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Abstract. Dynamic link prediction target to predict future new links in
a dynamic network, is widely used in social networks, knowledge graphs,
etc. Some existing dynamic methods capture structural characteristics
and learn the evolution process from the entire graph, which pays no
attention to the association between subgraphs and ignores that graphs
under different granularity have different evolve patterns. Although some
static methods use multi-granularity subgraphs, they can hardly be
applied to dynamic graphs. We propose a novel Temporal K-truss based
Recurrent Graph Convolutional Network (TKRGCN) for dynamic link
prediction, which learns graph embedding from different granularity sub-
graphs. Specifically, we employ k-truss decomposition to extract multi-
granularity subgraphs which preserve both local and global structure
information. Then we design a RNN framework to learn spatio-temporal
graph embedding under different granularities. Extensive experiments
demonstrate the effectiveness of our proposed TKRGCN and its superi-
ority over some state-of-the-art dynamic link prediction algorithms.
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1 Introduction

Link prediction, as a task of predicting the relationship between entities, plays
a vital role in many graph mining applications, such as social networks [21] and
biology network [18]. It can be divided into two categories. One is to predict miss-
ing links on static graph, and the other predicts new links that may appear in the
future on dynamic graph. Since many real-world networks are dynamic, whose
nodes and edges appear or disappear over time, dynamic link prediction [4] can
keenly capture the variation trend and achieve better prediction effect, there-
fore attracts wide attention. For instance, in social networks, we predict future
interactions between users for friend recommendation; In academic networks, we
study the cooperation of scholars to predict their future co-workers.

Dynamic link prediction aims to learn the evolution of the graph from his-
torical information and predict future links. Existing methods mainly extract
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features (structure and attribute information) at different time from the entire
graph and use those time-stamped features to model graph dynamic, such as
GCRN [16], EvolveGCN [14], DynamicTriad [22]. However, all these methods
ignore the fact that the entire graph usually contains diverse structures, and
the evolution of different structures over time is different. This may lead to sub-
optimal performence of link prediction. For example, Fig. 1 shows the evolve
of subgraphs with varying structures from time t to time t+1. In blue and
yellow dense subgraphs, more links will appear at next time. In green sparse
subgraph, it is unlikely to have more future node interactions. Simply learning
the evolution of the entire graph without distinguishing structures will affect the
accuracy of link prediction. Therefore, it is necessary to use a multi-granularity
graph instead. The graphs of different granularities contain different structures,
which facilitates better learning graph structural characteristics and dynam-
ics. However, existing dynamic link prediction methods can’t well divide graph
to multi-granularity subgraphs to learn the evolution of graphs under different
granularities. Although in static link prediction there are some methods learn
graph structural characteristics on multiple granularities such as mlink [1] and
PME [2], this kind of method only build multi-granularity graphs on the local
subgraph composed of nodes and their neighbors, without dividing global sim-
ilar structures to same granularity. Thus, it can hardly be applied to dynamic
link prediction to learn the co-evolution pattern of the global similar structures.
A recent method CTGCN [11] uses multi-granularity graphs to capture richer
hierarchical structure features for dynamic link prediction. However, it does not
distinguish the structure evolution under different granularities.

Fig. 1. It shows the changes of the subgraphs from time t to t+1. The red line represents
the new link, and the circle represents the local multi-granularity subgraph divided by
the one-hop and two-hop neighbors of the middle node (best see in color).

Multi-granularity graphs can mine richer structure characteristics. Still, when
applied to dynamic link prediction tasks, the inherent difficulty mainly originates
from two aspects: 1) How to divide multi-granularity graphs? 2) How to learn
structural features and evolution patterns on multi-granularity graphs? To better
explain the first problem, the circle in Fig. 1 shows a partition way to get the
multi-granularity subgraphs by node multi-order neighbors. Still, this method
only focuses on the local multi-level structure, ignoring that, on the entire graph,
the structures in the blue and yellow subgraphs are similar and have similar
evolution patterns. Thus we attempt to seek a graph partition method that can
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retain both local and global information. For the second problem, the diversity of
the structural characteristic and dynamics of multi-granularity dynamic graphs
forces us to design a unified framework to aggregate them.

