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Abstract. Machine Learning can help overcome human biases in deci-
sion making by focussing on purely logical conclusions based on the
training data. If the training data is biased, however, that bias will be
transferred to the model and remains undetected as the performance is
validated on a test set drawn from the same biased distribution. Existing
strategies for selection bias identification and mitigation generally rely
on some sort of knowledge of the bias or the ground-truth. An excep-
tion is the Imitate algorithm that assumes no knowledge but comes with
a strong limitation: It can only model datasets with one normally dis-
tributed cluster per class. In this paper, we introduce a novel algorithm,
Mimic, which uses Imitate as a building block but relaxes this limitation.
By allowing mixtures of multivariate Gaussians, our technique is able to
model multi-cluster datasets and provide solutions for a substantially
wider set of problems. Experiments confirm that Mimic not only iden-
tifies potential biases in multi-cluster datasets which can be corrected
early on but also improves classifier performance.

1 Introduction

Throughout the years, Machine Learning and Data Mining have gained influ-
ence into a wide variety of applications, typically under the assumption that
they ideally overcome conscious and unconscious human biases, prejudices, and
emotions in decision making. To overcome limitations of our own knowledge and
experience, Machine Learning learns concepts from – hopefully unbiased – data
and thereby discovers latent knowledge. As such, it has been applied to domains
with large amounts of data that are no longer humanly processable and require
us to rely, up to a certain degree, on the models trained in automated settings,
e.g., credit scoring [9], medical diagnoses [15], or crime risk assessment [7].

In reality, although these models improve in accuracy, the data is often flawed
and induces biases in the models that are largely overlooked since the perfor-
mance is evaluated against equally biased test data. Existing bias mitigation
strategies not only require the user to be aware of the bias but also to have a
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Fig. 1. Decision Boundaries of Support Vector Machines trained on three different
datasets: a sample representative for the ground-truth (left), a biased subset (center),
and the biased subset augmented with our algorithm, Mimic (right).

certain knowledge of the ground-truth. But what if the user does not suspect
any bias? In this case they will use the data and train a biased model delivering
poor performance when applied to previously unseen or underrepresented cases
trusting in the quality of its predictions.

Biases are easily induced during the data gathering phase, for example in
clinical trials [15] where the data is collected from local volunteers that might
not represent the entire population. However, the resulting model will be used to
predict the reactions to treatments or drugs for the entire population. Knowledge
of the bias early in the development process cannot only help improve the data
quality, but can also mitigate its effect on the learned model.

In order to identify and mitigate selection biases where no additional infor-
mation is available, Dost et al. [5] proposed Imitate, a technique that, given
a biased dataset, aims to estimate the ground-truth distribution and generate
data points to augment the dataset accordingly. While the authors demonstrate
Imitate’s ability to improve model performance through pre-augmentation on
several examples, it is limited by a major assumption: the underlying ground-
truth is expected to be normally distributed. In practice, this strongly limits the
applicability of Imitate as it is neither flexible enough to model non-Gaussian
distributions nor can it capture datasets consisting of several clusters.

In this paper, we introduce Mimic (Multi -IMItate Bias Correction), a multi-
cluster solution for identification and mitigation of selection biases that exploits
Imitate as a building block. Modeling data as a mixture of possibly biased and
overlapping multivariate Gaussians, Mimic overcomes Imitate’s limitations and
greatly increases its applicability. The parameters of these Gaussians bridge
between the estimated and the present distribution and can indicate under-
represented regions in the data that are likely to correspond to a selection bias.
Generating points in these regions helps mitigate the effect of the bias and pushes
the decision boundary towards the ground-truth (see Fig. 1). Our contributions
are as follows:

– We propose Mimic, a novel selection bias identification and mitigation strat-
egy that does not require any knowledge of the bias or the ground-truth.

