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Abstract. During the forward pass of Deep Neural Networks (DNNs),
inputs gradually transformed from low-level features to high-level con-
ceptual labels. While features at different layers could summarize
the important factors of the inputs at varying levels, modern out-of-
distribution (OOD) detection methods mostly focus on utilizing their
ending layer features. In this paper, we proposed a novel layer-adaptive
OOD detection framework (LA-OOD) for DNNs that can fully utilize
the intermediate layers’ outputs. Specifically, instead of training a uni-
fied OOD detector at a fixed ending layer, we train multiple One-Class
SVM OOD detectors simultaneously at the intermediate layers to exploit
the full-spectrum characteristics encoded at varying depths of DNNs. We
develop a simple yet effective layer-adaptive policy to identify the best
layer for detecting each potential OOD example. LA-OOD can be applied
to any existing DNNs and does not require access to OOD samples dur-
ing the training. Using three DNNs of varying depth and architectures,
our experiments demonstrate that LA-OOD is robust against OODs of
varying complexity and can outperform state-of-the-art competitors by
a large margin on some real-world datasets.
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1 Introduction

Recently, deep neural networks (DNNs) have demonstrated remarkable perfor-
mance in classification problems. However, DNNs are often designed for a static
and closed world, assuming the same data distribution during training and test
times. In an open-world environment, it is important to detect examples from
novel class distributions in safety-critical applications (e.g. detecting new cate-
gories of objects during autonomous driving and diagnoses of unknown diseases,
such as COVID-19). It is hence necessary to develop DNNs that can identify
OOD examples while at the same time classifying samples from known class
distributions with high accuracy.

A number of recent methods have been proposed to detect OOD examples
based on DNNs. The majority of these methods detect OOD examples based
on predictive uncertainty measures of a softmax classifier, such as entropy [15],
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Fig. 1. An overview of our proposed Layer Adaptive Deep Neural Networks for OOD
Detection (LA-OOD).

epistemic uncertainty [12], and others [4,11,18,19]. A more recent work presents
the Deep-MCDD [7], that estimates a spherical decision boundary for each class
based on support vector data description (SVDD), such boundaries will enclose
the in-distribution (InD) samples and distinguish OODs based on their closest
class-conditional distribution. Instead of using the last layer outputs, [1] pro-
posed to find the best intermediate layer based on a holdout validation OOD
dataset. However, all of the above methods detect the OOD examples at the
same level of representation (i.e. outputs at one single layer) and they hence
fail to account for the different representation complexities of OOD examples.
Particularly, our empirical study indicates that different OODs may be better
detected at their appropriate levels of representations (see Sect. 4.2).

This observation motivates us to propose a novel framework, namely Layer-
Adaptive OOD detection (LA-OOD), a generic modification to off-the-shelf
DNNs that introduces OOD detectors to intermediate layers. Specifically, we
train separate One-Class SVM (OCSVM) OOD detectors using different layers’
outputs and employ a simple yet effective layer-adaptive policy function to iden-
tify the best layer for detecting each potential OOD sample (see Fig. 1). We tune
the OOD detectors through self-adaptive data shifting [16] to improve its accu-
racy and robustness against unseen OODs, and fine tune the framework using
alternating optimization, in which the DNN classification error and the OOD
detectors’ training errors are minimized jointly.

The main contributions are stated as follows:

— We propose a novel layer-adaptive OOD detection framework (LA-OOD) that
is practical for any off-the-shelf DNNs. Multiple OOD detectors are attached
to the intermediate layers of a DNN, through a simple yet effective layer-
adaptive policy, our proposed framework is able to fully utilize the intrin-
sic characteristics of inputs encoded in the intermediate latent space, hence,
detect OODs with varying complexity.
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— We propose a joint objective that fine-tune the OOD detectors while main-
taining DNN’s classification accuracy. We also designed an OOD confusion
metric and a Grad-CAM visualization tool to facilitate decision making and
improve the model interpretability.

