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Abstract. Survival analysis (SA) is an active field of research that is concerned
with time-to-event outcomes and is prevalent in many domains, particularly
biomedical applications. Despite its importance, SA remains challenging due to
small-scale data sets and complex outcome distributions, concealed by trunca-
tion and censoring processes. The piecewise exponential additive mixed model
(PAMM) is a model class addressing many of these challenges, yet PAMMs are
not applicable in high-dimensional feature settings or in the case of unstructured
or multimodal data. We unify existing approaches by proposing DeepPAMM, a
versatile deep learning framework that is well-founded from a statistical point
of view, yet with enough flexibility for modeling complex hazard structures. We
illustrate that DeepPAMM is competitive with other machine learning approaches
with respect to predictive performance while maintaining interpretability through
benchmark experiments and an extended case study.

Keywords: Deep learning · Time-to-event data · Survival analysis ·
Interpretability · Random effects · Mixed models

1 Introduction

Deep learning (DL) excels in many different areas of application through flexible and
versatile network architectures. This has also been demonstrated in survival analysis
(SA) [27,33], where it is often not straightforward to apply off-the-shelf machine learn-
ing models. Apart from medical applications such as the prediction of time-to-death or
the time to disease onset, time-to-event models are also applied in a variety of other
domains. Among other fields, SA is successfully employed for predictive maintenance,
credit scoring, and customer churn prediction. In practice, time-to-event outcomes are
not necessarily observed fully but might be censored, truncated or stem from a com-
peting risks, or a multi-state process. While these aspects relate to the nature of the
observation of event times, SA is also challenging due to the typically small amount of
observations as well as complex feature effects and dependencies between observations.
Medical survival data for instance potentially includes patient data of certain cohorts
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(such as patients from different hospitals with varying levels of patient care), longitudi-
nal data with recurrent events or includes time-varying features such as a patient’s vital
status. Additionally, data can be multimodal (e.g., tabular patient information paired
with medical images).

Our Contribution. In this paper, we introduce a novel method called DeepPAMM for
continuous time-to-event data that enables the hazard-based learning of survival mod-
els via neural networks and supports 1) many common survival tasks, including right-
censored, left-truncated, competing risks, or multi-state data as well as recurrent events;
2) the estimation of inherently interpretable feature effects; 3) learning from multiple
data sources (e.g., tabular and imaging data); 4) time-varying effects and time-varying
features; 5) the modeling of repeated or correlated data using random effects.

2 Related Literature

Various models have been brought forward in SA. We will distinguish between mod-
els developed from a statistical point of view (Sect. 2.1), machine learning approaches
(Sect. 2.2) and recently proposed deep learning frameworks (Sect. 2.3).

2.1 Piecewise Exponential Additive Models and Cox Proportional Hazard
Models

The Cox proportional hazard model (CPH) [11] is the most widely used survival model.
Under certain assumptions [42] the Cox PH model is equivalent to the piecewise expo-
nential model (PEM). The original formulation of the PEM, a parametric, linear effects,
PH model, goes back to [14]. The general idea is to partition the follow-up time into
J intervals and to assume piecewise constant hazards in each interval. The originally
proposed PEM requires a careful choice of the number and placement of interval cut-
points. The piecewise exponential additive model (PAM) [2,3,9] is an extension of the
PEM. PAMs estimate the baseline hazard and other time-dependent effects as smooth
functions over time via penalized splines. This leads to more plausible and robust hazard
estimates and (indirectly) lower computational cost. PAMs can be further generalized
to piecewise exponential additive mixed models (PAMMs) by adding frailty terms (ran-
dom effects). While PEMs and PAMMs can deal with many types of survival data (see,
e.g., [4,6]), they are limited w.r.t. the complexity of feature effects that they can esti-
mate, especially in the case of high-dimensional features and interactions and cannot
handle unstructured data.

2.2 Machine Learning Approaches

In recent years a large number of machine learning methods for SA have been put
forward. Random forest (RF) based methods include the random survival forest (RSF)
[20] and more recently the oblique random survival forests (ORSF) [21]. In contrast
to conventional RFs [8], these adaptions make the models applicable to survival data
by adjusting the splitting criterion. Next to trees and forests, several boosting methods
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exist, such as XGBoost [10] or component-wise boosting for accelerated-failure time
models [36] and non-parametric hazard boosting [28]. More recently and closest to
our work, [4] have proposed a general machine learning approach for various survival
tasks based on PEMs and demonstrated its application using the standard XGBoost
implementation.

