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Abstract. Deep learning methods are usually trained via a gradient-
descent based procedure, which can be efficient as it is not only end-
to-end but also suitable for large quantities of data. However, gradient-
based learning is vulnerable to adversarial attacks – which account for
unperceivable changes in the input data to misguide a trained model.
Though a plethora of work explored the adversarial learning (attacks
and defences) in image datasets, the exploration of adversarial learn-
ing in tabular datasets has seen little attention. In this work, we study
adversarial learning in tabular datasets. We investigate the role of dis-
cretization and demonstrate that discretizing numeric attributes offers
a strong defence mechanism. The main contribution of this work is the
proposition of two new defence algorithms for numeric tabular datasets,
that utilize cut-points obtained from discretization, to forge a defence
against various forms of adversarial attacks. We evaluate the effective-
ness of our proposed method on a wide range of machine learning datasets
and demonstrate that the proposed algorithms lead to a state-of-the-art
defence strategy on tabular datasets.

1 Introduction

At the heart of deep learning is a parametric model in the form of Artificial
Neural Network (ANN), which is trained by optimizing a differentiable objective
function. The error is propagated back through the network, and each weight of
the model is updated in an iterative gradient-descent optimization manner. This
end-to-end training process, as it is known, is efficient as it can process notably
large quantities of data in a strictly online or in some batch processing manner.
However, this gradient-based learning has a fundamental weakness – it opens
the door to adversarial attacks. The idea behind adversarial learning is that any
malicious entity, if, has access to model weights/parameters and can obtain the
respective gradients, then it can modify the input in a way, such that the desired
output can be obtained from the model [7]. E.g., for an input x to a given model
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f(x), r is an adversarial noise if f(x+r) �= f(x), where |r|≤ ε. It can be seen that
the only challenge for the attacker is that the noise (r) should be unperceivable.
Well, for high-resolution images, one can easily make unnoticeable changes in the
input data to fool the model. Therefore, in computer vision, adversarial attacks
are considered a serious threat, and a lot of research has focused on building
effective defence mechanisms [15].

Tabular dataset has some characteristics that challenge the plain application
of adversarial attacks. They can have categorical features, leading to values that
are unique and distinct, that is Y or N or High and Low, etc. Note, these values are
represented as whole numbers: 0, 1 or 2, etc. – i.e., either encoded as bin numbers,
or used in the one-hot-encoding format. Therefore, any changes to these values
can easily be detected. Let us formalize adversarial attacks on tabular data
in the following. We can denote the original unadulterated data as: Sdata =
[(x1,y1), · · · , (xm,ym)], where x ∈ Rn and y ∈ R. They are used to train the
model: f(·)θθθs,∇s

. When an adversarial attack occurs, the adversarial sample Sadv

is generated based on f(·)θθθs,∇s
, such that for each adversarial sample x̃ ∈ Sadv,

we have f(x)θθθs,∇s
= y �= f(x + r)θθθs,∇s

. The goal of the adversarial attack is
defined as maximizing the following objective function: Ladv(f(x + r)θθθs,∇s

,y),
where |r|≤ ε. Here, Ladv(f(x+ r)θθθs,∇s

,y) is known as the adversarial risk on x.
We define adversarial risk over model f(·) as: Ex∈Sdata(Ladv(f(x + r)θθθs,∇s

,y)).
Let us suppose that every feature in our dataset is categorical. As discussed

earlier, the final representation that we get for the features will only consist
of well-round numbers. Any adversary aiming to choose a small value of ε, can
easily be spotted1. Therefore, a simple strategy to defend against the adversarial
samples for datasets with categorical data only is:

– Perform Ceil or Floor operations as advocated in [2]. E.g., if xi is 3 and
ε = 0.15, the adversarial sample will have a value of 3.15, which will be
converted back to 3 with Floor operation. Note, an adversary can also set
ε = −0.15, leading to xi = 2.85. Now, if we perform the Floor operation,
we obtain a value of 2. Note, if the value 2 is allowed, it is fine; otherwise,
if the feature can only take values ≥ 3, the value 2 will violate the validity
constraint of the feature and can be detected easily.

