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Abstract. High Utility Itemset extraction algorithms are methods for
discovering knowledge in a database where the items are weighted. Their
usefulness has been widely demonstrated in many real world applications.
The traditional algorithms return the set of all patterns with a utility
above a minimum utility threshold which is difficult to fix, while top-k
algorithms tend to lack of diversity in the produced patterns. We propose
an algorithm named HAISampler to sample itemsets where each item-
set is drawn with a probability proportional to its average-utility in the
database and under length constraints to avoid the long and rare item-
sets with low weighted items. The originality of our method stems from
the fact that it combines length constraints with qualitative and quanti-
tative utilities. Experiments show that HAISampler extracts thousands
of high average-utility patterns in a few seconds from different databases.

1 Introduction

High Utility Itemset mining (HUIM) [21] is an extension of the frequent pattern
mining [1] which takes into account the quality and the quantity of an item in a
transaction (the price for instance). Its usefulness has been widely demonstrated
in many real life applications like user behavior analysis [17], marketing analysis
[14], mobile commerce [16], stream web clicks [6] and interactive pattern mining
[2]. Interactive pattern mining is a process that requires a short loop with rapid
interaction between the system and the user [13]. Indeed, the instant discovery
imposes a constraint on the response time of a few seconds to extract a represen-
tative set of patterns. Complete methods do not provide the relevant patterns
in such a short time. Methods based on a condensed representation [20] or on
top-k patterns [18] are also used to find the best patterns. Therefore, they often
focus on the same part which contains slightly different patterns and then leads
to a lack of diversity. The latter is crucial to present to the user a set of varied
patterns at each iteration in order to improve his/her view and help the system
to know his/her interest.

To solve this problem, we propose to benefit from the pattern sampling tech-
niques [3,4]. It consists in providing a representative sample of patterns according
to a distribution proportional to an interestingness measure chosen by the user
while ensuring good diversity between the sampled patterns. Weighted utilities
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13281, pp. 134–148, 2022.
https://doi.org/10.1007/978-3-031-05936-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05936-0_11&domain=pdf
https://doi.org/10.1007/978-3-031-05936-0_11


High Average-Utility Itemset Sampling Under Length Constraints 135

are proposed in [5,9], but independently of any transaction. In other words, these
methods do not work in our case where the utility of an occurrence of a pattern
depends on the transaction in which it appears and its length. To the best of our
knowledge, this paper is the first to address the problem of high average-utility
itemset sampling while integrating length constraints on the sampled patterns.

The rest of this paper is organized as follows: Sect. 2 presents a state-of-the-
art on HUIM and pattern sampling methods. Section 3 gives basic notions and
formalizes the problem. Section 4 presents HAISampler (High Average-utility
Itemset Sampler) and Sect. 5 evaluates its accuracy and complexity. Finally, we
present some experiments in Sect. 6 and conclude in Sect. 7.

2 Related Works

HUIM is one of the most difficult tasks to extract useful patterns in pattern
mining area. Two of its main challenges are the control of the returned can-
didate patterns and the time cost of computing the utility of each pattern of
the database. To solve these problems, many efficient methods are proposed
[16,18,21]. Unfortunately, the efficiency of the exhaustive HUIM often depends
on the size of the database on which they are applied. Nowadays, the used
databases are very large and contain information as rich as their variety. The
diversity of the information that a database contains is proportional to the car-
dinality of its pattern language. But, the more the number of pattern the more
it is difficult to explore the corresponding database. Another problem encoun-
tered by HUIM methods is the long tail where patterns containing low weighted
items have high utilities thanks to their length. In [15], the authors propose an
average-based utility measure to avoid the long tail problem. However, this one
favors itemsets of length 1, since they are not affected by the division, and there-
fore the returned patterns become obvious to the user. An alternative consists
in setting a minimum frequency threshold in order to avoid the long patterns.
However, it is very difficult for the user to set a minimum frequency threshold.

Pattern sampling [3] is a non-exhaustive method for discovering relevant pat-
terns while offering strong statistical guarantees thanks to its randomness. Its
usefulness has been widely demonstrated in many applications such as classifica-
tion [4,7], anomaly detection [9,11] and instant discovery [10,13]. It has also been
applied to many types of structured data like graphs [3], itemsets [4], numeri-
cal data [12] and sequences [8]. In [7] the authors weight each pattern with a
norm-based utility (regardless of any sequence) to avoid the long tail problem.
However, the output sampling is much more difficult in the case where the draw
of a pattern is not proportional to its frequency in the database, and even more
when length constraints are integrated.

In this paper, we propose an original method of output pattern sampling
to address the high average-utility itemsets under length constraints. Contrary
to the methods which are based on heuristic algorithms [19] to find the top-k
high utility itemsets, the sampling method that we propose is exact. It draws an
itemset proportionally to its average-utilities from the set of all patterns of the
database that respect the length constraints.
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3 Preliminaries and Problem Formulation

This section begins by presenting some basic notions and notations as well as
the necessary definitions for the understanding of the subject. It ends with a
formalization of the problem that we want to solve in this paper.

