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Abstract. Contextual multi-armed bandit algorithms are widely used
to solve online decision-making problems. However, traditional methods
assume linear rewards and low dimensional contextual information, lead-
ing to high regrets and low online efficiency in real-world applications. In
this paper, we propose a novel framework called interconnected neural-
linear UCB (InlUCB) that interleaves two learning processes: an offline
representation learning part, to convert the original contextual informa-
tion to low-dimensional latent features via non-linear transformation,
and an online exploration part, to update a linear layer using upper
confidence bound (UCB). These two processes produce an effective and
efficient strategy for online decision-making problems with non-linear
rewards and high dimensional contexts. We derive a general expression
of the finite-time cumulative regret bound of InlUCB. We also give
a tighter regret bound under certain assumptions on neural networks.
We test InlUCB against state-of-the-art bandit methods on synthetic
and real-world datasets with non-linear rewards and high dimensional
contexts. Results demonstrate that InlUCB significantly improves the
performance on cumulative regrets and online efficiency.

Keywords: Contextual bandits · Upper confidence bound · Neural
networks · Regret bound

1 Introduction

Contextual multi-armed bandit algorithms are powerful solutions to online
sequential decision making problems such as influence maximisation [17] and
recommendation [20]. In its setting, an agent sequentially observes a feature
vector associated with each arm (action), called the context. Based on the con-
texts, the agent selects an arm which provides a random reward that is assumed
to follow some distribution. Since the underlying distribution is unknown and
the reward can only be observed at run-time, the agent should balance explo-
ration and exploitation to maximise total rewards or, equivalently, to minimise
regret.

Well-established contextual bandit methods, e.g., linear upper confidence
bound (LinUCB) [7] and linear Thompson sampling (LinTS) [2], were effective
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assuming that the reward is linear and the contexts are low-dimensional. How-
ever, these methods face two important challenges when applied to real-world
scenarios such as online image classification [19] and online audio recognition
[23]: First, these applications involve reward distributions that are non-linear
w.r.t. the contexts. This violates the linear-reward assumption which is needed
to achieve non-trivial regret bounds. Thus it is possible that these methods could
result in high regrets. Second, most of these existing methods involve inverting
a matrix online [4] whose dimension coincides with that of the contexts. How-
ever, the applications above usually involve high-dimensional contexts. Thus the
existing methods will suffer from poor online efficiency. Although some recent
methods relax the liner-reward assumption, they still rely on relatively restric-
tive modelling assumptions on rewards and/or cannot provide acceptable online
efficiency. For instance, KernelUCB [16] relaxes the linear reward assumption
by asserting that the reward function belongs to a reproducing kernel Hilbert
space, but it incurs an even higher computation cost on matrix inversions as the
dimension of the kernel matrix increases with time.

Recently, several new methods under the name of neural contextual bandits
[24] are proposed to extend classical contextual bandit algorithms. Leveraging
the expressive power of neural networks, these methods aim to learn richer
non-linear reward function and latent features through representation learn-
ing. So far, two major neural contextual bandit paradigms have been proposed:
Neural-Linear and NeuralUCB. The former uses neural networks to extract
a dimension-reduced latent feature (representation learning) and conduct explo-
ration on top of the latent features [15,22], while the latter uses neural networks
as a reward predictor and use UCB for exploration [24]. Despite showing promise
in certain empirical tasks, these methods still suffer from some significant short-
comings. (1) While Neural-Linear is time-efficient, the method often incurs
high regrets. This is because that it trains networks end-to-end, failing to use
the result of exploration to boost representation learning. Worse yet, its regret
bound is still unknown [15]. (2) NeuralUCB, in contrast, can provide the the-
oretical guarantee on regret bound. But updating the entire network every step
results in low online efficiency, which makes it infeasible in practice.

