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Abstract. The main additional problem in activity recognition (AR)
systems in contrast to traditional ones is the importance of duration:
a predicted concept in AR is durative and can be correct in a period
and incorrect in another one. Therefore, it is fundamental to extend
the correctness vocabulary and to formalize a new evaluation system
including these extensions. Even in similar areas, few empirical attempts
are proposed which are confronted with the problems of correctness and
completeness. In this paper, we propose the first formal multi-modal eval-
uation approach for durative concepts. This novel mathematical method
evaluates the performance of an AR system from multiple perspectives,
including detection, total duration, relative duration, boundary align-
ment, and uniformity. It extracts the properties considered in the state-
of-the-art and redefines the well-known true-positive, false-positive and
false-negative terms for durative events. Our proposed method is exten-
sible, interpretable, customizable, open source and improves the expres-
siveness of the evaluation while its computation complexity remains lin-
ear. Comprehensive experimental evaluations are conducted to show the
usefulness of our proposed method.

Keywords: Evaluation · Activity recognition · Time series

1 Introduction

Activity Recognition (AR) is expected to be a core component in numerous
future Internet of Things applications such as healthcare, smart homes, and secu-
rity [5,22,23]. Therefore, evaluating the effectiveness of different AR algorithms
is essential. Some metrics such as accuracy, observing the recall against precision
are common metrics that are easy to understand and interpret even by non-
experts. These metrics are well-used for discrete instances and pre-segmented
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Fig. 1. a) Classical instances b) Durative instances. Durative one may partially correct
and partially incorrect while the classical one is either correct or not.

Table 1. The notations used in this paper.

Symbol Description

TP, TN, FP, FN True Positive, True Negative, False Positive, False Negative

e=(c, [s:f]) Event e has class c that occurs from time s to time f

GTE, PE GTE=Ground Truth Event, PE = Predicted Event

E, R, P E =Event set, R = GTE set, P= PE set

|X| The number of element in set X

T (e), T (E) T (e) = Duration of e, T (E) =
∑

e:E T (e)

e′ = e1∩ e2 e1 = (c1, t1) ∧ e2 = (c2, t2) ∧ c1==c2 ∧ e′ = (c1, t1∩ t2)

e1 ∩ E2
⋃

e2:E2
e1 ∩ e2

[.] Iverson bracket. 1 when the enclosed condition is true; otherwise, 0

data sequences [5]; where, a predicted instance is either correct or incorrect.
However, concepts in AR are durative; thus, a predicted concept can be correct
in one period, incorrect or partially correct in another one [26]. Accordingly, as
shown in Fig. 1, previously well-defined terms used in traditional systems such
as true positive (TP), false positive (FP), false negative (FN) are not suitable
for durative concepts [26].

However, it is often assumed that time-frame, event-based, or classifier per-
formance follows the whole system performance [4,5,22,23]. This assumption
neglects practical scenarios and may misleadingly present convincible results
(Sect. 2). Despite the importance of evaluating durative concepts, it is not well-
developed even in other areas. Still, there is no universally accepted formula for
evaluating the effectiveness of systems with durative concepts.

This paper proposes a novel mathematical method for evaluating different
properties of AR systems. It redefines TP, FP, and FN to consider various prop-
erties such as detection, total duration, relative duration, boundary alignment,
and uniformity between ground truth and predicted events. Therefore, confusion
matrix based metrics such as recall, precision, and f-score, can be calculated to
evaluate and compare different systems. Furthermore, it is simple, time-efficient,
extensible, and customizable. It also overcomes the limitations of existing meth-
ods. Although, it can select an appropriate algorithm for a new application by
prioritizing properties differently. The experiments show that our method can
outperform state-of-the-art methods with enhanced generalization capability.
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2 Preliminaries and Related Work