What if a tabular dataset has continuous features? In our previous example,
if an adversarial sample has the values 3.15 or 2.85 – there is no way we can
determine if it is not a legitimate value. And, therefore, adversarial attacks on
numeric data can easily evade a manual inspection. Clearly, there is a need to
determine whether a numeric value is adversarial or not. How about discretizing
the feature and representing it as a categorical feature, or determining whether
it is adversarial based on its distance from the discretization cut-point? These
two questions will form the basis of our two proposed algorithms in this work.
Generally, discretization is only employed to convert continuous features into
categorical if a model can not handle continuous features. However, it has been

1 This is one reason, why adversarial attacks against tabular data are not prevalent
as compared to against image datasets.



Discretization Inspired Defence Against Adversarial Attacks 369

shown recently [11], that discretization can lead to significantly better perfor-
mance as well. In this paper, we show that it can be equally useful as a defence
mechanism for adversarial attacks. Though related techniques such as quantisa-
tion have been used in adversarial defence on image datasets [2], their efficacy
on tabular datasets is not well studied. Exploring what is the role, discretization
can play in warding-off adversarial attack on tabular datasets has been the main
motivation of this work.

In this work, we will devise defence strategies under two scenarios. The first
scenario is where we are allowed to modify the input data while training the
defence model. Here, we discretize the input continuous data – Sdata, and then
adversarially train the model on this new discretized data – Sd-data, as well as
adversarially generated data – Sadv. We demonstrate the efficacy of this strat-
egy by formalizing it in form of our first proposed algorithm named D2A3 –
Discretized-based Defence Against Adversarial Attacks. The second scenario is
where we are not allowed to modify the input features, and the input to the
model has to be original continuous features. For this case, we believe, again
discretization can offer an excellent defence mechanism, but rather implicitly. In
this work, we have proposed a new defence algorithm named D2A3N – Discretized-
based Defence Against Adversarial Attacks with Numeric Input – which lever-
ages the cut-points (boundaries) definition obtained from discretization on orig-
inal data and exploit the distance to cut-points to determine if a data point is
adversarial or not. We summarize the main contributions of this work as follows:

– We highlight the importance of discretization as a defence mechanism for
attacks on tabular datasets, and demonstrate that a simple discretization of
continuous features can be very effective towards multiple forms of adversarial
attacks.

– We propose two algorithms – D2A3 and D2A3N, which utilize discretization to
develop defence strategies for continuous features in tabular datasets. We eval-
uate the effectiveness of our proposed algorithms on a wide range of datasets,
and against various forms of attacks.

The rest of this paper is organized as follows. We will discuss the related work
in Sect. 2. Our proposed algorithms are presented and discussed in Sect. 3. We
do an empirical evaluation of our proposed algorithms in Sect. 4, and conclude
in Sect. 5, with some pointers to future works.

2 Background and Related Work

2.1 Tabular Data Adversarial Defence and Attack

There are three kinds of adversarial attacks that are common for tabular
datasets. LowProFool [1] is a white-box attack method in the tabular domain
for generating imperceptible adversarial examples. It is based on minimizing the
addition of (imperceptible) adversarial noise on the features via the gradient
descent approach. The gradients of the adversarial noise are used to guide the
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updates towards the opposite target class of the clean sample. At the same time,
the penalty of the perturbation is set proportionally to the feature importance
for confirming the minimal perceptibility of the adversarial noise. The benefit of
the LowProFool is that the success rate is largely guaranteed, even the adversar-
ial noise is imperceptible compared to many other white-box attack methods. It
is the state-of-the-art white-box attack method on tabular data [1]. DeepFool [6]
is another white-box attack method, and it works by adding adversarial noise to
the clean sample by finding the distance between the sample and the model deci-
sion boundary. In DeepFool’s formulation, the smallest adversarial noise can be
considered as the orthogonal projection between the sample and the class deci-
sion boundary (affine hyperplane). The advantage of the DeepFool compared to
other classical gradient-based white box attacks, such as FGSM, is that the adver-
sarial noise is more reliable and efficient as DeepFool always finds the generated
adversarial sample close to the decision boundary and therefore the target class
can be changed. The limitation of DeepFool is that the adversarial noise can be
large when the sample is far away from the model decision boundary [1]. FGSM [3]
is a classical white box attack method for image and typical numerical tabular
datasets. The idea behind FGSM is quite simple and straightforward. It relies on
adding the gradients into the original sample to create the adversarial sample.

