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Abstract. Graph neural networks (GNNs), which generalize deep neu-
ral network models to graph structure data, have attracted increas-
ing attention and achieved state-of-the-art performance in graph-related
tasks such as graph classification, link prediction, and node classifica-
tion. To adapt GNNs to graph classification, existing works aim to define
the graph pooling method to learn graph-level representation by down-
sampling and summarizing the information present in the nodes. How-
ever, most existing pooling methods lack a way of obtaining informa-
tion about the entire graph from both the local and global aspects of
the graph. Moreover, in these pooling methods, the difference features
between nodes and their neighbors are usually ignored, which is crucial
in obtaining graph information in our opinions. In this paper, we pro-
pose a novel graph pooling method called Node Information Awareness
Pooling (NIAPool), which addresses the limitations of previous graph
pooling methods. NTAPool utilizes a novel self-attention framework and
a new convolution operation that can better capture the difference fea-
tures between nodes to obtain node information in the graph from both
local and global aspects. Experiments on five public benchmark datasets
demonstrate the superior performance of NIAPool for graph classifica-
tion compared to the state-of-the-art baseline methods.

Keywords: Graph pooling + Graph classification - Graph
representation learning - Graph neural network

1 Introduction

Graph neural networks (GNNs) are a class of deep learning models that oper-
ate on data represented as graphs with arbitrary topological structures such as
body skeletons [22], brain networks [14], molecules [6], and social networks [12].
Unlike some regular grid data (e.g., images and texts), the inputs of GNN are
permutation-invariant variable-size graphs consisting of rich information. By
passing, transforming, and aggregating node features across the graph, GNNs
can capture graph information effectively [9] and demonstrate strong ability on
related tasks such as text classification [10], mental illness analysis [32], drug
discovery [24], relation extraction [25], and particle physics analysis [23]. Some
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of the existing methods focus on node-level representation learning to perform
tasks such as link prediction [11,18] and node classification [12,27]. Others focus
on learning graph-level representations for tasks like graph classification [7,34]
and graph regression [21]. In this paper, we focus on graph-level representation
learning for the task of graph classification.

In brief, the task of graph classification is to generate the graph-level repre-
sentation of the entire graph to predict the label of the input graph by utilizing
the given graph structure information and node representation. The majority of
existing GNNs usually generate the graph-level representation by applying sim-
ple global pooling strategies [15,28,35] (i.e., a summation over the final learned
node representations). These methods are inherently “flat” [36] and lack the
capability of aggregating node information in a hierarchical manner since they
treat all the nodes equivalently when generating graph representation using the
node representations. Furthermore, the structure information of the entire graph
is almost neglected during this process. For example, to prove a molecule is toxic
or not, which depends on not only the features of atoms but also the structure
information in atoms’ interaction networks.

To address this problem, hierarchical pooling architectures have been pro-
posed, which have the ability to coarsen the graph in an adaptive, data-
dependent manner within a GNN pipeline, analogous to image downsampling
within convolutional neural networks. The first end-to-end learnable hierarchical
pooling operator is DiffPool [33]. DiffPool groups nodes into super-nodes by com-
puting soft clustering assignments of nodes. Since the cluster assignment matrix
is dense, its ability to scale to large graphs is limited. TopKPool [7] uses a simple
scalar projection score for each node to select top-k nodes in a sparse pooling
manner, so the computing limitation of DiffPool is overcome. Following that,
SAGPool [13], a variant of TopKPool, uses self-attention to incorporate global
structure information, and EdgePool [4] learns a localized and sparse hard pool-
ing transform by edge contraction. Nevertheless, a critical limitation of these
pooling operations is the lack of a way to combine the local and global infor-
mation in graphs simultaneously. To address the above limitations, ASAP [17]
devises a cluster scoring procedure to select nodes depending on the feature-
based fitness scores and self-attention network. [8] uses a two-stage attention
voting process that selects more important nodes in a graph. Although [17]
and [8] have proved the ability of their methods to capture graph information,
we argue that self-attention mechanisms in these methods may render mutual
exclusion effect on node importance, which means these methods focus too much
on the nodes with high similarity and almost ignore the node information with
high differences. In addition, we find that the difference features of nodes are
vital for the entire graph. For example, even if two molecules have the same
structure and atomic number, as long as there is a pair of different types of
atoms, there will be huge differences between the molecules. However, most of
the existing methods cannot effectively capture the difference features between
nodes or even do not take them into consideration. Therefore, hierarchical graph
pooling methods that capture the difference features between nodes effectively
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while reasonably considering both local and global graph information currently
do not exist.

