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Abstract. We present an attention-to-embedding framework that
explicitly addresses the challenge posed by multi-instance learning (MIL)
classification tasks, where learning objects are bags containing various
numbers of instances. Two key issues of this work are to extract rele-
vant information by determining the relationship between the bag and
its instances, and to embed the bag into a new feature space. To respond
to these problems, a network with the popular attention mechanism is
designed that assigns a new representation and a class probability vector
to a given instance in the bag. In addition, compared with the tradi-
tional MIL methods, we offer a new embedding function according to the
assigned results of instances to process the bag embedding that is unre-
lated to the distance metric. As a result, MIL challenges will be reduced
to single-instance learning (SIL) problems that can be solved using basic
machine learning algorithms such as SVM. Extensive experiments on
thirty-four data sets demonstrate that our proposed method has the
best overall performance over other state-of-the-art MIL methods. This
strategy, in particular, has a substantial advantage on web data sets
and better stability. Source codes are available at https://github.com/
InkiInki/AEMI.

Keywords: Attention · Embedding · Multi-instance learning ·
Network

1 Introduction

Multi-instance learning (MIL) was originally designed for drug activity prediction
[4]. In contrast to traditional single-instance learning (SIL), each object in MIL is
a bag containing various numbers of instances. A label is assigned to the bag, but
not to the individual instances. To date, MIL has also been frequently utilized in
a variety of applications, such as image classification [15], text categorization [14],
sentiment analysis [1], and web index recommendation [10].
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Over the years, many excellent algorithms for MIL classification tasks have
been proposed. Traditional MIL covers but is not limited to the following solu-
tions: a) Instance-based approaches calculate the bag label by predicting the
instance label and combining MIL assumptions [6]; b) Bag-based approaches
treat each bag as an atom and train a classifier based on bag-level metrics,
such as graph kernel [19] and isolation set-kernel [14]; and c) Embedding-based
approaches transform bags into a new feature space and establish the learning
process with SIL methods [13]. Neural network-based MIL can be categorized
into two types [11]: a) mi-Net uses an instance-level classifier to obtain the
instance probabilities. As a result, the bag label is derived using instance prob-
abilities and the convex max operator (or max operator); and b) MI-net builds
a fixed-length vector as the new representation of the bag and learns a bag-level
classifier directly to obtain the bag label.

Fig. 1. The overall framework of AEMI: a) The original bag Bi with a series of unla-
beled instances xij ; b) The attention-net for extracting instance information; and c)
The bag-level embedding is used to transform each bag into a new feature space. In
addition, d is the dimension; L, D, H and E are the number of nodes; C is the number
of classes; � and ⊕ are element-wise multiplication and addition, respectively; leij and
pij are the new representation and class probability vector of xij , respectively.

In this paper, we propose a new attention-to-embedding framework (AEMI)
to handle multi-instance learning classification tasks. Figure 1 shows the AEMI’s
overall framework, which innovatively combines the attention mechanism derived
from neural networks and the MIL embedding method. The first part is a sample
image that can be regarded as a bag, with each sub-area corresponding to one
of the bag’s instances. This part reflects the challenge that the neural network
must face when applied to MIL: The label of the image is known, but the label
of the instance contained within it is unknown. In the previous MIL neural
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network-based approaches, the relationship between instances and the bag is
commonly determined via pooling functions or attention coefficients. While in
our configuration, the embedding function needs to ensure that the embedded
bags can be distinguished.

Therefore, we provide an attention network whose input is the instance and
outputs are its new representation and class probability vector. By designing an
embedding function and controlling the size of the representation, each instance
can be embedded as a vector, and each bag can be transformed into the same
space by the arithmetic average of all embedded vectors, as shown in the third
part. As a result, any traditional SIL classifier can be employed to train a model.

The contributions of this work are summarized as follows:

– We convert MIL tasks into SIL ones by designing a framework that connects
MIL neural networks with the embedding method. This has the advantage
of alleviating the issue of neural network classification instability caused by
random parameter initialization.

– We design a network that is not reliant on the MIL pooling function and an
embedding function without distance metrics. Specifically, the class proba-
bility vector of each instance in the bag is introduced into the embedding
process to improve the distinguishability of embedding bags.

Experiments are undertaken on thirty-four MIL classification data sets to
quantify the performance of AEMI. These data sets come from a variety of fields,
including drug activity prediction, text classification, image classification tasks
and web index recommendation tasks. In most cases, the experimental results
show that AEMI outperforms state-of-the-art algorithms and has demonstrated
significant benefits on web data sets.