Let I = {e1, · · · , eN} be a finite set of literals called items with an arbitrary
total order >I between items : e1 >I · · · >I eN . An itemset or pattern, denoted
by ϕ = ei1 · · · ein

, with n ≤ N , is a none empty subset of I, ϕ ⊆ I. The pattern
language corresponds to L = 2|I|\∅ and the length of a pattern ϕ ∈ L denoted by
|ϕ|, is the number of items it contains (its cardinality). A transactional database
D corresponds to a set of couple (j, t) where j ∈ N is the unique identifier of
a transaction and t = e1 · · · en is an itemset of length |t| = n defined in I.
We denote by L(D) the set of all patterns that appear in D. In the rest of this
paper, a transaction identified by j is denoted by tj . In addition, for a transaction
tj = ej1 · · · ejn

, we denote by tij = eji+1 · · · ejn
an itemset formed by discarding

the i first items of t. So we have |tij | = |tj | − i. The ith item of the transaction tj
is tj [i] = eji

. In this paper, each item eji
of a transaction tj has a weight, a strict

positive real, which depends on this transaction, called its utility. For instance,
in the case of a transaction which represents the set of all items purchased by
a customer, the utility of an item ei in the transaction t can be the product of
its quantity q(ei, t) and its unit price p(ei). To be simpler on the rest of this
paper, we associate each item ei with its quantity in the transaction t that it
appears, ei : q(ei, t). Table 1 shows a database D with 5 transactions t1, t2, t3,
t4 and t5 defined on the set of items I = {A,B,C,D,E, F}. We suppose that
A >I B >I C >I D >I E >I F . In the database D, the unit prices are:
p(A) = 25, p(B) = 30, p(C) = 10, p(D) = 5, p(E) = 15 and p(F ) = 10. With
the transaction t1, we have the following quantities q(A, t1) = 2, q(B, t1) = 3
and q(C, t1) = 2.

Table 1. Example of database D with utilities on items

D
t1 A:2 B:3 C:2

t2 B:2 D:4

t3 A:1 C:1 D:1

t4 A:3 B:1

t5 A:1 B:2 D:1 E:1 F:1

Items Price

A 25

B 30

C 10

D 5

E 15

F 10

This toy database will be used in the rest of this paper to give illustrations. Since
items in the transaction t1 have not the same weight, then the occurrences of
patterns in t1 may not have the same utility in t1.
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Definition 1 (Occurrence of a pattern). Let ϕ be a pattern defined on a
language L of a database D. If it exists a transaction tj of D such that ϕ ⊆ tj,
then ϕj is an occurrence of the pattern ϕ in the transaction tj. The utility of the
pattern ϕ in the transaction tj, denoted by uOcc(ϕ, tj), is equal to 0 if ϕ �⊆ tj or
ϕ = ∅, else uOcc(ϕ, tj) =

∑
e∈ϕ (q(e, tj) × p(e)).

There are also utilities that are independent of any database such as length-
based utilities [9]. In the following, we consider the length-based utility defined
by uLen[m..M ](ϕ) = 1/|ϕ| if |ϕ| ∈ [m..M ] and 0 otherwise, with m and M two
positive integers. Thus, a pattern whose length is larger than M or smaller than
m will be deemed useless.

Definition 2 (Average-Utility of a pattern under length constraints).
Let D be a database, L its language, m and M two integers such that m ≤ M .
The average-utility of the pattern ϕ ∈ L in D under minimum m and maximum
M length constraints, denoted by uavg

[m..M ](ϕ,D), is the product of the sum of
utilities of its occurrences and its length-based utility. Formally, uavg

[m..M ](ϕ,D) =
(
∑

(j,t)∈D∧ϕ⊆t uOcc(ϕ, t)) × uLen[m..M ](ϕ).

It is important to note that uavg
[m..M ] is not a length-based utility.

Example 1. Let’s consider the database D in Table 1 and the length con-
straints m = 1 and M = 2. We note that the pattern AC belongs in t1
and t3 only. So, AC has only two occurrences in D: AC1 et AC3. We also
have uLen[m..M ](AC) = 1 because |AC| = 2 ∈ [1..2]. So, uavg

[1..2](AC,D) =
(uOcc(AC, t1)+uOcc(AC, t3))/2 = ((2×25+2×10)+(1×25+1×10))×1/2 =
(70 + 35)/2 = 52.5. By the same way, we have uavg

[1..2](ABEF,D) = 110 × 0 = 0.
Indeed, |ABEF | = 4 �∈ [1..2].

