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General Chairs’ Preface

On behalf of the Organizing Committee, it is our great pleasure to welcome you
to the 26th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD2022), held in Chengdu, China, during May 16–19, 2022. Starting in 1997,
PAKDD has long established itself as one of the leading international conferences in
data mining and knowledge discovery. PAKDD provides an international forum for
researchers and industry practitioners to share their new ideas, original research results,
and practical development experiences from all Knowledge Discovery and Data Mining
(KDD) related areas. In response to the COVID-19 pandemic and the need for social
distancing, PAKDD 2022 was held as a hybrid conference for both online and onsite
attendees.

Our gratitude goes first and foremost to the researchers, who submitted
their work to PAKDD 2022. We would like to deliver our sincere thanks for
their efforts in research, as well as in preparing high-quality presentations. We
also thank all the collaborators and sponsors for their trust and cooperation. It
is our great honor that three eminent keynote speakers joined the conference:
Jian Pei (Simon Fraser University, Canada), Bernhard Schölkopf (Max Planck
Institute for Intelligent Systems, Germany) and Ji-Rong Wen (Renmin University,
China). They were extremely professional and have high reputations in their respec-
tive areas. We enjoyed their participation and talks, which made the conference one of
the best academic platforms for knowledge discovery and data mining.

We would like to express our sincere gratitude to the contributions of Steering
Committee members, Organizing Committee members, Program Committee members
and anonymous reviewers, led by ProgramCommitteeCo-chairs: JoãoGama (University
of Porto), Tianrui Li (Southwest JiaotongUniversity), andYangYu (NanjingUniversity).
We are also grateful for the hosting organization Southwest Jiaotong University which
is continuously providing institutional and financial support to PAKDD 2022. We
feel beholden to the PAKDD Steering Committees for their constant guidance and
sponsorship of manuscripts.

Finally, our sincere thanks go to all the participants and volunteers. We hope all of
you enjoyed PAKDD 2022.

April 2022 Enhong Chen
Yu Zheng



PC Chairs’ Preface

It is our great pleasure to present at the 26th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD 2022) as the Program Committee Chairs. PAKDD
is one of the longest established and leading international conferences in the areas of
data mining and knowledge discovery. It provides an international forum for researchers
and industry practitioners to share their new ideas, original research results, and practical
development experiences from all KDD related areas, including data mining, data
warehousing, machine learning, artificial intelligence, databases, statistics, knowledge
engineering, big data technologies and foundations.

This year PAKDD received 627 submissions, among which 69 submissions
were rejected at a preliminarily stage due to the policy violations. There were 320
Program Committee members and 45 Senior Program Committees members involved
in reviewing process. Each submission was reviewed by at least three different
reviewers. Over 67% of those submissions were reviewed by four or more reviewers.
Eventually, 121 submissions were accepted and recommended to be published, resulting
in an acceptance rate of 19.30%. Out of these, 29 submissions were about applications,
4 submissions were related to big data technologies, 46 submissions were on data sci-
ence and 42 submissions were about foundations. We would like to appreciate all PC
members and reviewers, who offered a high-quality program with diligence on PAKDD
2022.

The conference program featured keynote speeches from distinguished researchers
in the community, most influential paper talks, cutting-edge workshops and
comprehensive tutorials.

We wish to sincerely thank all PCmembers and reviewers for their invaluable efforts
in ensuring a timely, fair, and highly effective PAKDD 2022 program.

April 2022 João Gama
Tianrui Li
Yang Yu
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Abstract. Few-shot learning methods aim to embed the data to a low-
dimensional embedding space and then classify the unseen query data to the seen
support set. While these works assume that the support set and the query set lie
in the same embedding space, a distribution shift usually occurs between the sup-
port set and the query set, i.e., the Support-Query Shift, in the real world. Though
optimal transportation has shown convincing results in aligning different distri-
butions, we find that the small perturbations in the images would significantly
misguide the optimal transportation and thus degrade the model performance. To
relieve the misalignment, we first propose a novel adversarial data augmentation
method, namely Perturbation-Guided Adversarial Alignment (PGADA), which
generates the hard examples in a self-supervised manner. In addition, we intro-
duce Regularized Optimal Transportation to derive a smooth optimal transporta-
tion plan. Extensive experiments on three benchmark datasets manifest that our
framework significantly outperforms the eleven state-of-the-art methods on three
datasets. Our code is available at https://github.com/772922440/PGADA.

Keywords: Few-shot learning · Adversarial data augmentation · Optimal
transportation

1 Introduction

Recently, deep learning models have celebrated success in several computer vision
tasks [17,18,22], which require large amounts of labeled data. However, collecting suf-
ficient labels to train the model parameters involves considerable human effort, which is
unacceptable in practice [12]. Moreover, the labels of training data and testing data are
usually disjoint, i.e., the labels in the testing phase are unseen in the training phase. In
contrast, few-shot learning aims to learn the model parameter by a handful of training
data (support sets) and adapt to the testing data (query sets) [2,11,30], effectively. In
the testing phase, the model classifies the query set into the support sets according to
the distance of their embeddings.

While these approaches extract rich contextual features from the images, the embed-
dings from the support set and the query set usually exhibit certain distribution shifts,
i.e., the Support-Query Shift [2]. For example, the images are captured by various
devices, e.g., smartphones and single-lens reflex cameras in different environments,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13280, pp. 3–15, 2022.
https://doi.org/10.1007/978-3-031-05933-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05933-9_1&domain=pdf
https://github.com/772922440/PGADA
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Query Set

Perturbed images Embedding model Feature space Optimal transport Classify

Support Set

Support
Query

Shift

Fig. 1. (a) Illustration of the support-query shift in a 3-way 1-shot classification task, where the
support set and the query set are embedded into different distributions. (b) First, we embed the
support set and the query set via an embedding model φ into a feature space. Next, optimal
transportation is employed to align the support set (red) and the query set (green). But, the small
perturbations may misguide the transported results, leading to wrong predictions, i.e., classify the
green circle to the red triangle. (Color figure online)

e.g., foggy and high-luminance. Since the learned embeddings are located in different
spaces, degrading the model performance, optimal transportation [8] has been proposed
to stage the embeddings from different domains into the same latent space. However,
in this paper, we theoretically prove that optimal transport can be easily misguided by
small perturbations in the images (as illustrated in Fig. 1).

Meanwhile, several training techniques [13,36] have been proposed to derive a more
robust embedding model against the perturbations. On the one hand, data augmentation
methods transform a single image [25] or combine multiple images [33,34] to create
more training samples at pixel level. However, these methods cannot create new infor-
mation which is not included in the given data [36]. On the other hand, adversarial train-
ing methods such as projected gradient descent (PGD) [23], AugGAN [16] are used to
find the perturbed images to confuse the model, i.e., predicting an incorrect label, as
the additional training samples. However, these methods usually require numerous iter-
ations to generate the adversarial examples by optimizing a predefined adversarial loss,
which is computationally intensive. Besides, a clear trade-off has been shown between
the accuracy of a classifier and its robustness against adversarial examples [13].

To address the above issues, we propose Perturbation-Guided Adversarial Align-
ment (PGADA) to relieve the negative effect caused by the small perturbations in the
support-query shift. PGADA aims to generate the perturbed data as the hard examples,
i.e., less similar to the original data point in the embedding space but still classified
into the same class. Next, the model is trained on these generated data by minimizing
the empirical risk to enhance the embedding model’s robustness of noise tolerance. We
further introduce smooth optimal transport, which regularizes the negative entropy of
the transportation plan to take more query data points as the anchor nodes, leading to a
higher error tolerance of the transportation plan.

The contributions of this work are summarized as follows.

– We formally investigate how the perturbation in the images would affect the results
of optimal transportation under the Support-Query Shift.

– We propose Perturbation-Guided Adversarial Alignment (PGADA) to relieve the
misalignment problem from small perturbations via deriving a more robust feature
extractor and a smooth transportation plan under distribution shifts.
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– Extensive experiments manifest that PGADA outperforms eleven state-of-the-art
methods by 10.91% on three public datasets.

2 Preliminary

2.1 Few-shot Learning

Given a labeled support set S = ∪c∈CSc, with C classes, where each class c has |Sc|
labeled examples, the goal of few-shot learning is to classify the query setQ = ∪c∈CQc

into these C classes. Let φ denotes the embedding model φ(x) ∈ Rd, which encodes
the data point x to the d-dimensional feature. φ is learned from a labeled training set
D = {xi, yi}i∈[1,|D|], where xi is the data point and yi is the corresponding label. The
embedding model can be learned by empirical risk minimization (ERM),

min
φ,θ

E{x,y}∼D[L(θ(φ(x)), y)],

where θ is a trainable parameter to map the embedding φ(xi) to the class yi.
Through the embedding model φ, we can encode the data points in support set (i.e.,

xs,i ∈ S) and query set (i.e., xq,j ∈ Q) to the feature φ(xs,i) and φ(xq,j), respectively.
These features are used as input to a comparison function M , which measures the dis-
tance, e.g., l2-norm, between two samples. Specifically, we classify the query example
φ(xq,j) by averaging the embedding φ(xc

s,i) of the support set in class Sc, which can
be written as follows.

φc(xs) =
1

|Sc|
∑

xs,i∈Sc

φ(xs,i), yq = argmin
c

M(φc(xs), φ(xq,j)).

2.2 The Support-Query Shift and Optimal Transportation

The conventional few-shot learning methods assume the support set and the query set lie
in the same distribution. A more realistic setting is that the support set S and the query
setQ follow different distributions, i.e., the support-query shift [2]. While these two sets
are sampled from different distributions μs and μq, the embeddings for the support set
S (i.e., φ(xs)) and the query set Q (i.e., φ(xq)) are likely to lie in different embedding
spaces. Thus, it would lead to a wrong classification result via the comparison module
M(φ(xs), φ(xq)) [2].

To tackle with the support-query shift, optimal transportation [8] is one of the effec-
tive techniques to align different distributions by a transportation plan π(μs, μq), which
can formally be written as follows.

W (μs, μq) = inf
π∈Π(μs,μq)

∫
w(xs, xq)dπ(xs, xq), (1)

where Π(μs, μq) is the set of transportation plans (or couplings) and w is the cost
function, and W is the overall cost of transporting distribution μs to μq. In our practice,
we select l2-norm of the embedding vector, i.e., ‖φ(xs) − φ(xq)‖22, as our distance
function w.
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Since there are only finite samples for both the support set xs,i ∈ S and the query
set xq,j ∈ Q, the discrete optimal transportation adopts the empirical distributions to
estimate the probability mass function μ̂s =

∑
δs,i, and μ̂q =

∑
δq,j , where δs,i and

δq,j is the Dirac distribution. We obtain

π∗ = argmin
π

∑

xs,i∼μ̂s

xq,j∼μ̂q

w(xs,i, xq,j)π(xs,i, xq,j) (2)

Then, Sinkhorn’s algorithm [9] is adopted to solve the optimal transportation plan π∗.
Equipped with the optimal plan π∗, we transport the embeddings of the support set

φ(xs,i) to ẑs,i by barycenter mapping [8] to adapt the support set to the query set.

φ̂(xs,i) =

∑
xq,j∈Q π∗(xs,i, xq,j)φ(xq,j)∑

xq,j∈Q π∗(xs,i, xq,j)
. (3)

φ̂(xs,i) denotes the transported embedding of xs,i. Therefore, we can correctly measure
the distance metric M(φ̂(xs,i), φ(xq,j)) in a shared embedding space.

3 Methodology

Here, we first investigate the misestimation of optimal transport of perturbed images.
Then, we illustrate our framework, namely Perturbation-Guided Adversarial Alignment
(PGADA), which relieves the perturbation in the images and derives a more robust
embedding model. In addition, a regularized optimal transportation is introduced to
align the support set and the query set better, which takes more data points from the
query set as anchors to enhance the error tolerance.

3.1 Motivation

We observe that optimal transportation has a challenge, which comes from the quality of
the embedding φ(x), i.e., the perturbation in the image may misguide the transportation
plan. For example, clean images’ embeddings may give a better transportation plan
than those of foggy images. With some derivation, we formally estimate the error of
transported embedding φ̂(xs,i) in Eq. (3) as follows,

Theorem 1. The error of the transported embedding is

E[‖φ̂(xs,i) − φ̂σ(xs,i)‖22] =
√

d(σ2
s + σ2

q),

where φ̂σ(xs,i) is the transported embedding from the perturbed distribution
Wσ(μs, μq). Wσ(μs, μq) := W (μs ∗ Nσs

, μq ∗ Nσq
) denotes the original support and

query set distributions μs and μq being perturbed with Gaussian noises σs and σq, and
∗ is the convolution operator.

As the noise level, i.e., σs, and σq, increases, it is more likely to mislead the trans-
portation plan and alleviate the model’s performance. Therefore, it’s non-trivial to learn
a better embedding model φ having a better capability of noise tolerance such that
φ(xp) ≈ φ(x), where xp is original image x with small perturbation.
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TrainingTraining

Fig. 2. Illustration of Perturbation-Guided Adversarial Alignment (PGADA).

3.2 Perturbation-Guided Adversarial Alignment (PGADA)

According to the Theorem 1, the optimal transport can be easily misguided by consid-
ering perturbed images. The goal of PGADA is to generate a set of augmented data to
derive a more robust embedding model and relieve the perturbation in images. Recently,
MaxUp [13] synthesized augmented data byminimizing the maximum loss over the aug-
mented data xp, which can be formally written as follows.

min
φ,θ

E{x,y}∼D[max
xp

L(θ(φ(xp)), y)], (4)

and can be easily minimized with stochastic gradient descent (SGD). Specifically,
MaxUp samples a batch of augmented data xp and compute the gradient of the data
point which has the highest loss L. Therefore, the model would learn the hardest exam-
ple over all augmented data xp.

However, it’s hard to collect sufficient labels for each class in few-shot learning.
Therefore, instead of maximizing the empirical risk of the labeled data by Eq. (4), we
introduce a self-supervised learning-based objective.

min
φ

E{x}∼D[max
xp

M(φ(xp), φ(x))], (5)

where M is the comparison module in few-shot learning, e.g., l2-norm. By maximizing
the distance between φ(xp) and φ(x), PGADA generates perturbed image xp, which is
less similar to the original image x in embedding space, as a hard example. To effec-
tively generate the perturbed data, we introduce a semantic-aware perturbation genera-
tor to synthesize the augmented data.

xp = G(x) , s.t. ‖xp − x‖22 ≤ ε, (6)

where G is a model to generate the perturbed image xp.1 Besides, we utilize
dropout [14] to provide the randomness of our model. Compared to conventional adver-
sarial training techniques [23,31], which usually sample the perturbed images from an
i.i.d distribution xp ∼ P (·|x), e.g., Gaussian distribution, our method can encode the
semantic of the image x without requiring many samples to achieve convergence [13].