– In contrast to existing approaches, Mimic is able to function in a multi-cluster
setting and hence drastically increases the range of datasets and distributions
that can be modeled.
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– In a set of experiments, we demonstrate the shortcomings of existing tech-
niques and highlight the potential of Mimic in these scenarios. We made our
Python+sklearn [16] implementation publicly available1.

The remainder of this paper is organized as follows: Sections 2 and 3 review
the problem statement including the notation and the related research fields,
respectively. We introduce our proposed method in Sect. 4 before evaluating it
in Sect. 5. Section 6 concludes the paper.

2 Problem Statement

Assuming that we are facing a biased dataset, we aim to generate additional
data points that are able to mitigate the bias. Following the notation in [5], this
key idea can be formalized as the following problem statement:

Reconstruction Problem. Let D ⊂ Rn be an n-dimensional dataset (poten-
tially with class labels) that is representative of an underlying distribution which
we consider to be the ground-truth. Given only a biased subset B ⊂ D, the task
is to approximate I := D\B with a generated dataset Î such that a model trained
on the augmented dataset B ∪ Î is minimally different from one trained on D.

The problem was first introduced by Dost et al. [5] where D is required to be
normally distributed (when split into classes). This assumption is well motivated
due to two factors: First, Bareinboim et al. [2] prove theoretically that the true
class label distribution cannot be recovered from the biased dataset alone with-
out utilising additional data or assumptions, so some assumption is necessary.
Second, following the Central Limit Theorem2, numerical real-world observa-
tions frequently are approximately Gaussian which makes normal distributions
very common [13]. In this paper, however, we relax the requirement of normal
distributions and assume each class of D consists of a mixture of Gaussians. In
other words, we assume that each class of the dataset can be represented by a
set of possibly overlapping Gaussian clusters.

3 Related Work

Apart from Imitate, to the best of our knowledge, there does not exist any
research attempting to solve the problem defined in the previous section. How-
ever, methods have been proposed that solve the problem under additional
assumptions. This section provides an overview of related research areas.

Bias Mitigation Using Additional Information. If only a subset of the
variables is affected by a selection bias, Missing Value Imputation techniques
[17] can impute these values. For a dataset X with labels Y , however, they

1 Implementation and Supplementary Material: https://github.com/KatDost/Mimic.
2 The Central Limit Theorem states that a sequence of independent and identically

distributed (i.i.d.) random variables converges almost surely to a Gaussian [10]. Since
we can typically assume that real-world measurements are not perfectly i.i.d. but
rather combinations of different effects, we will often observe this effect.

https://github.com/KatDost/Mimic
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Fig. 2. When facing a biased sample (1st plot from left), the EM algorithm will fit one
(2nd) or multiple (3rd; here controlled by BIC) Gaussians to minimize the error on
the presented data. Imitate and Mimic (4th) instead use the histogram bin heights as
weights for the fitting procedure and capture the underlying ground-truth more closely.

operate under the assumption that P[X|Y ] and P[Y |X] are unchanged between
the training and the test set. The Selection Bias literature [14] widely assumes
that all data points in D are known (or at least their distribution), but only
a biased subset of the labels is available. More general is the field of Covariate
Shift Correction [18] where P[Y |X] is assumed to be shared whereas P[X|Y ]
can differ between the training and the test set and will be “shifted”. Methods
in both fields typically operate model-free and require an unbiased sample to
estimate the bias and assign more weight to data points in underrepresented
regions during training [20,21]. In the field of Fairness in Machine Learning,
different techniques to test for biases in models have been proposed, e.g., using
the AI Fairness 360 toolkit [3]. These methods require the user to decide which
attributes in the dataset might be critical and need to be protected, e.g., gender,
and the detected biases can be validated using additional data if possible [19].

