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Abstract. Coherence is an important aspect of text quality and is crucial for
ensuring its readability. It is essential for outputs from text generation systems
like summarization, question answering, machine translation, question genera-
tion, table-to-text, etc. An automated coherence scoring model is also helpful in
essay scoring or providing writing feedback. A large body of previous work has
leveraged entity-based methods, syntactic patterns, discourse relations, and tradi-
tional deep learning architectures for text coherence assessment. However, these
approaches do not consider factual information present in the documents. The
transitions of facts associated with entities across sentences could help capture
the essence of textual coherence better. We hypothesize that coherence assess-
ment is a cognitively complex task that requires deeper fact-aware models and can
benefit from other related tasks. In this work, we propose a novel deep learning
model that fuses document-level information with factual information to improve
coherence modeling. We further enhance the model efficacy by training it simul-
taneously with Natural Language Inference task in multi-task learning setting,
taking advantage of inductive transfer between the two tasks. Our experiments
with popular benchmark datasets across multiple domains demonstrate that the
proposed model achieves state-of-the-art results on a synthetic coherence eval-
uation task and two real-world tasks involving prediction of varying degrees of
coherence.

1 Introduction

Coherence is a crucial metric for text quality analysis. It assimilates how well the sen-
tences are connected and how well the document is organized. Coherent documents
have clear topic transitions that are discussed throughout the text with a smooth flow
of concepts, typically in an increasing order of complexity. Ideas are first introduced in
preceding sentences and are referred to later in document. Connectives are often used to
assist the structure and for smooth transitions within the document. Overall, coherence
leads to better clarity.
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Coherence is vital for multiple Natural Language Processing (NLP) applications
like summarization [3,44], question answering [51], machine translation [38,55], ques-
tion generation [10], language assessment for essay scoring [8,16,46], story genera-
tion [34], readability assessment [41,45] and other text generation [22,26,43].

Many formal theories of coherence [2,19,33] have been proposed leading to further
development of various coherence models. Based on such theories, multiple text coher-
ence models like entity-grid [4] and its extensions have been proposed. Other linguistic
approaches for text coherence include coreference resolution, discourse relations, lex-
ical cohesion, and syntactic features. However, feature engineering is decoupled from
the prediction task thus limiting model performance. Recently, various models have
been proposed which leverage deep learning architectures like convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), long short-term memory networks
(LSTMs). Transformer [50] based approaches [23–25] have also been proposed that
achieve better results on coherence modeling and its downstream tasks.

However, these approaches do not consider the factual information present in the
document. Recent work has demonstrated usefulness of fact triples 〈subject, verb,
object〉 for improving result on various NLP tasks, such as summarization [20], Ques-
tion Answering (QA) [47], Natural Language Inference (NLI) [1] and language model-
ing [53]. In this work, we propose a novel architecture that fuses document-level infor-
mation with factual information to improve coherence modeling. Further, we enhance
the accuracy of coherence prediction by jointly modeling coherence and Natural Lan-
guage Inference (NLI) in a multi-task learning (MTL) setting.

Overall, in this paper, we make the following main contributions. (1) We investi-
gate the effectiveness of novel fact-aware MTL architecture. (2) We assess the extent
to which the information encoded in the network generalizes to multiple domains and
demonstrate the effectiveness of our approach not only on popular sentence order dis-
crimination task but also on more realistic task like predicting coherence of varying
degrees in people’s everyday writings. (3) Experiments on popular benchmark datasets
(GCDC and WSJ) indicate that our proposed methods establish SOTA across multi-
ple (task, dataset) combinations. (4) On an automated essay scoring (AES) task, we
demonstrate that addition of coherence signal from our model significantly improves
AES accuracy.