1 We employ a 3-layer convolutional neural network as our G.
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At the training phase (illustrated in the left of Fig. 2), we also minimize the empirical
risk of the perturbed data xp to ensure that the generator persists enough information to
predict the original label y with KL divergence [22]. The objective is,

max
G

M(φ(G(x)), φ(x)) − KL(θ(φ(G(x))), y). (7)

Then, we adopt stochastic gradient descent (SGD) [3] to train our generator G. It is
worth noting that we fix the parameters of the embedding model φ and θ when training
the generator G to stabilize the training process [1].

In addition, we minimize the KL divergence of the original data x and the perturbed
data point xp to train the embedding model (illustrated in the right of Fig. 2).

Lori = KL(θ(φ(x)), y)), Ladv = KL(θ(φ(xp)), y)).

To enhance the generalizability of the embeddings, we also leverage the unlabeled
data by the auxiliary contrastive self-supervised learning [6]. At each iteration, we sam-
ple N images either from training or testing set,2 and generate 2 augmentations for each
images, i.e., each augmented image has 1 positive example and 2N − 1 corresponding
negative examples with the self-supervised loss defined as follows.

Lself =
1
2N

N∑

k=1

[	(2k − 1, 2k) + 	(2k, 2k − 1)]. (8)

	 denotes the NT-Xent Loss [6], which can be written as,

	(i, j) = − log
exp (cos(zi, zj)/τ)

∑2N
k=1 1k �=i exp (cos(zi, zk)/τ)

,

where z∗ is defined as Wφ(x∗), and W is a trainable projection matrix. Summing up,
the overall all objective becomes

min
φ,θ

Lori + λ1Ladv + λ2Lself , (9)

where λ1 and λ2 are the trade-off parameters between each loss. Similarly, the classifier
θ is trained by minimizing Lori and Ladv. The pseudo code is presented in Algorithm 1.

3.3 Regularized Optimal Transportation

After deriving a robust embedding model, we extend the original transportation (Eq. 2)
with negative entropy regularization to align the support set and the query set. Thus, the
transport plan is penalized as follows.

π∗ = argmin
π

∑

xs,i∼μ̂s

xq,j∼μ̂q

βw(xs,i, xq,j)π(xs,i, xq,j) + (1 − β)π(xs,i, xq,j) log π(xs,i, xq,j),

(10)

2 Note that it is valid to access the images from testing set in few-shot learning, which is named
transductive few-shot learning [22].
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Algorithm 1. PGADA
Require: Dataset D, comparison module M , learning rate η, trade-off parameters λ1 and λ2.
Ensure: Embedding model φ
1: Initialize generator G, embedding model φ, and classifier θ.
2: for {x, y} in D do
3: # fixed φ, θ, update G
4: xp = G(x), Ldist = −M(φ(xp), φ(x)), Ladv = KL(θ(φ(xp)), y))
5: G ← G − η∇(Ldist + Ladv) # Generated less similar data points with perturbations.
6: # fixed G, update φ, θ
7: xp = G(x), Lori = KL(θ(φ(x)), y)), Ladv = KL(θ(φ(xp)), y))
8: φ ← φ − η∇ (Lori + λ1Ladv + λ2Lself )
9: θ ← θ − η∇ (Lori + λ1Ladv) # classifying the generated samples correctly.

where β is the weight parameter to determine the smoothness of the transportation plan.
In other words, the data points in the support set take more data points in the query set
as anchors for alignment. Accordingly, we can better align the support set to the query
set because each labeled data point is representative, especially with limited data points
and labels.

4 Experiment

We compare PGADA to eleven baselines, including conventional few-shot learning
methods and adversarial data augmentation methods on three real datasets.

4.1 Experiment Setup

Datasets. Following [2], we validate our framework on three benchmark datasets in
few-shot learning. 1) CIFAR100 [20] consists of 60, 000 images, evenly distributed in
100 classes (64 classes for training, 10 classes for validation, and 25 classes for testing).
2) miniImageNet [29] is a subset of ImageNet, with 60, 000 images from 100 classes
(64 classes for training, 16 classes for validation, and 20 classes for testing). 3) FEM-
NIST [5] is a dataset with 805, 263 handwritten characters in 62 classes (42 classes for
training, 10 classes for validation, and 10 classes for testing).

Evaluation. Following [2], the average top-1 accuracy scores with 95% confidence
interval from 2000 runs are reported. All experiments are under the 5-way setting. Note
that we conduct the tasks of 1-shot and 5-shot with 8-target and 16-target, i.e., 1 or 5
instances per class in the support set and 8 or 16 instances in query set, in CIFAR100,
and miniImageNet. While in FEMNIST, we only adopt tasks of 1-shot and 1-target,
restricted by the setting of the dataset.

Implementation. We use a 4-layer convolutional network as the embedding model φ
on CIFAR100 and FEMNIST, and ResNet18 for miniImageNet. As a general frame-
work, we combine PGADA with two classifiers, i.e., ProtoNet and MatchingNet. The
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Table 1. Accuracy comparison of the three datasets with two types of baselines.

Dataset CIFAR100 miniImageNet FEMNIST

8-target 16-target 8-target 16-target 1-target

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot

Few-shot learning

MatchingNet [30] 30.71±0.38 41.15±0.45 31.00±0.34 41.83±0.39 35.26±0.50 44.75±0.55 37.20±0.48 44.22±0.52 84.25±0.71

ProtoNet [26] 30.02±0.40 42.77±0.47 30.29±0.33 42.52±0.41 36.37±0.50 47.58±0.57 35.69±0.45 46.29±0.53 84.31±0.73

TransPropNet [21] 34.15±0.39 47.39±0.42 34.20±0.40 44.31±0.38 24.10±0.27 27.24±0.33 25.38±0.30 28.05±0.30 86.42±0.76

FTNET [10] 28.91±0.37 37.28±0.40 28.66±0.31 37.37±0.33 39.02±0.46 51.27±0.45 39.70±0.40 52.00±0.37 86.13±0.71

TP [2] 34.00±0.46 49.71±0.47 35.55±0.41 50.24±0.39 40.49±0.54 59.85±0.49 43.83±0.51 55.87±0.42 93.63±0.63

Adversarial data augmentation

MixUp [34] 37.82±0.47 52.57±0.47 38.52±0.42 53.33±0.40 42.98±0.54 57.22±0.48 43.64±0.48 57.33±0.42 97.22±0.46

CutMix [33] 39.36±0.48 54.76±0.48 40.05±0.44 55.44±0.40 35.50±0.52 45.50±0.56 35.78±0.48 44.85±0.52 96.89±0.49

Autoencoder [24] 39.05±0.50 53.24±0.47 39.82±0.44 53.88±0.40 45.36±0.56 57.69±0.51 45.65±0.52 57.39±0.44 96.53±0.43

AugGAN [16] 39.54±0.50 53.05±0.47 39.50±0.45 53.42±0.39 44.65±0.55 57.55±0.50 44.91±0.49 57.10±0.42 96.42±0.52

MaxEntropy [36] 38.14±0.40 51.02±0.56 38.21±0.34 51.33±0.52 48.21±0.36 57.67±0.63 48.99±0.21 59.01±0.44 97.19±0.51

MaxUp [13] 34.84±0.44 47.51±0.46 35.20±0.40 47.63±0.39 37.62±0.55 48.65±0.58 38.13±0.50 49.19±0.51 96.48±0.53

Ours

PGADA (ProtoNet) 42.16±0.52 56.52±0.47 42.73±0.46 56.83±0.40 55.44±0.61 67.34±0.49 55.69±0.62 66.90±0.50 97.98±0.40

PGADA (MatchingNet) 42.25±0.53 50.98±0.45 42.60±0.45 51.80±0.39 56.15±0.61 63.08±0.49 56.12±0.57 63.61±0.45 97.96±0.39

hyperparameters are selected by grid search with η = 1e − 3, b = 128, d = 128,
λ1 = 1, λ2 = 1, β = 0.5, respectively. Note that we also employ transductive batch
normalization [21]. Besides, SGD optimizer [19] is adopted to train all models in 200
epochs with early stopping. All experiments are implemented in a server with a Intel(R)
Core(TM) i9-9820X CPU@3.30 GHz, and a GeForce RTX 3090 GPU.

4.2 Quantitative Analysis

Few-Shot Learning. We first compare five state-of-the-art few-shot learning meth-
ods, including i) MatchingNet [30], ii) ProtoNet [26], iii) TransPropNet [21], iv)
FTNET [10], and v) Transported Prototypes (TP) [2]. As shown in Table 1, PGADA
outperforms the best baseline (TP) by at least 13.12% in CIFAR100, 12.51% in mini-
ImageNet, and 4.65% in FEMNIST, respectively. Note that PGADA achieves the best
improvement on miniImageNet, since the image size of miniImageNet is the largest one
compared to CIFAR100 and FEMNIST. In addition, PGADA achieves better improve-
ment in the tasks of 1-shot (i.e., 22.46%) than the tasks of 5-shot (14.77%) averagely,
which demonstrates the robustness of our method, especially with limited labeled data.
Compared with the first four baselines, i.e., ProtoNet, MatchingNet, TransPropNet, and
FTNET, our method achieves consistent improvement, 41.48%, 39.78%, 71.61%, and
54.85%, respectively, since these methods do not consider the inherent distribution shift
between the support and query set. While TP also utilizes optimal transport to align the
support and query set, it still shows relatively weak performance compared to PGADA
because the transportation plan of TP is misguided by the small perturbations in the
images, as proved in Theorem 1. Since PGADA is a model agnostic adversarial align-
ment framework, we equip PGADAwith different classifiers, e.g., ProtoNet and Match-
ingNet. Our framework outperforms the baseline by 39.78% and 21.81% in ProtoNet
and MatchingNet, respectively, manifesting the generability of PGADA. We observe
that ProtoNet outperforms MatchingNet in the 5-shot case as the prototypes reduce the
bias by averaging the embedding vectors, which is more robust.
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Table 2. The results of ablation studies.

Dataset CIFAR100 miniImageNet FEMNIST

8-target 16-target 8-target 16-target 1-target

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot

PGADA 42.16±0.52 56.52±0.47 42.73±0.46 56.83±0.40 55.44±0.61 67.34±0.49 55.69±0.62 66.90±0.50 97.98±0.40

Generator

fixed G 38.58±0.48 52.41±0.47 39.26±0.43 52.67±0.39 43.50±0.55 55.65±0.50 43.48±0.51 55.42±0.43 96.41±0.52

w/o noise 37.16±0.47 50.12±0.46 37.73±0.41 50.50±0.38 44.06±0.56 56.97±0.48 44.42±0.49 56.96±0.42 96.89±0.48

w/o KL 37.30±0.47 50.79±0.46 37.91±0.42 51.35±0.39 44.22±0.54 55.04±0.49 44.21±0.49 53.96±0.41 96.49±0.48

Regularized optimal transport (OT)

w/o OT 35.76±0.41 54.06±0.45 35.66±0.35 54.09±0.38 44.30±0.52 61.23±0.53 44.15±0.46 60.86±0.48 94.03±0.48

TP [2] 34.00±0.46 49.71±0.47 35.55±0.41 50.24±0.39 40.49±0.54 59.85±0.49 43.83±0.51 55.87±0.42 93.63±0.63

TP w/o OT 33.07±0.38 50.99±0.44 32.96±0.32 50.71±0.37 38.07±0.45 55.31±0.51 37.94±0.41 55.11±0.44 91.84±0.56

Self-supervised learning (SSL)

w/o SSL 39.33±0.50 53.66±0.47 40.31±0.44 54.23±0.40 47.96±0.57 61.38±0.49 48.70±0.52 61.44±0.43 97.07±0.48

Adversarial Data Augmentation. In addition, as our method is closed to adversar-
ial data augmentation, we also compares six adversarial data augmentation methods,
including vi) MixUp [34], vii) CutMix [33], viii) Autoencoder [24], ix) AugGAN [16],
x) MaxEntropy [36], and xi) MaxUp [13]. According to Table 1, PGADA outperforms
MixUp and CutMix by 9.12% and 8.84% on average. Compared with the Autoencoder
and AugGAN, our method improved by 11.77% and 12.41% because they synthesize
similar patterns to the original images to alleviate the data sparsity problem, which
cannot create new information that is not included in the given data [13]. In contrast,
PGADA is able to explore the perturbed data that is most likely to confuse the model,
which can be regarded as hard examples. Compared to MaxEntropy, which uses oppo-
site gradients to search the worst data point, we observe that PGADA outperforms Max-
Entropy by 6.52% on average since PGADA adds noise to the generator, increasing the
uncertainty of the generated data. Then, by adding these data points to the training
phase, the model can defense against more unknown perturbations attacking, result-
ing in higher accuracy. In addition, our method also significantly outperforms MaxUp
because the selected worst data point in MaxUp is still near the original images, result-
ing in less robustness. In addition, PGADA is more suitable for few-shot learning, as
it generates the perturbations in a self-supervised manner by comparing the embedding
of original images and perturbed images to explore hard examples.

4.3 Ablation Studies

We conduct ablation studies to evaluate the importance of different modules in PGADA.
Note that we only present the results of PGADA with ProtoNet as PGADA with Match-
ingNet shows similar ones.

Effect of Generator. We compare PGADA with three different variants of the genera-
tor, including i) fixed G, fixing the parameters of the generator, ii) w/o noise, removing
the noise function of the generator, and iii) w/o KL, removing the classification loss of
perturbed data. When we fix the parameters of the generator, we can observe that the
performance of PGADA drops by 8.46%, 24.31%, and 1.63% in three datasets, respec-
tively. It demonstrates that our trainable generator is able to extract the information
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from original images x to generate meaningful perturbed images xp. As we remove the
noise, it also shows a consistent decline in performance, which demonstrates that lever-
aging some randomness in the training process is helpful to explore the perturbation.
Lastly, our method without classification loss (i.e., w/o KL) still outperforms TP [2]. It
demonstrates that the self-supervised-learning-based objective function (Eq. 5) works
well to learn the inherent information from the original data, leading to a robust embed-
ding model. However, the classification loss of the perturbed data also boosts the model
capability as it regularizes the generator by preserving useful information to predict a
correct label, rather than exploration via random walk, which is less efficient.

Effect of Regularized Optimal Transportation. Here, we investigate the effect of
regularized optimal transportation (OT), which plays a crucial role during the evalua-
tion phase in few-shot learning under the support-query shift. It shows that OT signifi-
cantly improves the model’s capability since it aligns the distributions of the support and
query set. Even though the performance of PGADA drops as we remove OT. PGADA
still outperforms the state-of-the-art method TP [2], which also utilizes OT by 4.86%.
Also, compared TP to TP w/o OT, we observe that optimal transportation in TP does not
perform well as in PGADA. This observation echoes the motivation of this work (The-
orem 1), i.e., the small perturbations misguide the optimal transportation plan. Also,
this result manifests that a robust embedding model indeed alleviates the support-query
shift in few-shot learning.

