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Abstract. Missing values in testing data has been a notorious problem
in machine learning community since it can heavily deteriorate the per-
formance of downstream model learned from complete data without any
precaution. To better perform the prediction task with this kind of down-
stream model, we must impute the missing value first. Therefore, the
imputation quality and how to utilize the knowledge provided by the pre-
trained and fixed downstream model are the keys to address this problem.
In this paper, we aim to address this problem and focus on models learned
from tabular data. We present a novel Self-supervised downstream-aware
framework for MIssing Testing data Handling (SMITH), which consists
of a transformer-based imputation model and a downstream label estima-
tion algorithm. The former can be replaced by any existing imputation
model of interest with additional performance gain acquired in compar-
ison with that of their original design. By advancing two self-supervised
tasks and the knowledge from the prediction of the downstream model
to guide the learning of our transformer-based imputation model, our
SMITH framework performs favorably against state-of-the-art methods
under several benchmarking datasets.

Keywords: Missing testing data · Downstream-aware · Transformer ·
Self-supervised learning · Tabular data

1 Introduction

Missing values in testing tabular data can heavily deteriorate the performance of
downstream model learned from complete data. Despite meticulous control over
the data collection pipeline, missing data arise under several circumstances such
as the malfunctioning of storage device or the privacy concern that customers are
reluctant to provide such information. Regarding this crucial issue raised by the
missing values, previous methods addressing the missing testing data problem
fall into two categories C1: Take precaution during the learning of downstream
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model [10,12]. C2: Impute the missing testing data then feed it into the down-
stream model as normal inference pipeline[1,4,8,11,12]. Although prevention is
better than cure, one major drawback of C1 is that most existing downstream
models do not consider the missing issue during designing their architecture,
so they usually can not handle missing data. Therefore, C2 is usually preferred
since it is applicable to most of existing downstream methods.

To perform imputation on missing testing data, previous work [8] exploits the
instance correlation by statistically assuming that similar instances have simi-
lar feature. Other methods such as [1,11,12] additionally exploit the correlation
among features to predict the missing value by learning a prediction model taking
known features as input and estimating the missing value. However, the former
suffers from high performance variance considering the wide variety of data dis-
tribution of different datasets, and the latter provides imputation of poor quality
if the correlation between missing and known features is weak. Aside from the
potential issues of imputation quality, previous imputation methods [1,4,8,11]
focus on filling missing value via knowledge from the observed feature only. How-
ever, they neglect that the information provided by the prediction of pre-trained
downstream model could be beneficial. To summarize, missing values in testing
data is a challenging problem since the potential issues of the weak correlation
among features and the over ideal statistic assumption can lead to poor impu-
tation quality. The imputation methods can only learn from incomplete data,
which further increase the difficulty of estimating missing value. Besides, pre-
vious methods fail to exploit the beneficial knowledge from the prediction of
downstream model.

This paper presents a novel downstream-aware framework, Self-supervised
downstream-aware MIssing Testing data Handling (SMITH), to provide better
prediction with missing testing data. SMITH follows the pipeline of C2 to address
the problem of missing data during testing phase. We present a transformer-
based imputation model that exploits the feature correlation by co-relating input
features with self-attention mechanism to provide accurate estimation about
missing value. To effectively optimize our imputation model, we design two self-
supervised tasks to guide the learning. The first is the masking and prediction
task, i.e., we mask the known features then requires our model to predict the
masked values. The second is the missing adversarial task, which serves as the
regularization term to prevent our model from predicting missing values that is
out of regular feature distribution. For leveraging the knowledge from the down-
stream prediction, we propose a downstream label estimation algorithm, which
provides a more confident prediction by aggregating the predictions of similar
neighbor instances. The downstream label estimation has two potential usages.
One is to be performed on the imputation model optimized already. The other
is to serve as extra aid during the learning of imputation model by maximizing
the probability of the most confidential label. Besides, our SMITH framework
also provides the flexibility of model integration, i.e., it can be applied to any
of existing imputation methods of interest by simply replacing the imputation
module. We highlight the contribution of this paper below:
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– We present a novel downstream-aware framework, SMITH, which performs
imputation on the missing testing data through exploiting the knowledge from
the downstream model.

– The imputation module in SMITH is realized by a novel transformer-based
learning, which is guided by two self-supervised tasks to perform imputation
of high quality on the missing testing data.

– The downstream-aware nature of SMITH provides the flexibility of affording
existing imputation methods to ameliorate their imputation performance.

