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Abstract. Knowledge graph completion (KGC) aims to predict miss-
ing connections by mining information already present in a knowledge
graph (KG). Predicting such connections is heavily dependent on the
inference patterns. IsA relations (i.e., instance0f and subclass0f) play
an essential part in inferencing the composition pattern. Some existing
methods already exploit isA relations. However, most of them learn insuf-
ficient representations, which may limit the performance. To address this
issue, we propose a box-based knowledge graph embedding model called
IBKE, in which concepts are embedded as boxes, and instances are
represented by vectors in the same semantic space. According to the rel-
ative positions of elements, IBKE can naturally formulate isA relations.
In addition, we introduce a random update strategy (RUS) for optimiz-
ing training, which updates embeddings in a probability pattern. Experi-
mental results on benchmark datasets show that IBKE outperforms most
existing state-of-the-art methods, and demonstrate the effectiveness of

RUS.
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1 Introduction

Knowledge graphs (KGs) are structured facts of the real world, where nodes
represents entities and edges between nodes represents relations. Large-scale
KGs such as WordNet [14], YAGO [20] and Freebase [3] find applications in a
variety of downstream tasks including machine translation [31], relation extrac-
tion [24], question answering [9] and recommender systems [29]. Although KGs
may contain millions of triples, most existing KGs are incomplete. Therefore,
much research work has been devoted to link prediction task, which is also
known as knowledge graph completion (KGC). The target of link prediction is
to predict missing facts in KG based on the existing links. An effective solution
for KGC is knowledge graph embedding (KGE), which learns embeddings in a
continuous low-dimensional vector space, and predicts missing links by evaluat-
ing the similarity of facts.
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Fig. 1. Space utilization.

State-of-the-art KGE models can be broadly categorised as translational
models [4,10,12,26], semantic matching models [11,23,28] and deep learning
models [6,16,25]. Most approaches focus on translational models in early times,
which provide competitive performance with fewer parameters. Afterwards, sev-
eral methods turn to semantic matching models, which achieve better perfor-
mance by matching latent semantics of entities and relations. Recently, deep
learning models for KGC have received increasing research attention. Such mod-
els generally achieve more outstanding performance on account of the larger
parameters.

Despite achieving remarkable performance, most existing methods still regard
both instances and concepts as entities to make a simplification, which leads
to the following two drawbacks: insufficient concept representation and
lacking transitivity of isA relations. To address these issues, TransC [13]
is proposed as the first KGC model for differentiating concepts and instances,
which encodes each concept as a hypersphere and each instance as a vector.
Although modeling concepts via hyperspheres can building the transitivity of
isA relations, it still result in the insufficient concept representation. A
typical case is shown in Fig. 1(a). Commonly, parent class Cities in Americas
can be exactly divided into two disjoint subclasses: Cities in North America
and Cities in South America. However, TransC cannot take full advantage of
space in parent class Cities in Americas under any circumstances, which means
the representations of subclass concepts are insufficient. Furthermore, the blank
space in the hypersphere of Cities in Americas lacks practical significance, which
may lead to weak interpretability.

The problem of insufficient representation gives rise to the box structure [19].
Boxes can be regarded as the extended hyperspheres, which have different radii
in each dimension. Similarly, boxes can easily deal with isA relations. Due to
the flexibility of hyper-rectangles, boxes need only a slight effort to fill the gaps
between the parent class and subclasses. Thus, boxes not only have more promis-
ing representation power but also reserve the superiority of hyperspheres.

In this paper, we propose a new method called IBKE for knowledge graph
embedding. IBKE encodes each concept as a box (hyper-rectangle), while
instances and relations are encoded as vectors. Further, we utilize relative posi-
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tions between instances and concepts to model isA relations. Specifically, IBKE
represents instanceOf relation by checking whether an instance vector is inside
the box. For subclassOf relation, we enumerate four relative positions and
define different score functions for three non-target cases: disjoint, intersect
and inverse. Moreover, we introduce a new parameter update method called
Random update strategy (RUS) for optimizing, which randomly updates embed-
dings according to two update thresholds. Note that RUS has good generalization
ability for closed-region models.
In summary, our contributions are listed as follows:

— We propose IBKE, to the best of our knowledge, the first method using box
structure to distinguish instances and concepts for modeling isA relations.

— We present a random update strategy, which enhances the representation
power by updating parameters in a probability pattern.

— Through extensive experiments on two datasets, we show that IBKE achieves
state-of-the-art performance in most cases. Besides, we analyze the random
update strategy in detail and prove its effectiveness.

2 Related Work

In this section, we give an overview of KGE models for link prediction, and
divide previous methods into four categories.