Effect of Self-supervised Learning. Last, we evaluate the effect of self-supervised
learning. Equipped with the contrastive loss, PGADA improves by 5.83%, 12.13%, and
0.94% in three datasets, respectively, since the model leverages the structural informa-
tion of the unlabeled data in the training phase and thus leaps in model performance.
The results also demonstrate that PGADA and self-supervised learning can incorporate
together to explore the information from the training set and testing set to improve the
generality of the embedding model. Understanding why this combination performs well
is interesting for future works.

5 Related Work

Few-Shot Learning. Few-shot learning can be divided into three main categories,
including optimization-based method [11], hallucination-based method [15], and
metric-based method [30]. On the one hand, the optimization-based methods aim to
train a quickly adaptive model and quickly adapt to other tasks by fine-tuning [4,11]. On
the other hand, the hallucination-based methods hallucinate the scarce labeled data by
synthesizing representations [15] with Generative Adversarial Networks (GANs) [1].
Our work is most relevant to the metric-based methods where Vinyals et al. [30] and
Snell et al. [26] introduce the pairwise (and classwise) metrics to determine the label of
the query set according to the support set. Sung et al. [27] model the non-linear relation
between class representations and queries by neural networks. Moreover, cross-domain
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few-shot learning [7] argues that the training and testing sets may not lie in the same dis-
tribution. Thus, several techniques such as optimal transport [8], self-supervised learn-
ing [22,35] have been introduced to relieve the domain shift. While the domain shift
not only occurs between the training set and the testing set but also between the support
set and the query set [2]. In addition, the optimal transport plan can be easily misguided
by the perturbation in the images and leads to unacceptable performance.

Data Augmentation and Adversarial Training. Data augmentation has been widely
used in machine learning with various transformations on a single image [25], e.g.,
resizing, flipping, rotation, cropping, or multiple images, e.g., MixUp [34] and Cut-
Mix [33]. Another line of studies [6,32] works on several self-training schemes by
maximizing the pairwise similarity of augmented data. However, the aforementioned
methods cannot create new information not included in the given data [28] since they
synthesize and train on similar images. In contrast, adversarial training [23,36] has
been developed to defend against adversarial attacks, which conducts the attack to gen-
erate perturbed examples from clean data that the model misclassifies. Then, the gen-
erated examples are used as training data to compensate for the model weaknesses,
contributing to model robustness. A similar work, MaxUP [13], generates a set of ran-
dom augmented data and searches the hardest example that would maximize the clas-
sification loss. However, MaxUp requires numerous random augmented data to explore
more information, thus leading to ineffectiveness. In contrast, PGADA directly gener-
ates hard samples in a self-supervised manner, which is simpler and computationally
efficient.

6 Conclusion

In this paper, we propose Perturbation-Guided Adversarial Alignment (PGADA) to
solve the support-query shift in few-shot learning. Our key idea is to generate perturbed
images that are hard to classify and then train on these perturbed data to derive a more
robust embedding model and alleviate the misestimation of optimal transportation. In
addition, a negative entropy regularization is introduced to obtain a smooth transporta-
tion plan. The experiment results manifest that PGADA outperforms eleven baselines
by at least 13.12% in CIFAR100, 12.51% in miniImageNet, and 4.65% in FEMNIST,
respectively. Future works include applying PGADA to other computer vision tasks and
incorporating it with other data augmentation schemes.
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Abstract. Regularization/prior approach emerges as one of the major
directions in continual learning to help a neural network reduce forgetting
the learned knowledge. This approach measures the importance of weights
for previous tasks and then imposes a constraint on them in the current
task without retraining on past data as well as extending the network
architecture. However, regularization/prior-based methods face the prob-
lem in which weights can be moved intensively to the parameter region
obtaining good performance for the current task but getting bad ones for
previous tasks. In this paper, we present a novel solution in order to deal
with this problem. Rather than using global variables as in the original
methods, we add auxiliary local variables for each task that are considered
as adjusting factors to suitably change the global ones to this task. As a
result, the global variables can be preserved in a good region for all tasks
to reduce the forgetting phenomenon. In particular, by imposing a vari-
ational distribution on the auxiliary local variables which are employed
as multiplicative noise to the input of layers, we can achieve theoret-
ical properties: Uncorrelated likelihoods, correlated pre-activation, and
data-dependent regularization which are missing in the existing methods.
These properties bring several benefits as follows: (1) Uncorrelated likeli-
hoods between different data instances lead to reduce the high variance of
stochastic gradient variational Bayes; (2) correlated pre-activation helps
increase the representation ability for each task; and (3) data-dependent
regularization guarantees to preserve the global variables in good region
for all tasks. Our extensive experiments show that adding the local vari-
ables improves the performances of regularization/prior-based methods
with significant magnitudes on several datasets. In particular, it makes
several standard baselines approach SOTA results.

Keywords: Continual learning · Regularization/prior-based
approach · Variational dropout · Local and global variables

1 Introduction

When working on the sequence of multiple tasks, artificial neural networks
(ANN) often suffer from forgetting knowledge acquired from previous tasks if
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they cannot revisit past data. Meanwhile, humans can not only retain the learned
knowledge but also can manipulate this knowledge to adapt to new tasks quickly.
Therefore, developing methods that have the same learning ability as humans’
has been paid a great deal of attention by researchers. It has become the main
topic in continual learning which requires methods to learn in an online fashion
from streaming data associated with a series of consecutive tasks.

Regularization/prior approach [6,11,13,16,19,25] emerges as an effective solu-
tion to work well on all earlier tasks without storing and retraining on past data.
In this approach, methods learn model’s parameters while concurrently identify
their importance after each task. Based on the importance, a regularization term is
added to the objective function to penalize the deviation of parameters when learn-
ing the next task. Therefore, “How to estimate the weight importance?” becomes
the main question in this approach and several methods with different strate-
gies have been proposed. However, those methods still suffer from reducing per-
formances on previous tasks. In spite of putting a strict constraint on important
weights, the optimal solution can be still lain on the region obtaining good perfor-
mance for the current task but getting bad ones for previous tasks. For instance,
if unimportant weights for previous tasks are updated significantly in the current
task, they can seriously affect performances on previous tasks. In this paper, we
aim to address this issue in order to improve the regularization/prior approach.

Meanwhile, Dropout is a well-known regularization technique for a determinis-
tic neural network (DNN) whose weights are deterministic values. Originally, the
dropout rate is fixed and chosen manually, then several mechanisms [7,12,15] are
proposed to learn aDNNwith an estimated dropout rate based on variational infer-
ence. Recently, some studies [5,9,17] investigated the effectiveness of dropout in
the context of continual learning and showed that dropout helps reduce the catas-
trophic forgetting phenomenon. However, there are still several issues that need to
be addressed. First, the idea of dropout has not been considered in a Bayesian neu-
ral network (BNN) [4] whose weights are represented by a distribution. Therefore,
it cannot be applied to the existing prior-based methods. Second, there is a lack
of theoretical analyses on why dropout works well in continual learning. Previous
investigations are only limited to simple experimental scenarios in DNN. Finally,
it is impractical to manually tune dropout rate in continual learning scenarios.
Instead, the dropout rate should be separately characterized for each task to adapt
well to the sequence of tasks. We emphasize that existing adaptive dropout meth-
ods [12,15] are impossible to apply to regularization/prior methods as they only
focus on connecting DNN with dropout and BNN. To achieve this goal, they have
to consider a limitation of BNN whose prior is fixed, e.g. log uniform distribu-
tion [12,18] or the discrete quantised Gaussian prior [7]. Then, dropout rate is also
achieved by applying variational inference on the corresponding BNN. Meanwhile,
regularization/prior-based methods use the learned model from the previous task
as the prior in the current task to preserve the learned knowledge. Consequently,
we cannot leverage adaptive dropout for regularization/prior-based methods.

Our contributions are listed as follows: (i) We introduce a novel method which
adds auxiliary local variables, namely ALV. In ALV, there are two kinds of vari-
ables: Local and global variables. The global variables (the original weights of
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neural networks) are shared across all tasks. Our method can be combined with
previous regularization/prior-based methods on the global variables for preserv-
ing the acquired knowledge from previous tasks. Meanwhile, the local variables
characterize each specific task and adjust the global variables to perform well
on corresponding task. Intuitively, adding local variables, which are learned and
saved for each specific task, can help the global variables avoid the trap of local
optimum that is merely good for this task. (ii) We demonstrate the application
of ALV in both BNN and DNN. For the global variables, it is flexible to select the
approximate posterior distribution learned from the previous task as the prior
distribution for the current task. Meanwhile, the auxiliary local variables are con-
sidered as Gaussian multiplicative noise in Dropout when putting a constraint on
approximations of their posteriors. We jointly learn both the approximate pos-
teriors of auxiliary local variables for each task and global variables for all tasks.
Thus, we provide a mechanism to learn dropout rate for each task in continual
learning. (iii) we point out three important properties of ALV that are missing
in the existing regularization/prior-based methods for both DNNs and BNNs:
uncorrelated likelihoods between different data instances which reduce the high
variance of stochastic gradient variational Bayes; correlated pre-activation which
increases the representation ability for each task; data-dependent regularization
which guarantees to preserve global variables in a good region for all tasks.

We evaluate the practical effectiveness of ALV using three regularization/
prior-based methods including Elastic Weight Consolidation (EWC) [13], Varia-
tional Continual Learning (VCL) [19] and Uncertainty-based Continual Learning
(UCL) [1]. The experimental results on several benchmark datasets show that
ALV can improve the performances of the baselines with significant magnitudes.
In particular, ALV can make standard methods approach the state-of-the-art
results in several experiments.

In the rest of the paper, the related work and background are briefly sum-
marized in Sect. 2. Section 3 and 4 present our proposal and experiments respec-
tively. The conclusion is drawn in Sect. 5.

2 Related Work and Backgrounds

In this section, we introduce related work and then present some backgrounds.

2.1 Related Work

Recently, a vast number of studies have addressed the problems of continual
learning (CL) and they can be divided into three main approaches: Memory-
based approach, architecture-based approach and regularization/prior-based
approach. In this work, we focus on a regularization/prior-based approach which
does not require storing and re-training past data as well as building a dynamic
architecture. The main idea of this approach is to impose a constraint on the
deviation of model’s parameters of the current task from those acquired from
previous tasks. The constraint is often constructed based on two main directions:
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Adding a regularization term or replacing the prior in the current task by the
posterior acquired from the previous task. We will explicitly discuss on some
particular methods from the two direction.

In terms of regularization [1,3,11,13,14,23,26], an extra regularization term,
which constrains the learning weights of the current task to lie close to the solu-
tions learned from previous tasks, is added to the original loss when training
a neural network. While the original loss aims to perform well on the current
task, the regularization term is used to reduce the catastrophic forgetting phe-
nomenon. Several strategies are proposed to measure the weight importance
that influences the strict level of the constraints in regularization terms. Synap-
tic Intelligence (SI) [26] estimates the weight importance based on the changes
of loss function with respect to each weight. Memory-aware Synapses (MAS) [2]
uses the change of outputs instead of the loss function to evaluate the weight
importance. Elastic Weight Consolidation (EWC) [13] is derived from Bayesian
learning and weight importance is measured by the diagonal Fisher informa-
tion matrix. Adaptive Group Sparsity based Continual Learning (AGS-CL) [11]
focuses on node importance instead of weight importance and uses the average
activation of each node to measure.

Regarding prior-based methods [1,6,19,22], online variational inference [8,21]
is used to build a constraint between consecutive tasks. In detail, the approx-
imate posterior acquired from previous task is considered as a prior to learn
the current task. Variational continual learning (VCL) [19] is the first work that
applies it in continual learning. The objective function of VCL consists of two
terms: Likelihood term and KL-divergence term. When the prior is the approxi-
mate posterior learned from previous tasks, KL-divergence between the current
approximate posterior and the prior makes VCL more stable. Uncertainty regu-
larized Continual Learning (UCL) [1] improves VCL by defining node importance
and then adding two regularization terms. Based on the node importance, the
first term limits the change of weights related to important nodes and the other
makes weights more active to learn new tasks.

Dropout is used in continual learning-based methods [5,10,17,20] and it
improves noticeably the original methods in performing well on previous tasks.
However, dropout’s role has not been discussed adequately and the dropout
rate is merely selected manually and fixed even when the learning tasks are
changed. There is a lack of a mechanism to control this parameter when work-
ing on multiple tasks. Moreover, dropout has not been directly considered in
BNN. It could be because BNN already has some of dropout’s important prop-
erties such as uncertainty and regularization. However, we find that the idea of
dropout can be appropriate to both DNNs and BNNs in continual learning with
multiple tasks. Adding auxiliary variables brings remarkable proprieties: Corre-
lated pre-activation and data-dependent regularization. Meanwhile, variational
dropout (VD) [12] provides a mechanism to learn the dropout rate in DNNs.
We emphasize that VD is not used for Bayesian neural networks (BNNs) whose
weights are random variables. It merely aims to connect DNNs with dropout
and BNNs. In detail, a noise s ∼ N (1, α) is multiplied by a deterministic weight
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θij will result in a random variable wij = sθij following N (θij , αθ2ij). Notably,
this property is only correct if θ is a deterministic value. Therefore, VD is only
used for a DNN. Moreover, in order to assure that the objective function (the
evidence lower bound) of the corresponding BNN is the same as the objective
function of the original DNN with dropout w.r.t parameters θ, VD has to make
the KL-term (KL(q(W )||p(W ))) independent from θ. As a result, VD must set
the prior distribution (p(W )) to a fixed log-uniform distribution. Meanwhile, in
prior-based approach for CL, the approximate posterior acquired from previous
tasks is considered as the prior distribution to learn the current task. It means
that VD is unable to keep the knowledge learned from the previous tasks. In our
work, thanks to separating the posteriors of local and global variables, ALV can
work on not only DNNs but also BNNs in continual learning.

2.2 Background

Consider a neural network as a probabilistic model p(y|x,θ) over output y con-
ditioned on input x and parameters θ which represent the weight matrices.
In the Bayesian approach, θ are random variables and follow a prior p(θ). In
continual learning, data streams arrive and belong to consecutive tasks. Let
(Xt,Yt) = (x(i)

t ,y(i)
t )Nt

i=1 be data of task t where Nt is the number of data
instances in this task. We focus on two approaches: Online variational inference
(OVI) and regularization. We describe VCL for continual learning.