2.3 Deep Learning Approaches

Various deep learning approaches have been proposed for SA, with the first approaches
dating back to the mid-1990s (see, e.g., [12]). More recent approaches include both
discrete-time methods like DeepHit [27] or Nnet-survival [15] and continuous-time
methods such as DeepSurv [22] or CoxTime [24]. DeepHit parametrizes the proba-
bility mass function by a neural network and specifically targets competing risks, but
is only able to predict survival probabilities for a given set of discrete follow-up time
points due to its time-discretization approach. Nnet-survival, by contrast, models dis-
crete hazards and provides flexibility in terms of architecture choice, but it also relies
on discretization of event times. DeepSurv is a Cox PH model with the linear predic-
tor replaced by a deep feed-forward neural network. CoxTime further improves upon
DeepSurv by allowing for time-varying effects, thereby overcoming the proportional
hazards assumption. A deep Gaussian process to predict competing risks is proposed
in [1]. While all previous methods focus on tabular data, a few multimodal networks
such as [17,23,30,40] have also been proposed as well as survival tasks combined with
a generative appraoch [41]. The first combination of PEMs with a NN was proposed
by [29]. [7] discussed the estimation of PEM by representing generalized linear models
via feed-forward NNs, and [13] proposed the estimation of the shape of the hazard rate
with NNs. [25] also discussed the parametrization of the PEM via NNs with application
to tabular data. As for PEMs, the choice of cut-points in their framework is crucial for
performance and computational complexity. Our framework eliminates this problem.

3 Piecewise Exponential Additive Models

Survival analysis aims to estimate the survival function S(t) = P (T > t). Instead of
directly estimating S(t), the hazard function

h(t) := lim
Δt→0+

P (t < T < t + Δt|T ≥ t)
Δt

(1)

is modeled. The survival function can be derived from h(t) via S(t) =
exp(−

∫ t

0
h(s) ds). A hazard for time point t ∈ T , conditional on a potentially time-

varying feature vector x(t) ∈ R
P , can be defined by

h(t|x(t), k) = exp (ρ(x(t), t, k)) , k = 1, . . . , K. (2)

The function ρ(·) represents the effect of (time-dependent) features x(t) on the hazard
and can itself be potentially time- and transition-specific. k indicates a transition, e.g.,
from status 0 to status k in competing risks or the transition between two states in
the multi-state setting. In the following, we will set K to 1 for better readability and
only address the single risk application if not stated otherwise. Further omitting the
dependence on t, (2) reduces to the familiar PH form known from the Cox model.
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3.1 Data Transformation

PEMs and PAMs approximate (2) via piecewise constant hazards, which requires a
specific data transformation, creating one row in the data set for each interval a subject
was at risk. Assume observations (subjects) i = 1, . . . , n, for which the tuple (ti, δi,xi)
with event time ti, event indicator δi ∈ {0, 1} (1=event, 0=censoring) and feature vector
xi is observed. PAMs partition the follow up into J intervals (κj−1, κj ], j = 1, . . . , J .
This implies a new status variable δij = 1 if ti ∈ (κj−1, κj ] ∧ δi = 1, and 0 otherwise,
indicating the status of subject i in interval j. Further, we create a variable tij , the time
subject i was at risk in interval j, which will enter the analysis as an offset. Lastly, the
variable tj , (e.g., tj := κj) is a representation of time in interval j and the feature based
on which the model estimates the baseline hazard and time-varying effects. In order
to transform the data to the piecewise exponential data format (PED), time-constant
features xi are repeated for each of Ji rows, where Ji, denotes the number of intervals
in which subject i was at risk. This data augmentation step transforms a survival task
into a standard Poisson regression task. Depending on the setting, e.g., right-censoring,
recurrent events, left truncation, etc., the specifics of the data transformation vary, but
the general principles remain the same. For more details we refer to [4,5,32].

