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Abstract. The relative position of sensors placed on specific body parts
generates two types of data related to (1) the movement of the body part
w.r.t. the body and (2) the whole body w.r.t. the environment. These
two data provide orthogonal and complementary components contribut-
ing differently to the activity recognition process. In this paper, we intro-
duce an original approach that separates these data and abstracts away
the sensors’ exact on-body position from the considered activities. We
learn for these two totally orthogonal components (i) the bias that stems
from the position and (ii) the actual patterns of the activities abstracted
from these positional biases. We perform a thorough empirical evalu-
ation of our approach on the various datasets featuring on-body sen-
sor deployment in real-life settings. Obtained results show substantial
improvements in performances measured by the f1-score and pave the
way for developing models that are agnostic to both the position of the
data generators and the target users.

Keywords: Meta-learning · Decentralized machine learning ·
Federated learning · Internet of Things · Human activity recognition

1 Introduction

The selection of the sensors’ positions in moving targets is a constraint that is
encountered in many fields, such as human activity recognition from on-body
sensor deployments [4,5,11,12,30]. The movements of the area of the target on
which the sensors are positioned generate data of two different but complemen-
tary natures (see Fig. 1). The first concerns the movement of the position relative
to the target itself, and the second concerns the movement of the target rela-
tive to its surroundings. In the case of human activity recognition, we notice for
example that the kinetics of the hand movements during a race can be decom-
posed into a circular movement (CM) of the hand relative to the shoulder and
a translation movement (TM) associated with the whole body [23].

At least three practical implications can be devised from this: (i) CM data
are enough to learn some target concepts, e.g., the hand kinetics movement is
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Fig. 1. (left) The hand sensor undergoes two types of movements. One is of the same
nature as the torso and linked to the translational movement of the body. The other
is linked to the movement of the hand locally relative to the body. (right) Phase
plan showing the dynamics of the thigh and foot during gait cycle (GC) ( 1%GC)
extracted from the biomechanics works of [6].

enough to determine if a person is at rest or running; (ii) CM data from different
positions, e.g., hand and torso, cannot be shared and mixed together. Otherwise,
this generates noise and confusion during the learning process; (iii) only TM data
can be shared among the different positions as these data are of the exact same
nature but taken from different points of view (positions or perspectives).

In this paper, we leverage the data decomposition into universal and position-
specific components to improve activity recognition models. These components
have distinctive contributions concerning the target concepts to learn. This
brings an interesting property that allows us to fuse the universal components
as seen from different points of view (positions) while identifying the position-
specific components, which could serve as additional knowledge in situations
when the position-specific components are not sufficient to recognize an activity.
Without this data decomposition process, the local part of the data adds posi-
tion noise challenging to manage with centralized approaches, e.g., federated
learning [22,34]. Indeed, to integrate data from different positions (or clients), it
is necessary to separate the data of the same nature (shareable) from the pure
local ones linked to the specific kinetics of the position. Similar data can and
should be shared to improve recognition rates. However, the specific data must
be processed locally, otherwise impacting the learning process.

Traditional HAR approaches [5,24,38] often consider the sensory inputs to
be flattened therefore disregarding the significant impact of the various posi-
tional biases. Some approaches consider these problems from the perspective of
deployment optimization, mainly focusing on the study of the optimal on-body
sensors placement and its impact on the recognition of target activities [3,4,30].

There are also rare approaches offering pipelines which include recognition
of the position of the data generator followed by the activity recognition [37] or
including an explicit model of the context [2,8]. Other approaches, e.g., [19], try
to develop heuristics to improve the robustness of activity recognition models
to sensors displacements. Regardless of the devised techniques, these approaches
rely on centralized processing of the data, which does not match the intrinsic
complementary nature of the data, thus limiting their potential capacities.
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To deal with these complementary data sources, we propose an original multi-
level model of abstraction of the data generator position encompassing a central
learner (or set of local generic learners) and a set of specific local learners. The
local learners (one for each position) use only specific local data concerning the
local relativity. They are responsible for learning (i) the position-dependent pat-
terns of activities and (ii) the movements that link them to the individual. The
aim is to abstract the learning examples from the bias arising from the posi-
tion from which they are generated. The central learner (or set of local generic
learners) uses the aggregated universal components from the local learners via
a conciliation step based on the efficient federated learning (FL) setting. Exten-
sive experiments on three representative datasets featuring real-world sensor
deployment settings show the effectiveness of abstracting the impact of the data
generator’s position. We noticeably get substantial improvements in terms of the
recognition performances of individual activities and robustness to the evolution
of the sensor deployments. We perform a comprehensive comparative analysis of
our proposed approach via ablation studies which shows the contribution of the
dual interplay between the local and central learners.