Defence methods against tabular data adversarial attacks are still limited in
the current literature. A commonly used defence method for adversarial attack
on continuous data is Madry [5]. It leverages the adversarial training to mini-
mize the adversarial risk of the model. Trade [12] is another commonly used
defence method for continuous data which minimizes the regularized surrogate
loss instead of directly training adversarially.

Finally, Thermometer [2] is another defence mechanism that relies on idea
similar to discretization. The Thermometer discretization for tabular data on xi

with k cut-points can be expressed as: t(α = φew(fscale(xi)))l = 1, l ≥ α.
The fscale(·) is the min-max scaler to scale the value of xi into the range [0, 1].
The φew(fscale(xi)) is the quantization function that uses the equal-frequency
to obtain bin α on k cut-points. The array t(α)l has k dimensions and l is the
l-th dimension of the array. It can be seen that the Thermometer discretization
is similar to one-hot-encoding after equal-width discretization. However, in
contrast to one-hot encoding, Thermometer discretization can ensure that the
order remains the same after discretization.

2.2 Discretization as Defence and Discretization Methods

Discretization is a commonly used and well-studied technique in machine learn-
ing [13]. It is to convert a continuous feature into a set of discrete values, which
is usually done by sorting the data and then identifying some cut-points (also
known as boundaries), and placing the continuous data point based on which
bin does it fall into [14]. Each bin is labelled a number in range: {0, 1, . . . , k},
where k is the total number of bins.

A simple illustration of how discretization can lead to a defence is shown in
Fig. 1, where one of the data points (in red) is maliciously tampered (Fig. 1a). It
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(a) Numeric feature, adversarial data in red. (b) Cut-points after discretization, with ad-
versarial sample closer to cut-points.

(c) Replacing the adversarial sample with
the median of the bin.

(d) Data after discretization.

Fig. 1. Illustration of discretization as a defence against adversarial attack. (Color
figure online)

can be seen that if we have the feature in a continuous format, there is no way
for us to differentiate between these red data points and the others. However, let
us suppose that we have obtained some boundaries (δ1, . . . , δ4) after running a
discretization algorithm. We conjecture that the proximity of the data points to
the boundaries can be an indication of an adversarial example. This can be seen
in Fig. 1b, where this proximity is measured as a distance, ε. In practice, once the
boundaries are identified, the data is discretized as the bin-number or represented
with one-hot-encoding. In our example, the malicious red data will be assigned
a value of 2, as shown in Fig. 1d. Now, if we just use bin-number (and train the
original model) or do a one-hot-encoding (and train a modified model that takes
in many more features as input) – the adversarial data is neutralized, which
means that whatever the malicious intent of the attacker was, we have scaled
it back to a value that our model expects (in our example, that is {0, 1, 2, 3}).
Additionally, instead of using the bin-number, one can only replace the value of
the adversarial data to the median of the bin, and keep all other data points
the same – as depicted in Fig. 1c. This will help us in training a model that still
takes as input the data in original format.