If a researcher does not suspect a concrete bias or deals with a numerical
tabular dataset without ground-truth information, none of the above mentioned
approaches are feasible. Dataset visualization [12] can be considered here, but it
is either limited to simple biases or requires inherent bias detection mechanisms
to decide upon the kind of visualization, and it detects biases rather than miti-
gates them. Hence, in the situation of the Reconstruction Problem (see Sect. 2),
the Imitate algorithm is, to the best of our knowledge, the only option if neither
the ground-truth nor the bias are known.

Imitate. When facing a biased dataset B, Imitate [5] splits it into classes c ∈ C
and treats each resulting subset Bc separately. The dataset Bc is transformed
using Independent Component Analysis (ICA) [11] to obtain statistically inde-
pendent components that reveal non-Gaussian densities and allow individual
analysis. For each of these components d, the data is represented as a histogram
hd, or using kernel density estimators, and the bin heights are exploited as
weights for a least squares optimizer fitting a Gaussian gd to the histogram. Note
that this design puts more emphasis on the existing data points than potentially
missing ones and therefore yields fundamentally different results than typical
Expectation-Maximization fitting if a selection bias is present (see Fig. 2 for an
example). Once all components have been processed, additional data points are
generated such that the gaps between gd and hd are filled and the distributions gd

are preserved. Then the new points are back-transformed into the original data
space. These data points not only indicate a potential selection bias if focussed
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on certain areas in the space, but can also be used to augment Bc and mitigate
the effect the bias has on subsequent modeling tasks (see [5] for details). Due
to the particular design of Imitate that uses ICA for component-wise fitting of
one Gaussian, the algorithm is restricted to one normally distributed cluster per
class only. In this paper, we relax this restriction.

4 Proposed Method

Aiming to provide a bias mitigation strategy for a wide range of problems, in this
paper, we assume that ground-truth data consists of a mixture of multivariate
Gaussians. Although this is still a limiting assumption, it substantially widens
the range of datasets that can be modeled when compared to existing techniques,
i.e., the Imitate algorithm (see Sect. 2 for a discussion of that assumption). Before
analyzing each Gaussian for potential biases, we need to find a suitable mixture
model for the ground-truth based solely on the biased dataset.

If no bias is present in the dataset, Gaussian Mixture Models (GMMs) can
fulfill the task as they are able to identify the optimal Gaussians to describe a
presented dataset given suitable initial cluster centers. These centers (and the
number of clusters) could be found using, for example, the Bayesian information
criterion (BIC) [8]. In the case of a selection bias, however, one biased cluster
might be split into several Gaussian clusters as that mixture fits the presented
dataset better, as shown in Fig. 2. Assume a clinical study testing the impact
of a new drug on test and control groups. While GMM breaks the group of
participants into many small clusters as it models the presented datasets, we
need to find clusters that give an indication of where some data might be missing
and thereby indicating that, e.g., women below a certain age did not participate
due to safety concerns. Therefore, we need to develop a novel strategy to cluster
biased datasets into separate potentially overlapping Gaussians that capture the
ground-truth rather than the biased presented data.

The central idea for Mimicis simple: We start with a large number of clusters
and let Imitate indicate where data might be missing. In contrast to Agglomera-
tive Clustering, we operate on a point-basis rather than by subsequently merging
clusters. If data is available in another cluster to fill in the gap, we let the cluster
grow by assigning these data points until it is approximately normally distributed
or no suitable data points can be found. In this case, we found a potential selec-
tion bias and generate data points to mitigate it. Once all initial clusters have
been fully grown, a merging procedure purges duplicates and combines suitable
clusters to overcome locally optimal solutions. This process is carried out for
every class of the initial dataset (if any) separately, but we describe it for only
one class in the following in order to simplify. See Algorithm1 for an overview
and the following for a detailed discussion of the components.