2 Related Work

Entity-Grid Based Methods: Discourse coherence has been studied widely using both
deep learning as well as non-deep learning models. Barzilay et al. [4] proposed the
entity grid model, which is based on Centering Theory [19]. It captures the distri-
bution of discourse entities and transition of grammatical roles (subject, object, nei-
ther) across the sentences. Several extensions were proposed by utilising entity specific
features [13], modifying ranking scheme [17] or transforming problem into bipartite
graph [35]. The entity grid method as well as extensions suffer from two main draw-
backs: (1) they use discrete representation for grammatical roles and features, which
prevents the model from considering sufficiently long transitions due to the curse of
dimensionality problem. (2) Feature engineering is decoupled from the prediction task,
which limits the model’s capacity to learn task-specific features.
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Other Feature Engineering Methods: Besides entity grid, other linguistic approaches
for text coherence include coreference resolution, discourse relations, lexical cohe-
sion, and syntactic features. Elsner et al. [13] proposed a maximum-entropy based
discourse-new classifier that classifies mentions of all referring expression as first men-
tion (discourse-new) or subsequent (discourse-old) mentions. Louis et al. [32] proposed
a coherence model based on syntactic patterns by assuming that sentences in a coher-
ent discourse should share the same structural syntactic patterns. Other approaches
have used syntactic patterns [32], lexical cohesion [40,46] or capture topic shifts via
HMMs [5].

Deep Learning Methods: Recently, multiple deep learning approaches have been pro-
posed. Li et al. [29] propose a neural framework to compute the coherence score of
a document by estimating a coherence probability for each clique of L sentences. Li
et al. [30] propose generative methods to capture global topic information. Nguyen et
al. [42] and Mohiuddin et al. [37] transform entity-grid based methods into deep learn-
ing versions that obtain better results than traditional counterparts. Farag et al. [15]
propose a hierarchical attention model with multi-task learning objective. Xu et al. [56]
and Moon et al. [39] show that modeling local coherence with discriminative models
could capture both the local and the global contexts of coherence. Guz et al. [21] pro-
pose an RST-Recursive model, which takes advantage of the text’s RST features. Farag
et al. [14] extend some of the previous discriminative models using BERT (Bidirec-
tional Encoder Representations from Transformers) [11] embeddings. Recently, Trans-
former [50] based approaches [23–25] have been proposed that achieve better results.
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Fig. 1. An overview of our proposed fact-aware multi-task learning architecture. M distinct facts
extracted from the document are fed to Fact Encoder individually to get permutation invariant
representation. Fact-aware document encoder combines the document representation with M
factual representation to obtain the fact-aware document representation.
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3 Proposed Model

Given a document D, our goal is to assess its coherence according to the downstream
task (binary classification, multi-class classification or regression task). Figure 1 pro-
vides an overview of our novel fact-aware multi-task learning model. It consist of three
components: (i) Fact extractor to extract facts from textual content, (ii) Fact-aware doc-
ument encoder that fuses the textual information with factual information, and (iii)
Multi-task learning (MTL) framework that add auxiliary objective of textual entail-
ment prediction to coherence objective. We discuss these components in detail in the
following.

3.1 Fact Extractor

We leverage MinIE, an Open Information Extraction (IE) system [18] to generate a
set of facts for each sentence. Open IE systems aim to exploit linguistic information
including dependency relations in sentences to extract facts in a knowledge-agnostic
manner. A fact is essentially an ordered 3-tuple 〈subject, verb, object〉 extracted from a
particular sentence. A single sentence can produce multiple facts. Consider the sentence
“They are trying to determine whether it was used to attack Steenkamp, if she used the
bat in self-defense.” Two facts that can be extracted from this sentence are (“it”, “was
used to attack”, “Steenkamp”) and (“she”, “used bat in”, “self-defense”). Each of the
three components of a fact triple can contain multiple words.

For a given document D we pass the textual content through fact extractor (MinIE)
to extract in-domain facts. Let M be the number of distinct facts obtained from the
document D using MinIE.

3.2 Fact-Aware Document Encoder

This module follows a hierarchical structure with the following two encoders at the bot-
tom level: (i) document encoder, and (ii) fact encoder. Each encoder uses a transformer
model. Document encoder and fact encoder share weights. For ith fact triple obtained
from fact extractor for given document D, we create linear fact string by concatenating
the subject, predicate and object delimited by separator token (SEP). The linear fact
string is then fed to fact encoder FEi individually to produce permutation invariant
fact representation fi. The document encoder encodes the document expressed using
standard sub-word tokens to obtain document-level representation T . These fact and
the document representations, T and fi respectively, form the input for the fact-aware
document encoder. Finally, we obtain fact-aware document representation as the CLS
token vector from the last layer of the fact-aware document encoder. This is then fed to
a fully-connected layer with ReLU, and then to a task specific output layer.

