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Abstract. We introduce a simple and effective regularization of knowl-
edge gradient (KG) and use it to present the first sublinear regret bound
result for KG-based algorithms. We construct online learning with regular-
ized knowledge gradients (ORKG) algorithm with independent Gaussian
belief model, and prove that ORKG algorithm achieves sublinear regret
upper bound with high probability facing bounded independent Gaussian
multi-armed bandit (MAB) problems. The theoretical properties of regu-
larized KG and ORKG algorithm are analyzed, and the empirical charac-
teristics of ORKG algorithm are empirically validated with MAB bench-
mark simulations. ORKG algorithm shows top-tier performance compa-
rable to select MAB algorithms with provable regret bounds.
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1 Introduction

This paper considers the problem of making best possible decisions facing uncer-
tainty, in which a decision-making agent repeatedly chooses from a set of deci-
sions and then observes an outcome from which a bounded quantifiable reward
can be derived. We assume that the agent knows the set of possible decisions,
which is finite and remains the same over the time horizon in which the agent
choose and learns. If such an agent is evaluated on how well it finds out which
choice incurs the best reward, disregarding the rewards incurred by its choices
while learning, the agent is facing a ranking and selection (R&S) problem.

Knowledge gradient (KG) is an algorithm proposed to solve R&S prob-
lems with independent Gaussian model assumption [4], and later with different
assumptions such as correlated Gaussian model [5], Gaussian process model [15],

D. Lee—This work is supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (No. 2020R1G1A1102828).

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-05936-0 26.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13281, pp. 328–339, 2022.
https://doi.org/10.1007/978-3-031-05936-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05936-0_26&domain=pdf
https://doi.org/10.1007/978-3-031-05936-0_26
https://doi.org/10.1007/978-3-031-05936-0_26


Online Learning with Regularized Knowledge Gradients 329

binary cost function [22], locally nonlinear parametric models [9], and repeated
noisy measurements [8]. Empirical effectiveness of KG-based algorithms has been
demonstrated in diverse fields where R&S problems can be applied: for example,
drug discovery [12], chemical engineering [3], fleet management [10,21], COVID
responses [19], and clinical trials [20].

However, R&S problem disregards the reward incurred by the choices made
by the agent while it is learning. As such, R&S problem is ill-suited to model
online learning problems, in which every single reward incurred by the agent
counts, and 2) the remaining number of choices the agent must make may be
unknown. Little work has been done to utilize KG in online learning, where
a most notable approach assuming the agent knows the remaining number of
choices [13,14]. In this paper, we present a new approach to utilize KG to solve
online learning problem with unknown time horizon.

Novel contribution of this manuscript is summarized as follow. We present
Online learning with Regularized Knowledge Gradients (ORKG) algorithm with
independent Gaussian belief, a novel online learning algorithm that uses knowl-
edge gradient. We provide theoretical analysis of ORKG, including the proof of
ORKG’s regret upper bound of O(

√
KT ln(KT )) in stochastic MAB problems

with K bounded independent Gaussian arms, which is the first sublinear regret
bound for knowledge gradient based algorithms. We also perform empirical val-
idation of the theoretical properties of ORKG and empirical sensitivity analysis
of the key hyperparameters of ORKG. Lastly, we verify empirical performance
of ORKG in Gaussian stochastic MAB problems against other well-known MAB
algorithms with provable regret bounds.

2 Problem Setting

We consider “online” sequential decision problem in which a decision-making
agent faces partial information stochastic MAB problem, in particular with
bounded Gaussian stochastic arms and unknown total number of decisions to
make. For each time index t ∈ {0, 1, · · · , T − 1} with unknown finite time hori-
zon T , the agent must make a decision, denoted by x, among K < ∞ mutually
independent arms that can be indexed by i ∈ {1, 2, · · · ,K}, and then observe
a bounded random reward/contribution Ct from respective arm’s distribution
with mean μi and standard deviation σi that are unknown to the agent. We use
xt for decision made at time t, and X as the set containing all possible decisions.
Hence, ∀t : xt ∈ X , and |X | = K.

