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Abstract. Traditional classification problems often assume that the
number of classes present in the data is finite. This may hold true for
the training data, but in real life, the risk of encountering unknown sam-
ples is ubiquitous. Classifying these unknown samples into one of the
target classes can have drastic effects in some situations like security
systems or body sensors. To address this problem, recently, open set
recognition models that can correctly classify the known samples and
detect the unknowns simultaneously, are proposed. In contrast to the
existing models where unknown detection depends on the classification
model, we propose, to the best of our knowledge, an open set recognition
model for time series classification that works independent of the classi-
fier by employing class-specific barycenters. Specifically, DTW distance,
and the cross-correlation between the class-specific barycenters, and the
input are used for detecting the unknown classes during testing. Our
extensive experimental evaluation on the UEA multivariate time series
archive with 30 datasets shows that the proposed open set recognition
architecture deployed on top of the InceptionTime outperforms the state-
of-the-art open set recognition models by an average of 22% in terms of
macro F1 score.

Keywords: Open set recognition · Time series classification · Machine
learning

1 Introduction

The success of machine learning based solutions for various classification prob-
lems is undeniable. Most of the time, the number of target classes is assumed
to be finite, and solutions for these problems are derived in such a way. How-
ever, in real-life applications, there is always a risk of encountering samples from
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unknown classes that are not seen during the training. This will, inevitably, lead
to a situation where the classifier will classify those unknown samples as one of
the target classes, which is of course wrong (e.g. Fig. 1b). Such wrong predictions
can have drastic effects in certain situations, e.g. security systems, body sensors,
machinery maintenance. To address this problem, open set recognition (OSR)
models that can correctly classify the known samples and detect the unknowns at
the same time are proposed in the past decade, starting with [15]. Even though
OSR has received a lot of attention in recent years, the majority of the studies
in this field focuses on computer vision problems, and best of our knowledge,
there is no other work for open set recognition that focuses on the time series
classification (TSC) task.

(a) (b) (c)

Fig. 1. Comparison between traditional classification (Fig. 1b) and open set recognition
(Fig. 1c). Figure 1a shows the distribution of the original dataset.

This study focuses on proposing a methodology for achieving a solution for
the open set recognition problem regarding the TSC tasks, that is generally
applicable to multiple datasets and that can ideally work with different clas-
sifiers. The proposed method uses class-specific time series barycenters, i.e. the
centroids representing a cluster of time series, for unknown detection. The DTW
distance and the cross-correlation between a class-specific barycenter and an
input determine whether the input belongs to the given class or not. As for the
classifier, the proposed method benefits the state-of-the-art time series classi-
fication model InceptionTime [7]. Thus, the proposed method is referred to as
Open Set InceptionTime (OS-InceptionTime or OS-IT). As the unknown detec-
tion methodology is independent of the classifier, it can be used alongside any
other time series classification algorithm.

The scientific contribution of this study thesis is threefold:

– The first-ever open set recognition method that is specifically designed for
time series is introduced. This answers the research question: How can the
open set problem be solved for the time series classification tasks?

– It is shown that artificially created unknown samples can simulate the actual
unknowns to some extent, eliminating the need for handpicking and thus,
fully automating the training process. This answers the research question:
Can the training procedure be fully automated for the proposed method?



356 T. Akar et al.

– The proposed model is evaluated on 30 datasets to demonstrate that it is
a generally applicable solution for open set problems regarding the various
type of TSC datasets and can be used with any classifier. This answers the
research question: Is the proposed method generic enough to be applied for
different types of TSC datasets?

2 Background and Problem Definition

Let fc be a traditional closed set classifier that takes a time series sequence x
with L number of time steps and M number of dimensions (also referred as
channels or variables) and assigns this input x a label y, deciding among the K
number of known classes, i.e. fc : RL×M → {1, ...,K}. An open set model fo,
on the other hand, has an extra possible class K + 1 to assign for the unknown
samples, fo : RL×M → {1, ...,K,K + 1}. The data that are seen during training
that belong to the one of the known classes are referred to as the known samples
and they are denoted with Dk. A subset of Dk is used for training.

