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Abstract. Multi-instance learning (MIL) handles complex structured
data represented by bags and their instances. MIL embedded algorithms
based on representative instance selection transform bags into a single-
instance space. However, they may select weak representative instances
due to the ignorance of the internal bag structure. In this paper, we pro-
pose the multi-instance embedding learning through high-level instance
selection (MIHI) algorithm with two techniques. The fast bag-inside
instance selection technique obtains instance prototypes of each bag. It
fully utilizes the bag information using our new density and affinity met-
rics. Based on the instance prototypes, the high-level instance selection
technique chooses instances using the peak density metric. It obtains
high-level instances with higher representative power than the instance
prototypes. Experiments were conducted on six learning tasks and nine
comparison algorithms. The results confirmed that MIHI achieved bet-
ter performance in terms of efficiency and classification accuracy. This
method, in particular, has a substantial advantage in image retrieval and
web data sets.

Keywords: Embedding · High-level instance · Instance selection ·
Multi-instance learning

1 Introduction

Compared with traditional single-instance learning (SIL), multi-instance learn-
ing (MIL) is the study of bags containing multiple instances. Taking the drug
activity prediction as an example, molecules and their isomers are viewed as bags
and instances, respectively. The task is to predict whether the new molecule is
suitable for making drugs. A molecule is positive if at least one of its isomers
can be used to make drugs, otherwise it is negative. Furthermore, multi-instance
problems are common in real-world application scenarios, such as image retrieval
[2], text classification [21], and web index recommendation [14].

In recent years, many embedded MIL algorithms based on instance proto-
types have been widely proposed. Their common strategies tend to perform clus-
tering in the entire instance space to select instance prototypes [10,15]. MILFM
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Fig. 1. The main framework of MIHI is compared with traditional methods. Traditional
methods usually use clustering algorithms to select instance prototypes in the entire
data space. Our method first selects the instance prototypes from the bag, and then
selects the high-level instances from the instance prototypes.

[10] first selects instance prototypes in the entire instance space, and selects
cluster instances from the negative bags. CMIL [9] only divides the instances of
the positive bag into multiple clusters, and selects the instances with the high
score in each cluster as the instance prototypes. However, two dilemmas will be
encountered: 1) The cardinality of the instance space is much larger than that of
the bag space; and 2) The number of negative instances is far greater than that
of positive instances. As a result, the classification effectiveness may be reduced.
Figure 1 shows an example of tiger image classification task. In subgraphs (a)
and (b), there are tigers, grass and water. In subgraphs (c) and (d), there are
only grass and water. Obviously, grass and water occupy a large proportion of
the entire feature space. The instances prototypes chosen by traditional methods
are more likely to be grass and water than tigers. However, the selected instances
have weak representativeness due to ignoring the internal structure of the bag.
Therefore, the selection of highly representative instance prototypes is the key
to the embedded MIL algorithms.

In this paper, we propose the multi-instance embedding learning through
high-level instance selection (MIHI) algorithm to handle these issues with two
techniques. Figure 1 shows the main framework of MIHI. The goal is to select
high-level instances with strong representativeness. In Step 1, the fast bag-inside
instance selection technique is designed to select instance prototypes from each
bag. This technique takes into account the density and affinity of instances in the
bag. The instance prototypes highlight the bag’s internal structure information.
Accordingly, the high-level instance selection technique chooses global represen-
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tative instances. For each instance prototype, we calculate its local density and
the minimum distance from higher-density prototypes. Then the instance proto-
types with peak density are identified as the high-level instances. Experiments
on six learning tasks confirmed the effectiveness of MIHI in terms of efficiency
and classification accuracy. The main contributions of our work are:

– We propose a fast bag-inside instance selection technique, which can
effectively exploit the structure information of the bag. By using new density
and affinity metrics, the instance prototypes of the bag are found.

– We propose a high-level instance selection technique based on instance proto-
types. Through peak density metric, the high-level instances have more rep-
resentative power than other prototypes.

