
Text2Chart: A Multi-staged Chart
Generator from Natural Language Text

Md. Mahinur Rashid, Hasin Kawsar Jahan, Annysha Huzzat,
Riyasaat Ahmed Rahul, Tamim Bin Zakir, Farhana Meem,
Md. Saddam Hossain Mukta, and Swakkhar Shatabda(B)

Department of Computer Science and Engineering, United International University,
Dhaka, Bangladesh

{mrashid171045,hjahan171054,ahuzzat171034,rrahul171089,tzakir171032,
fmeem171031}@bscse.uiu.ac.bd

{saddam,swakkhar}@cse.uiu.ac.bd

Abstract. Generation of scientific visualization from analytical natural
language text is a challenging task. In this paper, we propose Text2Chart,
a multi-staged chart generator method. Text2Chart takes natural lan-
guage text as input and produces visualization as two-dimensional charts.
Text2Chart approaches the problem in three stages. Firstly, it identifies
the axis elements, known as x and y entities, of a chart from the given
text. Next, it finds a mapping of x-entities with its corresponding y-
entities. Subsequently, it generates a chart type among bar, line, or pie,
which is suitable for the given text. Combination of these three stages
is capable of generating visualization from the given statistical text. We
have also constructed a dataset for this problem. Experiments show that
Text2Chart performs best with BERT based encodings with LSTM mod-
els in the first stage to label x and y entities, Random Forest classifier
in the mapping stage and fastText embedding with LSTM in the chart
type prediction stage. In our experiments, all the stages show satisfac-
tory results and effectiveness considering the formation of charts from
analytical text, achieving a commendable overall performance.

Keywords: Chart generation · Natural Language Processing ·
Information retrieval · Neural network · Automated visualization

1 Introduction

In recent years, advances in Natural Language Processing (NLP) have made huge
progress in extracting information from natural language texts. Among them, a
few example tasks are: document summarization [1], title or caption generation
from texts, generating textual descriptions of charts [2], named entity recogni-
tion [3], etc. There have been several attempts to generate graphs or structural
elements from natural language texts or free texts [4–6]. Scientific charts (bar,
line, pie, etc.) are visualizations that are often used in communication. However,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13281, pp. 3–16, 2022.
https://doi.org/10.1007/978-3-031-05936-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05936-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-05936-0_1

4 Md. M. Rashid et al.

automated generation of charts from natural language text has always been a
challenging task.

There are very few works in the literature addressing the exact problem of sci-
entific chart generation from natural language text [7,8]. In [7], the authors have
presented an infographic generation technique from natural language statements.
However, their method is limited to single entity generation only. Text2Chart
extends it to multiple entity generation and thus can generate more complex
charts. Nevertheless, Generative Pre-trained Transformer 3 (GPT-3)[8] has been
a recent popular phenomenon in the field of deep learning. OpenAI has designed
this third-generation language model that is trained using neural networks. To
the best of our knowledge, there has been an attempt to make a simple chart
building tool using GPT-3. As its implementation is not accessible yet, the field
of information extraction regarding chart creation can still be considered unex-
plored to some extent. Moreover, the dataset used in GPT-3 is a very large one,
and the training is too expensive.

In this paper, we propose Text2Chart, a multi-staged technique that gener-
ates charts from analytical natural language text. Text2Chart works in a combi-
nation of three stages. In the first stage, it recognizes x-axis and y-axis entities
from the input text. In the second stage, it maps x-axis entities with their corre-
sponding y-axis entities, and in the third stage, it predicts the best-suited chart
type for the particular text input. Text2Chart is limited to three types of charts:
bar charts, line charts and pie charts. Tasks in each stage are formulated as
supervised learning problems. We have created our own dataset which is labeled
for all three stages of Text2Chart. We have used a wide range of evaluation met-
rics for all the three stages and different combinations of word embeddings and
classifiers. The experimental results shows that the best results in the first stage
are obtained using BERT embedding and Bidirectional LSTM, achieving an F1-
score of 0.83 for x-entity recognition and 0.97 for y-entity recognition in the test
set. In the mapping stage, Random Forest achieves the best results of 0.917 of
Area under Receiver Operating Characteristic Curve (auROC) in the test set.
In the third stage, the model fastText with LSTM layers performs the best to
predict the suitable chart type. Here, Text2Chart achieves the best results of
auROC 0.64 for pie charts and auROC 0.91 for line charts. The experimental
analysis of each stage and in combination shows the overall effective performance
of Text2Chart for generating charts from given natural language charts.