VCL: leverages OVI to learn tasks continuously. At task t, the true posterior
is approximated by a Gaussian variational distribution based on the mean-field
approximation: qt(θ) =

∏J
j N (μt,j , σ

2
t,j) where J is the cardinality of θ, and

μt,j , σt,j are the mean and standard deviation of θj respectively. Inspired by
OVI, qt(θ) is exploited as the prior in the next task t + 1. The variational
objective of VCL at task t is as follows:

Nt∑

i=1

Eqt(θ)

[
log p(y(i)

t |θ,x(i)
t )

]
− KL(qt(θ)||qt−1(θ)) (1)

This objective consists of a Likelihood term and a KL-divergence term. While
the former helps the learned model adapt to the current task, the latter pre-
vents it from forgetting the previous tasks. Meanwhile, due to intractability,
VCL uses reparameterization trick and Monte-Carlo sampling to calculate the
likelihood term: Eqt(θ)

[
log p(y(i)

t |θ,x(i)
t )

]
≈ 1

K

∑K
k=1 log p(y(i)

t |θ(k),x(i)
t ) where

θ(k) = μt + σt � εk and εk (k ∈ {1, 2, ..,K}) is sampled from an unit Gaussian,
and � is the element-wise multiplication.

3 Improving Regularization/Prior-Based Methods
with Auxiliary Local Variables in Continual Learning

When training the model for a new task, θ can be moved intensively to the
parameter region leading to good performance for the current task. In case that
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the constraints on previous tasks are not good and strict enough, the learned
local optimum can be outside the region which works well on all tasks. To allevi-
ate this problem, for each task, we introduce auxiliary local variables which help
to create a mechanism for adaptation. The goal is to make the global variables
θ capture the characteristics of all tasks while the local variables adapt to the
corresponding task. As mentioned above, existing methods based on OVI or reg-
ularization usually keep the likelihood term unchanged but modify the KL-term
or regularization term to deal with the stability-plasticity dilemma. In contrast,
our work directly changes the likelihood term and can be used in a wide range
of regularization/prior-based methods.

For brevity, we only present ALV for fully-connected neural networks in the
main text. We will describe ALV for a particular layer of these networks and
then how it can be applied to VCL. Similar derivation can be applied for EWC
and UCL.

3.1 Auxiliary Local Variables in Each Neural Network Layer

Consider a hidden layer l of a fully-connected neural network, let A(l) be a
M × D matrix of input features, θ(l) be a D × H weight matrix where M is the
number of data instances in a minibatch, D and H are the number of input and
output dimensions respectively. θ(l) follows a prior distribution p(θ(l)). Denote
the pre-activation B(l) = A(l)θ(l). For each task, we add auxiliary variables
s(l) to the layer l and use a multiplicative combination: B(l) = (A(l) � s(l))θ(l)

where � is the element-wise multiplication. s(l) is a M × D matrix where s
(l)
md

is a random variable. It is flexible to choose a prior for s
(l)
md. However, log-

uniform prior [12] is selected because it often achieves better results than non-
informative Gaussian prior in our experiments. In particular, we can reinterpret
multiplicative combination for each data instance m as follows:

B(l)
m = (A(l)

m � s(l)m )θ(l) = A(l)
m θ̃(l)

where θ̃(l) = [diag(s(l)m )]θ(l) and is considered as the model’s parameters for each
task. It means that the local variables s(l)m can change the global variable θ(l) to
adapt to each data instance in a new task. As a result, it can help the global
variable θ(l) move intensively to the good region for all tasks.

We use variational inference to learn the local variables. Specifically, we put a
constraint on the form of the approximate posterior in order to consider the local
variable as a Gaussian multiplicative noise. We approximate the true posterior
of s(l)m (m ∈ {1, ..,M} and s(l)m ∈ R

1xD) by a Gaussian distribution: q(s(l)m ) =
∏D

d=1 N (1, α
(l)
t,d) where the mean is set to 1 and the variance α

(l)
t,d is learned to

capture the change of θ̃(l) around θ(l). In addition, α
(l)
t is shared across the

inputs of data instances. It is worth noting that although we add a huge number
of the auxiliary variables s(l) (a M × D matrix), the number of parameters α

(l)
t

(a D-dimensional vector), which have to be learned, is considerably smaller than
the cardinality of the global parameters. We can further reduce α

(l)
t to a scalar.
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However, using a vector of variational parameters α
(l)
t instead of a scalar makes

the approximate posterior richer to characterize a new task t.

3.2 ALV for Regularization/Prior-Based Methods

Next, we will present how to apply ALV in continual learning setting. We use
VCL as a case study for OVI-based approach.

ALV for VCL: In terms of online variational inference, the approximate pos-
terior of global variables θ at a task t − 1 is utilized as the prior in the
next task t: p(θ) = qt−1(θ). We maximize the log likelihood: log p(Yt|Xt) =
∑Nt

i=1 log p(y(i)
t |x(i)

t ). We use mean-field variational inference with variational
distributions qt(θ), qt(s) and obtain ELBO:

Nt∑

i=1

Eqt(θ),qt(s)

[
log p(y(i)

t |s,θ,x(i)
t )

]
− KL(qt(s)||p(s)) − KL(qt(θ)||qt−1(θ))

Note that the KL(qt(θ)||qt−1(θ)) term helps the learned model prevent for-
getting the previous tasks and we keep this term as in VCL. We use log-uniform
prior for s and the approximation of KL(qt(s)||p(s)) as in VD [12]. Moreover, we
tune a coefficient to adjust the effect of this term in experiments. For the like-
lihood term, we propose a variant of local reparameterization trick to calculate
this term. In detail, we consider at each layer l: B(l) = (A(l) � s(l))θ(l) where
b
(l)
mh =

∑D
d=1(a

(l)
md.s

(l)
md)θ

(l)
dh. Reparameterization trick is sequentially adopted for

variables s(l) and θ(l). Because q(s(l)m ) =
∏D

d=1 N (1, α
(l)
t,d), we can calculate the

auxiliary local variables s(l):

s
(l)
md = 1 +

√

α
(l)
t,dγ

(l)
md

where γ
(l)
md is sampled from N (0, 1). It is plugged in the pre-activation:

b
(l)
mh =

D∑

d=1

a
(l)
md(1 +

√

α
(l)
t,dγ

(l)
t,md)θ

(l)
dh

Since, θ
(l)
dh ∼ N (μ(l)

t,dh, (σ(l)
t,dh)2), we can rewrite: b

(l)
mh ∼ N (ω(l)

mh, δ
(l)
mh) where

ω
(l)
mh =

D∑

d=1

a
(l)
md(1 +

√

α
(l)
t,dγ

(l)
md)μ

(l)
t,dh

δ
(l)
mh =

D∑

d=1

(

a
(l)
md(1 +

√

α
(l)
t,dγ

(l)
md)

)2

(σ(l)
t,dh)2
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By using reparameterization trick, we have b
(l)
mh = ω

(l)
mh +

√

δ
(l)
mhε

(l)
mh where

ε
(l)
mh is sampled from N (0, 1). Let L(m) = Eqt(θ),qt(s) log p(y(m)

t |s,θ,x(m)
t ) be the

likelihood of data instance m and is expressed as:

L(m) = Eγm,εm
log p(y(m)

t |αt,μt,σt,γm, εm,x(m)
t )

After sampling γ and ε, we can calculate the likelihood term and optimize the
objective function with respect to variational parameters αt, μt and σt for task t.

3.3 Theoretical Analyses

In this subsection, we theoretically analyze ALV’s properties such as uncorrelated
likelihoods, correlated pre-activation, data-independent regularization based on
adding auxiliary local variables for a particular task t. While the regularization
propriety assures that the global variables are lain in good region for all tasks,
the other properties help to learn each task well.

Uncorrelated Likelihoods and Correlated Pre-activation. In terms of
learning BNNs, most of existing methods, that use usual Monte Carlo gradient
estimator or reparamameterization trick, suffer from high variance. The local
reparameterization trick [12] is proposed to deal with this problem. However,
even though the local reparameterization trick has the property of uncorrelated
likelihoods between different data instances to reduce high variance, it does not
have correlated pre-activation to improve representation learning for each task.
Therefore, we present these two properties to show the advantages of ALV in
comparison with the existing methods in learning BNNs.

Uncorrelated Likelihoods Between Data Instances: The likelihood of the
mth data instance is: L(m) = Eγm,εm

log p(y(m)
t |αt,μt,σt,γm, εm,x(m)

t ). For
two data instances m and m′, it is straightforward to see that {γm, εm} and
{γm′ , εm′} are independent, therefore, Cov[L(m), L(m′)] = 0. This property helps
to reduce the high variance of stochastic gradient variational Bayes [12]. Indeed,
the likelihood of all data instances is approximated by minibatch-based Monte
Carlo estimator and is written: L = Nt

M

∑M
m L(m) where M is the size of mini-

batch and Nt is the number of all data instances. The variance of L is expressed
as follows:

N2
t

M2

( M∑

m=1

V ar[L(m)] + 2
M∑

m=1

M∑

m′=m+1

Cov[L(m), L(m′)]
)

We emphasize that because data instances are drawn from empirical distribu-
tion, the variance V ar[L(m)] and covariance Cov[L(m), L(m′)] are computed with
respect to the unit Gaussian distributions γ and ε. Since Cov[L(m), L(m′)] = 0,
ALV can achieve a lower variance estimation.

Correlated pre-activation: We prove that, for each data instance m, adding
the local variables for each layer l results in correlated pre-activation. Consider
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an element h, we have bmh ∼ N (ωmh, δmh) where ωmh, δmh are functions over
random variable γm which is derived from reparameterization trick on the local
variables. It means that ALV creates a hierarchical distribution on the pre-
activation bm and can achieve better representation on each layer. We emphasize
that the original local reparameterization trick [12] fully factorizes bm. Therefore,
it only obtains the property of uncorrelated likelihoods but does not capture
correlated representation.

An Effective Regularization for Continual Learning. Recently, [24] proved
that dropout with Bernoulli distribution leads to the regularization term. In this
work, we extend the analyses to Gaussian multiplicative noise instead of only
Bernoulli dropconnect as in [24]. More specifically, we demonstrate that ALV
achieves similar regularization:

Reg
(l)
mult =

1
2

〈
Hh(l)(x)(L̄); diag

(
α

(l)
t � (h(l)(x))2

)〉

where L̄ is the original loss without auxiliary variables, α
(l)
t is the deviation of

variational distribution qt(s) for task t, h(l)(x) is the lth hidden layer, Hh(l)(x)(L̄)
is the Hessian matrix of L̄ w.r.t h(l)(x) and 〈.; .〉 is the inner product of vector-
izations of matrices. Note that the loss is the negative log likelihood in ALV.

Meanwhile, based on this regularization, [17] analyzed that minimizing the
second derivative of the loss w.r.t the activation can obtain the flatness of the
minima where the model can perform well on all tasks. Similarly, ALV also has
this property as discussed in [17], therefore it can guarantee to preserve global
variables in good region for all tasks.

4 Experiments

We use three regularization/prior-based methods: EWC, VCL and UCL to eval-
uate how ALV improves them on five datasets: Split MNIST, Permuted MNIST,
Split CIFAR-100, Split CIFAR-10/100 and Split Omniglot. We ignore consid-
ering episodic or coreset memory to boost the effectiveness of all methods in
our experiments. These datasets are generated from four original ones: MNIST,
CIFAR10, CIFAR100 and Omniglot and can be applied to simulate the process
of continuous arriving data. In this work, we inherit UCL’s experiment setup,
which assumes that data arrives in task by task and all data points of a task
come at the same time.

Settings: We use again the source codes of EWC and UCL which are released
from the original UCL paper1. We implement VCL based on the source code of
UCL. ALV is injected into several layers of the networks.

1 https://github.com/csm9493/UCL.

https://github.com/csm9493/UCL
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Table 1. The effect of ALV on Split MNIST and Permuted MNIST

Method Split MNIST Permuted MNIST

EWC VCL UCL EWC VCL UCL

w/o Dropout 96.23 98.59 99.64 44.63 86.22 95.86

Dropout 97.65 98.42 99.61 91.97 86.05 95.94

ALV 99.79 98.67 99.73 92.22 87.96 96.37

4.1 Effectiveness of ALV on Split and Permuted MNIST Datasets

Table 1 illustrates the average accuracy over all tasks after finishing training
the last task on the two datasets. For Split MNIST, consistently, ALV-based
methods outperform the respective baselines. In particular, ALV improves EWC
significantly from 97.65% to 99.79% average accuracy and can outperform the
SOTA method such as UCL. The performances of ALV for VCL and UCL also
increase noticeably. However, we found that in VCL and UCL, without Dropout
seems to work well on this experiment and is comparable to ALV. This can be
explained as the data distribution between tasks may be really similar and there
is too much uncertainty in VCL and UCL with Dropout which lack an adaptive
mechanism. For Permuted MNIST, after training 10 tasks sequentially, EWC,
VCL, and UCL achieve performances at 91.97%, 86.22%, and 95.94% respec-
tively. With ALV, the accuracy of UCL slightly increases by 0.14% while VCL
rises from 86.22% to 87.96%. Similarly, EWC with ALV also rises from 91.97%

Fig. 1. Experimental results on Split Cifar-10/100.

Fig. 2. Experimental results on Split CIFAR-100.
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to 92.22% and over double the result of without Dropout. The reason for this
significant improvement is that the auxiliary variables increase the uncertainty in
EWC, while UCL and VCL themselves already have the property of uncertainty.

Besides that, it is straightforward to see the superiority of auxiliary variables
over Dropout in continual learning. Dropout can help to prevent the learned
model from being stuck at local optimum that works well for a task in standard
cases. Especially, adding local variables to each task achieves even a more flexible
adapting mechanism to work well on large number of tasks. Therefore, ALV
significantly outperforms Dropout on all the baselines.

4.2 Effectiveness of ALV on Split CIFAR-100 and Split
CIFAR-10/100

To reinforce the evidence of the effectiveness of ALV beyond MLP architectures,
Split CIFAR-100 and Split CIFAR-10/100 datasets are additionally used in our
experiments.

Figure 1 illustrates the effectiveness of ALV in comparison with the baselines
on Split Cifar-10/100 dataset. Overall, when applying ALV, all methods have
witnessed a remarkable increase in performance compared to their results both
with and without Dropout. In addition, the figure also depicts average perfor-
mances of all the methods after each task. It is clear that, the average accuracy of
all methods decrease when evaluating on test sets of previous tasks and the cur-
rent one, which indicate the forgetting of acquired knowledge. However, ALV can
help the baselines mitigate this phenomenon with the support of local variables
to achieve better average accuracy through tasks. Specifically, EWC with ALV
outperforms all others by achieving 74.23% average accuracy which reaches the
state-of-the-art result and overcome UCL with ALV (73.13%). Futhermore, VCL
is claimed to have low performance on CIFAR dataset [16], the improvements of
ALV on VCL are also remarkable.

In Split Cifar-100, as can be seen in Fig. 2, all results are under the curves
which have been presented in Split Cifar-10/100 experiments, even with fewer
tasks. This can be explained as Split CIFAR-10/100 can prevent overfitting
on Split CIFAR-100 using a model pre-trained on CIFAR-10 (the first task
is CIFAR-10) which contains much more data than that of a task split from
CIFAR-100. Again, all three methods gain significant improvement after apply-
ing ALV. Specifically, ALV on EWC obtains the most noticeable improvement
(from 60.56% with Dropout to 63.2%).