In Support of Discretization as Defence. We know that in ANN models,
with all linear activation functions, the loss function tends to be linear with
respect to the inputs as well. In such case, when the input x with the model
f(x) = σ(w�x) is under adversarial attack with x + r, we have:

f(x + r) = σ(w�(x + r)) = σ(w�x + w�r)

It can be seen that w�r determines the success of adversarial attack. Even
though, non-linear functions are typically used in deep ANN models, such as Relu,
they are only piece-wise linear. Much of the work in designing a defence against
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Algorithm 1: Algorithm D2A3 and D2A3N Training
Input: Sdata = [(x1,y1), ..., (xm,ym)], Discretization type – C

1 Initial parameter θθθs of the model f(·)
2 Run discretization method C to obtain cut-points for each feature with Φ(·)
3 for iteration q ⊂ Q in training model f(·) do
4 for sample xt in batch X ⊂ Sdata and yt do
5 if D2A3 then
6 Discretize with one-hot encoding Φ(xt)
7 Train f(·) with Φ(xt) and yt via gradient descent to minimize:

Lθθθs,∇s(f(Φ(xt)),yt) ; // Training Loss

8 Obtain adversarial sample x̃t ∈ Sadv ; // Adversarial Training

9 Discretize with one-hot encoding Φ(x̃t)
10 Train f(·) with Φ(x̃t) via gradient descent to minimize:

Lθθθs,∇s(f(Φ(x̃t)),yt)
11 else
12 Train f(·) with xt and yt via gradient descent to minimize:

Lθθθs,∇s(f(xt),yt)
13 Obtain adversarial sample x̃t ∈ Sadv ; // Adversarial Training

14 Obtain data transformation: M(Φ(x̃t))
15 Train f(·) with M(Φ(x̃t)) via gradient descent to minimize:

Lθθθs,∇s(f(M(Φ(x̃t))),yt) ; // Adversarial Training Loss

16 return f(·), Φ(·), M(·)

adversarial attacks focus on how to break the linearity between inputs and the
output? [2]. Well, discretization followed by one-hot-encoding leads to a non-
linear model, and we claim that it can break the linearity between the input
and the output, and hence, can provide an effective defence mechanism against
adversarial attacks.

3 Methodology

3.1 D2A3 – Model Discretization as Defence

Our proposed algorithm D2A3, relies on discretizing the continuous features to
categorical features as input, and therefore, instead of using a model with contin-
uous input, the discretized model is trained and used in D2A3. One can utilize any
discretization method. The detailed pseudocode of D2A3 is given in Algorithm 1,
where it takes as input the training data Sdata, as well as the discretization
method C – equal-frequency, equal-width, MDL2. Of course, changing the
input data format can be considered as a limitation. We will discuss D2A3N in
the next section, which addresses this issue.

2 Note, we have combined the two proposed algorithms into one due to space con-
straints.
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Algorithm 2: Algorithm D2A3 and D2A3N Defence
Input: Sadv, Algorithm 1 Output: f(·), Φ(·)

1 , M(·) while In defence do
2 Load f(·)
3 for sample x̃ ∼ Sadv do
4 Discretize Φ(x̃)
5 if D2A3 then
6 One-hot encoding on Φ(x̃)
7 return f(Φ(x̃))θθθs,∇s

8 else
9 Obtain data transformation: M(Φ(x̃t))

10 return f(M(Φ(x̃t))θθθs,∇s

Let us discuss another salient feature of our D2A3, i.e., it relies on exploiting
adversarial learning to enhance its defence capability, by optimizing the following
objective function:

Lθθθs,∇s
D2A3 = arg min

θθθs,∇s

Training Loss
︷ ︸︸ ︷

Ext∼Sdata
Lθθθs,∇s (f(Φ(xt)),yt) +

Adversarial Training Loss
︷ ︸︸ ︷

Ex̃t∼Sadv
Lθθθs,∇s (f(Φ(x̃t)),yt) . (1)