— Extensive experiments have been conducted to demonstrate the effectiveness
of our proposed framework. On three DNNs with varying depth and architec-
tures, using two InD datasets and five OOD datasets, LA-OOD outperform
state-of-the-art baseline methods in most settings without any OOD training
or validation samples, being a practical yet effective OOD detection frame-
work for OODs of different complexity.

2 Related Work

Dynamic Neural Networks with Early-Exit. Adaptive early-exist is a rising
research topic in deep learning. By attaching early exits to a DNN, such methods
allow “simple” samples to be output at early layers without “overthinking” [5,6].
For a given input, an early-exit could be determined by either a confidence
metric [9] or a learned decision function [2]. However, these methods aim to
improve DNN performance by focusing on InD sample evaluation without giving
enough attention to OODs. In this paper, we adopt the idea of early exits for the
out-of-distribution detection problem and propose a nowvel framework in which
each OOD sample is detected at its best layer.

OOD Detection for Deep Neural Networks. In recent years, researchers
have developed a number of OOD detection methods, where the majority of
such techniques use the final outputs of a DNN to separate the OODs from
the InD samples [15]. [4] proposes a baseline method that detects OODs based
on the maximum softmax probabilities of a DNN’s final outputs. ODIN [11]
incorporates the temperature scaling and input perturbation into the maximum
softmax probabilities to enhance the margin between InD and OOD samples.
More recently, [7] extends Deep-SVDD to a multi-class setting and proposes
the Deep-MCDD, It integrates multiple SVDDs into a single deep model where
each SVDD is trained to surround one InD class sample. However, these works
mainly focus on the high-level conceptual features outputted by the ending layers
of DNNs while ignoring the low-level representations at the intermediate layers,
hence, may “overthink” the problem and fail on OODs of relatively low com-
plexity. In contrast, LA-OOD not only considers the ending layers’ outputs but
also takes the intermediate layers into consideration to generate more accurate
00D predictions.

Two existing methods [1,8] utilize intermediate outputs of a DNN for OOD
detection. [8] defines the confidence score of input as a weighted average of the
Mahalanobis distance to the closest class-conditional distribution at each layer,
such weighting function is trained using an additional validation set. [1] proposes
the OODL which decides an optimal discernment layer based on a holdout OOD
dataset. Both methods require the OOD samples during the training, such OOD
samples not only are hard to obtain in real-world applications, but also make
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the trained models susceptible to unseen OODs. In this work, we tune the OOD
detectors using pseudo OODs generated through self-adaptive data shifting [16]
of the InD training samples, hence, does not require any OOD samples during
the training.

3 Adaptive One-Class Deep Neural Network

Since OOD samples are rarely available during the training, here we formulate
the OOD detection as a one-class classification problem, in which OOD detectors
only target to determine whether an input is in-distribution or not.

3.1 Problem Formulation

Let x € X be an input, y € Y = {1,---,K} being its label, given a deep
neural network M with L layers, it tries to classify each input to K classes:
§ = M(x) € Y. With the intermediate outputs x(*) at layer £ € {1,--- L},
its OOD score s¢) = Cy(x9)) is computed by a layer-specific OOD detector
Cy. Separate OOD detectors could be attached to different layers of M, the
final OOD score of x could be obtained by taking the maximum OOD scores
outputted by all the OOD detectors: sgn, = max [{C’g(x(z))}l{::l]. Such OOD
score then can be used to determine whether x is in-distribution or not based
on a predefined threshold §.

3.2 Framework Overview

In the context of one-class classification, there are many possible selections for
the OOD detector (KDE, GMM, k-NN, etc.) In this paper, we use the One-Class
Support Vector Machine (OCSVM) [13] which is one of the most commonly used
one-class classifier in the literature. Note that, we could replace OCSVM with
any other one-class classifiers as our framework design does not depend on a
specific choice of one-class classifiers.

