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Abstract. In recent years, contrastive learning has become an impor-
tant technology of self-supervised representation learning and achieved
SOTA performances in many fields, which has also gained increasing
attention in the reinforcement learning (RL) literature. For example,
by simply regarding samples augmented from the same image as pos-
itive examples and those from different images as negative examples,
instance contrastive learning combined with RL has achieved consider-
able improvements in terms of sample efficiency. However, in the con-
trastive learning-related RL literature, the source images used for con-
trastive learning are sampled in a completely random manner, and the
feedback of downstream RL task is not considered, which may severely
limit the sample efficiency of the RL agent and lead to sample bias.
To leverage the reward feedback of RL and alleviate sample bias, by
using gaussian random projection to compress high-dimensional image
into a low-dimensional space and the Q value as a guidance for sam-
pling the hard negative pairs, i.e. samples with similar representation
but diverse semantics that can be used to learn a better contrastive rep-
resentation, we propose a new negative sample method, namely Q value-
based Hard Mining (QHM). We conduct experiments on the DeepMind
Control Suite and show that compared to the random sample manner
in vanilla instance-based contrastive method, our method can effectively
utilize the reward feedback in RL and improve the performance of the
agent in terms of both sample efficiency and final scores, on 5 of 7 tasks.

Keywords: Contrastive learning · Reinforcement learning · Random
projection · Hard negative sample mining

1 Introduction

With the development of deep neural network and by combining its feature
extraction power with the decision ability of reinforcement learning (RL), Deep
RL (DRL) has been widely and successfully applied to dozens of tasks with
high dimensional inputs [6]. However, how to endow an agent with the ability to
quickly master the task with less interactions is still a challenge nowadays. While
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model-based RL algorithms try to build and maintain an environment model
which will help agent planning and making full use of precious interaction data,
they usually suffer from enormous computations for planning and fragile model
accuracy [7]. On the other side, model free RL algorithms directly learn from raw
observation space, but plenty of training data is indispensable for good perfor-
mance [8]. It’s widely believed that a policy directly trained from the real state
data will act better than those with raw and high dimensional inputs [9]. Hence
a key to efficiency promotion for model free RL agents is to acquire good repre-
sentations [1]. Lots of auxiliary tasks have been incorporated in traditional RL
algorithms to accelerate better representation learning, such as auto-encoder [10],
prediction [17,18,37], prototypes [11], goals [5] and so on. Recently, contrastive
learning has make significant progress in natural language processing and com-
puter vision areas [12,32], which has also been incorporated into RL algorithms.
Srinivas et al. proposed an instance contrastive method called Contrastive Unsu-
pervised Representations for Reinforcement Learning (CURL), which is the first
contrastive based algorithm that beats model-based methods like PlaNet [15]
and Dreamer [16] on several tasks of DeepMind Control Suite (DMC) [9].

As a self-supervised learning method, contrastive learning tries to define and
contrast semantically similar (positive) pairs and semantically dissimilar (neg-
ative) pairs in the embedding space [18]. The success of contrastive methods
mainly depends on the design of correct positive and negative pairs [19]. In
RL setting, naively we can regard the real states as the label of observations
and let contrastive learning gathers samples of the same state and pushes away
those with different states. However, due to the limitation of perception, agents
generally can not access to the real states. Under such circumstances, existing
contrastive RL methods design positive or negative pairs in a random or unsu-
pervised way, where the feedback of RL tasks is completely ignored and positive
samples may sneak into negative samples. Such false-negative phenomenon is
known as sampling bias. It may empirically induce to significant performance
deterioration in some fileds [20].

Moreover, a plenty of work in metric learning believe that hard negative
samples dominate the quality and efficiency of the representation learning [22,
36], where hard negative samples are the true negative samples that mapped
nearby the anchor sample in the embedding space [21]. To mine hard negative
samples and improve the sample efficiency of RL agents, by observing that hard
negative samples are samples that look similar but with different semantics, in
this paper, we propose a new hard negative samples mining method, namely
Q-value based Hard Mining (QHM).

In the detail, in order to seek for samples embedded similarly, gaussian
random projection and KD-Tree are firstly applied in QHM for dimensional-
ity reduction and search. Then to further filtering semantically different pairs
among these similar samples, as real states are inaccessible, we can take the
advantage of cumulative reward Q value as a guidance for mining since it is the
most key feedback of any RL tasks. Consequently, with the assistance of a handy
K-means cluster method, QHM approximately treats those similar observation-
action pairs but with different Q value in recent trajectories as hard negative
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samples pairs. Equipped with these unsupervised techniques, QHM is able to
latch the RL task feedback and efficiently solve two key problems: (1) How to
design task-relevant positive-negative pairs for contrastive representation learn-
ing in RL? (2) How to mine and exploit hard negative samples?