3.3 MTL Framework

When multiple related prediction tasks need to be performed, multi-task learning
(MTL) has been found to be very effective. We experimented with various Natural
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Language Understanding (NLU) tasks as auxiliary task and empirically found MTL
combination of textual entailment and text coherence task provides better generaliza-
tion and robustness. For a given a pair of sentences, the textual entailment task aims to
predict whether the second sentence (hypothesis) is an entailment with respect to the
first one (premise) or not. We share the fact-aware document encoder weights across the
two tasks. Task specific layers for each task are conditioned on the shared fact-aware
document encoder. For the sentence entailment task, we form input by concatenating the
hypothesis and premise with sentence separator token SEP placed between them. For
both the tasks (coherence and entailment), we use a fully-connected layer with ReLU,
and then a softmax output layer. The final loss is computed as a sum of the individual
losses for the two tasks. In the multi-task learning, we use mini-batch based stochastic
gradient descent (SGD) to learn the parameters of our model (i.e., the parameters of all
shared layers and task-specific layers) as shown in Algorithm 1.

Algorithm 1: Training a fact-aware MTL model
Model trainable parameters : θ (initialized to pretrained weights)
Set the max number of epochs: epochmax.
for epoch in 1, 2, . . . , epochmax do

Merge coherence and entailment dataset: Dglobal = Dcoh ∪ Dentail

Shuffle Dglobal

for batch in Dglobal do
Initialize losses: Lcoh = 0, Lentail = 0
if batchcoh ∈ batch then

Lcoh = Compute text coherence loss on batchcoh

if batchentail ∈ batch then
Lentail = Compute text entailment loss on batchentail

Combine loss: Ltotal = Lcoh + Lentail.
Update the gradients and θ

4 Evaluation Tasks and Datasets

We experiment with two popular benchmark datasets: Wall Street Journal (WSJ)
and Grammarly Corpus of Discourse Coherence (GCDC). GCDC is a real dataset
while WSJ is a synthetic dataset. We use the Recognizing Textual Entailment (RTE)
dataset [52] for training the auxiliary task head for our MTL model (2490 train and 277
validation instances) for experiments on GCDC. For WSJ, we found MTL to perform
better when we use the Multi-Genre Natural Language Inference (MNLI) dataset [54]
(21560 train and 6692 validation instances) for training the auxiliary task. We also eval-
uated the efficiency of proposed architecture on one downstream task: Automated Essay
Scoring (AES). For AES task we use Automated Student Assessment Prize (ASAP)
dataset. We make the code and dataset publicly available1.

WSJ Sentence Order Discrimination Task. The WSJ portion of the Penn Tree-
bank [13,42] is one of the most popular datasets for the sentence order discrimina-
tion task. It contains long articles without any constraint on style. Following previous

1 https://www.dropbox.com/s/wolrmesgr4k1lf8/fact-aware-mtl-text-coh.zip.

https://www.dropbox.com/s/wolrmesgr4k1lf8/fact-aware-mtl-text-coh.zip
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work [4,42], we also use the sections 00–13 for training and 14–24 for testing (doc-
uments consisting of only one sentence are removed). We create 20 permutations per
document, making sure to exclude duplicates or versions that happen to have the same
ordering of sentences as the original article. We labeled these permuted documents as
negative samples. The dataset is created by pairing the original document and the per-
muted document. The task is to rank the original document higher than the permuted
one in terms of coherence. We present the basic statistics of the dataset in Table 1.

We evaluate model performance on this dataset using pairwise ranking accuracy
(PRA) between original text and its 20 permuted counterparts, similar to previous work.
PRA calculates the fraction of correct pairwise rankings in the test data (i.e., the original
coherent text should be ranked higher than its permuted non-coherent counterpart).

For this task, the coherent and incoherent document representations are obtained
by using proposed fact-aware document encoder using the architecture shown in Fig. 1.
Further, on top of these representations, we apply Siamese network [7] as illustrated in
Fig. 2. The document encoder for the coherent as well as the incoherent document, share
weights. Both the document representations are separately connected to a dense layer
with shared weights. Outputs of the dense layers are used to calculate margin ranking
loss.

Table 1. Basic statistics of the WSJ dataset.
#Docs represents the number of original arti-
cles and #Synthetic Docs represents the num-
ber of original articles and their permuted ver-
sions.