2 Related Work

MIL was first proposed in the study of drug activity prediction [7]. After that,
many MIL algorithms have been proposed. They are mainly divided into two cat-
egories: 1) Basic methods predict the bag label based on the structural charac-
teristics of bag [21] or instance [8] spaces; and 2) Embedding methods transform
MIL into SIL based on representative samples [3,17].

The basic methods mainly handle MIL problems by designing a bag-level
kernel. mi-SVM and MI-SVM [2] treat bags as samples and use support vec-
tor machines to handle problems. mi-SVM tries to identify the maximum edge
hyperplane for the instances. Its constraint is that at least one instance of each
positive bag is located in the positive half space. MI-SVM treats the edge of the
most positive instance as the edge of the bag. The purpose is to identify the max-
imum edge hyperplane of the bag. miGraph [21] proposes an effective bag-level
kernel through the affinity matrix. However, it only focuses on the relationship
between bags and fails to extract instance-level information.

The bag embedding methods deal with MIL problems by transforming the
space. DD-SVM [4] learns a set of instance prototypes by using Diverse Density.
Then the bags are embedded into the new feature space based on the instance
prototypes. MILES [3] uses a joint strategy based on all instances to implement
bag embedding. Bamic [22] selects the representative bags through unsupervised
learning. MIKI [19] first trains a weighted multi-class model to select instance
prototypes with high positiveness. Then the bag is converted into a vector with
instance prototype information. To narrow the gap between the training and test-
ing distribution, the weights of the instance prototypes are combined into the
converted bag vector. However, these algorithms directly select instance proto-
types in the entire feature space, ignoring the internal structure of the bag. As a
result, they may choose weakly representative instances and affect classification
performance. MIHI provides a solution for selecting high-level instances through
two techniques.
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3 The Proposed Algorithm

In this section, we first give the basic symbol definition of MIL. Then we describe
the proposed MIHI algorithm process. Furthermore, two key techniques of MIHI
are described in detail.

3.1 Algorithm Description

Algorithm 1 reports the detailed process of the proposed MIHI. Let T = {Bi}N
i=1

be the MIL data set with N bags, where Bi = {xij}ni
j=1 is a bag containing

ni instances. Let Y = {yi}N
i=1 be the label vector corresponding to T , where

yi ∈ {−1,+1} is the label of Bi. Lines 2–11 use two techniques to obtain high-
level instance set H. By analyzing the internal structure of each bag, at least one
instance can be selected to construct the instance prototype set C. Specifically,
Lines 4–5 calculate the representativeness of the instances in each bag Bi ∈ T .
Lines 6–7 select the top-ranked instances as the instance prototypes (IP). Next,
our goal is to generate the high-level instance set H by identifying C. Lines
9–11 select instances with peak density from C to construct H. We design an
embedding function to transform each bag into a single instance in the new
feature space. Lines 13–17 embed each bag Bi into a new feature vector V i

through H. Finally, Line 18 trains the SIL classifier F(·) through the new data
set {(V i, yi)}N

i=1.

3.2 The Fast Bag-Inside Instance Selection Technique

The common method for instance prototype (IP) generation is to select cluster
centers [15] or causal instances [18] in the entire feature space. However, these
methods have the following two problems: a) High time complexity; and b)
The selected instances have no bag structure information. The fast bag-inside
instance selection technique chooses instance prototypes of each bag through
using its internal structure. The density ρij and affinity lij metric of the instance
xij are computed as follows.

The Density of Instance. For each instance xij ∈ Bi, the density ρij is
defined as

ρij =
ni∑

k �=j

exp −(
djk

dc
)2, (1)

where dc is a cutoff distance and djk is the distance between xij and xik. High-
density instances mean that there are more adjacent instances within a given
neighborhood radius. Therefore, high-density instances can reflect the local fea-
ture distribution of the bag.