Evaluating the performance of AR systems is usually done by comparing pre-
dicted events (PEs) with the ground-truth events (GTEs) [16]. It can be viewed
as the matching of two time-series. However, it is not easy to determine the time
boundaries of ground truth labels perfectly; moreover, the distinction between
activities is not always clear [5]. Therefore, some decision functions accommodate
offsets using ambiguous range [10], fuzzy event boundaries [20], time series match-
ing techniques (such as dynamic time warping, longest common sub-sequences
[7]), or categorical probability distribution [9]; however, they fail to distinguish
different types of errors (e.g., fragmentation) [27]. Common approaches to eval-
uate AR systems include time-frame, event-based, and classifier performance
[12,17,23]. Time-frame based methods uses fixed period interval as atomic units
and facilitate comparing different AR algorithms since each frame is indepen-
dent of both the GTEs and PEs [12,17]. Nevertheless, the interpretation of errors
is not the same in different applications. Hence, each frame’s error is classified
to insertion (detection of an activity when nothing actually happened), overfill
(time before and after the occurrence time of an activity that is incorrectly iden-
tified as part of the activity), and merge (covering multiple GTEs by a single
PE) as sources of FP errors and deletion (failure to detect an activity), substitu-
tions (wrongly detected with another class), underfill (not detected duration at
the beginning and end of the activity), and fragmentation (detecting a GTE by
multiple PEs) as sources of FN errors [17]. Moreover, event based methods are
also essential to be considered as well as time-frame [27]. Event based errors are
categorized as insertion, deletion, fragmentation, merge and fragmented-merge
(occurrence of both merge and fragmentation errors) [27]. However, an expert
must do a time-consuming analysis of these massive and heterogeneous diagrams,
matrices, and information. Therefore, combining them as a scalar metric is com-
plex. Besides, These approaches also consider the total duration of positional
errors and do not provide an event-based tunable model for it.

From the behavior analysis perspective, evaluating each activity needs a dif-
ferent evaluation method [1]. e.g., duration sensitive activities need to be evalu-
ated differently from frequency sensitive ones. Timeliness is another metric used
for online and realtime prediction [24]. It is defined as the duration continuous
correct prediction of an activity without switching to an inaccurate prediction.
To compare different AR algorithms in a similar situation, a competition is held
and time frame f1-score, recognition delay, installation complexity, user accep-
tance, and interoperability are used as the evaluation criteria [8].

In sound event detection (SED) [4], video action detection [3], anomaly detec-
tion [26], and video abnormal event detection [11], etc., concepts are also dura-
tive. The IEEE Audio and Acoustic Signal Processing challenge [25] highlights
the need for an appropriate metric in SED. Still, researchers mainly used col-
lar, segment (time-frame based), and PSDS (polyphonic sound detection score)
methods [4,16]. However, they can not show the different sources of errors. Our
recent work dedicated to multimodal metrics in SED system [18] provides some
evaluation approaches depending on the hypothesis and constraints on SED
applications. National Institute of Standards and Technology (NIST) developed
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a challenge for detecting activities in video (ActEV) [3]. It firstly used false
alarms rate (instance based) and missed detections probability (instance based)
as evaluation metrics. However, In 2019, it uses time-frame method for calcu-
lating false alarm rate [3]. Other metrics in abnormal event detection in video
are false rejection rate, equal error rate, decidability index, receiver operating
characteristic curves, and area under the Curve [6,11]. However, equal error
rate can be misleading in the anomaly detection setting [15]. Numenta anomaly
benchmark [14] is designed to evaluate different anomaly detection algorithms.
It uses a scaled sigmoidal scoring function for the relative position of each detec-
tion; however, it ignores fragmented predictions. To resolve previously mentioned
issues, researchers in [26] redefine precision and recall for time-series (particu-
larly on anomaly detection). They need some functions to be explicitly defined
for a given application. Those functions are: γ (to consider fragmented events),
δ (to consider the positional relation between PE and GTE), overlap (the rate
of the correctly detected events (e.g., overlap(x, y,δ()) = T (x ∩ y)/T (x)), and α
which is a coefficient. They are formulated in Eq. (1) using notations of Table 1.

exist(e, X)=[e ∩ X �= ∅], score(e, X)=γ(e, X)× Σ
x∈X

overlap(e, e ∩ x, δ()), (1)

Recall=
1

|R|
∑

r∈R

α×exist(r, P) + (1−α)×score(r, P), Precision=
1

|P|
∑

p∈P

score(p, R)

Issues in [26] (Eq. (1)) are analysed deeply in the following:

1. It surprisingly ignores the α (coefficient) in calculating precision. Therefore,
it gives inconsistent weights to overlap function in calculating recall and
precision. Therefore, to prevent misled interpretation, they can not be used
as complementary (e.g., in calculating f1 score).

2. Fragmented PEs have significant positive score in precision. e.g., in Fig. 2, the
precision of (a) is much higher than (b). Similar situation happens for recall.

3. It normalizes the duration of events to avoid the duration impacts. Briefly,
the precision calculation is avg

p∈P
( TP

T (p)
) and the recall calculation is avg

r∈R
( TP

T (r)
).