3.2 Model Estimation

Given the transformed data, PAMs approximate (2) by h(t|xi(t)) = exp(ρ(xij , tj)) :=
hij ,∀t ∈ (κj−1, κj ] , where xij is the feature vector of subject i in interval j. Assuming
δij ∼ Poisson(μij = hijtij), the log-likelihood contribution of subject i is given by
�i =

∑Ji

j=1(δij log(hij) − hijtij), where

log(hij) = β0 + f0(tj) +
P∑

p=1

xij,pβp +
L∑

l=1

fl(xij,l),

with log-baseline hazard β0 + f0(tj), linear feature effects βp of features xij,p ⊆ xij

and univariate, non-linear feature effects fl(xij,l) of features xij,l ⊆ xij . Both f0
and fl are defined via a basis representation, i.e., fl(xij,l) =

∑Ml

m=1 θl,mBl,m(xij,l)
with basis functions B·,m(·) (such as B-spline bases) and basis coefficients θ·,m. To
avoid underfitting, the basis dimensions M0 (for f0) and Ml (for fl) are set rela-
tively high. To avoid overfitting, the basis coefficients are estimated by optimizing
an objective function that penalizes differences between neighboring coefficients. Let
β = (β0, . . . , βP )� and θl = (θl,1, . . . , θl,Ml

)�, l = 0, . . . , L. The objective func-
tion minimized to estimate PAMs is the penalized negative log-likelihood given by
− log L(β,θ0, . . . ,θL) +

∑L
l=0 ψlΨ(θl), where the first term is the standard nega-

tive logarithmic Poisson likelihood, comprised of likelihood contributions �i, and the
second term Ψ(θl) is a quadratic penalty with smoothing parameter ψl ≥ 0 for the
respective spline fl. Larger ψl lead to smoother fl estimates (see [6,43] for details).

4 Deep Piecewise Exponential Additive Mixed Models

DeepPAMMs extend PAM(M)s with hazard as defined in (2) by allowing for deep neu-
ral networks (NN) in the additive predictor. Instead of combining PAMMs with (deep)
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Fig. 1. Exemplary architecture of a DeepPAMM. A DeepPAMM comprises a PAMM (black path)
and additionally either a deep neural network (DNN) for unstructured data (yellow path), a DNN
for tabular features (blue path), or both. The unstructured data, e.g., images, are summarized to
latent representations of size R, repeated J times, and concatenated (c) with the tabular data’s
latent representation of size S, as well as raw tabular data of sizeQ. Finally, the offset is added to
the output and the network is trained using the Poisson loss for each of the K competing risks.

NNs in a two-stage approach, we embed the PAMM into the NN similar to [35] and
train the network based on the (penalized) likelihood in an end-to-end manner.

Network Definition. While PAMMs restrict ρ to structured additive effects, the hypoth-
esis space of DeepPAMMs can also be modeled using a deep NN. Assume that the NN
d(·) is used to process a potentially time-varying (unstructured) data source z(t). We
first assume a time-constant effect of z(t) and extend the PAMM’s definition to

h(t|x(t),z(t)) = exp
{
ρ(x(t), t) + d(z(t))

}
, (3)

by adding one (or several) NN predictor(s) to the structured predictor.
The predictor d(z(t)) can be modeled using an arbitrary NN. For example, a Deep-

PAMM can combine a PAM with an additional NN to explore non-linearities and inter-
actions in tabular features (beyond the ones specified in the structured part). Alterna-
tively, a DeepPAMM can combine different data modalities, e.g., tabular patient data
and corresponding medical scans using a convolutional NN for d. By (3), DeepPAMM
learns a piecewise constant hazard rate

hij = exp
{
Bijw +

U∑

u=1

ζij,uγu

}
, (4)