#Docs #Syn. Docs Avg #Sents Avg #Words

Train 1376 29720 21.0 529.8

Test 1090 21800 21.9 564.3

Coherent 
Document

Incoherent 
Document

Document 
Encoder

Document 
Encoder

Dense

Dense

Margin 
Ranking 

Loss (MRL)

Fig. 2. Overview of Siamese neural approach
applied for sentence order discrimination task.
Document encoder weights are shared. Dense
layer weights are also shared.

GCDC 3-Way Classification. The GCDC dataset contains emails and reviews written
with varying degrees of proficiency and care [28]. The WSJ dataset contains docu-
ments that have been professionally written and extensively edited. In contrast to WSJ,
the GCDC dataset contains writing from non-professional writers in everyday contexts.
Rather than using permuted or machine generated texts as examples of low coherence,
GCDC has real sentences in which people try but fail to write coherently. GCDC is a
corpus that contains texts from four domains, covering a range of coherence, each anno-
tated with a document-level coherence score. Specifically, the dataset contains texts
from four domains: Yahoo online forum posts, emails from Hillary Clinton’s office,
emails from Enron and Yelp business reviews. We present the basic statistics of the
dataset in Table 2.

Given a document, the task is to classify it into one of the three different labels (high,
medium and low) which denotes the textual coherence level of the given document.
For each of these domains, a fixed split of 1000 and 200 was used for train and test
respectively as specified in [28]. Of the 1000 documents, we use 200 documents for
validation and remaining 800 for training. For our experiments, we use the consensus
rating of the expert scores as calculated by [28], and train our models for all the four
domains. To evaluate model performance, we use 3-way classification accuracy.
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Table 2. Basic statistics of the GCDC dataset.
For each of these domains, a fixed split of
1000 and 200 was used for train and test
respectively as specified in [28]

#Docs Avg #Words Avg #Sents Low, medium,
high instances
(%)

Yahoo 1200 162.1 7.5 46.6,17.4,37.0

Clinton 1200 189.0 6.6 28.2,20.6,51.2

Enron 1200 196.2 7.7 29.9,19.4,50.7

Yelp 1200 183.1 7.5 27.1,21.8,51.1

Table 3. Statistics of ASAP dataset.

Prompt #Essays Genre #Avg
length

Range of
scores

1 1783 Argumentative 350 2–12

2 1800 Argumentative 350 2–12

3 1726 Response 150 0–3

4 1772 Response 150 0–3

5 1805 Response 150 0–4

6 1800 Response 150 0–4

7 1569 Narrative 250 0–30

8 723 Narrative 650 0–60

ASAP Automated Essay Scoring. Automated Student Assessment Prize (ASAP)
dataset is taken from the Kaggle competition2 which was organized and sponsored by
the William and Flora Hewlett Foundation and ran on Kaggle from 10-Feb-12 to 30-
Apr-12. The essays are associated with scores given by humans and categorized in eight
prompts. Table 3 summarizes some properties of this dataset. The task is to assign an
automatic score for a given essay, aiming to replicate human scoring results. Essays
are segregated into different prompts based on essay topic and genre. We normalize
all score range to within [0, 1]. The scores are re-scaled back to the original prompt-
specific scale for calculating Quadratic Weighted Kappa (QWK) scores. The reader can
refer [48] to get more details on QWK. We conduct the evaluation in prompt-specific
fashion as done in [48].

For this task, we follow previous studies [36,57]. First, we obtain the essay’s feature
vector v1 by training a Longformer model for AES task, and take CLS token represen-
tation from the last layer. Next, without any AES-task-specific finetuning, we obtain a
coherence vector v2 produced by our model finetuned on WSJ task. The concatenation
of v1 and v2 is now “coherence augmented representation” of the essay. This represen-
tation is passed to a linear layer with sigmoid activation for final essay scoring. We hope
that augmentation by v2 obtained from our model will improve AES scoring accuracy.