In this paper, we want to solve the problem formulated as follows:
Given D a transactional database with weighted items (quantity and/or quality),
two positive integers m and M such that m ≤ M , our main goal is to draw a
pattern ϕ from the language L with a probability exactly equal to:

P(ϕ,D) =
uavg
[m..M ](ϕ,D)

∑
ϕ′∈L(D) uavg

[m..M ](ϕ
′,D)

.

The notations of this paper are summarized in Table 2.

4 Two-Phase Sampling of High Average-Utility Itemsets

In this section, we will first present the basics of our method (detailing the
weighting phase and the drawing phase of a pattern) before presenting the
HAISampler algorithm that we propose to sample high average-utility itemsets
under length constraints.
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4.1 Basics of Our Sampling Method

The high average-utility itemset sampling method that we propose in this paper
uses a position-based length weighting system to weight each transaction. It is a
system which consists in weighting each item of a given transaction according to
the position it occupies there. The item weights are then used to draw a pattern
using a conditional probability.1

Table 2. Notations

Symbol Definition

uOcc(ϕ, t) Utility of the pattern ϕ in the transaction t

uLen[m..M](ϕ) Length-based utility of ϕ equal to 1/|ϕ| if |ϕ| ∈ [m..M ] and 0 otherwise

uavg
[m..M](ϕ, D) Average-utility of the pattern ϕ in D. It is equal to 0 if |ϕ| �∈ [m..M ]

ti Itemset formed by discarding the i first items of t, ti = t[i + 1] · · · t[n]

ω+
� (t[i], t) Sum of occurrences’ utilities of length � in ti−1 with item t[i]

ω−
� (t[i], t) Sum of occurrences’ utilities of length � in ti (without item t[i])

ωavgU
[m..M](t) Sum of average-utilities of all occurrences in t

P
t
�(t[i]|ϕ, �′) Probability to draw item t[i] in the transaction t after drawing � − �′

items and storing them in ϕ

Transaction Weighting: Let t be a transaction of length n defined on a set
of items I endowed with a total order relation >I , m and M maximum and
minimum length constraints respectively. The ith item of the transaction t, t[i],
is associated with two lists of values ω+

� (t[i], t) and ω−
� (t[i], t), for � ∈ [m..M ].

Definition 3. The weight ω+
� (t[i], t) is the sum of utilities of the occurrences of

length � − 1 in the transaction ti = t[i + 1] · · · t[n] to which we add the item t[i],
and the weight ω−

� (t[i], t) is that of occurrences of length � in ti.

ω+
� (t[i], t) =

∑

ϕ⊆ti∧|ϕ|=�−1

uOcc({t[i]}∪ϕ, t) and ω−
� (t[i], t) =

∑

ϕ⊆ti∧|ϕ|=�

uOcc(ϕ, t).

Property 1 gives a formalization of the weights based on Definition 3.

Property 1 (Item weights ω•
� (t[i], t)). The weights ω+

� (t[i], t) and ω−
� (t[i], t) of

the item t[i], for all � ∈ [m..M ], may be formally written as follows:2 ω+
� (t[i], t) =

ω+
1 (t[i], t)×( |ti|

�−1

)
+

∑
�∈{+,−} ω�

�−1(t[i+1], t) and ω−
� (t[i], t) =

∑
�∈{+,−} ω�

� (t[i+1], t),
with ω+

1 (t[i], t) = uOcc(t[i], t) for all i ∈ [1..|t|] and ω�
� (t[i], t) = 0 for all i > |t|.

Indeed, the weights of an item t[i] are deduced from those of t[i + 1]. Using
Property 1, we can easily compute the weight of a transaction under length
constraints. By definition, the average-utility of an occurrence ϕ ⊆ t is
uOcc(ϕ, t)/|ϕ|.
1 Proof of theoretical results are available in Sect. A.
2 By convention

(
n
k

)
= 0 if k>n and 1 if k = 0.
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Property 2 (Transaction weight). The weight of a transaction t under minimum
m and maximum M length constraints, denoted by ωavgU

[m..M ](t), is the sum of
average-utilities of the occurrences that it contains. Formally,

ωavgU
[m..M ](t) =

M∑

�=m

⎛

⎝1

�

|t|∑

i=1

ω+
� (t[i], t)

⎞

⎠ =
M∑

�=m

1

�

(
ω+

� (t[1], t) + ω−
� (t[1], t)

)
.

Example 2. Let’s consider transaction t1 = {A:2, B :3, C :2}. The prices of its
items are p(A) = 25, p(B) = 30 and p(C) = 10. Following the total order relation
>I , the occurrences that start with A are : {A,AB,AC,ABC}, those who start
with B are : {B,BC}, and finally only a pattern begins with C : {C}. The sum of
the utilities of the occurrences of length � ∈ [1..3] that start with t1[i], i ∈ [1..3],
in the transaction t1 is: ω+

1 (A, t1) = uOcc(A, t1) = 2 × 25 = 50. Using Property
2 we have: ω+

2 (A, t1) = uOcc(AB, t1) + uOcc(AC, t1) = (50 + 90) + (50 + 20) =
210. In an identical way, we have the following weights for the transaction t1:

From this weighting, we deduce the weight of the transaction t1 under the
minimum m = 1 and maximum M = 3 length constraints which is equal to:
ωavgU
[1..3] (t1) = (50 + 110)/1 + (210 + 110)/2 + (160 + 0)/3 = 373.33.