5 Conclusion

In this paper, we introduce a novel method which adds auxiliary local vari-
ables to improve regularization/prior-based methods. We consider ALV in both
DNNs and BNNs instead of only DNNs as in Gaussian multiplicative noise. We
find that ALV creates an adaptive mechanism to learn a new task and prevent
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forgetting the knowledge acquired from previous tasks. In particular, we theoret-
ically demonstrate the advantages of ALV in terms of uncorrelated likelihoods
between different data instances, correlated pre-activation, and an effective data-
dependent regularization for continual learning. Our extensive experiments show
that ALV improves the performances of regularization/prior-based methods with
significant magnitudes.
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Abstract. With the increasing information load brought by the accel-
erated growth of research papers, the automatic discovery of a field’s
emerging scientific topics becomes vital. It enables broad applications,
such as optimizing resource allocations for promising research areas, pre-
dicting future technology trends, finding knowledge gaps and new con-
cepts, and recommending personalized research directions. However, two
challenges - the rareness of emerging-topic publications and the linguistic
diversity in the description of emerging topics - hinder existing text ana-
lytic methods from effectively identifying the evolving terms in emerg-
ing topics. According to our observation, an emerging topic originating
from a collaboration of two sub-fields could be represented by a biterm,
each term from one sub-field. In this paper, we propose a novel finding
Infrequent Synonymous Biterms to discover Emerging Scientific Top-
ics (isBEST) method to overcome the challenges. Our isBEST method
reduces linguistic diversity using document-level clustering to find the
linguistic variants of each key biterm. The biterms in the same cluster
expressing very similar meanings are unified to the most common syn-
onymous biterm. Then, to address the rareness issue, isBEST converts
each input document into a vector of coefficients on synonymous biterms
and clusters them at the corpus level with cosine similarity. In each doc-
ument, larger coefficients are assigned to rarer synonymous biterms. The
underlying logic is the higher chance of a rarer synonymous biterm to be
an emerging topic denoted by the two terms, each from a collaborating
sub-field. Experiments on two large scholarly paper datasets demonstrate
the accuracy and effectiveness of our isBEST method.
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1 Introduction

With the increasingly severe information overload brought by the accelerated
production of research papers, it is vital to analyze a field’s research trend effec-
tively. A transition is ongoing from “scholarly big data” to “scholarly very-large
data” [15] due to the exponential growth of scholarly publications [17], raising
the cost to keep pace with the accelerating scientific development. Thus, auto-
matically discovering the field trend or emerging topics become more and more
critical for a broad range of applications, such as optimizing resource allocations
for promising research areas [10], predicting future scientific topics and technol-
ogy trends [7], finding knowledge gaps that require new research [6], identifying
new concepts in the scientific literature [8], recommending personalized research
directions [1] etc.

An emerging topic often originates from the collaboration of multiple super-
topics (each denotes a sub-field), enabling the search for the topic’s publications
in an academic search engine using a search expression like

n∨

i=1

(Termi,1 ∧ Termi,2) , (1)

where for each i, Termi,1 and Termi,2 are two terms (i.e., phrases) that represent
two super-topics (each from one collaborating sub-field). This paper aims at
maximizing the finding of emerging topics by developing a solver algorithm to
find candidates of emerging topics from an input academic database and generate
a search expression for each candidate. We evaluate the solver’s performance
by summing up the scores of every output expression. Each score comes from
querying the search engine with the corresponding expression and applying the
number of publications per year from search results to a scoring function.

Most existing methods [3,5,9,11] adopt external knowledge (e.g., ontologies)
to help automation of emerging topic discovery. For example, in [11], algorithm
AUGUR searches CSO ontology for super-topics associative to the terms and
finds collaborations between these super-topics. It identifies emerging topics from
these collaborations. However, these methods face the following challenges:

(1) The rare emerging-topic papers are often hidden among huge amounts of
non-emerging-topic (or developed-topic) publications. Big data analytics
often fail to update the knowledge database using the terms of the emerging
topics because they have limited capabilities to deal with data imbalance
and often take these rare papers as noises.

(2) The linguistic diversity of an emerging topic makes a topic hard to identify.
Many emerging topics do not have stable terminologies until they become
developed topics. Emerging-topic authors often choose personalized syn-
onyms of the terms, either consciously to suit the unique purpose or unin-
tentionally, causing further trouble for emerging-topic identification.

This paper proposes a novel finding Infrequent Synonymous Biterms to dis-
cover Emerging Scientific Topics (isBEST) method to overcome the challenges.
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Fig. 1. External-knowledge-based methods versus our isBEST.

We use Fig. 1 as an example to explain the main mechanism of isBEST by
comparing it with the state-of-the-art external-knowledge-based approach. The
counterpart approach has an obvious limitation, as shown in Fig. 1a, in which a
knowledge/ontology database only can identify a super-topic for a known term
(Term A) but wrongly filters an unknown term (Term B) as a noise. Our isBEST
method, as shown in Fig. 1b adaptively identify super-topic for any term (Terms
A and B) using just-in-time knowledge learnt from the reference titles by a
document/paper-level clustering to reduce linguistic diversity; this overcomes
the counterpart’s limitation. Moreover, isBEST conducts a corpus-level cluster-
ing by finding infrequent synonymous biterms for representing emerging topics.
The three steps of the isBEST method are summarized as below.

First, we borrow the idea of MAG [14] that integrates language similarity
and network similarity to resolve the problem of linguistic diversity. As shown in
Fig. 1b, a paper’s title and its references form a similarity network. Within the
network, many synonyms exist. Language similarity implies the word embed-
ding vectors of synonyms are also similar. Therefore, we perform a document-
level clustering that groups similar word-embedding vectors to find the linguistic
variants of every key biterms and unify each group of linguistic variants to the
most common synonymous biterm, which comprises the just-in-time knowledge
about the collaboration of two super-topics, one super-topic per term.

Then, we generalize the idea of AUGUR [11] and use synonymous biterms to
measure the collaborations of super-topics. The generalization deduces the asso-
ciation of rare synonymous biterms to emerging topics since these rarer biterms
often means more innovation in super-topic collaborations. When we conduct a
corpus-level clustering, we regard each paper as a vector of coefficients on synony-
mous biterms, using cosine similarity to compare two papers. We assign higher
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weights to rarer synonymous biterms to make emerging-topic papers highly dis-
tinguishable, even among the vast majority of the developed-topic publications.

Finally, to extract and output the search expressions for evaluation, we scan
for the top-k synonymous biterms within each corpus-level cluster of papers.

One advantage of the proposed method is the capability to identify emerging
topics without external knowledge/ontology, which significantly simplifies emerg-
ing scientific topic discovery of new research areas. Another advantage is high
precision in such discovery. With the just-in-time knowledge learning in corpus-
level clustering, even the latest terms can help recognize emerging topics. The
third advantage is the two levels of clustering allows the reuse of document-level
intermediate results and thus enables us to update the discovery periodically;
that is, we save the intermediate results so that only the newly arrived documents
require document-level clustering.

AUGUR [11] is the most related work. Our isBEST generalizes AUGUR’s
collaboration-based emerging-topic identification. Unlike AUGUR, isBEST
requires no external ontology and resolves the linguistic diversity better by learn-
ing and using just-in-time knowledge in document-level clustering.

The contributions of this paper are twofold. (1) We propose isBEST, a
new emerging scientific topic discovery method that detects emerging top-
ics with just-in-time knowledge learning. Experimental results show that our
isBEST achieves better accuracy than the external-knowledge-based counterpart
AUGUR method. (2) We develop a specialized document vectorization strategy
to ensure a high-precision comparison of emerging-topic publications. The key
technique is to find the rare synonymous biterms of emerging topics and assign
larger coefficients to rarer synonymous biterms.

The remainder of this paper is organized as follows. The formal problem
statement is in Sect. 2. We present the related works in Sect. 3. In Sect. 4, we
detail the proposed method. In Sect. 5, we evaluate the accuracy and effectiveness
of our method. Section 6 concludes this paper.

2 Problem Statement

We formalize the research problem as follows to analyze a field’s research trend
or emerging topics.

Terminology: (1) An emerging topic is a topic, which appeared in (or was
supported by) only a small number of publications in the past, but recently is
supported by an acceleratedly increasing number of publications. (2) A super-
topic of an emerging topic is one of the broader topics whose collaborations pro-
duce the emerging topic; for example, “u-net image segmentation” is an emerging
topic, its two super topics can be described by “u-net” and “image segmenta-
tion” but the descriptions of super topics have multiple expressions, such as
“U-shaped networks”, “LCU-Net”, “segmentation of muscle images”, “ventricle
segmentation”, etc. (3) A term is a scientific/technical word or phrase.

Input: (1) a scholarly paper database with information about the title,
the publication year, and the references’ titles of each paper in the field,
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(2) a target year to specify which year’s emerging topics to find, (3) a scoring
function returning zero for non-emerging topics and higher positive value for
larger emergingness of the topic, the arguments of which are the publication
numbers in every single year from several years before the target year to the
target year, and (4) a number k indicating how many emerging topic candidates
the solver can give for evaluation.

Output: one search expression for each emerging topic candidate, taking the
form of Eq. (1) and serving the search of the topic’s papers on ScienceDirect.com
for evaluation. During the evaluation, the publication numbers in the search
result from ScienceDirect.com will be passed to the scoring function to compute
the score of this expression.

Constraints: (C1) A solver of this problem cannot access any data or search
results from ScienceDirect.com. However, we allow the solver to guess the argu-
ments of the scoring function according to the input database and use emulated
evaluations with the function to improve its outputs. (C2) Every emerging topic
can only be described by one output expression.

3 Related Work

Emerging research topic discovery is a subfield of Topic Detection and Tracking
(TDT). Most existing works adopt external-knowledge-based approaches, such as
temporal graphs [5], semantics-based bursty and emerging topic detection [3], the
Research Communities Map Builder [9], and a very recent related work, AUGUR
[11]. All these methods face the two challenges mentioned in the introduction.
They tend to miss the rare but vital information about emerging topics due to
the lack of on-demand updates of the external knowledge database.

As a state-of-the-art method, AUGUR [11] finds emerging topics by mea-
suring the collaborations between super-topics. This measure allows efficient
narrow-down of the search range because emerging topics happen wherever col-
laborations accelerate; thus, measuring collaboration helps alleviate the rareness
issue. Unfortunately, AUGUR relies on an external ontology to resolve linguistic
diversity. The ontology does a poor job due to lacking the latest knowledge on
emerging topics. Despite this, its collaboration measure is a great inspiration.

There are also some methods not using any external knowledge, e.g., the
scientific network in [12] for the detection of conference-level research communi-
ties, and the temporal word embedding approach Leap2Trend in [4]. The study
in [12] is unrelated to our research problem. Leap2Trend [4] measures collabo-
rations between super-topics using temporal word embedding, but since it does
not find the clusters of papers for intermediate representation of topics, it does
not guarantee our research problem’s constraint C2. Also, because it detects
popular research trends by finding the temporal leaps or jumps in the ranking of
two terms’ similarities in terms of word2vec embeddings, it is more designed for
macro-scale trend detection than for the micro-scale emerging topic discovery
aimed by this paper. Our practice has demonstrated Leap2Trend cannot achieve



34 J. Wu et al.

good results; e.g., Leap2Trend’s best output expression for the machine learning
dataset is a topic represented by a biterm, “monitoring” + “dynamical systems”,
but the topic already has many publications every year, the number of publica-
tions per year from 2017 to 2021 are 171, 252, 336, 429, 643 respectively. This
topic is not emerging any more.

There is one pioneer work that affects this subfield very much. Comparison
of six evaluation functions for emerging topics is reported in [13]. Its experi-
ments show that among these six functions, SLPPI performs unexpectedly well
in emerging topic prediction and beats other scoring functions most of the time.
Therefore, the scoring function in our experiments is based on SLPPI.

4 The Proposed Method

An overview of the proposed isBEST method is elaborated in Fig. 1b. We design
isBEST as a two-level clustering method to overcome the two tightly coupled
challenges, i.e., the linguistic diversity and the rareness of emerging-topic publi-
cations. The document-level clustering (illustrated by Fig. 2(a)) deals with lin-
guistic diversity, while the corpus-level clustering (illustrated by Fig. 2(b)) fights
against the rareness issue. We adopt the latest KNN-based density peak cluster-
ing [2] for both levels. After the two-level clusterings, a final step extracts the
output search expressions.

Fig. 2. Two levels of clusterings in our proposed isBEST method.

4.1 Document-Level Clustering

We resolve the linguistic diversity issue by a document-level clustering, which
combines language similarity and network similarity by clustering the embedding
vectors of terms in each paper’s title and reference titles.

Figure 2(a) illustrates the workflow of the document-level clustering. By net-
work similarity, the title is similar to the reference titles, and the reference titles
have mutual similarities if belonging to the same super-topic. According to lan-
guage similarity, the embedding vectors of synonyms are similar, and there are
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many synonyms in similar texts. Therefore, if we cluster the embedding vec-
tors, we will group the synonyms into clusters. A cluster centre will be the most
common synonym in each synonym group, thus, a synonymous-term candidate.

There are still possibilities that a synonymous term in one paper fails to
become the cluster centre in another paper. Fortunately, with the weighted
average radius of each synonymous term in all of the papers it occurs, where
the weights are the numbers of vectors in clusters, we can determine two syn-
onymous terms are mutual synonyms if their cluster centres locate within each
other’s average radius. We then merge the mutual synonyms and use the most
frequent one as their unified form.

At the end of this step, synonymous biterms are combined from cooccurring
synonymous terms in each paper and serve as the just-in-time knowledge.

4.2 Corpus-Level Clustering

Because of the rareness, seeking emerging-topic information among a colossal
volume of developed-topic data is challenging. External knowledge databases
often miss rare but vital information about emerging topics. Therefore, we use
the just-in-time knowledge (i.e., synonymous biterms) from document-level clus-
tering instead of the external knowledge databases.

Based on our previous method in [16], which uses synonymous biterms to gen-
eralize the super-topic collaboration measure of AUGUR, i.e., using the rareness
and accelerating cooccurences of a synonymous biterm to measure the strength
of collaborations, we design a specialized strategy of document vectorization for
emerging-topic-sensitive comparison, converting each paper to a vector of coef-
ficients on synonymous biterms, assigning more weights to rarer synonymous
biterms. More specifically, the weight takes value from the following equation:

w (p1, p2) =
TFIDF (p1) TFIDF (p2)

2 − (0.5 − 0.5CosSim (p1, p2)) 5
5+BTFy(p1,p2)

. (2)

Here, variables p1 and p2 are the two synonymous terms in the synonymous
biterm. They also refer to the word embedding vectors of the terms. The TFIDF
in Eq. (2) is computed by first converting the documents to synonymous terms
and then calculating the traditional TF-IDF formula. The BTFy (p1, p2) in
Eq. (2) is the biterm frequency of synonymous biterm p1, p2 before target year
y. The cosine similarity CosSim is defined as follows.