It can be seen that our proposed objective function is composed of two parts:
min Lθθθs,∇s(f(Φ(xt)),yt) and minLθθθs,∇s(f(Φ(x̃t),yt). The motivation for Equa-
tion 1 is to achieve better performance for minimizing the empirical loss and also
add robustness to the model as recommended by the work of [4,9].3 As we dis-
cussed earlier, minimization of training loss – Lθθθs,∇s(f(Φ(xt)),yt), can leverage
the non-linearity of the discretization process and obtain a more accurate model
f(·) [10]. However, only adding discretization into model f(·) is not enough as
advocated in [4]. The adversarial training loss – minLθθθs,∇s(f(Φ(x̃t),yt), is fur-
ther added to add robustness to the model. It is based on the optimization prob-
lem which is to minimize the adversarial training loss given by the inner attack
type (i.e., maximizing the adversarial loss by finding the adversarial version of
input) [5]. During the defence, the input samples x̃t will be firstly discretized
and format with one-hot encoding as Φ(x̃t). The outline of D2A3 in defence mode
is given in Algorithm 2.

3.2 D2A3N – Input Discretization as Defence

Unlike D2A3, where the input of the model f(·) is discretized, in D2A3N, the input
to the model is the same as the original data format (continuous or categorical).
It still obtains the cut-point φα ∈ Φ(·) for each feature, using discretization
method C on original data Sdata. After discretization, we use Φ(·) to build a

3 The effectiveness of adversarial training loss component is also studied in ablation
study in Sect. 4.4.
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defence strategy. The strategy revolves around finding the closest data points to
the cut-points. These data points are replaced with the median of the bin. This
is achieved by implementing the transformation function: M(.) as:

M(x̃t) =

⎧
⎨

⎩

arg min
α

‖x̃t − μ(Φ(·))α‖, |x̃t − φα|< ε,

x̃t, |x̃t − φα|≥ ε.
(2)

Here, μ(Φ(·))α denotes the median value of bin α and φα
i is its cut-points. In

addition, we maintain a constraint, i.e., the absolute value between the data and
the corresponding cut-point has to be smaller than the tiny constant value ε
(minimum threshold value to change the bin and fixed as constant during the
defence). Additionally, just like D2A3, the adversarial training is also augmented
here to add the robustness to the model to minimize the adversarial risk as:

Lθθθs,∇s
D2A3N = arg min

θθθs,∇s

Training Loss
︷ ︸︸ ︷

Ext∼Sdata
Lθθθs,∇s (f(Φ(x

t
)),y

t
) +

Adversarial Training Loss
︷ ︸︸ ︷

Ex̃t∼Sadv
Lθθθs,∇s (f(M(Φ(x̃t))),y

t
) (3)

When the D2A3N is used in defence (Algorithm 2), the input is discretized first
and then processed by the transformation function M(Φ(x̃t)) to map it back to
a numeric value.

4 Experiments

In this section, let us empirically verify the effectiveness of D2A3 and D2A3N. We
will first implement white-box attacks to compare the robustness of both D2A3
and D2A3N with state-of-the-art methods. Later, we will conduct an ablation
study to determine the effect of adding adversarial training to D2A3 and D2A3N.

4.1 Experimental Set-up

Datasets. We have used a total of 12 UCI classification datasets in our exper-
iment. Note, all datasets are numeric in our experiments. Out of 12 datasets,
5 datasets have more than 10K samples and are denoted as Large, whereas 3
datasets have between 5−10K samples and are denoted as Medium. The remain-
ing 4 datasets have less than 5K samples and are denoted as Small. The statistics
of the data are summarized in Sect. 4.1.

Adversarial Attack Setting and Evaluation Metric. We have made use
of 3 commonly used white-box attack methods, which are common for tabu-
lar datasets, i.e., – FGSM, Deepfool and LowProfool. For each attack method,
the architecture and the parameters of the target model are available, and the
adversarial samples are directly generated. The step size of the FGSM is 0.1, and
the maximum iteration for Deepfool and LowProFool is 50, which is the same
as the default setting in their original implementation.
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Table 1. Description of datasets.