2 Related Work

Recent developments in the field of NLP is advancing information extraction in
general. One of the first and foremost steps in NLP is the proper vectorization of
the input corpora. One of the breakthroughs in this area is word2vec proposed
in [9]. Word2Vec maps words with similar meaning to adjacent points in a vector
space. The embedding is learnt using a neural network on a continuous bag of
words or skip-gram model. A character-level word embedding is proposed in [10].
Recently, Bidirectional Encoder Representations from Transformers (BERT) is

Text2Chart: A Multi-staged Chart Generator from Natural Language Text 5

proposed in [11]. BERT is trained on a large corpora and enables pre-trained
models to be applicable to transfer learning to a vast area of research. BERT
has been successfully applied to solve problems like Named Entity Recognition
(NER) [3], text summarization [1], etc.

Text based information processing has been a long quest in the field [12].
Kobayashi et al. [12] have presented a NLP based modeling for line charts.
A Hidden Markov Model based chart (bar, line, etc.) recognition method is
proposed in [13]. Graph neural networks have been employed in [4] to generate
logical forms with entities from free text using BERT. In a very recent work [5],
Obeid et al. have used transformer based models for text generation from charts.
For this work, they have also constructed a large dataset extracting charts from
Statista. However, their work focuses on chart summarizing and hence called
‘Chart-to-Text’. In an earlier work [14], authors have proposed a method for
generating ground truth for chart images. Both of the works are limited to bar
charts and line charts only. A Generative Adversarial Network, AttnGAN is
proposed in [15] that can generate images from text descriptions. Balaji et al.
[2] has proposed an automatic chart description generator. CycleGT has been
proposed recently that works in both directions: text to graphs and graphs to
text [6]. Kim et al. [16] has proposed a pipeline to generate an automatic question
answering system based on charts.

Automated visualization has always been a very fascinating area. A survey of
Machine Learning based visualization methods has been presented in [17]. Deep
Eye is proposed in [18] to identify best visualizations from pie chart, bar chart,
line chart and scatter chart for a given data pattern. ‘Text-to-Viz’ is proposed in
[7] that generates excellent infographics from given text. However, their method
is limited to a single entity only. GPT-3 [8] has been a recent phenomenon in the
field which has been reported to generate charts from natural language texts.
However, GPT-3 implementation is not open yet. Moreover, it is trained on an
extremely large corpora and an extremely large transformer based model which
requires huge resources. In the light of the review of the existing methods, we
believe there is a significant research gap to be addressed in this area.

3 Proposed Method

Text2Chart consists of three stages as shown in Fig. 1. It takes a free text as input
containing the analytical information. Then it produces x and y axis entities
followed by a mapping generation among these elements. In stage 3, the chart
type is predicted. A combination of these three are then passed on to the chart
generation module. This section presents the detailed procedure of these stages.

3.1 Stage 1: x-Axis and y-Axis Label Entity Recognition

In the first stage, we identify the potential candidate words for both x-axis and
y-axis entities of a two dimensional chart. We have formulated the problem as
a supervised machine learning task. Here, input to the problem is a paragraph

6 Md. M. Rashid et al.

Fig. 1. The overall methodology of Text2Chart.

or natural language text and output is a list of words labeled as x-entity and
y-entity.

To identify x-entity and y-entity, we build a neural network with different
word embeddings and sequence representations. We have employed and experi-
mented with two different strategies - i) detecting both types of entities at once
and ii) using separate models for recognizing x and y entities. Detecting both x
and y entities at once shows a drawback as there lies a possibility that a certain
type of entity may outperform the loss function of the other types as observed
in the experiments (Sect. 4.3).