To materialize our idea, we present a novel Temporal K-truss based Recurrent
Graph Convolutional Network (TKRGCN) for dynamic link prediction, which
learns structural characteristics and dynamics from different granularity. Specif-
ically, we employ k-truss decomposition to extract multi-granularity subgraphs
which preserve both local and global structure information. To better extract
features to capture diverse structural information, we modify GCN to alleviate
the problem of over-smoothing as the number of layers deepens, enabling GCN
to propagate high-order features effectively. Then we design a framework to learn
the evolution process of subgraphs of different granularities. Subgraphs of differ-
ent granularities make different contributions to the evolution of the entire graph.
Discriminatively treating different subgraphs helps to model the complete evo-
lution process. We conduct extensive experiments on six real-world datasets and
the result shows that our model performs better than current state-of-the-art
methods. The main contributions of this paper are as follows:

– We propose TKRGCN for dynamic link prediction, which learns structural
characteristics and dynamic evolution from different granularity subgraphs
while preserving both local and global similar subgraph features.

– We decouple GCN and deepen the propagation depth of GCN to alleviate
the performance degradation so that GCN can effectively extract high-order
features from the subgraph.

– The experiment results demonstrate that TKRGCN outperforms the state-
of-the-art benchmark in link prediction.

2 Related Work

The dynamic link prediction method needs to capture both structural prop-
erties and time evolution patterns. It mainly falls into two broad categories:
discrete methods and continuous methods. Discrete methods pay more atten-
tion to changes in structural characteristics of dynamic graphs. Many methods
use the architecture of combining GNNs [15] and RNNs [13] such as GCRN [16],
RgCNN [17] and GGNN [10]. EvolveGCN [14] adapts to GCN in the time dimen-
sion by using RNNs to encode the parameters of GCN. DynGEM [6] employs
autoencoder to generate highly non-linear node embeddings and makes some
improvements on computation. In addition, continuous methods more consider
the graph evolving process. DynamicTriad [22] models dynamic network evolu-
tion through modeling the triadic closure process. Dyrep [19] defines topological
evolution and node interaction to simulate the evolution of dynamic graphs.
However, these methods do not consider the multi-granularity dynamic graph
evolution. Although CTGCN [11] divides out the multi-granularity graph to
better capture the structural information, it does not distinguish the different
evolution modes under the multi-granularity.
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In static link prediction, there are some methods to learn graph structural
characteristics on multiple granularities. For instance, mlink [1] proposes a node
aggregation method that can transform the enclosing subgraph into different
scales to learn scale-invariant features. PME [2] integrates first-order and second-
order proximities and projects feature to different spaces to model nodes and
links. But, they only build multi-granularity graphs on the local subgraphs and
can hardly be applied to dynamic link prediction to learn the co-evolution pat-
tern of the global similar structures.

3 Preliminaries

Consider a static undirected graph as G = (V,E), where V = {v1, . . . , vN}
denotes the node set with N nodes and E is the link set. We denote the dynamic
graph G as an ordered set of snapshots {G1, G2, . . . , GT } from time step 1 to
T . Gt = (V,Et) is the state of the graph at time step t with a shared node set
V and Et contains the links that appear at time step t. The adjacency matrix
At ∈ R

n×n can be either weighted or unweighted.
Given a series of snapshots represented by A = {A1, A2, . . . , At} and node

features X = {X1,X2, . . . , Xt}, the goal is to predict At+1 at time t + 1. In
our method, we learn the mapping series F = {f1, f2, . . . , ft} that ft encodes
each node in Gt into an embedding space with d(d � N) dimension. The node
embeddings at time step t + 1 will be utilized to predict links.