– Experiment results show that SMITH outperforms state-of-the-art imputa-
tion methods on several benchmarking datasets for downstream predictions.

2 Related Work

Missing Data Imputation. Before the breakthrough of neural network, miss-
ing data imputation has already been a well-known research topics in different
domain. In this work, we focus on handling imputation on tabular data. For the
non-neural-based imputation methods, Mean imputation fill the missing value
with global average while KNN imputation [8] fill it with the average of top-k
similar instances. However, the performance of such imputation methods heavily
relies on the distribution of input data. Other methods typically utilize the corre-
lation among input features by learning a prediction model. For example, MICE
[1] adopts multiple chained equations to predict the missing value by learning a
regressor for each missing feature with the rest features served as the input for
prediction. Nevertheless, the capability of previous non-neural based prediction
models is typically not sufficient to give an accurate estimation for the missing
value and thus could perform even worse than the non-learning based methods
during the circumstances that the correlation among features is weak. With the
progress of neural network nowadays, recent neural-based methods directly learn
a black-box imputation model by exploiting the strong data fitting capability
and robustness of neural network. Additionally, they do not rely on assumptions
about the distribution of data. For example, GAIN [11] proposed a GAN-like [5]
framework comprised of a generator predicting the missing value and a discrimi-
nator measuring the quality of the prediction. By backpropagating the goodness
of prediction to the generator, this method outperforms previous traditional
learning-based method on several datasets and demonstrate the possibility of
bringing neural network into this research topic. However, the optimization of
GAIN is more like learning an autoencoder with an extra discriminator, which
could possibly result in learning an identity mapping from the input feature to
the output. Another neural-based framework, GRAPE [12], adopts graph neural
network to address the missing data problem, which constructs a bipartite graph
with feature and each observation as nodes and the feature value as the edge.
By formulating the imputation as the edge prediction task between feature and
observation node, GRAPE demonstrates huge improvement over previous works
on several regression task and is claimed to be the state-of-the-art method for
missing data imputation.
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3 The Proposed SMITH Framework

3.1 Notations and Problem Statement

Now we define the notations. A tabular dataset consists of N instances D =
{(xi,mi, yi)}Ni=1, in which xi ∈ Rd that denotes the features vector of each
instance, mi denotes the binary mask with values in {0, 1}d to indicate whether
a certain feature is missing, and yi denotes the ground truth label that is only
for evaluation. Besides, we consider the most general missing scenario, missing
completely at random (MCAR).

The goal of missing testing data problem is to maximize the performance
of the downstream prediction task performed with a fixed classifier C, which is
trained on the complete training data while taking missing testing data as input
during prediction. To have the fixed downstream classifier to perform inference
on missing testing data, an imputation model M is required to fill the missing
value first, taking (xi,mi) as input and outputting imputed data x̂i. Thus, the
quality of the imputation by M plays the key role for the downstream perfor-
mance.

3.2 SMITH Framework

As depicted in Fig. 1, SMITH consists of an imputation model M and a down-
stream label estimation algorithm. The former learns imputation from incom-
plete testing data, and the latter improves the performance further by leveraging
knowledge from the downstream prediction task. While the overall framework is
optimized, we can perform inference on the missing testing data without exploit-
ing the ground-truth downstream label. With the above-mentioned framework,
although testing data contains missing values and the downstream model can
only take complete data as input, the downstream task can be achieved by
performing imputation on the missing testing data (xi,mi), then feeding the
imputed features x̂i into the downstream model to acquire the downstream pre-
diction ŷi. It is worth noting that the imputation model in our framework can
be replaced by any existing imputation methods to meet the desire of different
downstream tasks. We will present the downstream label estimation in Sect. 3.2,
and leave the imputation model introduced in Sect. 4.

3.3 Downstream Label Estimation

Although the ground-truth labels during the testing phase is not available,
we propose a downstream label estimation (DLE) algorithm that can exploit
favorable knowledge from the downstream prediction to improve the perfor-
mance. Our downstream label estimation algorithm follows the assumption that
instances with similar feature values should be within the same class. For each
instance, we perform voting within the prediction of top-k similar instances to
give a more confident estimation of downstream label, denoted as ỹi. Considering
the incompleteness of testing data, we perform imputation with the imputation
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Fig. 1. The proposed SMITH framework.