In this work, we propose a new pooling operator called Node Information
Awareness Pooling (NIAPool) which overcomes the problems mentioned above.
It uses a novel Difference2Token attention framework (D2T), which balances
important node selection reasonably, to enhance the node information represen-
tation locally, and then utilizes a new convolution operation called Neighbor
Feature Awareness Convolution (NFAConv) to capture the difference features
between neighbor nodes and perform global node scoring.

Our contributions can be summarized as follows:

— We propose D2T to evaluate each node’s information given its neighborhood
and then enhance local node information.

— We propose a new convolution operator NFAConv. Compared with state-
of-the-art convolution operations, NFAConv is more powerful in extracting
difference features between nodes.

— We conduct extensive experiments on five public datasets to demonstrate
NIAPool’s effectiveness as well as superiority compared to a range of state-
of-the-art methods.

2 Preliminaries

2.1 Notations and Problem Formulation

Given a set of graph data D = {(G1,v1),(G2,92),...,(Gn,yn)}, where the
number of nodes and edges in each graph might be different. For an arbitrary
graph G; = (V;, &, X;) with N = |V;| nodes and |&;| edges. Let A € RV*N be
the adjacent matrix describing its edge connection information, and X € RV*¢
represents the node feature matrix assuming each node has d features. Each
graph is also associated with a label y; indicating the class it belongs to. The
goal of graph classification is to learn a mapping function f : G — ) where G is
the set of graphs and ) is the set of labels. A pooled graph and its adjacency
matrix are denoted by GP = (VP EP, XP) and AP, respectively. For each node
v;, we use N (v;) to represent its 1-hop neighbors.

2.2 Graph Convolutional Neural Network

Graph convolutional neural network (GCN) [12] is a powerful tool for handling
graph-structured data and has shown promising performance in various challeng-
ing tasks. Thus, we choose GCN as the building block to design the framework
for graph classification. For the [-th layer in GCN, it takes both the adjacent
matrix A and hidden representation matrix X' of the graph as input, and then
the new node embedding matrix will be generated as follows:

XH =g (D*%AB*%XIWZ) (1)
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Here, o (-) is the non-linear activation function, A=A + I is the adjacency
matrix with self-loops. D is the diagonal degree matrix of A, and W' € R%*di+1
is the trainable weight matrix.

2.3 Self-attention Mechanism

Self-attention is used to discover the dependence of input on itself [26]. The atten-
tion coefficient o ; is computed to map the importance of candidates h; on target
query hj, where h; and h; are obtained from input entities h = {hq,...,h,}.
We introduce three variants of self-attention mechanisms.

Token2Token (T2T) [19] explores the dependency between the target and
candidates from the input set h. The attention coefficient a; ; is computed as:

Qg5 = softmax (ﬁTO' (thHWh])) (2)

where || is the concatenation operator.

Source2Token (S2T) [19] drops the target query term to explore the depen-
dency between each candidate and the entire input set h.

o ; = softmax (07 o (Wh;)) (3)

Master2Token (M2T) [17] is a self-attention mechanism that works on graph
data. M2T utilizes intra-cluster information by using a master function to gen-
erate a query vector within the node and its 1-hop neighbors. Compared with
other self-attention mechanisms, M2T can capture graph information better.
Formally, M2T is defined as:

a,j = softmax (0" o (Wm||h;)) (4)
i = hi 5
mi =, max | (h) ()

Here, h; refer to node representation in graph and NV (h;) are the 1-hop neighbors
of hj.

3 NIAPool (Proposed Method)

In this section, we give an overview of the proposed method NIAPool. As
shown in Fig.1, NIAPool initially focuses on the local structure of the given
graph, considering all nodes and their 1-hop neighbors, and utilizes a new self-
attention to enhance node information by aggregating neighbor node features.
These enhanced nodes are then globally scored using a modified GCN. Further,
a fraction of the top-scoring nodes will be saved. Below, we discuss the modules
of NIAPool in detail.
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(a) Original graph (b) Local node information enhancement (c) Top-k nodes are seleced by NFAConv (d) Pooled graph
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Y
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(e) Model architecture