Translational Models. TransE [4] is the first translational model, which
encodes entities and relations as vectors based on the principle h 4+ r = t, where
h, r, t denotes head entity, relation and tail entity, respectively. Then, several
variants are proposed to solve the drawbacks of TransE, including TransH [26],
TransR [12] and TransD [10]. By introducing manifold-wise modeling, Mani-
foldE [27] remedys the N-N problem in TransE. TorusE [7] expands the embed-
ding space to a Non-Euclidean space, i.e., torus. RotatE [21] first regards trans-
lations as rotations from head entity to tail entity in complex plane.

Semantic Matching Models. RESCAL [18] is the first bilinear model that can
perform collective learning, which is prone to overfitting. Hence, DistMult [28§]
simplifies RESCAL by using a diagonal matrix. ComplEx [23] extends DistMult
to the complex domain for modeling antisymmetric relations. HolE [17] combines
the quintessence in DistMult and ComplEx. Recently, SimplE [11] presents a
simple enhancement of Canonical Polyadic (CP) decomposition, and TuckER [2]
is based on Tucker decomposition. QuatE [30] first models relations as rotations
in quaternion space to enable rich and expressive semantic matching.

Deep Learning Models. ConvE [6], ConvKB [16] and InteractE [25] use con-
volutional neural network to capture the interactions between entities and rela-
tions. In addition, KBGAT [15] learns graph attention-based embeddings by a
generalized graph attention model.

Region-Based Models. Generally, region-based models encode elements by
explicitly defining the regions. These elements can be both entities and relations.
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Fig. 2. Four relative positions between box b; and b;.

Using a hypersphere to encode each concept, TransC [13] first differentiates
concepts and instances. BoxE [1] that provides a solution to multi-arity KGC,
encodes each relation as a box, while encodes each entity as a point and the
corresponding translational bump.

Our proposed model IBKE belongs to the translational models. IBKE shares
similarities with TransC, in which both models can deal with isA relations by
differentiating concepts and instances. However, there are two major differences
between TransC and IBKE:

— Modeling. IBKE encodes each concept as a box instead of a hypersphere,
which is used in TransC.

— Training. Compared to TransC, we propose the random update strategy,
which randomly learns parameters.

Note that we provide a comprehensive analysis about the computational
complexity of several representative models in the supplemental material.!

3 Methodology

In this section, we propose a novel embedding method IBKE and present a new
algorithm random update strategy (RUS).

3.1 IBKE

Formally, a knowledge graph is denoted by G = {€, R, S}. Entity set £ consists
of instance set Z and concept set C, i.e., £ = TUC. Relation set R = {r;,r.}UR,,
where r; represents instance0Of relation, r. represents subclassOf relation and
R, denotes the set of other relations. Therefore, the triple set S can be divided
into three disjoint subsets according to the relation type: relational triple set S,
instanceOf triple set S; and subclassOf triple set S..

Given a knowledge graph G, KGC aims at predicting the missing links in G
by learning embeddings for instances, concepts and relations in the same vector
space R¥, where k denotes the dimension of vector space. In IBKE, for each
instance i € Z and relation r € R,, we learn a k-dimensional vector i € R*¥ and

! The supplemental material of our paper is available online: https://github.com/
JensenDong/IBKE.
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r € R¥, respectively. For each concept ¢ € C, we learn a box b(cen, off) with
cen, off € R* denoting the box center and offsets of all dimensions, respectively.

Box structure is more flexible, but it also brings the challenge that it is
difficult to measure nested boxes. Thus, we define different dimensional-wise
score functions for instance0f, subclass0f and relational triples.

Relational Triples. A relational triple denoted as (h,r,t) consists of one relation
and two instances. IBKE learns k-dimensional vectors for instances and relations.
Hence, we define the score function just like TransE as follows:

fr(ht) = h+r —t]3. (1)

InstanceOf Triples. For an instanceOf triple (i,7;,c¢), when it holds, the
instance ¢ should be inside the box b. However, there is another relative position
which ¢ is out of the box b. Therefore, we define the following score function for
optimizing:
k
Jilive) = (|in — cena| — of f), (2)

n=1

where i,,, cen,, and of f,, represent the n-th element of i, cen and off, respectively.

SubclassOf Triples. For a subclassOf triple (c;, 7, ¢j), when it holds, the box
b; should be inside the box b; (as shown in Fig.2(a)). However, there are three
other relative positions between box b; and b;, i.e., disjoint, intersect, and
inverse. Distance between the centers of b; and b; in n-th dimension is defined
as follows:

d,, = |cen; n — cenjnl, (3)

where cen; , and cen;,, denote the n-th dimension of cen; and cen;, respectively.
Further, we define a specific score function for each condition.