The goal of the agent is twofold: 1) to learn the best arm i∗ whose reward
distribution has the largest mean (i.e. μi∗

= maxi

{
μi

}
=: μ∗ using the obser-

vations incurred by past decisions, and 2) to control the impact of inevitable
suboptimality caused by choosing arms that are not the best arm without know-
ing the best arm a priori. Note that the term “online” is not the same as in
online convex optimization, but instead is related to the second aspect of the
goal of the learning agent – that the performance of the agent while it is learning
(i.e. “online”) is important, as opposed to batch learning such as R&S problems
where only final performance matters.
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The belief state Bt at time t, for KG-based algorithms with indepen-
dent Gaussian belief model, is defined as the sufficient information to model
Gaussian rewards incurred by each action x ∈ X . Hence, we define Bt :=
{ (μ̄x

t , σ̄x
t )|x ∈ X}, as the set of mean parameter estimates μ̄x

t and standard devi-
ation parameter estimates σ̄x

t for all x ∈ X .
Under independent Gaussian belief model, KG of choosing x at time t can

be efficiently computed [6] using the following closed form formula:

νKG,x
t := σ̃x

t (ξx
t Φ (ξx

t ) + φ (ξx
t )) , (1)

where Φ(·) and φ(·) are the cumulative distribution function and the probability
density function of standard Gaussian distribution, respectively. ξx

t is defined as:

ξx
t := −

∣∣∣μ̄x
t − maxx′ �=x μ̄x′

t

∣∣∣

σ̃x
t

, (2)

where σ̃x
t := σ̄x

t /

√
1 + (σε/σ̄x

t )2 . σε is the standard deviation of the zero-mean
Gaussian measurement noise assumed to be found on all observed reward C(x)
for all x ∈ X . Most KG-based algorithms have σε as a hyperparameter.

Using KG as-is to solve online learning problems is expected to fail, because
R&S problem disregards the rewards caused by a fixed, known number of choices
which it considers as the learning process. From this perspective, KG algorithm
for online learning problems (OKG) is proposed [13]. OKG algorithm chooses
action xt at time t as:

xt =

{
arg maxx∈X

{
μ̄x

t + (T − t) νKG,x
t

}
(t < T )

arg maxx∈X {μ̄x
t } (t ≥ T )

, (3)

where T is the total number of choices to make in the online learning problem.
Naturally, OKG algorithm requires knowing the true time horizon T , after which
it exploits learned information and choose the action with best expected mean
reward.

3 Online Learning with Regularized KG

We present Online learning with Regularized KG (ORKG) with independent
Gaussian belief, a novel online learning algorithm with knowledge gradient, in
Algorithm 1. Compared to OKG algorithm [13], ORKG introduces two key inno-
vations: 1) standardizing and regularizing knowledge gradient; 2) adaptively
learning exploration parameter ρt. ORKG contains two key hyperparameters
κR > 0 and 0 < δ < 1, and we use κR = 0.01, δ = 0.01 as their default values.
These hyperparameters are explained in theoretical analysis of ORKG (Sect. 4)
and their default values are justified in empirical sensitivity analysis of ORKG
(Sect. 5.2).



Online Learning with Regularized Knowledge Gradients 331

Algorithm 1. ORKG with Independent Gaussian Belief
1: Initialize belief state: {μ̄x

0 , σ̄x
0}x∈X

2: for t = 0, 1, 2, · · · do

3: Compute standardized KG: κx
t ← ν

KG,x
t
σ̄x
t

� Compute νKG,x
t by (1)

4: Compute regularized KG: νRKG,x
t ← σ̄x

t max (κR, κx
t )

5: Compute coefficient ρt ←
√

2 ln
(

2|X|
δπt

)
1

max{κR,minx∈X κx
t }

6: Choose action: xt ← arg max
x∈X

{
μ̄x

t + ρtν
RKG,x
t

}
7: Observe Ct+1 ∼ C(xt)
8: Update μ̄x

t+1, σ̄
x
t+1 for x = xt using observation Ct+1 � Use update rules in [6]