Contributions. This paper addresses the need for an efficient contextual ban-
dit algorithm applicable to non-linear rewards and high-dimensional contexts.
We summarise our main contributions as follows: (1) We propose a new neural
contextual bandit framework, called interconnected neural-linear upper confi-
dence bound (InlUCB) (see Sect. 4). To our knowledge, InlUCB is the first
contextual bandit method that achieves high online efficiency with a theoretical
guarantee on its regret bound. InlUCB uses neural networks with two parts: the
lower layers transform raw contexts to a low-dimensional latent feature space;
and the last linear layer represents a linear model that fits the observed reward
in terms of the latent features. The key novelty of InlUCB lies in an inter-
connected offline-online update mechanism to train the two parts. The offline
process (representation learning) updates lower layers subject to the current lin-
ear model, simplifying the task at hand. The online process (exploration) follows
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UCB-based exploration to update only the last linear layer based on the proposed
representation, thereby guaranteeing online efficiency. (2) We derive a general
expression of the regret bound of InlUCB by decomposing the total regrets
into regrets caused by representation learning and online exploration (see Theo-
rem 1). Specifically, we present a tighter regret bound under certain assumptions
on neural networks (see Corollary 1). (3) We test InlUCB against state-of-the-
art contextual, non-linear contextual, non-parametric contextual and neural con-
textual bandit methods on synthetic dataset with high-dimensional contexts and
non-linear rewards as well as on real-world datasets with audio and images as
contextual information (see Sect. 6). Results demonstrate that InlUCB achieves
much lower cumulative regrets than linear contextual bandit baselines and higher
online efficiency than neural contextual bandit baselines.

2 Related Work

Classical Contextual Bandits. Both classical multi-armed bandits and con-
textual bandits have been studied extensively along with their variants. Classi-
cal bandit algorithms such as Upper Confidence Bound (UCB) and Thompson
Sampling (TS) [1] achieve ˜O(

√
KT ) regret, where K is the number of candidate

arms, T is the number of steps, and ˜O(·) hides the logarithmic factors. Since this
regret bound depends on K, they are inefficient in real-world applications when
K is large. To alleviate this problem, one can assume that the reward of each
arm is a function of some observed features (i.e., contexts), yielding the family of
methods called the contextual bandits [9,13]. As two widely-adopted contextual
bandit algorithms with the linear-reward assumption, LinUCB [7] and LinTS

[2] have a regret bound of ˜O(
√

dT ) and ˜O(d
√

T ), respectively, which depends
on the dimension d of features rather than K. However, contextual bandits may
result in high regrets when the reward function is non-linear or d is large.

High-Dimensional Contexts and Non-linear Rewards. Despite works
exist that attempt to extend contextual bandits to the setting of either high-
dimensional contexts or non-linear rewards [6,11,18,21], no method so far can
resolve these two challenges simultaneously with acceptable efficiency. Lasso
regression is investigated for the sparse contexts [6,11,18]. Although its regret
bound [11] is superior to LinUCB, optimising a lasso regression problem online
makes it too time-consuming to be used in practice. CBRAP [21] adopts random
projection to map the high-dimensional contexts onto a low-dimensional space.
Although it improves efficiency, its performance heavily relies on a good initial
projection matrix, leading to poor robustness. KernelUCB [16] adopts kernel
functions to handle non-linear rewards but it uses matrix inversion which incurs
high computation costs. Neural-Linear [22] and NeuralUCB [24] adopt neu-
ral networks to model rewards, each with issues mentioned above. In InlUCB,
we propose a novel interconnected-update framework that makes our method
unique and allows our method to overcome the shortcomings of the existing
neural contextual bandit methods.
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3 Problem Formulation and Background

Problem Setting. We consider the stochastic contextual bandit problem with
K arms (actions) and T steps. At each step t ≤ T , the agent observes the
context (feature) xt,a ∈ R

d of each arm a with ‖xt,a‖2 ≤ 1, where the contextual
dimension d is usually very large in applications. An algorithm selects an action
at ∈ [K] at step t and receives a reward rt,at