— Disjoint. b; is disjoint from b; (as shown in Fig. 2(b)). The two boxes should
be closer in optimization. Therefore, the score function is defined as follows:

M=

fc(ciacj) = (dn+0ffi,n _Offj,n)a (4)

Il
=

n

where of f; , and of f;,, denote the n-th dimension of off; and offj, respec-
tively.

— Intersect. b; intersects with b; (as shown in Fig.2(c)). Similarly, we define
the score fuction like the first condition as follows:

M)~

felcivej) = ) (dn+offin —of fin) (5)

Il
-

n
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— Inverse. b; is inside b; (as shown in Fig.2(d)). This condition is exactly
the opposite of our optimization objective, so we define the following score
function to reduce of f; , and increase of f; »:

k
feleies) = (0f fin = of fin)- (6)
n=1
A
L, VoAt
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Fig. 3. Traditional method VS. RUS. Best view in colors. Red triangles represent
negative instances and blue circles represent positive instances. Dotted triangles and
circles represent their original positions. (Color figure online)

In experiments, we enforce constraints on embeddings, i.e., ||hl2 <1, ||r|l2 < 1,
lItl2 <1, |lil]l2 <1, ||cen|2 <1 and Vn € {1,...,k}, of frn < 1.

Optimization. We define a margin-based ranking loss function for relational
triples as follows:

L, = Z Z [’Yr +fr(§) - fr(f/)]+, (7)

£€S, £'ES),

where[z]; = max(0,z), £ denotes a positive triple, ¢ denotes a negative triple
and -y, is the margin between positive triples and negative triples. Similarly, we
define the loss function for instanceOf triples and subclass0f triples as follows:

Li=> > i+ fi€) = £y (8)

(€S €'eS]
Le=Y D [+ fol&) = £+ 9)
€S E'ES]

We adopt stochastic gradient descent (SGD) to minimize the above loss func-
tions, and use random update strategy (RUS) to randomly update embeddings.

Negative Sampling. Following Lv et al. [13], we randomly replace h or t to con-
struct a negative triple (h', r,t) or (h,r,t’). (See details in supplemental material)
3.2 Random Update Strategy

During training instance0f triples, the traditional method will stop updating
parameters when score function f;(§) < 0 for positive triples or f;(£’) > 0 for
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negative triples, which means that positive instances are inside the boxes or neg-
ative instances are outside the boxes, respectively. While the positive instances
and negative instances are separated, they still gather around near the bound-
ary of the boxes, i.e., the surface of hyper-rectangles. According to empirical
regularity, instances and concepts should randomly distribute in the embedding
space. Intuitively, we present a Random Update Strategy (RUS) in place of the
traditional algorithm. The comparison of these two algorithms is shown in Fig. 3.
Note that we demonstrate this case in 2D for convenience.

In RUS, both positive triples and negative triples randomly update param-
eters depending on the score function f;. We set two update thresholds
Gposs Pneg € [0,1], where ¢pos, dneg denote positive update threshold and neg-
ative update threshold, respectively. For each positive training triple £, RUS
updates parameters when f; > 0 and updates parameters with probability ¢pes
when f; < 0. Similarly, for each negative training triple £/, RUS updates param-
eters when f; < 0 and updates parameters with probability ¢,ey when f; > 0.
Details of RUS are summarized in supplemental material.

RUS is also applied to subclassOf triples. This strategy assists our model
to separate positive and negative triples. Moreover, RUS can be generalized to
a method that uses a structure of closed region such as hypersphere and box.

4 Theoretical Analyses

In this section, we provide some theoretical analyses of IBKE and Box structure.
Note that all proofs for theorems can be found in the supplemental material.

4.1 Representation Power

Definition 1. (Filling Mode) A filling mode is the way to stuff a box (hyper-
sphere) with smaller ones. We define three types of filling modes.

— Align mode aligns the centers of the smaller boxes (hyperspheres) along each
axis.

— Compact mode aligns the centers of the interlaced boxes (hyperspheres) to
get a more compact spatial distribution.

— Hybrid mode is the mizture of Align mode and Compact mode.

Theorem 1. A hypersphere cannot be filled with several identical smaller hyper-
spheres without a single gap by any filling mode.

Theorem 2. A box can be filled with several identical smaller boxes without a
single gap by a certain filling mode.

Definition 2. (Representation Power) The representation power of box
(hypersphere) structure is the space utilization of embedding space.