2 Problem Formulation

In this section, we briefly characterize the problem of abstracting the exact
position of a given sensor. We consider settings where a collection S of M sen-
sors (also called data generators or data sources), denoted {s1, . . . , sM}, are
positioned respectively at positions {p1, . . . , pM} in the object of interest, e.g.,
human body. Each sensor si generates a stream xi = (xi

1, x
i
2, . . . ) of observa-

tions of a certain modality like acceleration or gravity, distributed according to
an unknown generative process. Furthermore, each observation is composed of
channels, e.g. three axes of an accelerometer. The goal is to continuously recog-
nize a set of target concepts Y like running or biking in the case of the human
activity recognition according to all sensor’s positions. In the case of the SHL
dataset, the sensors deployment features data generated from 4 smartphones,
carried simultaneously at typical body locations (hand, torso, hips, and bag).

2.1 Abstraction of the Position

As described in the previous section, each sensor produces two types of orthogo-
nal data. This problem can be formally defined as the construction, for the data
generated by each sensor si, of a factorized representations zi being a composi-
tion of (i) position-invariant (abstract or universal) components vector ziA, and
(ii) a position-specific (local) components vector ziP . The position-invariant com-
ponents vector captures the features that are shared across all positions. On the
other hand, the position-specific components vector captures specific and com-
plementary insights concerning the target concepts. The first problem to solve
in our model is to build automatically this data decomposition process for each
sensor automatically. Thanks to this process, each sensor s ∈ S will disentangle
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the data interlaced between the local and universal component x by projecting
them into two separate representations zA and zP . Components zP will be used
only in a local learner, and zA can be used in the local learner or shared with the
same data coming from all other sensors in a global learner. This process allows
us to have fine-grained control on the inference process where one can leverage
different configurations in order to get optimal performances, while traditional
HAR approaches often consider the inputs to be flattened and disregard the bias
related to the position. We notice that in certain situations the position-specific
component alone is enough to recognize the activity, e.g., the circular movements
of the hand are sufficient to distinguish between running and walking. In addi-
tion, since only position-independent data is shared, this process considerably
reduces data heterogeneity. It, therefore, improves data aggregation techniques
or learners such as federated learning [36] by sharing only the position-invariant
data. When the data are not decomposed, the position-specific part of the data
represents noise for the global system.

To deal with these two challenging complementary representations, we pro-
pose a model based on multi-level processing to abstract the position as described
below. In this model, we suppose that the position-invariant components share
the data with a central learner.

3 Source Position Multi-level Abstraction

Here, we propose an instantiation of the proposed problem formulation composed
of local and central learners. To perform the separation of the position-specific
components from the universal ones, we use a family of models based on variational
autoencoders (VAEs) [18] (Sect. 3.1). The proposed conciliation step is based on
the federated learning (FL)-based aggregation setting where the position-specific
learners in our formulation are assimilated to the decentralized clients in FL (Sect.
3.2). This instantiation is described in the following. Figure 2 summarizes the pro-
posed instantiation. Algorithm 1 outlines the complete learning process.

3.1 Position-Specific (or Local) Learners

The position-specific learners Lp pursue their own learning steps locally using
their own generated data. Their goal is to decompose the contents of the data
into different factors of variations, particularly those related to the position itself.
The objective of the local learner Lp can be formalized as the expected loss over
the data distribution of the position p, fp(wp) = Eξp

[f̃p(wp; ξp)], where ξp is
a random data sample drawn according to the distribution of position p and
wp the set of the learner’s weights. In particular, the distributions from which
are drawn the samples ξpi

and ξpj
, pi �= pj , can be distinct. At the step t of

communication round, each local learner independently runs τp iterations of the
local solver, e.g., stochastic gradient descent, starting from the current global
model L

(t,0)
p until the step L

(t,τp)
p to optimize its own local objective (see the

black arrows depicted in Fig. 2).
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Fig. 2. Framework of the proposed multi-level abstraction architecture. The global
learner LS starts with an initial set of weights which are distributed to the local learners.
The local learners Lp, one for each position p, learn the two vector components zA and
zP , by performing independently a set of gradient steps which allows to get newer
versions. These new versions are used during the conciliation step which results in a
new version of the global learner, and subsequently a more robust position-independent
representation. (Color figure online)

The objective function fp(wp) is constructed using a family of models based
on VAEs for their ability to deal with entangled representations. The task here is
to learn these factors of variation, commonly referred to as learning a disentan-
gled representation. It corresponds to finding a representation where each of its
dimensions is sensitive to the variations of exactly one precise underlying factor
and not the others.