CosSim (p1, p2) =
p1 · p2√

p1 · p1√p2 · p2 . (3)

This vectorization assigns larger coefficients to rarer synonymous biterms
because those biterms reveal bigger collaborations than other biterms.
Figure 2(b) shows how we use these document vectors to compute the simi-
larity between two documents. Since the rare emerging topic biterms dominate
the paper’s coefficients, we diminish the similarity between an emerging-topic
paper and a developed-topic paper while promoting the similarity between two
papers on the same emerging topic.
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4.3 The Search Expression Extraction

With corpus-level clustering producing clusters of papers, the proposed method
takes the following operations to extract the output expressions.

(1) The method conducts an emulated evaluation using the scoring function
with the number of publications per year in the cluster as arguments. It
sorts those clusters by scores and keeps the top-k as the final clusters.

(2) For each final cluster, the method collects the synonymous biterms occurring
in at least one paper of the cluster, sorts those biterms by frequency, and
then in the ascending order of frequency, try to remove unnecessary biterms
one by one. It checks whether a biterm is removable by constructing a graph
using the papers in this cluster as nodes, linking two papers in the graph
if at least one synonymous biterm cooccur in these two papers. A biterm is
removable if the graph is connected without it.

5 Experiments

We use two fields of publication data from the 2020-05-29 release of Microsoft
Academic Graph [14] as two input databases, which are relevant to machine
learning and data mining. There are 417,075 imported papers in the field of
machine learning and 418,970 imported papers in data mining. Because of the
data range, we choose y = 2019 as the target year to find the emerging topics.

We choose these two fields because they are different typical examples. Most
emerging works in machine learning cross disciplines, but few in data mining do
so. The CSO ontology in the counterpart AUGUR covers only super-topics in
the discipline of computer science, making AUGUR suitable for the emerging
topic discovery in data mining but not suitable in machine learning. To prove
this, we create another counterpart called FoS AUGUR by replacing the CSO
ontology in AUGUR with the FoS (Fields of Study) ontology from MAG and
comparing both of them with our isBEST. To be clear, we rename the original
AUGUR as CSO AUGUR.

We choose the following scoring function based on SLPPI in [13], and use this
function to assign scores on how emerging a topic is.

score (Ny−5, ny−4, ny−3, ny−2, ny−1, ny)
= rareness

(
Ny−5 +

∑4
i=1 ny−i

)
× max (0,SLPPI (ny−4, ny−3, . . . , ny)) ,

(4)

where y is the target year to find emerging topics in, Ny−5 is the total number
of publications five years before y, and for i = 0, . . . , 5, ny−i is the number of
publications on the topic in the year i years before y. Also,

rareness (x) =
√

1/(1 + x), (5)

SLPPI is computed as the slope of the sequence below using linear regression:

ny−i+1 − ny−i + 0.001
ny−i + 0.001

, i = 4, 3, 2, 1. (6)
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Note that in the original SLPPI formula in [13], there is no 0.001 in Eq. (6).
We add 0.001 to avoid the division-by-zero errors.

Since the outputs of our research problem are the search expressions on
the site ScienceDirect.com, the emergingness scores of the site’s query results
measure the solver algorithm’s performance. The evaluation results are shown
in Figs. 3, with k, the number of emerging topic candidates in output, set as 100.
Here, the accumulated scores are computed using the following formula.

accScorei =
∑

j≤i

scorej . (7)

The variables i and j in Eq. (7) are the emerging-topic candidate indices. Since
each solver gives a list of candidates for evaluation, we assign each candidate an
index to distinguish them. Similarly, the accumulated positive SLPPI values are
computed using the following formula.

accPosSLPPIi =
∑

j≤i

max
(
0,SLPPIj

)
. (8)

Maximizing the accScore metric at i = 100 is our aim. The accPosSLPPI metric
is just an auxiliary quality metric. We also show results in a slightly larger range
of i (i.e., 110 instead of 100) to allow inspecting metrics beyond i = 100.

Fig. 3. Comparison of accumulated scores and accumulated positive SLPPI.

Figure 3 shows that when the candidate index increases, our proposed
method, isBEST, eventually outperforms the counterparts in both datasets, in
terms of both accumulated score and accumulated positive SLPPI. Figures 3a
and 3b show that FoS AUGUR outperforms CSO AUGUR in the machine learn-
ing dataset because the FoS ontology covers much more disciplines than CSO.
Figures 3c and 3d show that CSO AUGUR outperforms FoS AUGUR in the data
mining paper dataset because the CSO ontology is more specialized than FOS.
This demonstrates the importance of isBEST: we adopt just-in-time knowledge
learning in isBEST to avoid the external knowledge database’s weakness.

In addition to numeric evaluations using accumulated scores and accumulated
positive SLPPI, Figs. 4 and 5 demonstrate the quality of the emerging topics dis-
covered by our isBest method is better than those discovered by the counterpart

https://www.sciencedirect.com/
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Fig. 4. Comparison of the top 10 output expressions for machine learning.

Fig. 5. Comparison of the top 6 output expressions for data mining.

methods (FoS AUGUR and CSO AUGUR). As defined in Sect. 2, emerging top-
ics should satisfy two conditions: (1) a small number of publications in the past;
and (2) an acceleratedly increasing number of publications in recent years. So,
when we consider the last five years (2017–2021) in the experiments, we define
recent years as (2019–2021) and the past years as (2017, 2018). Figure 4 shows
the top 10 emerging topics in the field of “machine learning” while Fig. 5 shows
the top 6 emerging topics in “data mining”. In both figures, “BT”, “BTs” and
“3BT” stand for biterm, two different biterms and three different biterms respec-
tively. They are used to abbreviate the following search expressions where field
(i.e., “machine learning”/“data mining”) is used to exclude unrelated results.

• BT(A, B) = search expression: field AND (A AND B).
• BTs((A, B), (C, D)) = search expression: field AND ((A AND B) OR (C

AND D)).
• 3BT(A, B, C) = search expression: field AND ((A AND B) OR (A AND C)

OR (B AND C)).

Figure 4 only shows the results of the proposed isBEST method and FoS AUGUR
because CSO AUGUR cannot find any emerging topic. Compared with FoS
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AUGUR, our isBEST method has discovered high quality emerging topics that
are all denoted by BT or BTs, while the FoS AUGUR only found emerg-
ing topics denoted by 3BT; obviously, BT and BTs are more precise than
3BT. The top 4 highest quality examples that satisfy the two conditions of
the emerging topics well are BT(“gan”, “Wasserstein”), BTs((“augmentation”,
“few shot”), (“unsupervised learning”, “few-shot”)), BTs(“challenging”, “dis-
entangled representations”), (“variational autoencoders”, “disentangled”)) and
BT(“demonstrations”, “deep q-network”).

Figure 5 also shows our isBEST method has discovered better emerging topics
denoted by BT while both FoS AUGUR and CSO AUGUR only found emerging
topics represented by 3BT. In the same way, to compare the number of publi-
cations changing with the years according to emerging topic’s two conditions,
the overall trend is that although the numbers of publications to support emerg-
ing topics found by FoS AUGUR are increasing quickly in recent years (from
2019–2021), satisfying emerging topic condition 2, the numbers of publications
for those topics cannot satisfy the emerging topic condition 1 - an only small
number of publications in the past; this means the result topics found by FoS
AUGUR are the developed topics that were emerging topics in the past but
not any more (i.e., they have small rareness values (Eq. (5)) and thus get bad
scores (Eq. (4)). So, after excluding the developed topics, the proposed isBEST
method shows better results; two that satisfy the emerging topic conditions
well are BT(“image segmentation”, “u-net”) and BT(“generative adversarial”,
“Wasserstein”).

6 Conclusions

In this paper, we propose the isBEST method to discover emerging topics with
just-in-time knowledge learning. The main mechanism of isBEST lies in using
two levels of clustering to overcome two challenges separately. One challenge
is the difficulty to find the rare emerging-topic papers in large scholarly paper
databases. Another challenge is the complication in defining the topic similar-
ity between papers due to emerging topics’ linguistic diversity. Our isBEST
overcomes linguistic diversity challenge by combining language similarity and
network similarity to find synonymous biterms in the document-level clustering.
Also, it solves the rareness challenge in the corpus-level clustering with a vec-
torization strategy for document comparison that assigns more weights to rarer
synonymous biterms. Because those biterms find emerging topics supported by
super topics appears in a more accelerated increasing number of papers, this vec-
torization allows the corpus-level clustering to find emerging topics accurately.
Experimental results on two datasets demonstrate the accuracy and effectiveness
of the proposed method for emerging topic discovery. Our practice also suggests
that just-in-time knowledge learning is superior to using an external knowledge
database for more effective emerging topic discovery.

Acknowledgement. This work was partially supported by Australia Research Coun-
cil (ARC) Discovery Project (DP190100587).



40 J. Wu et al.

References

1. Alam, M.M., Ismail, M.A.: RTRS: a recommender system for academic researchers.
Scientometrics 113(3), 1325–1348 (2017)

2. Chen, Y., et al.: Fast density peak clustering for large scale data based on KNN.
Knowl.-Based Syst. 187, 104824 (2020)

3. Decker, S.L., Aleman-Meza, B., Cameron, D., Arpinar, I.B.: Detection of bursty
and emerging trends towards identification of researchers at the early stage of
trends. Ph.D. thesis, University of Georgia Athens (2007)

4. Dridi, A., Gaber, M.M., Azad, R.M.A., Bhogal, J.: Leap2Trend: a temporal word
embedding approach for instant detection of emerging scientific trends. IEEE
Access 7, 176414–176428 (2019)

5. Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: Exploring the com-
puting literature using temporal graph visualization. In: Visualization and Data
Analysis 2004, vol. 5295, pp. 45–56. International Society for Optics and Photonics
(2004)

6. Ezzeldin, M., El-Dakhakhni, W.: Metaresearching structural engineering using text
mining: trend identifications and knowledge gap discoveries. J. Struct. Eng. 146(5),
04020061 (2020)

7. Kim, M.: Scientific trend analysis and curation with Korean R&D information. J.
Supercomput. 72(9), 3663–3673 (2016)

8. King, D., Downey, D., Weld, D.S.: High-precision extraction of emerging concepts
from scientific literature. In: Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 1549–1552
(2020)

9. Osborne, F., Scavo, G., Motta, E.: A hybrid semantic approach to building dynamic
maps of research communities. In: Janowicz, K., Schlobach, S., Lambrix, P.,
Hyvönen, E. (eds.) EKAW 2014. LNCS (LNAI), vol. 8876, pp. 356–372. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13704-9 28

10. Prabhakaran, V., Hamilton, W.L., McFarland, D., Jurafsky, D.: Predicting the rise
and fall of scientific topics from trends in their rhetorical framing. In: Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 1170–1180 (2016)

11. Salatino, A.A., Osborne, F., Motta, E.: Augur: forecasting the emergence of new
research topics. In: Proceedings of the 18th ACM/IEEE on Joint Conference on
Digital Libraries, pp. 303–312 (2018)

12. Sun, X., Ding, K., Lin, Y.: Mapping the evolution of scientific fields based on
cross-field authors. J. Inform. 10(3), 750–761 (2016)

13. Tseng, Y.H., Lin, Y.I., Lee, Y.Y., Hung, W.C., Lee, C.H.: A comparison of methods
for detecting hot topics. Scientometrics 81(1), 73–90 (2009)

14. Wang, K., Shen, Z., Huang, C., Wu, C.H., Dong, Y., Kanakia, A.: Microsoft aca-
demic graph: when experts are not enough. Quant. Sci. Stud. 1(1), 396–413 (2020)

15. Wu, J., Giles, C.L.: Scholarly very large data: challenges for digital libraries. In:
Challenges For Large Scale Networking (LSN) Workshop on Huge Data: A Com-
puting, Networking and Distributed Systems Perspective (2020)

16. Wu, J., Huang, G., Zarei, R.: ETBTRank: ranking biterms in paper titles for
emerging topic discovery. In: Long, G., Yu, X., Wang, S. (eds.) AI 2021. LNCS,
vol. 13151, pp. 775–784. Springer, Cham (2022). https://doi.org/10.1007/978-3-
030-97546-3 63

17. Xia, F., Wang, W., Bekele, T.M., Liu, H.: Big scholarly data: a survey. IEEE Trans.
Big Data 3(1), 18–35 (2017)

https://doi.org/10.1007/978-3-319-13704-9_28
https://doi.org/10.1007/978-3-030-97546-3_63
https://doi.org/10.1007/978-3-030-97546-3_63


Predicting Abnormal Events in Urban
Rail Transit Systems with Multivariate

Point Process

Xiaoyun Mo(B), Mingqian Li, and Mo Li

Nanyang Technological University, Singapore, Singapore
{xiaoyun001,mingqian001,limo}@ntu.edu.sg

Abstract. Abnormal events in rail systems, including train service
delays and disruptions, are pains of the public transit system that have
plagued urban cities for many years. The prediction of when and where
an abnormal event may occur, can benefit train service providers for
taking early actions to mitigate the impact or to eliminate the faults.
Prior works rely on rich sources of sensor or log data that require exten-
sive efforts in sensor deployment, data gathering and preparation. In this
article, we aim at predicting abnormal events by leveraging only basic
information of historical events (e.g., dates, technical causes) that can
be easily obtained from existing open records. We propose a non-trivial
method which categorizes event pairs based on their basic information,
and then characterizes inter-event influence between event pairs via a
multivariate Hawkes process. The proposed method overcomes the major
hurdle of data sparsity in abnormal events, and retains its efficacy in cap-
turing the underlying dynamics of event sequences. We conduct experi-
ments with a real-world dataset containing Singapore’s 5-year abnormal
rail events, and compare with a wide range of baseline methods. The
results demonstrate the effectiveness of our method.

Keywords: Abnormal event prediction · Multivariate Hawkes
process · Data sparsity

1 Introduction

Mass Rapid Transit (MRT) rail system usually provides the backbone of the pub-
lic transit system. MRT-related abnormal events including train service delays
and disruptions are a crucial problem that has plagued urban cities like Singa-
pore for many years. The occurrence of an abnormal event can impair the journey
of thousands to tens of thousands of commuters. The causes of these events vary,
but the majority are due to technical faults such as power failures, signal errors,
etc. On 7th July, 2015, one of the most severe MRT abnormal events in Singa-
pore, which was caused by electrical power trips, crippled two major rail lines in
Singapore during evening peak hours and affected up to 413,000 commuters. The
operator was fined $5.4 million to take responsibility for this event [22]. Reduc-
ing the number of abnormal events, or mitigating their impact on commuters
are thus vital tasks for train service providers.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13280, pp. 41–53, 2022.
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Fig. 1. Distribution of abnormal events from year 2015 (top left) to 2018 (bottom right)
on the East-West line of Singapore. Each event is represented by a line segment with
two bounding circles, indicating the stretch of abnormal stations. An event is marked
in red if it is close to some other event(s) on both temporal (i.e., within 1 week) and
spatial (i.e., stretches of stations overlap) scales.