As in step 6 of Algorithm 1, ORKG algorithm chooses action at time t as:

xt = arg max
x∈X

{
μ̄x

t + ρtν
RKG,x
t

}
, (4)

where ρt :=
√

2 ln
(

2|X |
δπt

)
1

max{κR,minx∈X κx
t } , in which δ ∈ (0, 1) and πt is a

sequence satisfying
∑∞

t πt = 1, for example, πt := 1
(t+1)2

6
π2 . With this ρt,

ORKG balances the exploitation action to maximize μ̄x
t , the current estimate

of mean reward incurred by action x and the exploration action to maximize
νRKG,x

t , the regularized knowledge gradient of action x at time t. It is notable
that ORKG does not need to know the time horizon T ; whereas OKG algorithm
explicitly requires knowing the true T as shown in its decision rule (3). This
property allows ORKG to be easily applied to online learning problems where
explicit end-of-horizon is unknown or changes over time.

With carefully constructed decision rule, ORKG controls the exploration-
exploitation dilemma in online learning problem with unknown horizon, and
achieves sublinear regret upper bound as shown in Theorem 1.

Theorem 1. In stochastic MAB problems with bounded independent Gaussian
arms, ORKG algorithm with independent Gaussian belief has regret upper bound:

RT ≤p

√

8 |X |T ln
(

2 |X |T
δπT−1

)
LRKGσε,

with probability 1 − δ, where 0 < δ < 1, and LRKG < ∞ is a constant uniformly
bounding smoothness of regularized KG surface.

Our proof strategy, which is inspired from GP-UCB algorithm [17], is as follow:
first, the deviations of Gaussian rewards are taken with union bounds to bound
squared one-step regret with high probability, given δ and κR, and then we
sum up one-step regrets and bound the regret R(T ) and derive ρt shown in
Algorithm 1. The smoothness constant LRKG is analyzed in greater detail in
Sect. 4.2, and complete proof of Theorem 1 is given in appendix A.7.
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Therefore, ORKG algorithm with independent Gaussian belief has a sublin-
ear regret upper bound of O

(√|X |T ln |X |T
)

with probability 1 − δ, when its
modeling assumption matches the problem specification.

4 Theoretical Analysis

4.1 Regularization of Knowledge Gradient in ORKG

In this section, we define the regularization of KG used in ORKG algorithm, and
analyze the theoretical property of the regularized KG on which the sublinear
regret bound of ORKG depends.

Conceptual summary of the regularization of KG in ORKG algorithm is as
follows: 1) “standardize” KG into a unitless value, 2) force it to have a fixed
uniform bound from below, 3) then give back its unit to match KG. Step 1 is
achieved by computing standardized KG, and steps 2 and 3 are done in comput-
ing regularized KG from standardized KG.

Definition 1. κx
t , standardized knowledge gradient of an action x ∈ X at time

t is defined for all x ∈ X as:

κx
t :=

νKG,x
t

σ̄x
t

, (5)

where knowledge gradient νKG,x
t is computed from belief state Bt.

κx
t is “standardized” KG, in a sense that it has the same unit as ξx

t :

κx
t =

σ̄x
t√

(σ̄x
t )2 + (σε)2

︸ ︷︷ ︸
unitless

(ξx
t Φ (ξx

t ) + φ (ξx
t ))

︸ ︷︷ ︸
same unit as ξx

t

, (6)

where ξx
t is as defined in (2), Φ is the cumulative distribution function, and φ is

the probability density function of standard normal distribution.
We introduce the following regularization method, designed to achieve a

needed property for a sublinear upper bound of the regret of ORKG, and at
the same time easy to interpret.

Definition 2. νRKG,x
t , the regularized KG for making a decision x at time t

given belief state Bt, is defined as

νRKG,x
t := σ̄x

t max {κR, κx
t } , (7)

where κR > 0 is the regularizing parameter, which is a small arbitrary constant
uniform lower bound on κx

t for all x, t, and κx
t is standardized KG computed at

time t given belief state Bt according to Definition 1.