In most of the open set approaches, some sort of data that can represent
the unknowns are either needed to train the model, or more commonly, to
optimize the unknown detection thresholds after the training. These types of
unknown samples that are used during the training will be referred to as the
known unknowns. They are denoted with Da, having a vector of K+1 values as
their labels. The last type of samples is the unknowns that are not a part of the
training. They are referred to as the unknown unknowns. They may or may not
appear during the testing in real-life applications. They are denoted with Du.
Since all the samples that do not belong to the Dk are treated as unknowns,
Da can be considered as a subset of the Du as well. In short, an ideal open set
classifier f for an input x should predict the correct class label k for known
samples, and K + 1 for the unknowns as follows:

f(x) = ŷ =

{
k for x ∈ Dk, k ∈ {1, ...,K}
K + 1 for x ∈ Du

(1)

3 Related Work

Barycenters. There are multiple ways to compute barycenters. The first one,
Euclidean, is simply the arithmetic mean of each point in time. It is much faster
to compute than the others, however, it does not provide a meaningful represen-
tation enough since it does not take shifts in time into account like the DTW
(Dynamic time warping) based methods. The second one, originally proposed in
[13], is an iterative averaging method to compute the barycenters under DTW.
The aim is to minimize the DTW distance between the center (average sequence)
and the actual sequences in the given class or dataset. Expectation-maximization
or stochastic subgradient methods are used to find optimal solutions with this
method. Unlike the DBA (DTW Barycenter Averaging) approach, soft-DTW,
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introduced in [3], uses a differentiable loss function to solve this minimization
problem, which makes it much more easier to obtain the optimal result. In
other words, the soft-DTW method is able to find more accurate and smoother
barycenters for sequential data. Thus, for this study, barycenters are computed
using the soft-DTW geometry. An example result of this calculation can be seen
in Fig. 2.

Time Series Classification. After their proven success [10], convolutional
neural networks (CNNs) attracted a great amount of attention from the TSC
community who were looking for scalable alternatives to traditional ensemble
classifiers such as HIVE-COTE [11] or BOSS [14]. In [6], authors experimented on
several CNN based deep learning solutions for TSC and reported that Fully Con-
nected Neural Networks (FCNs) and deep Residual Networks (ResNet) achieved
the best performances overall. More recently, following the footsteps of [6], Incep-
tionTime method is proposed in [7] and shown to achieve state-of-the-art per-
formance, on par with HIVE-COTE.

Open Set Recognition. In the last decade, the popularity of the open
set recognition (OSR) domain has grown significantly after [15] revealed that
unknown samples can generate high activation scores for some of the known
classes in closed set classifiers. The first application of OSR on deep networks was
[2], where authors introduced a novel OpenMax layer. During testing, this Open-
Max layer replaces the final softmax layer, which enables the classifier to have
a probability distribution with an extra class probability for the unknown class.
Directly extending the OpenMax paper, [8] proposes G-OpenMax, which utilizes
a generative adversarial network (GANs) to generate samples of unknown classes.
The trend of using generative models for OSR tasks continued with Class Condi-
tioned Auto-Encoder for Open-set Recognition (C2AE) [12] and Classification-
Reconstruction Learning for Open-Set Recognition (CROSR) [18], both using
slightly different auto-encoder networks, and are similar in the way that both
of them uses EVT to decide on the reconstruction thresholds. CGDL [16] can
be considered the state-of-the-art OSR method with a generative network. It
uses a variational auto-encoder (VAE) which is forced to approximate different
Gaussian models for different known classes. Another alternative approach, [5]
introduces two novel loss functions for unknown detection, that maximize the
entropy of the unknown samples, namely Entropic Open-Set Loss and Objecto-
sphere Loss. The only OSR paper for time series is [9], however, they are using
a specific dataset for combustion engines rather than one of the popular TSC
benchmark datasets, and they perform open set recognition to label each time
step, but not the time series as a whole sequence.

4 Methodology

The unknown detector of the proposed model consists of two separate criteria
to minimize the chance of missing unknown data. The first one is the DTW
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(a)

(b)

Fig. 2. Barycenters for the AtrialFibrillation dataset for the classes 0 and 1. The sam-
ples that belong to that class are in the background in gray.

similarity. It is basically the sum of squared distances between a barycenter and
a sample, computed after aligning both time series using DTW. If the distance
between a sample and the barycenter is above a certain threshold for all the
known classes, that sample is considered unknown. In cases where the intraclass
variation is high, barycenters are usually not able to represent meaningful pat-
terns regarding that class. In such cases, an out-of-class sample that looks like
a horizontal line along the mean can have a smaller distance, especially in low
dimensional time series, than a sample that actually belongs to that class. For
this reason, a second criterion is added to the unknown detector.