for each observation i and each discrete interval j, where Bij subsumes all Q structured
features (linear and basis evaluated features) with weights w. ζij,1, . . . , ζij,U are U =
R + S latent representations learned from the deep network part that processes tabular
data (into S latent features) and unstructured data (into R latent features). The network
then combines these U latent representations to learn the effect γ1, . . . , γU of each of
these feature effects. Due to the additive structure in predictor (4), the structured terms
with linear effects w preserve their interpretability inherited from PAMMs.
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PED and Latent Representations. d(z(t)) can be viewed as linear effects of U latent
representations derived from inputs z(t). In (3) this representation is combined with the
structured features in a last layer summing up the two predictors. If z is constant over
time, i.e., z(t) ≡ z, it is not straightforward to combine these latent representations with
the PED format properly. A naive approach would be to repeat the original data source
z over all J intervals. This, however, leads to significant computational overhead and
storage of redundant information. Instead, we resort to weight-sharing and reshaping
within the network that allows learning a single latent representation per observation
for all J intervals (cf. Fig. 1). First, the original tabular data is transformed to the PED
format prior to the network training. Subsequently, the reshaped three-dimensional PED
tensor batches with the same sampling dimension as the unstructured data source z are
passed through the network. z itself is transformed into R latent representations and
then repeated J times for each interval. This avoids repeating the original unstructured
data source multiple times. Finally, we combine these representations with the original
tabular data and the S non-linear representations of the structured data part into a joint
set of features. While we here focus on time-constant unstructured data, our framework
can be extended to allow for time-varying unstructured features by simply also supply-
ing the time t to the deep NN d explicitly, i.e., extending d(z(t)) in (3) to d(z(t), t).

Learning Non-proportional Hazards. PAMMs allow for non-proportional hazards via
an interaction of features x with a feature that represents time in each of the J inter-
vals. In practice, however, the accompanying computational complexity and manual
definition of these interactions are often infeasible. In DeepPAMM, such interactions
can be modeled using an appropriate multilayer NN architecture. In particular, interac-
tions between features z(t) and the follow-up t can be expressed by h(t|x(t),z(t)) =
exp

{
ρ (x(t), d(z(t)), t)

}
, where ρ now also depends on the the specified NN to model

a non-proportional hazard in z(t). As the PH assumption is a helpful inductive bias for
applications with small sample sizes, we recommend this extension for larger data sets
or in applications where the PH assumption is clearly violated.

Learning Competing Risks Hazards. When modeling competing risks data with K
different risks that determine the time-to-event, one is interested in retrieving the cumu-
lative incidence functions of each risk (CIFs). Our architecture allows for a holistic
way of modeling the hazard of subject i in interval j and cause k in a joint NN:
hijk = exp

{
Bijkwk +

∑U
u=1 ζijk,uγk,u

}
, where Bijk is equivalent to the input Bij ,

i.e., we repeat Bij K times so that cause-specific weights wk share the same inputs.
Similarly, the latent representations ζijk,u now also depend on the risk k = 1, . . . , K
to yield cause-specific effects γk,u for each latent feature. Figure 1 illustrates the CR
case for an exemplary network architecture. Training the network is based on a joint
loss summing up all K loss contributions for each CR and weighted by binary interval
weights if the observation is still at risk in the jth interval and 0 if not.

Learning Mixed Effects and Recurrent Events. In many SA settings, data comes in
clusters. For example, the survival of patients has been observed at different locations.
This is typically the case for multi-center studies for which survival may substantially
vary between clusters while being more homogeneous within each cluster. A random
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effect (RE), i.e., a linear effect for each cluster with a normal prior, can account for
this within-cluster correlation. REs can also be used to account for repeated measure-
ments and recurrent events. Optimization of NNs with random or mixed effects can be
done using an EM-type optimization routine (see, e.g., [45]), by training a Bayesian NN
(see, e.g., [19]), or by tuning the prior variance based on the equivalence of a random
normal prior and a ridge-penalized effect (see, e.g., [43]). While learning the RE prior
variance explicitly is desirable, a carefully chosen ridge penalization should yield simi-
lar results (due to their mathematical equivalence) while being more straightforward to
incorporate in most NNs.

5 Numerical Experiments

We first explore DeepPAMM by investigating some of the proposed model properties
in a simulation study. Additionally, we compare DeepPAMMwith state-of-the-art algo-
rithms on various benchmark data sets including real-world medical applications. We
examine model performance via the integrated Brier score (IBS) [16], which measures
both, discrimination and calibration of predicted survival probabilities. Instead of inte-
grating over the whole time domain, we evaluate the IBS at the first three quartiles
(Q25, Q50, Q75) of the observed event times in the test set, in order to assess the per-
formance at different time points. While DL-based approaches usually require large
data sets for training, DeepPAMM also works well in small data set regimes. In the
worst case, if there is not enough data to train the deep part of our network, the struc-
tured network part will dominate the predictions. DeepPAMM will then effectively fall
back to estimate a PAMM, which in turn is well suited for small data sets. This property
is especially important in SA where most data sets are relatively small.

