 2.3 of the introductory
chapter “Spreading Fundamentals”). It shows asymptotic behaviour towards both
extremes and has a central infliction point. The shape of the curve is well known
from other fields of research on diffusion phenomena. For example, the relative
number of molecules entering a nanoporous particle upon pressure increase in the
surrounding atmosphere can be described by the same curve (see the chapter by
Chmelik et al.).

This dynamic has already been discussed in the middle of the twentieth century.
Based on his empirical work, Griliches [2] proposes that the diffusion of innovations
be described by the according differential equation of the type

d f

dt
= a f (1− f ) (14.1)

where f is the fraction of the target group that has adopted the innovation, t is time
and a is a growth parameter (see also Sect. 3.4.1 in the chapter by Leitner and Kühn).

Figure 14.4 compares empirical data about cell phone subscriptions with a theo-
retically calculated logistics function. The calculation is comparably easy in this
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Fig. 14.3 Growth over time described by the logistics function

Fig. 14.4 Actual figures and forecast with logistic function for cell phone diffusion worldwide [9]

situation, as the target group is easy to determine. Telecommunication is a general-
purpose technology used across the whole population. Within this technology, inno-
vation leads to the substitution of extant devices. The prediction of such substitution
processes is a major field of application for diffusion models in management [8].

Other scenarios do not allow for an exact prediction of the size of the target group
that is finally expected to adopt an innovation. In such cases, innovation research
is in a similar situation as, for example, social science studying population growth
[7]. As Verhulst [6] suggested, the logistics function is still applicable here, but
research is interested in different questions. Innovation management sets a focus on
the prediction of the full market size of a product and the time that is needed to get
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there, which is highly important to make investment decisions and calculate resource
requirements.

Recent work concerned with online platforms shows particular interest in the
identification of the infliction point of the S-shaped curve, which is usually associated
with the tipping point in business development where an online platform becomes
profitable [27]. Up to this moment, a platform needs financial support. Afterwards,
it is expected to sustain itself and generate revenue. In other words, the tipping point
tells investors how long a platformhas to be kept alivewith external funding andwhen
they can expect a payoff (cf. [28]).Extant knowledge on platform dynamics, however,
is still rather scarce and the accuracy of the predictions that can be made using the
logistics function is not quite clear. It seems plausible that the abovementioned logic
applies for platforms that win over a whole market, as this turns the platform into
some sort of a general-purpose technology. Sometimes, however, different platforms
continue to coexist over time. This is for the most part a blind spot in extant models.

Similar reservations have also been articulated on a more general level. Comin
et al. [11] give an overview of a wide range of scenarios in which the usage of logistic
functions to model diffusion dynamics results in a very poor approximation of actual
developments. At times of rapid industrial growth and mass production, the models
may work very well. In general, however, they need to be handled with care.

14.3 Interference with Diffusion

14.3.1 Creative User Behaviour

The idea of passive audience of adopters that responds to external stimuli has a
strong behaviouristic character, which has recently raised concerns from different
sides [30, 29, 31]. In the context of diffusion studies, Rogers [4] was one of the
first to draw attention to this issue. A drastic example for active interventions of an
audience is given by Eco [32], who refers to the introduction of water closets in
rural Mediterranean areas. The farmers living in these areas did not use the closets
as toilets. Instead, they took advantage of the flush technology to wash their olives.
While this creative problem solution was not sustained over time, other examples
show that users can indeed have a lot of influence. For instance, the Sony Walkman
was repositioned on the market several times, based on the way how it was received
by customers [33]. Short-message services are another example. Telecommunication
providers initially did not expect them to add considerable value for their customers
and positioned them as a minor add-on to cell phone usage for a comparably low
price. Due to their strong popularity, however, they then became a separate field of
business.

From a theoretical point of view, such phenomena can be addressed by the notion
of technical affordances. While conventional adoption theories discuss the perceived
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usefulness and ease of use with respect to a predefined function of an artefact, affor-
dances give account of the fact that artefacts can be perceived to be instrumental
for different purposes. One could also say that artefacts afford different users to do
different things. Kroes [34] suggests that these affordances have a dual nature. On
the one hand, they are informed by the material attributes of an artefact (where algo-
rithms are concerned, one might speak about logical properties in a similar way). On
the other hand, they are informed by interpretive patterns in society that direct the
attention of users towards certain actions. In order to predict if and how an artefact
will be used, both aspects need to be understood.

In consequence, it is possible to talk about two different diffusion processes at
the same time: one regarding physical objects and another one regarding interpre-
tive patterns in society. The mathematical models presented in the previous section
assume synchronicity of these processes. In most cases, however, it is more likely
that they start at different times and advance with different speeds. For example,
interpretive patterns in society can be shaped by popular media long before any
working device is produced [35]. The social narrative thus precedes the technical
implementation of an innovation and constrains the impact of engineering in society.
Furthermore, one has to expect that interpretive patterns in society spread on different
paths than material objects, as they rely much more on social relations and commu-
nication media as a carrier medium. The consequence is that diffusion models in
innovation research would need to give account of an overlay of different processes
at the same time. The overlay may or may not be a simple superposition, since the
interrelatedness of the processes is hard to determine. Figure 14.5 tries to illustrate
such a situation, showing a second diffusion process in light grey proceeding from
an unknown source on the left, which alters, but not fully explains the direction of
the diffusion of innovation from industry.

As noted before, management is strongly associatedwith planning and controlling
activities that are hard to conduct in the presence of excessive complexity. From a
practical point of view, it is therefore preferable not to engage in an attempt to capture
multiple overlaying diffusion processes at the same time, but rather to constrain the
scope in such a way that this overlay can be neglected. This can be observed in
business on numerous occasions.

Fig. 14.5 Simplified visualisation of overlaying diffusion patterns
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14.3.2 Purposive Designs

The automotive industry provides a lot of interesting material to study increasing
constrictions of scope during the last decades (for more details, see the previous
version of this paper [36]). In strong contrast to the paradigm of mass production
introduced by Henry Ford, car manufacturers are nowadays enlarging the diversity of
their offerings. Customers are able to choose from a large variety of models, which
are associated with different segments of the car market. Every segment is associated
with a specific target group of customers that distinguish themselves from others by
the purposes for which they use their cars.

Figure 14.6 shows three dimensions in which car producers differentiate their
models. One concerns the form of the car’s body, another its size and a third the
equipment and mechanical refinements. As most of today’s car manufacturers own
different brands, they are usually able to position at least one model in each segment.
From a technical point of view, this is enabled by a modular design, consisting of
engines, transmissions, suspensions, control and safety systems, etc. that are used in
multiple models at the same time. From an engineering perspective, different models
are therefore often quite similar and rely on similar inventions. The final products,
however, are clearly differentiated to address different needs and interests of their
customers.

It is worth noting that this differentiation responds in parts to experiences with
unexpected usage patterns of customers. For example, Mercedes-Benz was surprised
by the ongoing demand for itsModel G (later renamedG-Class), whichwas designed
in the 1970s as an off-road vehiclewhich is a very limited customer base.Well beyond
its intended life cycle, the model continued to sell over decades to customers who did
not use it in the open country, but instead in urban areas. Based on this experience,
Mercedes-Benz began to target a new segment of the carmarketwith premium sports-
utility vehicles (SUVs), which continue to be highly popular today, against all better
judgement from economical as well as ecological points of view.

Fig. 14.6 Dimensions of product differentiation in the automotive industry
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Fig. 14.7 Optimal sequence of sequentially planned innovations

Regarding the planning and control of diffusion processes, segmentation creates
a huge advantage, as it allows companies to focus on comparably homogeneous
target groups, whose members can be assumed to show similar adoption patterns.
Within each segment, companies can therefore develop model strategies that aim for
the introduction of new models in such a way that new products become available
to substitute old ones as soon as the segment has been saturated, ensuring a stable
demand for the companies’ offerings over time (see Fig. 14.7). In other words,
innovations are scheduled in such a way that the average sales figures remain close
to constant.

Segmentation gives a first impression of the dynamics that are related to the
notion of the spatial turn. Markets on which innovations are introduced are not just
taken as given. Quite in the contrary, companies work hard to establish suitable
correspondences between their products and target groups that simplify planning
and control. Diffusion spaces are, in this sense, intentionally constructed according
to the needs of parties that are involved.

14.4 Spatial Redesign

14.4.1 User Integration

In the practice of innovation management, segmentation has proven quite helpful
to avoid problems resulting from the superposition of multiple diffusion processes
or other sources of inhomogeneity in contemporary societies. It has also helped to
cultivate different communication patterns andmedia to relate to potential customers
and to influence their adoption behaviour with advertising and other means. What
segmentation by itself cannot appropriately address is the disturbance of diffusion
processes caused by the creativity of customers who do not adopt products to use
them for the purpose for which they are designed. Diffusion models within segments
continue to adhere to the behaviourist paradigm of a passive audience. Arguably,
creative interventions by customers with a significant impact on diffusion patterns
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are rare. Inmost cases, a largenumber of customerswill indeed respond to innovations
with typical adoption behaviour. The remainder may therefore look negligible from
a quantitative point of view. As the examples of short-message services in telecom-
munications and sports-utility vehicles in the automotive industry show, however,
the impact of customer creativity, wherever it occurs, can be quite significant and
open up completely new lines of business and revenue streams. From a qualitative
point of view, it is therefore interesting for companies to find a way to take customer
creativity into consideration.

In the simple diffusion model depicted in Fig. 14.1, customers are not expected to
make creative decisions. The model assumes that all creative decisions are made on
the other side of the market, in industry or academia, which only gives a simplified
account for reality. Nevertheless, the model is largely upheld in practice. This is
accomplished by shifting creative customers to the other side: they are integrated in
the research and development activities that take place in industry and academia.

Figure 14.8 compares two general patterns of integration. They can be distin-
guished by the mechanism that this applied for selection. The left-hand side of the
figure shows the basic pattern of lead-user integration [37]. Lead users are users of
products with specific expertise in the respective field of application and a particular
capability and willingness to engage in innovation activities that distinguish them
from others. In most cases, lead users can be identified quite easily based on sales
figures, support requests and interactions at trade fairs, or nowadays in online forums
[38]. The right-hand side of the figure shows the basic pattern of broadcast integra-
tion methods [39]. Instead of approaching a small number of people with specific
characteristics, broadcast methods issue a call for contributions to the general public.
A common example is innovation contests that invite everyone to submit a solution
to a specific problem and reward the best submissions [40]. Such contests have a
long tradition and also enjoy popularity in mathematics and other scientific disci-
plines. The number of participants in innovation contests can easily reach several
thousands. Compared to the sales figures of most products, this is nevertheless a low
figure. Broadcast methods therefore also work with a small subset of the general
audience. Unlike lead-user integration, however, the selection of the subset does not
proceed a priori by limiting the number of people who are contacted, but a posteriori
by the reception and response to the messages that are sent out. Another filter on the
contributors is applied by the ranking of the submissions, out of which only the best
will be taken into consideration for further innovation activities.

14.4.2 Open Laboratories

With lead-user and broadcast innovation, the spatial arrangements of diffusion
processes in the context of innovation begin to disassociate from the institutional
structures of economic activity that position companies and their customers on
different sides of the market, one concerned with production and the other with
consumption. In view of this phenomenon, the question arises whether innovation
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Fig. 14.8 Comparison of user integration patterns

needs business structures at all. Arguments in this direction have beenmade for a long
time in the arts-and-crafts movement and its modern reflections on do-it-yourself and
maker communities [41]. Information technology is considered to play an important
role as an enabler of an active engagement of the public in innovation, as it facilitates
knowledge transfer and control over more complex fabrication mechanisms [42].
Von Hippel refers in this context to the democratisation of innovation [43], which is
nowadays supported by a large variety of different tools and machines.

Problem-solving is a natural part of life. It therefore stands to reason that everyone
has a general capacity for innovation. The question is how individual problem solu-
tions can unfold an effect beyond the scope of one’s own actions. Economic institu-
tions may not be the only ones to advance innovation, but it is unlikely that value can
be created from ideaswithout the involvement of somekind of organisation.What can
be observed in practice is the formation of innovation communities, either in social
networks online or at certain places offline where they share thoughts and engage
in common activities. All these spaces of community interaction have lately been
subsumed under the notion of open laboratories [44]. Open laboratories have proven
to be useful for innovation in a variety of ways [31], but they do not do so in the mode
that Weber has associated with asceticism. Instead, innovation is pursued as part of a
larger social endeavour: solution development and artefact creation is accompanied
by different forms of bricolage, storytelling, socialising, etc. that go far beyond any
purposeful innovation activity, as they cannot be systematically operationalised to
that end [45].

Open laboratories therefore do not only facilitate the integration of creative
customers in the early steps of innovation. They have a much more radical impact
on the whole process, as they depart from the structural foundations of innovation
activity that have been cultivated in the course of many centuries. The demarcation of
different competencies and tasks is given up for the sake of a more flexible approach
to change that makes it possible to advance community building, sense making, role
assignment and solution development synchronously, without setting a clear focus of
giving clear precedence to one single activity. The advantage of this approach is that
the full complexity of social processes becomes accessible in open laboratories. The
disadvantage is that the basis for the application of diffusion models to innovation
disappears. Instead, many different learning and knowledge transfer processes take
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place at the same time with respect to many different subjects. Open laboratories
thus draw attention to the efforts that go into the establishment of conditions under
which it becomes possible to speak about diffusion. For innovation management,
open laboratories therefore provide a huge playground to explore a broad manifold
of interventions to structure and guide activities in the laboratory in such a way that
clear paths become visible along which diffusion can proceed.

14.5 Conclusion

As the previous sections of this chapter show, researchers in the field of innovation
management often approach diffusion from a distinctively different perspectives than
their fellow colleagues in other disciplines. In doing so, they give account of the fact
that innovation is a cultural phenomenon. It relies on interpretive structures in society
regarding authorship, agency, novelty and utility that cannot be taken as a given
in the same way as physical and chemical properties or technically implemented
network structures. A lot of the efforts in the practice of innovation management
are therefore rather spent on shaping and controlling the influences under which
these structures take shape than on the actual analysis of actual diffusion patterns.
Long ago, Weber used the word asceticism to describe this pattern of behaviour: a
reduction of the full complexity of real-world phenomena that results in manageable
operations. In the twentieth century, this reduction proceeded mostly alongside the
distinction between producers and consumers in industry. Today, we see various
deviations from this approach. One of the main reasons for these deviations is the
enablement of customers to get actively engaged, based on better accessibility of
knowledge and technical infrastructure, as well as the formation of communities that
bring customers together without requiring the involvement of industrial institutions.

The examples discussed in this chapter illustrate two different ways how inno-
vation management takes creative contributions by customers into account. On the
one hand, the customers are integrated in research and development processed. They
are moved from one side of the market to the other, which makes it possible to
sustain conventional models of diffusion as a directed process. On the other hand,
different kinds of open laboratory settings are created to enable customers to get
actively engaged in research and development by themselves. What makes these
settings particularly challenging for research is the fact that they expose innovation
to the full range of complexity of social interaction. Knowledge, ideas, inventions and
their applications travel on different paths between different groups of participants.
All of these motions might be describable by diffusion models, but their superposi-
tion or interdependent overlay is extremely difficult to assess. Again, the solution of
management in this situation is a reduction of complexity, setting the aim of labo-
ratory activities on specific outcomes or practices. This can be described as another
construction of organisational space, which introduces topological structures that
allow for a better distinction of different movements of knowledge, ideas, inventions
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and their applications in certain directions. As a consequence, new scenarios emerge
for the study of diffusion.

Most of this may not seem to have much relevance for other disciplines in which
diffusion phenomena are studied. However, culturalist and constructivist approaches
in the theory of science suggest that interpretive structures in human society play an
important role in anykindof scientific research [46, 47].Arguably, all notions of space
and time that scholars use and all choices made regarding the phenomena that are
studied rely on pragmatic decisions informed by cultural practice. The interventional
approaches to diffusion in innovation management may therefore actually have some
counterparts in other disciplines thatwould deserve further investigation in the future.
The ongoing conference series that has inspired this book draws attention to the
multitude of different scenarios inwhich diffusion processes can be observed. In view
of this multitude, it might be worth asking why exactly these specific scenarios have
emerged as fields of research while others have not been taken into consideration.
Cultural influences might very well play a role here. Their identification might add
interesting new insights to the ongoing discourse on diffusion.

Most of this may not seem to have much relevance for other disciplines in which
diffusion phenomena are studied. However, culturalist and constructivist approaches
in the theory of science suggest that interpretive structures in human society play an
important role in anykindof scientific research [26, 27].Arguably, all notions of space
and time that scholars use and all choices made regarding the phenomena that are
studied rely on pragmatic decisions informed by cultural practice. The interventional
approaches to diffusion in innovation management may therefore actually have some
counterparts in other disciplines thatwould deserve further investigation in the future.
The ongoing conference series that has inspired this book draws attention to the
multitude of different scenarios inwhich diffusion processes can be observed. In view
of this multitude, it might be worth asking why exactly these specific scenarios have
emerged as fields of research while others have not been taken into consideration.
Cultural influences might very well play a role here. Their identification might add
interesting new insights to the ongoing discourse on diffusion.
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Chapter 15
The Spreading of Techno-visionary
Futures

Armin Grunwald

15.1 Introduction

Visions are an established and perhaps, in some respect, necessary part of the scien-
tific and technological communication. In general, they aim to create fascination and
motivation not only among the public but also in science, increase public aware-
ness on specific research fields, help motivating young people to choose science
and technology as fields of education and career, and help gaining acceptance in the
political system and in society for public funding. Visions are thus a major driver of
the scientific and technological advances, as may be seen in the field of spaceflight,
nanotechnology, gene editing, or artificial intelligence (AI). However, the spreading
of scientific visions and their role in innovation processes is not well understood yet.

We have been witnessing a new wave of visionary and futuristic communica-
tion around science and technology in the last 15 years at the occasion of the so-
called new and emerging sciences and technologies (NEST). Typical NEST areas
are nanotechnology, converging technologies, synthetic biology, human enhance-
ment, autonomous technologies, the different “omics” technologies, and climate
engineering. More recently, NEST aspected have been assigned to digital technolo-
gies such as care robots,AI, neuro-technologies, and autonomousdriving.Thevisions
disseminated and debated in these fields show some specific characteristics which
justify speaking of them as techno-visionary futures [1]:

• techno-visionary futures refer to a more distant future, some decades ahead, and
exhibit revolutionary aspects in terms of technology and in terms of culture, human
behavior, and individual and social issues;
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• scientific and technological advances are regarded in a renewed techno-
determinist fashion as by far the most important driving force in modern society
(technology push perspective);

• the authors and promotors of techno-visionary futures are not only scientists,
science writers, and science managers such as Eric Drexler and Ray Kurzweil
but also philosophers like Nick Bostrom, non-governmental organizations and
entrepreneurs like Elon Musk developing and communicating techno-visionary
futures;

• high degrees of uncertainty are involved. As a rule, little if any knowledge is
available about how the respective technology is likely to develop, about the
products which such development may spawn, and about the potential impact of
using such products.

The point of departure of this chapter is the observation that techno-visionary
futures play a major role in the early stages of innovation (Sect. 15.2). In spite of
only little if any knowledge about their feasibility, implications, and consequences
being available in those early stages of research and development they might have
a major impact on the course of the scientific research and technological develop-
ment (Sect. 15.3). For example, they could heavily influence public debates and can
possibly be crucial to public perception and attitudes by highlighting either chances
or risks or by framing what is regarded as chance and what is regarded as risk. The
possibly high impact of techno-visionary futuresmotivates the postulate to shedmore
light on the influential processes of their creation and spreading.

Techno-visionary futures are created and obviously have authors whose work
initiates a process of spreading by communication and dissemination. While the
spreading of these visions into scientific and societal debates and their impacts upon
them can considerably influence the course of research and innovation, little is known
about the processes and mechanisms of spreading of techno-visionary futures. We
only can diagnose desiderates for future research and propose some ideas on how
this could be done. Answers to the question for the mechanisms of spreading and the
factors influencing or determining the impacts of techno-visionary futures are still
not available (Sect. 15.4).

The analysis given in this chapter makes use of some previous work of the author
[2, 3] and builds on the highly reflected knowledge acquired in the previous decade
about the role of technology futures and visions (e.g., [4–7]).

15.2 Techno-visionary Futures as Origins of Innovation
Stories

In the past about 20 years, there has been a considerable increase in visionary commu-
nication on future technologies and their impacts on society. In particular, this has
been and still is the case in the fields of nanotechnology [5, 8], human enhance-
ment and converging technologies [4, 9], gene editing, AI, and climate engineering.
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Visionary scientists and sciencemanagers have put forward far-ranging visionswhich
have been disseminated by mass media and discussed in science and the humanities.
These observations allow us to speak of an emergence of techno-visionary sciences
in the past decades at the occasion of the occurrence of NEST. NEST developments
aim at providing enabling technologies. Their target is not to directly create products
and innovations in specific areas of application. Rather they are open to a multitude
of applications in greatly differing fields. It is this enabling character which opens up
a huge space for techno-visionary ideas. This can be illustrated best on the occasion
of nanotechnology.

Nanotechnology was early regarded as an enabling technology [10]. Though there
are some original nanotechnology products such as nanoparticles for medical appli-
cations, in most cases a nanotechnology component will be a small but decisive part
of a much more complex product in a number of fields, such as energy technology,
information and communication technology, or biotechnology. This mechanism that
small devices from nanotechnology could lead to major, even disruptive innovation
in certain application fields, makes predictions, or valid scenarios of innovation path-
ways and product lines more or less impossible or restricts them to be speculative.
This situation then opens up huge spaces for visionary innovation stories. A similar
case is synthetic biology. In spite of the fact that it is predominantly laboratory
research which raises fundamental questions far away from the concrete application,
there are great promises of some protagonists of synthetic biology to create artifi-
cial organisms, to produce biomass or novel materials. However, the feasibility and
realization period of these techno-visionary futures are difficult if not impossible to
assess. This is a general property of NEST: their “enabling” character is linked with
a wealth of possible futures that are more or less speculative and very difficult to
assess epistemologically.

Today, many nano-enabled products are available in themarketplace. If a historian
then would be interested in writing the history of nanotechnology he or she would
go back to the origins of that debate and probably would be irritated. At the very
beginning of nanotechnology, there was a visionary statement by Nobel Laureate
Feynman [11], followed by ideas of futurist Drexler [12]. Spreading of these ideas led
to an extensive global debate on a high diversity of techno-visionary futures related
with nanotechnology. The prefix “nano” was frequently used as a synonym for good
science and technology related with positive futures. The far-reaching expectations
on nanotechnology were based on its potential to generate materials for completely
new applications and to realize novel processes and systems aswell as on the ability to
target and fine-tune its properties by controlling its composition and structure down
to molecular and atomic levels. Because of this, nanotechnology as an enabling
technology was expected to trigger innovations in many areas of application and
almost all branches of industry.

This situation changed completely in 2000. The initially positive visions of
nanotechnology were transformed into horror scenarios based on precisely the same
miniaturized technologies [13]—and these dystopian futures also spread quickly.
The ambivalence of techno-visionary futures of nanotechnology became dramati-
cally obvious [3, Chap. 5] and resulted in a scientific and public debate about its
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risks and chances. Both risks, as well as chances, were, at that stage of the debate
in the early 2000s, related with visionary and more speculative expectations of fears
around nanotechnology. It was Joy’s [13] warnings about a post-human future world
ruled by out-of-control nanotechnology which opened up this risk debate. Though
it might look a bit crazy from today’s perspective (perhaps even more from the
perspective of the imagined historian) it spread quickly at the global level. Within
months, people all over the world became familiar with concepts such as “grey goo”,
“nanobots”, “cyborgs”, and the dream of cybernetic immortality [3, Chap. 5]: utopian
and dystopian visions partially still present in the ongoing debates.

Our imagined historian will probably find out that some years later such futuristic
elements in public debate disappeared in favor of a more down to Earth risk debate
[14]. Synthetic nanoparticles could spread, e.g., via emissions from production facil-
ities or by the release of particles from everyday use of nano-based products, and
they could end up in human bodies or in the environment and lead to adverse effects.
This shift led to the debate on possible health and environmental risks of synthetic
nanomaterials which is still ongoing [15]—and in contrast to the former debates
on techno-visionary futures of nanotechnology this type of debate will probably
maintain because the possibility of non-intended side effects belongs to almost any
technology [16].

This interesting history of nanotechnology appears typical for a so-called “hope,
hype and fear” technology. Nanotechnology was believed to have the potential to
solve global problems (hope), was associated with far-reaching visions of the future
and with over-reaching expectations (hype), and because of its possible impacts that
are difficult to foresee and even less to control they raise concerns no matter whether
they are well founded or not (fear). At the beginning, there was a powerful but spec-
ulative debate based on techno-visionary futures [3, Chap. 5] that were difficult to
assess and led to a specific form of communication: high to extremely high expecta-
tions, on the one hand, but just as dramatic anxieties, on the other. After some years of
intensive debates, however, the debate moved more and more down to Earth, and the
techno-visionary futures as objects of debate were replaced by statements on toxicity.
This story tells a lot about increasing understanding and thus of “appropriation” or
“normalization” of nanotechnology [17]. It has become normality, like many other
areas of technology, where we speak soberly about opportunities and risks without
lapsing into the dramatics of salvation or apocalypse. This normalization is ultimately
the result of the speculative debates in the early phase [3, Chap. 5.4] which gives
some evidence to regard this more irritating debate part of the overall innovation
process around nanotechnology. It started with the early visions by Feynman and
Drexler mentioned above, passed the hope, hype, and fear stadium and shifted then
to a quite familiar type of debate on chances and risks concerning human health and
the environment.

Our imagined historian of nanotechnology would uncover a lively and dynamic
development at the early stage—and he or she obviously would ask for the mecha-
nisms of this dynamics. It is a normalization and appropriation story which includes
the strong role of the early techno-visionary futures—and the fact that they lost
relevance later on. The appropriation of nanotechnology, its transformation from a
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“fuzzy” and irritating field of development to amore or less normal one, would not be
happened without those futures which might seem ridiculous from today’s perspec-
tive. Not only the quick spreading of techno-visionary futures of nanotechnology
among the relevant communities worldwide would probably be interesting to him or
her but also the disappearance of those visionary futures after some years of heavy
debate. The lesson to be learned from this case is that techno-visionary futures shall
be taken seriously even if they seem to be merely speculative because they may have
real and perhaps huge impact also in this case.

15.3 The Power of Visionary Ideas

NEST developments are in early stages of development and still strongly rooted
in basic research. It is not obvious that it makes sense at all to discuss the related
techno-visionary futures with respect to stories of innovation. Should we not instead
let scientists do their basic research until more consequential knowledge about inno-
vation paths and possible product lineswill be available?Aren’t the positive and nega-
tive visions linked to them (see the example of nanotechnology introduced above)
anything more than arbitrary and simple speculation? One could argue that many
NEST debates are so speculative that they are hardly of any practical consequence.
This exactly was the main criticism against the so-called speculative nanoethics
[18]. It might accordingly be perhaps interesting in an only abstract philosophical
and merely academic sense to discuss some obviously speculative questions related
with techno-visionary futures (see Sect. 15.2 above for the field of nanotechnology).
There might be some interest in circles of intellectuals or in the feuilletons of maga-
zines. Yet, in view of the speculative nature of those questions, serious concern was
expressed that the intellectual effort and the resources spentmight be completely irrel-
evant in a practical sense. However, this argumentation has been proven misleading
[19].

While techno-visionary futures ranging from high expectations to apocalyptic
fears indeed are often more or less fictitious in content, such stories about possible
futures can and often do have a real impact on scientific and public discussions
[5]. Even pictures of the future lacking all facticity, being merely speculative, and
probably never becoming reality, can influence debates, the formation of opinion,
acceptance, and even decision-making [4] with consequences in the real world in
two ways at least [1]:

• Techno-visionary stories and images can change the way we perceive current and
future developments in science and technology, just as they can change our picture
of future societal constellations. Frequently, the societal and public debate about
the opportunities and risks associated with new technology revolves around those
stories, as has been the case in the field of nanotechnology and as is still the case in
human enhancement and other NEST areas [3]. Visions and expectationsmotivate
and fuel public debate because of the impact the related narratives may hold for
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everyday life and for the future of important areas of society, such as military,
work, and health care—and this figure works independent of how realistic or
speculative the futures under discussion are. Positive visions can contribute to
fascination and public acceptance and also can attract creative young scientists to
engage themselves there, just as negative visions and dystopias can cause concern
and even mobilize resistance as was feared in particular in the early debate on
nanotechnology [17].

• Techno-futures exert a particularly great influence on the scientific agenda which,
as a consequence, partly determines what knowledge will be available and appli-
cable in the future [20]. Directly or indirectly, they influence the views of
researchers and, thus, ultimately also exert influence on political support and
research funding. For example, even the speculative stories about improving
human performance [9] quickly aroused great interest among policymakers and
research funders [21]. Projections of future developments based on NEST expec-
tations therefore might heavily influence decisions about the support and prior-
itization of scientific progress and the allocation of research funds, which then
will have a real impact on further developments. The history of spaceflight is an
impressive example of the power of visionary ideas from its origins in the 1920s
on.

The common rationale behind both arguments is that the communication and
dissemination of techno-visionary futures are interventions into ongoing communi-
cation, action, and decision-making. The spreading of those futures changes mind-
sets, convictions, beliefs, and perceptions—and thus often has real impacts. The
communication involving more or less speculative and visionary futures can exert
real power.

Some practical experience gained in recent years support the diagnosis that poli-
cymakers are well aware of the factual power of techno-visionary communication.
As an early example: A chapter about techno-visionary communication on human
enhancement, converging technologies (nano-bio-info-cogno convergence; [9]), and
other far-reaching visions compiled by the Office of Technology Assessment at
the German Bundestag (TAB) was very well received by the Bundestag as part
of a study on nanotechnology [22]. The authors came to the conclusion that this
techno-visionary discourse played an important and to some extent new role in the
governance of science and technology. Several policymakers and also experts in
nanoscience and nanotechnologies communicated to the TAB team that they found
the study’s discussion of futuristic visions and description of the networks promoting
them very useful. The TAB team’s initial concerns that discussing these often far-
fetched visions in a studywhichwould become an official document of the parliament
and an influential early publication on nanotechnology could cause irritations thus
proved to be unfounded. Subsequently, TAB was requested to conduct several other
projects on NEST fields: studies on the politics of converging technologies at the
international level, brain research, pharmacological and technical interventions for
improving performance, synthetic biology and gene editing, care robots, and possible
AI applications. In 2015, the ceremony of the 25th anniversary of the foundation of
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TAB in 1990 was—upon request of members of parliament—dedicated to the issue
of blurring the borderlines between humans and technology, e.g., by developments
towards human enhancement and autonomous robots which also has a clear techno-
visionary side. This event demonstrates the political and public awareness of visions
in that field.

This interest of policymakers in techno-visionary futures is also evident at the
European level. NEST developments have been addressed by a fairly large number
of projects as well as by other advisory activities such as the reflections on nanotech-
nology, synthetic biology, and ICT (information and communications technology)
implants conducted by the European Group on Ethics in Science and New Technolo-
gies. The situation is much the same in the US which can be seen, for example, by
considering the agenda of the Presidential Commission for the Study of Bioethical
Issues which indicates indeed the factual power of techno-visionary narratives of
possible futures and the high significance assigned to them by policymakers. The
factual significance and power of techno-visionary futures for the governance of
science and in public debates are a strong argument in favor of the necessity of
researching these futures and providing public and policy advice. Policymakers and
society should know more about these positive or negative visions, their genesis,
and their spreading. The postulate to open up the “black box” of the creation and
spreading of those futures is supported by calls for a more democratic governance of
science and technology [23]. Its realization requires uncovering meanings, values,
and interests hidden in the techno-visionary futures and enlightening themechanisms
of their spreading.

15.4 Creation and Spreading of Techno-visionary Futures

Techno-visionary futures are a phenomenon of communication in different areas such
as science, science fiction, philosophy, literature, arts, movies, and public debate.
My focus in this chapter is on the lifetime of those futures: how do they come into
being, what do they tell, how do they spread, and which impacts do they have?
Unfortunately, because of the lack of knowledge about the underlying mechanisms,
the chapter remains at the stage of rising questions, offering patterns, and identifying
research directions to learn more about these issues.

15.4.1 The Social Construction of Futures

Obviously, techno-visionary futures are socially constructed (following [1]). Their
authors can be individual persons, such as the authors of science fiction novels,
or collectives such as research institutes or participatory foresight processes. They
always pursue specific purposes, for example, entertainment, supporting political
decisions, sensitizing the public for problematic developments, mobilizing support
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for research, creating a vision for regional development, warning at an early stage
about potential problems, creating fascination in the public, etc. Constructing futures
serves as ameans in order to reach these goals. Creation and dissemination of techno-
visionary futures are interventions into the realworld andmayhave some impact—the
intended ones but possibly also others.

Establishing statements about the future such as making predictions, simu-
lating future developments, creating scenarios, formulating expectations and fears,
setting goals, and considering plans for their realization takes place in the medium
of language. We need language for constructing futures which obviously always
happens in a respective present time. Forecasters and visionary writers cannot break
out of the present either, always making their predictions on the basis of present
knowledge and present assessments involving also a lot of present assumptions.
Societal futures can be neither logically deduced nor empirically investigated [1]
but must rather be based on present knowledge, assessments, values, assumptions,
etc. Therefore, we must talk about possible futures in the plural, about alternative
possibilities for imagining the future, and about the justification with which we can
expect something to become real in the future. These are always present futures and
not future presents [24]. Futures are expectations of what could or might come in
some time, with different degrees of expectability. If we talk, for instance, about
cyborgs or far-reaching human enhancement which might become possible in the
future, we are not talking about whether and how these developments will really
occur but how we imagine them today—and these images differ greatly. Futures are
thus something always contemporary and changewith the changes in each present. In
particular, techno-visionary futures are similar to living organisms having an origin
but changing their shape during their lifetime and their spreading (see below).

Futures, regardless of whether they are forecasts, scenarios, plans, programs,
visions, or speculative fears or expectations, are designed by authors following
specific purposes, having certain interests and values in mind, based on specific diag-
noses and pieces of knowledge. By creating techno-visionary futures, their authors
use a broad range of ingredients such as available knowledge, value judgments,
suppositions, and assumptions; some of them being explicit, while others remain
implicit. They may not only include mere speculation and counterfactual assump-
tions (e.g., in the field of Science fiction literature and movies) but also visionary
and utopian elements which do not contradict current knowledge (e.g., about natural
laws) but are highly speculative and may serve as orientation, either to act towards
their realization in case of positive futures or in order to prevent their occurrence in
case of undesired, negative, or dystopian views.

15.4.2 Providing Orientation by Assessing Futures

Scientific and technological progress leads to an increase in the options for human
action. Whatever had been inaccessible to human intervention, whatever had to be
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accepted as not influenceable nature or as fate, becomes an object of technical manip-
ulation or design. Emancipation from nature, from the traditions of the past, and from
fate shows, however, another side of the coin: uncertainty, loss of orientation, and
the necessity to be able to cope with the new freedoms by conscious decisions.
In this situation, which is characteristic of modernity, the orientation needed for
opinion formation and decision-making is drawn increasingly from debates about
future developments, and less and less from existing traditions and values. The
discourses not only on sustainable development, precautionary principle, migration,
and demographic change but also on NEST give evidence of this fact.

Within the familiar consequentialist approach pictures of the future (e.g.,
scenarios) are established in a foresight mode and assessed, e.g., with respect to their
desirability or acceptability. Then conclusions are drawn in a back-casting mode for
today’s decision-making options taking into account the results of the assessment of
the futures (see Fig. 15.1) which can be used to provide orientation, decision-support,
and policy advice. Processing this loop shall add value to its input data. This expecta-
tion, however, is not realizable in case of completely diverging, arbitrary, speculative,
or heavily contested futures—that exactly is our case of the NEST debates involving
the techno-visionary futures mentioned. But what can be done if there are no well-
argued corridors of the envisaged future development or if proposed corridors are
heavily contested as is in the case of NEST?

The hermeneutic approach developed for this constellation [1–3] offers a
completely different mechanism of providing orientation compared to what we
normally expect from future studies. In this approach, the origins of the various
futures must be considered. Visions of the future are social constructs, created and
designed by people, groups, and organizations (see above). The variety or even
divergence of visions of the future results from the consideration of controversial

Fig. 15.1 The consequentialist mode of extracting orientation by processing a loop of forecasting
and backcasting (Source [3], modified)
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and divergent knowledge bases and disputed values during their creation: the diver-
gence of futures mirrors the differences of contemporary positions, the diversity
of attitudes, and reflects today’s moral pluralism. Thus, uncovering these sources
of diverging futures could tell us something about ourselves and today’s society.
Hermeneutic orientation implies a shift in perspective: instead of considering far
futures and trying to extract orientation out of them, these stories of the future now
are regarded as “social texts” of the present including potentially important content
for today’s debates. Thus, better understanding techno-visionary futures with respect
to their content, diagnoses behind, values involved, and ways of dissemination and
spreading would be part of a self-enlightenment of contemporary debates. Instead
of a senseless attempt to predict the future, there is an opportunity to view the lively
and controversial debates about NEST and other fields of science or technology not
as anticipatory, prophetic, or quasi-prognostic talks of the future but as expressions
of our present time. Therefore, there is a need to understand also the spreading of
techno-visionary futures and their mechanisms.

15.4.3 The Spreading of Visions

In order to learn more about the spreading of visions, we have to observe a specific
property of this type of spreading. In contrast to the spreading of inert chemicals or
electromagnetic waves in vacuum, the techno-visionary futures are in close exchange
with their environment in two directions:

• The techno-visionary futures will have some impact on the real world as has
been described in Sect. 15.3 above because they are interventions in ongoing
communication and action. Interventions might or could change the course of
communication or mindsets of people. Interventions in diffusion from a corporate
business perspective are also discussed in Chap. 14.

• Vice versa, the exchange of ideas on techno-visionary futures in related debates
and controversies will usually not leave the content and meaning of those futures
untouched. On the contrary, this meaning will often be modified, it might take up
new aspects or might be subject to changed accentuations. A dramatic example is
the turnaround of the mostly positive ideas related with the so-called “Molecular
Assembler” proposed by Drexler [12] into a dystopian view of the future which
might “no longer need us” [13]. Another example is the dynamic history of AI
visions. The first hype in the 1970s was followed by a long, so-called AI winter,
while the most recent AI boom emerged about 10 years ago. In the meantime,
some AI researchers are afraid of the next AI winter.

Consequently, we see a co-evolution of the techno-visionary futures and their
communicative and decision-making environment. It is a task of a continuous tracing
and asking for a better understanding to uncover the mechanisms of these co-
evolutionary processes during the spreading of the visions. Techno-visionary futures
do not only “travel” during spreading but also will be transformed. The hermeneutic
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Fig. 15.2 The co-evolution of techno-visionary futures in NEST in a hermeneutic circle, including
its stimulus (Source [3], modified)

circle (Fig. 15.2) provides a simple model of this type of spreading which affects and
modifies the entities spreading.

First ideas of relating visionary futures with ongoing research and development
constitute the initial stimulus which starts processing this circle [3]. Processing this
circle constitutes a series of communicative events by which the techno-visionary
futures proposed are communicated, controversially discussed, supplemented, or
modified. Places like the innovation incubators described in Sect. 14.4.2 can play
a role in this. The debate on nanotechnology [3, Chap. 5] is an excellent example
for illustrating such a hermeneutic circle and its development over 10–15 years. For
nanotechnology, Richard Feynman’s famous lecture [12] or the book Engines of
Creation [13] might have been such first steps or at least very early steps in starting
the respective hermeneutic circle.

Figure 15.2 illustrates the high influence of the initializing stimulus. At the very
beginning of the NEST debates, the first facts are created for further communication
and guidance. Themeaning and framing given in the stimulus can decisivelymold the
ensuing debate (see Sect. 15.3), while the first framing can only be graduallymodified
by proposing alternative techno-visionary futures in subsequently processing the
hermeneutic circle. This process can be self-reinforcing and lead, for example, to
research funding being initiated, to massive investments being made in the affected
field, and this way to important real consequences for the agenda and the research
process of science. Or the framework that was initially chosen might be challenged,
strongly modified, or even changed into its opposite, leading to social resistance
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and rejection. Self-fulfilling as well as self-destroying narratives [25] about techno-
visionary futures are the extremes of possible developments which could emerge out
of the hermeneutic circle.

In processing the hermeneutic circle, techno-visionary futures are communicated
via different channels, journals, networks, mass media, research applications, expert
groups, ELSI (ethical, legal, and social implications) or TA (technology assessment,
see [16]) projects on policy advice, etc. Some of them, finding no resonance, will
“die” within these communication processes and quickly disappear again, while
others will “survive” and motivate actors and groups to subscribe to or oppose the
visions—in either case, the story will continue. Only a few of the techno-visionary
futures proposed will find an audience via the mass media and will therefore be able
to achieve real impact for public debate and social perception or attitudes. Othersmay
enter the political arena and result in political decisions, e.g., about research funding,
and may disappear after having had big impact only. The history of spaceflight, for
instance, is full of techno-visionary promises which regularly fail but nevertheless
survive and attract further interest. The narratives of human settlements on Mars or
on artificial space stations belong to those persistent stories having an impact without
being realized or without even having a serious chance of realization.

Thus, it is evident that there are extremely different experiences with techno-
visionary futures, with their spreading and impact. The vision of the molecular
assembler [13] was among the motivating voices for the national nanotechnology
initiative “Shaping the World Atom by Atom” [26] which was the first big funding
program on nanotechnology. The narratives around climate engineering [3, Chap. 8],
including some proposals being breathtaking with respect to themagnitude of human
intervention into the global atmospheric system, did not reach a larger audience
yet—either in form of funding for research and development or in public debates.
Another interesting case is the revival of specific understandings after some time. In
the 1970s, there was a lively debate on artificial intelligence with high expectations
and far-ranging techno-visionary futures following the establishment of computer
sciences and cybernetics. These futures disappeared in subsequent decades but have
been re-entering public and scientific debates over the last years. The normalization
of today’s or tomorrow’s robots obviously has been prepared for by earlier debates on
artificial intelligence and robots—and also by science fiction movies and literature
which early took up ideas from that field. Stanley Kubrick’s movie “2001: A Space
Odyssey” (1968) thematizing the issue of power distribution between man and an
intelligent machine is among the famous early examples which are still up-to-date.
The SF movies “I, Robot” and “Matrix” pointed at other possible consequences of
AI visions.

Thus, we see different dynamics in different NEST fields with different techno-
visionary futures influencing social debates and political decision-making. My
conviction is that it would be worthwhile to better understand these dynamics
including the biographies of the techno-visionary futures including the mechanisms
of their spreading for ongoing and coming debates on NEST. Understanding must
go beyond a mere description of what happened, but rather uncover the underlying
mechanisms and dependencies.
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The dynamic biographies of techno-visionary futures can be analyzed taking
recent NEST developments as cases of study. This research could contribute to a
deepened understanding not only of the dynamics of spreading dealing with issues
of the meaning of NEST but also of the creation and emergence of those future
narratives. These could also be analyzed in an extended manner by examining their
cultural and historical roots and philosophical backgrounds. Thus, we can regard
constructions of NEST techno-visionary futures as part of an ongoing communica-
tion process in science and at the interface of science and society in which specific
assignments of meaning, e.g., the nanobots [12] or the chip in the brain, act as the
necessary catalysts with their own individual biography or life cycle showing certain
dynamics over time (see Fig. 15.2).

Biographies of techno-visionary futures as well as their dynamics are not well
understood as yet [5]. The entire “life cycle” of techno-visionary futures, from their
construction to dissemination, assessment, deliberation, and impact, thus raises a
huge variety of research questions which can only be answered by giving interdis-
ciplinary consideration to these aspects of spreading and impact. After some time
usually, some of the futures debated are sorted out, others might merge while only
few “winners” remain and constitute a dominant understanding of the NEST under
consideration. Again and again, those developments happen in completely different
fields such as nanotechnology, synthetic biology, care robots, or cyber-physical
systems. A comparative analysis of the mechanisms of spreading and the conditions
of “surviving” and having impact on the realworldwould probably shed some light on
these processes and their dynamics. Investigating the emergence and dissemination
of techno-visionary futures via different communication channels and its possible
impact on decision-making in the policy arena and other arenas of public commu-
nication and debate involves empirical research and reconstructive understanding as
well.

To answer these questions, an interdisciplinary procedure employing various types
of methods appears necessary. The empirical social sciences can contribute to clar-
ifying the communication of techno-visionary futures by using media analyses or
sociological discourse analysis and generating, for example, maps or models of the
respective constellations of actors being involved in processing the hermeneutic circle
(Fig. 15.2). Political science, especially the study of governance, can analyze the way
in which techno-visionary futures can exert influence on political decision-making
processes, such as via providing policy advice. In this way, a complete picture of
the biography of the different techno-visionary future proposed including the mech-
anisms of their spreading can be created. It should include, for example, diffusion
processes into different spheres of society, migrations of the techno-futures, related
shifts in meaning and perception, consequences on, for example, social percep-
tion and political decision-making processes, and, if applicable, processes of the
disappearance of the respective techno-future from the debate.

In view of the experience of the last 20 years, it can be expected that in particular
comparative research approaches to mechanisms of spreading hold the promise of
new knowledge. These can, for example, compare the stories about the spreading
of techno-visionary futures in specific NEST fields with one another, determine the
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common features and the differences, and ask about the causes and underlyingmech-
anisms. For example, there seems to be an evident structural difference between the
histories of nanotechnology [3, Chap. 5] and robotics [3, Chap. 6]. While nanotech-
nology initially appeared to be the disruptive technology par excellence causing
many irritations in the initial stage of debate (Sect. 15.2) which had to be normalized
through high effort, robots were normalized practically in advance by science fiction
literature and films. Robots entered society in this way even before they came to exist
in reality with the anticipated functions and meanings.

History goes on, and new visions are entering the scientific, technological, and
public debates on new technologies and the future society. Actually, visions of future
life in urban systems, visions of newmodes of industrial production involving robots
as colleagues, visions of artificial companions with the robot “Pepper” being among
its first manifestations at the marketplace, visions related to additive manufacturing,
and many other visions bringing together technology and life [27] are part of an
ongoing and lively debate. Increasingly, not only their spreading is subject to scien-
tific andhermeneutic exploration but alsoways of shaping those visions in accordance
with normative ideas such as sustainable development, justice, and responsibility (see
[28] for an example on modulating visions of additive manufacturing).

15.5 Conclusions

Techno-visionary futures have an important place in the early stages of development,
particularly in NEST fields. They can have a major impact on the course of research
anddevelopment, public perception, research funding, andpolitical decision-making.
In spite of this high significance in the innovation process from early stages to later
innovation paths, products, and services, only little is known about the ways and
mechanisms of their spreading, about promoting factors and obstacles with regard to
creating impacts in the real world. Thus, it seems desirable if not necessary to spend
effort on shedding light on these processes of spreading and to conduct research
aiming at enlightening these processes.
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Chapter 16
Neolithic Transitions: Diffusion of People
or Diffusion of Culture?

Joaquim Fort

16.1 Introduction

The Neolithic transition is defined as the shift from hunting-gathering (Mesolithic)
into farming and stockbreeding (Neolithic). When did it happen? In Archeology,
years Before Present (BP) are defined as years before 1950AD. TheNeolithic arrived
from the Near East into Southeastern Europe at about 8000 years BP. Then it spread
gradually westwards and northwards, until about 5000 yr BP (Fig. 16.1). Europe
is the continent for which more Neolithic sites per unit area have been dated. This
is the reason why most models on Neolithic transitions were originally applied to
Europe. The spread of farming in Europe can be seen in Fig. 16.1, which is an spatial
interpolation of the dates of 918 early Neolithic sites [1] based on a database gathered
by archeologist M. vander Linden [2].

As pointed out by Lemmen and Gronenborn (Chap. 17, this volume), it is always
important to attempt higher levels of data density and quality. However, the arrival
times of the Neolithic at several areas (e.g., Greece, southern Italy, Germany, and
England) are similar in Figs. 16.1 and 17.1. Note that Fig. 16.1 uses years BP. In
contrast, Fig. 17.1 uses years before Christ (BC).