For the OCSVM, a feature mapping @ : X ¢ RY — F C R" is defined,
where h > d, it maps the input samples {x;}"_; € R? into a high dimensional
feature space F. An OCSVM will try to find the best separating hyperplane
that separates all the input samples from the origin such that the distance to
the origin is maximized. Normally, the calculation of the feature mapping @
is avoided by using the kernel trick k(x;,x;) = (P(x;) - P(x;)). In this paper,
we select the commonly used Gaussian Radial Base Function (RBF) kernel:
k (xi,x;) = exp (—’y llx; —x; HQ), where ~ is the kernel width.

Using Lagrange multipliers, optimizing the OCSVM C} at layer £ is equivalent
to solving the following dual Quadratic Programming (QP) problem:

. 1 © (0 © 0 1 o
min ilzjzal Q; k(xi i X ) st. 0 < o S%,and zi:ai -1 (1)

a®)
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where az@ are the Lagrange multipliers, and v € (0, 1] is the upper bound of
the training error.

Given an input sample x and its layer £ outputs x(), its OOD score at layer
{ is calculated using the decision function:

Za ( <e))+ () (2)

where the offsets p*) can be recovered by p(¥) = Z a(e)k: ( (Z) x\¥

X, ) . Positive

scores represent OODs, and negative scores represent InDS (assummg the default
zero threshold is used, i.e., 6 = 0).

3.3 Framework Training

Given a pre-trained DNN model My parameterized by 60, using the OCSVMs
as OOD detectors, we propose a joint objective for training both the backbone
model and the OOD detectors:

L
L A ) O (O 0
o KO3 YTl () W

Zli,j

subject to 0 < (é) < and Zam =

Here the first term L(0) denotes the loss function of the backbone network, and
the second term is the summation of losses for all the OOD detectors multiplied
by a regularization parameter A > 0. We aim to fine-tune the layer-dependent
feature representations and the parameters of layer-dependent OCSVM jointly
so that the training errors of the OOD detectors are minimized while maintaining
DNN’s classification accuracy.

To solve Eq.(3), an alternating optimization technique is applied in which
the  and {a¥}}_| will be updated alternatively:

— Step I: Fix {oz(l)}%:1 and re-estimate the model parameters 0 using a Eq. 4.
— Step II: Fix @ and generate the updated intermediate outputs to re-estimate
{a®}L_ | using Eq. 1.

In step I, we fix the estimated dual coefficients {a(e)}szl for all OCSVMs,
then re-estimate the backbone model parameter :

>\
min - L(6) + - Za%%( 0),x\"(9)) (4)
E 1 4,5

In step II, we fix the backbone model to update the intermediate outputs for the

training samples, then based on the newly generated outputs, we re-train all the
OOD detectors using Eq. 1.
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Algorithm 1. LA-OOD Training Procedure
Input: Pre-trained DNN model Mg, InD sample set X’
Output: Jointly trained My and OOD detectors {C¢}r,
1: Generate the intermediate outputs {X¥}5_,
2: Generate pseudo-outliers
{Xéfludo}le = selfAdaptiveDataShifting({X 9 }£_))
Hyper-parameter tuning for {C,}%_; using {x®}l | and {Xgﬁludo}le
while not done do
Fix the {a'“}% | and re-estimate 6 (Eq. 4)
Update the intermediate outputs {X*(“}¥
Re-train {C,}{_, using the updated intermediate outputs
(A" O} (Bq. 1)
8: return trained My and {Ce}le

Two important hyper-parameters for OCSVM training are the Gaussian ker-
nel width v and the training error upper bound v. v controls the smoothness
of the decision boundary. The smaller the 7, the smoother the decision bound-
ary will be. v controls the error ratio, which is often tuned to reject the noisy
samples in the training set and it also determines a lower bound on the frac-
tion of support vectors. These two hyper-parameters are critical for OCSVM to
achieve good performance. In general, these hyper-parameters are tuned using
a held-out validation set that includes both InD and OOD samples. In this
work, we adopt the self-adaptive data shifting [16] to generate pseudo-OODs for
hyper-parameter tuning. Such pseudo-OODs are created purely using InD sam-
ples through edge pattern detection [10]. We summarized our LA-OOD training
procedure in Algorithm 1.