Algorithm 1: Downstream Label Estimation
Input: Imputation Model M, Downstream Classifier C
Data: Testing data D = {(xi,mi)}Ni=1

Output: Estimated downstream label ỹ
1 Perform imputation on missing data D with imputation model M and get

imputed data x̂.
2 Get downstream prediction ŷ with downstream classifier C.
3 foreach xi do
4 Calculate the similarity between x̂i and all the other instances x̂.
5 Find the top-k similar instances according to similarity.
6 Perform voting within the prediction of top-k neighbors and acquire

the estimated label ỹi.
7 end

model M to acquire data with full feature values, x̂i, then calculate the instance
similarity. The full DLE pipeline is detailed in Algorithm 1.

The downstream label estimation can be exploited in two ways, within and
after the optimization of imputation model. The former “within imputation” is
applicable to neural network-based methods only while the latter “after impu-
tation” is for any supervised learning methods. More specifically, for neural
network-based imputation methods like GAIN [11] and GRAPE [12], we can
backpropagate the extra knowledge of the estimated label to help the learning of
imputation model by maximizing the downstream probability of the correspond-
ing label ỹi, in which cross-entropy can be used as the objective. We denote this
learning objective as LDLE , given by:
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LDLE = − 1
N

N∑

i=1

ỹT
i log(pi) (1)

where pi denotes the vector of label prediction probability estimated by the
downstream classifier C, and ỹi is the one-hot vector of estimated label. During
evaluation, we use ŷi as the testing prediction result since the knowledge from
downstream prediction is already incorporated into the imputation model. As
for the non-neural network based method like Mean, KNN [8] and MICE [1], ỹi
is considered.
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Fig. 2. Proposed transformer-based imputation model and its learning: (a) Model
Architecture, (b) Masking and Prediction Task, and (c) Missing Adversarial Task

4 The Proposed Transformer-based Imputation Model

In this section, we introduce the learning of our transformer-based imputation
model. The goal of the imputation model is to estimate the missing value based
on the known input feature. As shown in Fig. 2(a), our imputation model consists
of three modules, including the feature-specific embedding layer, transformer
encoder, and feature-specific prediction head. The forward pass of our model is
detailed as follows. First, we encode each known feature xj

i in instance xi into
feature embedding eji ∈ Rk, with feature-specific embedding layer respectively.
For the numerical feature, we apply a two-layer MLP for each feature, which
transforms the input scalar into a one-dimensional embedding. For the cate-
gorical feature, we simply use an embedding layer, similar to that of the word
embedding [7]. As for the missing feature values, we adopt a special embedding as
the feature embedding for each missing feature to indicate the missingness. After
the above-mentioned encoding pipelines are completed, an extra embedding for
each feature is added to emphasize the feature modality information, similar
to the positional encoding [3]. As a result, we transform each instance from
one-dimensional feature vector xi into two-dimensional one, ei ∈ Rd×k. As the
encoding process is completed, we feed the feature-specific representation ei into
the transformer encoder that leverages the correlation of each feature via self-
attention [9] and output the representation ti. The final prediction for imputation
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is acquired by feeding the representation ti into the feature-specific prediction
head, transforming the two-dimensional representation into a one-dimensional
one, the same shape as the input feature. To optimize our imputation model,
we introduce two self-supervised tasks, masking and prediction task and missing
adversarial task, to guide its learning. The former enforces our model to estimate
the missing values with the known features, and the latter prevents our model
from predicting values which is out of normal data distribution.

4.1 Masking and Prediction Task

In this task, we aim at exploiting the correlation among the known feature values
to guide the learning of our imputation model. Aside from the missing feature
values which are unobserved at the testing stage, we perform extra masking on
known feature values selected randomly, and require our model to recover them.
Unlike the learning of autoencoder that the ground-truth feature value is already
in its input, our masking operation reinforces the awareness between missing and
known features, and prevents our model from identically mapping the input to
the output. We illustrate this task in Fig. 2(b). For numerical features, we use
mean square error as the learning objective. As for categorical feature, cross-
entropy is considered. We denote this learning objective as LMP and formally
define it as follows:

LMP =

{
1
N

∑N
i=1 ||x̂j

i − xj
i ||2, if xj is numerical.

− 1
N

∑N
i=1(x

j
i )

T log(x̂j
i ), if xj is categorical.