We have experimented with both of the strategies using word embedding
like Word2Vec [9], fastText [10] and the sequence output of the pre-trained
model provided by BERT [11]. For each sample text in the dataset, we take the
generated embedding and use it as an input to our model. Then we use layers
of Bi-directional LSTM networks. On top of that, we use the time-distribution
layer and dense layer to classify each word index that falls into a category of a
respected entity or not.

3.2 Stage 2: Mapping of x and y Label Entities

After identifying the x and y entities in Stage 1, we map each of the identified x
entity with its corresponding y entity. For example, if we have an x entity set for a
text as {x1, x2, · · · , xM} and y entity set of that text is {y1, y2, · · · , yN} and their
mapping is as follows {(x1, φ(x1)), (x2, φ(x2)), · · · , (xM , φ(xM)}. Please note, here
xi, yj denotes their position in the sequence. Here the mapping function, φ(xi)
maps an entity xi to another entity, yk. However, there is often found that the
entity set lengths are not same M �= N and often the sequential order is not main-
tained. For two x entities xi, xj if they maps to yk, yl, then a sequential mapping
φ guarantees, i ≤ j, k ≤ l whereas the non-sequential mapping will not guarantee
that. However, in our observation, non-sequential mapping is not that frequent.
In order to address these issues, we propose that the mapping is dependent on
the distances between the corresponding entities. We call it our baseline model
for this task. From the training dataset, we learn the probability distribution for
positive and negative likelihood for distances between x and y entities which are
P (d(xi, yk)|φ(xi) = yk) and P (d(xi, yk)|φ(xi) �= yk) respectively. For the missing
values in the range, nearest neighbor smoothing is used to estimate the likelihood
values and then normalized to convert it to a probability distribution. The baseline
model defines the mapping as in the following equation:

Text2Chart: A Multi-staged Chart Generator from Natural Language Text 7

φ(xi) = argmax
k

P (d(xi, yk)|φ(xi) = yk)
P (d(xi, yk)|φ(xi) = yk) + P (d(xi, yk)|φ(xi) �= yk)

(1)

For a particular entity xi and a particular yk entity, we take the two other
entities, one immediately before (xi−1, yk−1) and the next one (xi+1, yk+1) to
create the feature vector. For 6 such entity positions, we generate 15 possible
pairs and take pairwise distances among them. Note that, for two similar type
entities we take unsigned distance and for different entities signed distances
are taken to encode their relative positions into the feature vector. With this
feature vector, we train two models: SVM and Random Forests, where the latter
works slightly better. As this is an argmax based calculation, the probability
distribution of the Random Forest classifier was more consistent than that of
SVM. The reason for the inconsistency of the distribution with the scores in SVC
is that the ‘argmax’ of the scores may not be the argmax of the probabilities.
Therefore we take the auROC as the primary evaluation matrix for this stage.
We take the harmonic mean of auROC of both training and validation so that
the measure is balanced and they do not outperform each other.

3.3 Stage 3: Chart Type Prediction

Generally, a bar chart is the most commonly accepted chart type for any statis-
tical data. However, for better visualization and understanding, pie charts and
line charts are also used. Pie charts are suitable if the entities conform to a
collection/composition. Line charts are suitable for the cases where the entities
themselves form a continuous domain. For this stage, we have applied fastText
word embeddings to build two models with LSTM layers and dense layers. Each
model performs binary classification; one is to predict if a pie chart is suited for
the text or not, and the other is for the line chart. When neither of these two
chart types are fitting, only the bar chart is assigned to the text.

4 Experimental Analysis

Text2Chart is implemented using Tensorflow version 2.3. All the experiments
have run using Google Colab and the cloud GPU provided with it. The hardware
environment of our work requires a CPU of 2.3 GHz, GPU 12 GB, RAM 12.72
GB and Disk of 107 GB. All the experiments have run at least 5 times with
different random seeds and only the average results are reported in this section.
Source codes and the dataset of Text2Chart will be made available via a public
repository (at the time of publication).