Theorem 3. The representation power of box is superior to hypersphere.
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4.2 Inference Patterns

Knowledge graphs mainly consist of three relation patterns. We give their formal
definitions here:

Definition 3. A relation r is symmetric(antisymmetric) if

Va,y € E,r(x,y) = r(y,x) (r(z,y) = r(y,z))
A relation with such form is a symmetry(antisymmetry) pattern.
Definition 4. Relation ry is inverse to ry if

Ve,y € E,r2(x,y) = r1(y, x)
Relations with such form is an inversion pattern.
Definition 5. Relation r1 is composed of relation ro and relation rs if
Va,y,z € E,ra(x,y) Ars3(y, z) = ri(z, 2)

Relations with such form is a composition pattern.

According to the above definitions, we provide a comprehensive analysis on IBKE
in supplemental material and come to the following theorem:

Theorem 4. IBKFE can infer the antisymmetric, inversion and composition pat-
terns.

5 Experiments

In this section, we evaluate IBKE and RUS on link prediction [4]. In addition,
we conduct a series of ablation experiments for RUS.

5.1 Experimental Setup

Datasets. Most previous models are evaluated on FB15k [4] and WN18 [4].
To address the test leakage problem in FB15k and WN18, FB15k-237 [22] and
WN18RR [6] are constructed, which are subsets of FB15k and WN18, respec-
tively. However, FB15k and FB15k-237 mainly consist of instances; WN18 and
WN18RR mainly consist of concepts. The imbalance in the number of instances
and concepts makes these four datasets inappropriate for testing the ability of
distinguishing instances and concepts. Besides, isA relations are not explicitly
given on these datasets. Even YAGO26K-906 [8] and DB111K-174 [8], which
have explicitly given the isA relations, are not applicable. Both YAGO26K-906
and DB111K-174 suffer from the severe imbalance of instances and concepts,
either. Moreover, these two datasets have test leakage problem and contain a
large number of repeating triples. Hence in experiments, following TransC, we



IBKE 311

evaluate IBKE on benchmark dataset YAGO39K [13], which is constructed from
another popular knowledge graph YAGO [20], and contains a number of instances
and concepts. The statistics of YAGO39K are listed in supplemental material. In
addition, we also evaluate IBKE on Countries dataset [5,21] to explicitly test the
ability of inferring the composition pattern. It consists of three sub-tasks which
increase in difficulty in a step-wise fashion. For more details about Countries,
please see supplemental material.

Evaluation Protocol. Following Bordes et al. [4], the link prediction perfor-
mance is reported on the standard evaluation metrics: Mean Reciprocal Rank
(MRR) and Hits@N for N = 1, 3,10. MRR is the mean reciprocal rank of correct
triples. Hits@N is the proportion of correct triples whose rank is not larger than
N. Note that an excellent embedding model should achieve a higher MRR and a
higher Hits@QN. We report the filtered results to avoid possibly flawed evaluation.

Table 1. Link prediction results on YAGO39K with k£ = 100 and k& = 200. Best results
are in bold and second best results are underlined.

Model = 100 k=200
MRR | H@1 | HG@3 | H@10 | MRR | HQ1 | H@Q3 | HQ10

TransE [4] .248 |.123 |.287 |.511 |- - - -
TransH [26] 215 |.104 |.240 | 451 |- - - -
TransR [12] 289 |.158 |.338 |.567 |- - - -
TransD [10] 176 089 190 |.354 - |- - |-
HolE [17] 198 110 | 230 384 - - |- -
DistMult [28] 362 |.221 | 436 |.660 |— - - -
ComplEx [23] 362 1.292 |.407 | .481 |- - - -
SimplE [11] 392 |.283 |.456 |.590 |.465 |.367 |.523 |.644
TorusE [7] 351 |.295 |.388 |.449 |- - - -
TuckER [2] 270 | .187 1.290 |.428 |.427 |.315 |.477 |.653
KBGAT [15] 469 | .351 | .539 |.692 |.475 |.357 |.543 |.699
QuatE [30] 399 |.273 | 452 659 - |- |- |-
RotatE [21] .04 |.413 | .560 |.668 |.552 |.458 | .611 |.721
BoxE [1] .546 |.462 598 |.697 | .566 |.475 |.626 |.726
TransC [13] 437 1.299 |.521 |.700 |.520 |.406 |.597 |.720
IBKE (ours) 522 1.404 |.605 |.731 |.578 |.487 |.640 |.729
TransC-RUS 448 | .311 | .634 |.704 |.531 |.423 | .602 |.721
IBKE-RUS (ours) |.532 |.418 |.613|.731 |.582 |.497|.641.725

Implementation. We select learning rate A for SGD among {0.1, 0.01, 0.001},
the dimensionality of embedding space k among {20, 50, 100}, the three margins
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v, ¥ and 7. among {0.1, 0.3, 0.5, 1, 2}, the two update thresholds ¢pos and ¢y.q
among {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The optimal configurations on
YAGO39K and Countries are listed in the supplemental material. To maintain
comparison fairness, we train each model for 1000 epoches.