Note that from this regularization originates κR, one of the two hyperparameters
of ORKG algorithm. κR stands for the uniform lower bound on how small κx

t

can get for all x, t.
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4.2 Smoothness of Regularized KG Surface

In ORKG algorithm facing stochastic MAB with finite number of bounded
Gaussian independent arms, νKG,x

t can be efficiently computed for all x ∈ X
given Bt. To represent the “surface” of KG with respect to x at t, we consider
νKG

t =
[
νKG,1

t , νKG,2
t , · · · , νKG,K

t

]
as a piecewise linear function measured at

x = 1, 2, · · · ,K. We define a smoothness constant for the surface of KG as:

Definition 3. LKG,x
t , the smoothness constant of KG for action x at time t, is

defined as:

LKG,x
t :=

νKG,x
t

minx′∈X νKG,x′
t

. (8)

LKG,x
t represents the worst case relative difference between KG of x at t and

smallest KG across all x at t, up to permutation of X , in the unit of the value
of smallest KG at t. It has trivial lower bound of 1, and upper bound of ∞ at
t → ∞, suggesting that the KG “surface” may have a very sharp point.

On the other hand, the surface of regularized KG, whose smoothness constant
is shown in Definition 4, has a smoothness bound as shown in Lemma 1.

Definition 4. LRKG,x
t , the smoothness constant of regularized KG for action x

at time t, is defined, analogous to that of KG (Definition 3), as:

LRKG,x
t :=

max {κR, κx
t }

max
{
κR,minx′∈X κx′

t

} . (9)

Lemma 1. There exists a finite constant LRKG such that

LRKG,x
t ≤ LRKG < ∞ ∀x ∈ X ,∀t ∈ {0, 1, · · · } . (10)

Existence of a constant LRKG is needed to establish the sublinear regret upper
bound of ORKG, as the constant appears in the regret bound in Theorem 1. We
provide the proof of Lemma 1 in appendix A.3.

5 Empirical Verification

In this section, we present multifaceted empirical verification of the performance
of ORKG algorithm in online learning. We use Python package smpybandit
[1] to implement all stochastic multi-armed bandit (MAB) benchmarks, on an
AMD Ryzen 3900x CPU with 64GB of RAM. Benchmarks are randomized and
repeated 100 times, and the sample mean and standard deviation from all repeats
are reported. For each benchmark scenario, the best result in sample mean and
all runner-up results within 1 standard deviation of the best result are boldfaced.
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5.1 ORKG Compared to Other KG Algorithms

First, we demonstrate how the theoretical improvements of ORKG is realized, by
comparing empirical performance of KG based algorithms in bounded Gaussian
stochastic MAB problems. We compare ORKG algorithm against KG with inde-
pendent Gaussian belief algorithm (KG) [6] and KG for general class of online
learning problems algorithm (OKG) [13]. We also test ε-greedy algorithm with
constant ε(t) = 0.01 as a widely known benchmark algorithm frequently seen
in applications. The key differences of the algorithms are outlined in Table 1.
We use σε = 0.1 as the value of the common hyperparameter among the KG
algorithms for fair comparison.

Table 1. Comparison of algorithms used in Sect. 5.1

Decision rule Belief state Hyperparameters Regret bound

ε-greedy μ̄x
t w.p. 1 − ε μ̄x

t ε(t) N/A

KG νKG,x
t μ̄x

t , σ̄x
t σε N/A

OKG μ̄x
t + (T − t)νKG,x

t μ̄x
t , σ̄x

t σε, T N/A

ORKG μ̄x
t + ρtν

RKG,x
t μ̄x

t , σ̄x
t σε, δ, κR O

(√|X | T ln |X | T
)

We test the algorithms on the stochastic MAB benchmark problems with 5,
10, and 20 arms generating Gaussian rewards, whose mean parameter μx sam-
pled equally distanced in [−5, 5], with low variance scenario of σ2

x = 0.1 and
high variance scenario σ2

x = 1 for all actions x. For each algorithm, we sum up
observed regrets from t = 1, · · · , 10000, and report their mean and standard devi-
ations from 100 independent repeats in Table 2. ORKG shows expected behav-
ior of controlling the cumulative regret throughout all tested settings, whereas
other KG algorithms without sublinear regret bounds mostly show large regret.
OKG, even when provided with additional information on the true time horizon
T = 10000, achieves results comparable to ORKG only in 5 arms setting, not in
the harder settings with 10 and 20 arms. KG, intended to solve R&S problem,
shows worst performance in terms or regrets as expected. Note that ε-greedy,

Table 2. Cumulative Regrets in Gaussian Stochastic MAB. Lower is Better.