(2)

4.2 Missing Adversarial Task

In addition to the concrete guidance provided by the known feature values, in
this task, we prevent our model from predicting feature values that is out of their
reasonable distribution with the help of an extra module, known estimator KE .
The KE estimates the goodness of the prediction by learning to distinguish known
features from the predicted features generated from the imputation model. As
depicted in Fig. 2(c), the known estimator KE takes the prediction from the impu-
tation model M, and outputs scores ranging from 0 to 1 to indicate the goodness
of each feature value. The learning of KE is formulated as a feature-wise binary
classification task. Formally, the learning objective for KE is as follows,

LEst = − 1
N

N∑

i=1

mT
i log(KE(x̂i)) (3)

To backpropagate the knowledge of the prediction quality to the imputation
model, we fix the model parameters of the known estimator KE , and update
those of the imputation model M to maximize the goodness score. We denote
this learning objective as LMA, given by:

LMA = − 1
N

N∑

i=1

1T log(KE(x̂i)). (4)
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Algorithm 2: Full Optimization Pipeline
Input: Imputation Model M, Downstream Classifier C, Known Estimator

KE
Data: Testing data D = {(xi,mi)}Ni=1 with missing values

1 foreach epoch do
2 Get imputation value with imputer M.
3 Get known estimation with KE .
4 Calculate known estimation loss LEst.
5 Update known estimator KE .
6 Calculate mask prediction loss LMP .
7 Calculate missing adversarial loss LMA.
8 if epoch �= 0 then
9 Calculate downstream label estimation loss LDLE .

10 Update imputer M.
11 Update estimated downstream label ŷi following Algorithm 1.
12 else
13 Update imputer M.
14 Get estimated downstream label ŷi following Algorithm 1.
15 end
16 end

Following the general learning pipeline of Generative Adversarial Network
(GAN) [5], we train the known estimator and our imputation model iteratively
with the objectives mentioned above.

4.3 The Overall Learning Objective

Now we summarize all the learning objectives introduced in the sections above.
For the learning of our imputation model, we have LSST sum up the two self-
supervised objectives related to imputation as follows: LSST = LMP + λaLMA.
After introducing the downstream label estimation into our imputation model,
the full learning objective is formulated as below: L = LSST + λdLDLE , where
λa and λd denote the balancing factors of the missing adversarial task and the
utilization of knowledge from downstream prediction during optimization. Since
the guidance provided by these objectives is imprecise, in practice, we set rela-
tively small learning weights, e.g., 0.01, to them. Note that all the existing neural
network-based imputation methods can be incorporated into our framework by
replacing the imputation model and the LSST will be substituted with their
learning objective accordingly. We detail the full optimization pipeline of the
integration of our transformer-based imputation model into our SMITH frame-
work in Algorithm 2.
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5 Experiments

In this section, we conduct extensive experiments to quantitatively verify the
effectiveness of SMITH on the task of missing testing data.

Table 1. Statistics of datasets.

Statistics Breast Spam Electric Letter Plate Bean Wifi Wine Digit Yeast

Abbr. BR SP EL LE PL BE WIF WIN DI YE

Instance 540 4601 10000 20000 1941 13611 2000 4898 10992 1484

Attribute 18 57 12 16 27 16 7 11 16 8

Class 2 2 2 26 7 7 4 7 10 10

5.1 Experimental Setup

We conduct experiments on 10 real world datasets from the UCI Machine Learn-
ing Repository [2], and the statistics is listed in Table 1. Since these datasets are
originally complete, we drop features following the missing completely at ran-
dom (MCAR) setting to simulate the missing testing data problem. In all exper-
iments, we split the dataset into training/validation/testing set with 60/10/30%
ratio. The downstream classifier is optimized on training set with complete
instances and corresponding labels. The imputation model is optimized on the
testing set with instances containing missing features only and validated with
the validation set which is similar to the former but with the ground-truth label
to select the best checkpoint. Following the same pipeline as previous works
[11,12], we scale feature values to [0-1] with MinMax Scalar [6] as the feature
preprocessing. We use a 3-layer MLP with tanh as the downstream classifier.
For the analyses, we conduct experiments with the setting mentioned above 5
times with different random seeds and report the mean accuracy.

We compare SMITH with the following imputation methods: (a) Mean:
Impute the missing value with the mean of observed feature value; (b) KNN
[8]: Impute with the mean value among top-k most similar instances; (c) MICE
[1]: Impute the missing value based on a simple prediction model conditioned on
the other feature and optimized on instances with observed value; (d) GAIN
[11]: State-of-the-art neural method with generative adversarial training; (e)
GRAPE [12]: State-of-the-art neural method following the graph architecture.