Initialization [Algorithm 1; Lines 1–2]. Starting with only the biased dataset B,
the Initialization step divides it into a large number of initial clusters that Mimic
uses to search each of them for non-normality. It then uses this information to
“steal” data points from other clusters into this one and grow it. If the initial
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Algorithm 1. Mimic
Input: biased dataset B
Output: parameters θi = (μi, Σi) for each

cluster i; a set P of generated points to mit-
igate the bias
� remove outliers using LOF

1: B′ ← removeOutliers(B)
� initialize clustering using KMeans with
large K

2: l ← initializeClustering(B′)
3: θ ← ∅
4: L ← largestValidCluster(l)

� Grow every valid cluster. A cluster is valid
if it is large and dense enough and has nei-
ther been processed before nor subsumed by
a previous iteration

5: while L exists do
6: l, θL ← growCluster(L, B′, l)
7: θ ← θ ∪ θL

� select the largest valid cluster based on
the updated labels l (if possible)

8: L ← largestValidCluster(l)
� merge clusters if it improves normality

9: θ ← merge(θ, B′)
� generate data to mitigate the bias

10: P ← augment(θ, B)
11: return θ, P

Algorithm 2. growCluster
Input: label L to be grown, outlier-free dataset

B′ with labels l
Output: updated labels l, parameters θL for clus-

ter L
1: repeat
2: B′

L ← B′∣∣
l=L

� cluster L

� run Imitate on L to obtain GL (grid rep-
resenting where data might be missing), nL

(number of missing points), θL (parameters
of the fitted Gaussian)

3: GL, nL, θL ← Imitate(B′
L)

� score all remaining data points based on
if they are likely to help improve the fit of
the Gaussian

4: s ← score(B′ \ B′
L, GL, θL)

� identify nL suitable candidates in batches
bi; sample based on s

5: for batches bi with
∑

i bi = nL do

6: Ci ← sample(B′ \ B′
L, bi, s)

� assign a batch of candidates to the
cluster if it improves the likelihood of the
model fitting the data

7: if P[θL | B′
L ∪ Ci] > P[θL | B′

L] then
8: l(Ci) ← L � update l for accepted Ci

9: until l did not change
10: return l, θL

clusters are already sufficiently normal, no direction for growth can be identified.
Therefore, after pre-processing the data with Local Outlier Factor (LOF) [4] for
higher cluster quality, Mimic starts off with non-Gaussian initial clusters like
those obtained from KMeans. A high number of initial clusters increases the
probability that for each true cluster, a less overlapping part is captured in an
initial cluster that can later be grown, even if overlaps exist. In order to use a
sufficient number of initial clusters, we use twice the number that maximizes
the Silhouette score [8], and split further if we detect two density peaks in a
histogram instead of one. From here on, the outlier-free dataset is denoted as B′

and is passed on to the next step together with the initial labels l.

Identifying Valid Clusters [Algorithm 1; Lines 4, 8]. Once a large number of
initial clusters has been found, Mimic grows them into Gaussian clusters where
possible using points from B. Aiming to secure reliable performance during the
subsequent fitting of a multivariate normal distribution, we filter out all clusters
that are either (i) too small (fewer than 10 data points in our implementation)
or (ii) too widespread with low density (that is, if the cluster’s LOF lies below
the 3σ-interval of the average cluster LOF). Note that the latter is a necessary
measure as we can expect to obtain unreliable results when fitting a normal
distribution to a set of singletons. Additionally, we reduce the computational
burden by ensuring that no cluster is grown more than once and no cluster that
has been fully subsumed in previous iterations is processed. Thereby, we reduce
the number of duplicate clusters we obtain and focus on the most promising
ones. Each iteration selects the largest valid cluster and grows it as described
below, until no valid clusters remain.
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Adapting Imitate to Our Needs [Algorithm 2; Line 3]. Given a cluster L,
Imitate estimates a multivariate Gaussian (see Sect. 3) and indicates based on
a grid where (and how many) points need to be generated in order to smooth
out the cluster’s density and have it resemble the fitted Gaussian. Note that
the Imitate algorithm as described in the original paper continues to operate
on the grid representation which would result in a high complexity given our
repeated Imitate calls and does not allow for precise probability assignments,
hence we adjust: Assume we fitted one Gaussian (μi, σ