The second criterion is the cross-correlation (a.k.a sliding dot product) of a
sample and a barycenter. Similar to the convolution operation, cross-correlation
is mainly used for searching an input sequence for a given filter (usually a shorter
filter representing a feature). In this case, the barycenter functions as the filter
and slid through the input sample to calculate the cross-correlation. The idea
behind this approach is that out-of-class samples should generate much lower
cross-correlation values. Cross-correlations are computed for each dimension of
the data separately. If a sample generates a lower cross-correlation value for at
least one of the dimensions for a specific class, then, it is rejected by that class
for extra safety.

Compared in isolation, the cross-correlation criterion works usually better
than the distance criterion. However, there are some datasets where the cross-
correlation threshold does not work well. Hence, combining the two yields better
results in most of the datasets used in this study. The formulas for defining the
thresholds are quite straightforward. In Eqs. 2 and 3, τdist

k and τ cc
k represent the

distance and the cross-correlation thresholds for a known class k. For each k,
median distance to the barycenter of the class μ̃dist

k , median maximum cross-
correlation μ̃cc

k with the barycenter, and their standard deviations σdist
k and σcc

k

are computed using the train samples belonging to the class k. Median values
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are chosen here over the means in order to reduce the effect of the outliers within
the class.

τdist
k = μ̃dist

k + α · σdist
k , for k ∈ {1, ...,K} (2)

τ cc
k = μ̃cc

k − β · σcc
k , for k ∈ {1, ...,K} (3)

The crucial values in these equations are hyper-parameters α and β, since
they determine the magnitude of the thresholds. A grid search among the com-
binations of possible values (ranging from 0 to 5) is performed using the whole
train set in order to find the optimal values. The full outline of the inference
procedure can be seen in Algorithm 1.

Since this study aims to propose a generic solution that is applicable to mul-
tiple datasets, the actual unknown samples are not used in this stage to prevent
cherry-picking. Instead, an artificial set of unknown data (known unknowns) are
generated for each dataset (see Algorithm 2) and used to evaluate the open set
performance of the model. The aim of the grid search is to find optimal hyper-
parameters that can help detect the unknowns while maintaining high accuracy
for the known samples. To do this a simple formula (Eq. 4) is used to assess the
performance after every iteration. Then, the combination of hyper-parameters
with the highest score s(α, β) is chosen.

s(α, β) = λ4 · accX · accA
accX + accA

(4)

λ =
accX

accclosed set
(5)

Given a train set X and artificially created known unknown data matrix A,
accX stands for the accuracy of the model with the given hyper-parameters for
the original train samples (known classes) X. Similarly, accA is the accuracy
for detecting the known unknown samples, i.e. the recall for the (K + 1)th
(the label for unknowns) class. The λ functions as a penalization parameter
to prevent the model from sacrificing too much from accX to increase accA.
This is undesirable for most cases since detecting unknowns will not worth it
if the classification accuracy drops dramatically. In other words, λ puts more
importance on the classification accuracy than the unknown detection in this
trade-off. It is calculated by simply dividing accX by accclosed set, the accuracy
of the closed set model.

The proposed method employs the InceptionTime model, state-of-the-art
deep learning ensemble of five CNNs with Inception modules [17] (see [7] for
an in-depth explanation) as the classifier. Since the unknown detector is inde-
pendent of the classifier, InceptionTime can easily be replaced with any other
classification model. This also means that the training procedure of the classifier
is also separate from the unknown detector. InceptionTime is trained the same
way as in [7].
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Algorithm 1: Testing procedure for the OS-InceptionTime.
Input: Test sample x
Input: Classifier f()
Input: Barycenters for each known class B = {b1, ..., bK}
Input: Unknown detection thresholds τdist

k and τ cc
k

1 Predict an initial label: ŷ = f(xr)
// Unknown detection part

2 Calculate distances and cross-correlations for k ∈ {1, ..., K} do
3 Calculate the DTW distance: dk = DTW (x, bk)
4 Calculate the cross-correlation: ck = max(correlate(x, bk))

5 end

6 if dk > τdist
k or ck < τ cc

k , ∀k ∈ {1, ..., K} then
7 Modify the predicted label to be the unknown class: ŷ = K + 1
8 end
9 return ŷ

Algorithm 2: Known unknowns generation algorithm.
Input: Train samples X
Input: A mean μ, and a standard deviation σ for the random noise