We are going to show how to draw an occurrence from our weighting system.

Drawing an Itemset from a Transaction: Drawing a pattern from a
position-based weighted transaction can be done using conditional probability.
Lemma 1 gives an idea on the computation of the probability of drawing a given
item knowing that we have already drawn (or not) higher items according to the
order relation >I introduced in Sect. 3.

Lemma 1. Let � be the length of the itemset to output and P
t
�(t[i]|ϕ, �′) the

probability to draw the item t[i] in the transaction t after drawing � − �′ items
and storing them in ϕ, with e >I t[i] for all e ∈ ϕ. The probability to draw t[i]
knowing ϕ and �′ can be formulated as follows:

P
t
�(t[i]|ϕ, �′) =

∑
ϕ′⊆ti∧|ϕ′|=�′−1 uOcc(ϕ ∪ {t[i]} ∪ ϕ′, t)

∑
ϕ′⊆ti−1∧|ϕ′|=�′ uOcc(ϕ ∪ ϕ′, t)

.

Property 3. The probability to draw the item t[i] in the transaction t knowing
the itemset ϕ and the length �′, with |ϕ| = � − �′, denoted by P

t
�(t[i]|ϕ, �′), is

given by the following formula:

P
t
�(t[i]|ϕ, �′) =

(∑
k<i∧t[k]∈ϕ ω1(t[k], t)

)
× ( |ti|

�′−1

)
+ ω+

�′ (t[i], t)
(∑

k<i∧t[k]∈ϕ ω1(t[k], t)
)

× (|ti−1|
�′

)
+

(∑
�∈{+,−} ω�

�′(t[i], t)
) .

The probability that the item t[i] is not drawn knowing ϕ and �′ is 1−P
t
�(t[i]|ϕ, �′).
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The proofs of these two formulas follow from the fact that the probability of
drawing t[i] depends on the utilities of the items already drawn and those of the
items which follow it to form a pattern of length �.

Example 3. Suppose we need to draw a pattern of length � = 2 from the trans-
action t1. The probability to draw ϕ = AC is computed as follow: Pt1(AC|�) =
P

t1
� (A|ϕ = ∅, �′ = 2) × (1 − P

t1
� (B|ϕ = A, �′ = 1)) × P

t1
� (C|ϕ = A, �′ = 1).

Which gives us P
t1(AC|�) = 0+210

0+320 × (1 − 50×( 1
1−1)+90

50×(21)+90+20
) × 50×( 0

1−1)+20

50×(11)+20
=

210
320 × (1 − 140

210 ) × 70
70 = 210

320 × 70
210 × 70

70 = 70
320 .

We are now going to formalize and present our two-phase approach for draw-
ing patterns from a transactional database whose items are weighted.

4.2 HAISAMPLER: High Average-utility Itemset Sampler Algorithm

As we described it in Sect. 4.1, our approach is done in two phases: preprocessing
and drawing. The phase of drawing an itemset is divided into several steps:
drawing a transaction t, drawing a length � and finally, drawing an itemset of
length � based on the conditional probability. This phase is repeated K times to
draw K patterns.

Algorithm 1. HAISampler (High Average-utility Itemset Sampler)
Input: A transactional database D having weighted items with a total order rela-
tion >I and minimum m and maximum M length constraints
Output: ϕ a pattern drawn proportionally to its average-utility: ϕ ∼ uavg

[m..M ](L, D)

//Phase 1: Preprocessing
1: Compute the weight of each transaction t in D: ωavgU

[m..M ](t)

//Phase 2: Drawing
2: Draw a transaction proportionally to its weight: t ∼ ωavgU

[m..M ](D)

3: Draw a length � according to its weight
∑

�∈{+,−} ω�
[�..�](t[1], t): � ∼ ωavgU

[m..M ](t)

4: ϕ ← ∅ � Empty initialization of the pattern to return
5: y ← 0
6: i ← 1
7: while � > 0 do
8: z ← y × (|ti|

�

)
+ ω+

� (t[i], t) + ω−
� (t[i], t)

9: x ← random() × z � Randomly draw a real number between 0 and z

10: if x ≤ y × ( |ti|
�−1

)
+ ω+

� (t[i], t) then
11: ϕ ← ϕ ∪ {t[i]}
12: y ← y + ω+

1 (t[i], t)
13: � ← � − 1

14: i ← i + 1

15: return ϕ � A pattern drawn proportionally to its average-utility in D

Algorithm 1 takes as input a transactional database defined over a set of
items with a total order relation >I and minimum m and maximum M length
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constraints. We start with a preprocessing phase which computes the weight of
each transaction (line 1) using Property 1 and Property 2. To draw a pattern,
we first draw a transaction t proportionally to its weight ωavgU