3.4 Layer-Adaptive Policy Design

Having L OCSVM OOD detectors {Cy}l | that each outputs an OOD score

Sge) for input x;, we either need to define a threshold for each of these OOD
detectors or design a decision policy that consolidates all the OOD scores into
a final prediction. Empirically, we found that a layer-adaptive policy performs
better than some fixed thresholds as it is very common that the predictions of
OOD detectors diverge from each other (see Sect. 4.3). Here we choose a simple
yet effective layer-adaptive policy that propagates the most confident opinion
among all OOD detectors as the final prediction, specifically, the policy is design
as Sj fina] = Max [{CZ(XEZ))}I?:J‘ One challenge to such policy design is that
OCSVMs trained on different features generally will have a different scale of
scores, this effect could be alleviated by normalizing the training features for
each OCSVM, here we simply use the standardization: x = (x — X)/o, with %
being the sample mean and o being its standard deviation.
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4 Experimental Results

Empirical Settings'. (1) Datasets. Two InD datasets (CIFAR10 and
CIFARI100) and five OOD datasets (LSUN, Tiny ImageNet, SVHN, DTD 3],
and Pure Color) are considered in the experiments. The “Pure Color” dataset is
a synthetic dataset that contains 10,000 randomly generated pure-color images.
For each InD-OOD combination, we construct a training set using all the training
images in the InD dataset and form a balanced test set using all the test images
in both InD and OOD datasets, when the sizes of their test set mismatch, we
randomly selected the same number of images from the larger dataset to match
the test sample size of the smaller one. All images are down-sampled to 32 x 32
resolution using Lanczos interpolation. (2) Backbone Models. We evaluate
our method using three popular CNNs in computer vision and machine learn-
ing studies. Particularly, we select the VGG-16, ResNet-34, and DenseNet-100
to demonstrate the effectiveness of our framework for DNN models of varying
depth and architectures. (3) Feature Reduction. A feature reduction opera-
tion is applied to the intermediate outputs to maintain the scalability [1]. Among
the pooling methods we have tested: max/average pooling with various sizes,
global max/average pooling, the global average pooling performs the best. The
pooled features are then standardized using the training set mean and deviation.
(4) Hyper-Parameters Tuning. We fix v to be 0.001 so that only a small num-
ber of InD samples will be considered as noise, the - is tuned using pseudo-OODs
generated by self-adaptive data shifting [16] of only the InD training samples.
We search v in [0.001,0.0025,0.005,0.01,0.025,0.05,0.1,0.25,0.5,1.0], for dif-
ferent InD-Backbone settings, we will shrink the value range to accommodate
the differences in feature complexity and to reduce training time. (5) Base-
line Methods and Evaluation Metrics. We compare our method with four
state-of-the-art OOD detection baselines: MSP [4], ODIN [11] (both tempera-
ture scaling and input preprocessing are used to achieve optimum performance),
OODL [1] (we use the iSUN [17] as an additional OOD dataset to find its opti-
mal discernment layer), and Deep-MCDD [7]. Three commonly adopted OOD
detection metrics are used: AUROC, AUPR, and FPR at 95% TPR.

4.1 Performance Evaluation

The experimental results are reported in Table 1, the mean values of the each
evaluation metric are also reported to demonstrate the overall performance
on OOD datasets with varying complexities. It is worth noting that previous
works often choose to use linear interpolation for the down-sampling opera-
tion [1,7,8,11], however, we found that using linear interpolation will create
severe aliasing artifacts which make such OOD samples easily detectable, there-
fore, to generate more genuine OOD samples, we down-sampled the OOD images
using the Lanczos interpolation which is much more sophisticated than the linear
interpolation.

! The source code and datasets are available at: https://github.com/haoliangwang
86/LA-OO0OD.
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From Table1, it could be seen that OODs that of higher complexity will
be harder to detect, such as the LSUN and Tiny ImageNet images that could
contain complex backgrounds or multiple objects in a single image. OODs of
lower complexity are easier to detect, such as the SVHN that contains cropped
street view house numbers or DTD that contains images of different textures.
The synthetic Pure Color dataset is of the lowest complexity as it contains limited
information. Such dataset complexity could be easily verified using entropy or

energy metrics.