2 Related Work

In this section, we will briefly introduce the related work, including MIL attention
neural networks and embedding methods.

2.1 MIL Attention Neural Networks

The attention mechanism is commonly employed in deep learning for text anal-
ysis [2] or image recognition [5]. However, few studies have focused on the atten-
tion mechanism of MIL. Attention-net [8] incorporates interpretability into the
MIL method and increases its flexibility. Loss-attention [9] connects the atten-
tion mechanism with the loss function. Unlike prior techniques, we exclusively
employ neural networks to obtain the new representations and class probability
vector for each instance in the bag. Therefore, the network we designed does not
depend on the MIL pooling function, and its input is the instance assigned as
the corresponding bag label.
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2.2 MIL Embedding Methods

Multi-instance embedding methods’ core idea is to transform the bag into a
new feature space and train a model with traditional machine learning methods.
miFV [12] extracts information from the instance space using the Gaussian mix-
ture model and derives the embedded vector using the Fisher vector, while the
time complexity of this technique increases as the dimensionality of the data set
grows. MILDM [13] designs an instance evaluation function to select instances
with the most discriminativeness and builds a mapping pool to embed bags.
StableMIL [17] builds upon identifying a novel connection between MIL and
the potential outcome framework in causal effect estimation. The majority of
these methods rely on distance metrics, such as the bag-level average Haus-
dorff distance [16] and the bag-instance minimum distance [13]. However, the
adaptability of different distance measures to different types of data sets may
be completely different. Therefore, we design an embedding function by combin-
ing the instance’s new representation and probability vector derived from the
attention-net.

3 Methodology

In this section, we will first describe the preliminaries of the proposed AEMI
algorithm. Then, the attention-net and bag-level embedding are introduced as
part of AEMI. Finally, we have some discussions about this method.

Let B = {Bi}N
i=1 be a MIL data set with N bags, where Bi = {xij}ni

j=1 ∈ B
is a bag with ni instances, xij ∈ Bi, ni = |Bi| and d is the dimension. Let
Y = [y1, . . . , yN ] be the label vector corresponding B, where yi ∈ {1, . . . , C} is
the label of Bi and C is the number of classes. With the basic MIL assumption
[4], label yi is supposed that: a) Bi is labeled as c-th class iff it contains at least
one c-th class instance; and b) Bi contains an instance belonging to two or more
classes is impossible.

Our goal is to transform the MIL tasks into SIL ones by connecting the
attention-net with the bag-level embedding.

3.1 The Attention-Net

The core of MIL attention network [8] is to calculate an attention coefficient for
each instance xij :

αij = wT(tanh(V pT
ij) � sigmoid(UpT

ij)), (1)

where w ∈ R
L×1 and V ,U ∈ R

L×C are parameters of neural network, L is the
number of fully connected layer’s nodes, C is the number of classes, pij is the
class probability vector of the instance xij and � is element-wise multiplication.

To extract the information of xij and construct the embedding function, we
modify this mechanism to generate the attentional representation of xij ∈ Bi

ha
ij = softmax((tanh(hr

ijW
t) � sigmoid(hr

ijW
s))W o), (2)
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where
hr

ij = relu(xijW
r), (3)

and W t,W s ∈ R
L×D, W o ∈ R

L×D and W r ∈ R
d×L are parameters of the

designed attention-net fψ(·), D is the number of nodes and d is the dimension.
In addition, ha

ij and hr
ij are merged into

hm
ij = ha

ij ⊕ hr
ij , (4)

where ⊕ is element-wise addition. To improve the information extraction capa-
bilities of the network, and get the new representation and class probability
vector of instance, we add the following fully connected layers:

lhij = sigmoid(hm
ijW

h),

leij = sigmoid(lhijW
e), (5)

pij = sigmoid(leijW
c),

where W h ∈ R
L×H , W e ∈ R

H×E , W c ∈ R
H×C , H and E are the number of

nodes.
Network fψ(·) will participate in the construction of the embedding function,

and the most basic requirement it needs to meet is to determine the class of xij .
Therefore, we set the input of fψ(·) to xij , and its label will be assigned as yi.
The benefits include the following: a) Instance label and bag label to ensure
uniformity; b) The training process is not affected by the bag structure; and
c) With appropriate modifications, most existing MIL neural networks can be
applied. Finally, we define the loss function as

� = −
N∑

i=1

ni∑

j=1

log
exp(pyi

ij )
∑

c exp(pc
ij)

, (6)

where pc
ij ∈ pij .