In this chapter, our first aim is to use an interpolation map (Fig. 16.1) to obtain
a mathematically justified map of local speeds of the Neolithic front (this is not
possible using drawings such as Fig. 17.1). Once we have a speed map, we will
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Fig. 16.1 Interpolation of the dates of 918 early Neolithic sites (circles). Each color corresponds to
a 250-year interval. We see that the oldest sites are located in the southeast. Note also that farming
propagated faster westwards than northwards. Moreover, slowdowns in the Alps and Northern
continental Europe are clearly displayed. The patch inside the black rectangle is an example of an
anomalously old region, as compared to its surroundings. Due to the paucity of sites, the contours
are less detailed in some regions (e.g., upper right and lower left). This map was obtained by means
of universal linear kriging interpolation. Dates are given in calibrated years Before Present (BP), as
defined in the main text (calibration is a well-known correction, due to the fact that the percentage
of radioactive carbon in the atmosphere is not constant). Adapted from Ref. [1]

explore possible explanations in terms of human behavior by making use of the
appropriate generalized diffusion equations.

Figure 16.1 shows at once that we are dealing with a gradual spread. Of course,
there are some anomalously old/young regions (e.g., the patch inside the black rect-
angle in Fig. 16.1). Different interpolation methods yield some differences for small
anomalous regions, but those of the size of that inside the rectangle in Fig. 16.1 and
larger usually appear independently of the interpolation method used. The existence
of rivers, mountains, different types of soils, etc., probably makes some areas more
attractive for farmers than others. This is one of the reasons why the presence of
anomalously old or young regions in interpolation maps is probably unavoidable
(even if we had a database totally free of errors and with all dates corresponding
exactly to the earliest farming activity at each site). A very clear example are the
Alps. These mountains cause an anomalously young region (as compared to its
surroundings) in Fig. 16.1. This Alpine region contains many sites and is anoma-
lously young, independently of the interpolation method and also of the database
used. Thus anomalous regions are not necessarily artifacts arising from limitations
of the database and/or the interpolation technique. Nevertheless, some of them may
certainly be artifacts, especially if they contain few or no sites and their presence
depends on the interpolation method and/or database used. This is probably the case
for the anomalously old region inside the rectangle in Fig. 16.1. It is possible that
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using future databases this region will not appear (e.g., because a site inside it is
erroneously too old and/or some sites at the right of it are erroneously too early).
However, practice in spatial interpolation of Neolithic dates shows that some such
anomalous regions always appear (and usually we have no means to know their
origin). But this should not be a problem after all. Smoothing techniques are well-
established in geographic analysis. They yield, with increasing coarse graining, maps
with decreasing subtleness, where sufficiently small anomalous regions gradually
disappear without substantially modifying the overall spread pattern. For example,
Fig. 16.2b has been obtained from Fig. 16.1 by applying 10 times a smoothing proce-
dure that simply replaces the date of each spatial point in the interpolation grid by
the average of that date and those of the 8 surrounding points. It is seen that the
isochrones in Fig. 16.2b are smoother than those in Fig. 16.1. By repeating this
smoothing procedure more times, we obtain still smoother isochrones (Fig. 16.2c).
This makes it possible to analyze the overall spatial trends by getting rid of irrelevant
local features that are likely artifacts due to our limited knowledge (not all sites have
been discovered, and sources of error exist). For example, the anomalously old region
in the rectangle in Fig. 16.1 has disappeared in Fig. 16.2c but the continental trend in
the dates (i.e., the gradual decrease westwards and northwards) remains. It is worth
to mention that in this way, a totally disordered map of speed vectors becomes a
coherent, meaningful directional map of the Neolithic spread (Figs. S1 and 2 in Ref.
[1]). For these reasons, smoothing seems a reasonable procedure to estimate local
speed directions and magnitudes (in kilometers per year) [1], as we will see below.
Note that this is obviously impossible from drawings such as Fig. 17.1. The aim of
Chap. 17 is a different one, because it is based on a mathematical model that their
authors have compared, similarly to other researchers [3–5], to the average speed
implied by the dates obtained by radiocarbon dating (Sect. 17.3 in this volume and
Ref. [6]). At the end of this chapter, we will discuss the mathematical model used in
Chap. 17.

The spread of the Neolithic in Europe was clearly gradual, because as we move
westwards and northwards, we findmore andmore recent dates (Figs. 16.1 and 17.1).
This suggests that it may make sense to apply diffusive models to the spread of the
Neolithic. A quantitative justification is the following. We know from Chap. 2 that
diffusion equations provide large-scale descriptions of systemswhere there are, at the
small scale,molecules or individuals following randomwalks (see Fig. 2.5).Does this
scenario apply to the spread of the Neolithic? For the moment, assume a very simple
model in which agriculture would have spread only due to the dispersal of farmers.
Then each random walk is the trajectory obtained by joining, e.g., the birthplaces of
an individual’s parent, the individual in question, one of his/her children, and so on.
Looking at Fig. 16.1, we can easily estimate that agriculture spread from Greece to
the Balkans and Central Europe at a speed of roughly 1 km/year. Thus, assuming a
generation time of about 32 year [7], farming spread about 32 km per generation.
This is much less than the scale of Fig. 16.1 (about 3000 km). This comparison
provides a quantitative justification for the use of diffusion-type equations in models
of the Neolithic spread.
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Ammerman and Cavalli-Sforza [8] were the first to apply a diffusive model to the
spread of the Neolithic. They used Fisher’s wave-of-advance model. In this model,
the speed of the Neolithic front is given by Eq. (2.17),

vFisher = 2
√
Dα, (16.1)
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�Fig. 16.2 Isochrones obtained by smoothing (“coarse graining”) the map in Fig. 16.1 a single time
(a), 10 times (b) and 20 times (c) (i.e. with 1, 10, and 20 iteration steps, where each step consists
in replacing the date of each individual point of the map by the average of that date and those of
the 8 surrounding points of the square interpolation grid). A map obtained by smoothing 40 times
is included as Fig. 16.4a. Note that anomalous regions (such as that inside the black rectangle in
Fig. 16.1) gradually disappear. This is useful to perform quantitative estimates of local speed vectors
and magnitudes (see Fig. 16.4b for the latter). Adapted from Ref. [1], Supp. Info. Appendix, Sect.
S1

where D is the diffusion coefficient and α the initial growth rate (i.e., the net repro-
duction rate at low population densities). This relation has already been introduced
as Eq. (2.17) in Chap. 2. Following Ref. [3] we sketch, for the interested reader, the
line of reasoning leading, eventually, to this relation.

Let N (x, y, t) stand for the population density of Neolithic individuals (i.e.,
farmers), where x and y are Cartesian coordinates and t is the time. We assume that
a well-defined time scale T between two successive migrations occurs. This model
(to be improved in Sect. 16.3) is based on the assumption (see Ref. [9], Sect. 11.2)
that, between the values t and t + T , we can add up the changes in the number of
individuals in an area differential ds = dx dy due to migrations (sub index m) and
to population growth (sub index g),

[N (x, y, t + T ) − N (x, y, t)]ds = [N (x, y, t + T ) − N (x, y, t)]mds

+ [N (x, y, t + T ) − N (x, y, t)]gds. (16.2)

Let �x and �y stand for the coordinate variations of a given individual during T.
We introduce the dispersal kernel φN (�x ,�y), defined such that φN (�x ,�y) is the
probability per unit area to move from (x + �x , y + �y) at time t to (x, y) at time
t + T . We can rewrite the parentheses in the first term on the right as

[N (x, y, t + T ) − N (x, y, t)]m =
∞∫

−∞

∞∫

−∞
N�φNd�xd�y − N (x, y, t)

≈
〈
�2

〉
4

(
∂2N

∂x2
+ ∂2N

∂y2

)
, (16.3)

where N� stands for N (x + �x , y + �y, t), and φN for φN (�x ,�y). In the last line
in Eq. (16.3), we have performed a second-order Taylor expansion in �x and �y,

and taken into account that
∫ ∞
−∞

∫ ∞
−∞ φNd�xd�y = 1. We have also assumed that

the kernel is isotropic, i.e.,

φN (�x ,�y) = φN (−�x ,�y) = φN (�x ,−�y), (16.4)

and introduced the mean-squared displacement as
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〈
�2

〉 =
∞∫

−∞

∞∫

−∞
�2φN (�x ,�y)d�xd�y, (16.5)

where �2 = �2
x + �2

y . Note that Eq. (16.4) implies that
〈
�x

〉 = 0,
〈
�y

〉 = 0,〈
�x�y

〉 = 0 and
〈
�2

x

〉 = 〈
�2

y

〉
, which has been applied in the last step in

Eq. (16.3). This is Einstein’s approach to diffusion [10].
Finally we rewrite the parentheses in the last term in Eq. (16.2) as a Taylor

expansion,

[N (x, y, t + T ) − N (x, y, t)]g =
(
T F(x, y, t) + T 2

2

∂F

∂t
+ . . .

)
(16.6)

where F(x, y, t) is the change in population density per unit time, due to births and
deaths.

Expanding the left-hand side of Eq. (16.2) up to first order and collecting terms,
we arrive at Fisher’s reaction-diffusion equation,

∂N

∂t
= D

(
∂2N

∂x2
+ ∂2N

∂y2

)
+ F(x, y, t), (16.7)

where we have introduced the diffusion coefficient,

D =
〈
�2

〉
4T

. (16.8)

which is the two-dimensional analogue of the one-dimensional Eq. (2.3). Concerning
the net reproduction function F(x, y, t), in Chap. 2 an example is presented such
that

F(x, y, t) = αN (x, y, t) (16.9)

(see the last term in Eq. (2.15)). This reproduction function corresponds to exponen-
tial growth, because without diffusion (D = 0) Eq. (16.7) yields N = N0 exp [αt],
with N0 = N (t = 0). Thus Eq. (16.9) is an example of interest, but the population
density would never stop growing. A biologically more realistic case is the so-called
logistic growth function,

F(x, y, t) = αN (x, y, t)

[
1 − N (x, y, t)

Nmax

]
, (16.10)

where Nmax is the saturation density, i.e., the population density at which net repro-
duction vanishes (note that F(x, y, t) = 0 if N (x, y, t) = Nmax ). The functions of
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Fig. 16.3 Plots of population density N versus time t . The dashed line corresponds to exponential
growth, N = N0eαt (see the text below Eq. (16.9)), and the full line to logistic growth, N =
N0Nmaxeαt/(Nmax + N0(eαt − 1)) (see Eq. (16.12))

exponential and logistic growth are compared in Fig. 16.3. Amore detailed introduc-
tion into the formalismof logistic growth is provided bySect. 3.4.1 ofChap. 3,with an
example of the benefit of this reasoning on predicting the spreading of technological
innovations given in Sect. 14.2.2 of Chap. 14.

Equation (16.7) with the logistic growth function (16.10) is called Fisher’s equa-
tion. For our purposes here, we can consider the simple case in which all parameters
(D, α and Nmax ) are independent of x , y and t . Travelling wave solutions (also
called fronts or waves of advance) are defined as constant-shape solutions, i.e., those
depending not on x , y and t separately but only on z = r − vt , where v is the front
speed and r = √

x2 + y2 the radial coordinate.
Kolmogorov et al. [11] showed that in Fisher’s model, a front is formed and its

speed is given by Eq. (16.1), assuming that initially the population density N (x, y, t)
has compact support. In practice, this assumption means that N (x, y, t = 0) = 0
everywhere except in a finite region. This is biologically realistic, in contrast to
solutions such that N (x, y, t = 0) �= 0 for all values of x, y (−∞ < x < ∞,
−∞ < y < ∞). The latter solutions are not biologically realistic, because in
practical applications we always want to analyze the spread of organisms that are
initially present in a finite region of space.

Using variational methods, Aronson and Weinberger [12] also showed that the
speed of front solutions to Fisher’s equation is given by Eq. (16.1) (see Sect. IV.A in
Ref. [13] for a simple derivation based on variational principles).

Importantly, Fisher’s wave-of-advance speed (1) does not depend on Nmax . More-
over, this speed is the same as for exponential growth (Eq. (16.9)), see Eq. (2.17).
Thus, the wave-of-advance speed is the same in both the logistic and the exponential
models. However, their shape is different, because for exponential growth the popu-
lation density keeps growing in time, whereas for logistic growth it stops growing at
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N = Nmax (see Fig. 16.3). Thus, the waves of advance under logistic growth have
the profile shown in Fig. 2.6, where we can see that the population density stops
growing once N = Nmax . In contrast, for exponential growth, the population density
keeps growing forever everywhere (see Ref. [14], Figs. 3.3 and 3.6).

Returning to the spread of the farming, Ammerman and Cavalli-Sforza [8] noted
from archeological dates that the speed of the Neolithic wave of advance was about
1 km/year. They next asked the following interesting question: what speed does
Fisher’s model (Eq. (16.1)) predict? In order to answer this, empirical values for

〈
�2

〉
and T are needed to estimate D using Eq. (16.8). Additionally, an empirical value
for α is needed to estimate the speed from Eq. (16.1). Ethnographic observations of
preindustrial populations have measured the displacement of individuals and found
the average for the mean-squared displacement per generation

〈
�2

〉 = 1288 km2 [1,
15] and the mean generation time (defined as the age difference between a parent
and his/her children) T = 32 year [7]. Thus, we obtain from Eq. (16.8) D = 10
km2/year. On the other hand, for populations which settle in empty space, N � Nmax

and Eq. (16.10) reduces to (16.9), so that we can fit exponential curves (graphically,
we can understand this because both curves in Fig. 16.3 overlap in the left-hand
side). Ethnographic data yield the average exponent α = 0.028 year−1 [15]. Using
these values in Eq. (16.1), we estimate a front speed of about 1 km/year, which
is similar to the speed obtained from the archeological observations. Indeed, as
mentioned above, looking at Fig. 16.1, we can easily estimate that agriculture spread
from Greece to the Balkans and Central Europe at a speed of roughly 1 km/year
(more precise estimations with recent data, based on regression analysis [4] and
geostatistical techniques [1], agree with this average). This agreement was first noted
byAmmerman and Cavalli-Sforza [5, 8]. In this way, Ammerman and Cavalli-Sforza
noted that diffusive models are useful not only because they make it possible to
describe mathematically a major event in prehistory (the spread of agriculture), but
also because they indicate a possible mechanism for it, namely the spread of people
(i.e., of populations of farmers). They called this demic diffusion (from the Greek
word demos, which means people). In contrast, most authors at the time advocated
for the learning of farming by hunter-gatherers (i.e., for the spread of agriculture
without substantial spread of people) [16]. The latter mechanism is called cultural
diffusion.

16.2 First Improvement: Beyond the Second-Order
Approximation

In the derivation of Eq. (16.7) we have performed Taylor expansions up to first order
in time and second order in space. Without those approximations we obtain, instead
of Eq. (16.7),
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N (x, y, t + T ) − N (x, y, t) =
∞∫

−∞

∞∫

−∞
N�φNd�xd�y − N (x, y, t) + RT [N (x, y, t)]),

(16.11)

where the joint effects of reproduction and survival are, again, well-described by the
solution to a logistic growth function, namely [9]

RT [N (x, y, t)] = eαT Nmax N (x, y, t)

Nmax + (eαT − 1)N (x, y, t)
. (16.12)

When observed dispersal data are used, the kernel per unit length ϕN (�) is defined
as the probability to disperse into a ring of radius � and width d�, divided by d�.
If individuals of the population N have probabilities p j to disperse at distances r j (j
= 1 ,2, …,M), we can write

ϕN (�) =
M∑
j=1

p jδ
(1)(r j ), (16.13)

where δ(1)(r j ) is the 1D Dirac delta centered at r j (i.e., a function that vanishes
everywhere except at � = r j ). Since the total probability must be one,

1 = ∞∫
0

ϕN (�)d�, (16.14)

and ϕN (�) is clearly a probability per unit length. In contrast, the kernel φN
(
�x ,�y

)
in Eq. (16.11) is a probability per unit area (because it is multiplied by d�xd�y ,
which has units of area). The normalization condition for φN

(
�x ,�y

)
is therefore

1 =
∞∫

−∞

∞∫

−∞
φN (�x ,�y)d�xd�y = 2π

∞∫

0

φN (�)�d�, (16.15)

where we have used polar coordinates � =
√

�2
x + �2

y , θ = tan−1 �y

�x
and assumed

the kernel is isotropic, φN (�x ,�y) = φN (�). Comparing Eqs. (16.14) and (16.15),
we see that the dispersal probability per unit length (i.e., into a ring of area 2π�d�)
ϕN (�) is related to that per unit area φN (�) as [17]

ϕN (�) = 2π�φN (�) (16.16)

and Eq. (16.13) yields
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φN (�) =
M∑
j=1

p j
δ(1)(r j )

2π�
. (16.17)

For homogeneous parameter values, the speedwill not dependondirection and can
thus be more easily computed along the x-axis (y = 0). Consider a coordinate frame
z = x − vt moving with the wave of advance (v is the front speed). The population
density of farmerswill be equal to its saturation density in regionswhere theNeolithic
transition is over, and it will decay to zero in regions where few farmers have arrived.
Thus, we assume as usual the ansatz [17] N (x, y, t) ≈ N0exp[ − λz] → 0 for
z → ∞ (with λ > 0). Then, assuming that the minimum speed is that of the front
(which has been verified by numerical simulations), we obtain for the speed v of
front solutions to Eq. (16.11) [15]

vNCohab = min
λ>0

ln
[
(eαT − 1)

∑M
j=1 p j I0(λr j )

]

Tλ
, (16.18)

where the sub index NCohab indicates that this is not a cohabitation model (see the
next section), and I0(λr j ) is the modified Bessel function of the first kind and order
zero. In this model, the speed can be found by plotting the fraction in Eq. (16.18) as
a function of λ and finding its minimum.

In Ref. [15], it has been shown that the differences in the front speed obtained
from Eq. (16.13) and Fisher’s approximation, Eq. (16.1), are up to 49% for human
populations. So the effect of higher-order terms is not negligible.

16.3 Second Improvement: Cohabitation Equations

For human populations, newborn children cannot survive on their own. However,
when they come on age they can move away from their parents. This point has led
some authors to use an equation of the so-called cohabitation type, namely

N (x, y, t + T ) =
∞∫

−∞

∞∫

−∞
RT [N�]φNd�xd�y, (16.19)

where RT [N ] is again given by Eq. (16.12). Then the speed of front solutions is [15,
18]

vCohab = min
λ>0

αT + ln
[∑M

j=1 p j I0(λr j )
]

Tλ
. (16.20)
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The reason why Eq. (16.19) is more reasonable than Eq. (16.11) is that, clearly,
Eq. (16.11) assumes that individuals born at (x, y) at time t (last-but-one term) will
not move at all, i.e., they will all still be at (x, y) on coming of age (time t + T , left-
hand side). Thus, for example, in the simple case in which all parents move, they will
leave all of their children alone. Such an anthropologically unrealistic feature makes
it clear that Eq. (16.11) is less accurate than Eq. (16.19). For additional derivations
and figures showing that Eq. (16.11) is less realistic than the cohabitation Eq. (16.19),
see especially Fig. 1 in Ref. [15], Fig. 17 in Ref. [17], and Ref. [18].

A more direct way to see the limitations of Fisher’s speed (16.1) is to note that it
yields vFisher → ∞ for α → ∞. In contrast, it has been shown that the cohabitation
speed (16.20) yields for α → ∞ the value vCohab = rmax/T , i.e., the maximum
dispersal distance divided by the generation time (see Fig. 2 in Ref. [15]), which
is physically reasonable. Moreover, the error of Fisher’s speed (16.1) relative to
Eq. (16.20) reaches 30% for realistic human kernels and parameter values [15]. This
error is still larger when cultural diffusion is included [1] (next section).

16.4 Demic-Cultural Model

Up to nowwe have only considered equations with a singlemechanism for the spread
of the Neolithic, namely the dispersal of farmers (demic diffusion). But agriculture
can be also learnt by hunter-gatherers (cultural diffusion). When this conversion of
hunter-gatherers into farmers (cultural transmission) is taken into account, we might
be tempted to generalize Eq. (16.19) into

N (x, y, t + T ) =
∞∫

−∞

∞∫

−∞
RT [N�]φNd�xd�y

+
∞∫

−∞

∞∫

−∞
c[N�, P�]φ

converts
N d�xd�y, (16.21)

where P� = P(x + �x , y + �y) is the population density of hunter-gatherers at
(x + �x , y + �y). The cultural transmission function c[. . .] in Eq. (16.21) is due
to the conversion of hunter-gatherers into farmers. Thus, a similar equation for the
population density of hunter-gatherers P (x, y, t + T ) could be proposed, with a
minus sign in the last term. A recent derivation has found for the cultural transmission
function c[. . .] (see Ref. [19], Eq. (1))

c[N (x, y, t), P(x, y, t)] = f
N (x, y, t)P(x, y, t)

N (x, y, t) + γ P(x, y, t)
, (16.22)
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where f and γ are cultural transmission parameters. The kernel φconverts
N

(
�x ,�y

)
in Eq. (16.22) is the dispersal kernel of hunter-gatherers that have been converted
into farmers. Since they now behave as farmers, let us assume that this kernel is the
same as φN

(
�x ,�y

)
. Then Eq. (16.22) becomes

N (x, y, t + T ) =
∞∫

−∞

∞∫

−∞
RT [N�]φNd�xd�y +

∞∫

−∞

∞∫

−∞
f

N�P�

N� + γ P�

φNd�xd�y.

(16.23)

A model of this kind was applied recently (see Eq. 5 in Ref. [19]). It is an approx-
imation that may be valid in some regions (with mainly demic diffusion) but it
cannot lead to a purely cultural model of Neolithic spread (because according to
Eq. (16.23) there is no front propagation in the absence of demic diffusion, i.e., if
φN

(
�x ,�y

) �= 0 only at vanishing distance, i.e., for � = (�2
x + �2

y)
1/2 = 0). Thus

wewill here consider amore realistic model in twoways. Firstly we take into account
that, according to ethnographic observations, hunter-gatherers can learn agriculture
from farmers located some distance away [1]. Then Eq. (16.23) is generalized into

N (x, y, t + T ) =
∞∫

−∞

∞∫

−∞
RT [N�]φNd�xd�y

+
∞∫

−∞

∞∫

−∞
φNd�xd�y

∞∫

−∞

∞∫

−∞
φ

′
Pd�′

xd�′
y f

N�+�′ P�

N�+�′ + γ P�

,

(16.24)

where N�+�′ stands for N
(
x + �x + �

′
x , y + �y + �

′
y, t

)
.

In practice, the cultural kernel φ
′
P(�′

x ,�
′
y) (which is abbreviated as φ

′
P in

Eq. (16.24)) is a set of probabilities Pk for hunter-gatherers to learn agriculture
from farmers living at distances Rk = (�′ 2

x + �′ 2
y )1/2, during a generation time T .

This is similar to the fact, mentioned above Eq. (16.13), that in practice the demic
kernel φN

(
�x ,�y

)
is a set of probabilities p j for farmers to disperse at distances

r j = (�2
x + �2

y)
1/2, also during a generation time T .

Secondly, we note that after a generation time T , reproduction will have led to
new individuals not only in the population of farmers (first line in Eq. (16.24)) but
also in the population of hunter-gatherers converted into farmers (second line in
Eq. (16.24)). Thus we finally generalize Eq. (16.24) into

N (x, y, t + T ) =
∞∫

−∞

∞∫

−∞
RT [N�]φNd�xd�y
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+
∞∫

−∞

∞∫

−∞
φNd�xd�y

∞∫

−∞

∞∫

−∞
φ

′
P d�′

xd�′
y RT

[
f

N�+�′ P�

N�+�′ + γ P�

]
.

(16.25)

The speed of front solutions to Eq. (16.25) is [1]

v = min
λ>0

αT + ln
[(∑M

j=1 p j I0(λr j )
)(

1 + C
[∑Q

k=1 Pk I0(λRk)
])]

Tλ
, (16.26)

with C = f/γ . This reduced parameter C was called the intensity of cultural trans-
mission [19] because, according to Eq. (16.22), C = f/γ is the number of hunter-
gatherers converted per farmer at the front leading edge (i.e., in regions such that
N � P). Without cultural transmission (C = 0), the demic-cultural front speed,
given by Eq. (16.26), reduces to the purely demic speed, Eq. (16.20), as it should.
With frequency-dependent cultural transmission, Eq. (16.22) is more complicated
and the equations are longer, but the final results are exactly the same [1].

It is important to note that cultural transmission (the factor in brackets [ f . . .] at
the end of the second line in Eq. (16.25)) is applied in a term that also contains the
effects of net reproduction (RT ) and dispersal (the kernel of farmers φN (�x ,�y)).
Thus, some hunter-gatherers will learn agriculture from farmers located a distance
(�′

x ,�
′
y), and the children of those converted hunter-gatherers will possibly move a

distance (�x ,�y) (similarly to the children of farmers, first line). Therefore, some
hunter-gatherers can learn agriculture from farmers and the next generation (i.e., the
children) of those hunter-gatherers will be farmers, in agreement with ethnographic
data [20].

Finally, a purely cultural model means no demic diffusion. In this model, the front
speed can be obtained fromEq. (16.26) without demic diffusion (r1 = 0 and p1 = 1),
namely

vC = min
λ>0

αT + ln
[
1 + C

(∑Q
k=1 Pk I0(λRk)

)]

Tλ
, (16.27)

where the sub index C stands for purely cultural diffusion. This is the purely cultural
analogue to the purely demic speed given by Eq. (16.20). Both of them are, of course,
cohabitation models.

16.5 Demic Versus Cultural Diffusion in the Spread
of the Neolithic in Europe

What do the models above imply for the relative importance of demic and cultural
diffusion in the spread of the Neolithic in different regions of Europe? Let us first
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summarize a proposal [1], and later we will discuss an alternative possibility. First
of all, we need ranges for the parameters appearing in our equations.

The ranges for α and T that have been measured for preindustrial farming popu-
lations are 0.023 year−1 ≤ α ≤ 0.033 year−1 and 29 year ≤ T ≤ 35 year (see the SI
Appendix to Ref. [19] for details).

The dispersal kernel φN
(
�x ,�y

)
has been measured for each of the following

five preindustrial farming populations [15]. For each population, we give its purely
demic speed range, as predicted by the cohabitation model, Eq. (16.20), with its
dispersal kernel as well as α = 0.023 year−1 and T = 35 year (slowest speed) or
α = 0.033 year−1 and T = 29 year (fastest speed).

• Population A (Gilishi 15): purely demic speed range 0.87–1.15 km/year.
• Population B (Gilishi 25): purely demic speed range 0.92–1.21 km/year.
• Population C (Shiri 15): purely demic speed range 1.14–1.48 km/year.
• Population D (Yanomamö): purely demic speed range 1.12–1.48 km/year.
• Population E (Issongos): purely demic speed range 0.68–0.92 km/year.

We see that demic diffusionpredictsNeolithic front speeds of at least 0.68km/year.
Demic-cultural diffusion will be still faster. Thus, it has been suggested that perhaps
cultural diffusion could be responsible for theNeolithic spread in regions with speeds
below 0.68 km/year [1]. For simplicity, let us consider purely cultural diffusion,
Eq. (16.27), although a short-range demic kernel can be also included (Sect. S6 in
Ref. [1]). In order to estimate the speeds predicted by purely cultural diffusion, we
need the following cultural parameters.

The cultural transmission intensity C from hunter-gathering to farming has been
estimated from several case studies in Ref. [19] and the overall range is 1.0 ≤ C ≤
10.9.

The cultural kernel has been estimated for each of the following five populations,
fromdistances fromhunter-gatherers camp locations to the villages of farmers, where
the hunter-gatherers practice agriculture [1]. For eachpopulation,we report the purely
cultural speed range obtained from Eq. (16.27) using its cultural kernel as well as
α = 0.023 year−1, T = 35 year and C = 1 (slowest speed) or α = 0.033 year−1,
T = 29 year and C = 10.9 (fastest speed).

• Population 1 (Mbuti, band I): speed range 0.17–0.36 km/year.
• Population 2 (Mbuti, band II): speed range 0.30–0.57 km/year.
• Population 3 (Mbuti, band III): speed range 0.32–0.66 km/year.
• Population 4 (Aka): speed range 0.09–0.19 km/year.
• Population 5 (Baka): speed range 0.03–0.07 km/year.

Thus, the purely cultural model yields 0.03–0.66 km/year. Note that this is slower
than the purely demic speed range found above (0.68–0.92 km/year).

Finally, for the demic-cultural model, Eq. (16.26), the slowest speed is obviously
0.68 km/year (see the purely demic model above). The fastest speed corresponds to
the strongest value observed for the intensity of cultural transmission (C = 10.9),
the fastest cultural kernel (population 3), the fastest demic kernel (population C or
D), the highest observed value of α (0.033 year−1), and the lowest observed value of
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T (29 year). Using these data in Eq. (16.25), we find that the fastest speed is obtained
for the demic kernel of population D yielding 3.04 km/year.

In Fig. 16.4b, the color scale has been chosen so that the red color corresponds
to the regions that can be explained by purely cultural diffusion (0.03–0.66 km/year,
from the purely cultural model above). The demic and demic-cultural models predict
speeds above 0.68 km/year and are thus too fast to be consistentwith the archeological
data in the red regions in Fig. 16.4b. This suggests that cultural diffusion could explain
the Neolithic transition in Northern Europe, as well as in the Alps and west of the
Black Sea. The analysis of the areas where demic diffusion played a role is less
straightforward, but it is possible to determine the regions where the speed was
mainly demic (i.e., where the cultural effect was< 50%) [1]. They correspond to the
yellow regions in Fig. 16.4b. The regions where either demic or cultural diffusion
could have dominated are the blue regions in Fig. 16.4b. The blue regions appear
because we have used parameter ranges and several kernels (they would not appear
if we had used a single value for each parameter, a single demic kernel, and a single
cultural kernel). Finally, in the green regions in Fig. 16.4, the speed is too fast to
agree with any of the three models in the present chapter, but in continental Europe,
those regions contain very few sites andwill probably disappear usingmore complete
databases (i.e., with more archeological sites).

In order to discuss an alternative possibility, let us note that the models presented
in this paper are simple in the sense that there are few parameters but, in spite of
this, their estimation is remarkably difficult. Indeed, so far it has not been possible
to estimate dispersal kernels, cultural kernels, or cultural transmission intensities
from purely archeological data. Therefore, for the time being, the only possibility
is to use ethnographic data instead (as already done by Ammerman and Cavalli-
Sforza [5] for the parameters in Fisher’s model). As long as it is not possible to
overcome this limitation, an open possibilitywill always be that prehistoric parameter
values might have been substantially different than those estimated from present
preindustrial populations. Recently, archeological data have been used to perform a
rough estimation of the growth rate α in Scandinavia, and it leads to a mainly demic
spread in spite of the front speed being slow (0.44-0.66 km/year) [21]. This opens
a very interesting possibility: if in the future it were possible to estimate growth
rates from archeological data for different regions of Europe, the map in Fig. 16.4b
could be refined by using a space-dependent growth rate. Thus, if the growth rate α

were smaller in northern Europe (as it seems to be in Scandinavia), it is possible
that some of the slow regions could be perhaps explained by a mainly demic model
(i.e., some of the red regions in Fig. 16.4b could perhaps not be purely cultural).
Unfortunately such a study has not been performed yet, because the estimation of
regional Neolithic growth rates from archeological data is still in its infancy. But this
could be an interesting topic of future research.

In recent years, speeds of Neolithic fronts have been measured in continents other
than Europe. This work has led to the proposal of the following general laws of
Neolithic spread [22, 23].
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1. First law. The Neolithic spreads inland at a rate of about 1 km/year, although
there is substantial variation (0.44-3.6 km/year). This law is satisfied in at least
the following 13 case studies. It clearly holds for the Neolithic in overall Europe
[5, 4], southern Asia [24], the Balkans [25, 26], 3 European ceramic culture
areas (namely the Eastern Linear Pottery [25], the LinearBandKeramik [25] and
the Trichterbeckerkultur [25]) as well as for the eastern Bantu expansion in
Africa [27], the spread of domesticated rice in China and southeastern Asia [28],
and the Saladoid-Barrancoid and Incised-Punctuate expansions in tropical South
America [29]. In my view, the spread of the Neolithic in Scandinavia [21], the
southern Bantu spread, and the expansion of Khoi-khoi herders also support
this law, because there is no inconsistency with the facts that (i) the last two
case studies also agree with the second law below, and (ii) the Scandinavian one
supports the fifth law below.

2. Second law. If in addition to demic diffusion there is substantial cultural diffu-
sion, the Neolithic spreads more rapidly. This law has strong support from math-
ematical models (Sect. 16.4) and it is consistent with the observed rates for two
expansions in which cultural diffusion has been proposed to be of importance,
namely those of Khoi-khoi herders in southern Africa [30] and the southern
Bantu spread in East Africa [27]. For both case studies (Khoi-khoi and southern
Bantu), the lower bounds (1.2 km/year and 1.3 km/year, respectively) are close
to 1 km/year, so they also agree with the first law.

3. Third law.Neolithic spread rates over the sea take place at about 10 km/year. Such
very fast speeds have been observed in the spread of the Neolithic in the western
Mediterranean [31] and Austronesia [32]. More case studies are necessary to
determine a range of speeds for Neolithic rates when sea travel is involved. For
example, in the eastern Mediterranean the Neolithic spread rate has apparently
never been quantified by linear regression.

4. Fourth law.Most inland and coastal Neolithic spreads aremainly demic. The only
examples known up to now that might be perhaps mainly cultural are the spread
of maize in America [33] and the expansion of Khoi-khoi herders in southern
Africa [30]. Anyway, the fourth law is valid for all 13 case studies of farmers
listed in the first law, as well as for the coastal spread of the Neolithic along the
western Mediterranean [31].

5. Fifth law. The Neolithic tends to spread more slowly at higher latitudes. This
law is supported by a well-known slowdown in northern continental Europe
(Fig. 16.4b) and, as mentioned above, by a study on the spread of the Neolithic
in Scandinavia. In the latter case, it has been noted that the slowness may be
due to a small value of the growth rate α, which was estimated directly from
archeological data [21]. A low growth rate is perhaps not very surprising, given
the fact that inmodern human populations reproduction is also known to decrease
with increasing latitude [34]. However, it is not yet established by archeological
data if the slowness at higher latitudes is (always) due to reduced values of the
growth rate or not, so the statement above of the fifth law does not include any
explanation for the slowness. The upper bound for the spread rate in Scandinavia
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(0.84 km/year) is close to 1 km/year, so this case study also agrees with the first
law.

6. Sixth law. The Neolithic spreads later and more slowly at higher altitudes above
sea level (compared to surrounding regions). This is clearly suggested by the
following results. An interpolation has shown that the Neolithic first surrounded
the Alps completely and only later began to climb up thesemountains (Fig. 16.1).
It did so from all directions (Fig. 2 in Ref. 1) and at clearly slower speeds
(Figs. 16.1 and 16.4b).

16.6 Conclusions

The models reviewed in this chapter suggest that the spread of the Neolithic in
Europe was (i) fast and mainly demic in the Balkans and Central Europe; (ii) slow
and perhaps mainly cultural in Northern Europe, the Alpine region, and west of the
Black Sea (Fig. 16.4b) [1]. As seen in Fig. 16.4b, the process was fast (speeds
above 0.68 km/year) in Greece, Italy, the Balkans, Hungary, Slovakia, Czechia, and
central Germany. This wide region includes a substantial part of the Linearband-
kermic (LBK) culture in Central Europe. This is in agreement with the fact that
the LBK is widely regarded as demic by archeologists. Also in agreement with our
results, some archeologists have argued for the importance of demic diffusion in
the Neolithic spread from the Aegean northwards and across the Balkans. On the
other hand, in Northern Europe, the Alps, and West of the Black Sea (red color in
Fig. 16.4b), the transition was slow (speeds below 0.66 km/year) and, according to
our models, possibly not driven by demic neither demic-cultural diffusion. Some
archeologists have previously suggested that cultural diffusion had a strong role in
the spread of the Neolithic in Northern Europe, the Alps, and West of the Black sea.
Note that these are the possibly cultural diffusion regions according to our models
(red color in Fig. 16.4b). For detailed archeological references on the importance
of demic and cultural diffusion in different regions of Europe, see, e.g., Sect. 3 in
Ref. [1]. Ancient genetics also indicates that cultural diffusion was more important
in Northern Europe [35]. But it is worth to note that those ancient genetic data were
obtained in Latvia and Ukraine, outside Fig. 16.4. Moreover, we have stressed that
non-homogeneous reproduction (still to be confirmed or refused using archeological
data) could provide an alternative (mainly demic) explanation for the slow areas (red
color in Fig. 16.4b).

The slowness of cultural diffusion (as compared to demic diffusion) is due to
the fact that, according to ethnographic observations, the distances appearing in the
cultural kernelφ

′
P(�′

x ,�
′
y) are substantially shorter than those appearing in the demic

kernel φN (�x ,�y) [1]. The intuitive reason may be that agriculture is a difficult
cultural trait to learn, and this leads to shorter cultural than demic diffusion distances.
Note that the cultural distances are defined as those separating hunter-gatherers from
the farmers who teach them how to farm. Indeed, according to ethnographic data, in



344 J. Fort

Fig. 16.4 Isochrones obtained by smoothing 40 times the map in Fig. 16.1 (a). Note that most
anomalously old/recent areas have disappeared. Smoothing 60 times yields almost the same map.
b Displays the speed ranges obtained from (a). Closer isochrones correspond to slower speeds.
Adapted from Ref. [1], Supp. Info. Appendix, Fig. S4

the spread of farming cultural diffusion distances were short as compared to demic
diffusion distances [1]. The latter are those along which the children of farmers
disperse away from their parents. Such demic distances can obviously be larger than
cultural distances, because the children of farmers have already learnt agriculture
before leaving their parents.

Models similar to those summarized here have been applied to Paleolithic waves
of advance [36], language substitution fronts [37], etc.
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All models considered in this chapter operate with a minimum of parameters.
In the demic model, for instance, the only parameters are the initial growth rate α,
the generation T, and the dispersal kernel. Crucially, all three have been estimated
from ethnographic or archeological data. With such constraints one is able to largely
avoid any unjustified bias inmodeling whichmay easily occur by the use of toomany
parameters which, finally, degenerate to simple fitting parameters. Using many free
parameters, it often turns out that the observed data can be reproduced but the model
is based on wrong premises. For example, in some models of virus infection fronts,
it was possible to reproduce some experimental front speeds by choosing several
parameter values [38, 39]. However, this was not possible for realistic parameter
values [39, 40]. Later, different models reproduced the data without choosing any
parameter values [41]. Thus, the oldmodels were not appropriate (andmissed crucial
aspects) because they agree with only some of the data, by using non-realistic equa-
tions and parameter values. Again, in the case of Neolithic spread, we have to be
aware that one may introduce very large parameter sets as demonstrated in Chap. 17.
But there, most of the eight parameter values used are chosen (not derived from
independent data) to replicate the observed arrival times of the Neolithic at several
regions (this is clearly stated in Ref. [6], p. 3462, and summarized here in Table
17.2 and Fig. 17.6). Thus, their parameter values become questionable with the lack
of possibilities for their determination from reliable, independent sources. Besides
the parameter values, there are also hypothetical assumptions in some models (e.g.,
Fig. 17.3). Using as few as possible untested assumptions and unknown parameters
in the models often makes them more realistic (we stress that a very clear example
is that of virus infection fronts).

Recently, the author has suggested some general laws of Neolithic spread around
the world (last part of Sect. 16.5). It is worth to mention that ancient genetic data can
be used to constrain better the models by, e.g., estimating the cultural transmission
intensity C [42]. In the future, surely many more archeological and genetic data will
become available and lead to further conclusions.
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Chapter 17
The Diffusion of People and Cultures
in the Course of the Spread of Farming

Carsten Lemmen and Detlef Gronenborn

17.1 Introduction

The most profound change in the relationship between humans and their environ-
ment was the introduction of agriculture and pastoralism.With this millennia-lasting
economic shift from simple food acquisition to complex food production humankind
paved the way for its grand transitional process frommobile groups to sedentary, and
ultimately cities, and from egalitarian bands to chiefdoms and lastly states. Given this
enormous historic impetus, V.GordonChilde coined the term “Neolithic Revolution”
[1] almost a hundred years ago.

The first experiments towards agriculture began with the end of the Glacial period
about 10,000 years ago in the so-called Fertile Crescent [2]. They were followed by
other endeavors in various locations both in the Americas and in Afroeurasia. Today
farming has spread to all but themost secluded ormarginal environments of the planet
[3]. Cultivation of plants and animals on the global scale appears to have changed
energy and material flows—like greenhouse gas emissions—so fundamentally, that
the term “early anthropocene” has been proposed for the era following the Mid-
Holocene [4].

Possible reasons for the emergence of farming during the relatively confined
period between the Early and Mid-Holocene in locations independent of each
other are continuously being debated [2]. Once these inventions were in place,
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Fig. 17.1 Overview of the study area and the archeologically visible expansion of farming. Figure
by Detlef Gronenborn and Barbara Horejs (Leibniz Research Institute for Archaeology, Mainz,
Germany; Austrian Archaeological Institute, Vienna, Austria). Reprinted with permission, licensed
under CC BY 4.0

however, they immediately become visible in the archeological and paleoenviron-
mental records. From then on we can trace the spatial expansion of the newly domes-
ticated plants and animals, the spatial expansion of a lifestyle based on these domes-
ticates, and the induced changes in land cover [5, 6]. From such empirically derived
data, the characteristic condensed map of the spread of farming intoWestern Eurasia
is produced (Fig. 17.1, see also Fig. 16.1).

The local changes introduced spatial differences in knowledge, labor, technology,
materials, population density, and—more indirectly—social structure and political
organization, among others [7, 8]. Consequently, the dynamics occurring along
such spatial gradients may be modeled as a diffusive process. In Chap. 2, Fick’s first
law was introduced, which describes that the average flux across a spatial boundary
is proportional to the difference of concentration across this boundary (Chap. 2,
Eq. 2.6). Each of the local inventions would then spread outward from its respec-
tive point of origin. Indeed, these spatiotemporal gradients have been observed in
ceramics [1], radiocarbon dates [5, 9], domesticates [10, 11], land use change [12,
13], and the genetic composition of paleopopulations [14–17].

Common to all expansion modeling approaches is the comparison to collections
of radiocarbon data that show the apparent wave of advance [18] of the transition
to farming. However, these data sets differ in entry density and data quality. Often
they disregard local and regional specifics and research gaps, or dating uncertainties.
Thus, most of these databases may only be used on a very general, broad scale. One
of the pitfalls of using irregularly spaced or irregularly documented radiocarbon data
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becomes evident from the map generated by Fort (this volume, Chap. 16): while the
general east-west and south-north trends are well represented, some areas appear as
having undergone anomalously early transitions to farming. Broadly, the numerical
approaches can be categorized into correlative, continuous, and discrete:

Correlativemodels compare the timing of the transition (or other archeologically
visible frontiers)with the distance fromone ormore points of origin. These are among
the earliestmodels proposed, such as those byClark [5] or byAmmerman andCavalli
Sforza [18]. These models have been used to roughly estimate the front propagation
speed of the introduction of agriculture into Europe, and the original speed of around
1 km per year has not been substantially refined until today.

Continuous models predict at each location within the specified domain the
transition time as the solution of a differential equation, mostly of a Fisher–Skellam
type, in relation to the distance from one or more points of origin. Often, this distance
is not only the geometric distance but also factors in geography and topography,
including ease of migration. The prediction from the continuous model is compared
to the archeologically visible frontier [19]. This is the approach taken by Fort (this
volume, Chap. 16) who compares the wavefront propagation of different models for
the transition from a hunting and gathering economy to a farming economy in Europe
with the spatiotemporal pattern of the earliest radiocarbon dates locally associated
with farming.

Discrete models are often realized as agent-based models (see also Sect. 2.5 of
Chap. 2), with geographic areas (or their populations) representing the “agents”, and
rules that describe the interaction, especially the diffusion properties, between them.
They also predict for each geographic area the transition time, but not as an analytic,
but rather as an emergent property of the system. We here introduce, as an example,
a discrete agent-based and gradient adaptive model, referred to as the “Global Land
Use and technological Evolution Simulator” (GLUES).

The chapter starts with introducing into the special features of this simulation
model, notably into the set of local characteristic variables (“traits”, see Sect. 17.2.1).
They are exploited for characterizing the given state of the “agent” (i.e., of the popula-
tion under consideration) and decide, simultaneously, about the further development
of the system. Section 17.2.2 introduces into the general formalism of evolution.
Correlations between the different traits, their evolution, and local population growth
are considered in Sect. 17.2.3, with a summarizing discussion of the various types of
flux and diffusion provided in Sects. 17.2.4 and 17.2.5. Section 17.3 illustrates the
surplus of information attainable by data analysis via GLUES, including clear quan-
titative assessment between demic and cultural diffusion (i.e., between themovement
of people or ideas) as a function of time and space.
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17.2 The Agent-Based Gradient Adaptive Model GLUES

We employ the Global Land Use and technological Evolution Simulator (GLUES
[20, 21])—a numerical model of prehistoric innovation, demography, and subsis-
tence economy based on interacting geographic populations as agents and gradient
adaptive trait dynamics to describe local evolution. There are currently 685 regions
representing the “cells” of agent-based models (Fig. 17.2), together with interac-
tion rules that describe diffusion of people, material, and information between these
regions. The “agent” is the population living within a region. Its state is described by
its density and by a number of characteristic features, referred to as traits. They result
as averages over the considered population. Such averages are referred to as “aggre-
gated traits”. GLUES operates with three different traits which shall be described in
more detail below.

The “numerical model” is able to hindcast the regional transitions to agropas-
toralism and the diffusion of people and innovations across the world for the time
span between approximately 8000 BCE (before the common era) and 1500 CE. It
has been successfully compared to radiocarbon data for Europe [21], Eastern North
America [22], and South Asia [23].

Regions are generated from ecozone clusters that have been derived to represent
homogeneous net primary productivity (ENPP) based on a 3000 BCE 1◦ × 1◦ paleo-
productivity estimate; this estimate was derived from a climatologically downscaled
dynamic paleovegetation simulation [20]. By using ENPP, many of the environmental

Fig. 17.2 Regions constituting the set of agents in the simulation (shown for Western Eurasia and
North Africa) in 685 globally distributed regions



17 The Diffusion of People and Cultures in the Course of the Spread ... 351

factors taken into account by other expansion or predictive models, such as altitude,
latitude, rainfall, or temperature [10, 24] are implicitly considered.

17.2.1 Local Characteristic Variables

The model as displayed in Fig. 17.2 is, at any instant of time, completely described
by knowledge of (i) population (B), (ii) associated traits (X ) and (iii) environ-
mental conditions (E) of each individual region. In a series of different applications
(covering a time span of close to 10,000 years in Europe, America, and Asia), it
has turned out that overall developments could be satisfactorily described by intro-
ducing three different types of “traits”, i.e., of characteristic features characterizing
the productivity-related intellectual level of the population. They all result as socio-
cultural averages and may, in short, be referred to as “technological efficiency” (T ),
“share of agropastoral activities” (C) and “economic diversity” (N ), as summarized
by Table 17.1. In detail, the various traits can be characterized as follows:

1. Technology T is a trait which describes the efficiency for enhancing biological
growth rates, or diminishing mortality. It is represented by the efficiency of
food procurement—related to both foraging and farming—and improvements
in health care. In particular, technology as a model describes the availability
of tools, weapons, and transport or storage facilities, and includes institutional
aspects related to work organization and knowledge management. These are
often synergistic: the technical and societal skill of writing as ameans for cultural
storage and administration,with the latter acting as an organizational lubricant for
food procurement and its optimal allocation in space and among social groups.
Quantitative measure of T is the (estimated) efficiency gain over Mesolithic
technology.