4.1 Dataset Construction

While starting this work, no datasets were available for this particular task of
automatic generation of a chart out of a natural language text. Text2Chart
requires a specific dataset from which the text samples are suitable for recog-
nizing the chart information. Here chart information refers to the x-axis entities

8 Md. M. Rashid et al.

Table 1. Summary of datasets used in the experiments.

Dataset Text x, y Entity prediction Mapping Chart type

samples x Tokens y Tokens x Labels y Labels pairs Pie Line

Training 464 3411 3614 1984 1909 1984 73 58

Validation 116 985 1058 548 529 548 20 11

Test 137 988 1075 574 561 574 20 15

and the corresponding y-axis values respectively. The text samples must con-
tain all these entities to construct the particular chart. We have collected text
samples from Wikipedia, other statistical websites and crowdsourcing. We have
used crowdsourcing to label the data so that the texts are labeled for all three
stages. All the labeled data are then cross checked by a team of volunteers and
only the consensus labels are taken. In total, 717 text samples are taken in the
final dataset with 30,027 words/tokens. The average length of the text samples
is 53 words and the maximum length is 303 words in a single text. This final
dataset is then split in the train, validation and test sets each containing 464,
116 and 137 samples respectively. A summary of the dataset is shown in Table 1.
Please note that in the first stage the token number is higher than labels since a
particular x or y entity/label might consist of two words or tokens. All the texts
are labeled to be suitable for bar charts and only the statistics for pie and line
charts are shown in the table.

4.2 Performance Evaluation

All the methods are trained using the training set and the performance are
validated using the validation set. Only after the final model is selected, the
model is tested on the test set. For the axis entity recognition task in the first
stage, we adopt the F1-score and its variant the harmonic mean of f1-scores.
We observe the Receiver Operating Characteristic (ROC) curve and the area
under curve (auROC) in order to summarize and compare the performances
of the classifiers in the second stage of entity mapping. Finally for chart type
prediction, we adopt Matthews Correlation Coefficient (MCC) evaluation metric,
as MCC being a more reliable statistical rate than F1-score and accuracy in
binary classification evaluation for an imbalanced dataset.

4.3 Axis Label Recognition Task

The first stage of our work is x-axis and y-axis label entity recognition. Here
we predict whether a given word from the text input can be an x-axis or y-axis
entity. We have experimented with our neural architecture model of bidirectional
LSTM combining several embeddings, such as fastText, Word2Vec and BERT
in order to recognize these entities. For each of the embeddings, we have used
two different approaches. In the first approach, x-entity and y entity prediction
is considered as separate prediction tasks. Here we have the two models, one
for each of the tasks. In the second approach, they are considered together as a
combined prediction task.

Text2Chart: A Multi-staged Chart Generator from Natural Language Text 9

Experiments with fastText Embedding. For both of the approaches using
fastText (individual and combined), we have used a neural architecture with
4 hidden layers and a dense output layer. The first two hidden layers consist
of bidirectional LSTM layers of 512 neurons and 128 neurons followed by a
time-distributed dense layer of 64 neurons and a dense hidden layer with 1024
neurons. Epoch and batch size are kept fixed at 8 for all the models considered
here. Experimental results of fastText experiments are given in the first four
rows of Table 2. Note that we have reported precision, recall and F1-score for
x and y entity predictions. Also the harmonic mean of F1-score is reported.
Note that, the individual approach achieves F1-score for x and y entities of 0.66
and 0.85 respectively in the validation set which is improved in the combined
approach being 0.66 and 0.89. It is clear that the prediction or recognition of x
axis entities is a much more difficult task compared to y axis entity recognition.
Here, we can conclude that both models perform almost similarly which is also
reflected in the harmonic mean of F1-score respectively 0.74 and 0.76.

Table 2. Experimental results for the axis label prediction task in the frist stage of
Text2Chart.