3.2 The Bag-Level Embedding

The embedding function is used to transform a bag into a new feature space,
and its general definition is as follows:

FB(Bi) �→ Bi = [d(B1,K1), . . . , d(B|K|,K|K|)], (7)

where K is a key sample set derived from the bag space B, Ki is the i-th sample of
K, and d(·, ·) is the distance between the bag and the key sample. By specifying
the size of K, the bag Bi can be embedded as a vector bi in the new feature
space.

One disadvantage of Eq. (7) is that the employed d(·, ·) has a significant impact
on embedding results. Therefore, by considering the probability distribution of
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instances in the bag, we design a new bag-level embedding without distance met-
rics as

FN (Bi) �→ bi =
1
ni

ni∑

j=1

FI(xij), (8)

where
FI(xij) =

∥∥C

c=1
pc

ijl
e
ij , (9)

where ‖ denotes concatenation. For example, for an input instance xij , we assume
that the corresponding outputs are pij = [0.8, 0.2] and leij = [0.4, 0.5]. As a
result, FI(xij) = [0.32, 0.4]‖[0.08, 0.1] = [0.32, 0.4, 0.08, 0.1]. The advantage of
this strategy is that the difference between the embedding results of the two
instances will be positively correlated with their class probability vectors.

Algorithm 1 presents the pseudo code of the AEMI algorithm. Line 1 gener-
ates the instance space X by collecting all instances of the data set B, and uses
it as the input to the attention-net fψ(·). Line 2 assigns the label of instance xij

as yi ∈ Y with the goal of allowing fψ(·) to distinguish as accurately as possible
the instances in different classes of bags. Line 3 generates a single-instance label
vector L and uses it to participate in the loss calculation. Line 4 trains fψ(·)
with these generations. Lines 5–9 embed each bag Bi into bi according to the
designed embedding function, and merge it into X.

Based on the set of embedding vector X and its corresponding label vector Y,
we can train a classification model M with a traditional single-instance classifier.

Algorithm 1. The AEMI algorithm
Input:

Data set B;
Label vector Y;

Output:
Single-instance classifier M;
The trained neural network fψ(·);

1: X = {xij |i ∈ [1..N ], j ∈ [1..ni]}, where xij ∈ Bi ∈ B, N = |B| and ni = |Bi|;
2: Assign the label of instance xij as yi, where yi ∈ Y is the label of Bi;
3: Generate the single-instance label vector L by collecting all the assigned instance

labels;
4: Train a neural network fψ(·) with X and L;
5: X = ∅;
6: for (i ∈ [1..N ]) do
7: Embed bag Bi into bi according to Eq. (8) with fψ(·);
8: X ← X ∪ {bi};
9: end for

10: Train a single-instance classifier M with X and Y;
11: Output M and fψ(·);
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Proposition 1. The time complexity of Algorithm 1 is O(εdn), where ε, d,
and n are the number of epochs, dimensions, and total instances in all bags,
respectively.

Proof. Let the number of bags be N . The instance space X and its corresponding
label vector L are generated in Lines 1–3. Their time complexity is O(n). In Line
4, the training of neural network costs O(εdn). Lines 5–9 embed each bag into a
new feature space, which costs O(dn). Line 10 trains a single-instance classifier,
which costs O(EN). Generally, we have E < d and N � n. Therefore, the total
time complexity of AEMI is O(εdn).

3.3 Scheme Analysis

The following are two characteristics of the designed attention-net: a) Adaptabil-
ity: The structure of this attention-net is adaptively adjusted according to the
size of the data set, i.e., any dimensional instance can be represented in a vec-
tor. To put it another way, this network can function normally with the default
parameter settings; and b) Interpretability: Ideally, ∀xij ∈ Bi, yi = c, pc

ij ≥ pk
ij ,

where k ∈ [1..C]. Therefore, our goal is to construct an embedding function with
higher distinguishability by making the training results of the designed network
fit this state as much as possible.

By combining embedding-based approaches with neural networks, the AEMI
algorithm is designed to transform MIL tasks to the SIL ones. With this algo-
rithm, each bag Bi can be embedded as a vector bi ∈ R

CE in the new feature
space. According to embedding results, we may encounter such a dilemma. When
CE ≥ d, where d is the dimension, the increased dimensionality of the embed-
ding vector may cause some noise.