∈ [0, 1], where [K] denotes the set
{1, 2, . . . ,K}. The reward rt,at

is an independent random variable conditioned
on context xt,at

. The regret of the algorithm is defined as:

RT �
T

∑

t=1

rt,a∗
t

−
T

∑

t=1

rt,at
, (1)

where a∗
t = arg maxa∈[K] E[rt,a|xt,a] is the optimal action at step t that max-

imises the expected reward. The goal is to find an algorithm to minimise RT .
We focus on the cases where the reward function is non-linear in terms of

contexts. To capture this fact, for each step t, we assume that the reward is
generated by:

rt,a � g(xt,a) + ξt, (2)

where g : R
d → R is an unknown non-linear function satisfying g(x) ∈ [0, 1] for

any x, and ξt is a sub-Gaussian noise satisfying E[ξt] = 0. The sub-Gaussian
noise is a standard assumption in the stochastic bandit literature, which can
represent any bounded noise [14].

Neural Contextual Bandits. Neural contextual bandit methods [15,22,24]
compute the rewards using a neural network. In this way, the method handles
high dimensional contexts and non-linear rewards. Formally, the function g in
Eq. (2) is realised by:

g(xt,a) = f�
� (xt,a)θ�, (3)

where f� : R
d → R

p represents all layers except the last that satisfies
‖f�(xt,a)‖2 ≤ 1, θ� represents the weights of the last linear layer that satis-
fies ‖θ�‖2 ≤ 1, and p � d. We call f and θ the dimension reduction mapping
and latent weight vector, respectively. Intuitively, f serves as a non-linear trans-
formation that converts raw contexts of a large dimension d to latent features of
a much lower dimension p, and the reward function is linear in latent features.
Since a neural network with suitable size and activation functions is a global
function approximator [5], it is reasonable to assume that Eq. (3) expresses the
underlying reward function, i.e., there exists a pair (f�,θ�) that fulfils Eq. (3).

We introduce the two major neural contextual bandits: (1) Neural-Linear
[15,22] trains θ by applying linear contextual bandit methods (e.g., UCB or
TS) on top of f for exploration. The training of f (representation learning) and
θ (exploration) are executed at different time-scales. Whenever the exploration
is terminated, we turn to representation learning by training the entire model
(both f and θ) end-to-end. Although online exploration quantifies uncertainties
over rewards, end-to-end training makes Neural-Linear ignore this important
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information in representation learning. This may lead to a low convergence speed
and thereby result in high regrets. Notably, the regret bound of Neural-Linear
is still unknown. (2) and NeuralUCB [24] provides a regret bound of ˜O(d̃

√
T )

through leveraging the neural tangent kernel (NTK) [10] to characterise a fully
connected neural network, where d̃ is the effective dimension of a NTK matrix.
However, reformulating a neural network as a NTK matrix requires updating all
parameters (both f and θ) of a neural network at once after each step of online
decision-making, making NeuralUCB too inefficient to be used in practice.

Fixed

Fixed

UCBMSE Loss

Online Data

OnlineOffline

Fig. 1. The process flow of InlUCB framework. Solid and dashed arrows represent
input/output and sampling, respectively.

4 The Interconnected Neural-Linear UCB Framework

To address the need for novel contextual bandit methods with non-linear rewards
and high-dimensional contexts, we propose a new contextual bandit framework
called interconnected neural-linear UCB (InlUCB). Following the neural con-
textual bandits regime, InlUCB alternates between the training of f and θ.