Model Dataset Precision

(x)

Recall

(x)

Precision

(y)

Recall

(y)

F1-score

(x)

F1-score

(y)

Harmonic

F1-score

fastText Training 0.81 0.80 0.93 0.88 0.80 0.90 0.84

Individual Validation 0.68 0.64 0.89 0.81 0.66 0.85 0.74

fastText Training 0.81 0.73 0.89 0.97 0.77 0.93 0.84

Combined Validation 0.73 0.60 0.86 0.93 0.66 0.89 0.76

word2Vec Training 0.90 0.88 1.00 1.00 0.89 1.00 0.94

Individual Validation 0.72 0.62 0.79 0.77 0.67 0.78 0.72

word2Vec Training 0.99 0.99 1.00 1.00 0.99 1.00 0.99

Combined Validation 0.72 0.64 0.83 0.74 0.68 0.78 0.73

BERT Training 0.99 0.99 .99 0.99 0.99 0.99 0.99

Individual Validation 0.89 0.86 0.95 0.98 0.87 0.97 0.92

BERT Training 0.99 1.00 0.99 1.00 0.99 0.99 0.99

Combined Validation 0.86 0.78 0.96 0.97 0.82 0.97 0.89

Best Test 0.85 0.82 0.96 0.98 0.84 0.97 0.89

Experiments with word2vec Embedding. The word2vec embedding rep-
resents the word tokens in the corpus by representing the words with common
context in a close proximity in the vector space as well. Similar to the experiments
of fastText we have two approaches employed here: individual and combined. For
word2vec embedding, the network structure is kept the same as in the fastText
experiments. However, for training we have used 16 epochs and a batch size of
8. The experimental results are shown in the second four rows of Table 2. From
Table 2, we can see that this combined approach is giving F1-score of the x and
y entity recognition task as 0.68 and 0.78 respectively which is almost similar
to the performance of the individual approach (0.67 and 0.78 respectively). The
performance only differs in the x entity recognition task which is also observed in
the harmonic mean of F1-score. Note that the overall performance of word2vec

10 Md. M. Rashid et al.

embedding is significantly worse compared to fastText embedding. Also note that
the higher level of overfitting of the word2vec model has reflected in the high
values of precision, recall and F1 score in all the tasks in the training dataset
which is not repeated in validation.

Experiments with BERT Embedding. We have also experimented with
BERT embeddings on the same architecture proposed in Sect. 3. However, in
these experiments the network structure is different with the same number of
layers. Here too we have used two approaches: individual and combined. In the
individual approach, the first two hidden layers of the neural architecture are
bidirectional LSTM with 1024 neurons in each followed by a time-distributed
dense layer with 1024 neurons and a dense layer with 256 neurons. In the case of
x entity recognition, we have used a batch size of 2 and 80 epochs for training. In
the case of y entity recognition, the batch size was 8. In the combined approach,
the architecture structure has differed only in the last hidden dense layer. Here
the number of neurons is 1024. We have used an online training for this combined
approach. The experimental results with BERT embedding is reported in the
third four rows of Table 2. From the results shown there, we can notice that for
BERT embedding, the performances in the individual approach outperform the
combined approach in x entity prediction performance. The results in y entity
recognition is almost similar for both of the approaches. Thus the both harmonic
mean and F1-score of x entity recognition are superior in combined approach
which are 0.87 and 0.92 respectively compared to those of 0.82 and 0.89 in the
individual approach.

To summarize, we can note that the results in BERT embedding are superior
to two other embeddings. The best achieved values are shown in boldfaced fonts
in the Table. Thus, we take the BERT embedding individual x and y entity pre-
diction approach with bidirectional LSTM as the best performing model among
those used in the experiments. With the best model, we have also tested its per-
formance on the test dataset. The results are shown in the last row of Table 2.
Here, it is interesting to note that the learned model is not overfitting and the
performances in the validation set and test set are not much different.

4.4 Mapping Task

After recognizing the x and y entities with high precision and recall in stage
1, the second stage sets the target to map them in an ordered way. We have
first used a transfer model from the best performing model in the first stage to
see if that helps. However, the very low F1-score of 0.41 and auROC of 0.64
have discouraged us from proceeding in this way. It is evident that the same
architecture is not suitable for the different stages due to differences in the type
of the task. Note that this task is highly imbalanced as the number of positive
mappings are very small compared to negative mappings. Thus the model often
gets biased towards the negative model and might show poor performance in the
positive prediction.