5 Experiments

5.1 Baselines

For WSJ and GCDC Related Tasks. We perform extensive comparisons with the
following baselines. While Flesch-Kincaid grade level (FKGL) [27] is a readabil-
ity measure, previous work has treated readability and text coherence as overlapping
tasks [4,35]. For coherence classification, Mesgar et al. [35] search over the grade level
scores on the training data and select thresholds that result in the highest accuracy.
Entity grid (EGRID) [4] builds an entity grid which is a matrix that tracks entity men-
tions over sentences. Random forest classifier is trained over features extracted from
entity grid. CNN-Egrid [42] is a local coherence model that employs a CNN that oper-
ates over the entity grid representation. LCNN-Egrid [37] extends CNN-Egrid with lex-
ical information about the entities. In Local Coherence Model (LC) [29], sentences are

2 https://www.kaggle.com/c/asap-aes/.

https://www.kaggle.com/c/asap-aes/


Fact Aware Multi-task Learning for Text Coherence Modeling 347

encoded with a recurrent or recursive layer and a filter of weights is applied over each
window of sentence vectors to extract scores that are aggregated to calculate overall
document coherence score. Paragraph sequence (PARSEQ) [28] contains three stacked
LSTMs to represent sentence, paragraph and document. Hierachical LSTM [15] is very
similar to PARSEQ, but with attention and uses BiLSTMs. Coh+GR [15] extends Hier-
achical LSTM by training it to predict word-level labels indicating the predicted gram-
matical role (GR) type at the bottom layers of the network, along with the document-
level coherence score. Coh+SOX [15] is same as Coh+GR where, for each word, we
only predict subject (S), object (O) and ‘other’ (X) roles. Seq2Seq [30] consists of
two LSTM generative language models and uses the difference between conditional
log likelihood of a sentence given its preceding/succeeding context, and the marginal
log likelihood of the current/next sentence to assess coherence. Local Coherence Dis-
criminator (LCD-L) [56] uses max-pooling on the hidden state of the language model
to get the sentence representation. A representation for two consecutive sentences is
then computed by concatenating the output of a set of linear transformations applied
to the two sentences. This is fed to a dense layer and used to predict a local coherence
score. Coh+GR_BERT [14] is similar to Coh+GR, except that BERT embeddings are
used instead of GloVe embeddings as input to BiLSTMs. LCD_BERT [14] is similar
to LCD-L but uses averaged BERT (instead of GloVe) embeddings as the sentence rep-
resentations. We also included LCD_RoBERTa which similar to LCD_BERT but uses
RoBERTa embeddings instead of BERT. Unified [39] uses a combination of LSTMs
and CNNs. Inc-lex-Coh [24] extracts sentence representations using a pretrained lan-
guage model and combines the semantic centroid vector with semantic similarity vec-
tor to obtain coherence output. They also created another variant Avg-XLNET-Doc that
encodes an text content at the document level and averages the encoded representa-
tions. We created RoBERTa variant of this model Avg-RoBERTa-Doc where we used
RoBERTa embedding instead of XLNET.

For AES/ASAP Task. We perform extensive comparisons with the following base-
lines. EASE is publicly available, open-source3 software which ranked third amongst
154 participants in the ASAP competition. It uses manual feature engineering with
Support Vector Regression (SVR) and Bayesian Linear Ridge Regression (BLRR).
EASE+cohLSTM [36] combines the feature vector computed by EASE, and the coher-
ence vector produced by LSTM-based coherence model to obtain a more reliable repre-
sentation of an essay. Constraint MTL [9] uses a constrained multi-task pairwise prefer-
ence learning approach that enables the data from multiple tasks to be combined effec-
tively. Attention based RCNN [12] uses hierarchical sentence-document model to rep-
resent essays, using the attention mechanism to learn the relative importance of words
and sentences. SkipFlow [49] models coherence using the similarity between multiple
states of an LSTM over time with a bounded window.

5.2 Experimental Settings and Reproducibility Information

All experiments were run on a machine equipped with four 32GB V100 GPUs. For
all our models, we use 12-layer models, and embedding layer was frozen except for

3 https://github.com/edx/ease.

https://github.com/edx/ease
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Table 4. Sentence order dis-
crimination task Pairwise Ranking
Accuracy (PRA) results on WSJ

Model PRA

Baselines LC 74.10

PARSEQ 74.10

Seq2Seq 86.95

CNN-Egrid 88.69

Unified (ELMo) 93.19

Coh+GR 93.20

LCD-L 95.49

Coh+GR_BERT 96.10

LCD_RoBERTa 96.45

LCD_BERT 97.10

Ours Vanilla Transformer 97.34

Fact-aware Transformer 97.81

Fact-aware MTL Trans 98.22

Table 5. 3-way classification accuracy results on GCDC.