The key to InlUCB is an interconnected online-offline mechanism rather
than end-to-end training. Fixing f , the online process tunes θ using UCB to
balance exploration and exploration. In turn, freezing θ, the offline process
updates f based on samples collected by online exploration. Figure 1 depicts
this mechanism. This interconnected update mechanism overcomes the short-
coming of Neural-Linear in the sense that representation learning and online
exploration are alternatively performed to boost each other. Besides, the method
has two extra advantages: (1) online exploration is an effective way to sample
data since initially data is often too scarce to train the entire model offline, i.e.,
the cold-start problem; (2) moving the heavy workload of updating hidden layers
offline can significantly improve online efficiency. Formally, let n ∈ [N ] denote
the index of iterations, and denote by θn and fn the values of θ and f after the
nth iteration, respectively. Let Dn denote the offline dataset at the nth iteration.
Initially, we assume D0 = ∅. We next formally introduce the two processes.
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Online Exploration. Each iteration starts from the online exploration. In the
nth iteration, we fix fn−1 to extract a latent feature fn−1(xt,a) for each context
xt,a. As for updating θ, we apply LinUCB on top of the extracted latent features
for exploration. The basic idea is to maintain a reward predictor (i.e., predicted
expected reward) r̂t,a and a confidence interval around it with width wt,a that
captures the variance of rewards. Then, at each step t, we choose the action with
the highest upper confidence bound r̂t,a + wt,a. Formally, we use θn,t to denote
the estimation of θ at the tth step of the nth iteration. For each action a, the
reward predictor and the width of the confidence interval are given by

r̂t,a � f�
n−1(xt,a)θn,t, and wt,a � α

√

f�
n−1(xt,a)A−1

n,tfn−1(xt,a), (4)

where α > 0 is a given constant and

An,t � Ip +
∑t−1

τ=1
fn−1(xτ,aτ

)f�
n−1(xτ,aτ

). (5)

Here, Ip denotes the identity matrix of size p which is to guarantee the non-
singularity of An,t. After choosing an action with the highest r̂t,a + wt,a, we
update θ as follows:

θn,t = A−1
n,tbn,t, where bn,t �

∑t−1

τ=1
fn−1(xτ,aτ

)rτ,aτ
. (6)

Online training terminates after T steps (T is a predefined constant). Then,
accumulated online samples {(xt,at

, rt,at
)}T

t=1 are appended to the offline dataset
Dn−1, yielding Dn.

Offline Representation Learning. In the nth iteration of offline learning, we
fix θn and train fn on Dn by minimising the mean square error (MSE) loss:

LDn
(f ;θn) � E(x,r)∼Dn

[

(f�(x)θn − r)2
]

, (7)

Since the sub-Gaussian noise on rewards has zero mean, the minimiser of Eq. (7)
is an unbiased estimator of the optimal f w.r.t. θn. Algorithm 1 presents the
pseudocode of InlUCB.

5 Regret Analysis

This section studies the regret bound of InlUCB. By Eq. (1), the total regret
of InlUCB with N iterations, each of T online steps, can be written as

RN,T =
N

∑

n=1

Rn,T �
N

∑

n=1

[

T
∑

t=1

rn,t,a∗
t

−
T

∑

t=1

rn,t,at

]

, (8)

where Rn,T denotes the regret at the nth iteration. We study the per-iteration
regret Rn,T . The total regret can then be obtained by summing Rn,T over all N
iterations. For simplicity, we will omit the iteration index n in some notations.
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Algorithm 1. InlUCB

Input: α ∈ R
+, N, T, K, d ∈ N, p < d ∈ N

Output: f : R
d → R

p and θ ∈ R
p.

Initialisation: D0 = ∅, random f0, A
′ ← Ip and b′ ← 0p

1: while n = 1, 2, . . . , N do
2: � Online Exploration
3: A ← A′, b ← b′

4: for t = 1, 2, . . . , T do
5: θn,t ← A−1b

6: Observe K features xt,1,xt,2, . . . ,xt,K ∈ R
d

7: for each arm a = 1, 2, . . . , K do

8: Compute pt,a ← f�
n−1(xt,a)θn,t+ α

√
f�
n−1(xt,a)A−1fn−1(xt,a)

9: end for
10: Choose action at ← arg maxa∈[K] pt,a

11: Observe payoff rt,at ∈ [0, 1]

12: A ← A + fn−1(xt,a)f�
n−1(xt,a)

13: b ← b + fn−1(xt,a)rt,at

14: end for
15: θn ← θn,T , Dn ← Dn−1 ∪ {(xt,at , rt,at )}T

t=1
16: � Offline Representation Learning
17: Fix θn, train f(n) on Dn through gradient descent on the loss defined in Eq. (7)

18: end while

Recall that the agent always pulls the arm with the highest UCB which is a sum
of the reward predictor r̂t,a and a width term wt,a. Therefore, to bound Rn,T ,
we need to know the error in reward prediction:

|r̂t,a − f�
� (xt,a)θ�| = |f�

n−1(xt,a)θn,t − f�
� (xt,a)θ�|.