[m..M ](t) (line 2).
Second, we draw a length � proportionally to the sum of average-utilities of the
occurrences of length � that appear in the transaction t previously drawn (line
3). Lines 4 to 14 allow us to randomly draw an occurrence of length � with a
probability proportional to its utility in t. In line 8, we compute the total sum,
z, of the utilities of the itemsets that start with ϕ ∪ {t[i]} following the order
relation >I in the transaction t. Then, we randomly draw a real number between
0 and z (line 9). If the drawn number is smaller than the sum of utilities of the
ordered items, which starting with ϕ also contain the item t[i] of transaction t,
then we add t[i] in the set of items to output (lines 10 and 11). In that case, the
sum of utilities of the drawn items is updated in the variable y (line 12) and the
number of remaining items decrements (line 13). When � = 0, we return on line
15 an itemset ϕ drawn proportionally to its average-utility in the database D.

5 Theoretical Analysis of the Method

This section shows in Property 4 that HAISampler performs an exact draw of
a pattern and gives finally its time complexity.

Property 4 (Soundness). Let D be a transactional database having utilities on
items with a total order relation >I , and m and M two integers such that
m ≤ M . HAISampler randomly draws a pattern ϕ from the language L(D)
with a probability equal to uavg

[m..M ](ϕ,D)/Z where Z =
∑

ϕ′∈L(D) uavg
[m..M ](ϕ

′,D).

The complexity of our method, can be split into two parts: the complexity of
preprocessing and that of drawing a pattern. It is important to note that the
combination values are computed incrementally and stored in memory.

Preprocessing: To weight a transaction our method, HAISampler, spends a
time of O(|I| × (M − m) × 2). Consequently, it weights all the transactions of
the database in a complexity of O(|D| × |I| × (M − m)).

Drawing a Pattern: HAISampler starts by drawing a transaction with a
complexity in O(log(|D|)). After, it draws a pattern proportionally to its utility
in O(|I|). So, the complexity of drawing a pattern is O(log(|D|)+ |I|). The draw
of K patterns is then done in O(K × (log(|D|)+ |I|)), hence equal to that of [4].

6 Experiments

In this experimental section, we study the efficiency of our method and present
the dispersion of the average-utilities of the sampled patterns according to their
length. Finally, we give some memory storage cost of HAISampler. The exper-
iments3 were carried out on 6 datasets including 3 from the UCI: Adult, Chess
3 HAISampler (Python 3.8) https://github.com/HAISampler/haisampler-src.

https://github.com/HAISampler/haisampler-src
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and Mushroom with preprocessed versions4, and 3 real datasets from SPMF5: BMS,
Foodmart and Retail. Table 3 details the characteristics of the benchmarks. The
value of the minimum length constraint is fixed at m = 1 throughout the experi-
ments. All the experiments were performed on a 2.11 GHz 2 Core CPU PC with
32 GB memory.

Table 3. Characteristics of the benchmarks: the number of transactions, the number of
distinct items, the minimum, the maximum and the average length of the transactions,
the minimum, maximum and average weight of the items

D |D| |I| |t|min |t|max |t|avg p(e, t)min p(e, t)max p(e, t)avg

Adult 48,842 97 12 15 14.87 1.0 99.0 50.04

BMS 59,602 497 1 267 2.51 7.0 9,000.0 724.79

Chess 28,056 58 7 7 7.00 1.0 99.0 50.05

Foodmart 4,141 1,559 1 14 4.42 50.0 2,166.0 655.66

Mushroom 8,124 90 22 23 22.69 1.0 99.0 50.02

Retail 88,162 16470 1 76 10.31 1.0 140.0 16.41

Speed of the Method. The average execution times that we are going to
present were obtained by repeating the program 100 times for each case. The
standard deviations obtained are very low (mostly equal to 0 in the drawing
phase), that is why we have omitted them.
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Fig. 1. Preprocessing time (a) and the drawing time of a pattern (b) according to M

Preprocessing Time: Figure 1-(a) shows the preprocessing time according to the
maximal length constraint M ∈ [3..8] of the 6 datasets in Table 3. First, it shows
that the preprocessing time varies according to the maximum length constraint.
However, it remains less than 9 s in all our datasets with a maximum length
constraint M = 8, which is already too high if we want to avoid the long tail
phenomenon. It is also important to note that the time to preprocess the datasets
by HAISampler increases with the size of the database and the average length

4 Each item was associated with a utility taken randomly between 1 and 100.
5 http://www.philippe-fournier-viger.com/spmf.

http://www.philippe-fournier-viger.com/spmf
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of transactions. Finally, we can say that the method HAISampler consumes
low time for preprocessing datasets.