4 Experiments

In this section, we will firstly describe the used data sets and the comparison
algorithms. Then, the AEMI algorithm is put to the test in comparison against
seven state-of-the-art approaches in a series of experiments.

4.1 Data Sets

We conducted experiments on four types of MIL data sets: Drug activity pre-
diction, text classification, image classification data sets, and web index recom-
mendation data sets. All of these data sets can be found at https://blog.csdn.
net/weixin 44575152/article/details/104769348.

Drug Activity Prediction. The benchmark data sets musk1 and musk2 are
commonly used in drug activity prediction tasks [4]. Its goal is to predict whether
a new molecule can be used to make a drug. In the MIL domain, a musk molecule
is represented as a bag with a variable number of 166-dimensional instances.
According to the basic MIL assumption, a molecule is positive iff it possesses at
least one instance that can be used to make a drug; otherwise negative.

https://blog.csdn.net/weixin_44575152/article/details/104769348
https://blog.csdn.net/weixin_44575152/article/details/104769348
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Text Categorization. To conduct experiments, we employed ten text data
sets derived from the Newsgroups corpus. Each data set contains 50 positive
and 50 negative bags. Each positive bag contains 3% of posts from the specified
positive class and the rest from other classes, whereas instances of negative bags
are randomly drawn from the non-main class. Each instance is also represented
by a 200-dimensional TFIDF feature.

Image Classification. Corel with 100 categories is a famous database for the
image classification task [3]. Each category contains 100 images in JPG format
with a shape of 187 × 126 or 126 × 187. Elephant and tiger are from the Corel
database, and all of them have been preprocessed by the Blobworld bag gener-
ator. To consider a more challenging scenario, we built ten mnist-bag data sets
with the mnist classification data set. Take mnist0 as an example. The gener-
ation details are as follows: a) Set the number of positive and other class bags
to 100; b) Set the minimum and maximum size of bags to 10 and 50, respec-
tively; c) Set the minimum and maximum number of the positive instances in
the positive bag to 2 and 8, respectively; d) Each positive instance is an image
randomly selected from the 0-th class of the mnist data set, while the other
instance is from the other classes; and e) The selected image will be stretched as
a 786-dimensional instance. The random seed of the generating algorithm will
be fixed for experimental fairness.

Web Index Recommendation. The purpose of web index recommendation
is to recommend interesting web page indexes to particular users. Each of the
nine sub data sets in the web data set corresponds to a user’s evaluation of a
web page [18]. Each web page serves as a bag and links on the page serves as
instances. Since web page processing is connected to word frequency, web data
sets have high-dimensionality and sparsity.

4.2 Comparative Algorithms

As a comparison, we employed seven start-of-the-art MIL classification algo-
rithms listed below: a) BAMIC [16] and miVLAD [12] use the clustered centers
of bag- and instance-level kMeans as key samples, respectively; b) miFV [12] uses
the Gaussian mixture model to extract information of the data set; c) MILDM
[13] selects the key samples with the discriminative instance evaluation criterion;
d) MILFM [7] treats all instances of positive bags and the clustered centers of
other bags as key samples; and e) Attention-net [8] and loss-attention [9] are two
popular MIL networks. Table 1 shows the parameter settings for AEMI and the
above algorithms.
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Table 1. Parameter settings.

Algorithm Parameter Setting

AEMI Epoch for musk, elephant and tiger 100

Epoch for others 5

Learning rate 0.001

Number of nodes E Number of bags N

BAMIC Number of clustering centers N

Distance metric Average Hausdorff with Euclidean distance [16]

miFV Components of Gaussian mixture model 1

miVLAD Size of Code book 1

MILDM Distance metric Bag-instance maximum distance [13] with gamma 1

Instance selection mode Global

Number of discriminative instances N

MILFM Number of clustering centers 50

Distance metric Same as MILDM

Attention-net Epoch and Learning rate Same as AEMI

Loss-attention Epoch Same as AEMI

Learning rate 0.0001

4.3 Experimental Results

Tables 2 shows the experimental results of the AEMI and seven rival algorithms
based on three SIL classifier kNN, SVM and J48. The best accuracy value for
each data set is highlighted with “•”. Average (d < 1000/d ≥ 1000) denotes
the average classification performance across data sets in the specified dimen-
sion range. The results demonstrate that the AEMI algorithm has a significant
advantage on web recommendation and the mnist data sets. Specifically, the
accuracy of AEMI is about 10% greater than that of competing methods on
some data sets, such as mnist9 and web4, and the average ones are 3.6% than
in second place and 30.4% than in penultimate place when d < 1000. The fol-
lowing reasons may apply: a) The proposed attention-net can effectively extract
information from web data sets and generate the new representation and class
probability vector for instances; and b) The embedding mechanism converts the
bag into the new feature space while preserving as much information as possible.