We conduct experiments on DMC and show that compared to contrastive
learning with vanilla random sample method, our sample method combined with
instance-based contrastive learning in RL can achieve better data efficiency and
even better score performance on several tasks.

2 Related Work

2.1 Improving Sample Efficiency in RL

It is well known that learning policy directly from high dimensional data such as
raw pixel images is inefficient [2]. Model-based RL agent builds an environment
model and generates virtual rollouts to help better decisions, which is usually
more data efficient than model-free agent. The related methods like SimPLe [2],
PlaNet [15] and Dreamer [16] have successfully improve the data efficiency in
Atari Games [13] and DMC [9], and even make a breakthrough on some challeng-
ing tasks such as MONTEZUMA’S REVENG. For the model-free approaches, to
improve performance and efficiency, the agent mainly focus on constructing and
adopting various auxiliary tasks, such as predicting future [17,18,37], prototypes
cluster [11], particle-based entropy maximization [4] or multi-goals [5].

In recent years, contrastive learning is also incorporated into RL as an aux-
iliary task. Typical works include instance contrastive learning based CURL [1]
and CPC [18] that leverages prediction information. Subsequent works also
tried to use contrastive learning to force agents to learn temporal features [23].
Although these approaches have achieved some successes in various domains, the
pairs in these contrastive learning methods are sampled in a random or unsu-
pervised manner, and the possible signals that may help representation learning
are not considered. In the work of Guoqing et al. [25], a return-based contrastive
representation for RL (RCRL) method is introduced, where observation-action
samples with similar cumulative rewards are regarded as positive pairs and vice
versa. While the cumulative reward is used for the sampling in both RCRL and
our approach, QHM further considers about the hard property of negative sam-
ples and uses a more adaptive manner to partition the experience buffer, where
the explicit model structure or learning objective does not need to be changed.

Besides using auxiliary tasks for learning a better representation, recent work
such as RAD [26], DrQ [24], DrQ-v2 [27] also show that simple combination of
image augmentation is conducive to the improvement of data efficiency.

2.2 Sample Strategy in Unsupervised Contrastive Learning

Contrastive learning encourages semantically similar pairs (x, x+) to be close
and semantically dissimilar pairs (x, x−) to be more distant in embedding space
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f(∗) [34]. Since the labels of data are unknown under unsupervised conditions,
the main differences among these methods are their strategies of obtaining pos-
itive and negative pairs [20]. In the literature, strategies including random crop,
jittering in images [26,33] and random dropout in text missions [31] are com-
monly used to select positive samples, while less attention has been paid in the
sampling of negative pairs and they are only simply sampled uniformly from
the training data [19]. There exists two problems in randomly picking nega-
tive pairs. First, false negative samples will give rise to sample bias which is
impossible to completely dismiss under unsupervised situations [20]. Second, we
cannot ensure how informative the negative samples will be when they serve the
downstream tasks [19]. The key to address the mentioned issues is hard negative
mining, which in metric learning is well elucidated and proved to be most help-
ful for efficient representation learning [22]. But how to mine such hard negative
samples for unsupervised contrastive learning? Based on Debiased Contrastive
Loss (DCL) [20], Robinson et al. proposed to define the priority of a sample
proportional to its similarity with the anchor to acquire hard samples, which
has made a certain progress in images and sentences representations [19]. Wang
et al. found that the choice of temperature τ in contrastive loss controls the
granularity of penalties on hard negative samples [35].