Drawing Time per Pattern: Figure 1-(b) shows the evolution of the drawing time
per pattern according to the maximum length constraint M ∈ [2..8]. First, we
note that the drawing times change slightly depending on the maximum length
constraint. Then, the curves show that the drawing time depends on the size of
the database and the maximum length of transactions. Indeed, longest transac-
tions consume a lot of time especially when the maximum length constraint is
high. Finally, the time to draw a pattern remains less than 0.15 ms on all datasets
we use here. It is less than 0.04 ms when M ≤ 8 except in BMS. This means that
HAISampler manages to draw thousands of patterns in a few seconds.

Fig. 2. Utility distribution of 10,000 sampled patterns

Impact of Length Constraints on the Sampled Patterns. We will show
how the maximum length constraint can impact the utility of the sampled pat-
terns from databases reaching the long tail curse. To do this, we have chosen
two real datasets BMS and Retail, and one synthetic dataset Mushroom. The
maximum length constraint M is tested with 5, 8 and ∞ (without constrained).
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Figure 2 shows the distribution of the average-utilities of the patterns accord-
ing to their length for the three chosen datasets (each dot represents a sampled
pattern). BMS and Retail clearly show that if the maximum length constraint is
very high or even unused, the drawn patterns are very long and formed by low
weighted items (this is the long tail phenomenon). Besides, none of the returned
patterns by the unconstrained method has a length smaller than 100 for BMS,
20 for Retail, and 4 for Mushroom. The latter is less impacted by the fact that
all of its transactions have almost the same length. So we can say that it is
very interesting to use length constraints to sample high utility patterns from
a database suffering from the long tail curse, which is often the case with real
data.

Memory Storage Cost. Someone may wonder about the memory storage cost
of our method since it adds information on the items of each transaction and
keeps the combination values

(
n
k

)
in memory. Table 4 shows some statistics com-

puted with the “asizeof”6 package for the different datasets used in this paper.

Table 4. Memory storage cost in Mega Byte (MB) of HAISampler with M ∈ {5, 7, 8}

Maximal length M D
Adult BMS Chess Foodmart Mushroom Retail

5 434.629 82.681 109.411 10.051 113.593 542.965

7 483.499 85.658 113.906 10.256 128.513 595.098

8 504.021 86.822 113.906 10.271 135.323 616.793

As expected, the memory storage cost increases slightly depending on the
maximum length constraint M , and it remains less than 1 GB with M = 8
(maximum 616.793 MB with Retail). This means that the weighting approach of
HAISampler is not expensive in storage. So it can be used with larger datasets
to sample high average-utility itemsets.

7 Conclusion

This paper presents the first method for sampling high average-utility itemsets
under length constraints. We have shown that HAISampler is exact and effi-
cient at drawing thousands of patterns in a few seconds on real and synthetic
datasets with reasonable preprocessing time. The experiments carried out show
the value of length constraints for sampling patterns that have good utilities.

6 https://code.activestate.com/recipes/546530-size-of-python-objects-revised/.

https://code.activestate.com/recipes/546530-size-of-python-objects-revised/
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Moreover, we can easily adapt our approach to situations where the utility
of an occurrence of a pattern in a transaction is the product of the utilities of
its items. In perspective, we would like to extend our approach to other complex
data structures such as sequences [7] and graphs [3]. In the short term, we intend
to show how our position-based length weighting system can be extended for
sampling high average-utility itemsets on data streams [6].

A Appendix (Proof of Theoretical Results)

Proof (Property 1). Let’s start by showing that ω−
� (t[i], t) =

∑
�∈{+,−} ω�

� (t[i+
1], t). By definition, ω−

� (t[i], t) is the sum of the utilities of the set of patterns of
length � in ti, ω−

� (t[i], t) =
∑

ϕ⊆ti∧|ϕ|=� uOcc(ϕ, t). This set can be split into two
parts: the one that contains the patterns starting with the item t[i + 1] whose
sum of their utilities is equal to ω+

� (t[i + 1], t) by definition, and the one that
contains the patterns not starting with t[i + 1] and whose sum of their utilities
is equal to ω−

� (t[i + 1], t). It implies that
∑

ϕ⊆ti∧|ϕ|=�
uOcc(ϕ, t) = ω+

� (t[i + 1], t) + ω−
� (t[i + 1], t) =

∑

�∈{+,−} ω�
� (t[i + 1], t).