This normalization looks well for a single PE and GTE; however, in total,
it gives different values for TP in recall and precision. Therefore, they are
not calculated in a similar mathematical model and they can not be used as
complementary (e.g., for f1-score). Equation (2) presents these calculations
for Fig. 2 (d).

Precision =
TP1
P1

+ TP2
P2

1 + 1
=

Σnormalized TPs based on PEs
Σnormalized PEs

(2)

Recall=
TP1
R1

+ TP2
R2

+ 0
R3

1 + 1 + 1
=

Σnormalized TPs based on GTEs
Σnormalized GTEs

4. Defining an appropriate cardinality function is complex. Furthermore, it is
difficult to adjust and tune this formula since the dependencies between car-
dinality, position, and overlap are not clear [10]. e.g., in Fig. 2 (c), the first
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Fig. 2. Example activities that help to
explain the drawbacks in [26].

Fig. 3. Evaluation of AR systems that
use different segmentation approach.

and second GTEs have the same recall (0.33) (using γ(e,X) = |e ∩ X|−1 as
suggested by authors). It is similar for calculating precision for merged PEs.

5. This approach can not be applied to duration-sensitive activities[1].
6. Adding a new property (e.g., total duration) is not straightforward.

Issue in classifier metrics is the inability to compare algorithms in a unified
space since AR systems may use various segmentation (windowing) algorithms.
Figure 3 is an illustration of two algorithms. Activity A1 is not detected in seg-
ments C1, T1 and T2. Thus, the classifier accuracy in the first approach is 50%
while it is 60% in the second one. Clearly, the difference in their performances
are due to the effects of the different segmentation procedures. Accordingly, it
may misleadingly present convincing results and it can not capture duration
specific properties, although it is widely used in several papers [5,7,13,19,23].
Time frame accuracy is more consistent metric [12]; however, it can not displays
different property of an AR system such as uniformity, detection of each event
or the boundary alignment. Additionally, a long event affect the whole result.

As a result, a new metric is needed to better evaluate AR algorithms while
paying attention to the peculiarities of the applications and activities.

3 Proposed Metric

An evaluation method should determine the different properties of AR algo-
rithms. We define a measurement (in terms of recall and precision) for each
property, and all together constitute our proposed metrics. A weighted combi-
nation of them can produce a scalar value, or they can be used collectively as
a multi-objective metric. Because of our approach’s modularity, it can be easily
extended to include a measurement for a new property. Our metric is based on
the following assumptions: 1- R and P are given as input. 2- Times in concepts
are durative and specified. 3- The acceptable time shift of PEs to be assumed as
detected is within the GTE range. i.e., PEs and GTEs are relevant when they
have some overlap. 4- Only a single activity class is exist. For multi-class cases,
all classes are evaluated individually as a positive class and the rest as a negative
one. This allows using different parameters for each activity class which is an
necessary feature for AR [1]. 5- One instance of an activity class occur at a time.

We use ground truths as references in the normalization process because
they are independent of predictions of different algorithms. Therefore, we cluster
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GTEs and PEs in such a way C={(r,ps)|r ∈ R∧ps={p∈P|r∩p �=∅}∧ps �= ∅}).
Orphan PEs are considered as C = {p ∈ P|p ∩ R = ∅}.

Each instance in the classical model is either correctly predicted or not (each
TP, FP or FN is either 0 or 1). However, in the durative model, a GTE may
be partially covered by positive PEs. Therefore, we allow partial value for TP,
FP, and FN. In the following, we present the properties which are drawn from
state-of-the-art and our formulas for measuring their values.

Detection (D) Property calculates the detection of a GTE even by a small
(at least θ [10]) PE (It checks for the existence of overlaps between PEs and
GTEs). A GTE is TP if it is detected at least once and is FN if it is not. PEs
that don’t have any intersection with any GTEs are considered as FP. This
property is useful in applications like alarm systems [26].

TPD =
∑

(r,ps):C

[
∑

p:ps

T (r ∩ p)

T (r)
> θtp

]
, FPD =

∑

(r,ps):C

[
∑

p:ps

T (p) − T (r ∩ p)

T (r)
> θfp

]
+ |C|

(3)

FND = |R| − TPD,

Therefore, a GTE is considered as TP when at least θtp fraction of it is cor-
rectly identified; otherwise, it will be considered as FN. FP counts not detected
PEs (|C|) plus the PEs which the rate of its wrong prediction part is higher than
θfp.