In addition, the instances in the bag are not completely independent and
distributed [21]. It is not enough to determine the representativeness only based
on the density of the instance. Therefore, we use cosine similarity to represent the
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Algorithm 1. Multi-instance embedding learning through high-level instance
selection.
Input:

The data set T ;
The label vector Y = {yi}N

i=1;
The proportion of instance prototypes rc;
The number of high-level instances nh;

Output:
The SIL classifier F(·);
The high-level instance set H ;

1: // Step 1. Select the high-level instances.
2: C = ∅; // Initialize instance prototype set.
3: for (Bi ∈ T ) do
4: k = �rc × ni�; // The number of instance prototypes of each bag.
5: Compute the score sij of xij ∈ Bi according to Eq. (3);
6: C ′ = the top-k score instances;
7: C = C ∪ C ′;
8: end for
9: H = ∅; // Initialize high-level instance set.

10: Compute the score λi for each prototype ci ∈ C according to Eq. (5);
11: H = the set of top-nh score prototypes;
12: // Step 2. Bag embedding.
13: for (Bi ∈ T ) do
14: Compute the embedding vector V i according to Eq. (7) or (8) with Bi;
15: Vil ← sign(Vil)

√
|Vil|, where Vil represents the l-th attribute of V i;

16: V i ← V i/ ‖ V i ‖2;
17: end for
18: Train the classifier F(·) with the new data set {(V i, yi)}N

i=1;
19: Output F(·) and H ;

affinity between instances. The closer the cosine similarity of the two instances
is to 1, the more similar they are.

The Affinity of Instance. For each instance xij ∈ Bi, the affinity lij is defined
as

lij =
∑

1≤k≤ni

xij · xik

‖xij‖‖xik‖ , (2)

where j, k ∈ [1..ni].
After obtaining the density and affinity of each instance in the bag, the

representativeness score sij of the instance can be computed as

sij = ρij × lij . (3)

According to the MIL assumption, the proportion of positive and negative
instances in each bag is different (e.g., tiger, grass and water in Fig. 1). There-
fore, we can chose the low/high score instances from the positive/negative bag
as the IP. Finally, we can obtain the instance prototype set C = {c1, · · · , cnc

},
where nc is the cardinality of C.
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By considering the solution interval of the optimization objective, we design
three types of instance prototypes selection modes as follows:

– Global (G) selects �rc × ni� instance prototypes from each bag.
– Positive (P) only selects from all positive bags.
– Negative (N) only selects from all negative bags.

The time complexity of the fast bag-inside instance selection technique is
O(dn), where d is the dimension and n is the number of all instances. The time
complexity of instance selection based on the entire space is O(dn2). In contrast,
our complexity is only linearly related to the number of instances rather than
square related.

3.3 High-level Instance Selection Technique

In order to explore the characteristics of the instance space, high-level instance
selection technique is proposed. Based on C = {c1, · · · , cnc

}, we can obtain
high-level instances (HI).

For each ci, we calculate two quantities: its local density δi and its minimum
distance βi from the higher density prototypes. The local density δi is computed
by Eq. (1). The difference is that the calculation interval is migrated from each
bag to C. The distance βi is measured by computing the minimum distance
between the ci and any other IP with higher density:

βi = min
j:δj>δi

(dij). (4)

Particularly, for the IP with highest density, its distance is βi = maxj(dij).
Finally the score λi of IP is calculated as

λi = δi × βi. (5)

With the scores of all IP calculated by Eq. (5), we select the top-nh IP as
the HI. Finally, we can obtain H = {h1, · · · ,hnh

}, where nh the cardinality of
H.