Text2Chart: A Multi-staged Chart Generator from Natural Language Text 11

Table 3. Experimental results for the mapping task in the second stage.

Model Dataset Class Precision Recall F1-score Harmonic F1-score auROC

Baseline Training 0 (−ve) 0.94 0.94 0.94 0.84 0.908

1 (+ve) 0.76 0.76 0.76

Validation 0 (−ve) 0.95 0.95 0.95 0.82 0.914

1 (+ve) 0.73 0.73 0.73

SVM Training 0 (−ve) 0.93 0.93 0.93 0.81 0.897

1 (+ve) 0.72 0.72 0.72

Validation 0 (−ve) 0.96 0.96 0.96 0.86 0.924

1 (+ve) 0.78 0.78 0.78

Random Forest Training 0 (−ve) 0.95 0.95 0.95 0.85 0.913

1 (+ve) 0.77 0.77 0.77

Validation 0 (−ve) 0.96 0.96 0.96 0.84 0.930

1 (+ve) 0.77 0.77 0.77

Best Test 0 (−ve) 0.94 0.94 0.94 0.85 0.917

1 (+ve) 0.77 0.78 0.77

Our baseline model is a simple argmax calculation of the likelihood based on
Eq. (1). The results of the baseline model are presented in the first four rows of
Table 3. In this table, we have reported precision, recall and F1-score for both
of the classes and also the auROC. Note that the results of the baseline model
is encouraging with a high auROC of 0.908. However, note that the positive
class performance is poor compared to the negative class which leaves room for
improvement.

Next we have experimented with the supervised learning approach described
in Sect. 3 using Support Vector Machine (SVM) and Random Forest classifiers.
In Table 3, we notice that the performance in both of the classes are improved
using this approach in both of the classes compared to the baseline model. We
note that the performance in the negative class is the same. However, the F1-
score of the Random Forest classifier is slightly lower in the positive case which
is not that significant (0.77 vs 0.78). The fact is evident in auROC. There we see
significant improvement achieved by the Random Forest classifier compared to
SVM. The best values are shown in boldface font in the table. Thus we conclude
that Random Forest is the best performing model for stage 2.

Finally, we have tested the performance of the best performing Random For-
est model on the test set and the results are shown in the last row of Table 3. We
see that the performances in the test set are stable and similar to the validation
set.

4.5 Chart Type Prediction Task

At the third stage, the task is to predict the suitable chart type from the given
text. Note that for all the texts in the dataset, the bar chart is common and thus
we exclude it from classification models. We train two separate models: one for
the pie chart and another for the line chart. This model uses fastText embedding

12 Md. M. Rashid et al.

Table 4. Experimental results for chart type prediction task.

Problem Dataset Specificity Sensitivity MCC auROC

Pie chart Training set 0.742 0.944 0.51 0.86

Validation set 0.6945 0.714 0.32 0.66

Test set 0.573 0.75 0.22 0.64

Line chart Training set 0.9634 0.963 0.96 0.96

Validation set 0.990 0.933 0.92 0.98

Test set 0.893 0.733 0.51 0.91

with bidirectional LSTM layers. The network architecture and structure is kept
the same for both of the classifiers. The neural network has three hidden layers.
The first two layers are the LSTM layers with 128 neurons each followed by a
dense layer of 512 neurons. The output layer is a simple sigmoid layer. We have
used the RMSprop algorithm to train the models.

For pie chart recognition, we set the batch size to 128 and the learning rate
to 4e-4. As we have a highly imbalanced dataset, we achieve good enough results
in terms of MCC, scoring 0.22 in the test set as shown in Table 4. The obtained
auROC for pie charts is 0.64 in the test set. We have achieved a better result
in terms of recall or sensitivity of 0.94 in the training set, 0.71 in the validation
set and 0.75 in the test set. For line charts, we set the batch size to 256 and the
learning rate remains as default to 1e-3. In Table 4, we find outstanding results
in terms of auROC score of 0.96 in the training set, 0.98 in the validation set
and over 0.91 in the test set. Our obtained MCC in the train, validation and
test sets is 0.96, 0.92 and 0.51 which is a better score than the prediction of pie
charts.