Fig. 1. The illustration of the proposed NIAPool: (a) Input graph to NIAPool. (b)
Local node information enhancement based on D2T attention. (c) We utilize NFAConv
to capture node difference features and then score nodes. (d) A fraction of top-scoring
nodes are kept in the pooled graph. (e) The overview of hierarchical graph classification
architecture

3.1 Local Node Information Enhancement

Initially, we consider each node and its 1-hop neighbors. We learn the attention
coefficient between each node in the graph and its neighbor nodes through the
self-attention mechanism. Further, the learned attention coefficient is used to
fuse information from v; and its neighbors N (v;). The task here is how to learn
the enhancement representation of nodes effectively by attending to the relevant
nodes. We observe that the self-attention mechanisms mentioned in Sect. 2.3
may have a node importance mutual exclusion problem (Please refer to Sect. 4.3
or Sect. 1 for more details). To address this problem, we propose a new variant
of self-attention, called Difference2Token (D2T) to balance the attention
procedure. D2T is defined as:

Q= softmax (ﬁTU (W1 (hz — hj) HWQ}LJ)) (6)

Here, h; is node representation and h; € N (h;).

Our motivation for designing D2T is that if a node’s information can be
reconstructed or inferred by its neighborhood information, it means this node
can probably be deleted in the pooled graph with almost no information loss. In
general, the nodes with similar information can be substituted for each other.
That is, the more similar the nodes are, the less important they are, which is
different from the self-attentions in Sect. 2.3. In Eq. (6), the difference h; —
h; will show significant differences when a node representation h; is similar to
one representation of its neighbor h; or not, so D2T can balance the attention
procedure reasonably by taking h; — h; into consideration.
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After obtaining the attention coefficient, node information can be enhanced

as follows:
|N (vi)l

he = h; + Za” (7)

where h{ is the enhanced node representatlon.

3.2 Global Node Scoring Using NFAConv

The difference feature between nodes is critical for generating graph-level repre-
sentation. For example, even if the graph has the same topology, different node
features can make the whole graph greatly different. How to effectively capture
the difference features between nodes becomes a new problem, which is ignored
by most graph classification methods. To solve this problem, inspired by [17]
and [30], we propose Neighbor Feature Awareness Convolution (NFA-
Conv), a powerful variant of GCN which is aware of node features:

Oi=hi- W+o| D (hi—hy) | (hi©hy) (®)

hj EN(hi)

where W is learnable parameter matrix and ¢ denotes a neural network. ® is
broadcasted hadamard product.

NFAConv utilizes h; — h; and h; ® h; to obtain difference features between
nodes and their neighbors, and then a neural network ¢ is applied to extract use-
ful information from these features. In this paper, ¢ is a Multilayer Perceptron
(MLP) with three linear layers. It is worth noting that ¢ can also be Convolu-
tional Neural Network (CNN) like the one used in [35], or other neural networks.
We keep this for future work.

After enhancing local node information, we sample nodes based on the global
node fitness score 6; which calculated by NFAConv. For a given pooling ratio
k € [0,1), the top [kN] nodes are saved in the pooled graph GP.

3.3 Graph Coarsening

Following the graph coarsening procedure in [33], we make global node fitness
vector ® = [01,6,,.. HN] learnable by multiplying it to the node feature
matrix X!. The 1nd1(:es of selected nodes i are obtained by choosing the top
[EN] nodes based on X':

Xl=© o X!, i=TOP, (X'l,[kN]) 9)

The node feature matrix X? € RI*N1X4 and the pruned cluster assignment
matrix S € RV*I*NT are given by:

X? = X(3,:), §=8(,1) (10)
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Here, S € RV¥*N is the cluster assignment matrix, where S;; represents the
membership of node v; € V in N (v;). Finally, the pooled new adjacency matrix
AP can be obtained as follows:

AP =ST(A+ DS (11)

3.4 Model Architecture

The architecture used in SAGPool [13] is adopted in our experiments. We use
JK-net [31] as our readout layers to aggregate pooled node features. Figure 1
shows the details of the model architecture.

4 Experiments

In this section, we present our experimental setup and results. Our experiments
are designed to answer the following questions:

— Q1 How does NIAPool perform compared to other state-of-the-art pooling
methods at the task of graph classification?

— Q2 Is local node information enhancement by D2T attention more powerful
compared to other self-attentions?

— Q3 Compared with some state-of-the-art GCN variants, can NFAConv effec-
tively capture the features of nodes in the graph?