Furthermore, some results necessitate further care. a) On the text categoriza-
tion data sets, AEMI achieves a moderate outcome, while BAMIC, miFV, and
miVLAD get relatively large advantages. For example, miFV has a considerable
edge on the news.mf data set. The reason for this could be that the Gaussian
mixture model of miFV can effectively mine the information of this type of data
sets. While the news.mf’s embedding results of AEMI may contain some noise;
and b) MILDM and MILFM have inadequate impacts on text and web data
sets. All three methods find key instances in the specified instance space. Take
the “flower”/“other” images as an example, the number of “flower”-instances is
usually less than the number of “other”-instances. As a result, these selected key
instances may not be “key”.
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Table 2. Performance comparison between AEMI and rival algorithms. Experiments
were run 5 times 10CV and an average of the classification accuracy (± the standard
deviation) is reported.

Data set (d) BAMIC miFV miVLAD MILDM MILFM Attention-net Loss-attention AEMI

Musk1 (166) 0.891 ± 0.011 0.920 ± 0.008• 0.847 ± 0.011 0.824 ± 0.025 0.871 ± 0.005 0.884 ± 0.022 0.890 ± 0.020 0.867 ± 0.019

Musk2 (166) 0.860 ± 0.011• 0.848 ± 0.015 0.780 ± 0.054 0.826 ± 0.016 0.822 ± 0.035 0.822 ± 0.047 0.848 ± 0.019 0.804 ± 0.010

News.aa (200) 0.852 ± 0.010 0.834 ± 0.016 0.836 ± 0.027 0.510 ± 0.050 0.510 ± 0.000 0.862 ± 0.019 0.874 ± 0.016• 0.808 ± 0.023

News.cg (200) 0.812 ± 0.004• 0.802 ± 0.008 0.790 ± 0.014 0.526 ± 0.052 0.504 ± 0.010 0.610 ± 0.017 0.644 ± 0.033 0.782 ± 0.016

News.mf (200) 0.696 ± 0.019 0.736 ± 0.016• 0.716 ± 0.029 0.488 ± 0.037 0.510 ± 0.006 0.666 ± 0.022 0.716 ± 0.032 0.676 ± 0.037

News.rm (200) 0.808 ± 0.016 0.877 ± 0.020• 0.812 ± 0.016 0.546 ± 0.041 0.530 ± 0.026 0.854 ± 0.021 0.871 ± 0.026 0.818 ± 0.013

News.rsh (200) 0.828 ± 0.010 0.884 ± 0.010 0.894 ± 0.010 0.442 ± 0.021 0.500 ± 0.000 0.872 ± 0.005 0.914 ± 0.012• 0.884 ± 0.022

News.sc (200) 0.774 ± 0.010 0.750 ± 0.018 0.818 ± 0.023• 0.518 ± 0.042 0.512 ± 0.004 0.780 ± 0.014 0.802 ± 0.036 0.800 ± 0.026

News.se (200) 0.938 ± 0.004• 0.926 ± 0.005 0.918 ± 0.008 0.574 ± 0.061 0.530 ± 0.000 0.554 ± 0.010 0.572 ± 0.036 0.864 ± 0.014

News.tpmd (200) 0.830 ± 0.000 0.799 ± 0.016 0.832 ± 0.015 0.554 ± 0.019 0.554 ± 0.048 0.836 ± 0.016 0.844 ± 0.012• 0.788 ± 0.033

News.tpmi (200) 0.690 ± 0.011 0.752 ± 0.015 0.766 ± 0.015• 0.482 ± 0.037 0.506 ± 0.005 0.720 ± 0.013 0.482 ± 0.022 0.710 ± 0.011

News.trm (200) 0.728 ± 0.008 0.740 ± 0.014 0.786 ± 0.022• 0.466 ± 0.048 0.510 ± 0.011 0.606 ± 0.060 0.514 ± 0.064 0.720 ± 0.026