Models Yahoo Clinton Enron Yelp Average

Baselines EGRID+coref 41.5 48.0 47.0 49.0 46.4

EGRAPH+coref 42.5 55.0 44.0 54.0 48.9

LCNN-Egrid+coref 51.0 56.6 44.7 54.0 51.6

FKGL 43.5 56.0 52.5 55.0 51.8

Coh+SOX 50.5 58.5 51.0 – 53.3

Hierachical LSTM 55.0 59.0 50.5 – 54.8

PARSEQ 54.9 60.2 53.2 54.4 55.7

LC 53.5 61.0 54.4 – 56.3

PARSEQ (A) 58.5 61.0 53.9 56.5 57.5

Coh+GR 56.0 62.0 56.0 – 58.0

Inc-lex-Coh 57.3 61.7 54.5 59.0 58.1

Avg-RoBERTa-Doc 60.0 65.3 55.0 58.8 59.8

Avg-XLNet-Doc 60.5 65.9 56.9 59.0 60.6

Ours Vanilla Trans. 58.1 63.9 55.3 57.6 58.7

Fact-aware Trans. 59.2 67.2 56.3 58.5 60.3

Fact-aware MTL Trans. 60.7 67.4 56.4 59.0 60.8

Table 6. Experimental results on ASAP dataset of our approach versus the baseline methods.
Results are reported in terms of the quadratic weighted kappa (QWK) measure, using 5-fold
cross-validation. Best QWK for each prompt is highlighted in bold.

Models Prompts

1 2 3 4 5 6 7 8 Average

Baselines CohLSTM 0.669 0.634 0.591 0.710 0.639 0.716 0.729 0.641 0.666

EASE (SVR) 0.781 0.630 0.621 0.749 0.782 0.771 0.727 0.534 0.699

EASE (BLRR) 0.761 0.606 0.621 0.742 0.784 0.775 0.730 0.617 0.705

EASE+CohLSTM 0.784 0.654 0.663 0.788 0.793 0.794 0.756 0.646 0.735

Constraint MTL 0.816 0.667 0.654 0.783 0.801 0.778 0.787 0.692 0.747

Attention based RCNN 0.822 0.682 0.672 0.814 0.803 0.811 0.801 0.705 0.764

SkipFlow 0.832 0.684 0.695 0.788 0.815 0.810 0.800 0.697 0.765

Ours Longformer 0.824 0.660 0.693 0.820 0.795 0.810 0.817 0.701 0.765

Longformer+Fact aware MTL Trans. 0.822 0.674 0.696 0.821 0.798 0.812 0.822 0.699 0.768

the sentence order discrimination task on WSJ. For fact-aware document encoder, we
used pretrained model for the fact encoders and document encoder, and a randomly
initialized RoBERTa for fact-aware document encoder. For all experiments we cap the
maximum number of facts to 100.

For all experiments, we run 10 epochs except ASAP where we use 5-fold cross
validation, weight decay of 0.01 and use a dropout of 0.1. We use Adam optimizer for
experiments on GCDC, and use AdamW for WSJ and ASAP experiments. For all the
baseline models, we report results from their original papers. For all of our models,
the reported results on WSJ and GCDC dataset, are the mean of 10 runs with different
random seeds. Margin for the margin ranking loss is set to 1. For MTL framework, cat-
egorical cross entropy loss was used for the auxiliary task. We use Longformer based
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models for WSJ and ASAP dataset to handle the long input documents. For Long-
former, we fixed max sequence length to 2048. For RoBERTa, we fixed it to 512. We
use learning rate of 2e−5 for all experiments. We use batch size of 2 for all the models
on all the tasks.

For model proposed for Automated Essay Scoring (ASAP), we use 5-fold cross
validation to evaluate all systems with a 60/20/20 split for train, dev and test sets. We
use the splits provided by [48] and closely follow the same experimental procedure. We
train our models on ASAP using mean square error (MSE) for 10 epochs and select the
best model based on the performance on the validation set.

5.3 Results

Tables 4 and 5 show the results for the two text coherence tasks for WSJ and GCDC
datasets respectively. Broadly we observe that our proposed approach significantly out-
performs baselines, establishing a new SOTA across all tasks. Across all tasks, the
results using our method are statistically significantly better compared to the best base-
line with p ≤ 10−3 at 95% confidence.