Table 1. Performance evaluation. Metrics with “1” indicate the bigger the better and
“]” indicate the smaller the better. Best performance are labeled in bold.

InD/Model OOD

AUROC 1

|AUPR 1

| FPR at 95% TPR |

MSP/ODIN/ Deep-MCDD/OODL/LA-OOD (Ours)

Cifarl0 VGG-16 LSUN
Tiny
SVHN
DTD

Pure Color

86.25/86.75/85.19/88.03/87.26
85.66,/86.35/83.95/87.10/88.39
91.12/91.47/89.81/91.68/97.27
87.73/90.26/88.33/92.16/97.35
98.57/99.77/98.42/99.41/99.93

85.26/87.06,/84.76/88.01/84.42
84.23/86.22/83.49/86.98/86.02
87.06/89.29/93.99/88.46/97.15
87.05/89.58/80.60/90.82/97.45
98.18/99.75,/98.30/98.94/99.84

69.27/67.72/59.09/62.38/54.88
67.36/64.30/61.56/64.08/44.00
21.78/25.45/64.02/23.52/14.25
66.24/46.33/53.56/25.04/14.06
04.66/01.24/05.68/02.08/00.21

Mean

89.87/90.92/89.14/91.68/94.04

88.36/90.38/88.23/90.64/92.98

45.86/41.01/48.78/35.42/25.48

Cifar100 VGG-16 LSUN
Tiny
SVHN
DTD

Pure Color

73.00/73.58/72.83/75.10/72.48
77.10/77.83/76.37/79.84/80.57
75.43/78.18/74.98/78.43/87.07
75.75/76.81/73.80/77.76/93.28
62.66/51.22/78.28/58.10/96.71

68.49/69.78/69.92/69.68/65.28
72.64/74.82/73.27/75.20/75.19
71.53/76.20/86.52/72.63/85.82
70.20/72.94/58.84/70.63/93.33
54.24/49.93/73.44/49.13/95.24

75.43/74.92/85.12/74.99/80.24
63.53/68.89/80.50/60.68/56.22
66.26/70.20/82.31/62.78/48.94
62.13/64.66,/82.20/57.82/33.20
72.32/95.31/81.83/64.85/30.08

Mean

72.79/71.52/75.25/73.85/86.02

67.42/68.73/72.40/67.45/82.97

67.93/74.81/82.39/64.22/49.74

Cifarl0 ResNet-34 LSUN
Tiny
SVHN
DTD

Pure Color

90.16/90.26,/88.02/91.97/89.06
86.53/85.46/83.34/88.81/89.29
84.33/81.22/88.08/87.74/97.77
87.64/83.96/84.56/92.10/97.91
94.59/96.84/96.11/95.52/99.99

87.62/90.19/86.74/90.56/84.48
84.79/86.46/83.25/87.66/86.47
81.88/81.89/93.97/85.13/97.67
85.24/84.39/75.07/91.10/98.06
93.48/96.93/93.81/94.35/99.99

33.24/50.28/55.75/31.19/37.35
58.26/74.41/61.28/46.15/36.90
66.58/81.16/57.06/42.84/12.17
51.61/78.01/62.13/30.82/11.84
17.84/15.54/36.80/19.50/00.04

Mean

88.65/87.55/88.02/91.23/94.80

86.60/87.97/86.57/89.76/93.33

45.51/59.88/54.60/34.10/19.66

Cifar100 ResNet-34 LSUN
Tiny
SVHN
DTD

Pure Color

75.63/77.52/74.65/51.91/65.25
78.70/81.28/78.29/67.05/75.82
78.76/84.16/78.62/79.00/84.61
75.32/78.94/77.11/86.25/91.39
55.23/62.25/63.47/96.46/99.80

70.76/72.81/70.14/51.92/59.65
TA.47/77.39/78.26/66.91/73.74
73.71/78.74/88.50/69.18/76.09
70.07/74.52/84.85/83.45/91.97
48.09/52.11/53.16/91.14/99.78