(1)
Let’s show that ω+

� (t[i], t) = ω+
1 (t[i], t) × ( |ti|

�−1

)
+

∑
�∈{+,−} ω�

�−1(t[i + 1], t).
We know by definition that ω+

� (t[i], t) is the sum of utilities of item-
sets of length � in ti−1 which start with t[i] following the total order
relation >I . Formally, we have: ω+

� (t[i], t) =
∑

ϕ⊆ti∧|ϕ|=�−1 uOcc({t[i]} ∪
ϕ, t). But uOcc({t[i]} ∪ ϕ, t) = uOcc({t[i]}, t) + uOcc(ϕ, t) by definition.
Then, ω+

� (t[i], t) =
∑

ϕ⊆ti∧|ϕ|=�−1 (uOcc({t[i]}, t) + uOcc(ϕ, t)). This implies:
ω+

� (t[i], t) =
∑

ϕ⊆ti∧|ϕ|=�−1 uOcc({t[i]}, t) +
∑

ϕ⊆ti∧|ϕ|=�−1 uOcc(ϕ, t). How-
ever, we know on the one hand that

∑
ϕ⊆ti∧|ϕ|=�−1 uOcc({t[i]}, t) =

uOcc({t[i]}, t) × ( |ti|
�−1

)
and uOcc({t[i]}, t) = ω+

1 (t[i], t) by definition, so
∑

ϕ⊆ti∧|ϕ|=�−1 uOcc({t[i]}, t) = ω+
1 (t[i], t) × ( |ti|

�−1

)
. On the other hand,

∑
ϕ⊆ti∧|ϕ|=�−1 uOcc(ϕ, t) is the sum of utilities of the set of patterns of length �−

1 in the transaction ti. From (1), we can also say that
∑

ϕ⊆ti∧|ϕ|=�−1 uOcc(ϕ, t) =
∑

�∈{+,−} ω�
�−1(t[i + 1], t). Then we have: ω+

� (t[i], t) = ω1(t[i], t) × ( |ti|
�−1

)
+

∑
�∈{+,−} ω�

�−1(t[i + 1], t). Hence the result. �

Proof (Property 2). By definition, the weight of the transaction t is the sum of
the average-utilities of the pattern occurrences it contains. According to Prop-
erty 1, the weight of the transaction t under the minimum m and maximum
M length constraints is nothing more than the sum of the average-utilities of
pattern occurrences that start with the item t[1] and respect the imposed length
constraints,

∑M
�=m( 1� × ω+

� (t[1], t)), and that of the patterns that do not start
with the item t[1] but respect the length constraints,

∑M
�=m( 1� × ω−

� (t[1], t)).
However, we know that

∑M
�=m( 1� × ω+

� (t[1], t)) +
∑M

�=m( 1� × ω−
� (t[1], t)) =

∑M
�=m

1
� × (

ω+
� (t[1], t) + ω−

� (t[1], t)
)
. Hence the result. �
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Proof (Lemma 1). By definition, the probability to draw the item t[i] of the
transaction t after having drawing from it �−�′ items and store them in ϕ is noth-
ing more than the probability of drawing a pattern that begins with ϕ ∪ {t[i]},
according to the order relation >I , among the set of patterns that start with ϕ.
On the one hand, we know that the set of patterns of length � that start with
ϕ∪ t[i] is defined by {ϕ′′ ⊆ t : (ϕ′′ = ϕ∪{t[i]}∪ϕ′)(ϕ′ ⊆ ti)(|ϕ′| = �′ − 1)}. The
sum of utilities of the patterns of this set is equal to

∑
ϕ′⊆ti∧|ϕ′|=�′−1 uOcc(ϕ ∪

{t[i]}∪ϕ′, t). On the other hand, we know that the set of patterns of length � that
start with ϕ is defined by {ϕ′′ ⊆ t : (ϕ′′ = ϕ∪ϕ′)(ϕ′ ⊆ ti−1)(|ϕ′| = �′)}. The sum
of utilities of the patterns of this set is equal to

∑
ϕ′⊆ti−1∧|ϕ′|=�′ uOcc(ϕ ∪ ϕ′, t).

So P
t
�(t[i]|ϕ, �′) =

∑
ϕ′⊆ti∧|ϕ′|=�′−1 uOcc(ϕ∪{t[i]}∪ϕ′,t)
∑

ϕ′⊆ti−1∧|ϕ′|=�′ uOcc(ϕ∪ϕ′,t) . Hence the result. �

Proof (Property 3). From Lemma 1, we have:

P
t
�(t[i]|ϕ, �′) =

∑
ϕ′⊆ti∧|ϕ′|=�′−1 uOcc(ϕ∪{t[i]}∪ϕ′,t)

∑
ϕ′⊆ti−1∧|ϕ′|=�′ uOcc(ϕ∪ϕ′,t) . First, by definition we have uOcc(ϕ ∪

{t[i]} ∪ ϕ′, t) = uOcc(ϕ, t) + uOcc({t[i]} ∪ ϕ′, t). Let zi =
∑

ϕ′⊆ti∧|ϕ′|=�′−1 uOcc(ϕ ∪
{t[i]} ∪ ϕ′, t). It implies that zi =

∑
ϕ′⊆ti∧|ϕ′|=�′−1 (uOcc(ϕ, t) + uOcc({t[i]} ∪ ϕ′, t)).