4.1 Experimental Setting

Datasets: Five graph datasets are selected from the public benchmark graph
data collection. D&D [5,20] and Proteins [3,5] are two datasets containing graphs
of protein structures. NCI1 [29] and NCI109 are biological datasets used for
anticancer activity classification. Frankenstein [16] is a set of molecular graphs
representing the molecules with or without mutagenicity. Table 1 summarizes
the statistics of all datasets.

Table 1. Statistics of the datasets.

Dataset # |G| | # |c| | Avg.# |V] | Avg.# €]
D&D 1178 |2 284.32 715.66
Proteins 1113 |2 39.06 72.82
NCI1 4110 |2 29.87 32.30
NCI109 4127 |2 29.68 32.13
Frankenstein | 4337 |2 16.90 17.88
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Baselines: We compare NIAPool with previous state-of-the-art graph pool-
ing methods, including Set2Set [28], GlobalAttention [15], SortPool [35], Diff-
Pool [33], TopKPool [7], SAGPool [13], ASAP [17], EdgePool [4], GSAPool [34],
MinCUT-Pool [2], HGP-SL [36], and GMT [1].

Training Procedures: In our experiments, we use 10-fold cross-validation to
evaluate the pooling methods, where each time we split each dataset into three
parts: 80% as the training set, 10% as the validation set, and the remaining 10%
as the test set. The average performance with standard derivation is reported. For
NTAPool, we choose k = 0.5 and set the dimension of node representations 128
for all datasets. For baseline algorithms, we use source codes released by authors
and follow the experimental setup that is mentioned in their manuscript. Adam
optimizer with a learning rate of 0.001 is adopted as our optimizer.

4.2 Q1: Comparison with Baseline Models

We compare the performance of NTAPool with baseline methods on five datasets.
The graph classification results are reported in Table 2. We also show the different
pooling ratios based on the NIAPool architecture in Table 3.

Table 2. Comparison with the state-of-the-art graph pooling methods.

Methods D&D Proteins NCI1 NCI109 Frankenstein
Set2Set 71.60+0.87 | 72.16+0.43 |66.97+0.74 |61.04+2.69 |61.46+0.47
GlobalAttention | 71.38 +£0.78 | 71.87+0.60 |69.00+0.49 |67.87+0.40 |61.31+0.41
SortPool 71.874+0.96 |73.91+£0.72 | 68.74+1.07 |68.5940.67 |63.4440.65
DiffPool 66.95+2.41 |68.20+2.02 |62.324+1.90 |61.98+1.98 |60.60+1.62
TopKPool 75.014+0.86 | 71.104+0.90 |67.02+2.25 |66.12+1.60 |61.46+0.84
SAGPool 76.454+0.97 | 71.864+0.97 |67.454+1.11 |67.864+1.41 |61.7340.76
ASAP 76.87 0.7 74.194£0.79 | 71.48+£0.42 |70.0740.55 |66.26+0.47
EdgePool 70.37+3.81 | 73.67+4.18 |73.65+2.20 |70.66+2.01 |65.28+1.88
GSAPool 74.95+4.51 | 73.224+3.37 |72.21+1.35 |70.11+2.39 |60.99+2.08
MinCUT-Pool | 77.50+4.89 |74.85+3.72 |75.384+1.46 |73.734+1.56 |63.57+2.26
HGP-SL 76.66 +3.07 | 74.03+£3.21 | 74.59+1.46 |72.094+2.06 |62.81+1.36
GMT 77.75+3.48 | 75.01+2.89 |74.57+1.59 |73.25+2.63 |64.35+1.41
NIAPool (ours) | 79.284+4.30 | 75.25+3.71 | 78.08 +1.92 | 75.56 +2.32 | 65.35 £ 2.58

Overall, a general observation we can draw from the results is that our model
obtains the highest accuracy on most of the datasets compared with baseline
models. In particular, NIAPool achieves approximate 2.70% higher accuracy
over the best baseline on the NCI1 dataset and 2.31% on the NCI109 dataset,
respectively. This superiority of NIAPool may be attributed to its advanced
mechanism for effectively capturing both local and global node information in
pool operation. Although ASAP exhibit the best performance among all baseline
methods and is even better than ours on the Frankenstein dataset, NIAPool has
an average improvement of 3.89% over ASAP on the other four datasets.
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Table 3. The evaluation of different pooling ratios based on the NIAPool architecture.