2
i ) per component i′ in

the ICA-transformed space. Since the components are independent, this results
in a multivariate Gaussian with mean μ = (μ1, . . . , μd) for d dimensions and the
covariance matrix Σ ∈ Rd×d with diagonal (σ2

1 , . . . , σ
2
d) and 0 elsewhere. Let

I ∈ Rd×d be the ICA transformation matrix. The multivariate Gaussian (μ,Σ)
can then be back-transformed into the original space and yields the Gaussian
(I−1μ, I−1Σ(I−1)T ). We refer to Suppl. A for the proofs of both claims.

Additionally, we adjusted Imitate’s method of selecting the grid granularity:
Instead of repeating the entire modeling and augmentation process and using
the results with the highest confidence score (see the original paper), we use the
corrected Akaike Information Criterion (AICc) [8] (see Suppl. C for additional
experiments justifying this choice) to select, for each dimension, the grid over
which a histogram represents the data best. This adjustment is necessary since
Mimic uses repeated calls of the Imitate fitting procedure and the inflicted
computational expense of the confidence-based strategy would be infeasible.

Growing Clusters [Algorithm 2]. For a cluster L, Imitate provides us with a
multivariate Gaussian θL, a grid GL indicating where and how much (nL) data
might be missing. As outlined in Algorithm2, both are passed on to a scoring
function that estimates for each point p outside L how well it contributes to
filling in the gap between the present (h) and fitted (f) density (first term), and
how likely it belongs to that distribution (second term):

s(p) = d log[max{f(p) − h(p), 0} + 1] + log[f(p) + 1]

where d denotes the number of features and puts more emphasis on filling the
gap for higher dimensions. Using the score, Mimic then searches for nL fitting
candidates in batches bi to overcome locally optimal solutions. A batch of can-
didates Ci is drawn randomly with probabilities based on the score values s
and added to the cluster if it fulfills P [θL | B′|l=L ∪ Ci] > P [θL | B′|l=L], that
is, if adding the candidates to the cluster improves the likelihood of the fitted
Gaussian given the assigned data points (see Suppl. for the calculations). In our
implementation, we restart the sampling (with replacement) of a rejected batch
twice in order to avoid “unlucky” choices. If points have been added, Mimic fits
another multivariate Gaussian and repeats the process until no further points
are added. The parameters of the last fitted Gaussian represent this cluster.

Merging [Algorithm 1; Line 9]. Once the parameters for all clusters have been
obtained, we make sure not to have duplicate clusters or those that are locally
optimally normal but can be combined into a better fit. Additionally, Mimic
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risks overgrowing clusters if the initial clustering was particularly poor, e.g., if it
captures the overlapping area of two clusters. Here, the point density is higher
and the Imitate procedure will demand to grow the cluster in all directions
simultaneously such that it never reaches a Gaussian-like shape and continues to
grow, absorbing more and more data. Such a cluster L is typically characterized
by a very wide probability distribution reaching low density values for all points,
such that the points p with L = arg maxi P[p | θi] exhibit a substantially larger
distance to each other than average and can be detected as such. We identify
and remove these overgrown clusters as a first step of the merging procedure.

The overlap of two clusters can be quantified by counting the points in the
dataset for which the cluster membership is not entirely clear and weighting them
using their probabilities. Mimic calculates the overlap between each combination
of two clusters and merges greedily until no further merge improves the fitting
of the Gaussians (see Suppl. A for details).

Data Augmentation [Algorithm 1; Line 10]. After receiving the final cluster
parameter sets from the merging step, Mimic probabilistically assigns the data
points to the clusters and generates points for each cluster separately to “fill in
the gap” between the found and the fitted distribution as in Imitate.