5.1 Simulation and Ablation Study

The goal of our simulation study is to investigate the performance of DeepPAMM under
various controlled settings with a focus on 1) mixed effects, 2) competing risks, 3)
multimodal data. For all simulations, the data generating process incorporates both,
linear effects and non-linear interactions. For every setting, we repeat this procedure 25
times to account for variance in data generation and model fitting. In the spirit of an
ablation study, we compare DeepPAMM with its corresponding PAM(M) to investigate
the attribution of performance gains as well as the relation to an ideal model (Optimal).

For competing risks, we simulate two competing risks based on two different haz-
ards structures. While cause 1 is based on 5 features and multiple non-linear interaction
effects, cause 2 relates to 3 features and a more moderate level of interactions as well
as non-linearities.

For mixed effects, we simulate repeated measurements by defining 60 clusters and
drawing a random effect for each cluster unit from a normal distribution with zero mean
and a standard deviation of 1.5. Before training DeepPAMM, we pre-train the random
effects of the DeepPAMM with the corresponding PAMM and use the associated ridge
penalty as a warm start for tuning.
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Table 1. Comparison of the average IBS (with standard deviation in brackets) across the three
quartiles Q25, Q50, Q75 (rows) for different methods (columns) in different study settings. The
†-symbol indicates methods that can only take tabular data information into account.

CR (cause 1) CR (cause 2) Mixed effects Multimodal

Q25 Q50 Q75 Q25 Q50 Q75 Q25 Q50 Q75 Q25 Q50 Q75

KM 5.1
(0.43)

10.8
(0.49)

16.2
(0.57)

4.3
(0.31))

9.1
(0.52)

13.6
(0.60)

7.0
(0.47)

13.5
(0.57)

18.2
(0.68)

4.1†

(0.44)
8.0†

(0.49)
12.1†

(0.66)

PAMM 3.3
(0.32)

6.0
(0.52)

8.9
(0.52)

2.5
(0.21)

4.5
(0.38)

7.0
(0.61)

3.9
(0.49)

6.9
(0.71)

9.1
(0.89)

3.7†

(0.43)
6.3†

(0.63)
8.6†

(0.71)

Ours 2.9
(0.41)

5.4
(0.40)

8.1
(0.43)

2.4
(0.38)

4.4
(0.46)

6.8
(0.68)

3.2
(0.41)

5.7
(0.61)

7.5
(0.69)

3.6
(0.43)

6.1
(0.52)

8.4
(0.65)

Optimal 2.9
(0.72)

5.4
(0.80)

8.0
(0.79)

2.1
(0.22)

4.1
(0.39)

6.5
(0.63)

2.9
(0.36)

5.2
(0.57)

6.8
(0.68)

3.6
(0.42)

6.1
(0.58)

8.3
(0.68)

For the multimodal data scenario, we simulate log-hazards based on linear latent
effects from point clouds (PC) based on the data set fromModelNet10 [44]. Each of the
PC labels is associated with a different latent coefficient ranging from −0.5 to 0.75. The
hazard is defined to depend on these latent coefficients as well as on tabular features.
A reduced PointNet [31] is used to model the PCs. This set up has been adapted from
[23].

Results. Model comparisons are provided in Table 1. In summary, our proposed model
is the best performing method across all three settings and in most cases yields perfor-
mance values close to the optimal error in terms of the IBS. While performance gains
in absolute terms seem small, the decrease in IBS relative to the optimal error is espe-
cially noteworthy for CR (cause 1) and the mixed effects setting. Results confirm that
DeepPAMM works well in various of the proposed data situations. The ablation study
further justifies the deep part of DeepPAMM by its improved performance in compari-
son to PAMM.

5.2 Benchmark Analysis

We compare our approach with various state-of-the-art methods (Table 2). Comparisons
include a tree-based method (ORSF; [21]), a boosting approach (PEMXGB; [4]), as
well as (DeepHit; [27]), a well-established deep NN for SA. As baseline models we
use a Kaplan-Meier estimator (KM; [11]) and a Cox PH model (CPH; [11]). We restrict
our comparison to directly and publicly available SA data sets that have been used
in the benchmarks of methods listed above, namely tumor [5], gbsg2 [37], metabric
(cf. [27]), breast [39], mgus2 [26], and icu (cf. [18]). For each method, we perform a
random search with 50 configurations and compare the aggregated (mean and std. devi-
ation) test set performances on 25 distinct train-test-splits. The data sets impose differ-
ent challenges, including CR (icu, mgus2), high-dimensional data (breast), and mixed
effects (icu). For these, DeepPAMM is consistently among the best-performing sur-
vival models. The main point here is that DeepPAMM is competitive compared to other
state-of-the-art methods while maintaining interpretability as illustrated in Sect. 5.3.
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Table 2. Performance comparison based on the IBS (↓) at the three quartiles (Q25, Q50, Q75)
across different data sets (rows) and models (columns) with best models per row highlighted in
bold. Missing entries are due to missing support for CRs.