2. Economic diversity N resolves the number of different agropastoral economies
available to a regional population. This trait is closely tied to regional vegetation
resources and climate constraints. A larger economic diversity offering different
niches for agricultural or pastoral practices enhances the reliability of subsistence
and the efficacy in exploiting heterogeneous landscapes.

3. The third model variable C represents the share of farming and herding activi-
ties, encompassing both animal husbandry and plant cultivation. It describes the
allocation of energy, time, or manpower to agropastoralism with respect to the
total food sector; this is the only variable that is directly comparable to data from
the archeological record.
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Table 17.1 Characteristic traits used in the gradient adaptive dynamics formulation of GLUES; a
full table of symbols used is available as Table 17.2

Characteristic trait Symbol Quantification Typical range

Technology efficiency T Factor of efficiency gain over Mesolithic 0.9–15

Economic diversity N Richness of economic agropastoral strategies 0.1–8

Agropastoral share C Fraction of activities in agropastoralism 0–1

17.2.2 Adaptive Dynamics

The entities of the “local characteristic variables” as introduced in Sect. 17.2.1 are
subject to continuous variation. This process is controlled by the current state of these
variables. Dynamics of evolution is thus immediately recognized as a function of the
given evolutionary stage (represented by the set T, N ,C) of traits (also referred to as
the “food production system”) and the population density. This concept of “adaptive
dynamics” is related to E. Boserup’s observation that “The close relationship which
exists today between population density and food production system is the result of
two long-existing processes of adaptation. On the one hand, population density has
adapted to the natural conditions for food production [...]; on the other hand, food
supply systems have adapted to changes in population density.” [25, 26].

Mathematically, this conceptual model is implemented in the so-called Gradient
Adaptive Dynamics (GAD) approach: Whenever traits can be related to growth
rate, then an approach known as adaptive dynamics can be applied to generate the
equations for the temporal change of traits, the so-called evolution equations. This
adaptive dynamics goes back to earlier work by Fisher in the 1930s [27] and the
field of genetics.When genetically encoded traits influence the fitness of individuals,
the prevalence of the genes encoding this phenotype changes. Adaptive dynamics
describes the change of the probability of the trait in the population by considering
its mutation rate and its fitness gradient, i.e., the marginal benefit of changes in the
trait for the (reproductive) fitness of the individual.

To ecological systems, this metaphor was first applied by Wirtz and Eckhardt
in 1996 [28], and to cultural traits by Wirtz and Lemmen in 2003 [20]. In this
translation, the genetically motivated termmutation rate was replaced by the ecolog-
ically observable variability of a trait. Because many traits are usually involved in
(socio)ecological applications (here T, N ,C), the termGradient Adaptive Dynamics
was introduced to emphasize the usage of the growth-rate gradient of the vector of
traits. Here, we explain the published equations in an updated and consistent form.

In a local population B composed of n sub-populationmembers ι ∈ {1 . . . n}, each
member with relative contribution Bι/B, characteristic traitsX ι , and time-dependent
environmental condition Eι(t), has a relative growth rate rι

rι = 1

Bι

· dBι

dt
= rι(X ι, Eι(t)). (17.1)
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This equation is often formulated in terms of the population density P = B/A,
where A is the area populated by B:

rι = 1

Pι

· dPι

dt
=rι(X ι, Eι(t))

and
n∑

ι

(Pι/P) =1. (17.2)

The mean of a quantity X over all individuals ι is calculated as

〈X〉 =
n∑

ι=1

X ιPι

P
. (17.3)

The adaptive dynamics rooted in genetics assumes that mutation errors are only
relevant at cell duplication, and not during cell growth. Translated to the ecological
entity population this restriction enforces that all traits X ι of a member of this popu-
lation are stable during the lifetime of this member: d

dt X ι = 0 for all X ι. Changes in
the aggregated traits 〈X〉 are a result of frequency selection (the number of members
carrying a specific characteristic trait increases or decreases as a result of selection)
only. Differentiating Eq. (17.3) with respect to time and considering d

dt X ι = 0, gives

d〈X〉
dt

=
n∑

ι=1

∂ X ιPι

P

∂t
, (17.4)

which can be further simplified to

dX

dt
= σ 2

X · ∂r(X)

∂X
, (17.5)

where σ 2
X = 〈

(X − 〈X〉)2〉 denotes the variance of X . The angular brackets around
〈X〉 have been left out for better readability. Figure 17.3 is provided for illustrating
the essence of Eq. (17.5): A given distribution in trait (curve around 〈X〉 of width σX )
is seen to evolve by being shifted into the direction of increasing “fitness landscape”,
i.e., into the direction giving rise to higher growth rates.

17.2.3 Local Population Growth

Key to adaptive dynamics is the formulation of the growth rate as a function of all
characteristic traits. Once this dependence is specified, the evolution equations for
X are generated automatically from Eq. (17.5).
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Fig. 17.3 The adaptive dynamics of a characteristic trait X in a fitness landscape r(X, E(t)) is
described by the width of the trait distribution (σX ) and the marginal benefit that a small change in
X has on the growth rate r . Modified from [29]

The relative growth rate r of an agent population may obviously be noted as the
difference of gain and loss rates for which we use the shorthand notation

r = rgain − rloss. (17.6)

We are now going to illustrate how gain and loss is reasonably correlated with
the characteristic traits and environmental conditions. Corresponding with the high
degree of complexity of the system under consideration, gain and loss are subject to
quite a substantial number of parameters. Following the introduction in the various
“traits” by Table 17.1, a complete overview of these parameters is provided by Table
17.2.

On the way towards quantitating the gain rgain it is useful to introduce a quantity
which describes a community’s effectiveness in generating consumable food and
secondary products. This quantity is referred to as the “subsistence intensity”. It is
dimensionless and scaled such that a value of unity expresses the mean subsistence
intensity of a hunter-gatherer society equipped with tools typical for the mature
Mesolithic. With Table 17.1, mature Mesolithic is seen to be characterized by traits
T = 1 and C ≈ 0. We note that the first term on the right-hand side of Eq. (17.7),
used for quantifying the subsistence intensity s

s = (1 − C) · √
T + C · N · T · ETLI, (17.7)

does exactly reflect this condition by becoming equal to unity, with the second term
disappearing for a hunter-gatherer society. The second term, the “agropastoral part”,
is assumed to increase linearly with N and T : The more economies (N ) there are,
the better are sub-regional scaled niches utilized and the more reliable returns are
generated when annual weather conditions are variable; the higher the technology
level (T ), the better the efficiency of using natural resources (by definition of T ).
While a variety of techniques can steeply increase harvests of domesticated species,
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Table 17.2 Symbols and variables used in the text and equations. A useful parameter set (see, e.g.,

[23]) is μ = ρ = 0.004 a−1, ω = 0.04, γ = 0.12, δT = 0.025, ςdemic = 0.002, ςinfo = 0.2,
δN = 0.9; and initial values for P0 = 0.01, T0 = 1.0, N0 = 0.8, and C0 = 0.04

Symbol Description Unit Typical range

P Population density km−2 >0

X Growth-influencing trait >0

T Technology trait >0

N Economic trait >0

C Labor allocation trait 0–1

t Time a 9500–1000 BCE

r Specific growth rate a−1

f Economy availability 0–1

E Environmental constraints

ETLI Temperature limitation 0–1

EPAE Potentially available economies 0–1

EFEP Food extraction potential 0–1

〈·〉 Mean/first moment of ·
σ 2 Variance >0

ς Diffusion parameter >0

s Subsistence intensity

ω Administration parameter

γ Exploitation parameter

μ Fertility rate a−1

ρ Mortality rate a−1

analogous benefits for foraging productivity are less pronounced, giving rise to a less
than linear dependence of the hunting-gathering calorie procurement on T , which is
taken into account by considering, in the first term on the right of Eq. (17.7), only
the square root of T .

With the parameter ETLI we have introduced an additional temperature constraint
on agricultural productivity which considers that cold temperature could onlymoder-
ately be overcome by Neolithic technologies. While ETLI is thus set unity at low
latitudes, it approaches zero at permafrost conditions. The domestication process
is represented by N , which is the number of realized agropastoral economies. We
link N to natural resources by expressing it as the fraction f of potentially available
economies (EPAE) by specifying N = f · EPAE, where the latter corresponds to the
richness in domesticable animal or plant species within a specific region.

The increase in s may be accompanied by processes which tend to mitigate rather
than to enhance fertility. This concerns, in particular, the overexploitation of natural
resources which is taken account of by multiplying s by a factor (EFEP − γ

√
T P),

where EFEP is introduced as a measure of the multitude of natural resources and
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γ stands for a suitably chosen scaling parameter. With a second factor (1 − ω T )

one takes account of the so-called organizational losses, which emerge when people
neither farm nor hunt: Construction, maintenance, and administration draw a small
fraction of the workforce away from food production.

Summing up, the overall gain may be noted as

rgain =μ · (EFEP − γ
√
T P) · (1 − ω T ) · s (17.8)

whereμ has been introduced as a scaling parameter referred to as the gain coefficient
or fertility rate. For the loss term one applies the standard ecological form

rloss = ρ · P · e−T/Tlit , (17.9)

modeled on the crowding effect (also known as ecological capacity), implying
proportionality between loss and population density. It is mediated by technolo-
gies (T ) which mitigate, for example, losses due to disease, where Tlit = 12 proved
to serve as a good health standard. The scaling parameter ρ is the equivalent of the
fertility rate μ in Eq. (17.8) and referred to as the loss coefficient or mortality rate.

17.2.4 Spatial Diffusion Model

Information, material, and people are implied to exchange between the various
regions by fluxes which may be modeled by the Fickian diffusion equation
(Chap. 2, Eqs. (2.6–2.9)), where the discrete region arrangement and the locally
varying diffusivity coefficient Dik have to be taken account of. By adopting
the notation of the continuity equation, Eq. (2.8) the change of any char-
acteristic trait Xi in a region i due to diffusion from/to all regions k ∈
Ni in its neighborhood Ni with neighbor distance 
xik may, thus, be noted
as


Xi


t
=

∑

k∈Ni

− jik/
xik, (17.10)

with jik = −Dik
Xik/
xik constituting the diffusive flux between i and k
(Fig. 17.4). In this formulation of the diffusive flux we easily recognize the structure
of Fick’s first law, Eq. (2.6), with the concentration c replaced by the characteristic
trait Xi under study and, correspondingly, the particle flux j replaced by the flux of
traits, driven by their “gradient” 
Xik/
xik between regions i and k. Insertion into
Eq. (17.10) yields


Xi


t
=

∑

k∈Ni

Dik
Xik
x−2
ik . (17.11)
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Fig. 17.4 Schematic representation of interregional exchange in GLUES

This equation can be reformulated [30] as


Xi


t
= ς

∑

k∈Ni

fik
Xik (17.12)

with fik = Dik
x−2
ik ς−1, where ς is a global diffusion property characterizing the

underlying process (see below) and fik collects all regionally varying spatial and
social diffusive aspects.

The social factor in the formulation of fik is the difference between two regions’
influences, where influence is defined as the product of population density P and
technology T , scaled by the average influence of regions i, k. The geographic factor
is the conductance between the two regions, which is constructed from the common
boundary length Lik divided by the mean area of the regions

√
Ai Ak . Non-neighbor

regions have no common boundary, and hence have zero conductance. To connect
across the Strait of Gibraltar, the English Channel, and the Bosporus, the respec-
tive conductances were calculated as if narrow land bridges connected them. No
additional account is made for increased conductivity along rivers [31].

17.2.5 Three Types of Diffusion

Three types of diffusion are distinguished: (1) demic diffusion, i.e., the migration
of people, (2) the hitchhiking of traits with migrants, and (3) cultural diffusion, i.e.,
the information exchange of characteristic traits.

Demic diffusion is the mass-balanced migration of people between different
regions. The diffusion equation (17.12) is applied to the number of inhabitants Bi =
Pi Ai in each region i .
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dBi

dt

∣∣∣∣
demic

=
{

ςdemic
∑

j∈Ni
fi j (Bj − Bi ), r ≥ 0

0 otherwise
(17.13)

The free parameter ςdemic has to be determined from comparison to data. The param-
eter estimation based on the European dataset by Pinhasi et al. [30] and the typical
front speed extracted from this dataset yields ςdemic = 0.002 (see [32] for parameter
estimation). We impose an additional restriction to migration by requiring positive
growth rate ri ≥ 0, i.e., favorable living conditions, in the receiving region i .

Hitchhiking traits: Whenever people move in a demic process, they carry along
their traits to the receiving region. Changes in trait are proportional to the number of
immigrants (proportional to Bj ) and inversely proportional to the number of original
inhabitants Bi

dXi

dt

∣∣∣∣
demic

=
{

ςdemic
∑

j∈Ni
fi j X j

B j

Bi
, ri ≥ 0

0 otherwise
(17.14)

Information exchange: Traits do not decrease when they are exported. Thus, only
the positive contribution from the diffusion equation Eq. (17.12) is considered:

dXi

dt

∣∣∣∣
info

= ςinfo

∑

j∈Ni , fi j>0

fi j · (X j − Xi ) (17.15)

The diffusion parameter was estimated to be ςinfo = 0.2 in a reference scenario
[21]. Despite the formal similarity of Eqs. (17.14) and (17.15) suggesting a mere
factor ςdemic/ςinfo as the difference, the processes are rather different: migration is
mass-conserving, information exchange is not (note the summation of only positive
fi j for information exchange) and migration is hindered by bad living conditions,
information exchange is not.

17.3 Model Applications to Diffusion Questions

Two questions have been addressed with GLUES that are specific to diffusion. First
and foremost, the wave front propagation speed was diagnosed from the model
with respect to both demic and cultural diffusion [21]. For a mixed demic and
cultural diffusion scenario, the authors found a wave front propagation speed of
0.81 km a−1 radiating outward of an assumed center near Beirut (Lebanon) in the
European dataset, somewhat faster than the speed diagnosed from radiocarbon data
(0.72 km a−1 [30]). Both in the radiocarbon data and the model simulation, however,
there is large scatter from the linear time-distance relationship, with a lower than
average propagation speed in the Levante before 7000 BCE, and with higher than
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average propagation speed with the expansion of the Linearbandkeramik (LBK) in
the sixth millennium BCE.

It was also found that there is a regionally heterogeneous contribution of demic
and cultural diffusion, and of local innovation in the simulated transition to agropas-
toralism.While either diffusion mechanism is necessary for a good reconstruction of
the emergence of farming, the major contribution to local increases in T orC is local
innovation. Diffusion (its contribution is in many regions around 20% to the change
in an effective variable) seems to have been a necessary trigger to local invention.

Not only is the contribution of diffusive processes heterogeneous in space, but it
also varies in time. This was shown by studying the interregional exchange fluxes
in the transition to farming for Eurasia with GLUES [32]. Most Eurasian regions
exhibited an equal proportion of demic and cultural diffusion events when integrated
over time, with the exception of somemountainous regions (Alps, Himalayas), where
demic diffusion is probably overestimated by the model: the higher populations in
the surrounding regions may lead to a constant influx of people into the enclosed and
sparsely inhabited mountain region.

When time is considered, however, it appears that diffusion from the Fertile Cres-
cent is predominantly demic before 4900 BCE, and cultural thereafter; that east of
the Black Sea, diffusion is demic until 4200 BCE, and cultural from 4000 BCE.
The expansion of Southeastern and Anatolian agropastoralism northward is predom-
inantly cultural at 5500BCE, and predominantly demic 500 years later. At 5000BCE,
it is demic west of the Black Sea and cultural east of the Black Sea; at 4500 BCE,
demic processes again take over part of the eastern Black Sea northward expansion.
This underlines that “Previous attempts to prove either demic or cultural diffusion
processes as solely responsible [...] seem too short-fetched, when the spatial and
temporal interference of cultural and diffusive processes might have left a complex
imprint on the genetic, linguistic and artefactual record” [32].

Unlike in many other models, the diffusion coefficient D here is an emergent
property, that varies in space and time, and that varies among all neighbors of each
region. The diffusion coefficient varies between zero and 7 km2 a−1; Fig. 17.5 shows
the topology of the interregional connections in Europe and their maximum diffusion
coefficients. Maximum diffusion is highest on the Balkan and within Italy (up to 4
km2 a−1), it is one order ofmagnitude lower for all ofNorthernEurope. This shows the
importance of the Balkans as a central hub for the diffusion of Neolithic technology,
people, and ideas; there seem to have been main routes for Neolithic diffusion across
the Central Balkan, along Adriatic coastlines, or, to a lesser extent, up the Rhône
valley.

The diffusion coefficient D seems first and foremost tomatch themigration rate of
populations of ultimately Anatolian/Near Eastern ancestry into and within Europe.
On a continental scale this rate should have been higher in Southeastern Europe and
possibly in Italy, equally along the Rhône. This is supported by recent archeological
and archeogenetic data, at least for Southeastern and Central Europe [16, 17]. There-
fore, it is to be assumed that the proportion of non-indigenous populations should
have been highest in these areas. Towards the north the spread of these immigrant
Neolithic populations was halted until about 4000 BCE, after which farming spread
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Fig. 17.5 Topology of European regional connections and maximum diffusion coefficient for each
region. Circles represent geographic centers of regions, red circles highlight regions with large
maximum influence; the size of the highlighted connections represents the maximum diffusion
coefficient between two adjacent regions. Shading indicates the three regions analyzed in Fig. 17.6,
labeled Bulgaria, Serbia, Hungary (from south to north)

further across the northern and northwestern European continent as well as to the
British Isles. This stagnation pattern is visible from archeological evidence [13, 33]
and represented inmodel simulations [34]. Towards the continental west the evidence
for a lesser proportion of allochtonous cultural traits in the archeological record of
farming societies has continuously been interpreted as an increase in indigenous
populations within these societies; therefore the rate of immigrants should have been
lower. This has at least been suggested by archeology [35]; recent genetic studies
have shown, however, that the influx of a population of ultimatelyBalkanic/Anatolian
origin seems also to have been strong in the Paris Basin and Eastern France [36].

While the simulated Neolithic transition is reasonably well reflected on the conti-
nental scale, the model skill in representing the individual regional spatial expan-
sions varies. For example, the particular geographic expansion of the LBK in Central
Europe occurs too late and is too small in extent towards the Paris Basin. On the other
hand, the timing of the arrival of the Neolithic in the Balkans, in Southern Spain, or
in Northern Europe is well represented [34].

For three selected regions along the Central Balkan diffusion main route (high-
lighted in Fig. 17.5), we analyzed the temporal evolution of their diffusion coeffi-
cients (Fig. 17.6). A similar pattern is visible in all three regions and all diffusion
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Fig. 17.6 Time evolution of the diffusion coefficient for three selected regions of Central Europe
(Bulgaria, Serbia, Hungary; shown in black, red, and blue, respectively). For each of these three
regions, the family of trajectories represents the region’s diffusion coefficients with respect to
each of its adjacent regions. The shaded bars indicate the time interval of a regional transition to
agropastoralism in the simulation (10–90% of C)

coefficients: D starts at zero, then rapidly rises to a marked peak and slowly decays
asymptotically to an intermediate value. This behavior is a consequence of the local
influence and its difference to adjacent regions. Initially the influence difference is
zero, because all regions have similar technology and population. As soon as one
region innovates (or receives via diffusion technology and population from one of
its neighbors), population and technology increase, and so does the influence differ-
ence to all other neighbors. With an increase in influence and diffusion coefficient,
demic and cultural diffusion to neighbors decrease the influence differences. Rela-
tive proportions among the diffusion coefficients of one region to all its neighbors
are constant and attributed to the geographical setting.

The time evolution of the diffusion coefficient plotted in Fig. 17.6 reflects the
population statistics for advancing Neolithic technology: Early farming appears to
be associated with a rapid increase in population, this on a supra-regional scale [37,
38]. At the regional level, the diffusion coefficient lags the onset of farming by several
hundred years. This lag is also empirically reflected in the data set of the Western
LBK [39]. Any pioneering farming society seems to have followed more or less the
same general population trajectory with a gradual increase over several centuries,
followed by a sudden rise-and-decline. The causes for this general pattern are yet
unclear, but may have to be sought more in social behavior patterns rather than purely
economic or environmental determinants [40].
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17.4 Conclusions

It has been long evident that the Neolithic “Revolution” is not a single event, but
heterogeneous in space and time. Statistical models for understanding the diffusion
processes, however, have so far assumed that a physical model of Fickian diffu-
sion can be applied to the pattern of the emergence of farming and pastoralism
using constant diffusion coefficients. Relaxing this constraint, and reformulating the
diffusivity as a function of influence differences between regions, demonstrates how
diffusivity varies in space and time.

When results using this variable correlation coefficient (D) are compared to empir-
ical archeological data, they represent the dynamics on a continental scale and on the
regional scale for many regions well, but not for all: The impetus of the Neolithic in
Greece and the Balkans is well represented, also in Southeastern Central Europe. The
emergence and the expansion of the Central European LBK shows, however, a too
early expansion in the model, whereas the stagnation following the initial expansion
is again very well represented.

Divergence between the mathematical model and the empirical findings provided
by archeology is unsurprising and expected, because human societies behave in
much more complex ways than are described in the highly aggregated and simplified
model. Individuals may have chosen to act independent of the social and environ-
mental context and against rational maximization of benefits. Rather than perfectly
capturing each regional diffusion event, the mathematical model serves as a null
hypothesiswhich is broadly consistentwith the archeologically reconstructedpicture,
and against which individual decisions can be assessed. In this respect, the simple
model helps to disentangle in complex histories general forcing agents and individual
choices.

The numerical model and necessary datasets have been publicly released under an
open source license. The code is available from SourceForge (https://sf.net/p/glues/).
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Chapter 18
Modeling Language Shift

Anne Kandler and Roman Unger

18.1 Introduction

Languages behave similarly to living species [1, 2] (see also Chap. 3). They display
diversity, differentiate in space and time, emerge and disappear. While processes of
differentiation happen at a relatively slow rate with a typical timescale of the order of
1,000 years to evolve into different languages (e.g. [3, 4]) language extinction takes
place at a substantially faster rate [5]. Language birth and extinction are natural
processes that have taken place ever since language came into existence but the
current linguistic extinction rate is immense; it even exceeds the rate of loss of
biodiversity (e.g. [6–8]). It is estimated that half of the world’s languages existing
todaywill disappear in the21st century [7]. Serious concerns over the loss of linguistic
diversity, seen as a benchmark for overall cultural diversity, have driven governments
and international organizations to actively engage in the conservation of endangered
languages [6, 9, 10].

Most recent language extinction events are caused by language shift rather than
the extinction of the population speaking this language [5]. Language shift is defined
as the process where members of a community in which more than one language is
spoken abandon their original vernacular language in favor of another. Knowledge
of a language can selectively facilitate and inhibit interaction, enable social contracts
and cooperative exchange and give access to accumulated and linguistically encoded
knowledge [11]. Therefore in language contact situations people are confronted with
choices about which language to speak. Now in the course of globalization and of
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recent trends for urbanization and long-distance economic migration, interactions
between groups speaking different languages have increased and so has the need for
a common language of communication. Language shift is initiated by the decision
to abandon a more local or less prestigious language, typically because the target of
the shift is a language seen as more modern, useful or giving access to greater social
mobility and economic opportunities [1, 5, 12]. But crucially language shift is not
caused by cultural selection acting on particular features of a language but by people
shifting between two languages because of their perceived benefits [13].

A language dies with its last speaker. In other words, a language is not a self-
sustaining entity; it can only exist when there is a community to speak and transmit it
[14]. The number of speakers can therefore be interpreted as ameasure of the ‘health’
of the language. In mathematical terms we can consider the process of language shift
as a competition where two or more languages compete for speakers. Modeling the
competition dynamics between interacting species has a long tradition in the ecolog-
ical literature (see e.g. [15]) and based on the similarity between the ecological and
linguistic situations a number of mathematical approaches have been proposed to
describe the temporal and spatial dynamics of language shift. These approaches
can potentially contribute to a better understanding of the process of language
shift by identifying the demographic, socio-economic, cultural and/or linguistic
processes that are needed to explain observed patterns of real-world language shift
scenarios. The formal analysis of those mathematical models can then inform about
the long-term outcome of language shift provided the competition environment stays
unchanged or changes according to the scenario assumed in the model.We stress that
even if a model can replicate past demographic trajectories accurately the validity
of prediction about the future course of language shift depends on the validity of
the assumptions about the future state of the competition environment. Additionally,
mathematical models can be used as an artificial experiment. They can give an indi-
cation about what needs to be changed in order to alter the language shift dynamics.
In this context, models can provide useful information about the potential success of
different intervention strategies, in particular they can inform about the total inter-
vention strength that is needed to achieve a desired goal, e.g. the stabilization of the
bilingual population group.

In this chapter we provide a brief overview of the recent literature on modeling
language shift with special emphasis on spatial dynamics. Further, we introduce a
diffusion-reaction approach and illustrate its usefulness for questions related to revi-
talization efforts. Further, we apply this framework to the English-Gaelic language
shift situation in Western Scotland and demonstrate what kind of information can be
obtained from mathematical modeling efforts.
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18.2 Modeling Approaches

Research into mathematical modeling of the dynamics of language shift has gained
momentum with the seminal paper by Abrams and Strogatz [16]. However, already
before its publication a number of modeling approaches had been published on this
subject (e.g. [17, 18]). In this section we briefly introduce the Abrams and Strogatz
model [16] and some of its generalization with particular focus on spatial dynamics.
We stress that we do not provide an exhaustive literature review but concentrate on
diffusion-reaction approaches to language shift.

18.2.1 Abrams and Strogatz Model

The modeling framework proposed by Abrams and Strogatz [16] assumes that two
mutually unintelligible languages A and B compete for a fixed number of potential
speakers. The time-dependent variables ni , i = 1, 2 describe the relative frequencies
of monolingual speakers of languages A and B, respectively (each individual speaks
either language A or B). In other words, the variables ni describe the fractions of
speakers of either language in the population. Further, population size is assumed to
be constant and therefore it holds n1 + n2 = 1. The dynamics of language shift is
governed by the following differential equation

dn1
dt

= n2P12(n1, s) − n1P21(n2, 1 − s). (18.1)

The variable s describes the perceived relative status of languageA on a scale from
0 to 1 and reflects the social and economic opportunities afforded to its speakers. The
status of language B is given by 1 − s. The term P12 denotes the probability that an
individual speaking language B converts to speaking language A. (For consistency
purposes we assume in the remainder of this chapter that the first index of shift
probabilities and coefficients indicates the target of the shift process while the second
index describes the source. Further, index 1 stands for language A and index 2 for
language B.) This probability is assumed to be frequency- and status-dependent and
is given by the power law

P12(n1, s) = mna1s. (18.2)

The exponent a models the level of resistance of monolingual speakers to change
their language [19], and the coefficient m controls the peak rate at which speakers
of language B shift to language A. Similarly, P21 denotes the probability that an
individual speaking language A converts to speaking language B

P21(n2, 1 − s) = mna2(1 − s). (18.3)
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Consequently, the higher the status of a language and the higher the number of
its speakers, the more speakers the language will recruit per time unit.

Model (18.1) predicts that one language (depending on status and initial frequen-
cies) will always go extinct over time. Abrams and Strogatz [16] fitted their model to
time series data describing several language shift situations (including the English-
Gaelic shift in the county Sutherland and the Spanish-Quechua shift in Huanuco)
and were able to accurately describe the observed temporal language shift dynamics.

Based on these results model (18.1) appeared to be a promising approach tomodel
language shift. Nevertheless, the framework rests on assumptions which have been
deemed unrealistic. In particular, model (18.1) assumes that (i) languages are fixed,
(ii) the population is highly connected with no spatial or social structure, (iii) all
speakers are considered monolingual, (iv) population size is assumed to be constant
and (v) the use and usefulness of both competing languages is the same in all social
contexts. Subsequent modeling approaches generalized the Abrams and Strogatz
model (18.1) by addressing one or more of these shortcomings.

18.2.2 Generalizations

Generalizations of the modeling idea by Abrams and Strogatz [16] can be broadly
divided into differential equation-based approaches and simulation-based approaches
(for a review of this literature see e.g. [20–22]). While some approaches focused on a
more detailed description of the demographic properties of the interacting population
groups others focused on a more realistic description of the process of language
shift. In the following we concentrate on equation-based modeling frameworks with
a particular emphasis on spatial dynamics. Nevertheless, we note that a large amount
of research has been devoted to simulation-based approaches and produced crucial
insights into the process of language shift (e.g. [23–28]).

It is widely known that the introduction of spatial dynamics can lead to the emer-
gence of qualitative changes in dynamical patterns, in particular it can change the
interaction dynamics between populations (e.g. [15, 29, 30]). To explore this fact,
Patriarca and Leppänen [31] introduced spatial dependence into model (18.1) by
formulating a diffusion-reaction system of the form (see also Eq. (2.19) in Chap. 2)

∂c1
∂t

= D1�c1 + c2P12(n1, s) − c1P21(n2, 1 − s)

∂c2
∂t

= D2�c2 + c1P21(n2, 1 − s) − c2P12(n1, s). (18.4)

The space- and time-dependent variables ci describe the absolute frequencies of
the two population groups speaking language A or B at location x and time t , i.e. the
variables ci stand for the total number of speakers of both languages in the population.
As above, the time-dependent variables ni denote the relative frequencies of both
languages in the population. Spatial dispersal ismodeled by the diffusion components
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Di�ci . The diffusion coefficients Di are measures of the spatial mobility of both
population groups. The shift probabilities P12 and P21 are given by Eqs. (18.2) and
(18.3).

The analysis ofmodel (18.4) revealed that if two languages of different status exist
initially in the same spatial domain, only extinction states are stable equilibria. But
if the initial “home ranges” of the two language groups speaking languages A and B
are spatially separated and if the shift probabilities P12 and P21 in those home ranges
depend only on the relative frequencies of languages A and B in the local populations
then the two languages will exclude each other in their home ranges but coexist
globally (see also [21] for additional analyses). Summarizing, competition under
spatial structure can generate novel results: since competitive exclusion depends on
initial conditions, both equilbria are (locally) possible.

Kandler and Steele [32] expandedmodel (18.4) by allowing for population growth
(see also Chap. 2, Eqs. (2.15) and (2.18) for an introduction to logistic growth
processes). They analyzed the system

∂c1
∂t

= D1�c1 + α1

(
1 − c1

K − c2

)
+ kc1c2

∂c2
∂t

= D2�c2 + α2

(
1 − c2

K − c1

)
− kc1c2 (18.5)

where population growth ismodel by the logistic growth termsαi

(
1 − ci

K−c j

)
, i �= j .

The coefficients αi express the internal growth rates of both population groups and K
defines the carrying capacity, i.e. the upper limit of the population size regardless of
the language spoken at location x any time t. This naturally leads to the condition c1+
c2 ≤ K ,∀t, x . The coefficient k represents the shift coefficient and, analogously to
model (18.1), expresses the difference of social and economic opportunities afforded
to the speakers of both languages.Model (18.5) predicts that coexistence between two
languages of different status is not possible, even when initially spatially separated.
For k > 0 language A will always prevail in competition (and similarly language B
for k < 0) and the spatial dynamics of the extinction process shows a travellingwave-
like pattern. Coexistence between the two languages, however, is possible when their
status differences change between spatial regions. This can be implemented in model
(18.5) by allowing the shift coefficient k = k(x) to be space-dependent.

Walters [33] considered a system similar to (18.5) but assumed separate carrying
capacities for both population groups. Global stability analysis indicated that, subject
to appropriate parameter constraints, extinction and coexistence states might be
stable, depending on the initial number of speakers of both languages.

Patriarca and Heinsalu [34] presented a diffusion-reaction framework with an
additional advection term and analyzed the influence of external factors not related
to the cultural transmission process on the language shift dynamics. They showed
that the initial distribution of the population groups speaking languages A and
B, geographic boundaries as well as spatial inhomogeneities strongly affect the
dynamics of language shift.
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Fort and Perez-Losada [19] used an integral formulation and described population
dispersal through a dispersal kernel ansatz, which also accounted for a cohabitation
effect (defined as joint dispersal of new-bornswith their parents). The diffusion kernel
describes the probability distribution of different migration distances and allows for
the analysis of non-local dispersal patterns. Based on this model they estimated the
speed with which a novel language spreads into a region. They applied their model to
the English-Welsh language shift in Wales and showed that the predicted front speed
coincided reasonably well with the observed speed. Further, Fort and Perez-Losada
[19] concluded that the dynamics of language shift is more sensitive to linguistic
parameters (i.e. the model parameters controlling the strength of the shift process)
than to reproductive and dispersal parameters.

Isern and Fort [35] described the dynamics of language shift by the following
one-dimensional diffusion-reaction approach

∂c1
∂t

= D
∂2c1
∂x2

+ αc1

(
1 − c1 + c2

K

)
+ k

(c1 + c2)η+λ−1
cη

1c
λ
2

∂c2
∂t

= D
∂2c2
∂x2

+ αc2

(
1 − c1 + c2

K

)
− k

(c1 + c2)η+λ−1
cη

1c
λ
2 . (18.6)

Spatial dispersal is again modeled by a diffusion process and D denotes the
diffusion coefficient. The coefficient α describes the growth rate, k(> 0) is a time-
scaling parameter and the coefficients η, λ ≥ 1 control the status differences of both
languages. In model (18.6) extinction of the language B is inevitable. As in [20]
the spatial extinction dynamics showed a travelling wave-like pattern. Isern and Fort
[35] derived estimations of the front speeds and applied the model to a number of
historical case studies of language shift. They showed that the fit of model (18.6) is
comparable to the fit of the original Abrams and Strogatz model (18.1).

Zhang and Gong [36] pointed out that all modeling approaches mentioned above
rely onmodel fitting procedures, especially for determining the status s of a language
and the shift coefficients, when applied to real world data. This implies that the
temporal (and spatial) resolution of the observed frequency data needs to be suffi-
ciently high so that reliable estimates of the model parameters can be obtained. To
circumvent this problem they proposed a more mechanistic approach. They assumed
that the temporal language shift dynamics can be described by the following system

dc1
dt

= α1c1

(
1 − c1

K1
− k1

c2
K2

)

dc2
dt

= α2c2

(
1 − c2

K2
− k2

c2
K1

)
(18.7)

where Ki describes the maximum population sizes of the monolingual population
groups speaking languages A or B. Crucially, Zhang and Gong [36] determined the
values of αi and ki externally through the so called language diffusion principle
(based on Fourier’s law of heat conduction) and the language inheritance principle.
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They applied model (18.7) to a number of case studies and concluded that historical
shift trajectories could be well replicated.

All modeling approaches discussed so far have been mainly concerned with a
more realistic description of reproduction and dispersal properties of the popula-
tion groups speaking different languages but assumed that language shift happens
instantaneously. Monolingual speakers of one language convert directly to be mono-
lingual speakers of another language. Below we briefly introduce how the concept
of bilingualism can be incorporated in models of language shift.

Mira and Paredes [37] generalized the original Abrams and Strogatz model (18.1)
by adding a third, bilingual population group whose frequency is denoted by n3. This
means individuals can be either monolingual in language A or B, or bilingual in both
languages. Population size is still assumed to be constant and therefore it holds n1 +
n2+n3 = 1. Further, they introduced the parameter κ,whichmeasures the likelihood
that two monolingual speakers of the languages A and B can communicate with each
other (κ = 0 means that both languages are mutually unintelligible and therefore no
communication is possible; an increase in κ signals increasing similarities between
the languages) and proposed the following system of differential equations

dn1
dt

= (n2 + n3)P12(n1, s) − n1(P21(n2, 1 − s) + P31(n2, 1 − s))

dn2
dt

= (n1 + n3)P21(n2, 1 − s) − n2(P12(n1, s) + P32(n1, s)). (18.8)

Similarly to the relations (18.2) and (18.3) of the Abrams and Strogatz approach
(18.1) the shift probabilities are defined by

P21(n2, 1 − s) = m(1 − κ)(1 − n1)
a(1 − s), P31(n2, 1 − s) = mκ(1 − n1)

a(1 − s),

P12(n1, s) = m(1 − κ)(1 − n2)
as, P32(n1, s) = mκ(1 − n2)

as,

P13(n1, s) = P12(n1, s) and P23(n2, 1 − s) = P21(n2, 1 − s).

This implies that the probability for speakers of, for example, language A to
adopt language B is divided between the probability of becoming bilingual, P31,
and the probability of becoming monolingual in language B, P21. The more similar
the languages, i.e. the closer κ is to 1, the more likely individuals become bilingual
(instead of abandoning their mother tongue) [37]. Mira and Paredes [37] showed
that coexistence between languages of different status is possible given they are
sufficiently similar to each other. Importantly, the low-status language is maintained
in the bilingual population. Model (18.8) predicts that in the long term only the
bilingual and monolingual population group speaking the high-status language can
coexist. They fitted their model to time series data collected for the language shift
between Castillian Spanish and Galician and found a good coincidence.

Minett and Wang [38] also analyzed the effect of a bilingual strategy on the
language shift dynamics but considered mutually unintelligible languages A and B.
They introduced a bilingual population group, as above its frequency is denoted
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by n3, and assumed that language shift cannot happen directly but must involve a
transitional bilingual state, i.e. once individuals have acquired a language they cannot
lose it over their life time. Further, they assumed a constant population size (which
implies n1 + n2 + n3 = 1) and formulated the following system of differential
equations

dn1
dt

= μm13s(1 − n1 − n2)n
a
1 − (1 − μ)m31(1 − s)n1n

a
2

dn2
dt

= μm23(1 − s)(1 − n1 − n2)n
a
2 − (1 − μ)m32sn2n

a
1. (18.9)

The variables mi j define the peak attractiveness of state i on individuals in state
j (As before state 1 stands for monolingual language A, state 2 for monolingual in
language B and state 3 for bilingual). The coefficient μ describes the mortality rate
at which adults are replaced by children. The first terms in both equations of model
(18.9) describe the dynamics of vertical transmission. It is assumed that children of
monolingual parents necessarily acquire the language of their parents but children to
bilingual parents can adopt either or both of the competing language [38]. In contrast,
the second terms describe the dynamics of horizontal transmission and therefore the
process of becoming bilingual. Model (18.9) predicts the extinction of one language:
the possibility of bilingualism alone cannot produce coexistence. Minett and Wang
[38] went on and explored how coexistence could be engineered externally. They
found that raising the status of the endangered language whenever its frequency
falls below a certain threshold together with isolations of the two languages by
encouraging monolingual education of children can result in coexistence between
all three population groups.

Parshad et al. [39] investigated the effect of a hybrid Hinglish code-switching
population group on the competition between English and Hindi in India using a
three-population diffusion-reaction system (Hinglish stands for themacaronic hybrid
use of English and South Asian languages.). They found that coexistence between a
Hindi-English bilingual group, a Hindi monolingual group and a Hinglish group is
possible and argued that this might be the most realistic outcome.

18.3 Diffusion-Reaction Models with Bilingual Transition
State

In this section we describe the modeling approaches taken in [11, 20]. We assume
the existence of two mutually unintelligible languages A and B in a bounded, two-
dimensional domainG, which compete for speakers. The time- and space-dependent
variables c1(t, x) and c2(t, x) describes the frequencies of the twomonolingual popu-
lation groups (speaking languages A and B, respectively) and c3(t, x) the frequency
of the bilingual population group at time t and location x ∈ G. Being bilingual in
this context simply means being proficient in both languages.
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18.3.1 Basic Model

We start our analysis by describing the properties of the process of language shift
when its temporal and spatial dynamics is solely driven by the frequencies of the
three population groups, the demographic and cultural attributes of these groups and
the benefits both languages convey to their speakers. In the following, we assume
that the temporal changes of the frequencies ci of the three population groups are
determined by

• Spatial spread processes, Di�ci with i = 1, 2, 3,
• Processes of biological and cultural reproduction, αi ci

(
1 − ci

K−c j−ck

)
with

i, j, k = 1, 2, 3 and i �= j �= k and
• Processes of language shift, ki j ci c j with i, j = 1, 2, 3 and i �= j .

In more detail, the spatial mobility of individuals of each population group is
modeled by the diffusion terms Di�ci . The diffusion coefficients Di are ameasure of
the scale of spatial interactionswithin the different groups. Spatial dispersal therefore
has only a local dimension (for a comprehensive review of the application of diffusion
processes to human dispersal see [22]).

The logistic growth terms αi ci (1−ci/(K−c j −ck))model biological and cultural
reproduction in each population groupwhereby the coefficientsαi express the growth
rates. The variable K defines the upper limit of the population size regardless of the
language spoken at any time t and location x . This naturally leads to the condition
c1 + c2 + c3 ≤ K ,∀t, x .

Language shift is modeled by frequency-dependent shift terms ki j ci c j . The coeffi-
cients ki j , i, j = 1, 2, i �= j quantify the pressure one language puts on monolingual
speakers of the other language. But it is assumed that language shift cannot happen
by directly shifting from speaking one language only to speaking another language
only but must involve a bilingual transition state. Therefore the consequences of
the exerted pressure are that monolingual speakers become bilingual, and the coef-
ficients k12 and k21 can be interpreted as the rate at which monolingual speakers
become bilingual due to the attractiveness or status of the other language. Similarly
to [38], we define k12 = k̃12s and k21 = k̃21(1 − s) where the variable s describes
the status difference between the two languages ranging from 0 to 1. The status of
a language, very simplistically, quantifies the social, cultural, economic or political
opportunities afforded to its speakers [16]. The coefficients k̃12 and k̃21 indicate how
strong monolinguals respond to those status differences. Similarly, the coefficients
k13 and k23 quantify the rate at which bilinguals become monolinguals. This tran-
sition back to monolingualism can e.g. be associated with bilingual parents who
choose to raise their children in one language only. Again we assume k13 = k̃13s
and k23 = k̃23(1 − s) and the coefficients k̃13 and k̃23 indicate how strong bilinguals
respond to the status differences of the two competing languages.



374 A. Kandler and R. Unger

These assumptions lead to the following diffusion-reaction system (where, as
mentioned above, c1(t, x) and c2(t, x) describes the frequencies of the two mono-
lingual population groups speaking languages A and B, respectively and c3(t, x) the
frequency of the bilingual population group at time t and location x ∈ G)

∂c1
∂t

= D1�c1 + α1c1

(
1 − c1

K − c2 − c3

)
− k21c2c1 + k13c3c1

∂c2
∂t

= D2�c2 + α2c2

(
1 − c2

K − c1 − c3

)
− k12c1c2 + k23c3c2

∂c3
∂t

= D3�c3 + α3c3

(
1 − c3

K − c1 − c2

)
+ (k21 + k12)c2c1 − (k13c1 + k23c2)c3

(18.10)

with the boundary conditions ∂ci/∂n = 0, x ∈ ∂G, i = 1, 2, 3 (where ∂/∂n
describes the outer normal derivation). These conditions imply that no spatial spread
is possible beyond the boundary ∂G.

Summarizing, the outflow of speakers from the two monolingual population
groups is governed by the status difference of the two competing languages, the
propensity of the groups to respond to those differences and the frequency of the
other monolingual population group (see Fig. 18.1 for an illustration). It holds: the
higher the status of a language the lower is the shift towards the bilingual group but
the higher the frequency of the other monolingual population group the higher is the
shift towards the bilingual group.

In the following we investigate the dynamics of language shift between a high-
status and a low-status language, i.e. it has to hold k21 < k12 and k13 > k23. In this
situation languageA is consideredmore advantageous or high-status asmonolinguals
of language A are less likely to become bilinguals and bilinguals are more likely to
become monolingual in language A.

18.3.1.1 Role of Spatial Dispersal

The only stable equilibria of model (18.10) are the extinction states (K, 0, 0) and (0,
K, 0). Depending on the status difference between the two competing languages and
the demographic and cultural attributes of the three population groups, especially
their initial frequency distributions, one language will acquire all speakers over time.
Importantly, that does not have to be the high-status language.

To illustrate this point in more detail we consider the following situation. Initially
the low-status language B is spoken by the vast majority of the population situated in
a two-dimensional domain G but the high-status language A has entered the popula-
tion in a small regionG ′ where both languages are in direct contact. For simplicity we
assume a uniform initial frequency distribution of monolingual speakers of language
A in G ′. Now the shift dynamics of model (18.10) results in the emergence of the
bilingual population group in the language contact zone. If all population groups
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Fig. 18.1 Schematic illustration of the shift dynamics assumed in model (18.10). The dynamic
depends on the frequencies ci of the different population groups and the benefits both languages
convey to their speakers. The coefficients ki j , i, j = 1, 2, i �= j quantify the pressure one language
puts on monolingual speakers of the other language and can be interpreted as the rate at which
monolingual speakers become bilingual. Similarly, the coefficients k13 and k23 quantify the rate at
which bilinguals become monolinguals

show similar demographic properties (i.e. possess similar growth rates αi and suffi-
ciently small diffusion coefficients Di ) the monolingual population group speaking
the high-status languageA and the bilingual group grow in frequency in the regionG ′
causing in turn the frequency monolingual population group speaking the low-status
language B to decline in this region. Crucially, model (18.10) assumes that bilin-
gualism facilitates the communication between two monolingual population groups
and therefore the bilingual group will disappear in a local area soon after languages
B has disappeared from there. Local diffusion causes a steady expansion of language
A in a travelling wave-like manner. With time the contact and mixing zone between
the two languages is shifted toward the edges of the domain with extinction of the
population group speaking language B followed by bilingual group as the long-term
outcome.

However, if the ‘invading’ population group speaking language A shows a high
spatialmobility (i.e. high diffusion coefficient D1) the shift dynamics can be reversed.
The greatermobility of speakers of languageAcauses a dramatic dilution of the initial
frequency of speakers in the domain G ′. If the intrinsic growth rate α1 is not able to
compensate for this loss the frequency-dependent dynamics predominate, leading to
the extinction of the population group speaking language A and subsequently of the
bilingual group.

Figure 18.2 illustrates the basins of attraction of the extinction states (K , 0, 0) (all
parameter combinations above the curves) and (0, K , 0) (all parameter combinations
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Fig. 18.2 Long-term outcome of language shift in region G, initially populated by monolingual
speakers of language B with a certain number of monolingual speakers of language A concen-
trated in a sub-region G′, as a function of the initial size (‘frequency’) of the population group
speaking language A situated in G′, the value of the status variable s and the spatial mobility of
the speakers (denoted by Di ). The parameter combinations below the curves lead to populations
speaking language A only (K, 0, 0) while the combinations below the curves lead to populations
speaking language B only (0, K, 0). Despite the status disadvantage, language B can outcompete
language A in situations where there are not enough speakers of language A initially and they
disperse too quickly

below the curves) for the parameter s and the initial frequency of the high status
language in the domainG ′ for different values of D1 = 10−5, 10−4, 10−3.Weobserve
a nonlinear relationship and as expected the outcome of language shift is strongly
influenced by the status difference of the two competing language. If themonolingual
population group speaking language A shows a larger mobility then language A need
to have a higher status or the ‘invading’ population group must be more frequent to
nevertheless attract all speakers in the domain G.

Summarizing, as expected the difference in status between the competing
languages influences the dynamics of language shift greatly: the higher the status of a
language the higher its chances to dominate the shift scenario. But also the dispersal
behavior and the initial distribution of the different population groups play an impor-
tant role. If the low-status language is sufficiently established in the population, it
can prevail in competition with a higher-status language.

Model (18.10) describes spatial dispersal by the locally actingLaplace operator�.
This implies that speakers interact only with their local neighborhood. This however,
might not be realistic for all episodes of human dispersal and it has been argued that
dispersal distances are better approximated by long-range dispersal kernels (e.g. [40,
41]). This can be included in model (18.10) by replacing the diffusion terms Di�ci
with the integral formulation



18 Modeling Language Shift 377

λi

⎡
⎣∫

G

ci (t, x + δ)φi (δ)dδ − ci (t, x)

⎤
⎦ (18.11)

where the kernel functions φi (δ) define the probability distributions of the dispersal
length δ for each population group and the coefficients λi are a measure of the
dispersal rates (see e.g. [42, 43]) for a detailed analysis of such dispersal models
and [19] for an application to language shift). If researchers possess data to estimate
the kernel functions φi (δ) describing the dispersal distances of the different popu-
lation groups reliably then the integral formulation (18.11) should be preferred to
the diffusion formulation of model (18.10) as we have seen that the spatial dispersal
behavior can qualitatively and quantitatively change the dynamics of language shift
(see [20] for a more detailed analysis of the effects on different diffusion kernels on
the language shift dynamics).