Uniformity (U) Property considers the detection of GTE by a single PE
instead of multiple fragmented ones. e.g., in a taking medicine event, detecting
two taking medicine events instead of one shows a disorder; therefore, the dura-
tion is not as important as the number of occurrences. Researchers in [26,27]
consider uniformity as an essential property; however, they do not formulate it.
Event analysis [27] leads us to consider a GTE as a TP if it is identified by only
one PE. In this case, all other PEs are considered as FP or FN.

TPU =
∑

(r,ps):C

[|ps ∩ R|=1] , FNU =
∑

(r,ps):C

[|ps ∩ R|>1] , FPU = |P| − |C|−TPU

(4)

Thus, the recognized GTEs are considered as TP if each is detected by one PE
and that PE does not identify any other GTEs; otherwise, they are considered
as FN. Similarly, a PE, that is neither TP nor orphan, is considered as FP.

Total Duration (T) Property is well-known and is similar to time-frame-
based methods. It divides the PEs and GTEs by their boundaries; therefore,
each frame is either TP, FP, FN, or TN [12].

TPT =
∑

(r,ps):C

T (r ∩ ps), FNT = T (R) − TPT
, FPT = T (P) − TPT

(5)
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Relative Duration (R) Property normalizes the duration of each event indi-
vidually to lessen the effect of varying durations of events.

TPR =
∑

(r,ps):C

T (r ∩ ps)
T (r)

, FPR =
∑

(r,ps):C

min(1,
∑

p:ps

T (p) − T (r ∩ p)
T (r)

),

FNR =|C| − TPR (6)

Consequently, TP (FN) is the sum of normalized durations of correctly detected
(incorrectly undetected) parts of GTEs. The FP calculation is similar; however,
FP of each cluster can not exceed 1.

Boundary Alignment (Bt) Property rewards TP when PEs GTE’s bound-
aries precisely match the boundaries of its related PEs; otherwise, it loses some
score by FN (underfill error1), or FP (overfill error (see footnote 1)) [27]. This
property concentrates only on the alignment error and is related to the needs
considered in [26,27]. The parameter t specifies the kind of alignment (start (Bs)
or end (Be)).

∀t :{start, end}: fn1(r,ps) = if ps �= ∅ then 1 − e−βt
underfillt(r,ps)

T (r) else 0

fp1(r,ps) = if ps �= ∅ then 1 − e−βt
overfillt(r,ps)

T (r) else 0

TPBt =
∑

(r,ps):C

max(0, 1 − fp1(r,ps) − fn1(r,ps))

FNBt =
∑

(r,ps):C

fn1(r,ps), FPBt =
∑

(r,ps):C

fp1(r,ps)

(7)

Accordingly, TP of each cluster is justified by the alignment error between
predictions and ground truths. In addition, errors increase exponentially
(adjustable with βt) by the distance between the boundaries of PEs and GTEs.
Increasing parameter βt gives more penalties to longer positional errors.

Precision, Recall, and F-Score are calculated using the following known for-
mula using TPs, FPs, and FNs that were defined earlier for each AR properties.

∀f ∈ {D, T, R, Bs, Be, U}: //Abbreviation of properties (8)

Recallf =
TPf

TPf + FNf
, Precisionf =

TPf

TPf+FPf , Ff
1 = 2

Precisionf .Recallf

Precisionf + Recallf

Computation Complexity of the presented formulas is O(|R| × |P |) because
elements of both sets of P and R are iterated. Since each element of R needs only
related P; the interval tree helps us to optimize it to O(|R|log|R| + |P |log|P |).
In the case that P and R are sorted by time, this complexity can be reduced to
O(|R| + |P |) by considering the time relationships of P and R.
1

overfillstart(r, ps)=max(0, start(r) − start(ps)) underfillstart(r, ps)=max(0,start(ps)−start(r))

overfillend(r, ps) = max(0, end(ps) − end(r)) underfillend(r, ps)=max(0, end(r) − end(ps)).
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4 Experimental Results

This section presents an experimental study of our metric. The first experiment
is done on small visualizable data. The second one compares two algorithms
in a real-world dataset. The parameters of each property of our metric are as
follows. The θtp, θfp are needed to have an appropriate detection property. In
this experiment, if a PE has any overlap with GTE (θtp = 0), we consider it as
TP; additionally, if an incorrect part of a PE is longer than the related GTE’s
duration (θfp = 1), we consider it as FP. We also use (βt = 2) to consider near
linear boundary error. The codes and datasets are existed in our repository at
https://github.com/modaresimr/AR-MME-EVAL.

Fig. 4. Ground truths and output of two algorithms used in [27].