4 The Proposed Method

We propose Temporal K-truss based Recurrent Graph Convolutional Network
(TKRGCN) shown in Fig. 2, our method consists the following two parts: 1)
Multi-granularity graph partition and feature extraction: To mine richer graph
information, we apply the k-truss decomposition algorithm to divide multi-
granularity subgraphs. This algorithm retains the local similar structure and
reflects the global structural similarity, which is conducive to better learning the
evolution of dynamic graphs later. Besides, to capture diverse structural infor-
mation, we decouple GCN and deepen the depth of feature propagation, thus
alleviating the problem of deep GCN performance degradation and enabling
GCN to extract high-order features. 2) Spatio-temporal evolution embedding: To
learn the structural characteristics and temporal evolution process from multi-
granularity subgraphs, we design a novel architecture composed of RNNs and
Attention, which learn structural information and temporal evolution of differ-
ent granularities. Discriminatively treating different subgraphs helps to model
the entire graph embedding.
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4.1 Multi-granularity Graph Partition and Feature Extraction

Multi-granularity Graph Partition. To mine rich multi-granularity struc-
tures, we utilize k-truss decomposition [8] to obtain subgraphs. The definition is
defined as follows:

Fig. 2. Schematic illustration of TKRGCN.

Theorem. k-truss decomposition: Given a graph G and k ∈ N, a k-truss
subgraph ̂Gk of G is the largest subgraph such that ∀e ∈ E( ̂Gk), sup

̂Gk
(e) ≥

k − 2.
sup

̂Gk
(e) is the support of edge e, defined as the number of triangles contain-

ing e. G is divide to a series of nested hierarchical subgraphs { ̂G2, ̂G3, . . . , ̂Gkmax
}

by k-truss decomposition, where kmax is the max subgraph truss number.
According to the definition, ̂G1 = ̂G2, so the index of subgraphs start from
2.

From the definition, we know that a subgraph with a high value of k has a
denser structure and fewer nodes. Thus the probability of links between nodes
in ̂Gk is greater. Intuitively, the more friends two people have in common, the
stronger their relationship will be. In social networks, many groups are inter-
connected with dense structures, such as peer groups. People usually have close
connections with members of the same group and have little contact with other
groups. Meanwhile, the evolution of structurally similar groups, such as peer
groups from different companies, is similar. K-truss decomposition can divide
these similar structures into subgraphs under the same granularity, which is
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convenient for learning the common evolution process of these global similar
structures.

In summary, the multi-granularity subgraphs based on k-truss decomposition
retain both local and global similar structures, helping to capture rich hierar-
chical structure information and learn the evolution process of structures under
different granularities, respectively.

Modified GCN Architecture. To extract sufficient features from each sub-
graph to reflect the diversity of structures, we need to propagate features in large
fields. An effective and stable method for feature extraction is GCN [9], which
learns high-order node features by iteratively aggregating the features from its
neighbors. GCN mainly includes two operations: feature propagation and feature
transformation. The former is the propagate operation that propagates features
about a node’s neighbors to this node, and the latter represents the transform
operation that maps the aggregated node features to a required embedding space.
There are many variants of GCN. For instance, a general GCN [9] is formulated
as

X(l) = σ
(

˜D− 1
2 ˜A ˜D− 1

2 X(l−1)W (l)
)

, (1)

where ˜A = A + I is the adjacency matrix with self-connections and I is the
identity matrix. ˜D = diag(

∑

j
˜Aij) denotes a diagonal matrix where each diag-

onal entry is the same as corresponding position entry in ˜Aij . σ() is a nonlinear
activation function. The propagation of (1) is P (l) = ˜D− 1

2 ˜A ˜D− 1
2 X(l−1) while

the transform operation is σ
(

P (l−1)W (l)
)