Same as LinUCB, the reward predictors r̂t,a in InlUCB are sums of depen-
dent variables since predictions in later steps are made using previous outcomes,
which prevents us from applying Azuma-Hoeffding inequality to control the
error in reward prediction. Thus, directly analysing regret bound of InlUCB
is intractable. To sidestep this problem, we use the construction in [3] to mod-
ify the online learning of InlUCB into BaseInlUCB which assumes statistical
independence among samples. We then use a master algorithm SupInlUCB to
pull arms in a way that ensures this assumption holds. The pseudocode for both
algorithms can be found in Appendix A. In the literature of contextual bandits,
due to the intractability of the regret bound of the original algorithm, the con-
vention is to instead analyse the regret bound of the master algorithm [3,7,16],
which can be viewed as an appropriate modification of the original algorithm.
Following this convention, we next analyse the regret bound of SupInlUCB.

However, although the above technique ensures independence among sam-
ples, directly calculating the error in reward prediction is still intractable due to
the coupling between the estimation errors of θn,t and fn−1 in the total error
of reward prediction. One of our main contributions is proposing a method to
separate them by defining the offline error:

εn � max
x∈Rd

∣

∣f�
n−1(x)θ� − f�

� (x)θ�

∣

∣ ∈ [0, 1], (9)

and the online error: γn(xt,a) �
∣

∣f�
n−1(xt,a)θn,t − f�

n−1(xt,a)θ�

∣

∣ .
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Intuitively, the offline error and online error capture the effects of the estima-
tion error of fn−1 and θn,t arising from representation learning and exploration,
respectively. By applying a triangle inequality, we derive an upper bound of the
error in reward prediction by splitting it into online and offline errors:

|r̂t,a − f�
� (xt,a)θ�| ≤ γn(xt,a) + εn.

Our main result given below is derived by bounding γn(xt,a), and leaving εn as
a factor in the total regret. The proof is given in Appendix B.

Theorem 1. If SupInlUCB is run with α =
√

1
2 ln 2NTK

δ , with probability at
least 1 − δ, the regret of the algorithm is

O

((

N + T

N
∑

n=1

εn

)

√

Tp ln3(NTK ln(T )/δ)

)

. (10)

Remark 1. Theorem 1 provides a general expression of the regret bound which
implies that the rate of convergence of the sequence of offline errors {εn}N

n=1

determines the order of the regret bound. Generally, we know
∑N

n=1 εn ≤ N as
εn ≤ 1. But substituting N for

∑N
n=1 εn leads to a loose bound ˜O(NT

√
Tp). In

general, the bound of εn depends on the complexity of the underlying dimension
reduction mapping f� and the error of estimating f� using the neural network.
Thus, we cannot derive a universal non-trivial upper bound for εn as we cannot
guarantee that the neural network attains global minimum. While, if we discard
the error of neural networks and assume the latent feature is in a simple form
(e.g., linear in raw contexts), we can derive a tighter regret bound by further
bounding εn (see Corollary 1). Also, empirically, we show that εn decreases fast
with the number of iteration n increases (see next section).

Remark 2. We relate our regret analysis of InlUCB to that of LinUCB [7]. As
for InlUCB, if we known in davance that the reward function degenerates to a
linear mapping, offline representation learning is no longer needed, which means
that only online exploration remains (i.e., N = 1) and the offline error would
be zero (i.e., εn = 0). Then in this case, the regret bound in Theorem 1 reduces
to

√
Td ln3(TK ln(T )/δ), which is the same as that of LinUCB [7, Theorem 1].