3 Background

3.1 Instance Contrastive Learning in RL

In general, considering an embedding space f(∗), contrastive learning tries to
gather the representations of positive pairs (x, x+) but push away the represen-
tations of negative pairs (x, x−):

Ex,x+,{x−
i }N

i=1
[−log

ef(x)T f(x+)

ef(x)T f(x+) +
∑N

i=1 ef(x)T f(x−)
] (1)

Given an anchor x, a corresponding positive sample x+ and N negative samples
x− will be used for contrast. For Instance Discrimination [14], x and x+ are
different views generated from the same sample whilst x and x− are from differ-
ent samples. CURL is the first method that combines Instance Discrimination
with RL where views of different images are accomplished by random crop. In
detail, given a batch of randomly sampled K raw-pixel images, for each of them
xi(1 ≤ i ≤ K), we have:

xi1 = aug(xi) xi2 = aug(xi) (2)

where aug(∗) represents a fixed random method of data augmentation such
as random crop. CURL simply takes samples (xi1, xi2) as positive pairs and
(xi∗, xj∗)(j �= i) as negative pairs according to whether they are generated from
the same image. All these generated 2K samples will be used for the InfoNCE
loss [18]:
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LCURL = −log
ezT

q Wz+
k

ezT
q Wz+

k +
∑K

i=1 ezT
q Wz−

ki

(3)

In Eq. (3), zq are the encoded low-dimentional representations of cropped images
xi1 through the query encoder fθq of the RL agent while zk are from key encoder
fθk. Query and key encoders share the same neural framework but have different
parameters weights. Similar to Moco [12], CURL detaches the gradient of the key
encoder fθk whose parameters θk can be only updated by exponentially moving
average (EMA) method as follow:

θk = mθk + (1 − m)θq (4)

where m ∈ [0, 1] is a factor of trading off and such an update method has
been proved to be helpful in improving agent’s performance and avoiding model
collapse [1,12].

In DMC tasks, CURL takes a SAC agent as the base policy learner by using
Eq. (3) to learn contrastive representations. Our work will build upon CURL
and aim to improve the completely random sample method to aquire more task-
relevant negative samples for the calculation of Eq. (3).

3.2 Gaussian Random Projection

Gaussian random projection is a simple and convenient projection method to
reduce high-dimensional space to low dimension. It defines a mapping function
φ : x → Px ∈ R

F where x ∈ R
D is the original data with dimension D and

will be multiplied by a random initialized matrix P ∈ R
F×D to be transformed

to a space of dimension F . Generally we have F � D and each element Pij in
P are sampled independently from a predefined gaussian distribution N(μ, σ2).
According to Johnson-Lindenstrauss lemma [28], for arbitrary xi and xj , there
exists a ε(0 ≤ ε ≤ 1) and a map function φ that satisfy:

(1 − ε) ‖ xi − xj ‖≤‖ φ(xi) − φ(xj) ‖≤ (1 + ε) ‖ xi + xj ‖ (5)

As showed in Eq. (5), the distance relationship can be well preserved in the
mapped low-dimensional space even with a random initialized matrix as long as
D is sufficient [29]. In our method, in order to search for hard negative samples,
a computation efficient search method is urgently-needed and as it is time con-
suming and computation expensive by directly searching in the raw pixel space,
gaussian random projection are adopted for reducing the high-dimensional input
to a low-dimensional space.

4 Q Value Based Hard Mining

In this section, we will introduce QHM, a contrastive learning sampling method
based on cumulative rewards. Our intention is to improve the unreasonable ran-
dom sampling method of contrastive learning in RL such as CURL and try to use
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the reward feedback of a specific task to guide the sampling strategy of positive-
negative pairs. So that the samples eventually used for contrastive training are
semantically mutually exclusive in RL setting, which will also contribute to effi-
ciency promotion. The most ideal result is that the samples divided into positive
and negative pairs will not belong to the same real state.

4.1 Construct Task-Relevant Positive and Negative Pairs in RL

In contrastive learning, given an arbitrary anchor sample x, a sample x+ is
positive when it is semantically similar to anchor x and takes x− as negative
vice versa. In RL, considering an one-step observation ot composed of successive
images, through a given data augmentation method, accurate positive pairs can
be guaranteed since we can simply generate two views of ot and they do actually
semantically matched. However, it is common to regard the augmentations of
any two different observation ot1 and ot2 as negative pairs in existing contrastive
method, where positive samples may be misdiagnosed as negative ones and that
will inevitably lead to the sample bias problem and probably further, sample
efficiency decline as mentioned before.

It is natural for an RL agent to distinguish different observations by their real
states s, however, it is notoriously known that the real states is unavailable due
to perceptual limitations in real world. When only high-dimensional observation
ot is available, we can turn to the most important feedback of RL tasks, i.e. Q
value. Q value is the expected discount cumulative rewards after agent taking
action at at observation ot: Q(ot, at) = E(

∑T
τ=t γτ−trτ (oτ , aτ )), where τ ∈ (0, 1]

is the discount factor. Hence, to define pos-neg samples in RL, intuitively we
have:

Assumption 1. In RL, given a policy πψ : O → A and arbitrary observation-
action samples (augmented or not) (ot1, π(at1 | ot1)), (ot2, π(at2 | ot2)), if they
share the same Q value, we can approximately regard them as a positive pair.