Data set KM Cox PH ORSF PEMXGB DeepHit DeepPAMM

tumor Q25 6.6 (0.59) 6.0 (0.58) 5.5 (0.56) 5.7 (0.63) 5.6 (0.55) 5.7 (0.59)

Q50 12.3 (0.86) 11.2 (0.82) 10.8 (0.91) 10.9 (1.05) 11.0 (0.96) 10.9 (0.86)

Q75 17.6 (0.79) 16.3 (0.77) 16.3 (0.85) 16.2 (0.92) 16.4 (0.95) 16.2 (0.81)

gbsg2 Q25 3.1 (0.49) 3.1 (0.45) 3.0 (0.45) 3.0 (0.46) 3.1 (0.49) 3.1 (0.41)

Q50 6.8 (0.80) 6.5 (0.72) 6.2 (0.70) 6.3 (0.68) 6.6 (0.8) 6.5 (0.69)

Q75 12.5 (1.04) 11.4 (0.94) 11.1 (0.95) 11.3 (1.01) 11.9 (0.99) 11.5 (0.95)

metabric Q25 4.0 (0.22) 4.0 (0.26) 4.1 (0.25) 3.8 (0.22) 4.0 (0.22) 3.9 (0.27)

Q50 8.6 (0.51) 8.2 (0.54) 8.9 (0.46) 7.8 (0.49) 8.4 (0.45) 7.9 (0.45)

Q75 14.0 (0.38) 12.9 (0.47) 14.7 (1.19) 12.3 (0.51) 13.5 (0.40) 12.6 (0.44)

breast Q25 1.9 (0.61) – 2.0 (0.59) 2.0 (0.57) 2.1 (0.54) 1.9 (0.60)

Q50 4.1 (0.89) – 4.0 (0.80) 4.0 (0.83) 4.2 (0.81) 4.0 (0.90)

Q75 7.1 (1.13) – 6.7 (0.96) 6.7 (1.10) 7.1 (1.02) 6.8 (1.33)

mgus2 (cause 1) Q25 1.1 (0.21) – – 1.9 (0.34) 1.1 (0.21) 1.1 (0.21)

Q50 2.2 (0.34) – – 4.1 (0.55) 2.2 (0.34) 2.2 (0.34)

Q75 3.4 (0.48) – – 6.9 (0.69) 3.5 (0.51) 3.4 (0.49)

mgus2 (cause 2) Q25 8.7 (0.52) – – 8.6 (0.65) 8.1 (0.55) 8.3 (0.49)

Q50 14.4 (0.61) – – 13.9 (0.84) 12.9 (0.66) 13.1 (0.65)

Q75 18.4 (0.60) – – 17.9 (1.04) 15.8 (0.67) 16.0 (0.67)

icu (cause 1) Q25 1.3 (0.06) – – 1.4 (0.66) 1.3 (0.06) 1.3 (0.06)

Q50 3.6 (0.14) – – 3.6 (0.13) 3.5 (0.13) 3.5 (0.13)

Q75 6.7 (0.19) – – 6.7 (0.19) 6.5 (0.20) 6.4 (0.19)

icu (cause 2) Q25 3.5 (0.15) – – 3.5 (0.14) 3.4 (0.14) 3.4 (0.14)

Q50 7.6 (0.17) – – 7.6 (0.17) 7.3 (0.17) 7.3 (0.16)

Q75 12.0 (0.15) – – 12.1 (0.17) 11.5 (0.20) 11.3 (0.17)