Depending on the availability of explicit knowledge about the underlying
factors of variation, different strategies are pursued to learn the disentangled
representation. For example, in video prediction [7,16], temporal-invariance is
often leveraged with a content representation which captures structure that
is shared across all video frames and a pose representation capturing content
that varies over time. These strategies require devising complex architectures
and intricate loss functions to enforce prior knowledge. Alternatively, the disen-
tanglement can be performed using separate representations for each factor of
variation, which are jointly learned by different encoders, e.g. [28,29]. Although
the representations are explicitly separated and learned by different encoders,
getting exact correspondence with the factors of variation, i.e., non-overlapping
dimensions, is not ensured and can lead to identical representations. Recent
advances in unsupervised disentangling based on VAEs demonstrated noticeable
successes in many fields using the β-VAE, which leads to improved disentan-
glement [15]. It uses a unique representation vector and assigns an additional
parameter (β > 1) to the VAE objective, precisely, on the Kullback Leibler (KL)
divergence between the variational posterior and the prior, which is intended
to put implicit independence pressure on the learned posterior. The improved
objective becomes:
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L(x; θ, ϕ) = Eqϕ(z|x)[log pθ(x|z)] − βDKL(qϕ(z|x)||p(z)) − αDKL(qϕ(z)||p(z)),

where the term controlled by α allows to specify a much richer class of properties
and more complex constraints on the dimensions of the learned representation
other than independence. Indeed, the proposed conciliation step is challenging
due to the dissimilarity of the data distributions across the local learners, leading
to discrepancies between their respective learned representations. One way to
deal with this issue is by imposing sparsity on the latent representation in a way
that only a few dimensions get activated depending on the learner and activities.
We ensure the emergence of such sparse representations using the appropriate
structure in the prior p(z) such that the targeted underlying factors are captured
by precise and homogeneous dimensions of the latent representation. We set the
sparse prior as p(z) =

∏
d(1− γ)N (zd; 0, 1)+ γN (zd; 0, σ2

0) with σ2
0 = 0.05. This

distribution can be interpreted as a mixture of samples being either activated or
not, whose proportion is controlled by the weight parameter γ [21].

3.2 Referential (or Central) Learner

Each local learner pursues its own “version” of the universal representation zpA

but has not to diverge from the referential universal representation zA, which
constitutes a consensus among all local learners. In our setting, we build the
referential universal representation by making every learner contributes to it via
a weighted aggregation defined as follow: given the objectives fp(w) of the local
learners Lp, the referential learner objective function is formulated as:

min
w∈Rd

{

F (w) :=
M∑

p=1

αp × fp(wp)

}

with
M∑

p=1

αp = 1, (1)

where αp is used to weigh the contribution of every learner to the universal
representation. After a predefined number of local update steps, we conduct a
conciliation step (see the dotted red arrows in Fig. 2). Each conciliation step
t produces a new version of the referential learner L

(t)
S and, a new version of

the referential universal representation z
(t)
A . The conciliation step has to be per-

formed on the learned representations z
(t)
pA via regularization, for example. In

our approach, the conciliation step is performed via representation alignment,
e.g., correlation-based alignment [1]. More formally, we instrument the objective
function of the local learners with an additional term derived from the represen-
tation alignment [33].

min
w∈Rd

{

F (w) =
1
M

M∑

p=1

Fp(wp)

}

, Fp(wp) = min
w∈Rd

{

fp(wp) + λR(zpA, z
(t)
A )