MAB setting Algorithms

Arms Variance ORKG OKG KG ε-greedy

5 High 215 ± 102 204 ± 96 33100 ± 256 8830 ± 8200

5 Low 17 ± 9 12 ± 12 33200 ± 235 6570 ± 8110

10 High 1060 ± 85 2580 ± 3210 39600 ± 355 14700 ± 11100

10 Low 40 ± 9 1020 ± 2840 40600 ± 241 17400 ± 11900

20 High 2210 ± 105 5950 ± 3900 39900 ± 774 19600 ± 10500

20 Low 96 ± 10 6210 ± 4690 44400 ± 264 21100 ± 14500
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a widely used algorithm in practice, shows extremely large standard deviation,
suggesting hit-or-miss performance in online learning.

5.2 Sensitivity Analysis of ORKG

ORKG introduces new hyperparameters δ and κR compared to other KG algo-
rithms as shown in Table 1. Since those hyperparameters play critical role in the
sublinear regret bound of ORKG, we analyze empirical sensitivity of ORKG to
δ and κR, one by one, tested on Gaussian MAB benchmarks. In the main paper,
we present results with 10 arms and high variance only, and full results are found
in appendix (Figs. B.4 and B.5).

First, we vary κR ∈ {0.0001, 0.001, 0.01, 0.1, 1} while fixing δ = 0.01, and
report the time evolution of cumulative regret against t, averaged over 100
repeats, as trajectories shown in Fig. 1.

Fig. 1. Sensitivity of ORKG to κR in Gaussian MAB (K = 10, σ2 = 1, δ = 0.01).

It is evident that ORKG shows robust regret controls regardless of wide
range of κR, and retains robust advantage over KG and OKG. Considering the
intuitive role of κR in ORKG to enforce the lower bound of KG and regularizes
the smoothness of the KG surface, the subtle sensitivity to κR is theoretically
expected, and can be interpreted as follows: changing κR can change the values
of the ORKG decision rule (4) transiently when exploration happens, visualized
as minor difference in early-stage trajectories (T < 103) of ORKGs with different
κR values in Fig. 1.
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We recommend the default value of κR = 0.01, based on theoretical under-
standing of the value should be small enough to become the lower bound of
KG, as the intuitive meaning of KG is the expected improvement from a single
reward. Also, κR can be tuned with a priori information or at problem formu-
lation stage: if the gap between the largest mean and the smallest mean of the
rewards are known or can be enforced by clipping rewards, then κR can be set
to be at least sufficiently smaller than the gap.

Next, we vary δ ∈ {0.0001, 0.001, 0.01, 0.1, 0.9} while fixing κR = 0.01, and
report the time evolution of cumulative regret against t, averaged over 100
repeats, as the trajectories shown in Fig. 2.

Fig. 2. Sensitivity of ORKG to δ in Gaussian MAB (K = 10, σ2 = 1, κR = 0.01).

It is notable that δ affects the behavior of ORKG in mid-range 102 < T < 104

to vary, and in most cases, the impact appears to be transient as the regret is
controlled for δ ≤ 0.1 cases. Drastically different behavior of ORKG is observed
for δ = 0.9 case, and this is expected according to the role of δ in ORKG: the
probability δ of encountering a reward deviates more than the estimated mean
plus exploration bonus term scaled by ρt (as given in (4)). Intuitively, larger δ
makes ORKG more cautious before greedily exploiting, since δ is the probability
of a rare event of facing unexpected rewards after choosing the action according
to ORKG decision rule (4), and this is empirically shown by ORKG with δ = 0.9
case in Fig. 2. Therefore, it is reasonable to set δ in ORKG as a relatively small
value even if δ ∈ (0, 1) is theoretically allowed, as δ adjusts how much ORKG
should expect the rare events would happen. We recommend the default value
of δ = 0.01, as 1% appears to be a good reference point for encountering “rare”
events; if more frequent surprises are expected, larger δ is recommended.
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5.3 ORKG Performance Validation Against Other MAB Algorithms

We validate empirical performance of ORKG against other MAB algorithms with
provable regret bounds, on stochastic Gaussian MAB benchmark problems set
up the same way as described in Sect. 5.1. Both classic algorithms and cutting-
edge algorithms for MAB are compared against ORKG in this validation, with
abbreviated names as follow: UCB [11], kl-UCB [7], EXP3++ [16], TS [18], and
BG [2]. Detailed rationale of choosing these algorithms are given in appendix
Sect. B.1. For each algorithm, we sum up observed regrets from t = 1, · · · , 10000,
and report their mean and standard deviations from 100 independent repeats in
Table 3.