However, strict conditions are required for the establishment of this hypothesis
including a perfect reward function of environment to disambiguate Q value.
But on the contrary, we can define the negative samples:

Assumption 2. In RL, given a policy πψ : O → A and representations
similar observation-action samples (augmented or not) (ot1, π(at1 | ot1)),
(ot2, π(at2 | ot2)), if they have quite different Q values, we can approximately
regard them as a negative pair.

Please note that a sample mentioned above is composed of both observation
and action. Such a definition for the negative pair is not perfect because of
the uncertainty of the environment and the policy divergence, but it is still
more reasonable than the random sampling method that is widely adopted for
contrastive representation learning in RL. Since it is quite difficult to get the
exact value of any Q(ot, at), in practice we simply use the cumulative rewards
in historical trajectories to approximate Q.
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4.2 Mine and Utilize Hard Negative Samples in RL

As mentioned, hard negative samples, i.e., the pairs with similar representation
but different semantics are the key to efficient contrastive learning [21]. However,
how to mine such samples from the data is still a challenging problem in the
literature. In the following, how to mine and make use of hard negative samples
in RL by using QHM will be introduced.

Given an anchor sample, it is infeasible to search the similar samples directly
from the raw-pixel space due to heavy computational burden. We also should not
search for the samples in agent’s encoder embedding space since frequent forward
propagation in model may deteriorate the overall running time. In QHM, we just
take the advantage of gaussian random projection to map raw-pixel images to
a far-less dimensional space and subsequently a KD-Tree is utilized to execute
k-nearest searching on the projection space. Specifically, KD-Tree is a table-like
buffer which is independent of the agent’s replay buffer. Considering a gaus-
sian projection function φ(∗), QHM simply stores tuples <[φ(o), a], o,Q(o, a)>
encountered in recent trajectories into the KD-Tree. Once the tree capacity hits
the peak, samples visited most infrequently during training will be replaced. The
specific process above is illustrated in Fig. 1.

Fig. 1. KD tree storage process in QHM. For each observation o, QHM summarizes its
cumulative reward Q in the trajectory after rollout and writes o, z and Q into the KD
tree where z is the concatenation of projection φ(o) and corresponding action a.

In order to further screen hard negative samples, a simple K-means method
is applied in QHM to cluster all these similar samples according to their Q value,
and as all samples have been well scattered, QHM will eventually pick one sample
at random from each cluster respectively. Then, all these left samples will share
similar representations but with different Q values, which should be the hard
negative samples we are seeking for. Please note that our QHM method mainly
focus on the selection of the source images for negative samples generation. As
for postive pairs, we adopt the same scheme as CURL, i.e. two views generating
from a same image will be regard as positive to each other.
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The implementation process is shown in Fig. 2: firstly QHM samples a batch
of N samples xi(1 ≤ i ≤ N) = [φ(oi), ai, oi, Qi] at random from the KD-Tree.
For each xi of these N samples, QHM queries the KD-Tree for M nearest samples
xij(1 ≤ j ≤ M) on φ(∗) to form a similar batch Bin

i = {xi, xi1, , xi2, ..., xiM}
after absorbing the query sample xi. Then K-Means cluster is applied based on
their Q value to get K clusters Ck(1 ≤ k ≤ K). Excluding the cluster Cki which
the query sample xi belongs to, we randomly pick one sample from each clusters
to finally make up the hard negative batch Bout

i = {xi, xik, ...}(1 ≤ k ≤ K & k �=
ki) of xi. Sequentially, N × K samples will be acquired and cropped randomly
to generate totally N × K × 2 samples {xik1, xik2, ...}(1 ≤ i ≤ N, 1 ≤ k ≤ K),
which will be used for contrastive loss Eq. (3) as following:

LQHM−CURL =
∑N

i=1
LCURL(xik1, xik2, ..., xiK1, xiK2) (6)

Fig. 2. The illustration of sample strategy in QHM. Firstly, several samples are sampled
at random. For each of them, QHM queries the KD-Tree for M nearest samples to make
up a state-similar batch including the query one. Then K-means cluster will conduct
based on Q values to pick up the most divergent ones in each of these state-similar
batchs, which will finally form the hard negative samples batchs for training.