1 Define augmented data matrix A = X
2 for i ∈ N do
3 Generate a random noise: noise ∼ N (μ, σ2)
4 Add the noise to the original sample: Ai += noise

5 end
6 Define splitting index cut idx = L/2
7 Define temp1 = A1:N,1:cut idx to store the first halves of every sample
8 Define temp2 = A1:N,cut idx:L to store the second halves
9 Switch the places of the first and second halves:

A = concatenate(temp2, temp1)
10 Reverse the order of the time steps and dimensions: A = flip(A)

11 return Da = {A,
−−−→
K + 1}

5 Experiments

5.1 Datasets

The 30 multivariate time series classification datasets from the UEA archive are
used for all the experiments in this work. Background information about these
datasets can be seen in [1]. The unknown datasets are also chosen from the
archive. They are presented in Table 1 alongside the Openness score for each
test scenario. Openness takes percentage values between 0% and 100%, where
0% represents a completely closed set problem. For each known dataset, two
other datasets from the archive were used as the unknowns. In order to avoid
cherry-picking, datasets were picked according to their sizes and shapes. The
most similar ones have been used to keep the integrity as much as possible after
resampling to match the shape of the original known dataset.
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Table 1. The chosen unknown datasets for each train set and the openness score of each
open set problem. The hybrid dataset refers to the artificially created dataset forged
by concatenating PEMS-SF, InsectWingbeat, FaceDetection, FingerMovements, and
HandMovementDirection along their last axes.

Training dataset Unknown dataset 1 Openness Unknown dataset 2 Openness

ArticularyWordRecognition PEMS-SF 7.15% SpokenArabicDigits 9.46%

AtrialFibrillation HandMovementDirection 26.15% Heartbeat 18.35%

BasicMotions SpokenArabicDigits 35.11% InsectWingbeat 35.11%

CharacterTrajectories Handwriting 22.73% PhonemeSpectra 29.29%

Cricket SelfRegulationSCP1 5.72% SelfRegulationSCP2 5.72%

DuckDuckGeese Hybrid dataset* 8.71%

EigenWorms MotorImagery 12.29% Cricket 34.06%

Epilepsy CharacterTrajectories 47.48% PhonemeSpectra 59.18%

EthanolConcentration SelfRegulationSCP2 14.72% Cricket 38.28%

ERing NATOPS 20.53% FaceDetection 10.56%

FaceDetection InsectWingbeat 48.36% PEMS-SF 42.26%

FingerMovements FaceDetection 24.41% InsectWingbeat 48.36%

HandMovementDirection Heartbeat 14.72% DuckDuckGeese 24.41%

Handwriting Epilepsy 4.49% CharacterTrajectories 15.60%

Heartbeat PEMS-SF 42.26% DuckDuckGeese 36.75%

JapaneseVowels NATOPS 15.15% FingerMovements 7.42%

Libras NATOPS 9.95% LSST 14.46%

LSST FaceDetection 4.96% SpokenArabicDigits 15.27%

InsectWingbeat DuckDuckGeese 12.29% PEMS-SF 15.48%

MotorImagery DuckDuckGeese 36.75% PEMS-SF 42.26%

NATOPS FingerMovements 10.56% FaceDetection 10.56%

PenDigits LSST 19.68% FaceDetection 6.75%

PEMS-SF DuckDuckGeese 16.33%

PhonemeSpectra FaceDetection 1.87% SpokenArabicDigits 6.38%

RacketSports JapaneseVowels 35.11% LSST 35.11%

SelfRegulationSCP1 SelfRegulationSCP2 24.41% Cricket 51.49%

SelfRegulationSCP2 Heartbeat 24.41% MotorImagery 24.41%

SpokenArabicDigits InsectWingbeat 19.68% FaceDetection 6.75%

StandWalkJump MotorImagery 18.35% Cricket 43.80%

UWaveGestureLibrary HandMovementDirection 12.71% PhonemeSpectra 46.55%

5.2 Experimental Results

3 baselines are considered to compare and evaluate the results of the proposed
method for open set recognition. The first baseline is the most primitive one
among all. It is an ensemble of small binary CNN models for each known class in
the dataset (One-vs-All), with two convolutional layers followed by max pooling
and two fully connected layers.

The second baseline replaces the softmax layer of the vanilla InceptionTime
network with the OpenMax layer introduced in [2].