.
High-order features are necessary to model multi-granularity graph struc-

tures. A one-layer GCN only considers the direct neighbors of nodes, while the
multi-layer stacking GCN can learn high-order structural features, but the prob-
lem of over-smoothing may occur. Over-Smoothing refers to the fact that as the
layer deepens, the features of all nodes in the same connected component tend
to be the same. Thus GCN performs worse as it goes deeper. Some works [7,12]
point out that the excessive entanglement of transformation and propagation in
current GCN is the key factor that affects the performance of the model. Decou-
pling these two operations can effectively alleviate the over-smoothing problem.
Inspired by this, We design a mGCN with disentangling propagation and trans-
formation operation as follows:

X0 = MLP (Xinit) , (2)

Xj = ˜D− 1
2 ˜Aj

˜D− 1
2 X0, j = 1, 2, · · · , J, (3)

attj = σ(MLP (Xj)), j = 0, 1, 2, · · · , J, (4)

Xout = softmax(sum(att0 ◦ X0, · · · , attJ ◦ XJ )), (5)

where J is the depth of the propagation, X0 ∈ R
N×d maps the initial node

feature Xinit. attj ∈ R
N×1 is trained to adaptively adjust the information that

each node should retain in each propagation depth. ◦ means the element of att is
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multiplied by the corresponding d-dimensional node vector. Xout is calculated by
combining each propagation layer Xj . We apply our mGCN on k-truss subgraphs
at each time t and get

Xt
k = mGCN(At

k,X
t
init,k). (6)

In our mGCN, we decouple the feature propagation and transformation and
deepen the propagation depth separately. By learning parameters att, we can
adjust the information that the node should retain in different propagation lay-
ers so that mGCN can be applied to larger receptive fields without affecting
performance.

4.2 Spatio-temporal Evolution Embedding

To learn spatial and temporal embedding in multi-granularity graphs, we design
the following architecture shown in Fig. 2.

Spatial Embedding. In spatial dimension, we intend to capture structure
embedding from multi-granularity subgraphs. It can be seen from the previous
section that there is a strong connection between the multi-granularity sub-
graphs {Xt

2,X
t
3, · · · ,Xt

K} obtained by k-truss decomposition. RNN is exactly
suitable for processing highly correlated sequences. On snapshot Gt, we reverse
the sequence as {Xt

K ,Xt
K−1, · · · ,Xt

2} and feed it into RNNs to learn structure
information in spatial dimension. We have a mathematical representation as:

St
2 =RNN(Xt

K , St
1),

St
3 =RNN(Xt

K−1, St
2),

· · ·
St
K =RNN(Xt

2 , St
K−1),

(7)

where S1 = 0 is the initial matrix. St
k represents the hidden state and Xt

k denotes
the input feature. In the input sequence, the subgraph with a high value of k has
a denser structure and fewer nodes. Therefore, the reverse order sequence input
into RNN is to learn the structural development pattern from the dense small
graph to the large sparse graph. In this process, the structure information under
different granularities is merged. The final hidden state output St

K contains
the structural properties of the entire snapshot. We do this on each snapshot
and ultimately obtain spatial node embeddings at each time {S1

K , S2
K , · · · , ST

K}.
Besides, RNN has many variants, we use the Gated Recurrent Unit (GRU) [3].

Temporal Embedding. The k-truss based multi-granularity subgraph extracts
the similar structure on the whole graph into the same granularity subgraph,
which retains the local and global similar structure. In temporal dimension,
subgraphs of different granularities make different contributions to the evolu-
tion of the entire graph. Discriminatively treating different subgraphs helps to
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model the complete evolution process. We use RNN to learn how the subgraphs
evolve over time of different granularities. Under each granularity k, we input
{X1

k ,X2
k , · · · ,XT

k } into RNN as follows:

H1
k =RNN(X1

k ,H0
k),

H2
k =RNN(X2

k ,H1
k),

· · ·
HT

k =RNN(XT
k ,HT−1

k ),

(8)

where T is the length of the time sequence. The temporal module is similar
to the spatial module, and the difference is their input. Note that the structure
embedding sequence {S1

K , S2
K , · · · , ST

K} is also fed into the temporal module with
the same formula as (8) and output ST .