4.6 Overall Performance

In order to discuss the overall performance of our work, we have created a pipeline
same as shown in Fig. 1. Our pipeline merges all the stages of our work and
outputs the results we have already discussed and shown in this section. After
obtaining the final results, we have checked for all possible errors that occur
after completion of each stage. After completing stage 1, if both of the entity
sets have a similar number of entities (N = M) then we consider 1-to-1 sequen-
tial mapping. The cumulative frequency of error count for each of the stages
is shown in Fig. 2. This plot shows how each stage cumulatively produces error
in the pipeline. However, we notice that although we have a good number of
samples without error, there is a room to improve and as shown in the figure,
the most error-prone task is task 3 due to the poor performance in pie chart
type prediction. We also show one partially correct and one fully correct chart
example generated by Text2Chart in Table 5.

Text2Chart: A Multi-staged Chart Generator from Natural Language Text 13

Fig. 2. Cumulative frequency of error of three states put in a pipeline on the test set.

Table 5. Sample input and outputs of Text2Chart.

Input Sample text Tzuyu is a gaming expert . She surveyed 200 individuals to judge

the popularity of the video games among her all time favorites .

After her survey she concluded that 25 people voted for World of

Warcraft , 46 voted for Black Ops , 12 voted for Overwatch , 25

for Modern Warfare , 30 for PUBG , 50 for Sims and 40 for

Assassin ’ s Creed

Output x Entities [’World of Warcraft’, ’Black Ops’, ’Overwatch’, ’Modern

Warfare’, ’PUBG’, ’Sims’, ’Assassin’, ’s Creed’]

y Entities [’25’, ’12’, ’25’, ’30’, ’50’, ’50’, ’40’, ’40’]

Chart type [’bar’]

Input Sample text Mr . Jamal worked in the Meteorological Department for 8 years

. He noticed a strange thing in recent times . On certain days of

the month , the weather varied strongly . He wrote down the

information to make a pattern of the event . The information of

the paper is as follows : on the 3rd day of the month the

temperature is 36 ◦C , 7th day is 45 ◦C , 9th day is 18 ◦C , 11th

day is 21 ◦C , 17th day is 9 ◦C , 19th day is 45 ◦C , 21st day is

36 ◦C , 27th day is 21 ◦C and 29th day is 45 ◦C . He finds a

weird pattern in these dates and makes a report and sends it to

his senior officer

Output x Entities [’3rd day’, ’7th day’, ’9th day’, ’11th day’, ’17th day’, ’19th day’,

’21st day’, ’27th day’, ’29th day’]

y Entities [’36’, ’45’, ’18’, ’21’, ’9’, ’45’, ’36’, ’21’, ’45’]

Chart type [’bar’, ’Line’]

5 Conclusion

In this paper we have presented Text2Chart, an automatic multi-staged tech-
nique that is able to generate charts from human written analytical text. Our
technique has been tested on a dataset curated for this task. Despite having a
short corpora, Text2Chart provides satisfactory results in every stage regard-
ing automatic chart generation. One of the limitations of our work is the size
of the dataset. With a larger dataset, we believe the methodology presented in
this paper will provide further improved results. Text2Chart is currently lim-
ited to the prediction of only three basic chart types: bar charts, pie charts and

14 Md. M. Rashid et al.

line charts. It is possible to extend it for further types. Recently a dataset for
chart-to-text has been proposed in [5]. It is possible to use that dataset for the
reverse problem also. We believe it is possible to tune and experiment with more
types of suitable neural architecture further for all the stages to improve overall
accuracy.

A Network Architectures

See Figs. 3 and 4.

Fig. 3. Proposed neural architecture for recognition of x-axis and y-axis entities.

Text2Chart: A Multi-staged Chart Generator from Natural Language Text 15

Fig. 4. Proposed neural network architecture for chart type prediction.