Pooling ratio | D&D Proteins NCI1 NCI109 Frankenstein
0.25 77.67+4.13 | 74.03£2.18 |76.35+1.81 |74.63+2.38 |62.39+3.28
0.50 79.28 +4.30 | 75.25 £3.71 | 78.08 £1.92 | 75.56 +2.32 | 65.35+2.58
0.75 76.05+3.40 | 75.73+4.14 | 77.38+1.17 | 75.87£1.95 | 64.46 +2.71

4.3 Q2: Effectiveness of D2T Attention

To show the effectiveness of D2T attention, We replace the D2T attention module
in NIAPool with previously proposed S2T, T2T, and M2T attention techniques,
respectively. The results are shown in Table4. We observe that D2T attention
achieves better performance than other attentions, which indicates that the pro-
posed D2T attention framework can reasonably select important nodes.

T2T models the membership of a node by generating a query based only on
the medoid nodes. S2T attention scores each node for a global task. M2T extends
T2T by using a master function to utilize intra-cluster information. There is a
disadvantage causing the node importance mutual exclusion problem when these
methods are used for local node information enhancement. That is, they pay too
much attention to the nodes with high similarity, resulting in the loss of other
node information. From the results, we can prove that D2T deal with the above
problem well by taking h; — h; into consideration.

Table 4. Effectiveness of different attention framework.

Attention module | D&D Proteins NCI1 NCI109 Frankenstein
T2T 78.18+4.44 | 74.714£3.12 |77.134+3.23 | 75.07£2.02 |65.184+1.53
S2T 78.35+4.43 |74.824+4.02 |76.554+1.89 |74.11+£1.95 |65.304+2.73
M2T 79.03£4.40 |74.934£3.90 |77.104+£0.85 |74.23+£2.24 |65.294+2.23
D2T 79.28 +4.30 | 75.25 +3.71 | 78.08 = 1.92 | 75.56 + 2.32 | 65.35 + 2.58

4.4 Q3: Effectiveness of NFAConv

In this section, we analyze the impact of NFAConv as a fitness scoring func-
tion in NTAPool. We use three famous graph convolutional operations, including
GCN [12], GAT [27], and GraphSAGE [9] as our baselines. In Table5, we can
see that NFAConv performs significantly better than others. In particular, our
method has obvious advantages in datasets NCI1 and NCI109, which achieve
approximate 3.24% and 2.67% accuracy improvement over the best baseline,
respectively.

GCN can be viewed as a procedure that computes a score for each node fol-
lowed by a weighted average operation over neighbors and a nonlinearity oper-
ation. If some of the nodes get a high score, it may increase the scores of its
neighbors indirectly, which biases the pooling operator to select nodes. Graph-
SAGE directly averages the neighbor features of central nodes, ignoring the
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feature diversity among nodes. GAT is an example of T2T attention in graphs.
GAT utilizes attention coefficient to weight and sum node features but lacking a
way to capture specific node difference features. NFAConv addresses the above

problems by focusing on capturing node difference features between nodes. The
results from Table 5 verify the effectiveness of NFAConv.

Table 5. Effectiveness of different graph convolutional operations as fitness scoring
function.

Fitness function | D&D Proteins NCI1 NCI109 Frankenstein
GCN 78.890+3.54 |74.4843.66 |74.144+1.49 |72.21+£2.25 |62.444+3.06
GraphSAGE 78.614£4.03 |74.394£3.38 |74.8442.68 |72.89+£2.10 |64.65+3.84
GAT 77.0842.67 |74.114£3.23 |74.444+1.50 |71.97+£2.14 |61.2443.50
NFAConv 79.28 +4.30 | 75.25 +£3.71 | 78.08 = 1.92 | 75.56 & 2.32 | 65.35 + 2.58

5 Conclusion

In this paper, we introduce NIAPool, a novel graph pooling operator for the
graph classification task. NIAPool is aware of the node information from both
the local and global aspects of the graph. For the local aspect, we propose a
Difference2Token self-attention framework to better capture the membership
between each node and its 1-hop neighbors. For the global aspect, we propose
NFAConv, a novel GCN variant that focuses on capturing node difference fea-
tures and uses it to score nodes. We validate the effectiveness of the components
of NTAPool empirically. Through extensive experiments, we demonstrate that
NIAPool achieves state-of-the-art performance on multiple graph classification
datasets.
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