The last baseline is the class conditional VAE with the probabilistic ladder
net architecture, proposed in the CGDL paper [16]. Unlike the original model,
which was designed for images, 1D convolutions are used for this case.
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The performance measure for the closed set classification (without the involve-
ment of the unknown data) is the classification accuracy. The values for the perfor-
mancemetrics are obtained after running the algorithm three times for each testing
scenario and then averaging the results. Macro F1 score, on the other hand, comes
in handy when evaluating the open set performance of the models with unknown
samples included in the test set, and it is the standard metric for open set papers. It
will be used to evaluate the overall performance of the open set algorithms. Table 2
presents the open set performances of the algorithms for each dataset. For almost
two thirds of the datasets, the proposed algortihm achieves better results than
the other baselines. Detailed results for the OS-InceptionTime are given in Table 3
alongside with the optimal hyper-parameter values.

Table 2. Comparison of the open set macro F1 scores for each dataset using the
unknowns from Table 1

Dataset OvA-CNNs OM-IT LCVAE OS-IT

ArticularyWordRecognition 0.98 0.57 0.85 0.96

AtrialFibrillation 0.19 0.70 0.39 0.18

BasicMotions 0.77 0.81 0.52 0.82

CharacterTrajectories 0.91 0.88 0.98 0.96

Cricket 0.83 0.75 0.90 0.68

DuckDuckGeese 0.33 0.25 0.35 0.64

EigenWorms 0.08 0.45 0.40 0.85

Epilepsy 0.58 0.79 0.60 0.82

EthanolConcentration 0.16 0.36 0.24 0.38

ERing 0.90 0.32 0.58 0.86

FaceDetection 0.40 0.44 0.15 0.54

FingerMovements 0.24 0.35 0.00 0.62

HandMovementDirection 0.20 0.13 0.30 0.42

Handwriting 0.18 0.16 0.20 0.43

Heartbeat 0.28 0.42 0.16 0.53

JapaneseVowels 0.87 0.90 0.95 0.95

Libras 0.60 0.66 0.74 0.80

LSST 0.40 0.45 0.08 0.36

InsectWingbeat 0.55 0.64 0.03 0.65

MotorImagery 0.18 0.23 0.50 0.53

NATOPS 0.85 0.69 0.92 0.89

PenDigits 0.79 0.94 0.10 0.95

PEMS-SF 0.67 0.76 0.55 0.87

PhonemeSpectra 0.10 0.34 0.13 0.37

RacketSports 0.51 0.63 0.67 0.85

SelfRegulationSCP1 0.44 0.39 0.48 0.46

SelfRegulationSCP2 0.27 0.19 0.30 0.54

SpokenArabicDigits 0.74 0.92 0.67 0.98

StandWalkJump 0.31 0.25 0.45 0.17

UWaveGestureLibrary 0.77 0.67 0.73 0.79

Average Results 0.50 0.53 0.46 0.66
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Table 3. The results for the OS-InceptionTime algorithm. Open set results are aver-
aged for the unknown datasets given in Table 1.

Dataset Closed set classification Open set classification

InceptionTime
accuracy

OS-InceptionTime
accuracy

Performance
decrease (%)

Hyper-parameters
(α, β)