18.3.1.2 Role of Bilingualism

As already mentioned, model (18.10) assumes that bilingualism facilitates the
communication between two monolingual (and spatially separated) population
groups. Now if one monolingual group has gone extinct and there are no cultural or
external reasons to still use this language then the bilingual strategy is not needed
anymore for communication purposes and goes extinct as a consequence. There-
fore the bilingual strategy cannot be maintained in the population in homogeneous
environments (expressed by constant model parameters).

Nevertheless the existence of the bilingual population group influences the
dynamics of language shift greatly. Firstly (and not surprisingly) it slows down
the process of language extinction. Secondly, it can allow the low-status language
to successfully prevent the spread of the high-status language if it is sufficiently
established in the considered domain. To see this we analyze model (18.10) under
the assumption that there is no bilingual population, i.e. c3(t, x) = 0,∀t, x . In this
situation only the extinction state (K , 0, 0) is stable, or in other words, the low-status
language will always go extinct over time [32].

18.3.1.3 Coexistence

Coexistence between two different languages can be achieved inmodel (18.10) when
their status differences vary in different spatial regions. In other words, if the status
variable s, and consequently the shift coefficients k12, k21, k13 and k23 are space-
dependent with each language being the preferred medium of communication in its
own ‘home range’ then the two languages still outcompete each other in their ‘home
ranges’ but coexist globally.
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18.3.2 Diglossia Model

Model (18.10) describes language shift in a single social domain, and assumes that the
shift dynamics is solely governed by the frequencies of the three population groups,
the demographic and cultural attributes of these groups and the status difference of
the two competing languages. We have seen that in this situation the loss of linguistic
diversity is inevitable: the extinction of a monolingual population group is followed
by the extinction of the bilingual group. But reality is likely to be more complex. For
instance, the benefit a language conveys to its speakers might be different in different
social domains. Additionally, the aim of intervention strategies is usually not to
reverse the outcomeof language shift as the high-status languageprovides its speakers
with additional benefits compared to the low-status language (e.g. participation in
higher education or ‘global’ business) but to strengthen the survival chances of the
endangered language by creating social and cultural domains where the low-status
language is still used and potentially even the preferred medium of communication
[44].

To consider the effects of the existences of segregated and complementary soci-
olinguistic domains, in each of which both languages are differentially preferred as
medium of communication, model (18.10) has been generalized based on a simpli-
fied concept of diglossia [11]. Diglossia, in the strict sense, refers to situations where
the mother tongue of the community is used in everyday (low status) settings, but
another language (or another form of the vernacular language) is used in certain high
status domains [45, 46]. We assume that in the majority of social domains the shift
mechanisms of model (18.10) apply but there exist some restricted social domains in
which the balance of competitive advantage between the two languages differs from
that which drives the main shift process. The temporal and spatial dynamics of the
process of language shift is now determined by

∂c1
∂t

= D1�c1 + α1c1

(
1 − c1

K − c2 − c3

)
− k21c2c1 + k13c3c1 − w1c1

∂c2
∂t

= D2�c2 + α2c2

(
1 − c2

K − c1 − c3

)
− k12c1c2 + k23c3c2 − w2c2

∂c3
∂t

= D3�c3 + α3c3

(
1 − c3

K − c1 − c2

)
+ (k21 + k12)c2c1

− (k13c1 + k23c2)c3 + w1c1 + w2c2 (18.12)

where the coefficientsw1 andw2 quantify the pressure to participate in social domains
where the other language is the preferred medium of communication. The main shift
dynamics is still frequency- and status-dependent as described in model (18.10) but
additionallywe assume that ifmonolinguals of the low-status languagewant to partic-
ipate in domains where the high-status language is required (such as higher education
or ‘global’ businesses), they need to learn that language and become bilingual as a
consequence. This is modeled by the term w2c2. Similarly, if monolinguals of the
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high-status language want to participate in domains where the low-status language
is required (such as small ‘local’ businesses or administrations), they also need to
learn that language. This dynamics is modeled by the term w1c1. Importantly, the
strengths of both shift terms w1c1 and w2c2 do not depend on the frequencies of the
other language but only on the (social, cultural, economic or political) pressure to
participate in the associated domains. As long as w1 > 0, meaning as long as there
is a need for speaking the low-status language in at least some (relevant) domains,
the bilingual population will persist, however, the monolingual population group
speaking language B will go extinct nevertheless. Consequently, the language shift
dynamics described by model (18.12) is characterized by the extinction of the mono-
lingual population group speaking the endangered language and the maintenance of
the bilingual strategy in the population. But this result is conditioned on the existence
of domains where the low-status language is the preferred medium of communica-
tion (e.g.w1 > 0). Therefore intervention strategies aimed at creating those domains
(e.g. through legislation that requires the use of the endangered local language in a
specific set of contexts) affect the magnitude of the coefficient w1.

Summarizing, the existence of social domains of competition, which differ in the
competitive advantage between the two languages may allow for coexistence. Impor-
tantly, however, the endangered language is only maintained through the bilingual
population group.

18.4 The Gaelic-English Language Shift

In this section we illustrate the results of the analysis of the language shift scenario
between English and Scottish Gaelic in Scotland (see [11] for an additional analysis
of the Welsh situation). By late mediaeval times, Gaelic was the main language of
the Scottish Highlands and western islands, with Scots (descended from the Old
Northumbrian dialect of Old English) and English prevailing in the Lowlands. This
division appears to have been reinforced by a contrast between these two regions
in their social structure, marriage and migration patterns. The breakdown of the
geographical ‘niche’ for Scottish Gaelic is closely linked to the English political and
economic dominance (and the subsequent interference with the Highlands’ political
and economic systems). Drastic demographic changes (the eighteenth-nineteenth
century ‘Highland clearances’) and the establishment of English as the language
of education and advancement were associated with increasing rates of Gaelic-to-
English language shift [47]. The late stages of this shift process can be reconstructed
from census records (see electronic supplementary material in [11]). It must be
noted that historical census data on language use will include ‘noise’ owing to inac-
curate answers (for instance, owing to the perceived social status implications of
self-classification into a particular category), and to changes in the phrasing of the
questions in successive censuses. The first census to enumerate Gaelic speakers
was that of 1881, but only from 1891 were data gathered separately on numbers of
Gaelic monolinguals and Gaelic-English bilinguals (in all cases, among those aged
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Fig. 18.3 Percentages of Gaelic speakers (mono- and bilingual) in Western Scotland in successive
census years, 1891–2001. Data for civil parishes: 1891–1971 from Withers ([48], pp. 227–234);
1981 from Withers ([49], p. 40); 1991–2001 from General Register Office for Scotland ([50],
Table 3). Redrawn from [11]

3 years or older). After 1961, no data were collected for Gaelic monolinguals, as
these were assumed to be approaching extinction. From 1891 until 1971, the census
enumerations were collated and analyzed on the basis of the old county divisions.
The Highland counties Argyll, Inverness, Ross and Cromarty, and Sutherland are
seen as the ‘core land’ of the Gaelic language (‘Gaidhealtachd’): in 1891, 73% of all
Scotland’s Gaelic speakers were located among the 8% of Scotland’s population that
lived in these ‘HighlandCounties’, covering themainlandHighlands and theWestern
Isles. From 1981 onwards, these counties were subsumed into new administrative
units.

Generally, we observe a sharp decline of the number of monolingual Gaelic and
bilingual speakers in the period between 1891–2001. Areas where Gaelic is still
spoken by at least 50% of the population are pushed towards theWestern Islands over
time (see Fig. 18.3) and these empirical travellingwave-like patterns partlymotivated
the application of the diffusion-reaction framework. The absolute numbers of Gaelic
speakers in Scotland have declined through this period, from about 250,000 in the
1891 census of Scotland to about 65,000 in the 2001 census. Of these, the majority
has always been bilingual in Gaelic and English, with the last census record of Gaelic
monolinguals finding fewer than 1000 still alive in 1961.

18.4.1 Basic Model

We start by applying the basic model (18.10) to this shift scenario. In particular, we
are interested in exploring howwell our model can describe the observed trajectories
of the three population groups over time and in different spatial location. Figure 18.4
(solid lines) shows the change in the proportions of monolingual English and Gaelic
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Fig. 18.4 Frequencies of the three population groups (monolingual Gaelic: red, bilingual: green,
monolingual English: blue) in the four Scottish Highland counties (aArgyll, b Inverness, cRoss and
Cromarty, d Sutherland). Empirical data (solid lines) and theoretical predictions of model (18.10)
with k21 = k23 and k12 = k13 (dotted lines) and k21 �= k23 and k12 �= k13 (dashed lines). Shift
parameters are given in Table 18.1 and describe rates per year. Redrawn from [11]

speakers and bilinguals for the counties of Argyll, Inverness, Ross and Cromarty, and
Sutherland during the time period 1891–1971 (as mentioned above due to changes
to the county division data for these four counties is only available within this time
frame).

We fitted model (18.10) to these census data whereby the growth rates αi and
the diffusion coefficients Di are estimated from demographic data and only the shift
coefficients k12, k21, k13 and k23 are free to vary. To avoid over-fittingwe firstly restrict
ourselves to the parameter constellations k21 = k23 and k12 = k13, i.e. we assume that,
for example, language A exerts the same pressure on the population group speaking
language B and on the bilingual population group (see Fig. 18.1). Figure 18.4 (dotted
lines) illustrate that model (18.10) with k21 = k23 and k12 = k13 and values as shown
in Table 18.1 captures the general shift dynamics well. It is obvious that Gaelic is not
able to attract speakers; the outflow from the English monolingual population group
to the bilingual group is zero for all counties. However, we also observe a systematic
overestimation of the monolingual Gaelic population group and underestimation of
the bilingual group.

In the next step we allow for parameter constellations with k21 �= k23 and k12 �=
k13. With these additional degrees of freedom we (unsurprisingly) obtain a better
fit between model (18.10) and the data (Fig. 18.4, dashed lines). Interestingly, the
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Table 18.1 Fitted shift coefficients ofmodel (18.1) under the assumptions k12 = k13 and k21 = k23
(top two lines) and k12 �= k13 and k21 �= k23 (bottom four lines). All coefficients indicate rates per
year

Scottish Highlands Argyll Inverness Ross and Cromarty Sutherland

k12 = k13 0.03 0.03 0.035 0.03 0.035

k21 = k23 0 0 0 0 0

k12 0.07 0.115 0.1 0.12 0.075

k13 0.025 0.03 0.03 0.025 0.035

k21 0 0.005 0 0.005 0

k23 0 0 0 0.005 0

improved fit is almost entirely generated by an increase in the coefficient k12, and
consequently by an increased shift from the Gaelic monolingual population to the
bilingual population. This can be interpreted as evidence that the shift ismainly driven
be the desire to learn English and not by the desire to abandon Gaelic. However, we
have shown in Sect. 18.3 that the extinction of the Gaelic monolingual population
group and the bilingual group is inevitable over time.

18.4.2 Diglossia Model

The prediction of model (18.10) about the future of Scottish Gaelic is of course
only valid if the ‘competition environment’ stays unchanged. However, the Scottish
government has started to implement a number of revitalization measures. Recent
efforts have included the establishing of Gaelic-medium pre-school and primary
school units [51] and the development of Gaelic-medium broadcasting [47]. In 2005,
theGaelic Language (Scotland)Actwas passed by the Scottish Parliament, providing
a planning framework for a number of additional shift-reversal measures, while
Comhairle nan Eilean Siar, the Western Isles Council, has adopted Gaelic as its
primary language.

In this section we use the diglossia model (18.12) and ask the question of how
strong do those intervention strategies need to be in order to at least maintain the
overall bilingual population group at the level of year 2001. To do so we fitted model
(18.10) to the accumulated numbers ofmonolingualGaelic,monolingual English and
bilingual speakers of the Scottish highlands in the time interval 1891–2001. Based
on the estimated coefficients k12, k21, k13 and k23 (see Table 18.1, second column for
their values) we then applied model (18.12) and asked how large the coefficient w1

needs to be so that the frequency of the bilingual population, c3, stays constant over
time.We note that by 2009 the frequency of themonolingual Gaelic population group
has already approached zero and therefore the shift term w2c2 can be neglected.

The results of this analysis are summarized in Fig. 18.5. Firstly, we observe that
model (18.10) replicates the language shift dynamics very well (cf. solid lines for the



18 Modeling Language Shift 383

Fig. 18.5 Frequencies of the three population groups (monolingual Gaelic: red, bilingual: green,
monolingual English: blue) in the Scottish Highlands. Empirical data (solid lines) and theoretical
predictions ofmodel (18.10) until 2009 andmodel (18.12) after 2009 (dotted lines). Shift parameters
for model (18.10) are given in Table 18.1, model (18.12) is parameterized with the same parameters
and w1 = 0.0031 and w2 = 0. All coefficients describe rates per year. Redrawn from [11]

empirical data and dashed lines for themodel prediction). The estimated values of the
shift coefficients are shown in the second column of Table 18.1. Now w1 = 0.0031
(whereby w1 is a rate per year) is sufficient to prevent the further decline of the
bilingual population group. This implies that roughly 860 English speakers have to
become bilingual every year based on a Highland population of about 315,000 indi-
viduals. However, the coexistence between the bilingual and the English-speaking
population groups depends in this case entirely on the existence of (potentially exter-
nally engineered) sociolinguistic domains where Gaelic is the preferred medium of
communication. Intervention strategies may prove much more successful if the rate
of intergenerational transmission of the bilingual strategy could be increased as well.
Thus, for example, the number of Englishmonolinguals required to learnGaelic each
year could drop down to roughly 440 if the rate of intergenerational transmission
of Gaelic at home could be increased (i.e. k12 changes from 0.025 to 0.0125). This
means that beside the 440 English speakers who become bilingual, roughly 340more
children who live in bilingual households would have to be raised in both languages
to prevent a further decline of the bilingual population group. These numbers indi-
cate that an increase in the rate of intergenerational transmission is a highly effective
languagemaintenance strategy, although one that is also harder to achieve in practice.
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18.5 Discussion

The rapid increase in the rate of language extinction,witnessed over the last 100years,
is mainly caused by the process of language shift. From a phylogenetic point of view
language shift can be seen as a process of shifting between different branches of
the phylogenetic tree (or in other words, as a process of selective cultural migra-
tion, see e.g. [52]). Frequent instances of language shift potentially result in diver-
gences between linguistic and genetic trees and therefore cast some doubt on the
demographic assumption of tree building approaches that the linguistic tree is also
representative of the bifurcating population history (see [53] for a discussion). Conse-
quently understanding the process of language shift and identifying its main drivers
is a crucial step towards understanding the general process of language extinction.

In this chapter we discussed how mathematical modeling can contribute to this
task. Considering language shift as competition between two languages (of possibly
different status) for speakers allows us to make use of a well-developed theory
describing the interactions between different species under limited resources (e.g.
[15]). However, it is crucial to note that despite the similarities between ecological
and linguistic competition dynamics there are linguistic phenomena, which have no
equivalent in the ecological situation. Consequently existing modeling frameworks
have to be adopted to include important cultural concepts such as e.g. bilingualism.

We have demonstrated that if two languages of different status compete in a single
social domain and the shift dynamics is solely governed by the frequencies of the
three population groups (i.e. the two monolingual and one bilingual groups), the
demographic and cultural attributes of these groups and the status difference of the
two languages, then the extinction of one language and therefore the loss of linguistic
diversity is the only long-term outcome. In this situation bilingualism is a temporary
transition state and not a stable long-term outcome securing the maintenance of the
endangered (i.e. low-frequency) language.

Our analyses of the basic language shift model (18.10) showed that demographic
and cultural factors influence the dynamics of language shift greatly. For instance, a
change in the dispersal behavior of a population group alone can change the outcome
of language shift (see Sect. 18.3.1.1). Consequently, in order to realistically describe
and predict the spatial and temporal dynamics of language change, the demographic
properties of the different population groups have to be summarized appropriately.

But how well does this model reflect linguistic reality? And given the increasing
conservation effort by governments and international organization how can linguistic
diversity be maintained? So far the analysis has been on the assumption that both
languages compete in a single social domain (or equivalently both languages possess
the same properties in all social domains). However, this does not have to be the
case. In order to allow for the differential use of both languages in different social
context the concept of diglossia was included into the modeling framework. This
means, superimposed on the basic shift dynamics described in model (18.10), there
is an additional demand for the endangered language as the preferred medium of
communication in some restricted sociolinguistic domain. This additional dynamics
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creates a flow from the monolingual population groups speaking the high-status
language to the bilingual group whereby the strength of this flow is controlled by
the model parameter w1. The demand for both languages, each in its own preferred
domain allows bilingualism to be a stable final state and we find a wider range of
possible stable extinction and coexistence states depending on the strength of the
various in- and out-flows between the three population groups.

We applied the modeling frameworks to the English-Gaelic shift situation in
WesternScotland. Firstly, Fig. 18.4 revealed that the basic shift dynamics as described
in model (18.10) is able to replicate the past demographic trajectories of the language
shift scenario. We then used the values of the parameters, which produced this close
fit between model and data in the diglossia model (18.12). The model predicted that
roughly 860 English monolingual have to become bilingual each year, is needed to
maintain the bilingual population group at the level of the year 2009. This number
could, however, drop down to roughly 440 if 340 more children who live in bilingual
households would be raised in both languages, which points to the crucial importance
of the intergenerational transmission of the bilingual strategy in conservation efforts.

18.6 Conclusions

We believe that mathematical modeling can provide meaningful indicators for the
potential success or failure of certain language intervention strategies. Those strate-
gies usually do not attempt to reverse language shift completely as there are good
reasons why speakers abandon a language in favor of another (mainly because
speakers receive an economic gain from switching). But they do aim at creating
stable bilingualism by developing or preserving essential social domains in which
the endangered language is the preferred or only acceptable medium of communica-
tion. In our modeling framework this means that successful intervention strategies
affect the strength of the flow between the monolingual population group speaking
the high-status language and the bilingual group and therefore the magnitude of the
model parameter w1. This in turn allows us to ask the question of how strong inter-
vention strategies needs to be, or in other words, how strong the outflow from the
monolingual population speaking the high-status language needs to be in order to
maintain the bilingual population group at a certain level. Consequently, frameworks
of the kinds described in this chapter provide a population-level view of the temporal
and spatial dynamics of language shift and therefore allow for the inference of the
average ‘general’ strength of the intervention strategies that is needed to obtain a
certain outcome. However, language planners might additionally be interested in
understanding which of two possible intervention strategies could prove most effec-
tive. In order to answer these kinds of questions a simulation framework which is
able to mechanistically incorporate those different strategies might be more appro-
priate. Even though we focused here on differential equation based approaches we
argue that different modeling approaches will add additional insights to the puzzle
of language shift and there is no one ‘right’ model to describe the dynamics.
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Chapter 19
Spreading of Failures in Interdependent
Networks

Louis M. Shekhtman, Michael M. Danziger, and Shlomo Havlin

19.1 Introduction

Most studies of spreading focus on how some physical objects move in space, yet
spreading can also involve other phenomenon. Recent research has explored the
spreading of failures in various complex systems like power grids, communications
networks, financial networks, and others. In these systems, when one failure occurs it
can trigger a cascade wherein that failure spreads to other parts of the system. Failure
spreading can have dramatic results leading to blackouts, economic collapses, and
other catastrophic events.

In order to combat this problem, it is often useful to model and understand the
physical mechanisms of failure spreading. While it would be ideal if failures could
be prevented entirely, this is unlikely since every system will experience failure at
one time or another. Rather, the approach and models reviewed in this chapter focus
on the mechanisms of how initial failures spread and how this information can be
used to mitigate the spreading. It is also noteworthy that many of the same models
used here in the context of failures in infrastructure networks can also be used to
identify influential individuals who are capable of spreading a message to a large
audience in social networks.

A specific focus here will be on the mechanism involved in the realistic situation
where two systems are interdependent such that components of one system cannot
function without components of the other. This could be, for example, the case in
the context of a communication tower that needs to receive power from a nearby
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power station. If the power station fails, then that failure immediately spreads to
the communication tower. The failure of the communication tower can then lead to
additional failures that also impact the power grid (either directly or indirectly) and
so on. Understanding how these failures spread in both time and space is critical in
order to ensure that large-scale complex systems remain functional.

A further challenge examined here involves the question of how to optimally
repair and recover a system after it has experienced some failures. While it may
seem simple to repair failed components of a system, it will be ineffective if the
spreading of the failures has not first been contained. Making repairs is useless if the
failures quickly spread to the repaired components once again. Instead, repairs must
be made in a clear and purposeful way in order to restore the system to a functional
state.

Many complex systems such as power grids, communication systems, the Internet,
and biological systems have recently been modeled as complex networks. This repre-
sentation of the system involves defining sets of nodes that are connected to one
another through links. Precisely what constitutes a node and/or link will depend on
the exact system being analyzed. For example, in power grids, the nodes are typically
defined as the power stations and the links are powerlines that connect the power
stations. In communication networks, nodes could be antenna towers and towers that
are in range of one another are linked.Many different systems can bemodeled in such
a manner and researchers have discovered that while different systems have unique
properties, many global network properties remain true across multiple systems.

Most of the properties discovered in complex networks relate to the structure
of the connections between the nodes. The number of connections of a particular
node is known as its degree, k. Networks where connections are assigned purely
randomly (Erdős-Rényi networks) have a degree distribution that is Poisson. The
most important feature of Poisson distributions, at least in the context of complex
networks, is that they have a typical mean degree, < k > and it is highly unlikely for
any node to have a degree that is substantially larger or smaller than< k >. Explicitly
the likelihood of a node to have degree k is given by P(k) = < k >k e−k/k!. (Note
also that in the text we will simply refer to the mean degree of an Erdős-Rényi
network as k rather than < k > and that it is common to do so in the literature).
Early research found that the distribution of the degree in real networks often takes
the form of a power law. This means that the likelihood of a node to have degree k
is proportional to k−γ , i.e., P(k) ∼ k−γ . Notably, if γ < 3, then some nodes end up
with far more connections than others and the variance tends to infinity. Networks
with this property are known as scale-free networks [1]. Another unique feature
present in many networks is the existence of tightly connected communities that
have many links to other nodes in the same community (module), but few links to
nodes outside of the community [2]. This property is often referred to as modularity
and it is highly ubiquitous in many networks. Lastly, many networks, like power
grids, are embedded in physical space (spatial networks) and the expense of creating
long-range links forces most links to be of short length [3]. There are many other
significant structures that exist in networks which are more fully reviewed in one
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of the recent books on the subject [4, 5]. More information on diffusion in complex
networks can be found in [6] or in [7, 8].

Further research has led to the recognition that many networks do not exist in
isolation, but rather a network is often only one of several interdependent networks
[9–14]. This situation refers to the case where a node in one network, say a communi-
cation antenna tower, depends on a node in another network, say a power station. This
relationship can be described through the existence of a new type of link known as
a dependency link [15–17]. Whereas connectivity links represent the idea that some
sort of flowoccurs between the two connected nodes (e.g., flow of electricity in power
grids, flow of information in communication networks), dependency links mean that
if the node being depended upon fails then the dependent node also fails. Such situ-
ations are especially common in infrastructure, but they can also arise in biological
systems [18] and financial networks [19]. An example detailing the interdependence
between different infrastructure networks can be found in Fig. 19.1.

As shown in Fig. 19.1, interdependencies can take complex forms. This has led
researchers to refer to interdependent networks as “networks of networks” (NON).
Dependency links exist between specific pairs of networks and the structure of the
networkof networks is defined according towhichpairs of networks havedependency
links. A few examples of networks of networks are shown in Fig. 19.2. Simple
examples include cases where the NON dependencies form a tree, a single loop, and
a random-regular configuration where all networks depend on the same number of
networks.

One of the most important properties of many networks and systems, in general,
is their robustness to failures. As discussed briefly above, power stations can become
overloaded or fail for other reasons and communication antenna towers can have
problems due to bad weather or other issues. While efforts are always made to
minimize the frequency of these failures, they are bound to occur. When analyzing
the system as a whole, it is desirable to optimize the network such that it can still
continue functioning even if some of the nodes fail. In many cases, the functioning
of the system can be quantified by asking how many nodes remain connected after
some nodes fail. For example, for communication networks it is often most relevant
to ask, “Howmany nodes can communicate after some others fail?” or in the context
of power grids, “How many power stations are still linked to the grid after some
stations fail?” The failure of one node can cause other nodes to become disconnected
from the network as a whole and fail as well, thus the initial failures are magnified
and can spread throughout the network.

The question of what fraction of a system remains connected after some set of
failures can be answered through percolation theory from physics. Percolation theory
essentially determines clusters of nodes that are connected to one another such that
flow can occur between them. The largest cluster, which contains the largest number
of nodes, is referred to as the giant connected component and is described by P∞ [4,
5, 23, 24]. Explicitly, P∞ is defined as the fraction of nodes remaining in the largest
connected component (or equivalently, the likelihood of a node to be in the largest
component) at some point in a percolation process. For our purposes, only nodes that
are part of this largest cluster are considered functional whereas all other nodes are
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Fig. 19.1 Interdependence in modern infrastructure causes failures to spread between systems.
This is the result of multiple systems needing power for switches, supervisory control and data
acquisition (SCADA), fuel transport, and other resources. After [20]

considered to have failed. The goal in designing resilient systems is to maximize the
size of the giant component for any case of failures.

Percolation theory was able to discover that scale-free networks (i.e., those whose
degree distribution follows a power law) are far more resilient to random failures
than random networks. In other words, if the same number of failures occur in both
random and scale-free networks, a larger fraction of a scale-free network will remain
connected.More precisely, in contrast to randomnetworkswhere only afinite fraction
of nodes must be removed, for scale-free networks only if nearly all of the nodes are
randomly removed, will the network become totally fragmented [25]. In any case,
for both isolated random and isolated scale-free networks, slightly increasing the
number of initial failures only slightly increases the number of total failures. In other
words, the transition from a functioning to non-functioning state is continuous.
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Fig. 19.2 Different types of interdependent networks are shown in the figure. In this case, each
node shown above actually represents an entire network and the links in the figure represent the
existence of dependency links between two networks. The path through which failure spreading in
interdependent networks occurs is determined according to which networks have dependency links
between them. a The top structures are various tree-like networks of networks (NON) structures
and b the bottom structures are NONs with loops. On the left is a lattice and on the right is a
random-regular NON structure. After [21, 22]

Failures in interdependent networks occur and spread through two different mech-
anisms. The first is the same as in single networks, i.e., failures of nodes lead further
nodes to become disconnected from the giant component. The second mechanism is
through failures spreading due to the dependency links. As mentioned previously, a
node at one end of a dependency link relies on the node at the other end of the link
to function. If a node on one end of a dependency link fails, the node on the other
end of the link also fails. As we will see in the next section, such mechanisms can
lead to abrupt collapse.
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19.2 Robustness of Interdependent Networks

Percolation methods were widely applied to solve problems in single networks [4, 5,
25–27] and recent research has expanded these methods to interdependent networks
[15, 16, 21, 28, 29]. In interdependent networks, when some nodes fail, they cause
other dependent nodes to fail [15]. The failure of these dependent nodes then discon-
nects other nodes from the giant component and leads to the failure of more depen-
dent nodes. In this manner, failures spread through the system until a steady state is
reached. It is noteworthy that because of the cascade, removing a single additional
node can cause the system to collapse entirely, i.e., the transition is abrupt and first
order [15, 16, 28, 30]. This is significantly different from isolated networks where
the transition is continuous.

In the initial work on interdependent networks, Buldyrev et al. [15] calculated the
final fraction of functional nodes after the cascade analytically. They also carried out
numerical simulations to verify their results. In explaining the results from [15], it is
important to note the result for percolation of a single Erdős-Rényi network, namely,
P∞ = p(1 − e−kP∞), where p is the fraction of the network that survives the initial
failures and k is the average degree of the network [31–33]. It is also noteworthy
that since P∞ appears on both sides of the equation and no additional simplification
is possible, the equation is transcendental and can only be solved numerically. If
p nodes survive the initial failures in a system of two interdependent Erdős-Rényi
networks, the size of the giant component is described by [15, 28],

P∞ = p(1 − e−kP∞)2. (19.1)

While the difference between the formulas for P∞ for single and interdependent
networks may seem small, namely a power of 2 instead of 1 on the right side of the
equation, this small change has dramatic consequences leading to the long cascades
and abrupt failures described throughout this review. Essentially, the power of 2 can
be understood by recognizing that nodes now must be both in the giant component
of their own network and have their dependent node be in the giant component of the
second network. Gao et al. [21, 22, 28, 34] later solved several cases that involved
more than two networks. In the case of n interdependent Erdős-Rényi networks with
full dependency such that they forma tree (Fig. 19.2a), the size of the giant component
is given by [28]

P∞ = p(1 − e−kP∞)n. (19.2)

Gao et al. [21, 28] also solved several other simple structures of networks of networks
analytically.

Other papers by Bianconi et al. [35, 36], Baxter et al. [30, 37], Hu et al. [38], Kim
et al. [39], Lee et al. [40], and Cellai et al. [41] have also obtained further analytic
results for interdependent networks.
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19.3 Interdependent Networks with Realistic Features

In this section, we will provide a brief review on more realistic models of failure
spreading in interdependent networks. The Internet and power grids, as well as other
networks, are not purely random and instead contain non-random structure. This
structure influences the spreading of failures.

One common feature is a degree distribution that is scale-free. It was found
for interdependent scale-free networks that a broader degree distribution makes the
networks more vulnerable to the spreading of failures [15, 42].

Another realistic feature that has recently been found to influence failure spreading
in single and interdependent networks is modularity [43, 44, 82–85]. Several of those
studies [43, 44] examined the case of attacks on interconnected nodes, i.e., nodes that
connect between two communities. Another study using a similar model showed that
attacks on interconnected nodes lead to very fast spreading of failures, especially in
the Western U.S. power grid [45]. Shekhtman et al. [43] solved analytically the case
where there are several networks each of which has the same number of modules of
the same size. Dependency links were also restricted to be between corresponding
modules in different layers. An example of where this model is realistic is the case
of infrastructure within and between cities. Each city has its own infrastructure and
the interdependence occurs within the city. At the same time, different infrastructure
networks will connect both within and across several cities. Consider the example of
a coupled system of a power grid and a communications system.Most likely, a power

Fig. 19.3 Here we show examples of modular structure in interdependent networks. In this case,
each of the interdependent networks has a modular structure, i.e., they are segregated into distinct
tightly connected communities. This is seen by the fact that inside each black circle in (a) there is
a network with modular structure. Further, each of the communities is highlighted with a different
color. The specific structure shown in (a) is a tree-like networkofmodular networks. Thedependency
links are restricted such that a node in a particular module in one network will depend on a node
that is in the same module in the second network (i.e., dependency links are between nodes of the
same color). This is illustrated clearly in (b). After [43]
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station and a communication tower that depend on one another will be in the same
city. This is true even though both the communication tower and the power station
have connections to other cities. The model is visualized in Fig. 19.3. Failures can
lead to collapse that occurs in one or two stages, i.e., there can be two transitions.
When two transitions occur, the first is the result of modules separating but contin-
uing to function independently. After additional failures, the modules themselves
also collapse. Further work, extended this model to a hierarchy of modules, which
could represent the case of neighborhoods within cities [81]. There it was found that
multiple transitions can take place as the network disintegrates at different levels of
the hierarchy.

Failure spreading is also influenced by spatial features. It is well accepted that
many infrastructures are embedded in space, including power grids and many
communication networks [3, 46]. This embeddedness has significant influence on
how failures spread. To simplify studies of spatial networks, 2D lattices are often
used as models and it is noted that any other embedded network is in the same univer-
sality class [24, 47]. An early study on spatially embedded networks found that they
are extremely vulnerable in the sense that two interdependent networks can collapse
abruptly even if only a few of the nodes in each network are interdependent [48].

Another study examined a case where the dependency links are restricted to a
maximal length, r (demonstrated in Fig. 19.4a). This accounts for the fact that depen-
dencies are most likely to be short range and that it is highly unlikely, for example,
that a communication tower in the Eastern United States is dependent on a power
grid in theWestern United States. For short range dependency lengths, i.e., low r, the
percolation transition is continuous, but for larger r, the transition is abrupt. The shift
between the behaviors occurs when r reaches a critical value, rc ≈ 8 [49]. Above
this critical dependency length, the percolation transition occurs in such a way that
failures spread radially outward from an initial damage site until they end up finally
consuming the entire network [50], see Fig. 19.4b.

Later works incorporated additional spatial features in order to move toward even
more realistic models of interdependent spatial infrastructure including considering
the case of NON formed of more than just two networks [50–53].

The cascade in interdependent networks can be mapped to other cascades like
blackouts in power grids [54, 55]. Most blackouts and other failures spread in a
predictable manner. Understanding the spatio-temporal spreading is crucial in order
to understand and contain such failure spreading. Specifically, it has been found that
the spatio-temporal dynamics of the cascade can be used to identify a specific depen-
dency correlation distance that determines how failures spread [56]. This dependency
correlation distance defines how far the failures are likely to spread. In that work,
Zhao et al. [56] studied the case of overload failures in spatially embedded networks
and examined how failures propagate in space and time. The authors defined load
according to the well-known betweenness centrality, which measures how many
shortest paths go through a particular link [54]. The initial load depends on the struc-
ture of the network and nodes that have more shortest paths going through them have
a higher load. After an initial set of localized failures, the paths between nodes change
and load becomes redistributed, especially around the failed nodes. However, due



19 Spreading of Failures in Interdependent Networks 397

Fig. 19.4 a Dependency links can be restricted such that only pairs of nodes within some distance
r are allowed to be interdependent. In the figure, the cases of r = 0 and r = 2, where the pairs
are zero and two lattice spaces apart are shown. After [51]. b The radial spreading at criticality is
shown. The redder regions end up failing at later times (as shown in the colorbar on the right) in
comparison to the central regions. After [50]

to this redistribution, some other nodes will also become overloaded and fail. This
process will continue either until the load manages to rebalance or until the entire
network collapses. The dependency correlation distance describes how far the direct
effects of the initial redistribution are felt. Zhao et al. [56] studied how the failures
spread as a function of the tolerance,α. The quantityα is defined such that 1+α times
the original load is the maximal load above which the node becomes overloaded and
fails. They found that for all values of α the spreading of failures occurs radially from
the initial failures and spreads at approximately constant velocity. As α increases,
the velocity of the spreading of failures decreases. This is intuitive as it means that
the system is able to accept a higher increased load without failing. An example
of the spreading in a synthetic power grid can be seen in Fig. 19.5. These results
support the model of interdependent spatial networks studied in previous works [49,
57, 58] where now the velocities can bemapped to the length of the dependency links
[56]. As explained earlier, the length of the dependency links represents the distance
between two nodes that rely on one another. The velocity of the failure spreading in
the model from [56] has the similar meaning of how quickly failures from a node in
one location reach a node in another location. The specific procedure for mapping
between these two quantities is described in [56].

Other aspects relating to more realistic models of interdependent networks have
also been analyzed in many further works which consider many types of network
structures and conditions on dependency links [38, 41, 59–72].
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Fig. 19.5 The propagation of failures in a synthetic overloaded system is shown. The red nodes in
the center represent the initial failures. At each time step, additional nodes that fail due to overloads
are shown in blue. Nodes that have already failed are shown in black. As seen, the spread occurs
almost radially outward from the location of the initial failures. After [56]

19.4 Localized Attacks on Interdependent Networks

Another realistic feature that has recently been incorporated into understanding the
resilience of both single and interdependent networks is localized attack [57, 73, 74].
For localized attack on a pair of spatially embedded networks, it was found that a
“hole” above a certain critical size must be made in one of the networks in order for
the failures to spread throughout the entire system (see Fig. 19.6). The researchers
in [57] found that even though a network may be robust to random attacks, it can be
vulnerable to localized attacks. In addition, the critical size of the “hole”, denoted rch ,
that must be made to collapse the system is independent of the size of the system and
instead depends only on the degree. This behavior is vastly different from the case
of a single spatially embedded network where the size of the hole necessary for total
system failure scales with the size of the system. Localized attacks are particularly
relevant in the realistic case of an Electromagnetic Pulse (EMP) detonation, i.e.,
a short burst of electromagnetic energy that damages all electronic devices within
some radius.

Localized attacks have also been studied on a different spatial structure where
link lengths are drawn exponentially [89]. It was found that the spatial transition
of cascading failures can then be analogized to a nucleation transition, with the
necessary size of the hole showing novel scaling behavior that grows with the square
root of the average network degree. Further work has studied localized attacks on
networks that combine both community structure and spatial features [86], as well
as network structures with anisotropy [87].

19.5 Recovery in Single Networks and Interdependent
Networks

In order to understand the spreading of failures, it is also important to consider how
to repair failures as they spread throughout a system [90]. This question is of course
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Fig. 19.6 a Depending on the initial size of the hole, it may either spread through a system of
interdependent networks (the hole on the right) or not (the hole on the left). Whether the hole
spreads, depends only on the degree of the networks and not on the number of total nodes in the
system. b Here a localized attack is shown to spread on an interdependent system with a layout
according to the European Power grid, whereas a random attack does not spread. After [57]

highly relevant since while the goal is always to prevent failures from occurring, all
systems will experience failure at some point. To address this question, researchers
have begun studying how to optimally repair and recover a system like a power
grid or the Internet. It was found in [75] that when node recoveries are introduced
in a simple dynamic cascade model [76], the system can spontaneously recover.
The model contains three key parameters: one describes the fraction of internally
failed nodes (p∗), a second governs the time for recovery to occur (τ ), and the third
describes the probability of failure due to lack of support from external nodes (r).
For the case of small networks, r and p∗ in the system, due to stochasticity will
not be fixed, but will instead wander in phase space near their average values. This
exploration of phase space causes the system to dynamically recover or fail over
time. In Fig. 19.7a, when the system crosses the blue line it reaches a failed state
and when it crosses the red line it recovers. The crossing of these points can also be
observed in Fig. 19.7b according to the corresponding numbered transitions. When
the goal is to repair the system, a global planner will make repairs such that they
reduce the likelihood of external failure, r, and help the system to pass the red line
which represents the transition to a repaired state.

One example of a real system where this model was applied is stock-market
networks. In such networks, each stock represents a node and it is connected to other
stocks based on correlations between their stock prices. Stocks that are going up can
be considered to be in a functional state and stocks that are falling can be considered
in a failed state. Each stock (company) has an internal probability of failure (p∗)
which could occur due to internal problems that are inherent to the company. Next
there is a time (τ ) it takes the company to fix the problems that caused the stock
price drop, i.e., to recover. Lastly, because stocks are connected to one another they
require support from one another and thus there is a probability (r) for a stock to drop
if other stocks in the same or related sectors are falling. Naturally, the probability of
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Fig. 19.7 aHerewe show the phase space describing the state of the systemaccording to the number
of internally failed nodes (p∗) and the likelihood of external failure (r). The white line shows the
trajectory of the system as it diffuses in phase space between failed (Phase II) and functional states
(Phase I). When the system crosses the red line (points 1 and 3) it transits to a recovered state and
when it crosses the blue line (points 2 and 4) it moves to a failed state. b Here we show the time
evolution of the system in accordance with the diffusion in phase space according to the trajectory
shown in (a) where the y-axis, z represents the fraction of active nodes at a given time t. As seen in
the figure, there are two clear states, either a failed or recovered state. The system changes between
these two states, but never exists in an intermediate state. After [75]

a stock to fail, p∗, and the probability for failure due to the collapse of other stocks,
r, will change based on overall market conditions, recent shocks to the markets,
and for other reasons as well. The explicit application of this model to stock-market
networks and a comparison to real data for the S&P500 can be found in Majdandzic
et al. [75].

It was recently shown that a similar but much richer phenomenon occurs in inter-
dependent networks [77]. The study in [77] found an optimal repairing strategy,
which describes how many repairs should be made in each network in order to move
the system toward a functional state.

In addition, there have been several other studies on restoration of interdependent
networks [78, 79, 91].

Beyond the structural aspects of recovery, other recent works have considered
recovery in terms of a dynamical process taking place on the network. Danziger et al.
proposed a framework [88] for how dependency links impact dynamical processes
on networks and showed that dynamical systems coupled in such a manner can
exhibit many complex phenomena including spreading of synchronization and fail-
ures, multistability, and other features. Another framework [92] for coupling of
dynamical processes between networks showed that explosive synchronization could
arise in such systems.
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19.6 Conclusions

Modern systems are becoming more and more interdependent especially through the
use of SMART technologies, which require information from both their own system
and from other systems. This information is then used to optimize the performance
of each system based on the functioning of the other systems. Examples are SMART
grids, SMART cities, and the Internet of Things (IOT). Understanding how fail-
ures spread both within and between the different systems that form SMART cities
is crucial in order to ensure the stability of these highly interdependent systems.
Methods from diffusion, percolation, and physics, in general, can serve as useful
tools to contain and predict the spreading of failures in these systems. Furthermore,
models of interdependent networks have also explained the spreading of failures in
other areas like finance [19, 80]. Continuing to study how failures spread in real-
world systems is a crucial area of research and will likely provide many additional
interesting results.
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Chapter 20
Human Mobility, Networks and Disease
Dynamics on a Global Scale

Dirk Brockmann

20.1 Introduction

In early 2009, news accumulated in major media outlets about a novel strain of
influenza circulating in major cities in Mexico [1]. This novel H1N1 strain was
quickly termed “swine flu”, in reference to its alleged origin in pig populations before
jumping the species border to humans. Very quickly public health institutions were
alerted and saw the risk of this local influenza epidemic becoming a major public
health problem globally. The concerns were serious because this influenza strain was
of the H1N1 subtype, the same virus family that caused one of the biggest pandemics
in history, the Spanish flu that killed up to 40 million people in the beginning of
the 20th century [2]. The swine flu epidemic did indeed develop into a pandemic,
spreading across the globe in matters of months. Luckily, the strain turned out to
be comparatively mild in terms of symptoms and as a health hazard. Nevertheless,
the concept of emergent infectious diseases, novel diseases that may have dramatic
public health, societal and economic consequences reached a new level of public
awareness. Even Hollywood picked up the topic in a number of blockbuster movies
in the following years [3]. Only a few years later, MERS hit the news, the Middle
East Respiratory Syndrome, a new type of virus that infected people in the Middle
East [4]. MERS was caused by a new species of corona virus of the same family
of viruses that the 2003 SARS virus belonged to. And finally, the 2013 Ebola crisis
in West African countries Liberia, Sierra Leone and Guinea that although it did not
develop into a global crisis killed more than 10000 people in West Africa [5].

Emergent infectious diseases have always been part of human societies, and also
animal populations for that matter [6]. Humanity, however, underwentmajor changes
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Fig. 20.1 The global air-transportation network. Each node represents one of approx. 4000 airports,
each link one of approx. 50000 direct connections between airports. More than 3 billion passengers
travel on this network each year. All in all every day more than 16 billion km are traversed on this
network, three times the radius of our solar system

along many dimensions during the last century. The world population has increased
from approx. 1.6 billion in 1900 to 7.5 billion in 2016 [7]. The majority of people
now live in so-called mega-cities, large scale urban conglomerations of more than 10
million inhabitants that live in high population densities [8] often in close contactwith
animals, pigs and fowl in particular, especially in Asia. These conditions amplify not
only the transmission of novel pathogens from animal populations to human, high
frequency human-to-human contacts yield a potential for rapid outbreaks of new
pathogens.

Population density is only one side of the coin. In addition to increasing face-
to-face contacts within populations we also witness a change of global connec-
tivity [9]. Most large cities are connected by means of an intricate, multi-scale web
of transportation links, see Fig. 20.1. On a global scale worldwide air-transportation
dominates this connectivity. Approx. 4,000 airports and 50,000 direct connections
span the globe. More than three billion passengers travel on this network each year.
Every day the passengers that travel this network accumulate a total of more than
14 billion kilometers, which is three times the radius of our solar system [10, 11].
Clearly this amount of global traffic shapes the way emergent infectious diseases can
spread across the globe. One of the key challenges in epidemiology is preparing for
eventual outbreaks and designing effective controlmeasures. Evidence-based control
measures, however, require a good understanding of the fundamental features and
characteristics of spreading behavior that all emergent infectious diseases share. In
this context this means addressing questions such as: If there is an outbreak at loca-
tion X when should one expect the first case at a distant location Y? Howmany cases
should one expect there? Given a local outbreak, what is the risk that a case will
be imported in some distant country. How does this risk change over time? Also,
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emergent infectious diseases often spread in a covert fashion during the onset of an
epidemic. Only after a certain number of cases are reported, public health scientists,
epidemiologist and other professionals are confronted with cases that are scattered
across a map and it is difficult to determine the actual outbreak origin. Therefore, a
key question is also: Where is the geographic epicenter of an ongoing epidemic?

Disease dynamics is a complex phenomenon and in order to address these ques-
tions expertises from many disciplines need to be integrated, such as epidemiolgy,
spatial statistics, mobility and medical research in this context. One method that
has become particularly important during the past few years is the development of
computational models and computer simulations that help address these questions.
These are often derived and developed using techniques from theoretical physics and
more recently complex network science.

20.2 Modeling Disease Dynamics

Modeling the dynamics of diseases using methods frommathematics and dynamical
systems theory has a long history. In 1927 Kermack and McKenrick [12] intro-
duced and analyzed the “Suceptible-Infected-Recovered” (SIR) model, a parsimo-
nious model for the description of a large class of infectious diseases that is also still
in use today [13]. The SIR model considers a host population in which individuals
can be susceptible (S), infectious (I) or recovered (R). Susceptible individuals can
acquire a disease and become infectious themselves and transmit the disease to other
susceptible individuals. After an infectious period individuals recover, acquire immu-
nity and no longer infect others. The SIR model is an abstract model that reduces a
real world situation to the basic dynamic ingredients that are believed to shape the
time course of a typical epidemic. Structurally, the SIR model treats individuals in a
population in much the same way as chemicals that react in a well-mixed container.
Chemical reactions between reactants occur at rates that depend on what chemi-
cals are involved. It is assumed that all individuals can be represented only by their
infectious state and are otherwise identical. Each pair of individuals has the same
likelihood of interacting. Schematically, the SIRmodel is described by the following
reactions

S + I
α−→ 2I I

β−→ R (20.1)

where α and β are transmission and recovery rates per individual, respectively. The
expected duration of being infected, the infectious period is given by T = β−1 which
can range from a few days to a few weeks for generic diseases. The ratio of rates
R0 = α/β is known as the basic reproduction ratio, i.e. the expected number of
secondary infections caused by a single infected individual in a fully susceptible
population. R0 is the most important epidemiological parameter because the value
of R0 determines whether an infectious disease has the potential for causing an
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epidemic or not. When R0 > 1 a small fraction of infected individuals in a suscep-
tible population will cause an exponential growth of the number of infections. This
epidemic rise will continue until the supply of susceptibles decreases to a level at
which the epidemic can no longer be sustained. The increase in recovered and thus
immune individuals dilutes the population and the epidemic dies out. Mathemati-
cally, one can translate the reaction scheme (20.1) into a set of ordinary differential
equations. Say the population has N � 1 individuals. For a small time interval �t
and a chosen susceptible individual the probability of that individual interacting with
an infected is proportional to the fraction I / N of infected individuals. Because we
have S susceptibles the expected change of the number susceptibles due to infection
is

�S ≈ −�t × α × S × I

N
(20.2)

where the rateα is the same as in (20.1) and the negative sign accounts for the fact that
the number of susceptibles decreases. Likewise the number of infected individuals is
increased by the same amount �I = +�t ×α × S× I/N . The number of infecteds
can also decrease due to the second reaction in (20.1). Because each infected can
spontaneously recover the expected change due to recovery is

�I ≈ −�t × β × I. (20.3)

Based on these assumptions Eqs. (20.2) and (20.3) become a set of differential
equations that describe the dynamics of the SIR model in the limit �t → 0:

ds/dt = − αs j

d j/dt =αs j − β j

r =1 − s − j (20.4)

where s(t) = S(t)/N , j (t) = I (t)/N and r(t) = R(t)/N are the fractions
of susceptibles, infecteds and recovereds in the population as a function of time.
The last equation in (20.4) is a consequence of the conservation of individuals,
S(t)+ I (t)+ R(t) = N . Solutions to this set of equations for a small initial fraction
of infecteds j (0) = j0, r(0) = 0, and s(0) = 1 − j0 exhibit a typical epi-curve,
i.e. an initial exponential increase of infecteds with a subsequent decline if the basic
reproduction ratio R0 > 1. Typical solutions of the SIRmodel are shown in Fig. 20.2.
A more realistic approach accounts for fluctuations that are caused by the intrinsic
randomness of the probabilistic reactions (20.1) and the finite number N of individ-
uals in a population. Depending on the magnitude of N a model in which reactions
occur randomly at rates α and β a stochastic system generally exhibits solutions that
fluctuate around the solutions to the deterministic system of Eq. (20.4).