Predictive analysis of MRT abnormal events benefits train service providers
and commuters. On one hand, it helps with the predictive maintenance of the
MRT system to eliminate hazards proactively, as well as prompt post-event
actions to transfer affected commuters. On the other hand, prediction results
can enhance public awareness of the operational conditions of the MRT system,
and can help them to make decisions about their travel choices. Existing studies
related to rail system failures leverage rich sources of data from sensors such as
temperature, infrared and strain [8], etc., which are practically hard to execute
due to the costly deployment of sensors; as well as data from logs such as main-
tenance logs, equipment details [11], etc., comprising heterogeneous data sources
that require extensive efforts in data gathering, storing and pre-processing.

This paper aims at predicting when (i.e., date) and where (i.e., rail line and
stations) will a future abnormal event occur. We leverage historical event data
with event attributes including date, the abnormal rail line and stations, as well
as the type of technical fault that causes the event. The data are easily accessi-
ble from two public channels, namely, official tweets posted by Singapore MRT
operators (i.e., SMRT and SBS) and local news feeds (e.g., The Straits Times).
We collect data about the abnormal events from January 2015 to December
2019 and perform the study. Figure 1 shows the spatial-temporal distribution
of abnormal events on the East-West line, one of the most popular MRT lines
in Singapore. The figure suggests certain locality on both temporal and spatial
scales when events take place. It is likely that after one event occurs other events
of overlapping stretches may follow, and as a result the sequence of events dis-
play a clustered dynamic pattern. This paper makes use of such a pattern, i.e.,
the excitation influence between events, to model event sequence and therefore
forecast future events.

Executing this approach, however, entails special challenges due to a major
issue of data sparsity, i.e., the number of abnormal events is extremely limited to
capture the sophisticated inter-event influences. Specificaly, the influence decays
as the interval between two events’ timings increases, and events of different
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technical causes may be distinctive in the pattern of triggering future events.
Other factors like whether the two events are on the same rail line, or whether
their stretches of abnormal stations overlap, may lead to a difference on the
magnitude of influence between them. In addition, it is also necessary to quantify
by how much an event occurs innately, i.e., occurs as natural arrivals. We need
learn from very limited historical events as the training set in order to derive a
unified model to numerically quantify the dependencies.

Contributions. This paper proposes a novel method based on multivariate
Hawkes process, PAbEve (Predicting Abnormal Event in MRT system), to
address the above challenges in predicting MRT abnormal events. Leveraging
the information of historical events, which is lightweight and publicly accessible,
PAbEve retains its efficacy in modeling the abnormal event sequence, including
the timings and locations, and then utilize it to predict the timings and loca-
tions of future events. PAbEve captures non-trivial inter-event influences and its
parameters are expressive for those influences. We conduct extensive experiments
with a real-world dataset containing Singapore’s 5-year MRT abnormal events,
and evaluate PAbEve in comparison with a wide range of alternative approaches.
The results suggest PAbEve outperforms other methods in overall performance.

2 Related Work

Abnormal Event Prediction. Predicting abnormal events has attracted
extensive attention in recent years. We divide existing works into three cate-
gories according to the object being studied. The first category studies on time
series of instances in equal-length time steps, and treats those of extreme values
as abnormal instances, such as key timings of flu seasons [1], congestion in traffic
streams [9], and financial crisis in stock price series [4]. The second category of
works attempts to construct indicative features or to find precursors of abnormal
events, and use them as predictors for future events. For instances, some works
conduct predictive analysis on a rich set of sensor, logging (e.g., maintenance
logs) and/or contextual data (e.g., weather), to construct meaningful features
for the prediction of railway point failures [11], railway service interruptions [8]
and medical equipment failures [21]. Some studies focus on mining media arti-
cles (e.g., tweets) to find precursors of social events like protests [3,14,23]. The
third category of works directly studies event occurrences and utilize the inter-
event correlation to predict future events, such as crime, vehicle collision, etc.
[16]. Generally, the number of abnormal events is limited, resulting in a major
challenge of data sparsity. Our work falls into this category. Only a few prior
works of abnormal event prediction address the issue of data sparsity [1,15,23].
However, those approaches cannot be applied to our case, as their prediction
problems fall into the first/second categories. We are unable to conduct contex-
tual analysis of rich data sources because other relevant information for MRT
abnormal events is also limited. Relevant information like the technical cause of
event will be instead used as auxiliary covariates in this paper.
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Point Process. As a mathematical approach for modeling event sequences,
point process has been widely adopted to deal with prediction tasks, such as
the prediction of taxi pickup, crime, neuronal activity, etc. Generally, a point
process is characterized by a conditional intensity function. Classical point pro-
cesses, such as Hawkes process [7], formulate the conditional intensity function
based on a strong assumption on the dynamic pattern of event sequences. In
the past decades, many non-trivial models extend these classical models to 3D
spatio-temporal or multivariate space [2,12,19,24]. Recent deep learning tech-
niques incubate state-of-the-art point processes, which are usually able to embed
long-term memory of historical events and make very few assumptions on the
dynamic pattern of event sequences [5,13,17,25]. Some existing works also pro-
pose intensity-free models to develop more general point processes using frame-
works such as adversarial learning [10,20].

3 Preliminaries

Temporal Point Process. A temporal point process is a random process
of event occurrence characterized by a conditional intensity function, λ(t|Ht),
which is the event rate at time t ∈ R conditioned on historical events Ht before
t. For convenience, we omit the notation Ht in the rest of the paper. The func-
tional form of λ(t) is usually designed according to the dynamic pattern of event
sequences. For example, Hawkes process is a kind of temporal point process that
characterizes the self-exciting dynamic pattern, i.e., the occurrence of an event
can raise the event rate in the near future.

Multivariate Hawkes Process. A multivariate Hawkes process can be
regarded as a sequence of correlated Hawkes processes of multiple event types.
Formally, for a U -dimensional Hawkes process, the conditional intensity function
of the u-th event type, λu(t), u = 1, ..U , is defined as

λu(t) = μu +
∑

i:ti<t

αuui
g(t − ti) (1)

where μu is the natural arrival rate (i.e., background rate) of the u-th event
type, αuui

is the trigger coefficient between the u-th and ui-th event types, and
g(Δt) is the trigger function that usually decays with the increase of Δt.

4 Methodology

4.1 Problem Definition

In the MRT system, suppose there are R rail lines, and U possible technical
faults that cause abnormal events. We use r (r = 1, ..., R) and u (u = 1, ..., U)
to denote the indices of rail lines and technical faults, respectively. Each rail line
is divided into M equal-size segments so that rail lines are of equal numbers of
segments (i.e., “lengths”). We then denote a stretch of stations as x = [x−, x+],
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where x− and x+ are the indices of the two bounding segments on a specific
rail line, 1 ≤ x− ≤ x+ ≤ M . The list of distinct stretches of the r-th rail line is
denoted by Xr, with size S = |Xr| = M(M+1)

2 that is identical for all rail lines.
We use s to denote the index of a stretch (s = 1, ..., S). Suppose we are given an
abnormal event sequence e1, ..., en, where ei = (ti, ri, si), with ti ∈ Z the time
of event in terms of day. The causes of events are denoted by u1, ..., un, each of
which is the index of technical fault. Given the information of n historical events
above, we aim to predict the time, abnormal rail line and stretch of stations of
the next event, en+1 = (tn+1, rn+1, sn+1).

4.2 Categorization of Event Pairs

We categorize an event pair (ei, ej), where i > j, hierarchically using the loca-
tions and technical faults of both events. The categorization is of three levels.
For the first level, we divide event pairs based on their technical faults. For sim-
plicity, we assume that inter-event influence only exists between two events that
are caused by the same type of technical fault. According to the official tweets
posted by MRT operators, there are 6 main types of technical faults, namely,
train fault, track fault, power fault, signal fault, platform fault (mostly the screen
door errors), and others. Therefore, for the first level, event pairs are divided into
6 groups of different fault types. For the second level, we distinguish intra-line
pairs, for which two events occur on the same rail line (i.e., ri = rj), from inter-
line pairs, for which two events occur on different rail lines (i.e., ri �= rj). The
influence between inter-line pair of events is possible as the two rail lines can be
run by the same transit operator. For the third level, we further divide event
pairs into overlapping pairs or non-overlapping pairs, according to whether the
two events’ stretches of abnormal stations overlap (i.e., Xri

si
∩ X

rj
sj �= ∅) or not

(i.e., Xri
si

∩X
rj
sj = ∅). Note that the stretches of an inter-line pair can also overlap

via interchange stations.

4.3 Multivariate Hawkes Process

We propose a multivariate Hawkes process that can capture the specific inter-
event influence of each category of event pairs. We first derive the conditional
intensity function, and then present the procedure of prediction.

Conditional Intensity Function. The occurrence rate of abnormal events on
the r-th rail line at the s-th stretch of stations in Xr, is specified by a conditional
intensity function defined as

λ(t, r, s) =
U∑

u=1

λu(t, r, s) (2)

λu(t, r, s) = μurs +
∑

j:tj<t,uj=u

φuj
(r, rj , s, sj)g(t − tj) (3)

where λu(t, r, s) is a subordinate conditional intensity function of technical fault
u, with u = 1, ..., U . μurs represents the natural arrival rate of events of the
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type indicated by the subscript indices. The second term of λu(t, r, s) represents
the trigger rates that are brought by events before t. According to the 3-level
categorization described in Sect. 4.2, we assign each category of event pairs with
a distinct trigger coefficient specified by φu(·), and it is defined as

φu(r, r′, s, s′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

au r �= r′ and Xr
s ∩ Xr′

s′ = ∅
bu r �= r′ and Xr

s ∩ Xr′
s′ �= ∅

cu r = r′ and Xr
s ∩ Xr′

s′ = ∅
du r = r′ and Xr

s ∩ Xr′
s′ �= ∅

(4)

in which au, bu, cu and du are the trigger coefficients for the u-th fault type,
for inter-line non-overlapping, inter-line overlapping, intra-line non-overlapping
and intra-line overlapping event pairs, respectively. The trigger function g(Δt) is
defined in order to weaken the influence as time elapses. Particularly, it is defined
in a non-parametric way, i.e., Δt is discretized as Δt = kδt, for k = 0, ...,K. The
hyper-parameters K and δt control the span and granularity of time intervals,
respectively. Then the trigger function g(Δt) is specified by a sequence of scalars
[gk]Kk=1. When Δt > Kδt, g(Δt) equals to zero.

Parameter Learning. The parameters are optimized iteratively using the max-
imum likelihood estimation. The likelihood of event ei is defined as

Li = λui
(ti, ri, si) · exp

{
−

∫ ti

ti−1

(
U∑

u=1

R∑

r=1

S∑

s=1

λu(τ, r, s)

)
dτ

}
(5)

where the exponential term of Eq. (5) means no event during the time interval
(ti−1, ti) [18]. A lower-bound of the log-likelihood logL of an n-length event
sequence is then derived as

logL ≥
n∑

i=1

⎛

⎝piilog
μuirisi

pii
+

∑

j:tj<ti,uj=ui

pij log
φuj

(ri, rj , si, sj)g(ti − tj)
pij

⎞

⎠

− (tn − t0)
U∑

u=1

R∑

r=1

S∑

s=1

μurs −
R∑

r=1

S∑

s=1

n∑

j=1

(
φuj

(r, rj , s, sj)
∫ tn

tj

g(τ − tj)dτ

)

(6)
based on Jensen’s inequality (log(E[X]) ≥ E[log(X)]). The weights pii and pij ,
j = 1, ..., i − 1 are computed following [24].

pii =
μuirisi

λui
(ti, ri, si)

, pij =
φuj

(ri, rj , si, sj)g(ti − tj)
λui

(ti, ri, si)
(7)

Specifically, pii denotes the probability that event ei arrives naturally, while pij

denotes the probability that it is rather triggered by a previous event ej .
Given the lower-bound of logL, the analytical solutions of the parameters can

be obtained by setting the first derivative of the lower-bound with respect to each
parameter to zero and then solving the equations. Specifically, the solutions of
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Algorithm 1: Iterative algorithm for parameter learning
Input: events [ei]

n
i=1, faults [ui]

n
i=1, randomly initialized weights pii’s and pij ’s

Output: values of parameters
1 repeat
2 Update μurs by Eq. (8) for u = 1, ..., U , r = 1, ..., R, and s = 1, ..., S;
3 Update au by Eq. (9), similarly for bu, cu and du, for u = 1, ..., U ;
4 Update gk by Eq. (10) for k = 0, ..., K;
5 for i = 1, ..., n and j = 1, ..., i − 1 do
6 Update pii by Eq. (7);
7 Update pij by Eq. (7) if ti − tj ≤ Kδt and ui == uj else set pij = 0.

8 until pii’s and pij’s converge;

μurs, au (and adapted to bu, cu and du according to Eq. (4)) and gk are depicted
in Eq. (8), (9) and (10), respectively, where I[·] is the indicator function.

μurs =
∑n

i=1 piiI[ui = u, ri = r, si = s]
tn − t0

(8)

au =

∑n
i=1

∑
j:tj<ti,uj=ui

pijI[uj = u, ri �= rj ,X
ri
si

∩ X
rj
sj = ∅]

∑R
r=1

∑S
s=1

∑n
j=1 I[uj = u, r �= rj ,Xr

s ∩ X
rj
sj = ∅]

∫ tn
tj

g(τ − tj)dτ
(9)

gk =

∑n
i=1

∑
j:tj<ti,uj=ui

pijI[kδt ≤ ti − tj < (k + 1)δt]

δt
∑R

r=1

∑S
s=1

∑n
j=1 φuj

(r, rj , s, sj)I[kδt ≤ tn − tj ]
(10)

Provided n historical abnormal events, we first initialize the weights pii’s and
pij ’s by random. After that, a loop is used to iteratively optimize the values of
all parameters and weights until convergence, i.e., until the values of parameters
(or weights pii’s and pij ’s) do not change substantially in a single iteration. The
iterative algorithm is shown in Algorithm1.