3.4 Embedding Technique via HI

After getting H, we design the following method to embed the bags into a new
feature space. Firstly, each instance xij ∈ Bi is assigned to its nearest hk,
denoted by NH(xij) = hk. Then, each bag Bi can be expressed by nh local
vectors vik:

vik =
∑

xij∈Ω

xij − hk, (6)

where Ω = {xij |NH(xij) = hk}. Finally, the embedding vector V i of bag Bi is
a D-dimensional vector composed of concatenated local vectors [15]:

V i =
nh∥∥

k=1

vik, (7)
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where D = nh × d and d is the dimension of instance xij . However, the above
embedding method will embed each bag into a high-dimensional space. There-
fore, we design the second embedding method, which superimposes all the local
vectors to get the embedding vector:

V i =
nh∑

k=1

vik. (8)

Furthermore, each element of V i is processed by Vil ← sign(Vil)
√

|Vil|, and
then the embedding vector is normalized by V i ← V i/ ‖ V i ‖2 [11]. After
getting the V i for each Bi, we can predict the bag label by processing V i with
any single-instance classifier F(·) (e.g., SVM).

4 Experiments

In this section, we conducted experiments on MIHI and 9 comparison algorithms
for six learning tasks. To ensure the validity of the experiment, we used 10 times
10-fold cross-validation to calculate the average accuracy. The averaged results
(mean) and standard deviation (std) of each algorithm is reported.

4.1 Comparison Algorithms

We compared MIHI with 9 state-of-the-art algorithms: a) MILES [3] embeds
bags based on the bag-instance similarity measure and all instances; b) BAMIC
[22] embeds bags by employing bag-level k-means, with the parameters includ-
ing average Hausdorff distance and the number of clustering centers (r ×
min{N, 100}, where r is enumerated in {0.1, · · · , 1.0}); c) MILFM [10] uses
AdaBoost to select the bag features embedded by instance prototypes, with
the parameters including the number of cluster centers (40); d) Simple-MI [1]
uses the arithmetic mean of instances in the bag as the representation of the
bag itself. e) miFV [15] extracts the instance information with the Gaussian
mixture model (GMM), with the parameters including the number of compo-
nents for GMM (enumerate in {1, 2, 3}); f) miVLAD [15] embeds bags based on
the instance-level k-means, with the parameters including the number of clus-
tering centers (enumerate in {1, 2}); g) MILDM [16] selects the discriminative
instances via instance evaluation criteria, with the parameters including the size
of discriminative instance pool (the number of bags); h) StabelMIL [18] embeds
bags based on causal instances, with the parameters including the scale variable
(0.25); and i) ELDB [17] selects more representative bags with the discriminative
analysis and reinforcement technique, and finally obtains more distinguishable
single vectors.

4.2 Experimental Data Sets

Six fields of learning tasks across 26 data sets are used to validate MIHI. We
briefly introduce the domain knowledge of these data sets: 1) Image retrieval:
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Content-based image retrieval problems include identifying the expected target
object in the image [2]. In our experiments, elephant, fox, and tiger data sets are
used; 2) Mutagenicity prediction: Mutagenesis is a drug activity prediction
problem. There are two versions, easy (1) and hard (2), of the data set [13]; 3)
Medical image: Messidor is a medical classification problem data set, which
consists of 1, 200 fundus images from 546 healthy and 654 diabetic patients [5];
4) Newsgroups: The newsgroups is a text categorization data set [21]. Posts
from different newsgroups form a bag. Each category has 50 positive bags and 50
negative bags; 5) Web recommendation: The question is whether to classify
web pages as interesting web pages [20]. There are a total of 9 users who rate
the web page this way, so there are 9 different data sets; A web page is a bag,
and the links on the web page are instances; and 6) Biocreative: Biocreative is
a large-scale text classification data set [12]. The task is to decide whether some
genetic ontology (GO) code should be used to annotate a given pair.

4.3 Performance Comparison

Table 1. Accuracy (%, mean±std) with standard deviations on 26 MIL data sets. The
highest average accuracy is marked with •.