Both, the deterministic SIRmodel and the more general particle kinetic stochastic
model are designed to model disease dynamics in a single population, spatial
dynamics or movement patterns of the host population are not accounted for. These
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Fig. 20.2 The SIR model. The curves depict the generic time course of the fraction of infected
individuals j(t) generated by the SIR model defined by reactions (20.1, colored trajectories) and
Eq. (20.4, black line). Initially only a small fraction of 1%of the population is infected.When R0 > 1
(here R0 = 2.5 and β−1 = 1week) an exponential growth is followed by an exponential decay,
leading to the generic epidemic curve. The fluctuations in the colored trajectories are generated
by a stochastic generalization of the deterministic system defined by Eq. (20.4) in which in a
finite population of N = 1000 individuals transmission and recovery events (reactions 20.1) occur
randomly

systems are thus known as well-mixed systems in which the analogy is one of chem-
ical reactants that are well-stirred in a chemical reaction container as mentioned
above.

20.2.1 Spatial Models

When a spatial component is expected to be important in natural scenario, several
methodological approaches exist to account for space. Essentially the inclusion of a
spatial component is required when the host is mobile and can transport the state of
infection from one location to another. The combination of local proliferation of an
infection and the dispersal of infected host individuals then yields a spread along the
spatial dimension [13, 14].

One of themost basic ways of incorporating a spatial dimension and host dispersal
is by assuming that all quantities in the SIR model are also functions of a location x,
so the state of the system is defined by s(x, t), j (x, t) and r(x, t). Most frequently
two spatial dimensions are considered. The simplest way of incorporating dispersal
is by an ansatz following Eq. (2.19) in Chap. 2 which assumes that individuals move
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diffusively in space which yields the reaction diffusion dynamical system

∂s/∂t = − α js + D∇2s (20.5)

∂ j/∂t =α js − β j + D∇2 j (20.6)

∂r/∂t =β j + D∇2r (20.7)

where e.g. in a two-dimensional system with x = (x, y) the Laplacian is ∇2 =
∂2/∂2

x +∂2/∂2
y and the parameterD is the diffusion coefficient. The reasoning behind

this approach is that the net flux of individuals of one type from one location to a
neighboring location is proportional to the gradient or the difference in concentration
of that type of individuals between neighboring locations. The key feature of diffusive
dispersal is that it is local, in a discretized version the Laplacian permits movements
only within a limited distance.

In reaction diffusion systems of this type the combination of initial exponential
growth (if R0 = α/β > 1) and diffusion (D > 0) yields the emergence of an
epidemic wavefront that progresses at a constant speed if initially the system is
seededwith a small patch of infected individuals [15]. The advantage of parsimonious
models like the one defined by Eq. (20.7) is that properties of the emergent epidemic
wavefront can be computed analytically, e.g. the speed of the wave in the above
system is related to the basic reproduction number and diffusion coefficient by

v ∼ √
(R0 − 1)D (20.8)

in which we recognize the relation of Eq. (2.17). Another class of models considers
the reaction of Eq. (20.1) to occur on two-dimensional (mostly square) lattices. In
these models each lattice site is in one of the states S, I or R and reactions occur only
with nearest neighbors on the lattice. These models account for stochasticity and
spatial extent. Given a state of the system, defined by the state of each lattice site,
and a small time interval �t , infected sites can transmit the disease to neighboring
sites that are susceptible with a probability rate α. Infected sites also recover to the
R state and become immune with probability β�t . Figure 20.3a illustrates the time
course of the lattice SIR model. Seeded with a localized patch of infected sites, the
system exhibits an asymptotic concentric wave front that progresses at an overall
constant speed if the ratio of transmission and recovery rate is sufficiently large.
Without the stochastic effects that yield the irregular interface at the infection front,
this system exhibits similar properties to the reaction diffusion system of Eq. (20.7).
In both systems transmission of the disease in space is spatially restricted per unit
time.
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Fig. 20.3 Stochastic lattice SIR models. a From left to right the images are temporal snapshots
of a stochastic SIR model in which an infected lattice site (red) can transmit an infection to a
susceptible (white) neighboring site with probability rate α. At rate β infected sites recover and
become immune (gray). Initially a single site in the center is infected. Asymptotically a concentric
pattern emerges. The infection front spreads at a constant speed. Stochastic effects at the wavefront
caused the ragged structure of the interface. b The system is identical to the system depicted in
(a). However, in addition to the generic next neighbor transmission, with a small but significant
probability a transmission to a distant site can occur. This probability also decreases with distance
as an inverse power-law, e.g. p(d) ∼ d−(1+μ) where the exponent is in the range 0 < μ < 2.
Because the rare but significant occurence of long-range transmissions, a more complex pattern
emerges, the concentric nature observed in system a is gone. Instead, a fractal, multi-scale pattern
emerges

20.2.2 The Impact of Long-Distance Transmissions

The stochastic lattice model is particularly useful for investigating the impact of
permitting long-distance transmissions. Figure 20.3b depicts temporal snapshots of
a simulation that is identical to the system of Fig. 20.3a apart from a small but signif-
icant difference. In addition for infected sites to transmit the disease to neighboring
susceptible lattice sites, every now and then (with a probability of 1%) they can
also infect randomly chosen lattice sites anywhere in the system. The propensity of
infecting a lattice site at distance r decreases as an inverse power-law as explained
in the caption to Fig. 20.3. The possibility of transmitting to distant locations yields
new epidemic seeds far away that subsequently turn into new outbreak waves and
that in turn seed second, third, etc. generation outbreaks, even if the overall rate at
which long-distance transmission occur is very small. The consequence of this is that
the spatially coherent, concentric pattern observed in the reaction diffusion system is
lost, and a complex spatially incoherent, fractal pattern emerges [16–18]. Practically,
this implies that the distance from an initial outbreak location can no longer be used
as a measure for estimating or computing the time that it takes for an epidemic to
arrive at a certain location. Also, given a snapshot of a spreading pattern, it is much
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Fig. 20.4 Arrival time and geographic distance. Each panel depicts the relation of epidemic arrival
time and geographic distance to the initial outbreak location (country of origin) for two different
recent epidemics, the H1N1 pandemic 2009 (left) and the SARS epidemic 2003 (right). Because
of the complexity of connectivity of the worldwide air-transportation network (see Fig. 20.1)
geographic distance to the initial outbreak location is no longer a good predictor of arrival time,
unlike in systems with local or spatially limited host mobility

more difficult to reconstruct the outbreak location from the geometry of the pattern
alone, unlike in the concentric system where the outbreak location is typically near
the center of mass of the pattern.

A visual inspection of the air-transportation system depicted in Fig. 20.1 is suffi-
ciently convincing that the significant fraction of long-range connections in global
mobility will not only increase the speed at which infectious diseases spread but,
more importantly, also cause the patterns of spread to exhibit high spatial incoher-
ence and complexity caused by the intricate connectivity of the air-transportation
network. As a consequence we can no longer use geographic distance to an emer-
gent epidemic epicenter as an indicator or measure of “how far away” that epicenter
is and how long it will take to travel to a given location on the globe. This type of
decorrelation is shown in Fig. 20.4 for two examples: The 2003 SARS epidemic and
the 2009 influenza H1N1 pandemic. On a spatial resolution of countries, the figure
depicts scatter plots of the epidemic arrival time as a function of geodesic (shortest
distance on the surface of the Earth) distance from the initial outbreak location. As
expected, the correlation between distance and arrival time is weak.

20.3 Modeling Disease Dynamics on a Global Scale

Given that models based on local or spatially limited mobility are inadequate,
improved models must be developed that account for both, the strong heterogeneity
in population density, e.g. that human populations accumulate in cities that vary
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substantially in size, and the connectivity structure between them that is provided
by data on air traffic. In a sense one needs to establish a model that captures that the
entire population is a so-called metapopulation, a system of m = 1, . . . , M subpop-
ulation, each of size Nm and traffic between them, e.g. specifying a matrix Fnm that
quantifies the amount of host individuals that travel from populationm to population
n in a given unit of time [19, 20]. For example Nn could correspond to the size of city
n and Fnm the amount of passengers the travel by air fromm to n. One of earliest and
most employed models for disease dynamics using the metapopulation approach is
a generalization of Eq. (20.4) in which each population’s dynamics is governed by
the ordinary SIR model, e.g.

dSn/dt = − αSn In/Nn

d In/dt =αSn In/Nn − β In
d Rn/dt =β In (20.9)

where the size Nn = Rn + In + Sn of population n is a parameter. In addition to this,
the exchange of individuals between populations is modeled in such a way that hosts
of each class move from location m to location n with a probability rate ωnm which
yields

dUn/dt =
∑

m

(ωnmUm − ωmnUn) (20.10)

where Um is a placeholder for Sm , Im and Rm . The first term corresponds to the
flux into location n from all other locations, the second term the flux in the opposite
direction. Combining Eqs. (20.9) and (20.10) yields:

dSn/dt = − αSn In/Nn +
∑

m

(ωnm Sm − ωmnSn)

d In/dt =αSn In/Nn − β In +
∑

m

(ωnm Im − ωmn In)

dRn/dt =β In +
∑

m

(ωnm Rm − ωmn Rn.) (20.11)

which is a generic metapopulation SIR model. In principle one is required to fix
the infection-related parameters α and β and the population sizes Nm as well as the
mobility rates ωnm , i.e. the number of transitions fromm to n per unit time. However,
based on very plausible assumptions [11], the system can be simplified in such a
way that all parameters can be gauged against data that is readily available, e.g. the
actual passenger flux Fnm (the amount of passengers that travel from m to n per day)
that defines the air-transportation network, without having to specify the absolute
population sizes Nn .

First the general rates ωnm have to fulfill the condition
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ωnmNm = ωmnNn

if we assume that the Nn remain constant. If we assume, additionally, that the total
air traffic flowing out of a population n obeys

Fn =
∑

m

Fmn ∼ Nn,

i.e. it is proportional to the size of the population (e.g. the supply is proportional to
the demand), the model defined by Eq. (20.11) can be recast into

dsn/dt = − αsn jn + γ
∑

m

Pmn(sm − sn)

d jn/dt =αsn jn − β jn + γ
∑

m

Pmn( jm − jn)

rn =1 − sn − jn. (20.12)

where the dynamic variables are, again, fractions of the population in each class:
sn = Sn/Nn , jn = In/Nn , and rn = Rn/Nn . In this system the new matrix Pmn and
the new rate parameter γ can be directly computed from the traffic matrix Fnm and
the total population involved N = ∑

m Nm according to

Pnm = Fnm∑
k Fkm

and

γ = F/N

where F = ∑
n,m Fmn is the total traffic in the network. The matrix Pnm is there-

fore the fraction of passengers that are leaving node m with destination n. Because
passengers must arrive somewhere we have

∑
n Pnm = 1.

An important first question is concerning the different time scales, i.e. the param-
eters α, β and γ that appear in system (20.12). The inverse β−1 = T is the infectious
period, that is the time individuals remain infectious. If we assume T ≈ 4–6 days
and R0 = α/β ≈ 2 both rates are of the same order of magnitude. How about γ ?
The total number of passengers F is approximately 8 × 106 per day. If we assume
that N ≈ 7 × 109 people we find that

γ ≈ 0.0015 d−1.

It is instructive to consider the inverse Ttravel = γ −1 ≈ 800 days. On average a
typical person boards a plane every 2–3 years or so. Keep in mind though that this
is an average that accounts for both a small fraction of the population with a high
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frequency of flying and a large fraction that almost never boards a plane. The overall
mobility rate γ is thus a few orders of magnitude smaller than those rates related
to transmissions and recoveries. This has important consequences for being able to
replace the full dynamic model by a simpler model discussed below.

Figure 20.5 depicts a numerical solution to the model defined by Eq. (20.12)
for a set of initial outbreak locations. At each location a small seed of infected
individuals initializes the epidemic. Global aspects of an epidemic can be assessed
by the total fraction of infected individuals jG(t) = ∑

n cn jn(t) where cn is the
relative size population n with respect to the entire population sizeN . As expected
the time course of a global epidemic in terms of the epi-curve and duration depends
substantially on the initial outbreak location.

A more important aspect is the spatiotemporal pattern generated by the model.
Figure 20.6 depicts temporal snapshots of simulations initialized in London
and Chicago, respectively. Analogous to the qualitative patterns observed in
Fig. 20.3b, we see that the presence of long-range connections in the world-
wide air-transportation network yields incoherent spatial patterns much unlike the
regular, concentric wavefronts observed in systems without long-range mobility.
Figure 20.7 shows that also the model epidemic depicts only a weak correlation

Fig. 20.5 Global epi-curves. Each curve depicts the global fraction of infected individuals as a
function of time for different outbreak locations as predicted by the metapopulation model defined
by Eq. (20.12). Depending on the initial outbreak location curves differ in epidemic maximum,
curve shape and epidemic duration
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Fig. 20.6 Properties of spatiotemporal patterns of global disease dynamics. Each panel from left to
right depicts temporal snapshots of the spread of a computer-simulated hypothetical pandemic. Red
nodes denote locations with a high fraction of infecteds. Each row corresponds to a different initial
outbreak location (London (LHR), top and Chicago (ORD), bottom). The patterns are spatially
incoherent, especially for larger times. It is thus difficult to assess which locations are affected next
in the sequence of locations

between geographic distance to the outbreak location and arrival time. For a fixed
geographic distance arrival times at different airports can vary substantially and thus
the traditional geographic distance is useless as a predictor.

20.4 Issues with Computational Models

The system defined by Eq. (20.12) is one of the most parsimonious models that
accounts for strongly heterogeneous population distributions that are coupled by
traffic flux between them and that can be gauged against actual population size
distributions and traffic data. Surprisingly, despite its structural simplicity this type
ofmodel has been quite successful in accounting for actual spatial spreads of past epi-
and pandemics [19]. Based on early models of this type and aided by the exponential
increase of computational power, very sophisticated models have been developed
that account for factors that are ignored by the deterministic metapopulation SIR
model. In the most sophisticated approaches, e.g. GLEAM [21], the global epidemic
andmobility computational tool, not only traffic by air but other means of transporta-
tion are considered, more complex infectious dynamics is considered and in hybrid
dynamical systems stochastic effects caused by random reactions andmobility events
are taken into account. Household structure, available hospital beds and seasonality
have been incorporated aswell as disease specific features, all in order tomake predic-
tions more and more precise. The philosophy of this type of research line heavily
relies on the increasing advancement of both computational power as well as more
accurate and pervasive data often collected in natural experiments and web-based
techniques [21–25].

Despite the success of these quantitative approaches, this strategy bears a number
of problems some of which are fundamental. First, with increasing computational
methods it has become possible to implement extremely complex dynamical systems
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Fig. 20.7 Arrival time and geographic distance. For a simulated pandemic based on the dynamical
system of Eq. (20.12) and the worldwide air-transportation network (top) the bottom panel depicts
the arrival time at each location as a functionof the geographic distance to the initial outbreak location
HongKong.Airports are colored according to geographic location. Only aweak correlation between
arrival time and geographic distance exists (dashed line). For a fixed small range of geographic
distances a wide range of arrival times exists, geographic distance is thus not a good predictor

with decreasing effort and also without substantial knowledge of the dynamical
properties that often nonlinear dynamical systems can possess. Implementing a lot of
dynamical detail, it is difficult to identify which factors are essential for an observed
phenomenon and which factors are marginal. Because of the complexity that is
often incorporated even at the beginning of the design of a sophisticated model
in combination with the lack of data modelers often have to make assumptions
about the numerical values of parameters that are required for running a computer
simulation [26]. Generically many dozens of unknown parameters exist for which
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plausible and often not evidence-based values have to be assumed. Because complex
computational models, especially those that account for stochasticity, have to be run
multiple times in order to make statistical assessments, systematic parameter scans
are impossible even with the most sophisticated supercomputers.

Finally, all dynamical models, irrespective of their complexity, require two ingre-
dients to be numerically integrated: (1) fixed values for parameters and (2) initial
conditions. Although some computational models have been quite successful in
describing and reproducing the spreading behavior of past epidemics and in situ-
ations where disease specific parameters and outbreak locations have been assessed,
they are difficult to apply in situations when novel pathogens emerge. In these situ-
ations, when computational models from a practical point of view are needed most,
little is knownabout these parameters and running even themost sophisticatedmodels
“in the dark” is problematic. The same is true for fixing the right initial conditions. In
many cases, an emergent infectious disease initially spreads unnoticed and the public
becomes aware of a new event after numerous cases occur in clusters at different loca-
tions. Reconstructing the correct initial condition often takes time, more time than is
usually available for making accurate and valuable predictions that can be used by
public health workers and policymakers to devise containment strategies.

20.5 Effective Distance

Given the issues discussed above one can ask if alternative approaches exist that
can inform about the spread without having to rely on the most sophisticated highly
detailed computer models. In this context one may ask whether the complexity of
the observed patterns that are solutions to models like the SIRmetapopulation model
of Eq. (20.12) are genuinely complex because of the underlying complexity of the
mobility network that intricately spans the globe, or whether a simple pattern is really
underlying the dynamics that is masked by this complexity and our traditional ways
of using conventional maps for displaying dynamical features and our traditional
ways of thinking in terms of geographic distances.

In a recent approach Brockmann and Helbing [11] developed the idea of replacing
the traditional geographic distance by the notion of an effective distance derived from
the topological structure of the global air-transportation network. In essence the idea
is very simple: If two locations in the air-transportation network exchange a large
number of passengers they should be effectively close because a larger number of
passengers implies that the probability of an infectious disease to be transmitted from
A to B is comparatively larger than if these two locations were coupled only by a
small number of traveling passengers. Effective distance should therefore decrease
with traffic flux.What is the appropriate mathematical relation and a plausible ansatz
to relate traffic flux to effective distance? To answer this question one can go back to
themetapopulation SIRmodel, i.e. Eq. (20.12). Dispersal in this equation is governed
by the flux fraction Pnm . Recall that this quantity is the fraction of all passengers that
leave node m and arrive at node n. Therefore Pnm can be operationally defined as the
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probability of a randomly chosen passenger departing node m arriving at node n. If,
in a thought experiment, we assume that the randomly selected person is infectious,
Pnm is proportional to the probability of transmitting a disease from airport m to
airport n. We can now make the following ansatz for the effective distance:

dnm = d0 − log Pnm (20.13)

where d0 ≥ 0 is a non-negative constant to be specified later. This definition of
effective distance implies that if all traffic from m arrives at n and thus Pnm = 1
the effective distance is dnm = d0 which is the smallest possible value. If, on the
other hand Pnm becomes very small, dnm becomes larger as required. The definition
(20.13) applies to nodes m and n that are connected by a link in the network. What
about pairs of nodes that are not directly connected but only by paths that require
intermediate steps? Given two arbitrary nodes, an origin m and a destination n, an
infinite amount of paths (sequence of steps) exist that connect the two nodes. We can
define the shortest effective route as the one for which the accumulation of effective
distances along the legs is minimal. So for any path we sum the effective distance
along the legs according to Eq. (20.13) adding up to an effective distance Dnm .
This approach also explains the use of the logarithm in the definition of effective
distance. Adding effective distances along a route implies the multiplication of the
probabilities Pnm along the involved steps. Therefore the shortest effective distance
Dnm is equivalent to the most probable path that connect origin and destination. The
parameter d0 is a free parameter in the definition and quantifies the influence of the
number of steps involved in a path. Typically it is chosen to be either 0 or 1 depending
on the application.

One important property of effective distance is its asymmetry. Generally we have

dnm �= dmn.

This may seem surprising at first sight, yet it is plausible. Consider for example two
airports A and B. Let’s assume A is a large hub that is strongly connected to many
other airports in the network, including B. Airport B, however, is only a small airport
with only as a single connection leading to A. The effective distance B → A is much
smaller (equal to d0) than the effective distance from the hub A to the small airport B.
This accounts for the fact that if, again in a thought experiment, a randomly chosen
passenger at airport B is most definitely going to A whereas a randomly chosen
passenger at the hub A is arriving at B only with a small probability.

Given the definition of effective distance one can compute the shortest effective
paths to every other node from a chosen and fixed reference location. Each airport m
thus has a set of shortest pathsPm that connectm to all other airports. This set forms
the shortest path tree Tm of airport m. Together with the effective distance matrix
Dnm the tree defines the perspective of node m. This is illustrated qualitatively in the
Fig. 20.8 that depicts a planar random triangular weighted network.

One can now employ these principles and compute the shortest path trees
and effective distances from the perspective of actual airports in the worldwide
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Fig. 20.8 Shortest paths and shortest path trees in complex networks. Left: A random planar
weighted network consisting of 100 nodes and 283 links. Links vary in strength. The size of the
nodes quantifies the total link weight per node. Center: For a chosen node (no. 76) the shortest
path tree is shown. Color depicts effective distance. Right: The shortest path tree of node no. 36.
The shortest path trees are also those paths that correspond to the most probable paths of a random
walker that starts at the reference location and terminates at the respective target node

air-transportation network based on actual traffic data, i.e. the flux matrix Fnm .
Figure 20.9 depicts the shortest path tree of one of the Berlin airports (Tegel, TXL).
The radial distance of all the other airports in the network is proportional to their
effective distance from TXL. One can see that large European hubs are effectively
close to TXL as expected. However, also largeAsian andAmerican airports are effec-
tively close to TXL. For example, the airports of Chicago (ORD), Beijing (PEK),
Miami (MIA) and New York (JFK) are comparatively close to TXL. We can also
see that from the perspective of TXL, Germany’s largest airport FRA serves as a
gateway to a considerable fraction of the rest of the world. Because the shortest path
tree also represents the most probable spreading routes one can use this method to
identify airports that are particularly important in terms of distributing an infectious
disease throughout the network.

20.6 Recovery of Concentric Patterns

The use of effective distance and representing the air-transportation network from
the perspective of chosen reference nodes and making use of the more plausible
notion of distance that better reflects how strongly different locations are coupled in
a networked system is helpful for “looking at” the world. Yet, this representation is
more than amere intuitive and plausible spatial representation.What are the dynamic
consequences of effective distance? The true advantage of effective distance is illus-
trated in Fig. 20.10. This figure depicts the identical computer-simulated hypothetical
pandemic diseases as Fig. 20.6. Unlike the latter, which is based on the traditional
geographic representation, Fig. 20.10 employs the effective distance and shortest
path tree representation from the perspective of the outbreak location as discussed
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Fig. 20.9 Shortest path trees and effective distance from the perspective of airport Tegel (TXL) in
Berlin. TXL is the central node. Radial distance in the tree quantifies the effective distance to the
reference node TXL. As expected large European hubs like Frankfurt (FRA), Munich (MUC) and
London Heathrow (LHR) are effective close to TXL. However, also hubs that are geographically
distant such as Chicago (ORD) and Beijing (PEK) are effectively closer than smaller European
airports. Note also that the tree structure indicates that FRA is a gateway to a large fraction of other
airports as reflected by the size of the tree branch at FRA. The illustration is a screenshot of an
interactive effective distance tool available online [27]

above.Using thismethod, the spatially incoherent patterns in the traditional represen-
tation are transformed into concentric spreading patterns, similar to those expected
for simple reaction diffusion systems.

This shows that the complexity of observed spreading patterns is actually equiv-
alent to simple spreading patterns that are just convoluted and masked by the under-
lying network’s complexity. This has important consequences. Because only the
topological features of the network are used for computing the effective distance
and no dynamic features are required, the concentricity of the emergent patterns is
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a generic feature and independent of dynamical properties of the underlying model.
It also means that in an effective distance, contagion processes spread at a constant
speed, and just like in the simple reaction diffusionmodel one canmuch better predict
the arrival time of an epidemic wavefront, knowing the speed and effective distance.
For example, if shortly after an epidemic outbreak the spreading commences and the
initial spreading speed is assessed, one can forecast arrival timeswithout having to run
computationally expensive simulations. Even if the spreading speed is unknown, the
effective distance which is independent of dynamics can inform about the sequence
of arrival times, or relative arrival times.

The benefit of the effective distance approach can also be seen in Fig. 20.11 in
which arrival times of the 2003 SARS epidemic and the 2009 H1N1 pandemic in
affected countries are shown as a function of effective distance to the outbreak origin.
Comparing this figure to Fig. 20.7 we see that effective distance is a much better
predictor of arrival time, a clear linear relationship exists between effective distance
and epidemic arrival. Thus, effective distance is a promising tool and concept for
application in realistic scenarios, being able to provide a first quantitative assessment
of an epidemic outbreak and its potential consequences on a global scale.

Fig. 20.10 Simulations and effective distance. The panels depict the same temporal snapshots of
computer-simulated hypothetical pandemic scenarios as in Fig. 20.6. The top row corresponds to a
pandemic initially seeded at LHR (London) and the bottom row at ORD (Chicago). The networks
depict the shortest path tree effective distance representation of the corresponding seed airports
as in Fig. 20.9. The simulated pandemics that exhibit spatially incoherent complex patterns in
the traditional representation (Fig. 20.6) are equivalent to concentric wave fronts that progress at
constant speeds in effective distance space. This method thus substantially simplifies the complexity
seen in conventional approaches and improves quantitative predictions
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Fig. 20.11 Correlation of arrival time with effective distance. Left: the relationship of epidemic
arrival time and effective distance for the H1N1 pandemic 2009. Compared to the conventional
use of geographic distance effective distance is a much better predictor of epidemic arrival time as
is reflected by the linear relationship between arrival time and effective distance, e.g. compare to
Fig. 20.7. Right: The same analysis for the 2003 SARS epidemic. Also in this case effective distance
is much more strongly correlated with arrival time than geographic distance

20.7 Reconstruction of Outbreaks

In a number of situation epidemiologists are confronted with the task of recon-
structing the outbreak origin of an epidemic. When a novel pathogen emerges in
some cases the infection spreads covertly until a substantial case count attracts atten-
tion and public health officials and experts become aware of the situation. Quite
often cases occur much like the patterns depicted in Fig. 20.3b in a spatially inco-
herent way because of the complexity of underlying humanmobility networks.When
cases emerge at apparently randomly distributed locations it is a difficult task to
assess where the event initially started. The computational method based on effective
distance can also be employed in these situations provided that one knows the under-
lying mobility network. This is because the concentric pattern depicted in Fig. 20.10
is only observed if and only if the actual outbreak location is chosen as the center
perspective node. In other words, if the temporal snapshots are depicted using a
different reference node the concentric pattern is scrambled and irregular. There-
fore, one can use the effective distance method to identify the outbreak location of
a spreading process based on a single temporal snapshot. This method is illustrated
in a proof-of-concept example depicted in Fig. 20.12. Assume that we are given a
temporal snapshot of a spreading process as depicted in Fig. 20.12a and the goal is
to reconstruct the outbreak origin from the data. Conventional geometric consider-
ations are not successful because the network-driven processes generically do not
yield simple geometric patterns. Using effective distance, we can now investigate the
pattern from the perspective of every single potential outbreak location.We could for
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Fig. 20.12 Outbreak reconstruction using effective distance. a The panel depicts a temporal snap-
shot of a computer-simulated hypothetical pandemic, red dots denote airports with a high prevalence
of cases. From the snapshot alone it is difficult to assess the outbreak origin which in this case is
ORD (Chicago). b A choice of 12 potential outbreak locations as candidates. c For these candidate
locations the pattern is depicted in the effective distance perspective. Only for the correct outbreak
location the pattern is concentric. This method can be used quantitatively to identify outbreaks of
epidemics that initially spread in a covert way

example pick a set of candidate outbreak locations (panel (b) in the figure). If this is
done wewill find that only for one candidate outbreak location the temporal snapshot
has the shape of a concentric circle. This must be the original outbreak location. This
process, qualitatively depicted in the figure, can be applied in a quantitative way
and has been applied to actual epidemic data such as the 2011 EHEC outbreak in
Germany [28].

20.8 Conclusions

Emergent infectious diseases that bear the potential of spreading across the globe are
an illustrative example of howconnectivity in a globalizedworld has changed theway
human-mediated processes evolve in the twenty-first century. We are connected by
complex networks of interaction, mobility being only one of them. With the onset of
social media, the Internet and mobile devices we share information that proliferates
and spreads on information networks in much the same way (see also Chap. 19).
In all of these systems the scientific challenge is understanding what topological
and statistical features of the underlying network shape particular dynamic features
observed in natural systems. The examples addressed above focus on a particular
scale, defined by a single mobility network, the air-transportation network that is
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relevant for this scale. As more and more data accumulates, computational models
developed in the future will be able to integrate mobility patterns at an individual
resolution, potentially making use of pervasive data collected on mobile devices
and paving the way toward predictive models that can account very accurately for
observed contagion patterns. The examples above also illustrate that just feeding
better and faster computers with more and more data may not necessarily help in
understanding the fundamental processes and properties of the processes that underly
a specific dynamic phenomenon. Sometimeswe only need to change the conventional
and traditional ways of looking at patterns and adapt our viewpoint appropriately.
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Chapter 21
On the Spreading of Epidemics
and Percolation Theory

Armin Bunde, Shlomo Havlin, and Josef Ludescher

21.1 Introduction

In a typical epidemic, infected individuals are contagious over a certain time span
τ before they get immunized either by recovering or dying. During this conta-
gion period which for COVID-19 typically ranges between one and two weeks, an
infected individual can infect other individuals. When more individuals are infected
than recover, the net reproductive ratio is greater than one and the epidemic spreads;
otherwise, it tends to die out.

At the beginningof an epidemic, the number of newly infected individuals depends
on the number of contacts each individual has during the contagion time τ and on the
intensity and duration of the contacts. Not every contact transmits the virus and leads
to an infection. Intense contacts lead to an infectionwith a higher probability q, which
may even increase, on a larger time scale, due tomutations of the virus.Most contacts
are within the family, between close friends, workmates, and schoolmates, but there
are also contacts between individuals that do not know each other, in restaurants
and theaters, in hospitals, as well as in buses, trains, and airplanes. Since people are
mobile, an infected individual can also infect others in different cities, countries, and
continents, allowing the disease to spread around the world.

The number of contacts a person can have differs tremendously. Some people
mostly stay at home and have little contact with others, while others are highly
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mobile and meet dozens or even hundreds of people every day. Accordingly, the
effect of different people on the spreading of an epidemic is very different: some
have nearly no effects while others (the superspreaders) actually drive the spreading
of the disease.

When trying to model the spreading of an epidemic, it is helpful when one knows
in greater detail the structure of the network, i.e., the links between different people.
The stable links between family, close friends, workmates, and schoolmates, for
example, trigger the spreading of the disease preferably in the neighborhood (village
or city) of an infected individual, while random links between individuals in buses,
trains, airplanes, and large festivities trigger the spreading of the epidemic to distant
places.

Themodels that aim to describe the spreading of an epidemic can be distinguished
in the way the links between different people are treated. Most mathematical studies
assume explicitly that populations are “fully mixed”, i.e., an infective individual is
equally likely to spread the disease to any other member of the population [1–3].
This assumption enables one to write down, in the limit of large population size N ,
nonlinear differential equations for the number of infective (I), susceptible (S), and
recovered and immune or dead (R) individuals as a function of time [4–8].

The SIR equations can be solved in closed form mathematically and yield a
useful insight into the development of an epidemic outbreak. The problem with this
approach is that the non-homogeneous population topology, in particular the crucial
role of the superspreaders in an epidemic outbreak, cannot be accounted for (see
also the discussion in [9] and Chap. 23 by Klaus Kroy). Also, in this approach,
the (Euclidean) distance between two individuals is irrelevant, in strong contrast to
reality. In improvements to the SIR model, in order to obtain some kind of spatial
confinement, one often divides a larger area (e.g., a country) into smaller areas. In
each small area, the individuals living there interact via the SIR equations, while the
contacts between these areas are considered separately by flux equations (see Chap.
20 by Dirk Brockmann).

In the past two decades, motivated by the increasing interest in network theory
and its applications in nature, society, and technology [10–12] (see also Chap. 19
by Louis Shektman et al.), the spreading of diseases in social networks came into
the focus of the statistical physics community (see, e.g., [8–41]). Within a network
approach, the susceptible, infective, and recovered individuals form the nodes of
a network. The disease can spread between linked nodes. The approach allows to
study both the role of the superspreaders and the role of spatial constraints on the
individuals [15, 28].

In this chapter,wewillmainly focus onnetworkmodels to reveal the characteristic
features of epidemic spreading. By borrowing ideas from percolation theory, we
quantify the epidemic threshold that describes the transition from a localized state to
a spreading state and discuss how epidemics are structured close to this threshold.

The network models also allow us to discuss, quite generally and partly in an
analytical way, the role of the superspreaders in an epidemic outbreak, the immu-
nization strategies one should use to bring the epidemic to a halt, and the effect of
spatial constraints on the spreading of an epidemic.
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Our chapter is complementary to Chap. 20, where the spreading of a disease is
considered on a global scale and different questions, like quantitative assessments of
an epidemic outbreak or the reconstruction of the actual outbreak location, are being
addressed.
First, we discuss the historical SIR equations.

21.2 The SIR Equations

The SIR model is the most widely used epidemic model. As pointed out in [9],
the basic ideas were first formulated (though never published) by Lowell Reed and
Wade Hampton Frost about 100y ago. In the model, a population of N individuals is
considered to have three states: infective (I), susceptible (S), and recovered (and this
way immunized) or dead (R). By definition, I + S + R = N . Accordingly, when
the temporal development of I (t) and S(t) is known, R(t) follows directly from this
sum rule. Usually, the epidemic starts with one infective individual, i.e., I (0) = 1.

In the “fully mixed” SIR model, the temporal development of I (t) and S(t) is
described by the SIR rate equations [4] (see also Chaps. 20, 22, and 23):

dS

dt
= −β

I

N
S,

d I

dt
=

(
β
S

N
− γ

)
I. (21.1)

Here 1/γ = τ is the mean contagion time of an infective individual; β/γ represents
the basic reproduction ratio R0, i.e., the mean number of individuals that are infected
by one infective individual during the contagion time, in the first stage of an epidemic
where S/N ≈ 1. In this case, when the number of infective individuals is small,
the non linear SIR equations become linear and the (mean) number of infective
individuals I (t) can be very well approximated by

I (t) = I (0)e(β/γ−1)t/τ , (21.2)

and either increases exponentially when β/γ > 1 or decreases exponentially when
β/γ < 1. Thus, the threshold β/γ = 1 separates a phase where the epidemic does
not spread from a phase where it spreads.

It is convenient to split β/γ into the mean number of new contacts (≡ 〈k〉) an
infective individual has during the contagion time τ and the probabilityq that it infects
them, i.e., β/γ ≡ 〈k〉q; the brackets 〈...〉 denote an average over a distribution P(k)
of new contacts k.Within this notation, the epidemic only can spreadwhen q is above
the epidemic threshold

qc = 1/〈k〉. (21.3)
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Fig. 21.1 Development of an epidemic by the SIR rate equations (Eq. (21.1)) in a population
of 105 individuals, with and without vaccination. a Shows the number of infected (infective and
recovered) individuals Itotal(t) = (I (t) + R(t)) for β/γ = 6, without vaccination (full black line)
and with vaccination of a certain fraction of the population (0.5, 0.7, and 0.8) at a time tv , when 5%
of the susceptible population has been infected. Once vaccinated, an individual becomes immune
to contamination, like a recovered individual. b, c The same as (a), but for the number of infective
and susceptible individuals I (t) and S(t)

When 〈k〉q is above 1, the epidemic grows as long as d I (t)/dt ≥ 0. This requires

β

γ

S(t)

N
≡ 〈k〉q S(t)

N
> 1. (21.4)

This condition can be interpreted in several ways as follows:

1. When 〈k〉q is reduced by some measures, for example by wearing face masks
(which reduces q) or contact restrictions (which reduces 〈k〉), the epidemic slows
down.

2. Since S(t) = N − (I (t) + R(t)), the epidemic will die out naturally, without any
measures, when the fraction Itotal/N ≡ (I (t) + R(t))/N of infected (infective
plus recovered) individuals is larger than 1 − 1/(〈k〉q); 1 − 1/(〈k〉q) is referred
to as herd immunity.

3. When at time tv , a certain fraction Sv of the susceptible individuals has been
immunized by vaccination, the epidemic will stop growingwhen Itotal/N + Sv/N
reaches the herd immunity.

In the δ-variant of COVID-19, 〈k〉q is supposed to be around 6. Then the herd
immunity is 5/6 ≈ 0.8333. Accordingly, the SIR equations predict, for example,
that the epidemic should stop growing in populations where 80% of the population
has been vaccinated and 5% has recovered. Figure21.1 shows such a case.

The SIR equations can easily be modified by including death and birth processes
as well as (time dependent) containment and quarantine measures [7]. Also, depen-
dencies on the locations of the considered individuals can be incorporated (seeChaps.
20 and 22).

The advantage of the SIR equations and their simpler variants is that they are
easy to handle and can be solved mathematically in closed form. The disadvantage
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is that they do not reflect reality, since (i) they do not consider spatial constraints,
and, more importantly, (ii) no distinction is made between individuals with many
contacts (superspreaders that drive the epidemic) and those with few contacts. This
has an enormous impact on the conditions for an epidemic outbreak and leads to
false predictions of the herd immunity by the SIR equations. The SIR equations also
do not allow any insight into the size distribution of epidemic events and the spatial
structure of an epidemic outbreak, in particular near the epidemic threshold.

To deal with these problems and to show how to overcome them step by step, we
will consider a population as a social network. Each node in the network represents
an individual and the links emanating from a node represent the number of contacts
the individual has within a certain period of time (which we will choose identical to
the contagion time τ ). In such a network, any distribution of links ki emanating from
node i can be chosen, and it is also possible to add spatial constraints to the network,
for example by preferentially linking nodes that are close to each other. Such spatial
constraints are natural. They can be enhanced by legal travel restrictions during an
epidemic.

Since in all parts of this chapterwewill borrow frompercolation theory,we discuss
the intimate relationship between epidemic spreading and percolation systems first.

21.3 Epidemic Models and Percolation

Percolation theory describes, quite generally, how originally disconnected small ele-
ments form large-scale structures when the connectivity between them is gradually
enhanced. The theory quantifies the way clusters of connected elements are formed
and how for the first time, at the percolation threshold, a large cluster occurs that
spans the system. This transition is called percolation transition. In addition, perco-
lation theory describes the structural and dynamical features of the emerging clusters
in the neighborhood of the percolation threshold and reveals that quite different sys-
tems, like random resistor networks, dispersed ionic conductors, or orchards affected
by a disease, behave in the same universal way near the percolation transition (see
also Chap. 19).

Probably the simplest percolation system is a random resistor network on a square
lattice, see Fig. 21.2. At each site of the lattice, there is a metallic node (shown as a
black square). In the regular case, all neighboring nodes are connected by metallic
wires and the network is an electric conductor.Whenwe cut randomly a large fraction
1 − q of themetallicwires (bonds) such that the remaining concentrationof bondsq is
well below 1/2, only small clusters of nodes connected bymetallic bonds remain, and
an electric current cannot flow between opposite edges of the network (Fig. 21.2a).
When q is above 1/2 (Fig. 21.2b), there exists a spanning cluster (also called an
infinite cluster) that connects opposite edges of the network and an electric current
can flow. A critical bond concentration qc (here qc = 1/2) separates an insulating
phase from a conducting phase. This problem is known as bond percolation [43–45].
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Fig. 21.2 Random resistor networks and epidemic spreading. The figure shows a random resistor
network consisting of metallic nodes (black squares) and metallic bonds between nearest neighbor
nodes. A fraction 1 − q of bonds is cut. In a, q = 0.3, in b q = 0.6. c is the same as (b), but in
addition a fraction 30%of themetallic nodes are substituted by insulating nodes (red squares).While
in (a) only small metallic clusters occur, there exists in (b) a metallic path that connects opposite
edges of the network and electric current can flow. The added insulating nodes in (c) prevent an
electric current from flowing. In an epidemic, the nodes represent individuals and the bonds specify
the infectious contacts between them. Vaccinated individuals that cannot be infected are equivalent
to the insulating nodes

Above qc, there exist also finite clusters. But they shrink with increasing distance
from qc.

A possible application of bond percolation in chemistry is the polymerization
process, where small branching molecules can form large molecules by activating
more and more bonds between them. If the activation probability q is above the
critical threshold, a network of chemical bonds spanning the whole system can be
formed, while below criticality only macromolecules of finite size can be generated.
This process is called a sole-gel transition. An example of this gelation process is the
boiling of an egg, which at room temperature is liquid and upon heating becomes a
more solid-like gel. In addition to this prominent example, percolation aspects have
been found useful to describe a large number of disordered systems in nature, ranging
from thin films, supercooled water, flow in porous media, and urban traffic to galactic
structures (see, e.g., [44–48] and references therein).

Here we discuss the relation between random resistor networks and epidemic
spreading.To this end, let us assume that all sites (nodes) in the square lattice represent
individuals that can be infected by a disease. In its simplest form, the epidemic starts
with one infective individual. During the first time unit (the contagion period τ ), the
infective individual can infect each of its four neighbors with probability q before it
gets immunized either by recovering or dying. Each of the infected neighbors will in
turn infect, in the second time unit between t = τ and 2τ , its susceptible neighbors
with probability q and so on.

Another way of realizing this epidemic process is to start with a large network
where the bonds between nearest neighbors are cut with probability 1 − q and then
choose randomly one of the nodes as the starting point for an epidemic. The nodes
directly and indirectly connected to it specify how many individuals will become
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infected. It is obvious that the size distribution of the metallic clusters in a very large
random resistor network is identical to the distribution of the clusters of infected
individuals, and also the critical concentrations in both systems are the same. An
epidemic outbreak occurs when q > qc.

Next, we assume that in the random resistor network, not all sites act as metallic
nodes, but with a probability 1 − p the metallic nodes have been substituted by insu-
lating nodes (see Fig. 21.2c). Only metallic nodes connected by metallic wires can
conduct electric current. When q = 1, this kind of problem is called site percolation,
and the critical concentration pc denotes the minimum concentration of metallic
nodes that is needed for obtaining a spanning metallic cluster. For the square lattice,
pc is about 0.5928 [50]. For arbitrary q, pc ≡ pc(q) depends on q.

When considering the spreading of epidemics, the insulating nodes represent
individuals that have been immunized by vaccination, and pc(q) separates a phase
where the epidemic can spread from a phase where only finite clusters of infected
individuals exist and the epidemic stops; vc(q) ≡ 1 − pc(q) is then the minimum
fraction of individuals that must be vaccinated in order to prevent the epidemic from
spreading.

We will discuss the spreading of epidemics in several random and regular net-
works.We start with tree-like structures (Bethe lattices, sometimes also calledCayley
trees), where the relevant quantities can be obtained analytically.

21.4 Epidemics on Tree-Like Structures

TheBethe lattice is a cycle-free graph (no loops)where all sites (nodes) have the same
number of neighbors. The Bethe lattice was introduced into the physics literature by
Hans Bethe in 1935 [51]. The Bethe lattice is of particular interest in statistical
mechanics since on the Bethe lattice, physics models like the Ising model are often
easier to solve than on other lattices where cycles prevent an analytical solution.
The Bethe lattice is particularly suited to study epidemics, since the finite clusters of
infected individuals in more general networks (see Sect. 21.6) that allow cycles, are
cycle-free below the epidemic threshold. Thus, most results that we obtain in this
section will also be valid in more general and more realistic networks.

The Bethe lattice is generated as follows [43, 44]: we start with a central node
from which k branches emanate (see Fig. 21.3a). At the end of each branch, there
is another node, and these k nodes constitute the first shell of the Bethe lattice. The
branches constitute the links between the nodes. From each node in the first shell
k − 1 new branches grow out, this way generating k(k − 1) nodes in the second
shell. This process is continued (see Fig. 21.3a for k = 3) and large Bethe lattices
with k links emanating from each node are formed. For k = 2, the tree reduces to
a one-dimensional chain. Figure21.3b shows a Bethe lattice where the number of
links emanating from a node is drawn from a certain distribution. In this section,
we will focus on a Bethe lattice with k fixed, where most results of interest can be
obtained analytically.
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Fig. 21.3 Three shells of a Bethe lattice, a with fixed number of links k = 3 emanating from each
node, bwith a distribution of k. The origin of the tree, where the epidemic starts, is drawn as a large
open circle. The length of the bonds shown here is irrelevant

In the Bethe lattice, the (Euclidean) distance r has no meaning. The only relevant
distance between two nodes is the number of links on the shortest path between
them (often called topological or chemical distance) [49]. For example, the chemical
distance between the central node and a node on the �th shell is �.

The �th shell contains k(k − 1)�−1 nodes, increasing exponentially with �. In a
d-dimensional lattice, with d finite, the number of nodes at distance � increases as
�d−1. Since the exponential increase can be considered as a power-law behavior with
an infinite exponent, the Bethe lattice can be regarded as an infinite-dimensional
lattice.

21.4.1 Spreading of a Disease

The Bethe lattice allows to study, in an easy and intuitive way, the spreading of a
disease below qc, at qc and above qc. The quantities of interest are the mean cluster
size (of infected individuals), the distribution of the cluster sizes as a function of the
infection probabilityq, the epidemic thresholdqc, the vaccination threshold vc(q), the
growth of a typical epidemic with time, and the probability that above the epidemic
threshold an individual will be infected by the disease.

Tomodel epidemic spreading on theBethe lattice,wefirst assume (as in Sect. 21.3)
that all nodes in the tree-like structure represent susceptible individuals. The epidemic
starts at one node of the tree (origin of the tree). In the first time unit, the infective
individual at the origin infects each of the k individuals in shell 1 with probability q
before it recovers. In the second time unit, each of the infected individuals in shell
1 will in turn infect its k − 1 neighbors in shell 2 with probability q and so on.
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Accordingly, when we consider many epidemic events, all starting in the origin of a
Bethe lattice, on average

I�(q) = k(k − 1)�−1q� = k

k − 1
[(k − 1)q]�, � = t, (21.5)

individuals, all located in shell �, will be infected at the end of the �th time unit. For
t approaching ∞, the number of infective individuals tends to zero exponentially for
q(k − 1) < 1 and diverges for q(k − 1) > 1. Accordingly, for q above the epidemic
threshold

qc = 1

k − 1
, (21.6)

a typical epidemic outbreak ceases to be confined to a finite number of individuals and
expands to fill an extensive fraction of the tree. The epidemic threshold qc is the same
as in the fully mixed SIR model (21.1), since in the Bethe lattice the mean number
of new contacts each individual has is k − 1. Due to its tree structure, the increasing
number Itotal(q, t) of infected (infective and recovered) individuals is irrelevant here.
Accordingly, the Bethe lattice can only be used to describe the initial phase of an
epidemic where the number of infected individuals is small compared with the total
number of individuals.

The mean number of infected individuals Itotal(q, t) (except the one at the origin)
is obtained by summing I�(q) over all shells � between 1 and t . Since

∑t
�=1 a

� =
a(at − 1)/(a − 1) we obtain (with k − 1 = 1/qc)

Itotal(q, t) = q

q − qc
(1 + qc)

(
(q/qc)

t − 1
)
. (21.7)

Equation (21.7) is rigorous and holds for all t ≥ 1. For q below qc, Itotal reaches the
constant value Itotal(q,∞) = q(1 + qc)/(qc − q) for large t , while well above qc,
Itotal(q, t) increases exponentially, Itotal(q, t) ∼ (q/qc)t .