5.2 Results and Analysis

Evaluation results for relational triples are shown in Table 1. Note that we use
publicly available source codes to reproduce results of comparison models, i.e.,
SimplE, TorusE, TuckER, KBGAT, QuatE, RotatE, BoxE and TransC. Other
results are taken from [13]. From Table1, we conclude that: (1) IBKE outper-
forms all baseline models in terms of Hits@3 and Hits@10. Results indicate that
IBKE can get better performance by explicitly modeling isA relations. Distin-
guishing instances and concepts play a crucial part in learning embeddings. (2)
The trend of performance with k£ = 200 is basically consistent with the perfor-
mance with & = 100. We can see that IBKE outperforms all baseline models on
all metrics when k& = 200. The reason is that the representation power of box
is more significant with a larger dimension. (3) The RUS works well for both
IBKE and TransC, which implies a good scalability.

Comparison with TransC. IBKE achieves significant performance improve-
ment. In specific, the improvement is 0.522-0.437 = 0.085 on MRR and +8.1%
on Hits@1 over TransC when k& = 100, which indicates that with a higher space
utilization, the box structure is superior to hypersphere.

Comparison with BoxE. IBKE is only less competitive than BoxE in MRR
and Hits@1 with £ = 100, but outperforms BoxE on all metrics when k& = 200.
The reason is that IBKE encodes concepts as boxes and BoxE encodes relations
as boxes. The number of concepts is larger than relations. Therefore, IBKE can
capture more information with a larger dimension.

Random Update Strategy. To verify the effectiveness of RUS, we conduct
a series of ablation experiments as shown in Table 1, Fig.4 and Fig.5(a). From
Table 1, TransC-RUS achieves relative improvement of 0.448-0.437 = 0.011 on
MRR and +1.7% on Hits@l over TransC. Compared to IBKE, IBKE-RUS
achieves relative improvement of 0.532-0.522 = 0.010 on MRR and +1.4% on
Hits@1. Figure 4(a) shows that despite the epoch, models with RUS always out-
perform the corresponding ones without RUS. Moreover, as shown in Fig. 5, RUS
can achieve better performance by using specific update thresholds.

Results on Countries S1/S2/S3. To further investigate the ability of inferring
composition pattern, we evaluate our model on Countries dataset. In Table 2, we
report the results with respect to the AUC-PR metric, which is commonly used
in the literature. We can see that IBKE outperforms all the baseline models on
S1 and S3, and obtains competitive performance on S2. Note that S3 is the most
difficult task.
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Table 2. Link prediction results of Countries datasets. Best results are in bold.

Model Countries (AUC-PR)
S1 |s2 |S3
DistMult | 1.00{0.72 | 0.52
ComplEx | 0.97 | 0.57 | 0.43
ConvE 1.00/0.99 | 0.86
RotatE | 1.00|1.00|0.95
IBKE 1.00/0.99 | 0.96
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Fig.5. (a) Learning curves of IBKE, IBKE-RUS, TransC, and TransC-RUS; (b) Per-
formance versus dimensionality; (¢) Runtime analysis.

Robustness Experiment. We evaluate the dependence of IBKE on dimen-
sionality. Experimental results are shown in Fig.4(b), in which we can conclude
that: (1) Compared to IBKE, BoxE can obtain competitive performance with a
smaller dimension. (2) When k > 150, IBKE can achieve state-of the-art perfor-
mance relative to most models.

Running Time Analysis. We train IBKE-RUS on the CPU and BoxE on
a single Tesla V100 GPU. Results are shown in Fig. 4(c), in which we can see
that each runtime of IBKE is less than BoxE with same embedding dimension.
Furthermore, as the dimension grows, so does the runtime gap between IBKE
and BoxE. Hence, IBKE is more efficient than BoxE.

6 Conclusion

In this paper, we propose IBKE, which introduces a new use of box for knowl-
edge graph completion. IBKE applies box structure to model concepts. Instances
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and relations are both embedded as vectors. We also propose a new parameters
update method named random update strategy for randomly updating embed-
dings. Experimental results show that IBKE outperforms most state-of-the-art
baselines and has obvious advantages when inferring the composition pattern.
By ablation experiments, we further prove the effectiveness of RUS. In future
work, we will explore how to combine box and rotation.

Acknowledgments. This work was supported by the National Key Research and
Development Program of China.
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