5.2 Experimental Results

Comparison of Imputation Models. In this section, we compare the imputa-
tion capability of SMITH with competing methods on different levels of missing
rate. To focus on the imputation capability, knowledge from the downstream
model is not involved in these experiments. We found that though some neural-
based methods are claimed to be the state-of-the-art, they could lose to non-
neural based imputation methods on several datasets. Since there is no single
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Table 2. Performance comparison of imputation models on different missing rates.

Method BR SP EL LE BE WIF DI PL WIN YE Rank

30% Missing Rate

Mean 94.5 87.96 75.4 45.19 76.16 85.17 70.02 57.39 46.45 43.73 5.5

KNN 94.69 88.16 74.75 60.45 90.01 86.47 91.06 65.57 46.99 43.06 4.2

MICE 96.96 88.22 76.79 52.46 90.69 91.87 87.29 65.4 46.88 44.0 3.1

GAIN 94.97 88.83 75.25 51.44 88.9 88.43 83.99 62.92 46.49 42.43 4.6

GRAPE 95.67 89.45 76.46 64.46 90.81 93.83 94.9 66.49 47.09 43.51 2.3

SMITH 96.26 88.72 76.99 68.71 90.84 94.1 95.29 66.7 47.16 44.72 1.3

50% Missing Rate

Mean 92.28 81.93 71.36 28.77 55.78 69.37 50.07 44.95 46.26 40.76 5

KNN 93.68 82.06 68.23 32.59 76.62 77.3 59.39 57.94 46.05 39.69 4.85

MICE 94.85 84.23 71.59 36.77 87.25 80.6 69.77 58.59 46.14 40.4 3

GAIN 93.62 84.59 71.33 33.79 83.73 76.57 66.7 56.46 46.0 40.49 4.3

GRAPE 93.68 86.09 72.37 47.42 89.47 84.57 87.8 62.13 46.11 40.27 2.35

SMITH 94.27 84.33 72.66 48.18 89.35 84.73 86.77 62.3 46.34 41.26 1.5

70% Missing Rate

Mean 88.77 73.19 67.85 16.41 35.57 50.8 30.48 38.01 45.78 36.31 4.85

KNN 88.07 73.74 63.95 18.08 63.55 61.83 41.87 48.73 45.78 34.7 4.45

MICE 92.05 77.68 68.03 19.4 69.2 63.93 39.16 47.73 46.03 35.19 2.9

GAIN 87.13 77.39 67.6 14.96 59.49 56.63 40.99 47.66 45.63 35.51 4.7

GRAPE 90.29 80.62 67.23 25.9 85.47 67.73 65.3 54.47 45.89 35.42 2.2

SMITH 91.46 74.78 68.25 24.6 85.2 68.0 62.57 52.78 45.97 36.63 1.9

method outperforming the others among all datasets, we compare them by the
average ranking. Table 2 shows SMITH outperforms all competitors. However,
as the missing rate increases, the ranking of our model gradually decreases.

Analysis on Downstream Label Estimation Algorithm. We investigate
whether our downstream label estimation (DLE) algorithm can improve the
performance of downstream task. Besides, we compare the two strategies of
incorporating the algorithm into existing imputation methods, within or after the
optimization of imputation, denoted as single (-s) and iterative (-i) respectively.
The results are reported in Table 3. In comparison with the results in Table 2, we
see that our algorithm improves the performance of all imputation methods. As
for the comparison of different strategies, we observe that the option iterative
always outperforms the option single on 30% and 50% missing rates. This is
expected since the extra knowledge of downstream model is backpropagated to
the learning of imputation. However, in the setting of 70% missing rate, the
performance of iterative is worse than single in some datasets. We attribute this
phenomenon to the uncertainty of the imputation learning on 70% missing rate.
Incorporating such an objective could bring additional noise since the learning
is already difficult. Consequently, our model still outperforms all competitors
across all missing rates after we advance the downstream label estimation.

Ablation Study. To verify the effectiveness of each component in SMITH, we
conduct ablation analyses on two self-supervised tasks and the downstream label
estimation (DLE) algorithm on 10 datasets with 30% missing values. Table 4
shows the effectiveness of each learning objective is confirmed.
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Table 3. Performance comparison between iterative and single learning strategies.