}

,

(2)
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where R is a regularization term responsible for aligning the locally learned
universal components with the ones learned by the referential learner and λ ∈
[0, 1] is a regularization parameter that balances between the local objective
and the regularization term. Note that in this setting, it is required that, at
conciliation step t, a copy of the referential learner’s weights be available locally
to perform the generative step. Position-specific and universal components will
still be learned separately but locally. Then, the conciliation can be performed
via the standard FL setting, where the weights of the local universal components
learners are aggregated and used to update the referential learner. In this regard,
the conciliation step can be implemented with any federated learning algorithm,
e.g., federated averaging [22], federated normalized averaging [34]. The shared
global model is updated based on the federated averaging as follows:

w(t+1,0) − w(t,0) =
M∑

p=1

αpΔ
(t)
p = −

M∑

p=1

αp · η

τp−1∑

k=0

gp(w(t,k)
p ), (3)

where w
(t,k)
p denotes client p’s model after the k-th local update in the tth com-

munication round and Δ
(t)
p =w

(t,τp)
p −w

(t,0)
p denotes the cumulative local progress

made by client p at round t. η is the client learning rate and gp represents the
stochastic gradient over a mini-batch of samples.

Algorithm 1: Multi-level abstraction of sensor position
Input : {xp}M

p=1 streams of annotated observations from the sensors
1 w ← initWeights() ; % Init. referential learner weights
2 distributeWeights(w, S) ; % Weights distribution
3 while not converged do

; % Local updates
4 foreach position p ∈ S do
5 for t ∈ τp steps do
6 Sample mini-batch {xp

i }np

i=1 from the stream of data xp

7 Evaluate ∇wpL(wp) with respect to the mini-batch

8 Compute adapted parameters: w
(t)
p ← w

(t−1)
p − η∇wpL(wp)

9 end

10 end
; % Central updates

11 Update central model’s weights LS by aggregating the incoming weights
from the local models Lp, p ∈ {1, . . . , M} using Eq. 3

12 end
Result: LS and Lp, p ∈ {1, . . . , M}, the trained referential and local learners

4 Experiments and Results

We perform an empirical evaluation of the proposed approach, consisting of two
major stages: (1) we evaluate the quality of the data separation into position-
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specific and universal components which is performed by the local learners and
how each of these components contributes individually, with and without the
conciliation process, to the recognition performances (Sect. 4.2); (2) we then eval-
uate various inference configurations where the position-specific and universal
components are combined to improve the performances. We also provide a com-
parative analysis against baselines (Sect. 4.3). Code and supplementary material
can be found in https://github.com/hamidimassinissa/positionAbstraction.

4.1 Experimental Setup

We evaluate our proposed approach on three large-scale real-world wear-
able benchmark datasets featuring multi-location and heterogeneous sensors:
SHL [10], HHAR [32], and Fusion [31] datasets (see § A.1 for a detailed descrip-
tion). Implementation details can be found in § A.2. We compare our approach
with the following closely related baselines.

– DeepConvLSTM [24]: a model encompassing 4 convolutional layers respon-
sible of extracting features from the sensory inputs and 2 long short-term
memory (LSTM) cells used to capture their temporal dependence.

– DeepSense [38]: a variant of the DeepConvLSTM model combining convo-
lutional and a Gated Recurrent Units (GRU) in place of the LSTM cells.

– AttnSense [20]: features an additional attention mechanism on top of the
DeepSense model forcing it to capture the most prominent sensory inputs
both in the space and time domains to make the final predictions.

For the ablation study, we compare our approach with two baselines which
do not perform the separation nor conciliation steps. These models consist of
convolution-based circuits for each position which are then fused together and
trained jointly. We implemented two types of fusion schemes [13]: concatenation-
based and alignment-based fusion (see § A.3). To make these baselines compara-
ble with our models, we make sure to get the same complexity, i.e., comparable
number of parameters. We use the f1-score in order to assess performances of
the architectures. We compute this metric following the method recommended
in [9,25] to alleviate bias that could stem from unbalanced class distribution (see
§ C). In addition, to alleviate performance overestimation problem, we rely in
our experiments on the meta-segmented partitioning proposed in [14] (see § D).

4.2 Evaluation of the Data Decomposition Process

In this part, we evaluate the ability of the local learners to decompose the sensor
data into the position-specific components and the universal ones. We evaluate
this process with and without the conciliation phase, then we show the impact
of this step on the recognition performances. We measure the sparsity of a given
representation using the Hoyer extrinsic metric [17] which is formally defined
for a vector y ∈ R

d to be Hoyer(y) =
√

d−‖y‖1/‖y‖2√
d−1

∈ [0, 1] yielding 0 for a fully

https://github.com/hamidimassinissa/positionAbstraction
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dense vector and 1 for a fully sparse one. Table 1 summarizes the average nor-
malized sparsity of the obtained representations. Figure 3 illustrates the average
latent magnitude computed for each dimension of the learned representations.
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Fig. 3. Average latent encoding magnitude computed over different steps of the con-
ciliation process.