21.4.2 Behavior Near the Epidemic Threshold

To see how Itotal(q, t) depends on q and t when approaching the epidemic threshold
qc, we define

ε ≡ qc − q

qc
. (21.8)

For ε tending to zero, (q/qc)t in (21.7) can be expressed as (q/qc)t ≡ (1 − ε)t ∼=
exp(−εt) and thus

Itotal(q, t) ∼= t (1 + qc)
1 − e−εt

εt
≡ t f (t/tξ ) (21.9)
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with the characteristic time scale

tξ = |ε|−1 (21.10)

and the “scaling function”

f (x) = (1 + qc)

{
(1 − exp(−x))/x, q ≤ qc
(exp(x) − 1))/x, q ≥ qc.

(21.11)

The behavior of Itotal(q, t) near qc is denoted as scaling behavior [43, 44, 52]: close
to the epidemic threshold, as long as t is well below the characteristic time scale tξ ,
Itotal is independent of q and increases algebraically with time t , here linearly. The
scaling function f depends only on the combined variable t/tξ , i.e., on the variation
of t relative to tξ and describes the change of Itotal(q, t) when departing from the
epidemic threshold. For t well above tξ , Itotal tends to its asymptotic value for q below
qc, while it increases exponentially for q above qc.

The crossover time tξ is the characteristic time scale in the neighborhood of the
epidemic threshold. Since time t is associatedwith the topological distance �, tξ plays
the role of a correlation length ξ , in topological units. Below qc, ξ ∝ tξ represents
the mean topological length of the finite clusters. Above qc, apart from the spanning
cluster there exist finite clusters that shrink in size when departing from the epidemic
threshold; ξ ∝ tξ represents the mean topological length of these finite clusters.

Figure21.4 shows Itotal(q, t)/t as a function of t/tξ for several ε values below and
above qc. The red and blue curves represent the scaling function f (x), for q < qc
and q > qc, respectively. The data collapse confirms the scaling behavior.

It should be noticed that, in contrast to qc, the “critical” behavior of Itotal(q, t)
and tξ in the neighborhood of qc, with its characteristic power-law dependence and
the characteristic functional form of f (x), is independent of k. This fact reflects
the universal properties of epidemic spreading near the epidemic threshold. It is
important to note that the same dependencies, with the same exponents, occur also
in the more general networks considered below, as long as the Euclidean distance
is irrelevant. In lattice structures, where the Euclidean distance plays a role, the
critical behavior is also described by power laws and scaling behavior, but the critical
exponents (here the exponent 1 in (21.10)) are changed.

21.4.3 Cluster Statistics

Below the epidemic threshold qc, Itotal(q,∞) specifies the mean number of individ-
uals 〈s〉 that will be infected during an epidemic event. By definition, Itotal(q,∞)

results from an average over many events. In order to obtain the distribution of the
cluster size s, we consider the probability ws(q) that the infective node at the origin
of the tree has infected exactly s − 1 other nodes. In a specific epidemic event, the
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Fig. 21.4 Scaling behavior near the epidemic threshold in a Bethe lattice. The figure shows
Itotal(q, t)/t for |ε| ≡ |(qc − q)/qc| = 10−2, 10−3, and 10−4, as a function of t/tξ . The data col-
lapse shows that Itotal(q, t)/t does not depend separately on q and t , but only on the combined
variable t/tξ with tξ ∝ |q − qc|−1

probability of finding a finite cluster with s infected nodes surrounded by t̃ non-
infected perimeter nodes is qs−1(1 − q)t̃ . Since any of the s cluster nodes can be
chosen as the origin of an epidemic event, this probability has to be multiplied by s.

In the Bethe lattice, there exists a unique relation between s and t̃ . A cluster of
1 node is surrounded by k, a cluster of 2 nodes by k + (k − 2) perimeter nodes. In
general, a cluster of s nodes has k − 2 more perimeter nodes than a cluster of s − 1
nodes, and thus t̃(s) = k + (s − 1)(k − 2) = 2 + (k − 2)s. Hence, ws(q) is given
by

ws(q) = (gs/q)sqs(1 − q)2+(k−2)s ≡ (gs/q)s(1 − q)2[q(1 − q)k−2]s, (21.12)

where gs is the number of configurations for an s-node cluster. Note that (21.12) is
general and holds for all values of q.

One can show [43, 44] that near qc, to lowest order in ε, ws also shows scaling
behavior (see (21.9)),

ws(q) = s1−τh(|ε|sσ ), (21.13)

with the critical exponents τ = 5/2 and σ = 1/2, and a scaling function h(x) ∝
exp(−x2/(2 − 2qc)) for the Bethe lattice. Accordingly, at the epidemic threshold
(ε = 0) there is no characteristic size and the cluster size distribution decays as a
power law. Below and above qc, the correction to this power-law distribution only
depends on the combined variable |ε|sσ ; ws(q) crosses over to an exponential decay
for s above sξ ≡ |ε|−1/σ = |ε|−2 = t2ξ .
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Above qc, there is a non-zero probability P∞ that a node in the lattice belongs
to the spanning cluster (see Fig. 21.2c); the epidemic spreads over the network and
a finite fraction P∞ of individuals becomes infected. Accordingly, a finite fraction
1 − P∞ of the individuals will not be infected. Below qc, P∞ ≡ 0 by definition. One
can show [43, 44] that above qc, P∞ increases as a power of |ε|,

P∞ ∼ |ε|β, (21.14)

withβ = (τ − 2)/σ . Since for the Bethe lattice τ = 5/2 and σ = 1/2, we findβ = 1
here, i.e., P∞ increases linearly with increasing distance q − qc from the epidemic
threshold qc.

We like to stress that Eqs. (21.13) and (21.14) are important, since they are not
only valid for epidemic spreading on a Bethe lattice, but also on the other more
complex networks that we will discuss below, with appropriate exponents τ , σ , and
β and appropriate scaling functions h(x). Of course, the critical exponents β and τ

used in percolation theory are not related to the parameters of the same name in the
SIR Eqs. (21.1).

Next, we discuss the time dependence of s(t) during a typical epidemic event
close to the epidemic threshold qc.

21.4.4 Large Single Epidemic Events Near the Epidemic
Threshold

Since near qc the mean number of infected nodes Itotal(q, t) ∝ t grows algebraically
with time as long as t is below tξ , we expect that also in a single epidemic event the
number of infected nodes s(t) will increase as a power law, s(t) ∝ td� , for t below
tξ . Using Eq. (21.13) it is straightforward to show that near qc, Itotal(q, t) and s(t)
are related by

Itotal(q, t) ∝
s(t)∫
1

s ′s ′1−τds ′ + s(t)

∞∫
s(t)

s ′1−τds ′. (21.15)

Simple integration yields t ∼ s(t)3−τ . Thus, we obtain, for t below tξ , with τ = 5/2,

s(t) ∼ t1/(3−τ) = t2. (21.16)

Since in epidemic spreading, time t is identical to the topological distance �

between the origin and shell � of the tree, d� = 2 is the topological dimension [49]
of the cluster of infected nodes. Equation (21.16) suggests that the crossover time tξ
in (21.9) and the crossover cluster size sξ in (21.13) are related by sξ ∝ t2ξ , which is
indeed the case (see above).
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While above qc the dimension of the spanning cluster is infinite on large scales, at
qc the dimension of the spanning cluster is finite. As a consequence, at the epidemic
threshold, the infected individuals form quite a dilute structure. The structure has
self-similar properties as we will see in Sect. 21.5. We like to add that (21.16) is not
only valid on the Bethe lattice considered here, but on all network structures where
cycles can be neglected below qc (see Sect. 21.6).

The subexponential power-law behavior (21.16) occurs when we are close to the
epidemic threshold and is typical for critical phenomena at a critical point [52]. It is
not unlikely that in a real epidemic, as a consequence of containment strategies, the
epidemic is driven close to the epidemic threshold and below. In this case, we expect,
according to Eq. (21.16), that the number of infected individuals grows quadratically
with time t (until saturation occurs).

Interestingly, when inspecting data from China collected in February 2020, Maier
and Brockmann [7] noticed that, unexpectedly, the epidemic did not take off expo-
nentially, but rather by a power law with an exponent close to 2. To describe this
effect, they introduced a parsimonious SIR-type model that captures both quarantine
of symptomatic infected individuals, as well as population-wide isolation practices
in response to containment policies or behavioral changes. From our point of view,
a power-law behavior with a universal exponent 2 is quite natural when containment
strategies drive the epidemic toward the epidemic threshold.

In addition, when there are strong constraints on the mobility of a population
that make long-distant contacts unlikely and also restrict the number of contacts
an individual can have, the epidemic effectively spreads like on a network where
practically only nearest neighbors are linked. In such a network, s(t) also grows
quadratically in time (see Sect. 21.5).

21.4.5 Effect of Vaccinations on the Epidemic Threshold

Next, we consider the case that not all individuals on the Bethe lattice (with k fixed)
are susceptible, but a certain fraction v = 1 − p of the population has been vaccinated
and is immune. In this case, on average only a fraction p of the individuals in shell
� is susceptible, and the mean number I�(p, q) of infected individuals during time
step t = � becomes

I�(p, q) = k(k − 1)�−1(pq)� = k

k − 1
[(k − 1)(qp)]�, � = t. (21.17)

Equation (21.17) is identical to Eq. (21.5), when q in (21.5) is substituted by
qeff = qp. Accordingly, the epidemic stops growing, when a critical fraction vc(q) ≡
1 − pc(q) has been vaccinated. The condition (k − 1)qp < 1 yields (with qc = pc =
1/(k − 1))



440 A. Bunde et al.

pc(q) =
{
1 , q ≤ qc
pc/q , else.

(21.18)

Accordingly, the fraction of immunized individuals v needs to exceed vc(q) = 1 −
pc(q) = 1 − 1/[(k − 1)q] to prevent epidemic spreading. For example, when (k −
1)q = 6 (as for the δ-variant of COVID-19), 83.33% of the population must be
vaccinated, the same result as for the SIR model. Similarly, when only a fraction
v < vc of the individuals has been vaccinated, the epidemic threshold occurs at
qc(v) = qc/(1 − v) ≤ 1.

21.5 Epidemics on Regular Planar Networks

In order to seewhich effects spatial constraints and cycles have on epidemic spreading
and to learn more about the fragile structure of an epidemic event near the epidemic
threshold,we next consider epidemics in planar lattice structures, (a) in square lattices
where k = 4 and (b) in triangular lattices where k = 6. It is clear that in a human
population, not only individuals close to each other are linked. But if as a result
of legal measures, the contacts between distant individuals are severely restricted, a
lattice structure may be a better model for the contacts in a population than a network
where the distance between the individuals is irrelevant. In addition, a lattice model
is a good choice when studying the spread of diseases in orchards or the spread of a
forest fire (see, e.g., [44] and references therein).

Due to the strong spatial constraints that induce cycles, the critical thresholds qc
and pc are well above 1/(k − 1). For the square lattice, qc = 1/2 and pc ∼= 0.593
are well above 1/3, and for the triangular lattice, both qc = 2 sin(π/18) ≈ 0.347 and
pc = 1/2 are well above 1/5 [50].

To an excellent approximation [53], pc(q) follows the relation ln p/ ln pc +
ln q/ ln qc = 1 which yields

pc(q) =
{
1 , q ≤ qc
pc/qa , else

(21.19)

with a = ln pc/ ln qc. Equation (21.19) is exact for the Bethe lattice where a = 1.
Figure21.5 shows vc(q) = 1 − pc(q) (a) for the square lattice and the correspond-

ing Bethe lattice with k = 4 and (b) for the triangular lattice and the corresponding
Bethe lattice with k = 6. Due to the strong spatial constraints in both lattices, epi-
demic spreading is less effective than in the Bethe lattices, and fewer people need to
be vaccinated.

Figure21.6 illustrates the spreading of a typical epidemic in a 200 × 200 square
lattice, for v = 1 − p = 0 and q = 0.45, 0.5, and 0.55. For q = 0.45, the epidemic
cluster is quite small. At the epidemic threshold qc = 0.5, the spreading cluster shows
a quite fragile structure characterized by the topological dimension d�

∼= 1.678 [44],
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Fig. 21.5 Random immunization by vaccination in cycle-free networks and lattice structures. The
figure shows the fraction of individuals vc(q) that must be vaccinated to prevent epidemic spreading
as a function of the infection probability q, for a the square lattice and the corresponding Bethe
lattice with k = 4 and b the triangular lattice and the corresponding Bethe lattice with k = 6

Fig. 21.6 Epidemic spreading on a square lattice, with infection probabilities q = 0.45 (a), 0.5
(b), and 0.55 (c). Right at the epidemic threshold qc = 0.5, large clusters of infected individuals
show a self-similar fractal structure

being smaller than for the Bethe lattice. The cluster is self-similar: a part of it,
magnified, looks like the whole. A demonstration of the self-similarity is shown in
[44].

At q = 0.55 already, the spreading cluster is compact on large scales with d� = 2.
Accordingly, above the epidemic threshold, the epidemic grows quadratically in time
(and not exponentially). This is the result of the strong spatial constraints (imposed by
the lattice structure) that allow transmission of the infection solely between nearest
neighbor nodes.

The scaling laws that describe the mean number of infected individuals as well as
the cluster size distribution in the Bethe lattice hold also in regular lattice structures,
only the exponents are different. Also the correlation length ξ , the related crossover
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time tξ , and the size P∞ of the epidemic outbreak above qc follow power laws, but
with different exponents than in the Bethe lattice [43, 44].

Next, we discuss epidemic spreading on more general networks, which are closer
to reality since the number k of links emanating from a node can have a broad distri-
bution, first without spatial constraints. Spatial restrictions that change gradually can
also be easily introduced in these networks. We will discuss their effect in Sect. 21.7.

21.6 Epidemics on Networks Without Spatial Constraints

Perhaps the most popular random network is the Erdös-Renyi (ER) network, where
N nodes are randomly connected by n links [54, 55]. To generate the ER network,
one considers each pair of nodes (there are m = N (N − 1)/2 pairs) and connects
it with probability p0 = n/m. For large N , the number of links k emanating from
each node follows a Poissonian distribution P(k) = 〈k〉ke−k/k! with mean 〈k〉 =∑

k kP(k) = 2n/N .
For better understanding the role of the superspreaders, we are interested in net-

works with a more general distribution P(k). To generate such a network one first
draws a sequence of N numbers k1, k2, . . . kN from this distribution and assigns to
each node i, i = 1, 2, . . . N , the appropriate number ki of links that will emerge from
it. Then one connects randomly pairs of nodes until all links are used up. The network
generated this way is chosen uniformly at random from the set of all graphs with the
selected link sequence [9, 56].

Like in the Bethe lattice, the Euclidean distance between two nodes is irrelevant
here, and only the topological distance � matters. In contrast to the Bethe lattice,
cycles can occur, but are irrelevant below the epidemic threshold since the overall
fraction of cycles in the network is smaller than S/N where S is the size of the largest
existing cluster [15, 36]. Thus, we expect that the critical exponents are the same as
for the Bethe lattice.

The question is how the critical thresholds qc and pc can be obtained in these
structures. It has been proven byMolloy and Reed [56] (see also [15]) that in random
networks, a spanning cluster almost surely exists when

N∑
k=1

k(k − 2)P(k) ≡ 〈k2〉 − 2〈k〉 > 0, (21.20)

and almost surely all clusters are small when
∑

k k(k − 2)P(k) < 0. Relation (21.20)
can be used to determine pc as described in [15].

When one removes randomly a fraction (1 − p) of nodes leaving a fraction p
intact, the distribution changes into a distribution P(p, k); by definition, P(1, k) ≡
P(k). For a spanning cluster to exist, P(p, k)must satisfy (21.20). It has been shown
in [15] that

∑
k kP(p, k) = p

∑
k kP(k) and

∑
k k

2P(p, k) = p2
∑

k k
2P(k) +

p(1 − p)
∑

k kP(k). Inserting this result into (21.20) yields
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pc =
∑N

k=1 kP(k)∑N
k=1 k(k − 1)P(k)

≡ 1

〈k2〉/〈k〉 − 1
. (21.21)

Using a generating function approach it was shown in [9, 16] that also qc is
determined by (21.21), i.e., qc = pc. Since cycles are irrelevant below qc, we expect
that pc(q) also satisfies (21.18). In the following, we focus on qc.

For networks with fixed k, 〈k2〉/〈k〉 = k, and qc reduces to qc = 1/(k − 1). For
the Poissonian distribution, 〈k2〉 = 〈k〉2 + 〈k〉 and qc becomes 1/〈k〉 [54, 55]; see
also [57].

21.6.1 Power-Law Distribution P(k) with Exponential Cutoff

In a real population, few people have many contacts while many people have few
contacts. A relevant distribution which reflects this feature and is seen in a variety
of real-world networks is a power law with an exponent α ≥ 0 and an exponential
cutoff around k = κ [9, 23],

P(k) =
{
0, k < kmin

k−αe−k/κ/
∑∞

k=kmin
k−αe−k/κ , k ≥ kmin.

(21.22)

A prominent example of a power-law distribution (with α close to 3) in social net-
works is the distribution of the number of sexual contacts of males and females [19].
For further applications of power-law distributions in nature and technology, we refer
to [10, 11, 36].

Since
∑∞

k=1 k
−αxk is identical to the αth polylogarithm of x , Liα(x), the normal-

ization factor in (21.22) can be written as (with x = exp(−1/κ))

∞∑
k=kmin

k−αxk = Liα(x) −
kmin−1∑
k=1

k−αxk . (21.23)

For α = 1, 0,−1,−2,−3 . . . , there exist simple formulas for Liα(x), for exam-
ple, Li1(x) = − ln(1 − x), Li0(x) = x/(1 − x), Li−1(x) = x/(1 − x)2.

Using (21.22) and (21.23), 〈k〉 and 〈k2〉 can be calculated straightforwardly. The
calculations are particularly easy for α = 1 in the limit of large κ and yield (for
kmin = 1 and 2)

qc ∼= 1/κ, kmin = 1, 2 (21.24)

and

〈k〉 =
{

κ/ lnκ , kmin = 1

κ/(ln κ − 1) , kmin = 2.
(21.25)
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Fig. 21.7 Epidemic threshold qc multiplied with (〈k〉 − 1) as a function of 〈k〉 for α = 1, 2, and 3
(from Eq. (21.22)) and kmin = 2. The figure shows that the fully mixed SIRmodel, where the effects
of superspreaders are not taken into account and qc(〈k〉 − 1) = 1, considerably overestimates the
epidemic threshold and thus considerably underestimates the herd immunity

Equation (21.24) demonstrates that not the average number of links emanating
from one node, 〈k〉, determines the epidemic threshold (as in the fully mixed SIR
model (21.1)), but the typical maximum number of links κ emanating from a node.

Figure21.7 shows qc(〈k〉 − 1) as a function of 〈k〉 for α = 1, 2, 3 and kmin = 2. In
the fullymixedSIRmodel,where each infective individual transmits the disease to the
same average number of other individuals as in the network model, qc(〈k〉 − 1) = 1.
The figure shows that for the distributions of k-values considered here, the epidemic
thresholds obtained from (21.1) strongly overestimate the real thresholds.

A direct simulation of the epidemic outbreak in networks with α = 2, kmin =
1, and κ = 5, 10, and 20 has been performed by Newman [9]. He found that the
epidemic outbreak occurred at the same qc as predicted by (21.21) with (21.22).
Above qc, the fraction of individuals P∞ infected during the epidemic outbreak
increases linearly with increasing distance q − qc from the epidemic threshold, in
the same way as in the Bethe lattice.

21.6.2 Scale-Free Networks

The effect of superspreaders is greatestwhen the exponential cutoff length κ is infinite
and the distribution (21.22) reduces to

P(k) = (α − 1)k−α, k = 1, 2, · · · kmax, α > 1. (21.26)

These so-called scale-free networks havebecomeverypopular in the past twodecades
since they are believed tomodel a large number of networks in nature and technology
[10]. Here we are interested in them for two reasons: (i) the epidemic thresholds can
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be determined easily analytically, and (ii) immunization strategies can be tested very
efficiently on these networks.

In scale-free networks, the maximum connectivity kmax depends on the number
of nodes N . For large N , kmax can be estimated from [15]

∞∫
kmax

P(k)dk = 1/N . (21.27)

The integration yields kmax(N ) = N 1/(α−1).
For calculating 〈k2〉 and 〈k〉 for large N , one can substitute the relevant sums (see

(21.20)) by an integral and obtain

〈k2〉
〈k〉 =

∫ kmax(N )

1 k2−αdk∫ kmax(N )

1 k1−αdk
= 2 − α

3 − α

kmax(N )3−α − 1

kmax(N )2−α − 1
, (21.28)

and substituting (21.28) into (21.21) yields qc.
Accordingly, in the limit of large N , we can distinguish between three α-regimes

[15]:

1. For α > 3, 〈k2〉
〈k〉 = 2−α

3−α
, and thus qc = α − 3.

2. For 2 < α < 3, 〈k2〉
〈k〉 ∼ k3−α

max , and thus qc ≈ 〈k〉
〈k2〉 = 3−α

α−2N
−(3−α)/(α−1).

3. For 1 < α < 2, 〈k2〉
〈k〉 ∼ kmax, and thus qc ≈ 〈k〉

〈k2〉 = 3−α
2−α

N−1/(α−1).

In regimes 2 and 3, qc decreases with increasing number of nodes N by power
laws and tends to zero when N tends to infinity. Thus in both regimes, a random
immunization of the individuals is not useful since nearly every susceptible individual
must be vaccinated to prevent the epidemic from spreading.

21.7 Networks with Spatial Constraints

As discussed in Sect. 21.5, spatial constraints may play an important role in the
spreading of an epidemic, when the individuals in a population are not fully mobile
and thus cannot reach (and infect) any other individual with the same chance. In a
highly mobile population, the spatial constraints are weak. Since the mobility of a
population during an epidemic may be reduced by legal restrictions, it makes sense
to study the influence of changing spatial constraints on the epidemic transition. In
Sect. 21.5, we focused on the limit of very severe constraints. For recent studies of
the effects of legal travel restrictions, see [41, 58–60].

Typically, an infective individual has a larger preference to infect individuals close
to him. In other words, two nodes in a social network are preferentially linked when
the (Euclidean) distance r between them is small [37]. To model this, we place the
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Fig. 21.8 Illustration of Erdös-Renyi networks with 〈k〉 = 4 that are embedded in a square lattice,
for a δ = 1, b δ = 3, and c δ = 5. From [62]

nodes at the sites of a square lattice of length L and connect pairs of nodes with a
probability p(r) ∼ r−δ [38]. Including the normalization factor, p(r) is

p(r) =
{

(2 − δ)L−(2−δ)r−δ , δ < 2

(δ − 2)r−δ , δ > 2 .
(21.29)

Figure21.8 shows three Erdös-Renyi networks embedded in a square lattice, with
〈k〉 = 4. In (a) the constraints are small (δ = 1) and the underlying lattice seems
irrelevant. In (c) the constraints are large (δ = 5) and the network is nearly identical to
a square lattice; (b) shows an intermediate case (δ = 3) [62]. From p(r)we obtain the
mean link length 〈r〉 ∝ ∫ L

1 drrd−1rp(r) and the maximum link length rmax defined

by
∫ L
rmax

drrd−1 p(r) = 1/Ld where d is the dimension of the underlying lattice (here
d = 2).

For δ < 2, both 〈r〉 and rmax are proportional to L . For δ between 2 and 4, rmax is
still proportional to L but 〈r〉 is either proportional to L3−δ (for δ between 2 and 3) or
constant (for δ > 3). For δ > 4, rmax is proportional to L2/(δ−2) such that rmax/L → 0
for L → ∞ and 〈r〉 is constant. Thus, we can distinguish between three different
δ-regimes:

1. δ < 2: The spatial constraints are irrelevant. We expect the same values for the
epidemic thresholds and the same critical behavior as for unconstrained networks.

2. 2 < δ < 4: Intermediate behavior.Weexpect that the epidemic threshold increases
with increasing constraint parameter δ.

3. δ > 4: The spatial constraints are dominant and the epidemic threshold reaches
its maximum value.

For the Erdös-Renyi networks demonstrated in Fig. 21.8, for example, we expect
that qc = pc ≈ 1/4 for δ < 2 and qc ≈ 0.5, pc ≈ 0.59 for δ > 4. In the δ-regime 2,
the critical thresholds should increase continuously. Figure21.9 confirms this behav-
ior for pc = 1 − vc [39].
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Fig. 21.9 Random immunization in the Erdös-Renyi networks shown in Fig. 21.8, under varying
spatial constraints (Eq. (21.27)). The figure shows the minimum fraction of individuals vc = 1 − pc
that must be vaccinated to prevent epidemic spreading when the infection probability q equals 1.
The vertical dashed red lines at δ = 2 and 4 separate the three regimes of weak, intermediate, and
strong spatial constraints. The two blue dashed lines mark the vc-values for networks without spatial
constraints (upper line) and for the square lattice (lower line), respectively. The values of vc are
from [33]

For scale-free networks, qc and pc should be unchanged for δ < 2 and reach a
constant value for δ > 4. It has been shown in [62] that for α < 3, pc still tends
to zero with increasing system size N as pc ∝ N−λ̃ but with an exponent λ̃ that
decreases monotonically with δ, reaching 0 at δ = 4.

Both examples show that the fraction of individuals vc that need to be vaccinated
decreases when the spatial constraints are enhanced. Therefore, reducing mobility is
an effective weapon against an epidemic like COVID-19. A recent empirical study
[60] of movement data of mobile phone users is in line with the conclusions based
on [33, 62]: due to the reduction of long-distance travel, the network becomes more
local and lattice-like, with a considerable effect on epidemic spreading.

21.8 Targeted Immunization Strategies

So far, we considered the effects of random vaccination on the spreading of an
epidemic. We saw that when the number of contacts an individual has follows a
broad distribution (Eqs. (21.22) and (21.26)), nearly 100% of the population must
be vaccinated in order to prevent an epidemic outbreak.

It has been shown by Cohen et al. [17] that a far better strategy is a targeted
intentional immunization where first the superspreaders are identified rank-wise and
then vaccinated. Following this strategy, only a comparatively small fraction of the
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Fig. 21.10 Targeted immunization in scale-free networks with N = 106 nodes, with varying expo-
nent α (Eq.21.26). The figure shows the minimum fraction of individuals vc = 1 − pc that must be
vaccinated to prevent epidemic spreading when the infection probability q equals 1, for different
attack strategies with η = 0 (random immunization), and η = 0.5, 1, 4 (targeted immunization).
The values of vc are from [29]

population must be vaccinated. The problem is that not all superspreaders are known
a priori and the question is how much do we need to know about the superspreaders
to prevent epidemic outbreaks.

In a first attempt to deal with this problem, instead of deterministically choosing
the individual with the largest number of links to be vaccinated, Gallos et al. [29]
introduced the probability

W (ki ) = kη

i∑N
i=1 k

η

i

, 0 < η < ∞, (21.30)

for choosing an individual i with ki contacts. The exponent η describes how effective
the search in tracking down the superspreaders is. For η = 0, the search is random
andW (ki ) = 1/N . For η = ∞,W (kmax) = 1, i.e., always the best-connected super-
spreader is found.

To see how effective this procedure is for general η, we consider again the extreme
case q = 1, where an infective individual will infect all susceptible individuals con-
tactedwithin the contagion time.We focus on scale-free networks (Eq. (21.26),where
the effect of the superspreaders is most pronounced. Figure21.10 shows the critical
fraction of individuals vc that must be vaccinated in order to prevent the epidemic
from growing, as a function of the exponent α, for η = 0, 0.5, 1, and 4, for networks
of size N = 106. The values of vc have been obtained both by numerical simulations
and analytical calculations [29]. For α = 4, pc = 1 and thus vc = 0.

The black curve in Fig. 21.10 shows vc(α) for random vaccination, i.e., η = 0. As
expected, vc approaches 1 for α → 2. Remarkably, already for η = 0.5, vc(α) is well
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below its value for random vaccination. Accordingly, even when the superspreaders
are chosen with a rather small preference probability, only a finite fraction of indi-
viduals is needed to be vaccinated. For η = 4, vc(α) is the same as for the targeted
intentional immunization [17].

Efficient immunization strategies for the cases where the structure of the net-
work is not known have been also developed [26, 31, 34, 63]. One approach is the
acquaintance immunization [26] where one chooses individuals randomly and vac-
cinates their friends. This can reduce the fraction of vaccinations required to stop
the pandemic by a factor of 3. In another very efficient method called immunization
with limited knowledge [63], one chooses randomly about 10 people at a time and
vaccinates only the one that is most likely to have the highest number of contacts.

21.9 Conclusions

TheCOVID-19 pandemic is driven by contacts.When in a population each household
is separated from the others for a certain period of time and the borders are closed, the
epidemic will die out in this population. This “brute force” strategy is most efficient
and has been used, as guideline, in China and New Zealand.

As suggested by the network models discussed here, a more refined alternative
strategy is to focus on the superspreaders and superspreading events. A superspreader
is everybodywhogets in close contactwith a large number of people every day. Pupils
and teachers are well-known superspreaders, and also medical doctors, healthcare
workers, bus drivers, etc. A superspreading event is any eventwhere a large number of
people get close. Well-known superspreading events are mass events of all kinds like
football events, large public concerts, theatrical performances, and worship services.
Other superspreading events are large birthday and wedding parties and visits in
crowded restaurants and bars, just to mention a few.

To contain a spreading epidemic and to prevent national health services to reach
their limit, the first step is to deal with that rather small fraction of superspreaders that
is well known to the public and prevent them from transmitting the disease to a larger
part of the population, either by vaccination or significant contact restrictions. The
same holds for superspreading events: These events should either be prohibited or
only take place on a considerably smaller, reduced-contact basis. As supplementary
measures, mobility restrictions can be implemented. All these measures are unavoid-
able as long as the pandemic is in a severe state, where the infection is transmitted
easily and infected persons have a high chance of suffering permanent damage or
dying. This probably does not apply to the current form of COVID-19 (October
2022).
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Chapter 22
The Fight Against COVID-19: The Gap
Between Epidemiologic and Economic
Approaches

Jean-Philippe Platteau, Shlomo Weber, and Hans Wiesmeth

22.1 Introduction: General Considerations

Two features of the economic approach to human behavior need to be highlighted:

1. Economists consider human behavior not as a given but as an optimal response
to a set of given circumstances. Such responses are typically driven by a rational
calculus in the sense that individuals are assumed to choose the course of action
that provides them maximum satisfaction given the constraints (budget or time
constraints, for example) that they face. They are thus equipped with preferences
(assumed to obey a number of properties ensuring that stable preference ordering
is possible) and confronted with situations of scarcity, scarcity being understood
as implying constrained optima.

2. Unlike (neo)classical models of human behavior, modern game-theoretic models
consider individuals who act strategically, as « chess players»—they hold beliefs
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regarding what others are going to do in a particular situation and they then
act upon their beliefs. An equilibrium is achieved when beliefs and actions are
mutually compatible and therefore reinforce each other: I can see that other
people have behaved the way I thought and, consequently, my choice of action
was right so that I have no reason to deviate from it. When everybody can reason
thus, a so-called Nash equilibrium [1] is reached.

There are important direct implications of the above features. Two of them deserve to
be especially emphasized. First, the notion of constrained choice means that behind
human decisions lie difficult trade-offs. For example, in a situation of epidemy, there
is a trade-off between a health and an income objective: by isolating from poten-
tially infected others, individuals reduce their risk of infection yet, simultaneously,
they forsake incomes that were otherwise accessible. Second, strategic thinking may
easily yield multiple equilibria. For example, depending on the prevailing beliefs,
everybody can decide to wear a mask, but it is also possible that nobody does so.
Equally possible are situationswhere a unique equilibriumprevails, that is, onewhere
either conduct is established. Thus, if the situation requires that everybody wears a
mask, it is possible that, left free to decide, individuals decide not to wear a mask.
We then say that the equilibrium which results from the decentralized free choices
of the individuals is not socially optimal: individuals freely choose a bad outcome.

It bears emphasis that the notion of externality, one of the pillars of the theory of
market imperfections, has been elaborated outside the framework of game theory. In
the case of a negative externality, individuals do not take into account the adverse
effects their actions inflict on others, simply because they do not have to bear the
costs associated with these effects. At work here is classical individual rationality:
in the absence of altruism, individuals act in the light of their own interests, without
consideration for the way others are affected by their own decisions. With strategic
rationality, by contrast, individuals may take a decision that goes against their own
interests, based on beliefs and expectations regarding others’ behavior.

22.2 Applications to Epidemiological Problems

The basic model used by epidemiologists, the so-called SIR model (see also the
contribution by Brockmann [2], distinguishes different states in which individuals
may find themselves. The population is divided into three groups (compartments) of
individuals:S, I, andR (withS+ I +R=N,whereN is the population size).GroupS is
the group of susceptible individuals, i.e., those who are at risk of being contaminated.
(Obviously, the size of all three groups is affected by societal responses to vaccination
requirements, but the careful analysis of this important feature is beyond the scope
of this paper). At the beginning of the epidemic, S is the entire population given that
nobody has antibodies (it is indeed a new virus for which no vaccine is available).
Group I is the group of individuals who have been contaminated recently and are
infectious. Finally, R is the group of individuals who were contaminated but had an
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outcome in the form of either a recovery or a death. They are not infectious anymore.
As the virus spreads, the sizes of these groups evolve over time from the initial
conditions at t = 0 from S0 = N and I0 = R0 = 0. The size of S declines when
people become contaminated andmove into the infectious group I. When individuals
recover or die, they transit from the infectious group I to group R. A system of three
differential equations describes the evolution of the sizes of these groups:

dS/dt = −β · S · (I/N ) (22.1)

d I/dt = β · S · (I/N ) − γ · I

d R/dt = γ · I

The first equation states that the decline in the number of susceptible individuals
is proportional to the fraction I/N of infectious individuals within the population,
with the factor β (the “transmission rate”) representing a measure of infectiousness.

The second equation states that the number of infectious individuals (I) will be
increased by the number of newly contaminated individuals net of the number of the
previously infectious individuals who had an outcome and moved to group R (i.e.,
the removal rate, γ , multiplied by the number of infectious individuals, I).

The third equation states that the size of the removed group increases by the
number of individuals who were infectious and had an outcome (γ · I ).

However, since there may be a significant incubation period for infections, typi-
cally observed for COVID-19, there exists a latency period during which individuals
have been infected but are not yet infectious. To take this possibility into account, the
SIR model is generally augmented by the introduction of group E (for the exposed)
and a new differential equation is added to the three equations of the basic SIRmodel
to yield what is known as the SEIR model. The set of equations that define the SEIR
model is

dS/dt = −β · S · (I/N ) (22.2)

dE/dt = β · S · (I/N ) − σ · E

d I/dt = σ · E − γ · I

d R/dt = γ · I

where σ is the incubation rate, i.e., the rate at which latent individuals become
infectious. The increase in the number of infectious people (see Eq. 22.2) is now
represented by the number of contaminated people who have reached the end of
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their latency period minus the previously infectious individuals who moved to group
R.

By simulating this type of model, epidemiologists are able not only to describe
the evolution of an epidemic as it unfolds naturally but also to predict the impact of
various policy measures adopted by public authorities to combat it. These models
therefore offer an excellent starting point for both analysis and policy thinking.
It is evident, however, that such simulation exercises necessarily involve a lot of
assumptions about key parameters that are both biological and social. As examples
of the former, we have the duration of the latency period; the probability of exhibiting
symptoms; the probability of being contaminated, when in contact with either an
asymptomatic or a symptomatic individual; the infectious period for symptomatic and
asymptomatic individuals. As examples of the latter, we can think of frequency of the
contacts between individuals, preferably differentiated by age classes, or individual
reactions to various public healthmeasures. In regard to social parameters, transitions
in epidemiological models are determined by aggregates whose behavior is decided
in a rather ad hoc manner. For example, the values of cells in a contact matrix are
assumed to be constant at least for a given period of time. If they are allowed to vary,
say to take account of a COVID fatigue that leads individuals to relax their contact
discipline, the adjustments of these values are made in a discontinuous manner and
based on rules of thumb or, in the best cases, on panel data collected for the purpose.
Likewise, how individuals respond to interventions such as travel restrictions, school
closures, bans onmeetings (private and/or public), and quarantine prescriptions (after
returning from a red zone abroad or after being tested positive) is modeled by using
guesses about compliance rates.

In more recent versions of the SIRmodel, however, the contact rates depend either
on the heterogeneous topology of the network of contacts and mobility of people
across locations, or the infection rate depends on the activity intensity of each node
of the network (see [3] for references). Thus, in the so-called SIR-network models,
different groups are distinguished relative to their degree of exposure or contact rates
to each other. These groups are usually defined on the basis of the intensity of their
internal contact rates, the underlying idea being that these rates tend to be higher
among peer groups (e.g., age groups, or people meeting at the workplace).

In contrast to the above approach, economists stress the role of incentives, which
requires providing a rigorous foundation to individual decision-making process. As
they see it, human actions are the outcome of optimizing behavior based on an
evaluation of private costs and benefits. And when successive periods of time are
considered, such as must be the case in the analysis of decisions under an epidemic,
optimization rests on an assessment of the costs and returns of doing something now
against the expected future payoffs [4, p. 2].

As expected, there has been a recent surge in economics papers dealing with the
COVID crisis, including papers with a theoretical approach to several challenging
issues raised by the epidemic. At the heart of a significant fraction of these theoretical
papers are decision problems that individuals must solve by themselves. This new
literature canbe divided into two types dependingonwhether individuals are assumed
to operate freely in a decentralized manner or are subject to the public prescriptions
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of a central decision-maker acting as a benevolent social planner. In the first case, the
role of the government is limited to announcing the epidemic and a key question is
how the decentralized equilibrium thus attained can be compared to the equilibrium
achieved in a standard epidemiological model as well as to the social optimum. In the
second case, the role of the government goes much further and consists of devising
and implementing a set of policy measures. Here, the focus is on the characteristics
of an optimal lockdown policy and its evolution through time. To provide a game-
theoretical framework for evaluating those decisions, we offer a social interactions
model that accounts for individuals’ social behavior. In this setting, each individual i
in population N described above chooses a mode of social distancing ki from the set
L = {1, . . . , �} and let Nk , k = 1, . . . , � be the number of individuals who choose
k as the level of their actual social distancing. The value ki = 1 denotes a total
rejection of social distancing considerations, whereas the value ki = � denotes the
total self-imposed quarantine with no interactions outside of the restricted circle of
immediate family. The larger the value of ki ∈ L the stricter the degree of adherence
to social distancing norms. It is also important to point out to variance of the social
interactions’ impact across different groups. Obviously, interactions with friends and
family play amore important role in an individual evaluation of the costs and benefits
of various modes of behavior. For this end, we assume that there is a partition π of
the entire population N into several groups π1, . . . ,πr . It makes sense to assume
that there exists, for each individual i, a group of persons πi ∈ π, with whom this
individual is in much closer contact than with the remaining ones. Then the utility
or benefit of i can be represented as follows [5]:

Ui =
∑

j∈π i
Wi j

(
ki , k j

) +
∑

j /∈π i
Wi j

(
ki , k j

) − H
(
N 1, . . . , N �

)
, (22.3)

where the first term represents the impact of social interactions with individual i’s
own group, the second term reflects the intensity of social interactions outside that
peer group, and the function H indicates the decline in utility or benefit due to restric-
tions as a result of the spread of the virus as a function of global societal behavior.
Obviously, the values of all functions W and H are positively correlated with the
number of individuals considered. The functions Wi j may indicate the frequency of
bilateral meetings between individuals i and j . An estimate of the function H can
be provided by the following relation:

H
(
N 1, . . . , N �

) :=
∑�

k=1
kNk, (22.4)

which takes into account the rise in utility due to higher standards of social behavior.
In accordancewith the discussion above, the examination of this game can proceed

in two steps. The first step is to look at the Nash equilibria which emerge when all
individual decisions on the degree of social distancing are correct in the sense that
no one would wish to reconsider the already made choice given decisions of the
rest of the society. However, the equilibrium choices are not necessarily unique and,
moreover, they are not necessarily optimal from the societal point of view. Thus,
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the second step in the equilibrium examination process would be to identify those
equilibria that maximize the sum of benefit functions Ui . This would reduce, and,
possibly, eliminate the gap between equilibria based on individual considerations
and social optima.

Those and related issues are discussed in the short survey that we now present.

22.3 A Short Survey of Theoretical Contributions
by Economists

22.3.1 Individual Behavior Following the Announcement
of an Epidemic

There are various decisions that individuals have tomakewhen facing an epidemic. In
particular, they must decide howmuch they want to interact with others, and whether
they will preventively protect themselves, by using preventive protection equipment
(masks, face shields, and gloves), adopting hygienic measures (hand sanitizers),
and/or practicing physical distancing in human contacts. These two decisions can be
analyzed jointly or separately.

Analyzing them jointly is done in [6]. They consider agents who have to choose
whether to socialize or self-quarantine, andwhether to usepreventive protection. Self-
quarantine leads to an avoidable loss of income while incurring a disproportionately
high economic burden for the poor. People can be in three different health states
represented by different proportions in the population: healthy (AH), asymptomatic-
infected (AI), and symptomatic-infected (SI). Moreover, since protection is costly
and does not bring any benefit to an agent under self-quarantine, only the protection
decision for agents who have chosen to socialize needs to be examined. In making
this decision, agents have to take into account being either AH or AI type who can be
infected only if of the former type. The chance of getting infected depends onmeeting
AI agents whose protection choices they do not know ex ante. Conditions for the
following combined decisions are derived: self-quarantine, unprotected socialization,
and protected socialization.

In such a setup, expectations play a key role in determining outcomes. For instance,
if agents perceive the risk of infection to be high because of an anticipation that
the proportion of socializers who are unprotected is high, they will have a higher
incentive to use protection.Moreover, the two decisions of socializing and protecting
are interlinked: while reducing costs, less use of preventive protection raises the risk
of infection during social interactions, but it may simultaneously encourage more
people to stay at home because of a fear of being infected by others.

As we indicated in the previous section, the equilibrium analysis may yield
multiple equilibria. The latter may depend on the values of the model’s parameters:
if a positive fraction of agents of either the AH or the AI type always choose to self-
quarantine, it is possible that all socializing agents go protected, all go unprotected,
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or a fraction of them go protected. A merit of the exercise conducted in this paper is
that the authors allow for a societal heterogeneity. This allows to show that the trade-
off between costs and benefits of the two prevention choices, social isolation, and the
use of preventive protection equipment varies across the income distribution. More
precisely, a (mean-preserving) increase in pre-existing income inequality unambigu-
ously increases the equilibrium proportion of unprotected, socializing agents and
may increase or decrease the proportion who self-quarantine.

Many papers focus on social distancing decisions alone. In this strand of the
literature, the contact rate of the epidemiological model is considered to result from
a decision problem on the extent of social interactions. The formal approach is
based on the idea that an individual maximizes an expected utility that depends on
probability p of being contaminated and the probability 1-p of being in good health.
The probability p is itself a function not only of the amount of social activity chosen
by the individual but also of the aggregated effect of societal choices made by the
other susceptible or infected individuals (the average amount of social activity). It
is this latter assumption that sets the strategic framework adopted for the analysis:
an individual takes a decision that other individuals take at the same time and the
equilibrium is defined in such a way that all these decisions are compatible with each
other.

A major result here is the following: when people freely choose the amount of
social distancing, that amount is lower thanwhat is socially optimal (that is, the level a
social planner would select). Inefficiency of the decentralized equilibrium is clearly
due to an externality: when choosing their own social activity, people ignore the
infectious impact that their social behavior has on others and they, therefore, decide
to socialize too much. In other words, people think of the risk of being infected by
other people but not of the risk of contaminating them [3, 7–10]. Moreover, they
ignore the congestion externalities that expose the available medical facilities to the
risk of acute stress [4, 11, 12]. Finally, there exists a dynamic externality (called
immunity externality) the effect of which goes in the opposite direction: restricting
social contacts retards herd immunity [4].

Chen [13] has refined the analysis through the study of the role of the contact
function that governs the rate at which encounters occur in public. He shows that the
result of the comparison between decentralized equilibria and the social optimum
critically depends on this contact function. If the contact ratio is increasing in the
number of people out in public, then there exists a unique (Nash) equilibrium which
differs from the social optimum: in this case, the amount of public avoidance is too
low from a social welfare point of view. If the contact ratio is decreasing, there can
exist multiple equilibria, none of which is in general socially optimal. Finally, if the
contact ratio does not vary with the number of people out in public, there is a unique
Nash equilibrium and it is also the socially optimal outcome.1

1 Society’s welfare is the sum of the utility of all agents in the population, i.e., the utility of all
infected agents + the utility of all recovered agents + the utility of all susceptible agents. The
choice of public activity by susceptible agents does not affect the utility of infected and recovered
agents. As a result, the problem of maximizing social welfare in a given period is equivalent to
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In comparing outcomes obtained under the traditional SIRmodel of the epidemiol-
ogists with a decentralized epidemic equilibrium driven by rational forward-looking
agents, Garibaldi et al. [4] have paid attention to herd immunity. They find that when
agents optimally decide their level of social interactions, the longer time they need to
reach herd immunity comes with a large gain in the form of avoiding illness among
a substantial fraction of the population. Moreover, the number of people who get
infected before herd immunity is reached is much lower than the number obtained
in the standard SIR model. Along the decentralized epidemic equilibrium, optimal
social activity clearly follows a U-shaped behavior: the level falls as the epidemic
spreads, then reaches a minimum before it starts rising until the steady state (that is,
an equilibrium trajectory in which all variables evolve at a constant rate).

Toxvaerd [14] confirms that, in a decentralized equilibrium, the aggregate level of
infection across the epidemic is lower thanwhat a traditional non-economic epidemi-
ological analysis would suggest, thus indicating that the latter overstates the severity
of the epidemic by ignoring rational human responses. Furthermore, uncoordinated
social distancing acts to flatten the curve of the epidemic by reducing peak preva-
lence. And if, in equilibrium, it stops once herd immunity sets in, it nevertheless acts
to extend the duration of the epidemic beyond the benchmark of a non-behavioral
epidemiological model. It is a striking result that the comparative-static predictions
of the economic model are the reverse of those in the uncontrolled epidemiological
model.2 For example, peak prevalence and cumulative incidence are both increasing
in the infectiousness of the disease in the epidemiological model, whereas they are
decreasing in the economic model. The rationaleRationale is that the endogenously
determined social distancing decisions of the individuals react to higher infectious-
ness by engaging in more protective behavior. Finally, the epidemic curve becomes
flattered in the economic model not only as the disease becomes more infectious but
also as the health consequences of the disease becomemore severe for the individuals.

Figures 22.1 and 22.2, taken from https://www.ourworldindata.org/covid-mod
els#institute-for-health-metrics-and-evaluation-ihme, show the significant discrep-
ancy between the estimated COVID-19 infections and the officially confirmed cases
in Germany and the United Kingdom (with public intervention). The estimations are
based on the IHME (Institute for Health Metrics and Evaluation) model, “a hybrid
with two main components: a statistical ‘death model’ component produces death
estimates that are used to fit an SEIR model component.”

According to https://www.covid19.healthdata.org/, estimated infections are
defined “as prevalent infections—that is, all cases that exist in a location on a given
day, not just new ones. Confirmed infections are those infections that have been iden-
tified through testing.” In fact, Figs. 22.1 and 22.2 compare “confirmed” cases with
the number of cases, which are expected to have happened on the basis of model
equations.

one of choosing the susceptible agents’ public activity level that maximizes the utility of all the
susceptible agents, i.e., the socially optimal outcome.
2 By a comparative-static result, economists mean the effect, all else being equal, of the variation
of a model’s parameter on an endogenous variable at equilibrium.

https://www.ourworldindata.org/covid-models#institute-for-health-metrics-and-evaluation-ihme
https://www.ourworldindata.org/covid-models#institute-for-health-metrics-and-evaluation-ihme
https://www.covid19.healthdata.org/
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Fig. 22.1 Estimated daily COVID-19 infections and confirmed cases in Germany

Fig. 22.2 Estimated daily COVID-19 infections and confirmed cases in the United Kingdom
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In order to provide a valid comparison between estimated and confirmed cases, it
would be necessary to accurately observe the confirmed cases. Since there are many
asymptomatic cases that escape detection through doctors and hospitals, there is a
presumably large bias.