Table 3. Cumulative regrets in Gaussian stochastic MAB. Lower is better.

MAB Setting Algorithms

Arms Variance ORKG UCB kl-UCB TS (G) EXP3++ BG

5 High 215 ± 102 247 ± 90 573 ± 2320 246 ± 94 1090 ± 113 235 ± 105

5 Low 17 ± 9 30 ± 10 15 ± 10 41 ± 37 919 ± 67 36 ± 12

10 High 1060 ± 85 1060 ± 88 1920 ± 2590 1420 ± 698 2920 ± 198 1070 ± 99

10 Low 40 ± 9 75 ± 11 41 ± 10 644 ± 1240 1920 ± 138 85 ± 12

20 High 2210 ± 105 2260 ± 68 3240 ± 1930 4590 ± 2210 5480 ± 212 2240 ± 72

20 Low 96 ± 10 182 ± 9 91 ± 10 3010 ± 2490 3470 ± 226 181 ± 12

As shown by boldfaced results across all scenarios, ORKG reliably performs
well in all tested Gaussian MAB benchmark scenarios, with the cumulative regret
of ORKG is on par with the top-performing algorithm within each scenario;
whereas other algorithms show some scenario preferences in which they perform
well. Both UCB, a classic algorithm, and Boltzmann-Gumbel (BG), a cutting
edge algorithm are the runner-ups, closely followed by kl-UCB, an improved
UCB with tighter bound that shows scenario preference different from UCB.
We conjecture that the unexpectedly poor performance of EXP3++ may be
an unwanted artifact of general-purposing EXP3 algorithm that is originally
designed for adversarial MAB problems to have sublinear regrets for stochastic
MAB problems as well. Thompson sampling (TS) also show unexpectedly poor
performance in many-arms scenario, and we think that 10000 samples, although
they are sufficiently many for 5 arms case, are not sufficient enough for 10 and 20
arms case, as there are more Bayesian estimates for TS to learn as the number of
arms grow. All algorithms tested have regret bounds for Gaussian MAB problems
tighter than the bound of ORKG we present in Theorem 1, and this empirical
validation suggests existence of tighter regret bounds for ORKG.
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6 Discussion

The simple regularization method for KG used in ORKG algorithm allows the
first KG-based algorithm with sublinear regret bounds, yet this approach may
be too simple to tighten regret bounds of ORKG on par with other stochas-
tic MAB algorithms. Despite the theoretical gap in regret bounds, we witness
impressive empirical performance of ORKG in MAB benchmarks with correct
model specification. Notably, the empirical validations is performed with rela-
tively few samples from MAB perspective, which suggests ORKG can perform
well in real world applications where the number of samples are limited. Also,
ORKG gives new insight to a long-standing question in KG literature on how to
trade off exploration-exploitation correctly in online learning, and at the same
time, ORKG allows interdisciplinary discussion between KG and MAB litera-
ture by providing the first regret bound result of KG-based algorithm in MAB
problems.

7 Conclusion

We present a simple and effective method to regularize knowledge gradient (KG)
that allows novel asymptotic regret analysis of KG-based algorithms with inde-
pendent Gaussian belief model. Using regularized knowledge gradients, we con-
struct ORKG, a KG-based online learning algorithm, and present its sublinear
regret bound in partial information Gaussian MAB problem. We provide empir-
ical validation of ORKG, and verify that ORKG algorithm performs comparable
to select MAB algorithms with tighter regret bounds in Gaussian MAB bench-
marks. Our result opens up an interesting stage for further research in KG from
the perspective of MAB literature.
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