References

1. Liu, Y., Lapata, M.: Text summarization with pretrained encoders. arXiv preprint
arXiv:1908.08345 (2019)

2. Balaji, A., Ramanathan, T., Sonathi, V.: Chart-text: a fully automated chart image
descriptor. arXiv preprint arXiv:1812.10636 (2018)

3. Sang, E.F., De Meulder, F.: Introduction to the conll-2003 shared task: language-
independent named entity recognition. arXiv preprint arXiv:cs/0306050 (2003)

4. Shaw, P., Massey, P., Chen, A., Piccinno, F., Altun, Y.: Generating logical forms
from graph representations of text and entities. arXiv preprint arXiv:1905.08407
(2019)

5. Obeid, J., Hoque, E.: Chart-to-text: generating natural language descriptions for
charts by adapting the transformer model. arXiv preprint arXiv:2010.09142 (2020)

6. Guo, Q., Jin, Z., Qiu, X., Zhang, W., Wipf, D., Zhang, Z.: Cyclegt: unsuper-
vised graph-to-text and text-to-graph generation via cycle training. arXiv preprint
arXiv:2006.04702 (2020)

7. Cui, W., et al.: Text-to-viz: automatic generation of infographics from proportion-
related natural language statements. IEEE Trans. Visualiz. Comput. Graph. 26(1),
906–916 (2019)

8. Brown, T.B., et al.: Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020)

9. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

http://arxiv.org/abs/1908.08345
http://arxiv.org/abs/1812.10636
http://arxiv.org/abs/cs/0306050
http://arxiv.org/abs/1905.08407
http://arxiv.org/abs/2010.09142
http://arxiv.org/abs/2006.04702
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1301.3781

16 Md. M. Rashid et al.

10. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

11. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805. (2018)

12. Kobayashi, I.: Toward text based information processing: with an example of natu-
ral language modeling of a line chart. In: IEEE SMC 1999 Conference Proceedings.
1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.
99CH37028), vol. 5, pp. 202–207. IEEE (1999)

13. Zhou, Y., Tan, C.L.: Learning-based scientific chart recognition. In: 4th IAPR
International Workshop on Graphics Recognition, GREC, pp. 482–492. Citeseer
(2001)

14. Huang, W., Tan, C.L., Zhao, J.: Generating ground truthed dataset of chart images:
automatic or semi-automatic? In: Liu, W., Lladós, J., Ogier, J.-M. (eds.) GREC
2007. LNCS, vol. 5046, pp. 266–277. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-88188-9 25

15. Xu, T., et al.: Attngan: fine-grained text to image generation with attentional gen-
erative adversarial networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1316–1324 (2018)

16. Kim, D.H., Hoque, E., Agrawala, M.: Answering questions about charts and gener-
ating visual explanations. In: Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, pp. 1–13 (2020)

17. Wang, Q., Chen, Z., Wang, Y., Qu, H.: Applying machine learning advances to
data visualization: a survey on ml4vis. arXiv preprint arXiv:2012.00467 (2020)

18. Luo, Y., Qin, X., Tang, N., Li, G.: Deepeye: towards automatic data visualization.
In: 2018 IEEE 34th International Conference on Data Engineering (ICDE), pp.
101–112. IEEE (2018)

http://arxiv.org/abs/1810.04805
https://doi.org/10.1007/978-3-540-88188-9_25
https://doi.org/10.1007/978-3-540-88188-9_25
http://arxiv.org/abs/2012.00467

	Text2Chart: A Multi-staged Chart Generator from Natural Language Text
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Stage 1: x-Axis and y-Axis Label Entity Recognition
	3.2 Stage 2: Mapping of x and y Label Entities
	3.3 Stage 3: Chart Type Prediction

	4 Experimental Analysis
	4.1 Dataset Construction
	4.2 Performance Evaluation
	4.3 Axis Label Recognition Task
	4.4 Mapping Task
	4.5 Chart Type Prediction Task
	4.6 Overall Performance

	5 Conclusion
	A Network Architectures
	References