This bias is certainly one of the reasons that estimated infections outnumber
confirmed cases. But, as indicated, the adaptive behavior of individuals seems to play
a role, too: observe that the IHME model produces overestimates whenever daily
infections are increasing or assume their peak values. Obviously, the model does
not adequately reflect precautionary measures of the individuals. Epidemiologists
sometimes describe this observation as “prediction paradox.”

The situation is somewhat different whenever daily infections decline. Individ-
uals tend to reduce their precautionary measures and the estimated values get closer
to the actual values. This holds also for the United Kingdom, one of the countries
that does best in terms of testing and, therefore, has comparatively reliable estimates
regarding the number of infections (see Fig. 22.2). What needs to be emphasized is
that even though there may be a significant bias in the absolute numbers of estimated
infections, it is reasonable to think that variations in infection numbers across the
epidemic’s wave should not suffer from the same bias. Hence, the plausibility of the
proposed explanation in terms of endogenous precautionary measures to simultane-
ously account for the gap observed in the ascending phase of the epidemics and the
closure of that gap in the descending phase.

An interesting feature of Toxvaerd’s model is that it represents individual social
distancing decisions as the engine of a flow rate regulation between healthy and
recovered individuals, where the underlying uncontrolled flow rates are determined
by the biological features of the disease. The mechanism works as follows. For
sufficiently low disease prevalence, say at the beginning or the end of an epidemic,
the risks from social interactions are small and individuals, therefore, choose not
to socially distance themselves. For higher levels of disease prevalence, the risk of
exposure may outweigh the benefits so that individuals are incited to switch to social
distancing. Aggregate disease prevalence at equilibrium remains constant through
time until a sufficiently high number of individuals have transited through the cycle
S-I-R to cause disease prevalence to fall without further social distancing. As in
Garibaldi et al. [4], social activity follows a U-shape pattern (or social distancing
follows an inverted U-shaped pattern).

Figure 22.3, taken from https://www.ourworldindata.org/covid-google-mobility-
trends, shows how the number of visitors changed in Germany during the pandemic.
Observe that—as predicted in the economic models—the level of social activities
was high when daily infections were low, and vice versa. Again, these observations
include public policy measures.

Baril-Tremblay et al. [15] have adopted a rather similar perspective to address
an individual strategic choice of how much time to spend interacting with others.
They show that, when self-isolation is costlier than being sick, agents do not self-
isolate in equilibrium and the dynamics of the epidemicEpidemic is the same as in
the SIR model. When the opposite is true, however, and the cost of confinement
is relatively small, the (symmetric) equilibrium may be such that agents partially

https://www.ourworldindata.org/covid-google-mobility-trends
https://www.ourworldindata.org/covid-google-mobility-trends
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Fig. 22.3 Changes in the number of visitors in Germany in the course of the pandemic

self-isolate at each date. In addition, this equilibrium is non-stationary. Population
reacts to the epidemic announcement by self-isolating drastically, which results in a
drop in the proportion of people infected. Then, agents gradually increase the time
they spend outside, and the effective reproduction number is maintained below unity.
This last outcome is obtained because agents compensate for the decrease in the risk
of infection by reducing social distances, yet not to the point of accelerating the
epidemic. Unlike the bell-shaped curve of the SIR model, the epidemic curve falls
between the time of announcement and the arrival of the vaccine.

Social distancing may be achieved not only through the restriction of social
encounters but also through the use of preventive protection devices, such as masks.
Ng [16] has studied the mask-wearing behavior of individuals confronted with an
epidemic. He assumes that individuals are aware that a mask protects people around
the wearer more than it protects the wearer herself (himself). The central question
addressed byNg iswhethermask-wearing behaviors are discouraged by free riding or
mutually reinforced by strategic complementarity. The overall intuition is that when-
ever the cost of wearing a mask is sufficiently low, it is in the interest of everyone to
wear a mask, and vice versa: if this cost is sufficiently large, everyone will refuse to
use the mask. The value of the cost threshold below which universal mask-wearing
would be voluntarily adopted by the population depends on the following key factors:
(i)—the fraction of people expected to have been infected without showing symp-
toms; (ii)—the filtration efficiencies of the masks; and (iii)—the number of people
whom an individual comes across in normal life (proxied by population density).
Population density plays a pivotal role because the risk of infection is higher in
populous environments, thereby raising the benefit of wearing a mask.
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If population density exceeds a given threshold, then two (expectational) equi-
libria, which are called “bunching” in economics, are possible: either everyone wears
a mask or nobody does.3 It is precisely in this instance that a mask mandate can
make sense since it may tilt the system from the bad to the good equilibrium. Since
increasing the propensity of others to wearmasksmoderates the infection risk, incen-
tivizing an individual to also wear a mask to stay healthy works for the benefit of
everybody. Otherwise, a mask mandate is of no use. It would be either socially
inefficient—the cost is so high that it will never be in the interest of the society to
wear a mask—unnecessary—there is a unique Nash equilibrium in which everyone
wears a mask—or incentive-incompatible—nobody wants to wear a mask at another
unique Nash equilibrium. In the latter case, a mask mandate is doomed to yield low
compliance. In other words, it is only when population density is high enough (say,
in relatively crowded cities) and the cost of mask-wearing is sufficiently low (say,
in circumstances where people have no cultural resistance against wearing a mask)
that a public intervention is desirable for defending the general interest. In such
circumstances, indeed, although it is socially beneficial for everyone to wear a mask,
decentralized individuals may lack the private incentives to do so [16].

Note finally that economics is often portrayed as a “dismal science” because it
is grounded on the assumption of selfish individuals. Yet, this assumption can be
relaxed as shown in [3]. This paper assumes that infected individuals hold some
altruistic preferences, implying that since they partly internalize the risk of infecting
susceptible individuals, they chose a reduced level of social activity (in their model,
there is no distinction between symptomatic and asymptomatic individuals).

22.3.2 Public Interventions: The Optimal Lockdown

An important lesson from the preceding section is that, because of people’s fear of
infection, the impact of public interventions, such as a lockdown, will be smaller than
generally predicted on the basis of models that ignore endogenous human responses
to the simple announcement of an epidemic (see Fig. 22.1). One can notice the
gap between confirmed and estimated cases around the lockdown announcement in
Germany on November 16, 2020, and Merkel’s third wave declaration on February
24, 2021.On the other hand, a lockdown is useful because a decentralized equilibrium
outcome is generally suboptimal. The public nature of the decisions at stake, such
as self-isolation and mask-wearing, is what invites free riders and causes individual
rationality to possibly lead to collective irrationality. It is therefore not surprising that
economists have devoted much effort to analyzing the characteristics of an optimal
lockdown policy. This is the so-called social planner problem. Since this literature

3 This happens when expectations play a key role. If individuals expect that all other individuals
will wear a mask, their interest is in also wearing a mask because the cost of doing so is smaller
than the private benefit. If, on the other hand, they expect the others to abstain from mask-wearing,
their interest is again to follow suit because the cost of wearing a mask now exceeds the benefit.
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is rather abundant, lack of space constrains us to limit ourselves to extracting just a
few interesting lessons from a selected number of papers.

Garibaldi et al. [4] show that a benevolent social planner who maximizes the
overall welfare of the population, while taking account of various types of externali-
ties, will choose a lower level of social activity than what the individuals themselves
would privately choose.4 Compared to the decentralized equilibrium, the planner thus
helps reduce infections and the pressure on medical facilities. In a dynamic setting,
however, things are more complicated: if the medical externalities are expected to
be more important in the more distant future, the planner may prefer that a higher
number of people fall ill early on (when there is spare capacity in the health sector)
rather than later (when the capacity constraint binds). Also, when comparing the
equilibria driven by individual incentives with those based on social considerations,
one notices that the herd immunity externality provides incentives to the planner to
speed up the spread of the epidemic.Yet, the possibility of obtaining a vaccine reduces
the positive externality associated with a higher number of recovered individuals [4,
pp. 12–13].

A major contribution to the study of optimal lockdown has been provided by
Caulkins et al. [7] who use an optimal control model. They ask two questions:
what is the optimal intensity with which to lockdown, and how should that intensity
vary dynamically over the course of an epidemic? In addressing these questions, the
constraint raised by limitedmedical facilities receives primary attention. The analysis
points out to emergence of several broad strategies, that range from brief lockdowns
that only “smooth the (infection) curve” to sustained lockdowns that prevent infec-
tions from spiking beyond the healthcare system’s capacity. It can even be optimal to
have two separate periods of locking down so that returning to a lockdown after initial
restrictions have been lifted should not necessarily be considered as a sign of failure.
In addition, the authors find that relatively small changes in judgments about how
to balance health and economic harms can dramatically alter the strategic choice.
This is because there are parameter configurations for which two or even three of the
distinct optimal strategies can all perform equally well for a given set of initial condi-
tions. The implication is that even people who share a common understanding of the
problem’s economics and epidemiology can prefer dramatically different policies.

The public policy responses can be described by the “Government Stringency
Index” GSI, which is a composite measure of the strictness of policy responses. GSI
includes school and workplace closures, restrictions on public gatherings, transport
restrictions, aswell as stay-at-home requirements (for details on the “OxfordCOVID-
19 Government Response Tracker” see [17]).

Figure 22.4, taken from https://www.ourworldindata.org/policy-responses-
covid#citation, details the public policy responses for Belgium, Germany, and the
United States in the course of the pandemic. According to this figure, there are
only small differences between the policy choices of the three countries. Observe,
however, that not all regulations are included in GSI. In Belgium, for example, there

4 Technically, the authors assume that the social planner is aware that the equilibrium is a symmetric
Nash equilibrium and that contacts involve at least two individuals (p. 9).

https://www.ourworldindata.org/policy-responses-covid#citation
https://www.ourworldindata.org/policy-responses-covid#citation
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Fig. 22.4 Government Stringency Index for Belgium, Germany, and the United States

were quite strict regulations regarding private meetings, which were not taken into
account in the construction of GSI. In addition, there is the issue of compliance with
these regulations—it is certainly not easy to always enforce these regulations.

More stringent regulations seem to correspond somewhat to the newly confirmed
deaths, as indicated in Fig. 22.5. In this sense, we obtain an interesting chain of
relationships: COVID-19 cases and deaths affect policy responses and individual
protective behaviors, which, in turn, affect the numbers of cases and deaths. Never-
theless, the changes in the policies are limited, given the drastic variations in the
number of cases, for example. Figure 22.6, taken from https://www.ourworldindata.
org/covid-cases, shows the number of daily cases.

Another paper that focuses on the role of medical externality is [18]. It attempts to
determine theminimal lockdown level that satisfies the constraint set by themaximum
healthcare system capacity. The epidemiologicalmodel is augmented by a production
function to analyze tradeoffs involving economic considerations. These trade-offs
result from the assumption that the amount of productive labor is inversely related to
the severity of the lockdown chosen by the policymaker. With homogeneous agents,
the conclusion is easily reached that ceteris paribus (“all else is equal”) states or
countries with larger healthcare capacities can afford less stringent lockdowns. The
situation is more complicated when the population is composed of heterogeneous
agents corresponding, say, to different age groups. The authors assume that there
is a continuum of types, the type of any given individual is observable, and the
policymaker can implement a type-dependent lockdown policy that consists of either

https://www.ourworldindata.org/covid-cases
https://www.ourworldindata.org/covid-cases
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Fig. 22.5 Daily new confirmed COVID-19 deaths in Belgium, Germany, and the United States

Fig. 22.6 Daily new confirmed COVID-19 cases for Belgium, Germany, and the United States
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a zero or a complete lockdown. They find that the optimal policy is bang-bang:
there is a critical threshold type such that all types below the threshold face zero
lockdown (say, for those who are younger than a certain age), whereas all types
above the threshold are subject to the complete lockdown (say, older population).
The conclusion is valid whether mixing is homogeneous among all type-cohorts or
type-dependent.

As the authors point out, since the policymaker maximizes economic output
subject to a medical capacity constraint, the optimization problem avoids the diffi-
cult decision about how economic activity is weighed against the number of deaths
caused by the epidemic, which would require to specify the value of human life
[18]. Another interesting feature of the proposed model is that once the capacity
constraint becomes slack, no future policy interventions are required. This is because
the optimal dynamic policy leads to the shortest possible duration of the lockdown
by decreasing the population of susceptible individuals as efficiently as possible,
subject to the constraint. In principle, a second wave of infections cannot occur. A
statically optimal policy would imply a longer and less severe lockdown, resulting
in an extended period of depressed output (p. 9). Moreover, “even after the peak of
the pandemic has passed, if a policy-maker cancels a statically optimal lockdown too
soon, this can result in a large second wave of infections occurring.” This is more
likely to happen if the capacity constraint is tight and a large population of susceptible
individuals remain after the peak. In this sense, write the authors, “statically optimal
policies are less robust to future mistakes on the part of policy-makers” (pp. 9–10).

Unlike in the previous exercises, Fenichel [19] examines how the efficiency of a
lockdown can be impaired by a lack of information. The point of departure of his
analysis is the idea that otherwise identical individuals in different health classes face
different incentives and therefore behavedifferently.He explores two scenarios. In the
first scenario, the social planner is in full control in the sense of being able to provide
targeted incentives across health classes, such as assumed inAcemoglu et al. [20]. The
planner selects the contact levels for susceptible, infected, and recovered individuals,
whichmeans that he chooses behaviors directly. In the second scenario, the planner is
constrained: public social distancing policies are not sufficiently flexible to provide
targeted incentives across health classes. As a consequence, policies destined to
encourage social distancing are blunt and provide incentives for all individuals to
reduce contacts. A salient conclusion is that the decisions of a constrained social
planner can make the society worse off than decentralized decision-making. An
implication is that the oft-neglected behavior of recovered and immune individuals
is important for welfare and health outcomes.

A different type of complexification of the social planner’s problem has been
introduced by Bandyopadhyay et al. [21], which allows for habit formation in indi-
vidual behavior. The central result obtained by the authors is that an early lockdown
can be beneficial not only to slow down the spread of an epidemic but also to create
beneficial formation of habits, such as social distancing and hygienic precautions.

Finally, Bosi et al. [22] study the optimal lockdown policy in a dynamic general
equilibriummodel where households are altruistic in the sense that they feel empathy
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towards the infected individuals. They argue that without empathy the optimal lock-
down policy chosen by the policymaker is a zero lockdown (a government facing
selfish individuals does not confine the population), while under empathy some non-
zero degree positive lockdown is optimal.Moreover, the optimal lockdown is positive
only beyond a critical degree of altruism, and its severity rises with the degree of
altruism prevailing in the population. The reason why zero lockdown is optimal in
the absence of empathy (altruism) is driven by the fact that selfish agents do not
value the state of health of other people. On the contrary, when agents are altru-
istic, a substitution mechanism enters into play: “households are willing to accept
a lower consumption in exchange for more healthy people” (p. 6). In both cases,
however, because the economic and social costs of a lockdown are taken into account
by the social planner, it is efficient to reach an endemic steady state with a posi-
tive share of infected people in the population. This is a major contrast with the
conclusions derived from pure epidemiological models, which recommend to erad-
icate the epidemic as quickly as possible. In other words, “even the simplest model
encompassing epidemics and economics finds there is a conflict between health and
production, which only empathy can partially overcome” (p. 6).

22.4 Conclusion

The integration of behavioral equations in epidemiological models seems to bear
valuable fruits. We learn that the trajectory of an epidemic looks less worrying
when the due account is taken of the self-disciplining human responses based on
the fear of infection. At the same time, these spontaneous self-limiting behaviors are
not sufficient compared to the restrictions which a central authority would impose
in the name of collective welfare. Several types of externalities explain the diver-
gence between the equilibrium outcome of a decentralized mechanism and the social
optimumprescribed by such an authority. If theweaknesses of standard epidemiolog-
ical models arise from their rather mechanical character—human beings are absent
since they do not genuinely act—the economic-epidemiological models suffer from
two severe limitations. First, agent heterogeneity is not sufficiently taken into account.
For instance, some models allow for several age or health classes but fail to distin-
guish between people depending on whether they have a robust or a fragile health, or
whether they are health-anxious or not (which are not exactly the same things). The
main problem with introducing such complexities into economic-epidemiological
models is that they would become sorts of black boxes preventing clear analytical
lessons, the situation which economists tend to avoid.

Second, social optimum models, by nature normative, do not say anything about
the enforceability of the optimal policies. In the ideal case, people are civic: they
obey governmental prescriptions out of respect for the authority or simply because it
is their duty to do so. Bearing in mind [22], this means that altruistic individuals are
not necessary to effectively combat an epidemic. Selfish individuals may do the job
provided that they are civic, that is, they act in the light of their own private interests



470 J.-P. Platteau et al.

if left free to behave as they wish, yet they are ready to modify their behavior if asked
by their government. Unfortunately, the hypothesis of civicness is not applicable to
many countries, in particular those where the legitimacy of the government is weak
for reasons that are historical (bad precedents in matters of public health manage-
ment), political (low trust in authoritarian regimes that have proved incompetent or
unreliable), or social (strong polarization of the society). Then arises the question of
the degree of coercion that the government wants to use and of the cost involved. If
its legitimacy is so low that the cost of coercion would exceed the expected benefits,
the constrained optimum is zero confinement. Therefore, countries whose political
culture is comparatively civic thus have an obvious advantage in their fight against
an epidemic.

The problem turns to become even more complicated once we drop the idea
of stable individual preferences. Thus, weariness can affect people subject to long
periods of lockdown or to repeated lockdown episodes. Such weariness is unavoid-
ably reflected in an erosion of civic norms with the effect of undermining the efficacy
of public health policies. In this case, it may be preferable to implement a less severe
lockdown even though it is not first-best optimal (i.e., an unconstrained optimum
unhampered by enforceability problems). Here, modeling turns out to be difficult
not only because of the very complexity of the problem but also because of the
numerous assumptions required at the level of human behaviors and their dynamics
and at the level of the constraining instruments available to the government. Among
the latter are the various ways of punishing rule violations (including the setting of
the fines) and decisions regarding the detection of these violations and the amounts
of resources to be devoted to that. Needless to say, this challenge became even
more complicated with the introduction of vaccine policies and requirements and the
difficulties with their verification and implementation.
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Chapter 23
Superspreading and Heterogeneity
in Epidemics

Klaus Kroy

C’est une idée qui peut faire rire,
mais la seule façon de lutter
contre la peste, c’est l’honnêteté.

Albert Camus, La Peste

23.1 Introduction

Molecules and colloids spread through fluids, genes spread through species, idioms
through vernacular communities, and fads and pathogens through social networks. . .
That erratic dynamics on a micro-scale gives rise to universal systematic spreading
patterns on a macro-scale is a ubiquitous observation, transcending scientific disci-
plines. Following Fourier and Fick, the stochastic spreading of heat and small solutes
is macroscopically well described by a deterministic, hydrodynamic law, namely, the
diffusion equation. It provides formidable forecasts and technical control (see, e.g.,
the introductory Chap. 2 of this book). And it can serve as a template for more
complex spreading processes: from the propagation of quantum wave functions in
imaginary time to sub- and super-diffusion in viscoelastic and “active” matter, or
genetic drift and stock-option pricing [1]. But how far does it take us in the attempt
to quantify and forecast epidemic pathogen and disease spreading?

This question is deemed of such importance that a whole discipline of applied
science is devoted to it: epidemiology. Pathogens spread not only within, between,
and among, but also with their generally mobile host organisms. Therefore, the pro-
cesses of interest in epidemiology could suggestively be characterized as “piggyback
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spreading” or “spreading squared”. The phenomenon shares many similarities with
the other spreading processes mentioned above. One is that researchers feel tempted
tomodel it by diffusion. Indeed, classical epidemiological theories routinely describe
disease spreading in the spirit of chemical reactions in a test tube. And, as reviewed
by Dirk Brockmann in Chap. 20, they can even schematically account for non-trivial
human mobility patterns if formulated on a warped space. But there are also some
more erratic elements of epidemic disease spreading, reminiscent of more unwieldy
phenomena such as earthquakes, hurricanes, traffic jams, and stock-market crashes.
They are characterized by extreme heterogeneities, coupled across diverse scales.
Rare chains of micro-scale fluctuations may occasionally get heftily magnified into
large erratic outbreaks. One then speaks of “high tail risks” due to an uncomfort-
able combination of the large size and impact of an expected event with its estimated
small likelihood. Such traits are in sharp contrast to what ordinary diffusion and clas-
sical epidemiological models would predict and make the forecasting and control of
epidemics intrinsically and notoriously hard.

Therefore, the aim of the present chapter is to provide a (non-expert1) synopsis
of the crucial role of spatial, probabilistic, and genetic heterogeneity in real-world
epidemics. Their importance for the failure of conventional epidemiological models
was already anticipated by some of the pioneers in the field [2]. The “false anal-
ogy between infection in disease and the mechanism understood under the name of
chemical mass action” (H. E. Soper, 1929) was criticized, and the first steps were
taken (notably by A. G. McKendrick) to resolve the issue. Today, we can draw on
cross-fertilizations from network and game theory and the emerging field of eco-
evolutionary dynamics to substantiate such worries.

The notion of superspreading can serve as a guiding theme. In a narrow sense, it
refers to the strong variability in the number of secondary infections or “offspring”
of a contagious pathogen carrier [3]. This probabilistic heterogeneity or the so-called
overdispersion (compared to an idealized test-tube reaction) means that the major-
ity of all infections is not caused by typical encounters but by a small number of
exceptional superspreading events. These are intuitively expected to be caused by
“supercarriers” and “supershedders” of pathogens.2 But, as further elucidated below,
one should not rashly jump to such conclusions. I want to use the term in a wider
sense, also comprising a heterogeneous susceptibility as well as the heterogeneity
of the pathogen carriers’ social contact networks and spatiotemporal dynamics. Fur-
thermore, it makes sense to also implicate an extended hierarchy of superimposed
levels of spreading, similar to the discussion in Chap. 19 of this volume. Namely,
beyond the mentioned multilayered “spreading squared” of pathogens hitchhiking
with their mobile hosts (and possibly intermediate “vectors”, such as mosquitoes or
other transmitting animals), there are further, less palpable, but similarly heteroge-
neous spreading processes involved. Think of mutation patterns spreading along
a pathogen’s genealogical or phylogenetic tree, for example. Thereby, epidemic

1 By a soft-matter physicist looking at this multifaceted field from the outside.
2 Indeed, a large recent study investigating superspreading in the COVID-19 epidemic found that
2% of positively tested individuals carry 90% of the circulating virus [4].
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dynamics are always confounded by population genetics [5]. And, as discussed
below, one may even ask, whether “genetic drift” (i.e., diffusion in sequence space)
may explain “superspreading events without superspreaders” [6, 7]? Finally, there
is the overlaid spreading of information about the course of an unfolding epidemic,
which may itself “go viral” and thereby induce highly nonlinear feedback effects [8].
Altogether, epidemics thus have to be regarded as a manifestation of a (quite fickle)
complex dynamical system.3 While this may seem obvious to some experts, it is not
always widely appreciated.

23.2 Microbes, Military, and Malady

Speaking of pathogen and disease spreading, a few facts about bacteria and viruses
seem in place. First of all, it is important to realize that they are integral parts of any
ecosystem.And that thewhole biosphere relies on (and is dominated by)microorgan-
isms that have for the largest part not yet been scientifically investigated. Even within
our own bodies, bacteria and viruses by far outnumber “our own” cells. In particular,
viruses are the most abundant and fastest mutating genetic elements on Earth—their
number of offspring in a single infection event easily exceeds the size of the whole
host population. And, although not counted among the proper lifeforms, they play
a decisive role in shaping the tree of life, as “agents of evolutionary invention” [9].
By infecting us, or more often the broad array of microorganisms inhabiting us,
they mold our genetic and transcriptional identity. Even the small minority among
them identified as pathogenic usually does little or no harm to their natural reservoir
species. But it may occasionally cause significant disease outbreaks at overpopulated
gatherings of hosts, or when jumping between cohabiting species.

This has become a serious issue with the onset of urbanization and intensive farm-
ing in the wake of the neolithic revolution (see Chaps. 16 and 17 of this volume),
which has culminated in industrial poultry farms [10], care and nursing homes [11],
and crowded sickbays, prisons [12], and warships [13]. Indeed, all types of herding
and crowding are closely interwoven with infectious diseases. This applies particu-
larly to warfare, where the disease has often trumped combat by its death toll [14,
15]: from the epidemic “killing the warriors in droves” evoked by Homer to spark
the story of his Iliad, to the plague of Athens in 430 BC that extinguished about a
quarter of those entrenched in the besieged overcrowded city, and the Spanish flu
pandemic, with more than 20 million victims, during the First World War.

Unsurprisingly, military forces have, therefore, become leading proponents of
germ and vaccine research. George Washington’s order to variolate the entire Amer-
icanArmy against smallpox is sometimes cited as decisive for the American civil war

3 M Schrappe et al., 2021: “Thesenpapier 8.0 zur Pandemie durch SARS-CoV-2/Covid-
19” http://doi.org/10.24945/MVF.05.21.1866-0533.2348; and Addendum: http://www.monitor-
versorgungsforschung.de/efirst/Mueller_Addendum_Thesenpapier-8-0_Modellierung.
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Fig. 23.1 Impact of historical epidemics. The annual number of deaths per ten thousand inhab-
itants in Sweden throughout the last centuries (up to the year 2021) exhibit signatures of major
epidemics piercing an overall trend of increasing longevity (Statistiska Centralbyrån)

[16]. The success story could, however, not be repeated by the enthusiastically advo-
cated vaccination campaigns, targeting epidemiologically irrelevant bacteria such
as Pfeiffer’s “bacillus influenzae”, against the Spanish flu [17]. From the ensuing
controversies an early set of criteria for valid vaccine trials has emerged, while the
types of viruses that we now hold responsible for transmitting the flu, as well as
their immune and vaccine escape capabilities, remain mysterious and challenging,
another century later [18–20]. Albeit, till today, the military remains a central player
and an incubator for vaccinologists and epidemiologists, many of which later move
on to industry and academia, contributing to notable discoveries, e.g., of vector-borne
diseases and transmissions, the oral polio vaccine, etc. Together with increased pros-
perity and improved sanitation, they are widely credited for taming the hazardous
impact of contagious diseases on our highly interconnected modern societies (Fig.
23.1)4. On a less optimistic note, such activity has unavoidably been entangled with
the bioweapon development,5 (at least) ever since “variolated” sundries, blankets,
and handkerchieves were distributed around Fort Pitt in Pennsylvania to decimate the

4 http://www.scb.se/en/finding-statistics/statistics-by-subject-area/population/population-
composition/population-statistics/pong/tables-and-graphs/yearly-statistics--the-whole-country/
population-and-population-changes.
5 As remarked by an insider, “everything is dual use—the people, the facilities and the equipment”,
S. Husseini, Independent Science News 2020: http://www.independentsciencenews.org/news/
peter-daszaks-ecohealth-alliance-has-hidden-almost-40-million-in-pentagon-funding. See also S.
Lerner,M.Hvistendahl,M.Hibbett, The Intercept 2021: http://theintercept.com/2021/09/09/covid-
origins-gain-of-function-research.
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Native Americans, in the 1760s [16]. And although the ensuing “gain-of-function”6

research has become increasingly unpopular and repeatedly officially banned [21], it
has arguably never ceased [15]. The late Steven Hawking’s worries7 about disasters
more imminent than those predicted by his cosmological theories thus do not seem to
have arisen out of thin air, but rather underscore a commonly underestimated eminent
political dimension of epidemiology that has resurfaced in recent debates [22, 23].

23.3 SIR-Storm in a Teacup

The classical “test-tube” models of epidemiology [24], based on seminal work by
Kermack and McKendrick [25], were briefly introduced in Chaps. 20 and 21 of this
volume and, more thoroughly, by the applied mathematician Stephan Luckhaus in
his Leipzig lectures.8 They are better known as compartmental models since they
describe the mutual “chemical reactions” of idealized homogeneous fractions or
compartments of a given population, such as the Susceptible, Infected, Recovered,
etc. In their simplest form, these models completely disregard the spatial, social, and
biological heterogeneity of the population, emphasized in the present contribution.
Although one, therefore, cannot trust their numerical results, they make a number of
qualitatively robust predictions that are worthwhile recalling.

A major phenomenological observation that is captured well by the standard
SIR-type models is the characteristic time course of epidemics. They proceed via
overshooting infection waves toward (i) extinction due to herd immunity or (ii) an
endemic state, respectively. The first scenario (i) applies to a “static” host population
and pathogen, for which the (nominal) herd-immunity threshold follows from the
fraction of remaining susceptible individuals at peak infection. The second, more
complex, scenario (ii) takes into account the gradual emergence of new susceptible
individuals, e.g., due to pathogen mutations, (reverse) zoonosis,9 waning immunity,
and/or the host population’s turnover (e.g. by births and migration). These processes
slowly and inconspicuously shift the balance in favor of new outbreaks, thus leading
to repeated infection waves. Irrespective of the precise scenario, a robust conclusion

6 For an introduction see: http://www.youtube.com/watch?v=zVOaXdKc-DI or http://www.
youtube.com/watch?v=Q0nuyPQzU18.
7 S. Hawking: “we face a number of threats to our survival, from nuclear war, catastrophic global
warming, and genetically-engineered viruses” in his Reith Lecture 2016: “Black holes ain’t as black
as they are painted”, http://www.youtube.com/watch?v=ljvVPAZHnD4.
8 S. Luckhaus, 2020 recordings: http://www.youtube.com/watch?v=SZ4dIEb2ttM (English), http://
www.youtube.com/watch?v=FJYjqltJn9E (German); see also: http://www.mis.mpg.de/preprints/
2020/preprint2020_105.pdf.
9 For example, SARS-CoV-2 has remarkably rapidly established the so-called “animal reservoirs”,
e.g., in cat, dog, tiger, lion, puma, mink, and white-tailed deer [26, 27], which was answered by
mass cullings of tens of millions of minks “to protect the vaccines” [28].
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of the standard models is that only a fraction of the population ever becomes infected
during an infection wave.10

Conceptually, the models are furthermore helpful for sorting the reaction rates
into two classes: those setting the speed of spreading and the late-time endemic
state or herd immunity, respectively. The distinction mirrors that between Arrhenius-
and Boltzmann-factors in physical chemistry: the former only modulate the speed
of a chemical reaction, while the latter alone determine its outcome via the mass-
action law.11 The fundamental insight for pathogens that cannot be eradicated is that
mitigation measures, including face masks, non-sterilizing vaccines, and lockdowns,
are mere (anti-)catalysts. They can at best [29] affect the time course but not the
long-term fate of an epidemic, which is determined by the pathogen-host chemistry,
alone. For example, rapid border closures may help to gain some time during the
early stage of an epidemic. Yet, even the draconian travel quarantine imposed in
Wuhan to contain the COVID epidemic in early 2020 was estimated to delay the
further progression in Mainland China by no more than 3 to 5 days [30]. And even
in island countries such as Australia, New Zealand, Taiwan, and Iceland, where
infection numberswere kept extremely lowprior to vaccination, anything but “almost
avoided the pandemic entirely”12—thus “vindicating Boltzmann over Arrhenius”.
Such sobering insights can temper expectations about what pharmaceutical and non-
pharmaceutical interventions can generally achieve for the control of epidemics. As
the examples suggest, social interventions are notorious for their hard to assess [31]
and hard to justify cost-benefit ratios among the experts [32–35]. Despite some
initial empirical [36], but more often lopsidedly model-based,13 propositions to the
contrary, also the latest epidemic does not seem to provide a plausible exception to
this rule [37–42].

23.4 Transmission Heterogeneity

The perplexingly unimpressive effect of global “bulk” interventions on epidemic
spreading clearly begs for further explanation. A first clue can be gained if the com-
partmental models are extended to account for some population heterogeneity by
dividing the population up into cohorts with distinct properties. They then admit

10 In the first COVID-19 infection wave, about 0.2% of the German population tested PCR-positive.
Almost two years and several waves and mutants later, everybody had statistically been PCR-tested
at least once, yet only about 6.5% positive. Such low infection rates hint at substantial population
heterogeneities and cross-immunities (epidemiological “dark matter”).
11 This equilibrium-type constraint confers a crucial element of predictability to epidemics, if their
population-wide pathogen-host chemistry is known and remains fixed over time.
12 https://www.uschamber.com/on-demand/coronavirus-pandemic/bill-melinda-gates-on-the-
pandemic-and-what-comes-next?autoplay=1 (min 6:28).
13 P. W. Magness, AIER 2021: http://www.aier.org/article/the-failure-of-imperial-college-
modeling-is-far-worse-than-we-knew; G. A. Quinn et al., 2021: http://doi.org/10.31219/osf.io/
s9z2p.
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richer solutions, with some variability in how the overall infection rate is distributed
among the cohorts. It is then intuitively clear that mitigation measures can be more
effective and more economic if they target specific cohorts rather than the whole
population [5, 43]. Epidemiologists have long known how to exploit the effect to
protect particularly vulnerable groups.8 COVID-19 again provides a good example.
Only a small percentage of the elderly population with comorbidities is at seri-
ous risk and accounts for almost all deaths [44, 45], initially about half of them in
long-term care-homes [46]. According to the extended compartmental models with
multiple cohorts, the conventional mitigation strategy is then to let the disease spread
quickly14 among the non-vulnerable (the young and healthy [47, 48]), while the vul-
nerable group temporarily self-isolates. Altogether, the extent of the infection wave
in the vulnerable group—and, in a well-mixed population, even their herd immu-
nity threshold—can thereby be reduced, resulting in a much lower overall cumula-
tive death toll. The important take-home message is that it is crucial to account for
the population heterogeneity, with respect to both vulnerability and social contacts.
Well-intentioned indiscriminate or even misaligned interventions (e.g., off-season
for a seasonal disease or targeting the less instead of the more vulnerable cohorts)
may be counterproductive, delaying the necessary immunization and resulting in an
overall increased death toll, at the end of the line. Curiously, experts who voiced such
textbook wisdom during the early days of the recent COVID epidemic encountered
fierce political opposition.15

A number of recent studies (seeRef. [49] and therein) have investigated extensions
of the cohort approach to broad distributions of the susceptibility, in order to account
for the substantial diversity in the transmission probabilities. Jülicher and coworkers
considered a power-law distribution of (natural) susceptibilities, with its exponent α
being the only newparameter added to the standard SIRmodel [49]. Key properties of
the epidemic wave dynamics, including the infection curve, the herd immunity level,
and the final size of the epidemic, can then still be calculated exactly, while avoiding
the proliferation of poorly defined model parameters that generally plague the mod-
eling of heterogeneities in terms of several discrete cohorts. An important finding is
that the average dynamics is naturally sub-exponential, α-dependent, and allows for
herd-immunity thresholds as low as a few percent of the total population. The model
also predicts how the transmission probability distribution itself evolves dynami-
cally throughout an epidemic, as the numbers in the susceptible cohorts change and
eventually converge to an invariant distribution ∝ xα−1e−αx .

While this is certainly an important step toward reality, further modifications of
the test-tube caricature of epidemic spreading become necessary if one wants to
account more thoroughly for the whole spectrum of relevant heterogeneities [50]

14 At which point a long-term investment in the healthcare sector appears to pay its way [34].
15 J. Levin, New York Post 2020: http://nypost.com/2020/05/16/youtube-censors-epidemiologist-
knut-wittkowski-for-opposing-lockdown/; M. Kulldorff, The Spectator 2021: http://www.
spectator.co.uk/article/covid-lockdown-and-the-retreat-of-scientific-debate; S. Luckhaus #wis-
senschaftstehtauf 2021: http://odysee.com/@wissenschaftstehtauf:8/Luckhaus_Bauchbinde_final:
b; TheWall Street Journal Editorial Board 2021: http://www.wsj.com/articles/fauci-collins-emails-
great-barrington-declaration-covid-pandemic-lockdown-11640129116.
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and include, for example, an uneven spatial or social mixing within or between the
cohorts, as outlined in the following.

23.5 Heterogeneous Contact Networks

Heterogeneous populations should of course not be expected to be well mixed. Their
contacts are unevenly distributed with respect to their number as well as to other
parameters such as age group and profession. Referring back to the schematic exam-
ple of the two cohorts, one will only reap the full benefit of a targeted protection
strategy if the population is well mixed. If the vulnerable remain permanently segre-
gated, instead, in close mutual contact rather than dispersed within an already largely
immunized population, the risk of devastating outbreaks among them is not dimin-
ished as much as it could be (“dry-tinder effect”).16 Generally speaking, beyond a
population’s susceptibility distribution, one also needs to address its heterogeneous
contact networks if one wants to fully understand the spreading of an epidemic. In
clustered networks, the connections are skewed to favor members of the same clique.
Cliques are densely intra-connected but only weakly interconnected. Accordingly, in
such networks, infections initially spread very well but then slow down and remain
more confined than naively expected. In other words, the fire of infection burns fast
but extinguishes easily. To reach the next clique or cluster, the epidemic has to pass
via a narrow population bottlenecks, where only a few pathogens can pass, so that
details matter and chance rules [51]. (This “reign of small numbers” [1] plays a
prominent role in virus evolution, as discussed further below.).

The topological feature of contact clustering may thus considerably impede the
global spread of a disease compared to tree-like contact networks, while it facilitates
contact tracing [52, 53]. Besides nursing homes, typical real-world examples for
clusters could be households and school classes, say, but also an infected organism
or its organs. While a pathogen may find it easy to spread within a single organ, it
may turn out very difficult to invade the next, and similarly for social groups. As a
consequence, real-world epidemics only reach a smaller part of the population than
predicted by the test-tube models, but most of it relatively easily. This conclusion
resonates well with the above-mentioned findings by Jülicher and coworkers. And
indeed, their approach can also be interpreted as an attempt to effectively incorpo-
rate some contact heterogeneity into the simple SIR model. In practice, however,
clustering and distributed susceptibility or transmissibility are distinct features that
interfere with each other [54].

To make things worse, they interfere with yet another non-trivial but common
topological trait of natural contact networks, namely, their heterogeneity with respect
to the number of contacts emanating from a network node (its “degree”). In his book
“Linked—TheNewScience ofNetworks” [55], A.-L. Barabasi emphasizes this other

16 N. Rondinone, CT Insider 2021: http://www.ctinsider.com/news/article/What-we-know-about-
one-of-CT-s-deadliest-16640827.php.
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crucial aspect of real-world contact networks, known as their broad degree distribu-
tion. He vividly recounts the story of one of the first known superspreaders, often
called Patient Zero of the AIDS epidemic, who turned out to be a central hub (a
particularly highly connected, i.e. high-degree, network node), with an estimated
number of 2500 links or more, in a large network of sexual contacts. At least some
40 early patients could explicitly be traced back to him. This is a manifestation of
the empirical observation that social and sexual contact networks are very heteroge-
neous [56]. The weakly connected nodes (with zero or one sex partner, say) are most
frequent, but the number of more highly connected hubs decays only slowly, typi-
cally like a power law, as a function of their connectivity (their degree). This means
that individuals will not spread a disease simply proportionally to their pathogen
load. Indeed, most do not spread a pathogen at all, but a few a lot.17 Yet, neither do
all hubs in a network contribute simply proportionally to their degree, not even if
one artificially assumes homogeneous pathogen load and transmission. And it would
not be easy to localize them all, anyway, or even to define and select the structurally
most relevant ones [57, 58]. Unsurprisingly, the best search tool known to solve this
complex task is actually an epidemic, which may in this context be thought of as a
“swarm algorithm”.

Similarly, as for the broadly distributed transmissibilities discussed further above,
an important and robust epidemiological consequence of broadly distributed contact
numbers is the lowering of the epidemic threshold [59]. In the standard SIR mod-
els, which describe relations between population averages, the fate of an epidemic is
determined by its effective reproduction number R of secondary infections caused, on
average, by an infected individual. The epidemic is predicted to spread exponentially
for R > 1 and to decay exponentially for R < 1. However, for the important class of
scale-free networks (with power-law degree distributions), the epidemic threshold is
formally found to vanish in an infinite network: in strongly heterogeneous networks,
pathogens (no matter how weakly contagious) will always spread to a certain macro-
scopic scale. And they do so in a rather heterogeneous fashion, as illustrated in Fig.
23.2. With the increasing broadening of the degree distribution, occasional disease
extinction becomes more likely and outbreaks rarer but more explosive—and all this
even without invoking the non-trivial effects due to distributed transmissibilities,
clustering, and bottlenecks. In other words, real-world epidemic spreading is, for
more than one reason, prone to generating considerable tail risks.

23.6 A Tale of Tail Risks

Togain some intuition for the tail-risk effects associatedwith power-lawdistributions,
consider the following gamble. A banker tosses a fair coin for you until tail comes
up. What is the fair price for a round, if you earn 2n+1 (in your favorite currency)

17 Not unexpectedly, staff members feature prominently in the timeline of the well documented
nursing-home outbreak referenced in footnote 15.
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P (n) n n/n! P (n) ∝ (1 + nα)−1

Fig. 23.2 Homogeneous versus heterogeneous spreading. Transmission trees grown from a
single seedwith offspring numbers from a Poisson distribution (left) or a truncated power law (right,
α ≈ 2.35) with gray × indicating P(0). In the Poisson or test-tube setting, most infected nodes
pass on a spreading disease: average behavior matters. The power law case (also overdispersed,
fat-tailed, scale-free) is more realistic for human contact networks [50, 56]. While the average is
the same, it hardly matters, as most nodes infect no others, and the epidemic is driven by rare,
explosive but unstable bursts [60] or superspreading events. The more fat-tailed P(n), “the more
the tail wags the dog” [61, 62]

for n heads in a row before tail comes up? The problem with this game, and similar
real-word processes in finance and epidemics, is that the chance 2−n−1 for the row
of n heads is the reciprocal of the profit 2n+1. So the probability distribution for
earning xn = 2n+1 is given by the power law x−1

n . The most striking consequence of
this is that, your most likely payoff is 2 while the average payoff

∑
n xn/xn = ∑

n 1
diverges. Accordingly, your likely gain in a single round is fairly small, but the “fair”
price is infinity. Notice the so-called Petersburg paradox associated with this result.
Namely, that a banker charging a better-than-fair (any finite) price per round, say
1000, can play the game for a long time and accumulate impressive wealth before
he eventually goes bankrupt and needs to be bailed out by the tax payers.

Beyond illustrating the key problem with power-law risks, which indeed seem to
arise ubiquitously in non-equilibrium real-world processes from plate tectonics to
financial markets [63], the toymodel is also instructive in another sense. It shows that
high tail risks do not always require very heterogeneous conditions as a necessary
prerequisite. They can even result from statistically independent random events, like
coin tosses, if the process is capable of producing exponential growth. This leads
back to epidemiology, where the gambler’s profit amounts to pathogen proliferation,
of course, and the banker’s allegedly 100% safe business model is the analog of the
epidemiologist’s confident prediction of the next infection wave. Since, according to
the standard models, epidemics are of course the textbook paradigm for exponential
growth. Or are they?
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23.7 Spatial Spreading

So far, the discussion of heterogeneities has focussed on topological features. How-
ever, unlike fads or idioms, contagious diseases do not spread via phone calls and
emails but require physical encounters. Which means that the mentioned heteroge-
neous social networks need to be considered together with their embedding into real
space. And the physical geometry of the latter, as encoded in a city map or by regions
of inhabitable land on the globe, brings new heterogeneities into the equation that can
potentially override the mentioned topological features or even change them [64].
For example, the topological feature of clustering, discussed above, may be to some
extent thought to arise as consequence of spatial embedding (to households, work
places, …). Also, the so-called superspreading events, with an explosive growth of
infections, clearly seem to be tied to specific patterns of spatial crowding and mobil-
ity: besides the mentioned nursing homes and warships, also large conferences [65],
cold slaughter houses [66], and hot parties [67, 68] (with poor air conditioning)—but
not public trains [69], the exchange of bank notes [70], or outdoor events [71]. Once
more, a small fraction of (in this case spatial18) interaction patterns appear to produce
almost all spreading [72].

A crucial role in spatial geometry has also been established for the process of
gene spreading, which is closely related to pathogen spreading. Genomes can remain
confined with their phenotypes to certain habitats for a long time, before the latter
embark on larger excursions, leading to the so-called founder effects. As elaborated
in Johannes Krause’s popular book [73], the co-evolution of largely isolated social
groups with specific pathogens is moreover suspected to have caused major historic
epidemics upon invasion of new, already inhabited territories. This is also a main
topic in the history of colonialism and imperialism [74, 75]. In return, one may
speculate that the rapid growth in human mobility and globalization throughout the
last 150 years,19 could plausibly partly explain the decaying impact of epidemics,
as apparent from Fig. 23.1; namely, chiefly via the global distribution of pathogens
and cross-immunities it has brought about [76]. Counterintuitively, as it may sound
to some, it would mean that, in the long run, the severity of epidemics is best tamed
by frequent traveling and cross-country social gatherings, and that Christmas [67],
carnival [68], and après-ski [77] parties may inadvertently serve some noble purpose.

Not only to address such intriguing open questions, the embedding of epidemic
spreading into real-space geometry is of major interest. Two key elements to consider
are then the spatial heterogeneity of the population density and its heterogeneous
mobility patterns [50]. A scaling approach pioneered and popularized by Geoffrey
West [64] covers both in one stroke, without necessitating the underlyingmechanistic
details to be resolved. It is consistent with the empirical finding that socioeconomic
metrics of urban life, such as the averagewages or the number of restaurants, theaters,
lawyers, crimes, and cases of AIDS and flu, all scale in a more or less universal,
superlinear manner with city size. This approach has also tentatively been applied

18 The so-called three C’s: closed spaces, crowded places, and close-contact-settings.
19 Think of Jules Verne’s bestseller “Le Tour du monde en quatre-vingts jours” from 1873.
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to the early attack of the COVID-19 pandemic [78], and a suggestive correlation
between mortality and the so-called population weighted density20 seems to hint in
a similar direction.

Chapter 20 of this volume follows a more explicit route for the example of air
traffic, along similar lines as pursued in invasion biology [79]: if you can take a
plane, this may substantially affect what you (as well as the species you carry along)
perceive as the metric of the globe. One can capture such heterogeneous mobility by
means of a warped metric, i.e., very much in the same spirit as for diffusion in curved
spacetime [80] or for the case of non-isothermal Brownian motion [81], described
in Chap. 8 of this volume. One can also try to take the full spectrum of means of
transport into account—allowing travelers to jump the line with the help of planes,
trains, busses and cabs, say. A tractable approach to do so has already been explored
in the closely related context of eco-evolutionary dynamics [82]. Translated to the
spread of an epidemic, its predictions imply that the textbook wisdom of exponential
epidemic growth requires substantial revision, as they suggest a very different (even
logarithmic) intermediate asymptotic dynamics of disease spreading, under such
circumstances. Recent epidemiological studies arrive at similar conclusions, albeit
on entirely different grounds [83, 84]. Also, the contribution by Armin Bunde and
coauthors in Chap. 21 points out that the transport dynamics on a spatial network
will inevitably become algebraic rather than exponential, when the network is poised
toward breakup (i.e., near its percolation threshold).

Summarizing the above discussion, the main problem with the epidemic standard
models is that the infectiousness of the infected, the susceptibility of the suscepti-
ble and recovered, and the social and spatial contact networks connecting them are
in reality all far from homogeneous. This entails a substantial quantitative renor-
malization of the standard epidemiological model predictions—chiefly, a drastically
reduced overall herd immunity threshold and endemic pathogen concentration. But,
conjointly with the propensity to (locally) exponential growth dynamics, the hetero-
geneities furthermore create substantial tail risks that threaten to severely undermine
the mechanistic logic of the widely employed test-tube models, altogether. This
problem is addressed next.