Open Set Macro
F1 score

Recall for the
Unknowns

ArticularyWordRecognition 0.99 0.92 −7.07 2.75, 3.25 0.96 1.00

AtrialFibrillation 0.27 0.00 −100.00 4, 0 0.18 1.00

BasicMotions 1.00 0.80 −20.00 1.75, 2.5 0.82 0.80

CharacterTrajectories 1.00 0.94 −6.00 2, 3 0.96 1.00

Cricket 0.99 0.58 −41.41 2.75, 2.75 0.68 1.00

DuckDuckGeese 0.62 0.50 −19.35 2.75, 4 0.64 1.00

EigenWorms 0.93 0.82 −11.83 2, 1.75 0.85 1.00

Epilepsy 0.97 0.79 −18.56 1.25, 1 0.82 0.81

EthanolConcentration 0.28 0.26 −7.14 1, 1 0.38 1.00

ERing 0.89 0.82 −7.87 2, 2 0.86 0.98

FaceDetection 0.67 0.39 −41.79 4, 2 0.54 1.00

FingerMovements 0.50 0.31 −38.00 4, 1.5 0.62 1.00

HandMovementDirection 0.32 0.27 −15.63 1.5, 1.5 0.42 1.00

Handwriting 0.50 0.38 −24.00 1, 1.25 0.43 1.00

Heartbeat 0.78 0.60 −23.08 1, 1.5 0.54 0.54

JapaneseVowels 0.98 0.93 −5.10 1.75, 2 0.95 1.00

Libras 0.88 0.75 −14.77 1, 1 0.8 1.00

LSST 0.45 0.45 0.00 0, 0.1 0.36 0.00

InsectWingbeat 0.71 0.67 −5.63 1, 1 0.65 0.92

MotorImagery 0.51 0.39 −23.53 1, 1.5 0.53 0.54

NATOPS 0.95 0.82 −13.68 2, 2 0.89 1.00

PenDigits 0.99 0.92 −7.07 1.5, 1.5 0.95 1.00

PEMS-SF 0.86 0.86 0.00 2.5, 3 0.87 1.00

PhonemeSpectra 0.37 0.34 −8.11 1, 1 0.37 1.00

RacketSports 0.89 0.76 −14.61 1, 1.5 0.85 1.00

SelfRegulationSCP1 0.78 0.41 −47.44 0.75, 0.5 0.46 0.61

SelfRegulationSCP2 0.51 0.37 −27.45 0.75, 1.5 0.54 0.86

SpokenArabicDigits 1.00 0.95 −5.00 1.5, 2.75 0.98 1.00

StandWalkJump 0.47 0.00 −100.00 2, 1.5 0.17 1.00

UWaveGestureLibrary 0.84 0.70 −16.67 1.5, 3 0.79 1.00

On average, the OS-InceptionTime sacrifices around 20% of the closed set
classification accuracy compared to the vanilla version. In return, however, it
achieves an outstanding performance for detecting the unknowns. The average
recall for detecting the unknowns is 0.926. In 46 test cases out of 58 (79.3%),
the proposed algorithm is able to detect all the unknowns with a perfect recall
value of 1.00. In 51 cases (88%), it can detect at least half of the unknowns, and
only in 7 cases (12%), it achieves 0.35 or less recall for the unknowns.

5.3 Discussion

The critical difference diagrams regarding the methods used in this work are pre-
sented in Fig. 3 separately for each evaluation metric. The ranks are calculated
using the Wilcoxon signed-rank test, which is used to compare repeated mea-
surements on the same samples (in this case, test datasets). Then Holm test is
used to reject the null hypothesis, i.e. the mean ranks for each pair of algorithms
are not significantly different from each other. According to the Fig. 3b, the pro-
posed Open Set InceptionTime model has the highest ranking by a significant
margin, clearly separating itself from the others. However, it lacks behind the
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(a)

(b)

(c)

Fig. 3. Difference diagrams of the mean ranks of the algorithms by each metric.

OvA-CNNs algorithms in terms of closed set accuracy, which is understandable
because it trades-off nothing to detect unknowns.

Future Work. Since all the datasets used in this work were multivariate, the
proposed method can be tested and validated on the UCR time series archive
with 128 univariate TSC datasets [4]. Moreover, to trade off less closed set accu-
racy, better alternatives/additions to the distance and cross-correlation thresh-
olds can be incorporated into the OS-InceptionTime, such as the difference
between the forecasting errors of known and unknown samples. Finally, par-
allelization can be introduced to speed up the grid search for hyper-parameter
optimization, as it takes the longest time to compute during the training phase
with the computational complexity of O(N2).

6 Conclusion

This study presents the first ever open set model for time series classification,
Open Set InceptionTime. The proposed method makes use of the class-specific
barycenters of the time series to detect unknowns, and combines it with a state-
of-the-art classifier. Moreover, an automated algorithm for creating the known
unknown data that is required to determine the unknown detection thresholds
is also presented in this work.

The experiments show that OS-InceptionTime achieves near-perfect results
for unknown detection, but it trades off closed set classification accuracy while
doing so. Thus, it can be considered as more suitable in situations where detect-
ing the unknowns are more vital than the classification accuracy of the known
samples. OS-InceptionTime is able to outperform all the other baselines that
are adapted from computer vision to the time series classification domain. The
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results are validated on 30 different datasets, which proves that the proposed
method is generic and applicable to various time series classification datasets.

Being the first work that develops a generic method regarding the open set
recognition for time series classification, this master thesis shall act as a baseline
for the future research in this field. The full implementation of the Open Set
InceptionTime algorithm in Python can be found publicly on the web1.
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