Dataset m n c size Dataset m n c size

SkinSegmentation 245057 4 2 Large page-blocks 5473 11 5 Medium

connect-4 67557 43 3 Large wall-following 5456 25 4 Medium

letter-recog 20000 17 26 Large spambase 4601 58 2 Small

magic 19020 11 2 Large diabetes 768 9 2 Small

sign 12546 9 3 Large pid 768 9 2 Small

satellite 6435 37 6 Medium credit-a 690 16 2 Small

Regarding the evaluation metrics, we have made use of Accuracy which
generally determines the level of resistance of a defence mechanism against an
adversarial attack. Notably, the Standard Accuracy for normal manner (no
attack has occurred) and the Robust Accuracy for attack manner are used
separately [9]. Moreover, the Success Rate of an adversarial attack is also used
to measure the efficacy of the attack. According to the work [1], we define the
Success Rate as:

SR =
∑Z

i=1|f(xi + r) �= f(xi)|
Z (4)

which is a ratio of successfully crafted adversarial samples (e.g., the samples are
able to fool the model) and the total targeted samples (Z).

Experiment Configuration and Baselines. Each dataset is split into train
and test via 3-fold cross-validation. The models in D2A3 and D2A3N are trained
with 300 epochs and consist of a fully connected Artificial Neural Network (ANN)
with Relu activation on 5 hidden layers and 1 Softmax for the output layer. We
have used Thermometer encoding as a baseline for D2A3. Also, D2A3 is imple-
mented with three commonly used discretization methods i.e., Equal-Width
(D2A3-EW), Equal-Frequency (D2A3-EF), and the MDL (D2A3-MDL).

For D2A3N, as discussed in Sect. 3.2, we have used two commonly used
defence methods as baselines – Madry [5] and Trades [12]. Again, just like D2A3.
we have used three commonly used discretization methods for D2A3N, leading
to D2A3N-EW, D2A3N-EF and D2A3N-MDL respectively.

Other than baselines for D2A3 and D2A3N, we have presented results with
Clean model, which is the model without any defence mechanism. our code will
be released in https://github.com/tulip-lab/open-code.

4.2 Model Discretization (D2A3) Results

Let us compare the performance of D2A3 method with baseline methods by
considering the three commonly used white-box attack methods. Of course, these
attack methods have the full access to the architecture and parameters of the
model f(·), and can directly generate the adversarial samples depending on any

https://github.com/tulip-lab/open-code
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Table 2. Performance comparison for D2A3.

Models Standard Robust Accuracy (Avg) Success Rate(SR) (Avg)

Accuracy (Avg) FGSM DeepFool LowProFool FGSM DeepFool LowProFool

Clean 0.895 0.813 0.272 0.282 0.135 0.793 0.769

Thermometer 0.836 0.759 0.761 0.726 0.196 0.160 0.194

D2A3-EF 0.870 0.792 0.768 0.722 0.153 0.165 0.217

D2A3-EW 0.854 0.793 0.788 0.753 0.136 0.143 0.161

D2A3-MDL 0.918 0.897 0.884 0.869 0.000 0.025 0.030

attack method. This is one reason why the robust accuracy of the clean model
can deteriorate easily.

Table 2 shows the averaged comparison results on all datasets between D2A3
and other baseline methods, including the Clean model. Our experiment suggests
that FGSM as an attack method is not particularly effective for tabular datasets.
On the other hand, DeepFool and LowProFool are quite effective attack methods
which result in lowering the accuracy of the model quite significantly.

It can be seen that Thermometer method as a defence is quite effective against
the three forms of attacks. However, the difference between standard accuracy
and robust accuracy is quite large.

It can be seen that three variants of D2A3 lead to an effective defence mecha-
nism against three forms of attacks. It is important to note that since we are dis-
cretizing differently, hence the quality of model in terms of Standard Accuracy
is different. As expected, discretization based on mdl leads to the best results
in terms of standard accuracy (91.8%). Note, the more accurate the trained
model is, the higher the quality of the adversarial samples it can generate. Now,
it is encouraging to see that D2A3-MDL not only achieve a higher performance
on robust accuracy but also has the smallest difference between standard
accuracy and robust accuracy. A similar pattern can be seen in terms of
the success rate, where the success rates of the three attacks are 0%, 2.5% and
3% respectively. These results are extremely encouraging, as they demonstrate
that the model discretization algorithm D2A3 is an effective defence method
against white-box attacks for tabular datasets. In Sect. 4.4, we will discuss the
advantage of incorporating adversarial training loss within D2A3.