62.63/63.51/84.34/94.84/78.61
57.97/57.47/78.84/90.27/68.91
55.29/46.58/77.50/45.81/36.85
62.59/60.60/81.49/40.94/41.19
67.52/59.04/99.32/04.98/01.04

Mean

72.73/76.83/74.43/76.13/83.37

67.42/71.11/74.98/72.52/80.25

61.20/57.44/84.30/55.37/45.32

Cifarl0 DenseNet-100 | LSUN
Tiny
SVHN
DTD

Pure Color

92.07/94.01/87.19/88.47/84.38
89.96/91.95/85.22/84.62/88.75
89.00/89.54/89.48/97.19/97.79
88.65/85.42/86.93/95.10/97.61
91.83/96.78/96.21/79.15/99.97

89.47/93.12/86.23/84.87/80.95
87.69/91.32/84.44/80.90/87.80
85.73/88.11/94.46/97.54/97.51
86.06/84.75/77.33/96.14/97.58
87.80/95.01/95.08/69.92/99.97

26.40/28.71/55.00/40.69/51.55
35.00/34.04/58.14/57.25/43.73
36.33/43.54/51.29/16.07/09.41
39.61/60.98/59.57/33.07/12.00
16.06/09.31/23.84/40.08/00.17

Mean

90.30/91.54/89.01/88.91/93.70

87.35/90.46/87.51/85.87/92.76

30.70/34.32/49.57/37.43/23.37

Cifar100 DenseNet-100 | LSUN
Tiny
SVHN
DTD

Pure Color

76.38/77.41/75.17/59.11/69.69
79.73/84.27/78.25/61.84/81.29
80.08/81.30/74.99/71.73/86.99
73.18/70.29/79.34/84.69/93.79
79.60/80.86/91.14/85.39/99.47

72.14/73.19/71.18/57.10/64.28
76.10/81.66/75.11/59.22/78.81
75.29/74.89/86.25/65.36/78.23
69.03/67.93/66.09/84.72/93.95
73.54/77.68/89.64/79.53/99.41

62.62/65.02/82.93/91.64/72.59
55.24/50.97/77.48/81.85/62.76
51.73/49.32/82.48/66.07/32.89
73.09/91.60/75.11/56.15/30.67
44.87/61.26/49.77/34.72/02.84

Mean

77.79/78.83/79.78/72.55/86.25

73.22/75.07/77.65/69.19/82.94

57.51/63.63/73.55/66.09/40.35

The OOD detection methods that utilize the ending layers’ features (MSP,
ODIN;, and Deep-MCDD) generally perform well on detecting OODs with higher
complexity, such as the LSUN and the Tiny ImageNet datasets, however, they
tend to give poor decisions for OODs of lower complexity such as the SVHN,
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DTD, and the Pure Color datasets. The OODL baseline method could utilize
the intermediate features, from the performance evaluation, we could see that
OODL exhibit the same performance pattern as MSP, ODIN, and MCDD, how-
ever, it is due to that LSUN and Tiny ImageNet have similar complexity as the
iSUN dataset, which is used to determine the optimal discernment layers for
OODL, when the test OODs are of different complexity compare to iSUN, its
performance could degrade significantly.

Through multiple intermediate OOD detectors and the layer-adaptive pol-
icy, LA-OOD can exploit the full-spectrum characteristics encoded in different
intermediate layers. Specifically, by taking the early layers’ outputs into con-
sideration, LA-OOD outperforms the other four baseline methods by a large
margin on OOD datasets of lower complexity (SVHN, DTD, and Pure Color).
More importantly, LA-OOD achieves the best average AUROC/AUPR/FPR at
95% TPR for all InD-Backbone settings, which indicates our proposed method
is robust against OODs of different complexity. Overall, LA-OOD achieves an
8.21% improvement margin on AUROC, 7.8% improvement margin on AUPR,
and 29.98% improvement margin on FPR at 95% TPR compare to the second-
best baseline method.