Assumptions and Expectations. Selection Biases cannot be reconstructed
without making some kind of assumption regarding the ground-truth and/or the
nature of the bias. Hence, Mimic assumes a ground-truth that can be modeled
by a mixture of (possibly overlapping) multivariate Gaussians which, in contrast
to existing techniques, requires neither a ground-truth sample nor knowledge
of the bias. This freedom, however, comes at a cost and forces some implicit
requirements: (i) The data cannot contain categorical, binary, or discrete fea-
tures with a very small number of values as fitting a Gaussian would not be
meaningful, (ii) B itself cannot consist only of Gaussian clusters or Mimic will
not be able to identify growth directions, (iii) several strongly overlapping biased
clusters might not be disentangled correctly, and (iv) the bias in each cluster is
expected to have a convex shape as our component-wise analysis fails otherwise.
Lastly, biases can be misleading pointing towards a different Gaussian than the
true one and causing Mimic to introduce new biases into the data. We aim to
suppress that behavior by refusing to take action if the Gaussians do not fit
reasonably well (see the Imitate paper for details). This, however, causes con-
servative results with bias reconstructions pointing towards the right locations
rather than correcting entirely which is the reason for only small improvements
in classification accuracy (as can be seen in the experimental results). In prac-
tice, however, this is enough to point a practitioner towards potential problems
in the data that can be corrected upon confirmation.

5 Experiments and Discussion

In order to investigate Mimic’s ability to improve classifier performance, we set
up all experiments similarly: we train three classifiers on a biased training set
B, the augmented biased training set B ∪ Î, and an unbiased training set D.
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Fig. 3. For each classification method, we compare the impact of the dataset dimen-
sionality and the number of clusters on the performance.

The accuracy accB , accB∪Î , and accD of all three classifiers, respectively, is then
evaluated on an unbiased test set with the hope that accB∪Î > accB . After
providing details on the experimental setup, we assess the impact of different
characteristics of datasets on the performance.

Experimental Setup. In our experiments, we compare Mimic not only to the
biased accuracy as a baseline, but also for augmented biased datasets B∪Î where
Î is obtained using (i) augmentation with Imitate, (ii) clustering and augmenta-
tion with Mimic, and (iii) clustering with GMM and augmentation with Mimic
which we denote as “GMMimic”. GMM selects the number of clusters (from 1
to 20) that achieve the best BIC and initializes using KMeans. As classifiers,
we use Decision Trees (DT), Support Vector Machines with RBF-kernel (SVM),
and Random Forests (RF) with 100 trees. All parameters are kept at sklearn’s
default values. We use synthetic datasets since they allow us a high level of
control, and real-world datasets to demonstrate that Mimic is indeed applica-
ble in practice. Real-world datasets are taken from the UCI Machine Learning
Repository [1,6,22]. Semi-artificial biases are created as in [5] by splitting into
B and I using a decision stump (the larger subset is taken for B). This way, the
impact on the classification accuracy is guaranteed (see Suppl. B for details).
All synthetic experiments are repeated 30 times to compensate for the random-
ness in the dataset generation, and we report the median results. Experiments
on real-world datasets are repeated 10 times as there is no dataset generation
step involved. Here, we report the mean together with 90% confidence intervals.
We measure the performance as the improvement over the biased accuracy and
normalize using the unbiased accuracy, i.e., (accB∪Î − accB)/(accD − accB).

Unbiased Datasets. Being able to mitigate a selection bias is important, how-
ever, if Mimic is presented with an unbiased dataset, it should not “correct” it.
Experiments (Suppl. C) show that substantially fewer data points (none after
purging the noise) are generated for the unbiased datasets.