Table 2. Details of our metric for algorithms of Fig. 4. The spider chart (right image)
shows the f1-score on each property for those algorithms.

Algorithm Alg.a Alg.b
Property recall precision f1 recall precision f1

detection 0.73 0.50 0.59 0.73 1.00 0.84
uniformity 0.75 0.43 0.55 0.62 0.83 0.71
total duration 0.78 0.77 0.77 0.84 0.90 0.87
relative duration 0.73 0.81 0.77 0.83 0.85 0.84
boundary start 0.81 0.93 0.86 0.87 0.84 0.85
boundary end 0.99 0.78 0.87 0.85 0.87 0.86

Our Proposed Metric on Small Data is explored in this experiment for
simplicity in visualization. This data contains a subset of 13 relations between
two intervals in Allen’s interval algebra [21]. This data and our metrics’ outputs
are illustrated on Fig. 4 and Table 2. Clearly, more PEs of Alg.a are incorrectly
predicted than Alg.b in Fig. 4, while the number of undetected GTEs is the same.
The precision and recall in detection measurement confirm this observation.
The uniformity of Alg.b is higher than Alg.a since most of the GTEs detected
with a single PE in Alg.b instead of multiple fragmented PEs. For the total
duration measurement, we can see that the correctly predicted time frames (TP)
in Alg.b are more than Alg.a, while it is inverse for the incorrect ones. The
relative duration normalizes events independently and applies the total duration
measurement. It shows Alg.b predict more part each recognized concept than
Alg.a. Since the concepts’ duration are similar, the total duration shows similar

https://github.com/modaresimr/AR-MME-EVAL
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result. In the boundary measurement, we can observe that almost all predictions
of Alg.a cover the end boundary of GTEs. Therefore, the end part of all GTEs
are well-detected (recall = 0.99); however, there are some part of predictions
after end of the GTE’s boundary that are incorrectly predicted (prediction =
0.78).

Our Proposed Metric on a Public Dataset is explored in this experiment.
We compare non-overlapping sliding time window of 30 s (SW)2 with Hierarchi-
cal Hidden Markov model (H-HMM) [2] to show how our metric works. WSU
CASAS Home1 dataset [13] that contains 32 sensors, 400,000 events and about
3000 durative concepts (activities) is used in this experiment. We use its first
20% for test and the remaining for training.3 Then we evaluate the effectiveness
of take medicine activity and the macro average of all classes.4 We compare [26]
and [27] metrics with ours. The classifier metric issues is discussed in Sect. 2.

Table 5 (b) shows that 50% of times, HHMM algorithm do not detect the
concepts and 29% of times it can not detect the start boundary while almost
none of its prediction is incorrect. For SW algorithm, it shows great performance
except around 16% of times the prediction is fragmented. However, our metric
(Table 3) shows this observation is not complete. Analysing the data shows
that the duration of 5% of concepts is equal to the others. Therefore, they
dominate the system’s quality when using the time frame metrics (e.g., Ward’s
time metrics) and classifier metrics5. Table 5(a) helps to understand more about
the predictions with event analysis perspective. It displays that 28% and 40% of
predictions in SW and HHMM algorithms are incorrectly predicted (in contrast
to the observation from Table 5(b)). However almost all of the concepts are
recognized by SW algorithm and nearly half of them are not recognized at all
in the HHMM algorithm. It also shows that the predicted concepts in both
HHMM and SW algorithm are mostly uniform (have few fragmented or merged
predictions). These observation is clearly shown in our detection and uniformity
property in Table 3. Our proposed metric also correctly shows the quality of
detecting the boundaries of concepts while Table 5 (b) display these information
totally. Since the duration of this class is much less than the total duration of this
dataset while this class constitutes 13% of concepts in this dataset, the last four
errors in Table 5 (b) are close to zero. Relative duration properties in Table 3
shows SW either recognize a whole ground truth concept (recall = 0.92) or does
not recognize the concept at all; however, its prediction exceed the boundaries
(precision < 0.6).

Table 4 shows the metric proposed in [26] with the different parameters. We
can observe that γ function, which considers fragmented and merged predictions,
has a small affect on the recall and precision. As it is observable from our uni-

2 We use feature extraction in [13] and three layers perceptron for classifier step.
3 The internal steps are not important since the concentration is on the metrics.
4 For saving the space, the analysis of other classes are existed in our repository.
5 If the used segmentation algorithm generates more segments for longer events which

is the case with the well-used sliding window method.
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Table 3. Our metric and the spider chart of f1 over two algorithms for one class.