To obtain the final node representation for link prediction, we use the multi-
head attention mechanism to learn the importance of the temporal embedding
and spatial embedding and get the final node embedding Hout. The formula is
defined as follows:

Hout = MultiHeadAtten(ST ,HT
2 , · · · ,HT

K). (9)

4.3 Optimization

To estimate the parameters of our model, we need to specify an objective function
to optimize. We design an unsupervised loss function described as:

L =
T

∑

t=1

∑

u∈V

(Lt
u+ − Lt

u−), (10)

Lt
u+ =

∑

v+∈N+(u)

σ(< hu, hv+ >), (11)

Lt
u− =

∑

v−∈N−(u)

σ(< hu, hv− >). (12)

The “positive” node set N+(u) includes the nodes that sampled in fixed-
length random walks where node u has appeared and the “negative” nodes in
N −(u) are randomly sampled from the entire graph. <,> denotes the Hadamard
product. Such a design guarantees the representations of closely related nodes
are close while the irrelevant nodes are far away from each other.
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5 Experiments

5.1 Datasets and Baselines

We experiment on six dynamic datasets in KONECT1 and SNAP2. Details are
summarized in Table 1. All the datasets are split by month.

We compare our model with two static methods and five dynamic methods.

GCN [9]: It can simultaneously perform end-to-end learning of node features
and structures.
GAT [20]: As an optimization method of GCN, GAT introduces an attention
mechanism to calculate the attention coefficient of the current node and its
neighbors to reduce the impact of noise.

Table 1. Datasets.

Datasets #Nodes #Edges K #Timesteps

UCI 1899 59835 6 7

AS 6828 1947704 11 100

MATH 24740 323357 11 77

FACEBOOK 60730 607487 7 27

ASKU 74924 356822 11 21

ENRON 87036 530284 18 38

GCRN [16]: A direct dynamic embedding method that lets GCN process
each snapshot and provides the output of GCN to the time series component
RNN to learn the temporal patterns.
DynGEM [6]: It uses a deep autoencoder to get non-linear graph embedding
and proposes PropSize to increase the scale of the neural network dynamically.
Dyngraph2vec [5]: A continuation of DynGEM which consider the historical
information of the past l snapshots. It has three variants: dyngraph2vecAE,
dyngraph2vecRNN, and dyngraph2vecAERNN.
EvolveGCN [14]: EvolveGCN uses RNNs to evolve GCN parameters. It has
better results in extreme situations where nodes change frequently.
CTGCN [11]: It uses k-core and GCN to capture the hierarchical nature of
graphs and extends it to dynamic graphs.

Settings. We use the previous l = 5 snapshots Gt−l+1 − Gt to predict the link
in Gt+1. The k-truss decomposition is used to extract 3 subgraphs from each
snapshot, namely, 2-truss to 4-truss subgraphs. For fair comparisons, we set the
embedding dimension d = 128 and uniformly utilize 2 layers in GCN, GAT,
GCRN, EvolveGCN.
1 http://konect.uni-koblenz.de/.
2 http://snap.stanford.edu/.

http://konect.uni-koblenz.de/
http://snap.stanford.edu/
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5.2 Performance Comparison

We conduct several experiments on link prediction. Each link feature vector is
calculated by the Hadamard product of the node-pair vectors. We train a logistic
regression classifier with L2 regularization to classify the positive and negative
links. In addition, the static version of our method KRGCN(remove the temporal
module) can also perform static link prediction, which predicts the missing links
using only the known information at time t. The area under the curve(AUC)
is employed as the evaluation metric. We take the average of AUC as the final
result.

Table 2 demonstrates the link prediction results on six datasets in static and
dynamic models. The best results are shown in bold. Due to memory limita-
tions, the AUC of DynAE and DynAERNN are not available on some datasets
indicated by ‘-’. Our method TKRGCN outperforms other methods on each
dataset, which strongly proves the effectiveness of our approach in using multi-
granularity subgraphs to capture structural and temporal information. Moreover,
our static method KRGCN surpasses some dynamic methods, showing that our
multi-granularity strategy can capture more effective structural properties.