Table 1. Summary of the per-position average normalized sparsity measured using the
Hoyer extrinsic metric. Results w/ and w/o conciliation are shown.

Config. Average normalized sparsity±std.

Bag Hand Hips Torso

w/o concil. 0.42±.072 0.77±.002 0.71±.029 0.68±.024

w/ concil. 0.44±.0145 0.91±.0521 0.87±.038 0.727±.033

From Table 1, we can observe, as expected, that the representations learned
by the local learners of the hand and hips have high sparsity compared to bag
and torso. Sparsity increases further when the conciliation is performed as the
dimensions that are less important are being pushed more and more towards zero.
Regarding the latent magnitudes, we can observe that during conciliation some
dimensions of the central learner’s latent representation are getting more acti-
vated (e.g., dimensions 30, 35, 39, and 40 with an average magnitude of 0.0134,
0.146, 0.0138, and 0.138, resp.) corresponding to the universal components, while
the remaining dimensions having low activation and some noticeable picks (e.g.,
at 3, 12, 18, and 24) corresponding to the position-specific components.

As demonstrated above, the dimensions of the learned representations have
meaningful interpretation with regards to the activities that we seek to recognize.
To further assess the usefulness of the separated components per se (without a
conciliation step), we leverage them in a traditional discriminative setting. In
other words, we take the learned representation and add, on top of it, a sim-
ple dense layer. This additional layer is trained to minimize classification loss
while the rest of the circuit is kept frozen. To alleviate any effect that could be
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attributed to the model’s complexity, the additional dense layer has low VC-
dimension so that we ensure it has no capacity to improve the representation
by itself. Table 2 compares the obtained performances with the baseline mod-
els on the considered representative datasets. Furthermore, to better understand
how the process of conciliation among the learners, attached to the different posi-
tions, impacts the quality of both the universal and position-specific components,
we leverage similarly the separated components but this time, after performing
the conciliation process. Table 3, summarizes obtained results. We compare the
results with baseline models trained on data generated from specific positions
without applying the separation nor the conciliation processes.

Table 2. Recognition performances (f1-score) of the baseline models on different rep-
resentative related datasets. Evaluation based on the meta-segmented cross-validation.
Experiments were averaged over 7 repetition runs.

Model HHAR Fusion SHL

DeepConvLSTM 70.1±.0018 68.5±.002 65.3±.0206

DeepSense 72.0±.0022 69.1±.0017 66.5±.006

AttnSense 76.2±.0074 70.3±.0027 68.4±.03

Feature fusion 72.9±.004 68.7±.001 66.8±.009

Corr. align. 75.8±.0014 70.2±.04 69.1±.015

Proposed 78.3±.0045 72.8±.002 74.5±.0133

We observe from Table 3 that, overall, the obtained performances using the
position-specific and universal components are better than those obtained using
the baseline (without separation nor conciliation). In theory, with the concilia-
tion step, optimal representations would emerge in particular for the universal
components. Indeed, this is achieved by the additional alignment term in Eq. 2
which should make them interchangeable regardless of the position from which
they have been generated. This should nevertheless be harder in the case of the
position-specific components which may activate very diverse dimensions of the
learned representation (as described in the experimental results above). Surpris-
ingly, this has a mild impact on the performances which stay comparable. This
could potentially be explained by the importance of the position-specific com-
ponents for the recognition of many of the activities that are considered in the
SHL dataset. It is worth noticing though that the universal components achieve
remarkable improvements in the case of bag and torso.

4.3 Inference Configurations

Here we evaluate the robustness of the proposed approach to the evolution of
the sensors deployments via the flexibility that it offers for the inference step.
Depending on the activity, the right prediction can be achieved by using either
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Table 3. Performances obtained using
either the universal or the position-specific
components.

Config. Bag Hand Hips Torso

No sep. 63±.0089 63±.0014 65±.0126 60±.0072

Universal

w/o concil. 66±.0224 65±.0147 66±.0035 62±.013

w/ concil. 66±.016 67±.0015 67±.0354 63±.01

Pos.-specific

w/o concil. 64±.3 66±.007 67±.0026 61±.087

w/ concil. 65±.029 68±.03 70±.07 61±.029

Table 4. Per-class performances
obtained using various inference
configurations.