This suggests that InlUCB recovers LinUCB as a special case.

Corollary 1. Assume that f� is linear, i.e., f�(x) = Q�x where Q� ∈ R
p×d.

Let InlUCB use a fully connected network of three layers, each of size d, p and
1. Also assume for all n ∈ [N ], (fn,θn) minimises LDn

(f ;θ). If SupInlUCB

is run with α =
√

1
2 ln 2NTK

δ , then there exist constants σ ∈ [0, 1] and Cσ ≥ 0
such that with probability at least (1 − δ)(1 − σ), the regret is

O

(

(

N + T + Cσ

√
NT

)

√

Tp ln3(NTK ln(T )/δ)
)

.
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Remark 3. The regret of random selection is O(NT ). Thus, the regret bound
in Corollary 1 is non-trivial as the magnitude of ˜O((N + T + Cσ

√
NT )

√
Tp) (p

is constant) is smaller than that of O(NT ). On the other hand, the non-trivial
regret bound of other neural contextual bandit methods, e.g., NeuralUCB [24],
also relies on the assumption that the error of neural networks can be bounded.

6 Experiments

We empirically evaluate the accuracy (cumulative regret) and efficiency (run-
time per step) of InlUCB on both high-dimensional synthetic and real-world
datasets with non-linear rewards. We adopt eight bandit methods as baselines:
(1) LinUCB [7], a linear contextual bandit method using UCB for exploration.
Its regret bound is ˜O(

√
dT ); (2) LinTS [2], a linear contextual bandit method

using Thompson sampling (TS) for exploration. It has a regret bound of ˜O(d
√

T ).
(3) CBRAP [21], a method that uses random projection to do dimension reduc-
tion and UCB for exploration. (4) KernelUCB [16], a method that ultilises
kernel functions for handling non-linear rewards and uses UCB for exploration.
Its regret bound is Õ(

√
d̃T ), where d̃ is the effective dimension of kernel matrixes.

(5) NeuralUCB [24], it uses a fully connected neural network for reward predic-
tion, uses UCB for online exploration, and updates the whole neural network at
each step. It has a regret bound of ˜O(d̃

√
T ); (6) Neural-Linear [22], a method

that extracts latent features using NN and use TS on the top of the last linear
for exploration. The regret bound is not given by authors. (7) EXP3 [4], a rep-
resentative adversarial bandits algorithm that pulls arms with probabilities and
adjusts such probabilities based on received rewards; (8) ε-Greedy: a classic
exploration method; with high probability 1 − ε pulling the arm with highest
average reward in history and with small probability ε pulling an arm randomly.

6.1 Experimental Setting

For UCB-based methods, we tune the constant α through a grid search over
{0.01, 0.1, 1}. For TS-based methods, we do grid search over {0.01, 0.01, 1} for
the hyper-parameter that controls the covariance of the prior and posterior dis-
tributions. For KernelUCB, we adopt radial basis function (RBF) kernel and
empirically set the parameters with best results. For EXP3 and ε-Greedy, we
do grid search for the exploration parameter over {0.01, 0.1, 1}. For InlUCB,
NeuralUCB and Neural-Linear, we use the same neural network structure:
a fully connected network of four layers of size d, d, p and 1, respectively. For
CBRAP, the dimension after projection is also p. We vary p from 10 to 100 with
step size 10, and vary T from 100 to 1000 with step size 100. For all grid-searched
parameters, we choose the best setting for comparisons. For all contextual ban-
dit methods we test their efficiency with respect to the context dimension and
the number of steps. Results are averaged over 10 independent runs.
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Table 1. Real-world Datasets statistics.