4.3 Input Discretization (D2A3N) Results

It can be seen from Table 3 that the overall performances of D2A3N trained with
three forms of discretization – D2A3N-EF, D2A3N-EW, and D2A3N-MDL is better
than the two standard baselines namely Madry and Trades. It is encouraging to
see that without changing the dimensionality of the model f(·), D2A3N can largely
help to resist the 3 kinds of adversarial attack. Particularly, the D2A3N-EW has
shown higher robust accuracy and lower success rate compared to D2A3N-EF
and D2A3N-MDL.
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Table 3. Performance comparison for D2A3N.

Models Standard Robust Accuracy (Avg) Success Rate(SR) (Avg)

Accuracy (Avg) FGSM DeepFool LowProFool FGSM DeepFool LowProFool

Clean 0.895 0.813 0.272 0.282 0.135 0.793 0.769

Madry 0.892 0.808 0.459 0.496 0.129 0.553 0.500

Trades 0.895 0.817 0.456 0.307 0.127 0.549 0.739

D2A3N-EW 0.881 0.839 0.683 0.536 0.103 0.291 0.458

D2A3N-EF 0.871 0.807 0.558 0.532 0.164 0.449 0.487

D2A3N-MDL 0.874 0.860 0.588 0.488 0.138 0.416 0.514

Table 4. Ablation study on adversarial training.

Model Robust Accuracy (Avg) Success Rate(SR) (Avg)

FGSM DeepFool LowProFool FGSM DeepFool LowProFool

D2A3 Adv. Train 0.897 0.884 0.869 0.000 0.025 0.030

With Out Adv. Train 0.862 0.883 0.847 0.039 0.025 0.064

D2A3N Adv. Train 0.835 0.609 0.518 0.115 0.385 0.486

With Out Adv. Train 0.753 0.579 0.495 0.218 0.429 0.519

The better performance of D2A3N-EW discretization is surprising but can be
explained. It is well known that EW discretization is more robust to the skewness
of the data [8]. Since adversarial training leads to the original data being skewed,
EW discretization based D2A3N is more robust to the adversarial attack.

4.4 Ablation Study on Adversarial Training

In this section, we conduct an ablation study to verify the effectiveness of the
adversarial training step.

In Table 4, both D2A3 and D2A3N are tested to obtain the robust accu-
racy and success rate with and without the adversarial training, denoted
as Adv.Train and With Out Adv. Train. It can be seen that without the adver-
sarial training, both D2A3 and D2A3N leads to a slightly worse robust accuracy
and success rate than with the adversarial training. This highlights the impor-
tance and necessity of the adversarial training within both D2A3 and D2A3N. It
is also interesting to see that even without adversarial training, the performance
of D2A3 and D2A3N is mostly better than the corresponding baselines in Tables 2
and 3.

5 Conclusion

In this paper, we studied the role of discretization in devising a defence strat-
egy against adversarial attacks on tabular datasets. We showed that not only
discretization can be effective, but it can also lead to better performance than
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existing baselines. We proposed two algorithms namely D2A3 and D2A3N, which
leverages the cut-points obtained from discretization to devise a defence strat-
egy. We evaluated the effectiveness of our proposed methods on 12 standard
datasets and compared them against standard baselines of Thermometer, Madry
and Trades. The effectiveness of D2A3 and D2A3N clearly demonstrate the impor-
tance of discretization in warding-off adversarial attacks on tabular datasets. As
future work, we are keen to explore theoretical justification over why mdl dis-
cretization is effective for D2A3 and why EW is better than the other two forms of
discretization for D2A3N. We are keen to extend our proposed methods to image
datasets as well.
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