Dimensionality. The dimensionality of synthetic datasets is closely related to
their difficulty as higher dimensions naturally increase the distance between clus-
ters even while under the same cluster-to-center distances. Figure 3 demonstrates
this, as lower dimensionalities typically exhibit poorer performance than higher
ones, but this effect vanishes with larger numbers of clusters. GMMimic and
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Fig. 4. We compare the degree to which the classifier accuracy can improve when differ-
ent augmentation techniques are used. The baseline (red line) represents the accuracy
when the classifiers are trained on the biased dataset alone. 100% corresponds to train-
ing on a ground-truth sample. Note that we omit the y-axes labels and replace them
with the dashed line indicating the maximum improvement (maximum y-value) for each
plot. The bottom of the plots is cut off unless Mimic’s performance is displayed there
for an easier comparison. The black lines are 90% confidence intervals and indicate
significant differences from the baseline if they do not touch it. (Color figure online)

Mimic show similar performances for a larger number of clusters while Mimic
clearly dominates when only a small number of clusters is present, regardless
of the dimensionality. Imitate shows strong performance in this case too, but
decreases rapidly since it operates with only one cluster.

Cluster Overlap. The center-to-cluster distances directly affect the difficulty
of the clustering task as they control the overlap. In experiments (Suppl. C)
GMMimic and Mimic both show improvements even for a large number of clus-
ters and high overlaps. Mimic demonstrates its strength particularly for better
isolated clusters where it improves the classification accuracy by up to 50%.

Real-Life Datasets. Figure 4 summarizes the results on five real-world
datasets. For most datasets, we can see Mimic’s potential to improve the clas-
sifier accuracy substantially, in most cases more than its competitors. A few
observations are noteworthy: On the Wholesale dataset, Imitate performs well
since it consists of only one cluster per class. The Vertebral Column dataset
seems particularly hard for all methods as the semi-synthetic bias removes 70%
of the majority class points (which therefore cannot be reconstructed by any
method), leaving an almost balanced classification problem with full overlap
and an imbalanced test set. Here, the tree-based methods essentially select the
majority class, and Mimic is able to tip the scales favorably, but cannot help
the SVM. Overall, although GMMimic demonstrates solid performance on the
synthetic dataset, it does not seem to generalize well to the real-world datasets.

Discussion. Overall, the experiments show that application of an augmentation
technique can provide a meaningful improvement on a biased dataset. While Imi-
tate is designed for datasets with only one cluster per class, GMMimic and Mimic
can improve upon its performance when dealing with multi-cluster datasets. The
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experiments on synthetic datasets with artificial biases point towards a similar
performance of GMM- and Mimic-based data augmentation. On the real-world
datasets, however, we do not see this confirmed: Mimic can further improve the
classification performance. Further research will investigate where which method
tends to be superior and particularly if a symbiosis of both can be beneficial,
e.g., with GMM as an initial model and a Mimic-inspired merging strategy and
augmentation.

Mimic relaxes Imitate’s assumption that the ground-truth dataset consists
of only one Gaussian per class. Instead, it can model multiple Gaussian clusters
or even approximate non-Gaussian clusters with mixture models. This makes
Mimic applicable to a substantially wider range of datasets. However, not all
distributions can be approximated well as a mixture of Gaussians. Future exten-
sions should include an automated test of applicability as well as approaches
applicable to a wider range of distributions.

6 Conclusion
Machine Learning models inherit selection biases from datasets causing them
to predict inaccurately if the biases remain undetected. Existing bias mitigation
strategies require certain kinds of knowledge of the bias or the ground-truth.
In real-world scenarios, however, this requirement often cannot be met. A first
attempt to detect and mitigate selection biases in a “blind” setting has been
made with the Imitate algorithm, although it is limited to datasets with only
one Gaussian cluster per class.

In this paper, we introduced Mimic, a technique that uses Imitate as a
building block but overcomes these limitations and can model a wider range
of datasets exploiting mixtures of Gaussians. As such, multi-cluster modeling of
many non-normally distributed datasets is now possible.

Although limitations still exist as discussed in Sect. 5, we believe that Mimic
is a major step forward towards automated bias identification and mitigation in
the case that no knowledge of the bias or the ground-truth exists.
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