Elephant (230) 0.762 ± 0.012 0.852 ± 0.013 0.853 ± 0.010 0.765 ± 0.022 0.817 ± 0.023 0.848 ± 0.014 0.872 ± 0.005 0.875 ± 0.010•
Tiger (230) 0.704 ± 0.011 0.789 ± 0.006 0.843 ± 0.008• 0.692 ± 0.008 0.754 ± 0.006 0.810 ± 0.031 0.819 ± 0.011 0.814 ± 0.009

Mnist0 (786) 0.913 ± 0.018 0.820 ± 0.009 0.873 ± 0.002 0.484 ± 0.015 0.507 ± 0.002 0.979 ± 0.005 0.995 ± 0.003• 0.985 ± 0.010

Mnist1 (786) 0.978 ± 0.004 0.724 ± 0.013 0.845 ± 0.013 0.803 ± 0.012 0.975 ± 0.006 0.873 ± 0.146 0.992 ± 0.004• 0.980 ± 0.003

Mnist2 (786) 0.773 ± 0.021 0.858 ± 0.009 0.910 ± 0.008 0.462 ± 0.008 0.496 ± 0.028 0.959 ± 0.019 0.966 ± 0.005 0.973 ± 0.005•
Mnist3 (786) 0.865 ± 0.015 0.787 ± 0.005 0.863 ± 0.004 0.556 ± 0.009 0.580 ± 0.024 0.940 ± 0.006 0.942 ± 0.019 0.956 ± 0.006•
Mnist4 (786) 0.855 ± 0.006 0.757 ± 0.011 0.810 ± 0.017 0.451 ± 0.012 0.520 ± 0.034 0.931 ± 0.014 0.896 ± 0.024 0.937 ± 0.011•
Mnist5 (786) 0.759 ± 0.023 0.759 ± 0.016 0.831 ± 0.009 0.487 ± 0.028 0.496 ± 0.008 0.922 ± 0.020 0.838 ± 0.039 0.964 ± 0.006•
Mnist6 (786) 0.914 ± 0.006 0.837 ± 0.017 0.852 ± 0.007 0.466 ± 0.026 0.460 ± 0.034 0.927 ± 0.037 0.963 ± 0.007• 0.959 ± 0.006

Mnist7 (786) 0.908 ± 0.012 0.859 ± 0.013 0.855 ± 0.006 0.530 ± 0.027 0.629 ± 0.037 0.986 ± 0.004• 0.974 ± 0.004 0.975 ± 0.008

Mnist8 (786) 0.786 ± 0.035 0.731 ± 0.020 0.808 ± 0.005 0.494 ± 0.021 0.507 ± 0.002 0.879 ± 0.035 0.749 ± 0.062 0.926 ± 0.014•
Mnist9 (786) 0.837 ± 0.017 0.742 ± 0.017 0.797 ± 0.005 0.583 ± 0.023 0.516 ± 0.017 0.845 ± 0.010 0.771 ± 0.048 0.958 ± 0.005•
Web1 (5863) 0.844 ± 0.016• 0.838 ± 0.007 0.813 ± 0.018 0.838 ± 0.007 0.824 ± 0.012 0.811 ± 0.015 0.811 ± 0.140 0.809 ± 0.013

Web2 (6519) 0.806 ± 0.024 0.826 ± 0.007 0.818 ± 0.013 0.833 ± 0.009 0.820 ± 0.023 0.807 ± 0.019 0.820 ± 0.006 0.838 ± 0.018•
Web3 (6306) 0.815 ± 0.024 0.826 ± 0.009 0.827 ± 0.012• 0.826 ± 0.007 0.815 ± 0.020 0.813 ± 0.009 0.813 ± 0.007 0.813 ± 0.023