Method BR SP EL LE BE WIF DI PL WIN YE Rank

30% Missing Rate

Mean-s 95.02 88.01 75.62 51.42 81.13 87.97 76.51 58.16 46.55 43.92 5.4

KNN-s 94.91 88.23 74.98 64.31 90.45 88.79 91.37 65.82 47.03 43.23 4.5

MICE-s 97.01 88.31 77.01 54.57 90.81 92.76 88.81 65.77 46.91 44.03 3.5

GAIN-s 95.11 89.01 75.34 62.48 89.98 93.1 92.46 63.39 46.52 43.73 4.2

GAIN-i 95.32 89.11 75.43 63.12 90.03 93.99 93.67 63.57 46.6 44.05 3.9

GRAPE-s 95.92 89.52 76.52 65.83 90.96 93.87 95.16 66.57 47.12 44.02 2.2

GRAPE-i 96.07 89.67 76.66 67.59 91.02 94.47 95.34 66.71 47.19 44.22 2.1

SMITH-s 97.03 88.91 77.08 69.23 91.08 94.33 95.37 66.85 47.29 44.91 1.2

SMITH-i 97.13 88.98 77.23 70.12 91.17 94.61 95.48 66.93 47.38 44.97 1.2

50% Missing Rate

Mean-s 93.15 82.07 71.45 31.88 70.66 73.48 61.73 48.12 46.47 41.23 5

KNN-s 94.03 82.15 69.76 39.92 80.89 80.21 65.88 58.23 46.33 40.11 4.8

MICE-s 95.12 84.45 71.88 41.98 88.56 83.11 72.19 59.44 46.41 40.72 3.2

GAIN-s 93.78 84.65 71.42 41.1 87.72 83.13 80.91 57.51 46.07 40.77 4

GAIN-i 93.98 84.68 71.48 41.59 88.62 83.22 81.27 57.98 46.31 41.03 3.7

GRAPE-s 93.89 86.23 72.44 50.46 89.51 85.07 88.64 62.31 46.19 40.58 2.5

GRAPE-i 94.04 86.31 72.53 50.77 89.63 85.18 88.89 62.69 46.2 40.95 2.4

SMITH-s 94.98 84.47 72.71 51.24 89.47 85.34 88.43 62.42 46.51 41.31 1.5

SMITH-i 95.16 84.51 72.83 51.45 89.52 85.45 88.63 62.78 46.62 41.39 1.4

70% Missing Rate

Mean-s 89.11 73.22 68.05 18.12 50.23 53.41 40.77 43.38 45.8 36.57 5

KNN-s 88.93 73.78 65.59 19.2 67.88 62.78 45.91 49.22 45.91 35.11 4.7

MICE-s 92.66 77.72 68.13 21.01 71.37 65.77 42.83 48.55 46.22 35.56 2.9

GAIN-s 91.46 77.63 67.79 17.12 76.02 59.37 52.71 48.18 45.73 35.57 4.1

GAIN-i 88.77 76.78 67.19 16.01 74.94 56.83 47.21 48.32 45.54 35.73 4.5

GRAPE-s 91.35 80.96 67.44 26.45 85.63 68.6 68.7 54.74 45.96 35.51 2.4

GRAPE-i 90.76 79.32 67.63 26.15 85.82 68.63 65.65 54.37 45.97 35.06 2.3

SMITH-s 92.21 76.15 68.31 25.78 85.47 68.83 67.16 53.26 46.09 36.81 1.9

SMITH-i 92.98 76.57 68.39 25.81 85.67 68.89 65.51 53.78 46.13 36.74 1.8

Table 4. Results of ablation study.

Setting BR SP EL LE BE WIF DI PL WIN YE

LMP 95.74 88.01 76.51 68.23 90.75 93.88 95.01 66.31 46.89 44.39

+LMA 96.26 88.72 76.99 68.71 90.84 94.1 95.29 66.7 47.16 44.72

+LDLE 97.13 88.98 77.23 70.12 91.17 94.61 95.48 66.93 47.38 44.97
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6 Conclusion

In this paper, we propose a novel downstream-aware framework, SMITH, com-
prised of a transformer-based imputation model learned from two self-supervised
tasks and a downstream label estimation algorithm to handle missing data during
prediction. SMITH is flexible to be applied to any existing imputation methods.
By advancing the extra knowledge from the downstream model, we demonstrate
improvement over 10 benchmark datasets. With SMITH, we outperform previous
state-of-the-art methods regarding the overall average ranking. Extensive exper-
iments are conducted to quantitatively verify the effectiveness of our method.
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