Class Best config. Overall

Still zhi; zt(85.77) 83.26±0.7

Walk zA; zha(88.54) 86.74±0.058

Run zha(90.51) 89.46±0.03

Bike zA; zhi(85.62) 83.22±0.086

Car zA; zha(78.24) 77.14±0.2

Bus zha(78.08) 75.17±0.004

Train zhi; zhi(76.13) 74.88±0.08

Subway zA; zha; zt(75.89) 74.07±0.006

components zA or ziP taken individually, or a combination of the universal com-
ponent zA and the most appropriate position-specific component. In this part,
we take a fine-grained look at the previously obtained performances by assess-
ing the optimal configuration which allows the correct prediction of each of the
individual activities. For this, we evaluate the predictions obtained using basic
inference configurations, i.e., the combination of the universal components with
torso [zA; zt]; hand [zA; zha]; bag [zA; zb]; and hips-specific [zA; zhi] components.
Compared to the baseline models, the evaluated inference configurations yield
better performances in general. For example, the combination of the universal
and most of the position-specific components help discriminate efficiently activ-
ities like walk, run, and bike. On the other hand, some activities like car, bus,
or train suffer from confusion and do no show significant improvements over the
baseline (approx. 2% on avg.). Also, activity subway exhibits the same behavior
with less proportion suggesting that this “on-wheels” group of activities need
elaborate combination of points of views as demonstrated in [13,26,27]. This
issue could potentially be circumvented by using more featured configurations
where other position-specific representations, rather than a single one, can be
leveraged to infer these problematic or hard-to-infer activities.

Table 4 summarizes the evaluation results of the inference configurations fea-
turing the combination of various position-specific components. We observe an
increase in the correct predictions for most of the activities compared to the
previous setting. In particular, the “on-wheels” group of activities, i.e., car, bus,
train, and subway, get improved substantially. At the same time, as expected,
we see now that the configurations, which yield the highest performances for
these activities, use genuine combinations like zA alone in the case of bus or a
combination of zA, zha, and zt in the case of subway. On the other hand, still
gets the least improvement compared to the previous setting while the best con-
figuration to infer it is a combination of zha and zt (85.77±0.016). It is worth
noticing that activities like walk and bike still achieve competitive performances
(88.54±0.07 and 85.62±0.2, resp.) while using the same inference configuration,
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i.e., a combination of zA and zha for walk and zhi for bike, as in the previous
setting. For run, the highest scores are achieved using only zha, which supports
the observations presented in Sect. 1.

5 Summary and Future Work

This paper proposes an original approach for abstracting the impact of the spe-
cific position of the sensory data generators. Our approach is based on multi-level
processing, starting with the disentanglement of the position-specific and univer-
sal components at a local level and the conciliation of the universal components
at a global level. Experimental results show that the proposed approach improves
recognition rates and has many advantages, including reducing the data sources’
heterogeneity impact. The decomposition process allows a better recognition
rate in several ways: (i) by reducing the noise induced by the data linked to the
position itself, e.g., the local component of the movement of the hand constitutes
noise for the local component of the movement of the feet; (ii) by aggregating
only data of the same nature presenting different points of view and; (iii) for
certain activities, the local component alone is sufficient to ensure recognition,
e.g., hand movement during run. Future work follows two axes. (1) Improving
the quality of the model, in particular, having a fine-grained control on the data
decomposition process using additional domain knowledge, e.g., expliciting the
dynamics of the body movements in the latent space like in [6,35]. (2) Improv-
ing federated multi-source approaches where the sources are entangled with local
components. Sharing only mutualisable components has a promising potential.
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In: Dong, Y., Mladenić, D., Saunders, C. (eds.) ECML PKDD 2020. LNCS (LNAI),
vol. 12460, pp. 374–390. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-67667-4 23

12. Hamidi, M., Osmani, A.: Human activity recognition: a dynamic inductive bias
selection perspective. Sensors 21(21), 7278 (2021)

13. Hamidi, M., Osmani, A., Alizadeh, P.: A multi-view architecture for the SHL chal-
lenge. In: UbiComp-ISWC 2020, p. 317–322. ACM (2020)
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