Web4 (6059) 0.765 ± 0.004 0.807 ± 0.012 0.844 ± 0.015 0.806 ± 0.015 0.804 ± 0.020 0.844 ± 0.027 0.785 ± 0.009 0.916 ± 0.011•
Web5 (6407) 0.789 ± 0.004 0.782 ± 0.061 0.822 ± 0.014 0.787 ± 0.021 0.781 ± 0.011 0.822 ± 0.015 0.776 ± 0.011 0.895 ± 0.009•
Web6 (6417) 0.809 ± 0.019 0.778 ± 0.005 0.847 ± 0.016 0.846 ± 0.021 0.816 ± 0.022 0.811 ± 0.020 0.782 ± 0.005 0.920 ± 0.012•
Web7 (6450) 0.558 ± 0.016 0.687 ± 0.030 0.742 ± 0.012 0.602 ± 0.037 0.566 ± 0.018 0.713 ± 0.021 0.485 ± 0.031 0.786 ± 0.019•
Web8 (5999) 0.504 ± 0.032 0.706 ± 0.021 0.727 ± 0.021 0.544 ± 0.016 0.576 ± 0.032 0.713 ± 0.012 0.466 ± 0.050 0.806 ± 0.024•
Web9 (6279) 0.500 ± 0.015 0.753 ± 0.022 0.758 ± 0.021 0.551 ± 0.021 0.591 ± 0.021 0.724 ± 0.039 0.503 ± 0.021 0.809 ± 0.026•
Average (d < 1000) 0.823 ± 0.012 0.808 ± 0.013 0.831 ± 0.014 0.564 ± 0.028 0.588 ± 0.015 0.832 ± 0.025 0.823 ± 0.023 0.868 ± 0.014•
Average (d ≥ 1000) 0.710 ± 0.017 0.778 ± 0.019 0.800 ± 0.016 0.737 ± 0.017 0.733 ± 0.020 0.784 ± 0.020 0.693 ± 0.031 0.844 ± 0.017•

Table 3 shows the comparison results of the maximum and minimum clas-
sification accuracy of the AEMI algorithm and an attention network method.
The terms “net” represents the gate-attention network [8] used for comparison
and “our” denotes specifically to the comparison of AEMI’s SVM classification
results. The symbol �/� means that the difference between the maximum value
minus the minimum value is greater than or equal to 0.05/0.1. The results show
that AEMI can alleviate the instability of the neural network caused by param-
eter initialization without reducing the classification performance. In the mnist2
data set, for example, the net method’s accuracy varies by 37.5%, while ours
varies by only 1%.
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Table 3. Performance comparison between AEMI and gate-attention network. Exper-
iments were run 5 times 10CV and minimum/maximum of the classification accuracy
(± the standard deviation) is reported.

Data set Net (Min) Net (Max) Our (Min) Our (Max)

Mnist0 	0.915 	0.970 0.970 0.995

Mnist1 �0.585 �0.960 0.975 0.985

Mnist2 0.940 0.950 0.965 0.980

Mnist3 0.935 0.980 0.955 0.965

Mnist4 	0.895 	0.945 0.920 0.950

Mnist5 �0.860 �0.960 0.955 0.970

Mnist6 �0.775 �0.960 0.950 0.965

Mnist7 0.975 0.990 0.965 0.985

Mnist8 0.875 0.915 0.910 0.945

Mnist9 	0.820 	0.870 0.950 0.960

Web1 0.800 0.846 0.791 0.827

Web2 0.773 0.818 	0.809 	0.864

Web3 0.800 0.836 	0.791 	0.855

Web4 	0.818 	0.873 0.900 0.927

Web5 	0.773 	0.855 0.882 0.900

Web6 	0.791 	0.855 0.900 0.927

Web7 0.700 0.746 0.764 0.809

Web8 0.709 0.745 	0.764 	0.836

Web9 	0.682 	0.736 	0.773 	0.846

5 Conclusion and Further Work

We propose the AEMI algorithm to train an attention-net based on the rela-
tionship between the bag and its instances, and use an embedding function to
transform MIL tasks into SIL ones. The experimental results of studies prove
that AEMI is superior to state-of-the-art MIL classification methods, has signif-
icant advantages, especially on web data sets, and has relatively stable classifi-
cation performance. In addition, the majority of the rival MIL methods perform
poorly on MIL web recommendation and mnist, and the neural network-based
methods’ outcomes of successive experiments may be substantially different due
to the random setting of the parameter initialization.

The following topics deserve further investigation:

– More flexible embedding functions. Web data sets with thousands of features
can be effectively reduced in dimensionality using the proposed embedding
function. However, this may increase the dimensionality of these relatively
low-dimensional data sets after embedding. As a result, these may be a factor
in their moderate performance on some data sets, such as musk1 and tiger.
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– More efficient neural networks. On most data sets, the designed attention-net
only requires 5 epochs of training to achieve good results, but on few data
sets like musk1, it requires more epochs. Some details are shown in Table 1.
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