Datasets (d) MILES BAMIC MILFM Simple-MI miFV miVLAD MILDM StableMIL ELDB MIHI

Elephant♣ (230) 81.2±2.36 75.8±0.12 81.7±0.23 80.2±0.08 84.2±0.09 84.1±0.13 76.1±0.29 84.2±4.23 75.8±3.21 90.4±0.93•
Fox♣ (230) 58.5±3.63 51.9±0.33 45.4±0.24 62.6±0.13 61.9±0.12 62.3±0.16 58.8±0.41 55.3±2.83 60.7±2.02 65.5±2.46•
Tiger ♣ (230) 77.1±2.65 69.2±0.14 73.3±3.09 79.3±0.07 77.2±0.06 84.8±0.12 64.3±0.14 60.7±2.24 72.2±2.00 85.7±1.10•
Mutagenesis1♦ (7) 88.3±2.11 75.8±0.09 84.8±0.21 66.6±0.06 79.2±0.08 77.6±0.13 81.1±0.28 88.3±2.11• 84.9±1.71 70.0±1.91

Mutagenesis2♦ (7) 84.2±1.60 82.8±0.17 83.5±0.12 68.8±0.17 79.0±0.17 78.8±0.32 81.7±0.34 85.3±0.02• 82.8±0.83 82.0±1.50

Messidor� (687) 50.3±3.33 62.0±0.05 54.5±0.00 55.9±0.03 71.5±0.05• 67.5±0.05 54.5±0.24 54.5±0.01 63.8±0.45 68.6±0.39

alt.atheism� (200) 50.9±0.30 84.9±0.05 52.9±0.07 83.4±0.11 82.4±0.17 85.6±0.18 53.9±0.50 52.5±5.37 85.6±2.01 88.5±1.22•
comp.graphics� (200) 49.4±1.28 80.7±0.10 52.7±0.15 77.3±0.05 80.1±0.11 78.8±0.12 52.0±0.49 51.4±2.97 81.1±1.02 83.5±1.76•
comp.os.ms� (200) 51.9±1.64 72.1±0.16 46.6±0.26 53.2±0.29 72.5±0.12 68.8±0.26 47.7±0.29 47.8±3.34 73.7±1.33• 73.0±4.24

comp.sys.mac� (200) 51.0±4.45 80.0±0.13 52.3±0.46 77.6±0.09 77.3±0.11 78.2±0.15 51.5±0.43 51.2±3.79 81.1±1.71• 80.5±1.73

comp.window.x� (200) 64.3±4.12 77.9±0.08 53.0±0.10 66.0±0.11 85.4±0.11• 82.1±0.14 58.2±0.55 53.4±2.91 79.7±1.41 83.9±0.94

misc.forsale� (200) 50.3±1.49 67.3±0.11 51.2±0.19 56.2±0.36 72.5±0.25• 71.8±0.23 45.5±0.53 49.3±5.51 70.2±0.63 68.5±1.86

rec.motorcycles� (200) 50.7±0.46 78.4±0.10 52.5±0.45 45.6±0.22 86.7±0.13• 81.2±0.12 53.8±0.41 55.4±3.99 79.7±2.40 83.3±1.49

rec.sport� (200) 52.9±4.09 83.1±0.05 50.0±0.00 74.8±0.12 85.1±0.10 82.9±0.16 48.5±0.50 49.5±3.93 82.2±1.01 90.2±1.17•
sci.crypt� (200) 51.4±0.66 76.8±0.07 51.1±0.10 73.4±0.08 75.6±0.14 81.1±0.16 47.7±0.35 50.7±5.24 77.1±1.02 89.6±1.36•
sci.med� (200) 53.7±3.82 82.5±0.05 55.0±0.57 71.1±0.09 83.1±0.08 82.2±0.15 50.9±0.36 50.4±3.85 82.7±0.83 89.9±0.83•
web1� (5, 863) 82.1±2.71 81.2±0.06 81.5±0.04 79.0±0.11 81.5±0.06 79.9±0.09 82.5±0.09• 82.4±1.15 82.5±2.04 81.2±1.22

web2� (6, 519) 81.5±0.58 81.4±0.06 82.4±0.15 79.4±0.12 81.5±0.06 80.2±0.07 83.1±0.08• 80.5±2.16 82.9±2.27 81.5±0.60

web3� (6, 306) 82.1±2.19 81.2±0.04 83.2±0.15• 79.5±0.17 81.6±0.08 81.2±0.08 82.9±0.04 81.2±0.82 81.4±0.68 81.7±1.43