Then we have: zi =
∑

ϕ′⊆ti∧|ϕ′|=�′−1 uOcc(ϕ, t) +
∑

ϕ′⊆ti∧|ϕ′|=�′−1 uOcc({t[i]} ∪ ϕ′, t).

But
∑

ϕ′⊆ti∧|ϕ′|=�′−1 uOcc(ϕ, t) = uOcc(ϕ, t)×( |ti|
�′−1

)
and

∑
ϕ′⊆ti∧|ϕ′|=�′−1 uOcc({t[i]}∪

ϕ′, t) = ω+
�′ (t[i], t) by definition. Then zi = uOcc(ϕ, t) × ( |ti|

�′−1

)
+ ω+

�′ (t[i], t). We also

know that uOcc(ϕ, t) =
∑

k<i∧t[k]∈ϕ ω+
1 (t[k], t). So, zi =

(∑
k<i∧t[k]∈ϕ ω+

1 (t[k], t)
)

×
( |ti|

�′−1

)
+ω+

�′ (t[i], t). Second, we have uOcc(ϕ∪ϕ′, t) = uOcc(ϕ, t)+uOcc(ϕ′, t). By setting

Zi =
∑

ϕ′⊆ti−1∧|ϕ′|=�′ uOcc(ϕ ∪ ϕ′, t), we get then Zi =
∑

ϕ′⊆ti−1∧|ϕ′|=�′ uOcc(ϕ, t) +
∑

ϕ′⊆ti−1∧|ϕ′|=�′ uOcc(ϕ
′, t). But

∑
ϕ′⊆ti−1∧|ϕ′|=�′ uOcc(ϕ, t) = uOcc(ϕ, t) × (|ti−1|

�′
)

=(∑
k<i∧t[k]∈ϕ ω+

1 (t[k], t)
)

× (|ti−1|
�′

)
et

∑
ϕ′⊆ti−1∧|ϕ′|=�′ uOcc(ϕ

′, t) =
∑

�∈{+,−} ω�
�′(t[i], t), so Zi =

(∑
k<i∧t[k]∈ϕ ω+

1 (t[k], t)
)

×(|ti−1|
�′

)
+

∑
�∈{+,−} ω�

�′(t[i], t).

Finally, Pt
�(t[i]|ϕ, �′) = zi

Zi
=

(
∑

k<i∧t[k]∈ϕ ω+
1 (t[k],t))×( |ti|

�′−1)+ω+
�′ (t[i],t)

(
∑

k<i∧t[k]∈ϕ ω+
1 (t[k],t))×(|ti−1|

�′ )+
∑

�∈{+,−} ω�
�′ (t[i],t)

. �

Proof (Property 4). Let m be the minimum and M the maximum length
constraints, the probability of drawing the pattern ϕ of length � in the
database D denoted by P[m..M ](ϕ,D), and Z a normalization constant
defined by Z =

∑
ϕ′∈L(D) uavg

[m..M ](ϕ
′,D). We know that : P[m..M ](ϕ,D) =

∑
(j,t)∈D

(
P[m..M ](tj ,D) × P[m..M ](ϕ, tj)

)
. But P[m..M ](tj ,D) =

ωavgU
[m..M](tj)

Z , then

P[m..M ](ϕ,D) =
∑

(j,t)∈D

(
ωavgU
[m..M ](tj)

Z
× P[m..M ](ϕ, tj)

)

. (2)

We also know that:

P[m..M ](ϕ, tj) = P[m..M ](�|tj) × P
tj

[m..M ](ϕ|�). (3)
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P[m..M ](�|tj) =
ωavgU

[�..�] (tj)

ωavgU
[m..M](tj)

and P
tj

[m..M ](ϕ|�) = uOcc(ϕ,tj)

ωavgU
[�..�] (tj)×�

then by substituting

the two terms in (3), P[m..M ](ϕ, tj) =
ωavgU

[�..�] (tj)

ωavgU
[m..M](tj)

× uOcc(ϕ,tj)

ωavgU
[�..�] (tj)×�

= uOcc(ϕ,tj)

ωavgU
[m..M](tj)×�

.

Now, if we replace P[m..M ](ϕ, tj) in (2) by its last expression, we get:

P[m..M ](ϕ, D) =
∑

(j,t)∈D

(
ω

avgU
[m..M](tj)

Z
× uOcc(ϕ,tj)

ω
avgU
[m..M](tj)×�

)
= 1

Z
×

∑
(j,t)∈D uOcc(ϕ,tj)

�
. But

by definition, we have
∑

(j,t)∈D uOcc(ϕ,tj)

�
= uavg

[m..M ](ϕ, D), so P[m..M ](ϕ, D) =
u

avg
[m..M](ϕ,D)

Z
. Hence the result. �
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