Dataset Feature dimension Number of classes Number of samples

MUSIC 518 193 106,574

FONT 409 20 100,000

MNIST 784 10 60,000

Synthetic Datasets. We generate synthetic datasets with contextual dimension
d = 500 and K = 200 arms. Contextual vectors are chosen uniformly at random
from the unit ball. We use three artificial non-linear reward functions: g(x) =
cos(3x�a) (shorten as COS), g(x) = 10(x�a)2 (SQU), and g(x) = exp(x�a) (EXP),
where a is randomly generated from uniform distribution over unit ball. These
typical functions cover a wide range of non-linear mappings [24].

Real-World Datasets. We use three real-world classification datasets: MUSIC
and FONT from the UCI Machine Learning Repository [8] and the MNIST dataset
[12]. Table 1 lists key statistics of the datasets. Following [15], we transform
classification tasks into bandit tasks: each step we randomly select one sample;
the agent gets reward 1 if it classifies the sample correctly, and 0 otherwise.

6.2 Results

Figure 2 and Table 2 report results of cumulative regrets and runtime per step,
respectively. Overall, InlUCB exhibits the lowest regret and superior efficiency
in all cases. Specifically, only InlUCB shows convergence in synthetic datasets,
which indicates the fast decrease of offline errors with the number of iterations
grows. For real-world datasets, although we do not observe convergence in some
cases, InlUCB achieves the lowest regret on all tasks.

Table 2. Results for runtime per step (in milliseconds).

Algorithm COS SQU EXP MUSIC FONT MNIST

LinUCB 0.9 0.6 0.6 0.8 0.5 0.5

LinTS 6.6 6.5 6.6 6.5 4.7 4.2

CBRAP 0.7 0.9 0.9 0.9 0.1 0.1

KernelUCB 2089.4 2114.8 1850.7 2128.1 2100.6 2228.0

NeuralUCB 1121.2 1075.2 1003.1 1027.3 1193.5 1239.6

Neural-Linear 8.7 6.1 6.0 7.1 1.8 2.3

EXP-3 0.3 0.6 0.6 0.5 0.08 0.08

ε-Greedy 0.01 0.01 0.01 0.009 0.04 0.004

InlUCB (ours) 4.3 5.6 5.7 9.5 3.8 5.0
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Fig. 2. Results for cumulative regrets.

LinUCB and LinTS show low regrets in some cases but fail to converge, as
they are able to take use of complete contextual information but cannot handle
non-linear reward functions.

KernelUCB costs more than 10s after 1500 steps since it needs to invert
a matrix whose dimension is proportional to the number of steps, which gives
the evidence that it is inefficient for practical use. Although Neural-Linear
is efficient, it suffers from high regrets since the end-to-end training framework
prevents the online exploration from effectively boosting representation learning.
CBRAP is relatively efficient but has high regret since empirically we find that
it is really sensitive to the initial value of the projection matrix. The classical
probability-based exploration techniques EXP3 and ε-Greedy have the highest
regret although they are most efficient. The reason is that they lack the capability
of modeling environments with contextual information.

Results of sensitivity test (see Appendix C.1) show that NeuralUCB is not
applicable to environments with high dimensional contexts. Thus, the result of
NeuralUCB in Fig. 2 is reported using a selected subset of features that result
in the best performance. Even though NeuralUCB runs on a subset of original
contexts, it has extremely high runtime cost. In contrast, InlUCB is three orders
of magnitude faster than NeuralUCB for online decision making. We also show
that InlUCB has comparable cumulative regrets to NeuralUCB on the same
subset of features in Appendix C.2. Thus, we conclude that InlUCB achieves a
better balance between the accuracy and online efficiency.
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7 Conclusion

We propose InlUCB, the first contextual bandit method that can simultane-
ously handle high dimensional contexts and non-linear rewards with high online
efficiency. InlUCB uses neural networks to model reward functions and cre-
atively adopts an interleaving online/offline update mechanism to combine effi-
cient online exploration and representation learning. We give a general expression
of regret bound for InlUCB and present a tighter regret bound under certain
conditions. Results of experiments on synthetic and real-world datasets confirm
the high accuracy and efficiency of InlUCB.
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