web4� (6, 059) 78.9±2.75 77.7±0.07 79.5±0.17 78.1±0.08 77.7±0.06 81.7±0.14 79.3±0.16 77.6±0.45 79.8±1.31 83.9±0.91•
web5� (6, 407) 78.8±0.71 79.3±0.05 78.8±0.12 77.2±0.09 77.1±0.08 82.1±0.11 78.6±0.27 78.1±0.61 78.1±1.22 82.5±0.68•
web6� (6, 417) 81.7±2.71 77.3±0.15 81.8±0.23 79.6±0.07 77.7±0.06 82.5±0.14 83.6±0.20 73.3±0.34 80.9±2.33 84.1±1.30•
web7� (6, 450) 56.4±1.55 42.9±0.31 61.5±0.16 58.4±0.47 68.5±0.23 73.5±0.26 63.6±0.34 62.0±2.75 52.8±4.56 75.7±2.03•
web8� (5, 999) 56.4±2.86 48.5±0.44 61.5±0.37 58.0±0.52 71.0±0.33 73.8±0.28 57.0±0.37 59.0±3.19 50.5±3.57 78.4±1.56•
web9� (6, 279) 59.5±2.61 41.5±0.41 59.8±0.28 58.1±0.28 71.5±0.37 76.1±0.11 56.5±0.32 54.9±3.73 49.3±4.42 78.5±1.99•
component� (200) N/A 92.2±0.01 N/A 69.6±0.04 91.5±0.01 92.9±0.01 N/A N/A N/A 93.4±0.04•
function� (200) N/A 95.6±0.01 N/A 71.7±0.04 94.9±0.01 95.8±0.01 N/A N/A N/A 96.6±0.05•
process� (200) N/A 96.0±0.00 N/A 66.7±0.04 95.8±0.00 96.8±0.00 N/A N/A N/A 97.1±0.01•
Mean rank 6.43 6.57 5.89 7.21 4.79 4.43 6.21 6.64 4.11 2.71•
♣image retrieval, ♦mutagenicity prediction, �medical image, �newsgroups, �web
recommendation, �biocreative.

Table 1 shows the experimental results of MIHI and comparison algorithms. The
best performance value for each data set is highlighted with a small black bullet.
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Mean rank represents the ranking of the average performance of the current
algorithm on each data set [6]. The symbol “N/A” means that the algorithm
cannot get experimental results.

The experimental results show that the MIHI algorithm has achieved the
best experimental results on more than 70% of the data sets. And its mean rank
is 2.71, which is superior to 9 traditional algorithms. Specifically, the accuracy
of MIHI on some data sets is about 10% higher than other algorithms, such as
elephant, rec.sport.hockey and web4. The reason may be that the our instance
selection techniques can effectively select the instance with the largest amount
of information from each bag. On image retrieval data, MIHI performed well on
the three image data sets. However, MIHI performed poorly on the two muta-
genicity prediction data sets, which may be caused by the low dimensionality of
mutagenicity. StableMIL performs very well on mutagenicity. The reason may
be that StableMIL can obtain the most informative causal instance from the
super low-dimensional positive bag. From the performance of newsgroups, web
recommendation and large-scale data sets, MIHI can get better results whether
it is low-dimensional or high-dimensional data. We only compare MIHI with the
four algorithms on large-scale data sets, because the time complexity of MILES,
MILFM, MILDM, StableMIL and ELDB is relatively high.

Fig. 2. Comparison of MIHI with 9 comparison algorithms with Bonferroni-Dunn test.
Algorithms not connected to MIHI in the CD plot were considered to have significant
performance of the control algorithm (CD = 2.24, significance level 0.05).

We also applied the post hoc Bonferroni-Dunn test [6] to test whether MIHI
achieves competitive performance among the 9 compared algorithms. Figure 2
reports the critical difference (CD) plot at the 0.05 significance level. The mean
accuracy ranks for each algorithm are marked along the axis (lower grades on
the left). In addition, algorithms with an mean ranking within one CD of MIHI
are connected by thick lines. Otherwise, any MIHI-independent algorithm is
considered significantly different.