Sentence Order Discrimination Results: Table 4 shows results for the sentence order
discrimination task for WSJ dataset. We make the following observations: (1) Fact
aware transformer outperforms vanilla transformer model as it can incorporate the fac-
tual information flow (subject in discourse) in addition to textual information which
helps it to correctly determine the coherent sentences. (2) fact-aware MTL model out-
performs other variants as the auxiliary task helps in better generalization over test set.

3-Way Classification Results: Table 5 shows 3-way classification results on GCDC.
Wemake the following observations: (1) The Fact-aware model performs better than the
vanilla model across all the domains, demonstrating that transitions of facts associated
with entities across sentences benefit the model in capturing textual coherence signals.
(2) Out of the three gold coherence labels (low, medium, high) all the models have
difficulty in correctly classifying documents of medium level coherence, which can be
attributed to the smaller number of training examples for that particular class.

AES Results: From Table 6 we observe that Vanilla Longformer finetuned on ASAP
dataset performs better than or comparable to previous baseline approaches. Among
our models, the “coherence augmented representation” from Fact aware MTL obtains
the best result. To understand this a little better we computed the correlation between
the coherence score predicted by the Fact aware MTL Transformer and the essay scores
in ASAP dataset. We found it to be 0.48 and 0.53 for Longformer and Longformer with
fact aware MTL respectively, thereby explaining why our model outperforms vanilla
Longformer model.

Qualitative Analysis: We also explore our model qualitatively, examining the coher-
ence scores assigned to some artificial miniature discourses that exhibit various kinds
of coherence. The score varies from 0 to 3 and higher score denotes higher level of
textual coherence. (1) Case 1: Lexical Coherence. The examples in Table 7 (type = LC)
suggest that the models handle lexical coherence, correctly favoring the first over the
second, and the third over the fourth and fifth examples (for all our models except the
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Table 7. Qualitative analysis: Lexical Coherence (LC), Temporal Order (TO), Center-
ing/Referential Coherence (CRC) examples. Ours = Fact-aware MTL.

Type S. No Text Vanilla Ours

LC 1 Pinochet was arrested. His arrest was unexpected 1.81 2.76

2 Pinochet was arrested. His death was unexpected 1.67 1.56

3 Mary ate some apples. She likes apples 1.45 2.30

4 Mary ate some apples. She likes pears 1.47 1.45

5 Mary ate some apples. She likes Paris 1.36 1.27

TO 1 Washington was unanimously elected president in the first two national
elections. He oversaw the creation of a strong, well financed national
government

1.93 2.79

2 Washington oversaw the creation of a strong, well-financed national
government. He was unanimously elected president in the first two
national elections

1.88 2.36

CRC 1 Mary ate some apples. She likes apples 1.45 2.52

2 She ate some apples. Mary likes apples 1.31 2.49

3 John went to his favorite music store to buy a piano. He had frequented
the store for many years. He was excited that he could finally buy a
piano. He arrived just as the store was closing for the day

2.38 2.86

4 John went to his favorite music store to buy a piano. It was a store John
had frequented for many years. He was excited that he could finally
buy a piano. It was closing just as John arrived

2.45 2.67

fact-aware one). (2) Case 2: Temporal Order. We show an example of temporal order
in Table 7 (type = TO). (3) Case 3: Centering/Referential Coherence. We show a few
examples of Centering/Referential Coherence in Table 7 (type = CRC). We observe that
our model provides intuitive results while the Vanilla Transformer does not. This sug-
gests that straight-forward adaptation of Transformer models for coherence assessment
may not be the best approach.

6 Conclusion

In this paper, we proposed a fact-aware MTL model for text coherence assessment. The
proposed model incorporates factual information with document-level information to
capture transitions of facts associated with entities across sentences. We observe that
our Fact aware approaches outperform existing models on synthetic data (WSJ) as well
as real-world data (GCDC). Our work also demonstrates that inductive transfer between
tasks: textual coherence assessment and textual entailment, provides better generaliza-
tion and robustness. Coherence vector obtained from our proposed coherence models
also improves the effectiveness of simple models on the automated essay scoring down-
stream task. In the future, we plan to extend this work to evaluate the text coherence in
an open domain setting.
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