Table 2. Average AUC scores for link prediction.

Methods UCI AS MATH FACEBOOK ASKU ENRON

GCN [9] 0.7082 0.7451 0.7887 0.5928 0.7741 0.8068

GAT [20] 0.7906 0.7027 0.7246 0.5553 0.6793 0.8601

Ours(static) 0.9266 0.9366 0.8857 0.7336 0.8361 0.9082

GCRN [16] 0.8258 0.9309 0.7929 0.6512 0.7818 0.9247

DynGEM [6] 0.9053 0.9413 0.8500 0.6023 0.8032 0.8767

DynAE [5] 0.9231 0.9284 0.9462 0.7401 − −
DynAERNN [5] 0.9019 0.8972 0.8383 − − −
EvloveGCN [14] 0.9126 0.9294 0.8954 0.7435 0.9279 0.9361

CTGCN [11] 0.9368 0.9544 0.9598 0.8158 0.9468 0.9855

Ours 0.9825 0.9608 0.9689 0.8500 0.9838 0.9941

An essential hyper-parameter is K. It determines the granularity level of
the graph. To analyze the influence of K on TKRGCN, we design a small-
scale experiment, take the last 20 snapshots of four datasets for training and
shorten the embedding dimensions to 32. The results are shown in Fig. 3. In the
beginning, with the increase of K, link prediction performance has a specific
improvement, especially in UCI.
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(a) UCI (b) MATH

(c) ASKUBUNTU (d) ENRON

Fig. 3. The AUC performance of various k numbers on four datasets.

5.3 Ablation Study

To further investigate the impact of k-truss decomposition and modified GCN
module for TKRGCN, we reconstruct the architecture as a)TKRGCN-sGCN:
replace the modified GCN with a simple GCN [9] in TKRGCN; b)TKRGCN-
single: TKRGCN without multi-granularity subgraphs. As shown in Table 3,
TKRGCN performs better than the other two methods on all datasets, illustrat-
ing that both the modified GCN and the k-truss decomposition have a positive
effect on TKRGCN. Additionally, compared with TKRGCN-sGCN, the perfor-
mance of TKRGCN-single drops more, which indicates that k-truss based multi-
granularity subgraph partition strategy is essential to dynamic link prediction.

Table 3. AUC for ablation study.

Methods UCI AS MATH FACEBOOK ASKU ENRON

TKRGCN 0.9825 0.9608 0.9689 0.8500 0.9838 0.9941

TKRGCN-sGCN 0.9583 0.9487 0.9349 0.8261 0.9505 0.9638

TKRGCN-single 0.9332 0.9418 0.8924 0.7815 0.9394 0.9471

6 Conclusion

In this paper, we propose a novel framework named TKRGCN for dynamic
link prediction, which learns structural characteristics and dynamic evolution
from multi-granularity subgraphs while preserving both local and global similar
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subgraph features. To better extract features in different subgraphs, we deepen
the propagation depth of GCN to alleviate the over-smoothing problem so that
GCN can be applied to larger receptive fields. The experimental results validate
our method’s effectiveness. Our future work will focus on studying large-scale
dynamic graphs.
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20. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

21. Wasserman, S., Faust, K., et al.: Social network analysis: Methods and applications
(1994)

22. Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network embedding
by modeling triadic closure process. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32 (2018)

https://doi.org/10.1007/978-3-030-04167-0_33
http://arxiv.org/abs/1710.10903

	Multi-granularity Evolution Network for Dynamic Link Prediction
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The Proposed Method
	4.1 Multi-granularity Graph Partition and Feature Extraction
	4.2 Spatio-temporal Evolution Embedding
	4.3 Optimization

	5 Experiments
	5.1 Datasets and Baselines
	5.2 Performance Comparison
	5.3 Ablation Study

	6 Conclusion
	References