4.2 TUnderstanding the Behaviors of Different Layers

As the layer of a DNN goes deeper, 12000 [T Pure color =

more complex features could be = f

learned [20], by attaching OOD detec- ~ ™ ==Tm

tors to the intermediate layers, we

could detect OODs based on fea-

tures of different complexities. Figure 2

shows the number of OODs identi-

fied by different OOD detectors. For

the LSUN and Tiny ImageNet OOD N

datasets which are of higher complex- o~ o o 8 m

ity, most of them are identified by

the last two OOD detectors, while for

the other three OOD datasets that g, )\ iber of OODs detected by

have relatively lower complexity, they OOD detectors at different layers usin
. Y g

are mainly detected by the first seven VGG-16 and CIFARIO TnD.

detectors.

In Fig.3 we show the correctly

identified Tiny ImageNet samples by different layer’s OOD detectors using the

VGG backbone and CIFAR10 as InD dataset. It could be seen that the OOD

detectors at the initial layers are more sensitive to the image colors and textures

which relate to the fine-scale details of the input images, while the OOD detec-

tors at the ending layers tend to detect OODs based on objects or scenes. As

the layer goes deeper, more and more complex OODs can be detected. Similar

pattern could also be found on the DTD dataset, as shown in Fig. 4.
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Fig. 3. Correctly identified Tiny ImageNet OODs by OOD detectors at different layers,
using VGG backbone and CIFARI10 as InD dataset.
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Fig. 4. Correctly identified DTD OODs by OOD detectors at different layers, using
VGG backbone and CIFAR10 as InD dataset.

4.3 Framework Confusion Analysis

8

1250

Number of Test Samples
w 9 B
8 & 8

g

°

indicates that their predictions are inconsistent -

and confused Here we define a confusion score
D(x) = Z Co(x9) to measure the prediction

be negative for most of the InD test samples ! H ‘l

and positive for predicted OODs, the confusion “Gos e -t od0 oo o

occurs when the confusion score is close to 0.

unable to make a confident prediction and may

have misclassified a test sample. Such an indicator has significant importance

in handling errors due to the possible severe impact of false positives in real-

While the InD samples tend to have small negative values (with an average of

—0.16), the OOD samples are more concentrated on the positive side (with an

average of 0.02). More importantly, the majority of the InD samples (99.78%)

The disagreement between the OOD detectors .., = oo
divergence between the OOD detectors. For a
good OOD detector, this confusion score should

We expect this confusion metric to be a reli- Fig. 5. Confusion score of SVHN
able indicator in cases where the framework is vs. CIFAR10 on VGG-16.
world applications. We performed a confusion analysis on VGG backbone, using
CIFARI10 as InD and SVHN as OOD, the confusion scores are shown in Fig. 5.
have negative confusion scores and this makes the confusion analysis highly reli-
able and less prone to false positives. The confusion happens when the confusion
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score is close to zero, according to applications, a threshold could be determined

based on the tolerance for misclassification.
[
HL R

Towards this error mitigation :
analysis by designing a visualization t‘ E ";.‘\' ;%‘
[ — Yo “7) - - H

problem, we carry on the confusion

tool for image OOD detection. Specif- 0ay (ot o
ically, we adopt the Grad-CAM [14] to
show the root causes of the OOD pre-
dictions in the input space. The analy- . (005 (0.14) (0.15) (001) (0.05) (0.10) |
sis is continued on the VGG backbone

and CIFAR10 InD setting. As for the

OOD dataset, we use the Tiny Ima- Fig.6. Prediction visualization of Tiny
geNet since it has the most related ImageNet samples, on VGG-16 and
class definition as CIFAR10. Some CIFARIO InD.

examples are shown in Fig.6 to illustrate the disagreement between two OOD
detectors: C4 and C9, the numbers below the heatmaps are their corresponding
OOD scores, with red color representing an OOD prediction and green color
representing an InD prediction. We could see that OOD detectors at the early
layers are more sensitive to textures and colors, while OOD detectors at the
ending layers are more focused on objects and scenes.