23.8 Breakdown of Macroscopic Determinism

The forgoing discussion has highlighted the similar and dissimilar roles of cluster-
ing, broad degree distributions, as well as biological, spatial, and mobility hetero-
geneities. But how all of them interfere in real-world epidemics is so far still poorly
understood. And even if some effects might be hoped to compensate (rather than
amplify) each other, the detailed mechanisms are far from clear, a century after such
concerns were first raised and tentatively addressed [2]. If taken literally, all of them
involve problematic limiting procedures that do not peacefully coexist. For example,

20 Swiss Policy Res. Group, 2021: http://swprs.org/judgment-day-sweden-vindicated.
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as mentioned above, taking a power law degree distribution seriously for an infinite
network would predict a vanishing epidemiological threshold. This means that even
an extremely weakly contagious pathogen could trigger a massive infection wave.
However, neither are real-world networks infinite nor are their degree distributions
true power laws, so such predictions cannot be taken at face value but have to be
reinterpreted cautiously. The statistician and popular author Nassim N. Taleb has
recently analyzed records of historical epidemics from this perspective to find that,
indeed, the distribution of fatalities is strongly fat-tailed, “suggesting a tail risk that
is unfortunately largely ignored in common epidemiological models” [62].

This goes against most people’s common sense, derived from experience with
near-equilibrium processes, to which the law of large numbers and the central limit
theorem apply. But their intuition is a poor guide far from equilibrium. In particularly,
for (locally) exponential growth processes and processes with considerable tail risks,
the coarse-grained variables used to formulate rate-equation models may themselves
become scale-dependent, fuzzy concepts, if not mechanistically meaningless. This
applies, in particular, to the standard estimators of epidemiological or financial risks
derived from these variables, such as the average reproduction number R [52, 59]
or the infamous “value at risk” (VAR) [85]. For example, rather than controlling the
global increase of infections in an epidemic, as assumed by the standard models, R
acquires a vague meaning, such as a “probability for certain large but localized out-
breaks”, in heterogeneous networks. And the naive trust of financial-risk regulators
in VAR and other average numbers has even been denounced as a key factor of the
financial meltdown they were expected to mitigate! Contrary to formal predictions
by idealized models, originally devised as “illuminating caricatures” [5] to broadly
outline some general principles, local details (like those triggering a traffic jam out
of the blue), finite-size effects (how big it gets), and pure chance (when or where
it happens) will thus matter a lot, under practical circumstances. Certain real-world
epidemics may then quickly go extinct, while others blow up without a clear logical
explanation—no matter how much the fallible human mind clings to reassuring and
self-complacent narratives of simple (linear) cause and effect.

The Petersburg gamble may again be invoked to illustrate the main point behind
this perplexing riskmanagement paradox—and our innate incompetence to appropri-
ately deal with small fatal risks. It explicitly shows how common intuitive measures
employed to quantify and manage the course of epidemics or financial markets, such
as averages and variances, may become uninformative and unreliable, if not outright
deceptive, in the presence of power law risks. You could say that, as always in statis-
tics, knowing that the average chance for a disaster is low will do little to console
you if you are the one who happens to be hurt. But, as the example illustrates, for
systems with substantial tail risk, this effect is grotesquely exaggerated far beyond
the scale of individual cases (recall that the fair price, namely the average payoff,
is infinite, but how incredibly rich the banker may get by charging only a finite
price). For epidemic disease spreading, this tendency is aggravated by the propen-
sity to produce locally exponential growth. The latter entails a sensitive dependence
on initial conditions and rate coefficients, familiar from chaotic systems, where it
is often referred to as the butterfly effect. Its consequence in conjunction with the
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outlined heterogeneity effects is the de facto breakdown of determinism on global
length and time scales. The bottom line is that the spread of real-world epidemics is
far more sensitive to finite-size effects and accidental details, down to the scale of
individuals [86] if not within any single organism [4, 87–89], than admitted by the
widely adopted theoretical models. Any two outbreaks, even in what appears to be
the same setting, may thus have very different epidemiological outcomes [62, 83,
90]. How far these heterogeneities can judiciously be averaged out [43, 84, 91] and
subsumed into effective parametrizations [61, 92], to be dealt with deterministically
on large enough scales, thus allowing for “typically” (yet not necessarily always)
reliable predictions, is an intriguing open question.

23.9 Disease Control Paradox

As an immediate practical consequence, a highly erratic and somewhat counter-
intuitive response to mitigation measures can emerge [90, 93]. In particular, while
processes with a narrow-tailed distribution respond favorably to measures acting on
bulk behavior (such as the speed limit for all drivers), those with fat-tailed risks
respond poorly [61] and instead require more specifically targeted interventions,
which, in return, will incur substantially lower economic costs. For example, con-
vincing sex workers to use condoms is vastly more effective in reducing the spread of
AIDS than announcing an overall sex ban.21 Analogous conclusions apply to other
diseases with fat-tailed offspring distributions, such as COVID-19 [94] or Ebola [95],
which was found to be contracted by healthcare workers in Sierra Leone with a 100
times increased risk. Ironically, in epidemics, many of the networks on which our
modern societies so heavily rely on, may fall prey to their very strength. It is exactly
their strongly heterogeneous contact distributions, leading to transmission graphs as
the one shown in the right panel of Fig. 23.2, that are responsible for themuch-praised
resilience of scale-free networks against failure. (Deleting a node is inconsequential
unless you have very accidentally hit a hub.) But in the context of epidemiology,
this translates into a vexing insensitivity to the spreading process against all types of
pharmaceutical and non-pharmaceutical “bulk” mitigation measures that are indis-
criminately applied to a population as a whole rather than to targeted individuals,
specific locations, or critical events [61, 72]. Which, in turn, helps to explain why
the effectiveness of such measures is so hard to accurately evaluate [31]. And why it
regularly turns out disappointing in terms of the cost-benefit ratio [33], even under
highly controlled laboratory settings [96]. That each generation of epidemiologists
apparently needs to learn this lesson anew [32, 42] underscores the immensely unin-
tuitive character of the heterogeneous epidemic dynamics.

As in the Petersburg paradox, one cannot assume heterogeneities to average out
smoothly in epidemiology, as tacitly done when one writes down coupled rate equa-
tions for average variables, claiming simple causal relations between them. Even

21 To the referee who swears by the latter: for how many generations should it be maintained?.
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if such models may nicely capture certain aspects of the observed dynamics on a
descriptive level, this should not be mistaken as proof of a causal relation. To use
a hackneyed analogy: a correlation between the numbers of babies born in a house
and storks on its roofs may have a causal origin (e.g., a healthy rural ecosystem may
be favorable for both), but this does not imply that more births will mechanistically
attract more storks, or vice versa. If stated so bluntly, this may seem an obvious
pitfall that is easily avoided. But a cursory survey of the literature suggests it to be
a rather common trap. Encouraged by the ease with which one can come up with
phenomenological fits to the stereotype patterns of infection waves, many authors
have apparently failed to realize that the mathematically toxic mix of heterogeneities
with locally exponential growth dynamics may render forecasting and forecasting-
based riskmanagement anddisease control rather subtle tasks, even retrospectively!22

Associated common fallacies of data analysis are widely documented and supported
by empirical surveys, which underscores the “need to shift study design toward
prioritizing the handling of data sources rather than refining models” [31, 38, 41,
97, 98].

Physicists, as well as meteorologists working on weather forecasts [99], should
actually not need to be reminded of this. Weather forecasts can at least rely on real-
time data gathered from thousands of automated weather stations all over the land,
sea, and sky to rapidly feed back into the models, as well as on a broad consensus
on the underlying physical equations. And, importantly, the public reactions they
trigger (e.g., leaving the housewith orwithout an umbrella) do not react back onto the
weather itself to cause what epidemiologists call the “prediction paradox”. From this
distinction, an increased responsibility of the epidemic relative to the meteorological
modeler ensues, as pointed out in Ref. [41]. Based on an in-depth study of a real-
world example, it exemplifies how self-fulfilling prophecies can be a particularly
harmful type of prediction.

In summary, since deterministic modeling and forecasting is a mine field, respon-
sible risk assessment in epidemiology hinges most crucially on precise and unam-
biguous empirical data, which are then readily condensed into easy-to-use empirical
risk calculators for medical doctors and the general public.23

23.10 Genomic Superspreading

While a pathogen is invading a host population, mutations, insertions, and deletions
are accumulating in its genome, which gives rise to genetic drift (the technical term
for diffusion in gene space). The ensuing coupled spreading dynamics have been

22 Popular introductions: T.Wiethölter, 2022: http://coronakriseblog.wordpress.com; C. Kuhband-
ner, Telepolis 2020: http://www.heise.de/tp/features/Warum-die-Wirksamkeit-des-Lockdowns-
wissenschaftlich-nicht-bewiesen-ist-4992909.html (both in German).
23 See, e.g., the QCovid risk calculator: http://qcovid.org; its current risk estimate for catching
COVID and dying from it is 0.003% for the author and 0.0001% for his kids age.
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a central topic in population genetics and immunology for almost a century [100].
Genome sequencing allows to harness it for a new form of spatiotemporal genomic
epidemiology. In this context, genetic changes play the role of a molecular barcode
and amolecular clock. Pathogen spreading can thereby be backtracked and displayed
in the form of phylogenetic trees. This provides modern epidemiology with entirely
new tools, equivalent to C-14 dating in archeology and fingerprints in forensic anal-
ysis. The molecular clock rate decides what time scales can be resolved [101]. In
the case of highly conserved DNA viruses, such as the smallpox virus variola, the
approach is suitable to study historic time scales [102]. Intriguingly, the phyloge-
netic analysis reveals that the little diversification of major variola lineages that
have occurred at all, can be traced back to the eighteenth and nineteenth centuries,
concomitant with the development of modern vaccination. At the other end of the
spectrum, if genetic change is many orders of magnitude faster and, as in the case of
HIV and various RNA viruses, say, occurs on a weekly to monthly basis, with error
rates per nucleotide and replication cycle up to the ‰-range, phylogenetic analysis
can resolvemuch finer epidemiological details. It can then help to track the formation
of genetic variants leading to the emergence of repeated infection waves [103] and
to validate global spreading pathways and local superspreading events [104] (which
show up in the phylogeny in a similar way as in the infection trees in Fig. 23.2). It
has lately even provided hot trails for contact tracing [105].

Phylogenetic analysis has furthermore backed up estimates for transmission prop-
erties such as the bottleneck size (the number of virions required for an infection),
supporting the notion of substantial transmission heterogeneity, as even a few viri-
ons appear to suffice for a successful infection [105]. Another interesting recent
finding was the low genetic variability within superspreading clusters. During the
early stage of spreading of COVID-19 in the United States, a superspreading study
analyzing 118 infection cases in a skilled nursing facility essentially found a mono-
clonal genealogical fingerprint (59 of the genomes were found to be identical) and
a somewhat larger, though still relatively low, genetic variability in a larger super-
spreading event at a conference [65]. These results underscore that superspreading
events may exhibit rather little (if any) immune escape. It is indeed plausible that new
genetic variants are not bred through superspreading, if it is understood to mean that
many individuals are infected by a single person. Genetic variation is more likely
to increase by sequential passage through many immunologically diverse individu-
als. (This is exactly how gain-of-function experiments are conducted, after all [21,
22], which makes one wonder whether it is really always a good idea to follow the
intuitive impulse to “flatten the curve”.24) After a series of infections, subsequent
superspreading events may, however, play a key role in selecting and amplifying
some of the rare genetic variants, and in distributing them widely through the pop-
ulation, while others erratically die out [104, 106], similarly as discussed above for
whole epidemics.

24 Or whether “as many people as possible need to be infected with the virus”, Reuters 2022: http://
www.reuters.com/business/healthcare-pharmaceuticals/iceland-lift-all-covid-19-restrictions-
friday-media-reports-2022-02-23/.
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In summary, much as the spreading of pathogens in real space, also their genetic
dynamics is highly nonlinear and governed by substantial heterogeneity. It is domi-
nated by the combined effects of repeated passages through narrow population bottle-
necks that can promotemutational bursts, followed by proliferation bursts within the
infected organisms and superspreading among them. The spread and amplification
of emerging variants effected by this repeated chain of events goes under the name of
“founder effect” in genetics [106]. As an important consequence of the population-
genetic heterogeneity, themitigation of epidemics of fastmutating pathogens (such as
RNA viruses) by pharmaceuticals or vaccination is a very subtle task. Modeling sug-
gests that a widespread distribution of vaccines that afford imperfect immunization
and sterilization during an ongoing epidemic may result in a wide range of potential
epidemiological and evolutionary outcomes [107]. In particular, attempts to suppress
pathogen spreading in a population by vaccination can promote spreading in gene
space. Similar to antibiotic resistance, infections after waning immunitywould be the
key potential contributors to viral immune escapes via the so-called antigenic drift,
which may possibly already set in at relatively low vaccination rates [108]. This
is currently also a concern in the context of COVID-19 [109–111]. It is, therefore,
imperative to determine the strength and duration of clinical protection and sterile
immunity in order to avoid negative impacts. And, similarly, as with other mitigation
strategies, it is crucial to address the population heterogeneity and selectively target
pertinent cohorts to avoid compromising the potential benefits, e.g., by incubating
escape mutants in non-vulnerable cohorts [47, 48].

23.11 Survival of the Flattest and the Flu

While pathogen superspreading is commonly ascribed to individual supershedders
or socially highly connected hubs, there appears to exist another, more subtle and
more worrisome type of superspreading events for rapidly mutating germs. It is
characterized by close encounters with many infectious and susceptible individu-
als under incubator-like conditions, say, at overcrowded parties or similar “3C”17

events. In terms of network theory, one thus deals with (temporarily) strongly inter-
connected host clusters, which favor co-infections [89], so that one may also speak
of “cluster infections”. Under such conditions, which do not rely on individual super-
spreaders [6, 104], both the overall pathogen concentration and its genetic diversity
may peak simultaneously, thus likely resulting in burst-like outbreaks both on the
population and genetic level. This has important epidemiological and genetic con-
sequences. Namely, on the one hand, it means that a state that would be classified
as epidemiologically stable by the conventional test-tube models (that replace het-
erogeneous distributions by averages) gets a great chance to conspicuously reveal
its actual metastability.8 On the other hand, it implies that the larger genetic diver-
sity of the invading pathogen ensemble provides it with exceptional opportunities to
cope with the immunological diversity of the host population and, moreover, with
a unique platform for genetic competition and cooperation. There is then a greatly
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increased chance for synergistic mutations, reassortments, and recombinations to
bring together independent mutations, akin to what happens inside immunocompro-
mised patients [112]. Pathogen evolution is thereby considerably accelerated, and
viable new variants may emerge via so-called antigenic shift [20], which would
otherwise be quite unlikely.

To distinguish such incubator-type infections from superspreader transmissions
involving supershedders and hubs, alone, one could characterize them as cooperative
superspreading (or “superbreeding”) events [7]. Instead of a monoclonal pathogen
meeting a single host organism, such superbreeding involves the encounter of a genet-
ically diverse pathogen population with a similarly diverse population of immune
systems. It is an intriguing speculation, whether the associated population-genetic
heterogeneities and nonlinearities could possibly give rise to so-called explosive
growth regimes (e.g., during the carnival week), similar to what is predicted for
certain contagious social spreading processes [113]. Could this then possibly also
help to explain a sudden burst-like emergence of pathogen subtypes and variants
that can largely evade the pre-existing and vaccine-induced immunity in their host
population [7, 106, 111]?

On a more conceptual note, in such situations, where (back-and-forth) mutations
are frequent, the fitness of an individual genotype becomes meaningless and the tar-
get of natural selection is no longer the fastest growing replicator but rather a whole
cloud of mutants (of continuously changing prevalence). Of which the cataloged
subtypes and variants represent merely the tip of the iceberg [19]. This cloud is the
so-called quasispecies, which can collectively outperform single competing geno-
types, even fitter ones, via the “quasispecies effect” or “survival of the flattest” [114].
Put simply, having too many mutations in a genome, most of which will be dele-
terious or at best neutral, can drive a population to extinction (“Muller’s ratchet”).
But also too few mutations can cause extinction, namely by rendering a population
unable to survive changes in the environment, and to recover its genetic diversity
after drastic population reductions in bottlenecks [51]. Quasispecies evolution thus
allows fast mutating microbes to strike an optimum balance between evolvability
and structural preservation [19]. Importantly, the quasispecies clouds should not be
imagined as simple collections of mutants but rather as groups of interactive vari-
ants, which reappear after each bottleneck, via a stupendous replication burst that
may boost their numbers from a handful of virions to many billions. This allows for
an effective sampling of large parts of the available sequence space, and concomitant
phenotypic expansions, so that each quasispecies genome swarm in an infected indi-
vidual is unique and new [115]. Each genetic and phenotypic pattern then contributes
collectively to the characteristics of the microbial population, helping its resilience
and colonization of complex ecosystems [7].

Many consequences of quasispecies dynamics run counter to traditional views
of microbial behavior and evolution and have profound implications for the under-
standing of viral disease. An example is the apparent paradox that attenuated RNA
viruses from vaccines can occasionally revert to more virulent forms, thereby reveal-
ing their “quasispecies memory”. A plausible case is polio [7], for which the World
Health Organization has over the last few years consistently reported more vaccine-
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derived than wild-type cases. Another example of quasispecies dynamics at work
should be the above mentioned cooperative superspreading events [106]. They may
be suspected to play a major role in the spread of various viral diseases [6, 19, 104],
including the seasonal flu, which infects between 5 and 15% of the world’s human
population every year, causing several million cases of severe illness, and hundreds
of thousands of respiratory deaths. As previously for SARS and MERS, sequencing
indicates that the quasispecies concept also applies to SARS-CoV-2. A considerable
intra-host genetic heterogeneity was detected [88], and quasispecies were seen to dif-
fer from one day to the next, as well as between anatomical sites [116]. In vivo, these
viruses thus all appear as complex and dynamic variant distributions (not properly
resolved by oral or nasal swabs alone). So they are potentially capable of producing
staggering cooperative mutational bursts. It remains an open question whether this
can account for the mystifying assembly of omicron [111].

It should not come as a surprise that the development of effective sterilizing vac-
cines to halt quasispecies epidemics is notoriously difficult, as testified by empirical
studies under well-controlled settings for both human populations [13] and their
livestock [10]. Even if vaccination reduces the number of influenza infections by a
particular strand, meta-analysis cannot detect a systematic reduction of the overall
number of influenza-like illness episodes [117, 118]. Other pathogens or variants
seem to happily fill the gap [119, 120]. Enthusiastic claims that “real-time practical
forecasts” of the seasonal flu can be achieved “by leveraging historical and modern
experimental assays and gene sequences” [121] to improve vaccination and disease
control, have to be gauged against this bleak empirical evidence, as well as against
Fig. 23.3.25 It exemplifies (for Europe) that the worldwide seasonal flu has seemingly
just been extinguished. The effect appears to be insensitive to a country’s “stringency
index” or “containment and health index”, and neither vaccination nor forecasting
can claim credit for it.

One can conclude that, with fast mutating RNA viruses, vaccinologists face sim-
ilar heterogeneities and nonlinear effects (yielding unexpected and counter-intuitive
outcomes), on the level of a virus population, as epidemiologists experiencemeasures
targeting cohorts of its host population [18]. They are recently particularly worried
by a possible negative impact of repeated influenza vaccination on vaccine respon-
siveness and vaccine effectiveness (protection from infection) [122]. And they warn
that with improved vaccine efficacy and wider application comes a heightened risk
for immune escape, thus likely creating the right conditions for a significant zoonotic
transfer leading to a pandemic [20]. To reduce such risks, current flu-vaccine develop-
ments aim at highly conserved parts of viruses, and, on the same grounds, researchers
advise against antiviral monotherapy (use of a single antiviral agent) [19, 123]. Other
major examples of the stunning ability of biological systems to defeat our attempts
at mitigation in similar ways including the worldwide spread of antibiotic resistance
genes across distantly related bacteria, crossing species, and phylum boundaries and
physical locations; the rapid evolution of cancers in the face of chemical attack; and
the ability of HIV to out-adapt treatment. Which prompted the authors of Ref. [124]

25 World Health Org. 25.08.2021: http://apps.who.int/flumart/Default?ReportNo=12.
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Fig. 23.3 Flu tests and positive cases (here for the European WHO region) indicate that the flu
has just been eradicated—or has it? Quasispecies and other models of eco-evolutionary dynamics
may suggest otherwise

to draw a bold analogy between the fundamental limitations of current medical prac-
tice and attempts to design integrated circuits without fundamental knowledge of
quantum electronics and semiconductor physics.

23.12 The Eco-Evolutionary Perspective

The foregoing paragraphs have provided a glimpse as to why there has recently
been increasing mutual interest and synergies between the fields of epidemiology
and eco-evolutionary dynamics. Thanks to the rapid recent development of micro-
manipulation techniques, sequencing, and synthetic biology, epidemiologists can
now increasingly resolve and harness the crucial dynamics in the “genomic sector”
of the complex, multilayered process of disease spreading. In return, the traditional,
descriptive approach to evolution has increasingly given way to a bonafide experi-
mental science. The modern perspective on evolution has thereby naturally become
more microbe-centric, and better aligned with the fact that most of life is microbial,
and all life primarily relies on microbial processes. And it has embraced the notion
that ecological and evolutionary time scales may often mutually interfere muchmore
than admitted by some core postulates of the traditional theories of evolution (and
epidemiology, for that matter) in terms of the “Central Dogma” or “Modern Syn-
thesis” [125]. Microbial species have a number of unique characteristics that are
not captured by conventional ecological and evolutionary theory, chiefly their rapid
evolution, horizontal gene transfer, their ability to produce public goods, toxins, and



23 Superspreading and Heterogeneity in Epidemics 493

antibiotics, and their complex feedback with hosts [126]. This complexity may partly
be attributed to genetic variability, but recent research has moreover underscored a
remarkable ability for phenotypic diversification [127].

Progress in the field is now boosted by real-time laboratory studies of the eco-
evolutionary dynamics of bacteria and viruses, which are ideal models for that pur-
pose. Physicists (in particular statistical mechanicians) have become major contrib-
utors, eager to exploit interdisciplinary synergies between the converging fields of
mathematical and evolutionary biology, ecology, epidemiology, game theory, and
non-equilibrium statistical physics [124]. Their ambitious long-term aim is to create
a fundamental understandingof how theunique self-referential dynamics of evolution
(in which the conventional distinction between the physical data and its governing
laws is largely abolished) arises as a universality class from the molecular processes,
via an extreme version of non-equilibrium statistical physics. This development nur-
tures hopes for future progress in epidemiology and vaccinology that could lead to
a much deeper level of understanding and possibly to smarter, scientifically better
grounded mitigation strategies.

23.13 Lessons from Frustrating Games

Apart frombeing confoundedwith gene spreading, epidemic spreading is also closely
intertwined with information spreading. As more extensively discussed in the con-
tribution by Platteau and coworkers in Chap. 22 of this volume, game theory can
help to address many of the difficult, multilayered problems resulting from this addi-
tional complication. Here, I want to focus on a particularly interesting aspect, namely
information feedback with frustration.

First, to briefly clarify the relevance of information feedback, let me note the
obvious: while pathogens spread through a population, its members may acquire and
evaluate knowledge about the spreading process and adjust their behavior accord-
ingly [8]. That animals can discriminate infectious individuals by their scent [128]
suggests that this feedback effect is not limited to human populations. It allows indi-
viduals to act according to their own judicious risk assessment. Such information
flow between agents and/or feedback about the state of the community can gener-
ate very complex dynamics, where small causes can have disproportionately large
effects [129]. Mathematically speaking, one deals with a layered process of (pig-
gyback) disease spreading plus superimposed information spreading. The latter acts
very similarly to a competing infectious strain in a multilayered (“multiplex”) net-
work, as discussed in Chap. 19 of this volume. And there is indeed new evidence from
mobility surveys to support the notion that it is actually information about the spread-
ing process (rather than centrally imposed mitigation orders, say), which arguably
has the strongest impact on pertinent behavioral change in an epidemic—see, e.g.,

22
 18631 29971 a 18631 29971 a
 
19
 10061 49897 a 10061
49897 a
 


494 K. Kroy

Fig. 23.4 Routing requests during the early COVID-19 epidemic (Apple Maps, normalized to
starting date) are proxies for human mobility. Different means of transport and major government
interventions (dotted lines) for Germany are compared to aggregated data for Belgium and Sweden.
Throughout Europe, news coverage of the emerging pandemic soared drastically fromMarch 10 to
March 20, in perfect correlation with the decreasing mobility

Fig. 23.426 and Refs. [40, 69, 72, 130]. In this respect, the infected population may
be viewed as an agent-based algorithm, employing swarm intelligence in order to
collectively outsmart the spreading pathogen, in a self-organized way [40, 131].
This distinctive feature of epidemiological dynamics has various profound practical,
social, and political implications, further elaborated26 in Sect. 23.14.

Frustration is a special characteristic feature deeply ingrained in epidemiological
information feedback, though maybe not quite so obviously. Game theoretic tourna-
ments have proven follow-the-crowd or herding strategies of social copying to be sur-
prisingly successful [132]. In particular, they may drive swarms or flocks toward the
so-called non-equilibrium critical state, with a large susceptibility to external stim-
uli. The latter may help swarms to defy predators by generating large-scale coherent
response patterns [133]. However, in the case of disease spreading, such herding,
which “aligns” individuals, usually with some time delay [134], is not at all a smart
reaction. In this context, swarm formation essentially either describes the epidemic
spreading of the pathogen itself, or some equally unfavorable panic reaction in the
host population. Indeed, epidemic diseases are known to trigger psychological and
sociological patterns in human societies that can themselves be analyzed in epidemic
terms [135, 136]. Helped by the dominant fear culture in themedia [137],27 such psy-
chic epidemics can seize whole societies, undermine and disrupt their social fabric,

26 F. Bolívar et al., BBVA Research 2020: http://www.bbvaresearch.com/en/publicaciones/
monitoring-covid-19-pandemic-using-big-data-from-the-media.
27 For Germany, see e.g. D. Gräf, M. Hennig: https://www.researchgate.net/publication/
343736403_Die_Verengung_der_Welt_Zur_medialen_Konstruktion_Deutschlands_unter_Covid-
19_anhand_der_Formate_ARD_Extra_-Die_Coronalage_und_ZDF_Spezial.
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and make them slip into primitive collectivism and so-called mass formation [138,
139].

Howwould a smart reaction instead look like? From the perspective of an infected
population, quantifying the “best” counter-strategy and the “cost” of an epidemic can
become exceedingly difficult, due to the high dimensionality of the notion of cost and
its heterogeneity across the population. As discussed above, the specific threats due
to the spreading of the disease may be very unevenly distributed throughout a popu-
lation. Furthermore, they need to be gauged in the context of other diseases [140] and
the economic and social costs of mitigation measures [32, 33], which may be dis-
tributed quite differently but also very unevenly. Therefore, it is highly unlikely that
a globally applicable one-fits all optimum solution exists. This introduces the crucial
element of frustration, as one would say in physics, suggesting that the host popu-
lation might try out a reciprocal strategy of decoherence. Frustrated systems stand
out in that the desired optimum cannot be reached by any uniform rule but instead
requires a broad diversity of strategies. In this respect, they are reminiscent of glasses
and spin glasses in physics, which have challenged condensed-matter physicists for
decades and still remain enigmatic (despite all theoretical progress honored by 2021
Nobel prize in physics28). Briefly, if an ensemble of magnetic moments suddenly and
spontaneously undergoes a phase transition to a state of collective alignment upon
cooling, one speaks of a ferromagnet. This is the physical analog to the mentioned
groupthink strategy of social copying, and the outcome is mass formation [139].
However, in strongly disordered magnets (as in real-world epidemics), global align-
ment is not a favorable option. One then speaks of a frustrating system. The magnetic
moments start to search and compete for very complex, disordered low-energy con-
figurations in a highly degenerate, rugged free-energy landscape, which entices them
into exceptionally slow, non-stationary dynamics. And this description comes much
closer to the problem faced by a population invaded by a pathogen than a ferromagnet.

To break down the essence of frustration to a comparatively simple example,
consider the so-calledminority game [141], whichwas originally devised to elucidate
the workings of market economies. It can, with some qualification, indeed formally
be mapped onto a spin-glass problem and has been studied analytically by the replica
method [142]. In this game, each participating agent has only two options to choose
from, which may naturally be named “go” (i.e., go out to get work done, food
organized, etc.) and “stay” (i.e., stay at home to avoid overly crowded situations), in
an epidemiological context. The spreading pathogen would clearly “prefer” its host
agent to join the majority or best follow a globally coherent rule, in order to optimize
its spreading. The agent, instead, tries to anticipate the future moves of everybody
else in the game, in order to decide how to best end up among the minority (going out
when streets are empty, staying homewhen they are crowded). To this end, each agent
is endowed with a set of (random) strategies or predictors that guide its decision to
stay or go. A strategy rises or falls in esteem, based on whether it gets the individual

28 For which the Nobel prize committee justly emphasizes “the vastness of the landscape of disor-
der”, http://www.nobelprize.org/uploads/2021/10/sciback_fy_en_21.pdf.
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into the minority or not. In this way, each agent builds a personal decision matrix,
which may evolve over time, according to its experience.

Intriguingly, if the game is played on a computer orwith humanplayers, it turns out
that the population soon self-organizes so that attendance fluctuates near an optimum
value, without external guiding. The fact that the agents use different strategies to
predict what themajoritywill do, is however essential for the spontaneous emergence
of a smart solution. There is no “representative agent”, and what matters is the
interaction between all the agents’ individual decision-making processes. The best
solution arises from the interplay of many diverse individual strategies. In fact, the
quality of the solution deteriorates if too many agents align their strategies, which
may give rise to so-called pork cycles (everybody staying home today because the
streets were crowded yesterday). Even worse, if the population gets dominated by
trend-followers rather than minority seekers, the subtle optimal mode of decoherent
cooperativity may catastrophically collapse [143]. Besides, to a lesser degree, it also
deteriorates if the predictors become more sophisticated than required by the actual
behavioral complexity of the population as a whole (or, alternatively, if the latter
is artificially too much suppressed). In economic terms, the latter limit corresponds
to the paradigm of a perfectly efficient market, where smart strategies cannot beat
random strategies, and there is nothing to gain by adaptive behavior.

Translated into the epidemiological context, the take-home message from the
minority game is thus very much what was already emphasized above: for a popu-
lation to cope well with an epidemic, it is crucial that all individuals have access to
accurate and unambiguous empirical data about the course of the epidemic, and that
they can make up and freely follow their best individual risk assessments and opti-
mization strategies [131]. A counter argument that is sometimes raised (in discord
with empirical findings, as it seems [40]) against such highly individualized opti-
mization strategies are that they might fail to protect some particularly vulnerable
minorities. However, given their low cost compared to certain excessively expensive,
intrusive, and potentially harmful alternative strategies that have recently been tried
(lockdowns, emergency mass vaccination programs), they leave ample resources for
that purpose.

23.14 Infodemics

According to the above conclusions, a central task of epidemiologists should be to
supply the public with reliable pertinent real-time data about an unfolding epidemic,
in the spirit of weather reports. For several reasons, this is not an easy task, however.
First, data are often poorly standardized, marred by reporting delays, and scarce and
statistically unreliable when most urgently needed, namely during the early stage of
a new epidemic. Secondly, the very diverse ways raw data for various parameters
are acquired, evaluated, and graphically presented may impede their appropriate
interpretation by the public. Figure 23.5 may serve to illustrate the point: initially
the widely reported case numbers, which were not normalized to test frequency (if
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Fig. 23.5 PCR positives as proxies for COVID-19-infections and -deaths per million inhabitants
for four European countries (OurWorldInData)

to anything at all) suggested that Iceland and somewhat later also Sweden were hit
very hard compared to the UK and particularly Germany. Considering instead the
cumulative mortality after the first infection wave, one could have concluded instead
that Iceland had had no epidemic, while Sweden and the UK had been similarly
severely hit. Moreover, by the end of 2021, the daily German death rates turned out
to be roughly an order of magnitude above Iceland’s and Sweden’s, with an all-time
case fatality rate (CFR) 30% above Sweden’s. Sweden had taken by far the most
relaxed attitude, almost exclusively relying on the voluntary action of its citizens,19 a
policy eventually adopted by Iceland24 when its so-called 7-day incidence was close
to 4× Germany’s (Fig. 23.6) and 25× Sweden’s. So, what should the man in the
street make of all this?

Also, whether a country’s outcome of an epidemic depends on its government
and media leaning more toward the threat-denial or the fear-mongering side seems
a matter of debate [144]. For example, the Russian government was accused to have
contributed to the country’s comparatively high number of COVID-related excess
mortality (possibly as high as 20% in 2020 [145]) by downplaying the COVID threat.
But such accusations would probably not be raised against the Spanish government,
although Spain’s excess mortality (about 14% [146]) was not so far off. In any
case, the communication between governments and the public could be prone to
considerable nonlinear effects. As a case study plausibly suggests, unconvincing
or inadequately communicated government rigor, however well-intentioned, risks
triggering adverse reactions among its citizens that can exacerbate the impact of an
epidemic [147]. In this light, the lockdowns of a whole country (New Zealand) and
parts of one of theworld’s largest container ports (China), each in response to a single
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positive case in August 2021, may have been counterproductive, as they conveyed
an unrealistically exaggerated threat to the public; especially, if gauged against the
low or even insignificant excess mortalities in countries that coped with a range of
far less drastic, mostly voluntary interventions, such as Japan [40] and Sweden19 (or
also Germany, for which a government-commissioned investigation found that the
health system was at no time in danger of being overwhelmed29) [146].

On top of all these perplexing and seemingly inconsistent observations, there are
other less fateful problems mainly related to poor data handling and presentation,
against which politicians, media, and even healthcare officials30 are apparently not
immune. To pick an illustrative example, during the early COVID-19 pandemic,
the Süddeutsche Zeitung, a widely read German newspaper, regularly reported the
time series of the cumulative PCR-positive cases by plotting them in a fixed square-
shaped frame. By the necessary rescaling of the daily expanding time axis, the sub-
exponential and eventually saturating growth process ended up being displayed as
a progressively steepening curve. This malpractice (which would certainly deserve
to be included in one of Edward R. Tufte’s fabulous books on data visualization)
only stopped in late April 2020, not too long before the curve would have degen-
erated into a meaningless step function. And a systematic empirical study of the
mainstream-media’s coverage of the first year of the pandemic detected a serious
lack of contextualization and awareness of scientific uncertainties and debate, plus
a significant bias in favor of politicians of the ruling parties and hard authoritarian
interventions—prompting the authors to raise the question of whether fighting a pan-
demic can be such an obvious priority as to override the standards of diverse and
balanced reporting.31 As a rule, journalists, politicians, and the wider public tend
to underestimate the substantial uncertainties inherent in scientific modeling and
debate, and are prone to trust individual favorable model predictions beyond their
range of validity [148]. Moreover, in a retrospective study of the British BSE crisis,
scholars did not attest politicians who claimed to “follow the science” much credi-
bility. Instead, they concluded that “secrecy allowed ministers and senior officials to
maintain the public pretense that […] policies were based on secure scientific foun-
dations, while privately acknowledging that regulations were being decided entirely
on political rather than scientific grounds” [149].

In the more recent COVID-19 context, although the World Health Organization
recommends that, to be able to successfully fight an epidemic, policy makers should
“inform, empower and listen to communities”,32 a report by Amnesty International33

29 B. Augurzky et al. 2021, https://www.bundesgesundheitsministerium.de/presse/pressemitteilu
ngen/2021/2-quartal/corona-gutachten-beirat-bmg.html.
30 See, e.g., R. Hughes, UnHerd 2022: http://unherd.com/thepost/nhs-england-deletes-misleading-
covid-stats-video; and, for Germany, M. Barz, W.I.R. 2022: http://odysee.com/@WIR:b/Marcel-
Barz-Corona-und-Zahlen:6.
31 M.Maurer, C. Reinemann, S. Kruschinski. Einseitig, unkritisch, regierungsnah? Eine empirische
Studie zur Qualität der journalistischen Berichterstattung über die Corona-Pandemie. (Rudolf Aug-
stein Stiftung, 2021).
32 WHO Director-General, opening remarks at media briefing on COVID-19, 3.Aug 2020.
33 AI 2021: Silenced and misinformed—freedom of expression in danger during COVID-19.
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finds that, “governments have curtailed freedom of expression instead of encourag-
ing it”. Convinced that tightening surveillance and influencing behavior are “central
to public policy, and government [sic] can draw on a potentially powerful new set
of tools”,34 some politicians have actively sought psychological34 and technical35

expert advice on how to spy on and to nudge (rather than better inform) the pub-
lic in a crisis. And a growing research community is now studying the spreading
and artificial-intelligence aided [150] collection, analysis, and blocking of misin-
formation diffusing through the world wide web, in order to fight “the first global
infodemic36” [151] and to further develop the art of censorship, in general [152].
Advancing internet censorship37 can be understood as a type of information-layer
equivalent towhat lockdowns attempt in real space. The declared aim is tomitigate an
epidemic indirectly, via central control of the superimposed information spreading.
A telling example is provided by two blogs published by Tomas Pueyo and Aaron
Ginn on March 10 and 20 (2020), respectively, on the web-platform Medium. Both
blogs quickly went viral, acquiring millions of views within days, thereby spreading
awareness of the pandemic. Pueyo advocated lockdowns (to restrain an otherwise
allegedly12 unrestricted exponential growth of infections), whereasGinn’s blog ques-
tioned their adequacy, warning of hysteria—and was deleted within 24 h.38 While
it is quite unlikely (if only due to the language barrier) that these two blogs have
decisively affected the almost perfectly concurrent sharp turning points in the mobil-
ity pattern observed in Germany (Fig. 23.4), censors seem to act as if they did. A
common argument is that the public needs likewise to be protected from hazardous
misinformation as from biological pathogens. However, an alternative solution, more
in line with democratic principles,39 could be to offer filters such as News Guard’s
browser extension Internet Trust Tool for safe, supervised news consumption to those
particularly scared of misinformation, and let the others read, think, and decide for
themselves.

Above all, this raises the question:who decides what is right or wrong, trustworthy
information, and mis-, mal-, and disinformation40 [153]? Should it be the adminis-

34 P. Dolan et al., Mindspace - Influencing behavior through public policy, 2010: http://www.
instituteforgovernment.org.uk/sites/default/files/publications/MINDSPACE.pdf.
35 Chaos Computer Club press release, 2021: http://www.ccc.de/en/updates/2021/offener-brief-
alle-gegen-noch-mehr-staatstrojaner.
36 which is associated with exponential growth and overabundance of information and can seriously
impact the course of an epidemic, according to the World Health Organization.
37 …and stowing away statistical data, because it is prone tomisinterpretation; see, e.g., L. Brownlie,
The National 2022: http://www.thenational.scot/news/19931745.covid-data-will-not-published-
concerns-misrepresented-anti-vaxxers; A. Mandavilli, The New York Times 2022: http://www.
nytimes.com/2022/02/20/health/covid-cdc-data.html.
38 Y. Weiss, Real Clear Politics 2020: http://www.realclearpolitics.com/articles/2020/05/28/
how_media_sensationalism_big_tech_bias_extended_lockdowns_143302.html.
39 BigBrotherWatch: http://bigbrotherwatch.org.uk/2021/09/governments-online-safety-bill-
poses-greatest-threat-to-free-speech-in-living-memory-say-campaigners.
40 mis-, mal-, and disinformation are now counted among the terrorism threats to the US: http://
www.dhs.gov/sites/default/files/ntas/alerts/22_0207_ntas-bulletin.pdf.
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trators of LinkedIn, who temporarily suspended and then reinstated the account of
Robert Malone, who is widely respected for his seminal contributions to mRNA-
vaccine development41? Or those of Twitter who recently suspended his account,
to the dismay of half a million followers? Or better YouTube’s, which censored
the epidemiologist Knut Wittkowski14? Or is it Facebook’s certified42 third-party
fact-checkers, who first banned the so-called lab-leak theory, together with millions
of other contents (including the accounts of New York University researchers who
investigated such practices43), but later changed their minds44 [154]? What if the
editors in chief of one of the world’s top most cited general medical journals have
a point, who, in an open letter to Mark Zuckerberg, complain about a fact check
as “inaccurate, incompetent and irresponsible” [155]? Can it be that “Facebook is
trying to control how people think under the guise of ‘fact checking’?” [156] and that
such fact checking activity has “enforced falsehoods about the pandemic’s origins,
never evaluated the evidence, never apologized, and was never held accountable”45?
Maybe not all too surprisingly, two years into the ongoing pandemic, facing a series
of scandals with fishy data handling and communication by corporate and official
sources, legacy media write about a “pandemic of ignorance”46 and reveal that the
US Centers of Disease Control and Prevention (CDC) have withheld critical data on
the COVID pandemic for up to a year over fear that the information might be mis-
interpreted and “because basically, at the end of the day, it’s not yet ready for prime
time”37. Again, whether “mistrust in the authorities” is indeed “a complex prob-
lem that needs a holistic approach […] of journalists, fact-checkers, policymakers,
government entities, social media platforms” and demands a “call to arms” [151],
or whether it is rather indicative of their failure to properly “inform, empower and
listen to communities”32, seems debatable.

Finally, also the scientific debate itself does not take place in an ivory tower.
Due to a widespread feeling of urgency, the scientific publishing process has often
been accelerated during the latest pandemic [157, 158], and the exploitation of this
trend by scientists “surfing the COVID-19 scientific wave” [159] has become a con-
cern. Worse that there is circumstantial, formal, and judicial possible evidence that
science is becoming increasingly politicized [160] as well as manipulated by govern-
ments and corporations, and that “legitimate tools of regulation within science has

41 A. Sadler, LifeSite 2021: http://www.lifesitenews.com/news/linkedin-reinstates-mrna-
inventors-account-after-deleting-it-for-spreading-misinformation.
42 by the Poynter Institute for Media Studies, whose donors include the Charles Koch Institute,
the National Endowment for Democracy, the Omidyar Network, Google, and Facebook [153], and
which seems to fiddle even with the Wayback Machine (e.g. H. Buyniski, RT 2020: http://www.rt.
com/op-ed/505437-internet-archive-censorship-slippery-slope).
43 J. Vincent, The Verge 2021: http://www.theverge.com/2021/8/4/22609020/facebook-bans-
academic-researchers-ad-transparency-misinformation-nyu-ad-observatory-plug-in.
44 F. Sayers, UnHerd 2021: http://unherd.com/2021/05/how-facebook-censored-the-lab-leak-
theory.
45 A. Rindsberg, Tablet Magazine 2021: http://www.tabletmag.com/sections/news/articles/lab-
leak-fiasco.
46 T. Röhn, Welt 2021: http://www.welt.de/235442252.
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become weaponized” [161, 162].47 According to the assessment of two renowned
experts on business ethics and philosophy of science, these are not merely isolated
cases, accidental mistakes, and coincidences. The authors rather see a pattern of
systematic political abuse of science [163]. In this context, the well documented his-
torical malpractices of the tobacco industry may provide an instructive cautionary
paradigm. The release of millions of internal documents as a result of the Master
Settlement Agreement in 1998 revealed a systematic manipulation of research on
health risks associated with smoking; e.g., by launching a public relations campaign
about “junk science” and “good epidemiological practices” and creating fake contro-
versy under the motto “doubt is our product” [164], heavily exploiting the penchant
of the press for controversy and its often naive notion of balance [165]. Similarly
aggressive or “disruptive” covert marketing patterns have more recently been doc-
umented for the health industry, e.g., during the (arguably mislabelled) swine flu
pandemic and elsewhere [166–169]. Most recently, documents obtained through a
freedom-of-information-act request have prompted accusations that leading virol-
ogists colluded to mislead the world with regard to the plausible scenarios for the
origin of SARS-CoV-2.48

Altogether, one may eventually feel drawn to the somewhat paradoxical conclu-
sion that we are facing an information crisis while virtually drowning in information.
And in the face of the heterogeneous character and the sheer complexity of epidemic
spreading, this can make one worry as to howmuch all our scientific and information
technological advances can in the end really help us to outsmart a major epidemic.

23.15 Conclusions

Throughout this chapter, I have emphasized the effects of phenotypical, social, spa-
tial, and genetic heterogeneities on epidemic spreading. It may thus be read as a
warning that the deceptively simple conventional epidemiological models, in which
most of this complexity is swept under the rug, should not be taken too literally.
The bottom line is that, in epidemics, the tail often wags the dog. There is a subtle
interplay of eco-evolutionary pathogen dynamics with broadly distributed transmis-
sibility, social connectivity, and spatial mobility patterns. They render epidemics a
manifestation of a very complexdynamical system.Abreakdownof large-scale deter-
minism, associatedwith erratic burst dynamics, superspreading events, high tail risks,
and a failure of SIR-type forecasting and global disease management practices were
identified as a potential major consequence. Attempts to contain infectious disease
spreading by pharmaceutical and non-pharmaceutical interventions need to face its
multilayered character: heterogeneous spatiotemporal spreading is intertwined with

47 See also J. P. A. Ioannidis, Tablet Mag.2021: http://www.tabletmag.com/sections/science/
articles/pandemic-science; I. Birrell, UnHerd 2021: http://unherd.com/2021/08/how-china-could-
win-the-lab-leak-debate; and the archive at http://retractionwatch.com.
48 http://odysee.com/@reitschuster:3/220201-wiesendanger-v1:5.
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Fig. 23.6 COVID-19 incidence proxy (weekly PCR-positive cases per 105 inhabitants, log-scale)
of Western and Eastern German Federal States, as listed by the Robert Koch Institute (the German
CDC). While confounded by fluctuating test frequencies, the heterogeneous pattern of more and
less synchronized phases indicate imperfect self-averaging, and conspicuous turning points (21–07
delta, 22–01 omicron) hint at substantial genetic-drift contributions

heterogeneous genetic spreading, and attempts to suppress the former may promote
the latter, creating potentially worrisome immune escape variants.

Figure 23.6 displays normalized German COVID case numbers to wrap up and
illustrate some of these points. The dynamics exhibits large irregular fluctuations,
featuring substantial upward and downward excursions, as well as considerable spa-
tial scatter. That such non-trivial heterogeneities persist on the spatial scales of larger
parts of a densely populated country likeGermany, and on time scales of years, is sug-
gestive of poor spatiotemporal self-averaging. There appear to be extended phases
of close temporal synchronization, during which the averaged incidences exhibit
exponential growth and decay, at diverse rates. Whether and how these patterns
emerge from the local case numbers may be contingent on the “art of averaging” [43,
61], though. One may also perceive an underlying long-term trend of exponentially
increasing infection numbers. If real, it could be indicative of a “directed” evolu-
tion of the rates and affinities of the pathogen-host chemistry by antigenic drift and
selection. We may then be witnessing an evolutionary self-selection of increasingly
contagious variants, acting as drivers of the repeated infection waves via repeated
mutational bursts. And a linear net increase of effective binding energies would then
account for a trend of exponentially increasing infection numbers, across the train
of repeated (re-)infection waves.

Other factors, such as seasonal effects, information feedback, and state regu-
lations, should certainly not light-handedly be dismissed. Above, I have stressed
particularly the role of spreading information about the course of the epidemic. This
feedback effect is intricately intertwined, on yet another superimposed level, with
the already complex spatiotemporal and genetic spreading dynamics. Game theory
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hints at the timely feedback and public sharing of accurately contextualized informa-
tion as key elements of a potential counter-tactic that harnesses swarm intelligence to
mitigate the impact of an epidemic. However, just in the midst of the information era,
there appear to be technological, political, economic, and social trends that threaten
to cut down on this genuinely human strength. We must fear to forgo the potential
benefits that could be reaped by bringing our swarm intelligence to bear against the
swarm algorithms executed by invading pathogens. This prompts me to close this
chapter by recalling D. A. Henderson’s49 “overriding principle” of epidemiology,
namely that “experience has shown that communities faced with epidemics or other
adverse events respond best and with the least anxiety when the normal social func-
tioning of the community is least disrupted”[32], and C. G. Jung’s insistent warnings
that there is no adequate protection against psychic epidemics, which are infinitely
more devastating than the worst of natural catastrophes.
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