Algorithm HHMM SW
Property recall precision f1 recall precision f1

detection 0.53 0.51 0.52 0.97 0.49 0.65
uniformity 0.95 0.97 0.96 0.86 0.89 0.88
total duration 0.19 0.32 0.24 0.80 0.41 0.55
relative duration 0.39 0.58 0.47 0.92 0.54 0.68
boundary start 0.70 0.63 0.66 1.00 0.48 0.65
boundary end 0.86 0.54 0.66 0.92 0.34 0.49

Table 4. Tatbul metric [26] with several parameters and its f1 chart for one class.

Algorithm HHMM SW
Parameter recall precis. f1 recall precis. f1

α=0, γ=1, δ=back 0.42 0.29 0.34 0.93 0.27 0.42
α=0, γ=1, δ=middle 0.39 0.37 0.38 0.92 0.36 0.52
α=0, γ=1, δ=front 0.37 0.37 0.37 0.92 0.34 0.50
α=0, γ=1, δ=flat 0.39 0.33 0.36 0.92 0.31 0.46
α=1, γ=1, δ=flat 0.53 0.33 0.41 0.97 0.31 0.47
α=0, γ=reci, δ=flat 0.39 0.33 0.36 0.92 0.30 0.45

Table 5. Ward’s proposed metrics for evaluating two algorithms for one class

(a) Event metrics HHMM SW (b) Time metrics HHMM SW

Deletions / |R| 0.47 0.03 True positive rate 0.19 0.80

Merged / |R| 0.03 0.13 Deletion rate 0.50 0

Fragmented / |R| 0 0.04 Fragmenting rate 0 0.16

Frag. and merged / |R| 0 0 Start underfill rate 0.29 0

Correct / |R| 0.51 0.80 End underfill rate 0.02 0.03

Insertions / |P | 0.40 0.28 1-false positive rate 1.00 1.00

Merging / |P | 0.02 0.05 Insertion rate 0 0

Fragmenting / |P | 0 0.06 Merge rate 0 0

Frag. and merging / |P | 0 0 Start overfill rate 0 0

Correct / |P | 0.58 0.61 End overfill rate 0 0

formity property in Table 3, we can see the predictions of both algorithms are
uniform but HHMM works better. This observation, can not be captured from
Tatbul’s metric. As analysed at the end of Sect. 2, the main issue of Tatbul’s met-
ric is that recall and precision are not calculated in similar model and can not be
used as complementary (e.g., changing α parameter has effect only on recall.).
Lastly, δ parameter in Table 4 is proposed by them to consider the boundary
alignment errors; however, changing that does not provide significant changes in
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Table 6. Macro average of all classes by our metric over two algorithms.

Algorithm HHMM (macro avg) SW (macro avg)
Property recall precision f1(m) recall precision f1(m)

detection 0.44 0.42 0.41 0.86 0.34 0.51
uniformity 0.98 0.92 0.95 0.97 0.85 0.9
total duration 0.31 0.46 0.34 0.58 0.4 0.48
relative duration 0.37 0.87 0.47 0.67 0.78 0.73
boundary start 0.8 0.92 0.82 0.92 0.83 0.85
boundary end 0.94 0.89 0.9 0.89 0.79 0.81

recall and precision while our boundary properties in (Table 3) clearly provide
the situation of predictions. This experiment ends with Table 6 that compares
the macro average of our metric across all classes of this dataset.

5 Conclusions

In general, activity events are durative in AR. Choosing an appropriate evalu-
ating metric is an essential step to compare AR systems. However, due to the
absence of an appropriate one, researchers often use time-frame, event-based, or
classifier performance, which can misleadingly present convincible performance
for an AR system. This paper proposes a new mathematical model to evaluate
AR algorithms which is expressive (by capturing several properties of AR algo-
rithm such as detection, total duration, relative duration, boundary alignment,
and uniformity), customizable (the adjustable parameters can support a wide
range of applications and can give more weights to some properties of AR algo-
rithms), extensible (adding a new property is straightforward and independent
of others). Although our method can give more meaningful information about
AR algorithms, its computation complexity remains linear on the size of predic-
tions and ground truths. Our metric has been tested on several datasets, and
its ability to measure different AR algorithm properties has been shown. One
exciting outcome of this formulation is the possibility to generate a profile (in
terms of properties) for each algorithm. Therefore, it can be used as a heuristic
for faster algorithm selection which will be explored more in future researches.
We are also interested in including fuzziness in our properties.
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