w
4

4.4 Advantages of Using Intermediate OOD Detectors

An optimal discernment layer [1] (or best layer) *° : i
could be found for a particular OOD dataset, °° _ gz
but it may not be the optimal choice for OOD  °° ey
datasets of different complexity. In Fig. 7 we show S” /\i( / |
the AUROC of SVHN and LSUN at each layer °°| |/ i\\\ ) %/w:
of VGG-16 (using CIFARIO as InD). The best P\ /) — s
layer for SVHN is layer 5, while the best layer 5 v

1 2 3 4 5 6 7 8 9 10 11 12 13

for LSUN is the last layer. Such best layer could Layers
be estimated using a separate OOD dataset, how-
ever, as we could see from Tablel, OODL that
estimates the best layer using the iSUN dataset
could have its performance degrade significantly
when OODs of different complexity are encoun-
tered. Therefore, instead of choosing the best layers for different OODs, LA-
OOD propagates the most confident OOD prediction across all layers, and could
effectively construct a good OOD confidence measurement for unseen OODs. For
all five OOD datasets considered in this paper, LA-OOD can achieve competitive
or even better accuracy compare to their corresponding best layers.

Fig. 7. The optimal discern-
ment layers of SVHN and
LSUN on VGG-16.
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4.5 Ablation Studies

Table 2. Performance average on all the OOD datasets. Evaluation metrics with “1”
indicate the bigger the better and “|” indicate the smaller the better. Best performance
is labeled in bold.

InD/Model Metric Cy Cy C3 Cy Cs Cs Cr Cy Cy Cio |Cii |Ciz |Ci3 |LA-OOD

CIFAR10 VGG-16 | AUROC T 60.20 | 78.14 | 89.55 | 89.00 | 83.92 | 81.13 | 77.99 | 70.45 | 65.96 | 71.58 | 83.57 | 89.20 | 91.62 | 93.73
AUPR T 89.18 194.60 | 97.55 | 97.51 | 96.36 | 95.75 | 94.87 | 92.80 | 87.07 | 89.27 | 94.46 | 97.08 | 97.79 | 98.48
FPR at 95% TPR | | 95.47 | 84.39 | 61.76 | 64.55 | 77.97 | 85.61 | 89.12 | 95.19 | 88.47 | 82.01 | 56.04 | 63.22 | 37.16 | 28.25

CIFAR100 VGG-16 | AUROCT 51.87|70.09 | 83.71 | 82.61 | 79.72| 77.08 | 76.17 | 69.55 | 72.43 | 70.38 | 62.66 | 37.80 | 73.46 | 85.34
AUPRT 85.56 | 91.89 | 95.93 | 95.85 | 95.19 | 94.51 | 93.84 | 91.90 | 91.11 | 90.27 | 86.70 | 76.10 | 90.42 | 95.93
FPR at 95% TPR| |94.75|89.32 | 76.22 | 80.75 | 83.96 | 86.80 | 86.00 | 90.39 | 81.74 | 86.29 | 85.16 | 96.38 | 65.37 | 52.58

Here we evaluate the effectiveness of the “early exits”. We compare the results of
the proposed LA-OOD with the average performance using each OOD detector
solely on five OOD datasets mixed (LUSN + Tiny ImageNet + SVHN + DTD +
Pure Color). Results are shown in Table 2. Using VGG-16 as an example, for both
CIFAR10 and CIFAR100 InD settings, LA-OOD can achieve consistently better
performance than any single OOD detector.

5 Conclusion

We proposed the LA-OOD, a layer-adaptive OOD detection framework for deep
neural networks. By attaching multiple intermediate OOD detectors to the
DNNs, LA-OOD can fully exploit the intrinsic characteristics of the interme-
diate latent space and reveal OODs with increasing complexity at deeper layers.
Extensive experiments have been conducted to verify the effectiveness and inter-
pretability of LA-OOD. On three DNNs with varying depth and architectures,
our framework outperforms the state-of-the-art baselines without using any OOD
training/validation data, being a reliable method for detecting unseen OODs.
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