5 Experiments

5.1 Environments

7 challenging tasks of DMC [9] are selected for evaluation. At every time step, the
input of the agent is an 8-bits, 100×100, RGB image from the environment and 3
successive frames will be stacked as the observation to alleviate partially observ-
able problems. And to accelerate training, the agent’s action repeat numbers is
set as 8 for cartpole swingup, 2 for walker run and 4 for the rest respectively. Cor-
responding task policy step can be calculated by total frames/action reapeat,
which will be the abscissa of our experimental plot results.

5.2 Setting

QHM will be carried on CURL for experiments with the same neural network
structure and hyperparameters. Specifically, encoders fθq and fθk composed of
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successive convolution layers and full connection layers that are in charge of a
mapping from raw-pixel images to embedding space with a dimensionality of 50.
The capacity of replay buffer is 100k and a batch of 512 samples will be randomly

Fig. 3. Evaluation scores results on 7 tasks of DeepMind Control Suite. QHM-CURL
indicates CURL equipped with our method and vanilla CURL is our main competitor.
SAC+AE is also included as a competitive method.
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selected for SAC [3] updating. Adam [30] optimizer for update and 84 × 84
random crop for image preprocessing. Specific QHM settings are shared across
tasks: the dimensionality of the gaussian projection matrix P is [h, 9×100×100]
where h is the projection dimension that we set 128 by default. Notes that
the computational complexity of tree query is O(n(1−1/h) + k), where k is the
population of total samples, it finally takes QHM almost twice as long as CURL
to complete the training on the same device. Each element in projection matrix P
is sampled independently from a predefined gaussian distribution N(0, (1/

√
h)2).

In KD-Tree, samples that are new-coming or frequently sampled for updating
will be contained longer. In QHM sample strategy, N = 16,M = 31,K = 4
are the numbers of query samples, M-nearest samples of query and clusters for
K-Means, respectively. In practice we only take the last 16 samples of the M
nearest of query for clustering in the next stage, which can effectively prevent
identical samples. It’s also worth noticed that empty cluster may occur due to
completely Q value duplicate. To get rid of biased negative samples, QHM will
simply abandon this whole batch and the subsequent contrastive update.

5.3 Results

We conduct experiments on 7 different tasks of DMC and the supremum of tasks
frames is limited to 500k to evaluate the agent efficiency. The results are showed
in Fig. 3. Every line is averaged over different random seeds and smoothed on
abscissa interval. QHM − CURL represents the CURL [1] algorithm whose
sampling strategy is replaced by our proposed QHM method. Hence, CURL is
our main competitor which uses a completely random sample strategy. We also
take another auxiliary task model-free method, SAC+AE [10], into account as a
competitive baseline to further confirm the validity of our implementations. We
implement CURL and SAC+AE from their official codes on github respectively.

As showed in Fig. 3, we can see that CURL combined with our sampling
method QHM has superior sample efficiency and performance than vanilla CURL
and SAC+AE on several tasks such as cheetah-run, walker-run and reacher-hard.
All of these 3 tasks are defined in medium [27] subsets due to their greater action
dimensions and 500k environment steps are not yet sufficient for SAC-based
agents to master them. In cartpole balance task, QHM-CURL acts more robust
than baselines and has better convergence tendency. Most of the rest tasks are
defined relatively easy [27]. Hence in these tasks, we can only see nuances among
CURL and QHM-CURL.

Throughout all tasks results, we believe that our task-relevant hard negative
mining strategy, QHM, can actually facilitate sample efficiency of the RL agent
which may be suffering from the biased negative samples induced by a random
sample strategy in contrastive-based reinforcement learning.

6 Conclusion

In this paper, we proposed QHM, a hard negative mining method dedicated to
improving data-efficiency of RL agents. With the assistance of light components
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such as KD-Tree, K-Means Cluster and Random Projection, when compared to
vanilla instance-based contrastive sampling method, QHM can achieve further
efficiency and even performance improvements on a certain number of tasks from
DeepMind Control Suite. However, as in general we have no access to the real
state of the environments, differentiating samples by their Q value stored would
still be biased. There is a long way for us to acquire a near-real hard negative
distribution and we leave this for future work. We believe that in the forthcoming
future, better hard sampling strategies for contrastive learning in RL will be
discovered and make significant contribution to representation learning.
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