4.4 Parameter Analysis

Figure 3 shows the experimental results of parameter analysis on elephant data
set. The symbols “S” and “C” respectively represent the two modes of bag
embedding: superimpose and concatenate; “G”, “P” and “N” respectively rep-
resent three instance selection modes. For all these subgraphs, the abscissa indi-
cates the mode selected by the instance prototypes, and the ordinate indicates
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Fig. 3. Parameter analysis of MIHI with the number of instance prototype, three
instance selection modes, two bag embedding modes and three classifiers for elephant
data set. The best parameter settings of elephant are: 3 instance prototypes, instance
selection mode “G” and bag embedding mode “C”.

the number of instance prototypes. The three subgraphs show the classification
accuracy on the classifier Knn, Decision Tree (DTree) and SVM respectively.
The darkest colored table of the heat map indicates the highest accuracy. The
following summarizes the impact of parameters on MIHI:

– Bag embedding modes: The classification performance of the two bag
embedding modes is equivalent. However, since mode “C” embeds each bag
in a high-dimensional space, we choose mode “S” for bag embedding in sub-
sequent experiments.

– Instance selection modes: The results of the elephant in the classifier SVM
show that the classification performance of mode “G” is better than the other
two modes. However, in the other two classifiers, it is the best in mode “P”.

– The number of instance prototypes: MIHI can achieve the best perfor-
mance in most cases when the number of instance prototypes is 3–5.

– Classifier: SVM is more suitable for these data sets than DTree and Knn.

4.5 Efficiency Comparison

Table 2. The CPU runtime (in seconds) of one 10CV of the comparison algorithm on
the 4 MIL classification data set.

Data sets (d/n/N) MILES BAMIC MILFM Simple-MI miFV miVLAD MILDM StableMIL ELDB MIHI

Time complexity O(dn2) O(dN2) O(dn2) O(dN) O(dn) O(dn) O(dn2) O(dn2) O(dn2) O(dn)

Fox (230/1, 320/200) 2.378 1.512 8.514 0.151 4.202 1.284 5.425 13.959 3.712 1.034

alt.atheism (200/5, 443/100) 24.870 20.200 46.422 0.124 4.694 1.827 30.625 48.483 39.465 15.417

comp.graphics (200/3, 094/100) 8.939 6.651 25.217 0.104 3.520 1.533 11.635 43.796 13.543 5.526

web4 (6, 059/3, 423/113) 27.216 25.228 163.253 1.205 406.751 20.005 39.843 610.798 52.981 8.134

Mean rank 5.50 4.50 8.75 1.00 5.50 2.50 7.00 10.00 7.25 3.00

Table 2 shows the time complexity and runtime of MIHI compared with 9 com-
peting algorithms. For MIHI, the construction of the high-level instances cost
O(dn), where d is the dimension and n is the cardinality of instance space. Table 2
compares the CPU running time of these methods on four data sets. The mean
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rank shows that the speed of MIHI is slightly lower than that of Simple-MI and
miVLAD. This may be because Simple-MI does not need to consume a lot of
time to calculate the distance of instances. However, Simple-MI does not perform
well on these data sets. The k-means algorithm used by miVLAD has low time
complexity. Besides, even on the small scale data set, the runtime of MILFM
and StableMIL are relatively large.

5 Conclusion

In this paper, we proposed the MIHI algorithm to select high-level instances.
MIHI fully utilizes the structure information of the bag-inside and effectively
explores the characteristics of the instance space. The experiments were con-
ducted on 26 MIL data sets. According to Table 1, the MIHI algorithm has
achieved the best accuracy on more than 70% of the data sets. Its mean rank is
2.71, which is superior to 9 traditional algorithms. In addition, MIHI has linear
time complexity, and its efficiency is slightly lower than that of Simple-MI and
miVLAD.
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