5.3 Extended Case Study

In this extended case study, we show how DeepPAMM can be used to obtain inter-
pretable feature effects and at the same time incorporate potentially high-dimensional
interactions. To illustrate this, we apply DeepPAMM to spatio-temporal data where the
outcome is response times (time-to-arrival) of the London fire brigade to fire-related
emergency calls [38]. Additionally, the data includes geographic coordinates of the site
of the fire as well as information about the ward from which the truck was deployed
and the time of day of the incident. We expect a non-linear effect of the time of day that
varies with day and night times as well as traffic hours and a bivariate spatial effect of
the location with different hazards in different regions of the city. Therefore, we model
the hazard for arrival at time t given time of day td, spatial coordinates (c1 and c2) and
ward v = 1, . . . , V as
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Table 3. Performance comparison based on the IBS (↓) at the three quartiles (Q25, Q50, Q75)
across different models (columns) for the data set of [38] with best models per row highlighted
in bold. The performance has been assessed using 25 train-test splits.

Quantile KM PAMM DeepPAMM

Q25 12.8 (0.28) 12.3 (0.30) 12.2 (0.32)

Q50 18.1 (0.18) 16.9 (0.21) 16.7 (0.23)

Q75 19.9 (0.11) 18.4 (0.14) 18.2 (0.14)

log(h(t|td, c1, c2, v)) = β0 + f0(t) + f1(td) + f2(c1, c2) + bv︸ ︷︷ ︸
structured

+ d(t, td, c1, c2, v)
︸ ︷︷ ︸

unstructured

where f1(td) is estimated as a cyclic spline that enforces equal values of the func-
tion at 0 and 24 h, f2(c1, c2) is a bivariate tensor product spline and bv are random
effects for the individual wards. In the unstructured part, we additionally allow for high-
dimensional interactions between the features from the structured part. This way, we can
investigate whether the predictive performance can be improved beyond the structured
part. Structured effects are given in Fig. 2. For interpretation, note that higher hazards
imply shorter response times, thus response times are on average longer during night
hours and between 12 and 18 p.m. as well as in the periphery of the city. The results
w.r.t. the predictive performance are shown in Table 3, where we compare our model
with a KM baseline and the respective PAMM. In addition to the PAMM specification,
our model includes a NN with three layers (64, 32, 8 neurons) to model feature inter-
actions. The results indicate that on average the performance improves slightly when
the unstructured part is added. Given the resulting standard deviations, we conclude
that the structured part is sufficient. Further, DeepPAMM’s structured effects are in
line with results presented in [38]. This shows the strength of DeepPAMM: maintain-
ing interpretability of covariate effects as illustrated in Fig. 2, while also allowing the
investigation of additional effects in the unstructured part.

−0.1

0.0

0.1

0.2

0 2 4 6 8 10 12 14 16 18 20 22 24
Time of the day (hours)

f̂( t
d)

16

17

18

19

20

51 52 53 54 55
Easting

N
or

th
in

g

−1.5

−1.0

−0.5

0.0

f̂(c1, c2)

Fig. 2. Smooth cyclic (left) and spatial (right) effect of a DeepPAMM. Effects are from a single
of the 25 runs.
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6 Concluding Remarks

We present DeepPAMM, a novel semi-structured deep learning approach to survival
analysis. Our experiments demonstrate that our model has high predictive capacity
and is capable of modeling diverse complex data associations. DeepPAMM allows to
include non-linear and feature interaction effects in the model, can be used to model
non-proportional hazards, time-varying effects and competing risks, while also account-
ing for correlation in the data using mixed effects. The deep part of the model further
makes estimation in high-dimensional settings possible and can be used to include
unstructured data into the survival analysis. The additive predictor in our approach
allows for straightforward interpretability and to recover the PAM(M) when no addi-
tional deep predictors are necessary. Our method can be fit using existing software
solutions (e.g., deepregression [34]).
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References

1. Alaa, A.M., van der Schaar, M.: Deep multi-task gaussian processes for survival analysis
with competing risks. In: Proceedings of the 31st International Conference on Neural Infor-
mation Processing Systems, pp. 2326–2334. Curran Associates Inc. (2017)

2. Argyropoulos, C., Unruh, M.L.: Analysis of time to event outcomes in randomized controlled
trials by generalized additive models. PLoS ONE 10(4), e0123784 (2015)

3. Bender, A., Groll, A., Scheipl, F.: A generalized additive model approach to time-to-event
analysis. Statist. Model. 18(3–4), 299–321 (2018)
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