Prediction. Given the conditional intensity functions and historical abnormal
events, the probability density function of some t ∈ (tn,+∞), r, s being the time,
rail line, and stretch of the next event is given as

f(t, r, s) = λ(t, r, s) · exp

{
−

∫ t

tn

λ(τ)dτ

}
(11)

We predict the timing of event en+1 by taking its expectation as

t̂n+1 = E[t|Htn ] =

∫ tn+T

tn
t ·

(∑R
r=1

∑S
s=1 f(t, r, s)

)
dt

∫ tn+T

tn

(∑R
r=1

∑S
s=1 f(t, r, s)

)
dt

(12)

where T is a sufficiently large time duration (e.g., T = 150). After that, the
abnormal rail line as well as the stretch of stations are predicted as follows:

r̂n+1 = argmaxr f(t̂n+1, r) = argmaxr

S∑

s=1

f(t̂n+1, r, s) (13)
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Table 1. Distribution of events by fault.

Fault type Train Track Power Signal Platform Others

Num. of events 86 81 19 27 22 19

x̂n+1 = E[x|Htn , t̂n+1, r̂n+1] =
∑S

s=1 X
r̂n+1
s · f(t̂n+1, r̂n+1, s)∑S

s=1 f(t̂n+1, r̂n+1, s)
(14)

in which x̂n+1 = [x̂−, x̂+], with x̂− and x̂+ the indices of the two bounding seg-
ments that specify a stretch of stations on the r̂n+1-th rail line. All the integrals
in the equations above are approximated using summation.

5 Experiments

5.1 Experimental Setup

Dataset. We collect MRT abnormal events from January 2015 to December
2019, from two open sources, i.e., official tweets posted by operators and local
news feeds1. The provided information includes date, approximate time of the
day, rail line, cause, and the stretch of affected stations. We set the causes of a
few events with no cause specified as the “others” type of technical fault. After
filtering out isolated incidents with system irrelevant causes (e.g., passenger’s
fall, animal invasion), we finally obtain 254 events, the distribution of which by
fault type is shown in Table 1. We sort the events by date and use the first 75%
for training and the last 25% for testing. There is no validation set due to the
scarcity of observed events. But we provide sensitivity analysis which shows clear
trends of the impact of hyper-parameters on the performance.

Baselines. We compare PAbEve with 9 baseline methods, where 5 are for timing
prediction only (i.e., NextDay, Auto-regressive, Hawkes parametric, Hawkes non-
parametric and NNPP), and the rest 4 for both timing and location prediction
(i.e., Poisson loc, MMEL loc, MMEL fault+loc and RMTPP loc).

– NextDay: a naive baseline which uses the next day of the most recent event
as the prediction result, e.g., t̂n+1 = tn + 1.

– Poisson loc: a homogeneous Poisson process with the conditional intensity
function λ(t, r, s) =

∑n
i=1 I[ri=r,si=s]

tn−t0
that is constant over time.

– Auto-regressive [6]: which assumes the most recent l inter-event intervals are
linearly correlated. We select l as 6.

– Hawkes parametric (Hawkes p) [7]: a temporal Hawkes process with trigger
function g defined parametrically as g(t − t′) = e−β(t−t′).

1 An example tweet on 17th February, 2015, is “11:27:37 [EWL] Due to a train fault
at Jurong East, there will be no train service from Lakeside to Clementi on the east
bound...”. The event data is accessible via https://github.com/PAbEve/data.

https://github.com/PAbEve/data
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Table 2. Prediction performance of evaluated approaches.

NextDay Auto-reg. Hawkes p Hawkes n/p NNPP

MAE 8.156 7.131 6.634 6.797 74.878

Poisson loc MMEL loc MMEL fault+loc RMTPP loc PAbEve

MAE 6.562 6.869 9.588 7.438 6.156

Hit rate 0.453 0.503 0.478 0.547 0.578

CosSim 0.437 0.485 0.458 0.473 0.562

– Hawkes non-parametric (Hawkes n/p): a temporal Hawkes process with trigger
function g estimated non-parametrically, i.e., g = {g(kδt)|k = 0, 1, ...}.

– MMEL loc [24]: a multivariate Hawkes process with the u′-th dimensional
conditional intensity function λu′(t) given in Eq. (1), where {u′ = (r, s)|r =
1, ..., R; s = 1, ..., S}. Hyper-parameters D is set as 1 and α as 0 for simplicity
without losing generality.

– MMEL loc+fault [24]: which uses the same settings as MMEL loc, but with
{u′ = (r, s, v)|r = 1, ..., R; s = 1, ..., S; v = 1, ..., U}.

– RMTPP loc [5]: a neural marked temporal point process with its marks being
the items in {u = (r, s)|r = 1, ..., R; s = 1, ..., S}.

– NNPP [17]: a fully neural temporal point process which models the cumulative
conditional intensity function and obtain the conditional intensity function
via its derivative.

Metrics. We use 3 kinds of metrics to evaluate the performance of compared
methods on m test events, including (1) MAE, which is the mean absolute error
in days between the predicted and ground-truth times, i.e., 1

m

∑m
l=1 |t̂n+l−tn+l|;

(2) Hit rate, which is the proportion of test events where the predicted and
ground-truth rail lines are the same, i.e., 1

m

∑m
l=1 I[r̂n+l = rn+l]; (3) CosSim,

which is the mean cosine similarity between the predicted and ground-truth
stretches, i.e., 1

m

∑m
l=1

xn+l·x̂n+l

|xn+l||x̂n+l| I[rn+l = r̂n+l]. For MAE, smaller values are
better, while for Hit rate and CosSim, larger values are preferred.

5.2 Experimental Results

We run each evaluated method for 10 rounds, and take the average of 10 rounds
for each metric. We set the hyper-parameters as δt = 1, K = 25 and M = 10.
The results of prediction are summarized in Table 2.

Results of Timing Prediction. In terms of MAE, we may draw the follow-
ing conclusions. First, parametric methods are neither superior nor inferior to
semi-parametric methods according to the experiment results. Semi-parametric
method refers to those with a part of the model (e.g., the trigger function)
designed in a non-parametric way, including all Hawkes-based evaluated meth-
ods except Hawkes p. We see among the top 5 performing methods, there are
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semi-parametric methods PAbEve with MAE 6.156, Hawkes n/p with MAE 6.797
and MMEL loc with MAE 6.869, and also parametric methods Poisson loc with
MAE 6.562 and Hawkes p with MAE 6.634. Second, among the parametric meth-
ods, however, only light-weight methods, i.e., Poisson loc, Hawkes p and Auto-
regressive, can compete with semi-parametric methods. Heavy-weight methods
which may not be able to express the sparse data may perform arbitrarily bad,
such as NNPP which yield a MAE of 74.878. Particularly, the naive Poisson loc
outperforms all the other evaluated methods except PAbEve, which indicates
that those non-trivial methods may degrade when trained on insufficient data.
Third, among the semi-parametric Hawkes-based methods, we see Hawkes n/p
of 6.797 outperforms MMEL loc of 6.869, and MMEL loc outperforms MMEL
fault+loc of 9.588. We suspect that increasing the number of inputs (e.g., rail
line, technical fault) is probable to worsen the performance, as the number of
parameters to learn are increased as well. Overall PAbEve outperforms the others
as it properly incorporates all aspects of information via the dedicated design of
inter-event influences.

Results of Location Prediction. Location prediction consists of the predic-
tion of abnormal rail line and the stretch of stations. We evaluate 5 methods
that can conduct location prediction, and PAbEve outperforms the others. For
the prediction of abnormal rail lines, RMTPP loc performs close to PAbEve’s, but
it uses unadjustable prediction for all events (i.e., standard deviation is zero),
and so is Poisson loc. Comparison between MMEL loc and MMEL fault+loc shows
increasing the number of inputs may worsen the performance. For the predic-
tion of abnormal stretches, PAbEve again outperforms all others. Among them
RMTPP loc predicts trivially using the entire rail line. Both RMTPP loc and
Poisson loc predict using the same value for all events.

Model Interpretation. To interpret PAbEve, we visualize the estimated back-
ground rates, trigger coefficients, trigger function and weights. The results are
shown in Fig. 2. From Fig. 2(a) and (b), we see events of the highest background
rates are those on both rail lines caused by train fault or track fault, and the cat-
egory of inter-line overlapping event pairs caused by “others” fault has the most
significant inter-event influences. For the trigger function, as shown in Fig. 2(c),
it fluctuates between 0 and 0.67, which is dissimilar to exponential or power law
functions and this may simply be resulted from the data sparsity issue. Finally,
for each of the 5 Hawkes-based evaluated methods, we investigate the proba-
bilities of an event being natural arrival (represented by the sum of pii’s) or
triggered event (represented by the sum of pij ’s). PAbEve is the one with the
largest ratio of background versus trigger (i.e., about 3 to 1).

Results of Sensitivity Tests. We explore the impact of hyper-parameters δt,
K and M , on the prediction performance. Each result is averaged over 10 rounds.
The results are depicted in Fig. 3. We test the impact of δt by setting K to 25,
and changing δt from 1 to 10 with PAbEve. The MAEs shown in Fig. 3(a) depict
a clear trend that increasing δt will probably worsen the performance. When
δt ≤ 2, PAbEve outperform all other evaluated methods. Similarly, we test the
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Fig. 2. Visualization of (a) background rates, (b) trigger coefficients, (c) trigger func-
tion, and (d) sum of training events’ pii’s (“backg.”) and that of pij ’s (“trigger”).

Fig. 3. Sensitivity tests. (a) MAEs under δt from 1 to 10 (K = 25); (b) MAEs under K
from 5 to 100 (δt = 1); (c) MAEs, (d) Hit rates and (e) CosSims, of all location-available
methods under M from 5 to 20 (δt = 1, K = 25).

impact of K by setting δt to 1, and changing K from 5 to 100 at an interval
of 5 with PAbEve. The MAEs depicted in Fig. 3(b) range from 6.156 to 8.056.
When K ≤ 65, PAbEve outperform all other methods with the MAEs oscillating
between 6.156 and 6.538. Finally, for the number of rail line segments, M , as
shown in Fig. 3(c), there are only mild changes of MAEs for most methods when
M changes, except MMEL fault+loc for which the errors increase significantly.
For location prediction results shown in Fig. 3(d) and (e), as M increases, there
is no specific trend for the hit rate of rail line or the similarity measure of stretch.

6 Conclusion

We present a novel solution to predicting when and where will a future MRT
abnormal event occur, based on historical abnormal events. We first categorize
event pairs based on basic contextual information, and then design a multivariate
Hawkes process to model the sparse sequence of abnormal events. The proposed
PAbEve approach retains its efficacy when being trained on extremely limited
training events. Experimental results using real-world data from open sources
demonstrate the superiority of PAbEve over other alternative solutions.
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Abstract. Which one is better between two representative graph sum-
marization models with and without edge weights? From web graphs to
online social networks, large graphs are everywhere. Graph summariza-
tion, which is an effective graph compression technique, aims to find a
compact summary graph that accurately represents a given large graph.
Two versions of the problem, where one allows edge weights in summary
graphs and the other does not, have been studied in parallel without
direct comparison between their underlying representation models. In
this work, we conduct a systematic comparison by extending three search
algorithms to both models and evaluating their outputs on eight datasets
in five aspects: (a) reconstruction error, (b) error in node importance,
(c) error in node proximity, (d) the size of reconstructed graphs, and
(e) compression ratios. Surprisingly, using unweighted summary graphs
leads to outputs significantly better in all the aspects than using weighted
ones, and this finding is supported theoretically. Notably, we show that
a state-of-the-art algorithm can be improved substantially (specifically,
8.2×, 7.8×, and 5.9× in terms of (a), (b), and (c), respectively, when (e)
is fixed) based on the observation.

1 Introduction and Related Works

Relationships between objects, such as friendships in online social networks, co-
appearance of tags, and hyperlinks between web pages, are universal. They are
naturally represented as graphs, whose sizes have grown at a tremendous rate
due to advances in web technology. For example, the number of web pages (i.e.,
nodes in web graphs) increased by about 500× in the past two decades.

Graph compression is a useful technique for efficient utilization of such large
graphs. Many techniques have been developed for various purposes, including
storage [5,7,9,15,17,19,23,26,28], query processing [6,13,18,25], influence anal-
ysis [21,22], pattern mining [16,27], anomaly/outlier detection [3,8], privacy
preservation [29,30], visualization [10,11], and representation learning [12,32].
We refer to surveys [4,20] for details of them. Their common goal is to find a
compact representation that exactly or approximately describes a given graph.

Among them, we focus on graph summarization [2,13–15,17,18,23,25,28].
whose objective is to find a concise summary graph G′ that accurately describes
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13280, pp. 54–67, 2022.
https://doi.org/10.1007/978-3-031-05933-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05933-9_5&domain=pdf
https://doi.org/10.1007/978-3-031-05933-9_5
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Reconstructed Adjacency Matrix 
(L1 Reconstruction Error: 0.27)

Reconstructed Adjacency Matrix 
(L1 Reconstruction Error: 0.2)

Summarize
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Summary Graph 
(Compression Ratio: 76.1%)

1
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1 1

Summarize
without Weights Summary Graph 

(Compression Ratio: 45.9%)

a 0

b 1 0

c 1 1 0

d 1 1 0 0
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(+1 edges compared to )

Input Graph 
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0 1/3

0
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Fig. 1. Examples of weighted and unweighted graph summarization and reconstruction.
The summary graph G̃ without edge weights is more concise with smaller reconstruction
error and reconstruction size than G with edge weights.

a given large graph G, or equivalently, concise G′ from which we can restore
a graph close to G.1 Each node in G′ is interpreted as a group of nodes in G,
and each edge in G′ is interpreted as the presence of edges between all pairs of
nodes in two groups. Since the output G′ is in the form of a graph, other graph
compression methods can be applied to G′ for further compression [28]. That is,
graph summarization can be used as a preprocessing step of other compression
methods. Moreover, a wide range of graph algorithms can be approximately
executed on G′ without full reconstruction (see AppendixA and [25]).

There are two representative graph summarization models: a summary graph
with edge weights [2,17,18,25] and one without edge weights [13–15,23,28].
While the latter is typically used with edge corrections for lossless compression,
this work focuses on G′. While a number of search algorithms aiming at finding
a high-quality summary graph under a given constraint have been developed for
each model, there was no systematic comparison between the two models.

Which one is better between the two graph summarization models? Are edge
weights in summary graphs useful? For a systematic comparison between the
two models, we extend three search algorithms [15,17,18] to both models and
evaluate their outputs in eight real-world graphs in five aspects: (a) reconstruc-
tion error, (b) error in node importance [24], (c) error in node proximity [31],
(d) the number of edges in reconstructed graphs, and (e) compression ratios.

Counterintuitively, we find out that using unweighted summary graphs
gives a significantly better trade-off among (a)–(e) than using weighted ones,
regardless of search algorithms and datasets (See Fig. 1 for an example).
Notably, adapting a state-of-the-art algorithm for the weighted model [17] to
the unweighted model leads to 8.2×, 7.8×, and 5.9× improvements in terms of
(a), (b), and (c) (when (e) is fixed) and 2.2× improvements in terms of (d) (when
(a) is similar).

Our contributions are three-fold:

1 While we use the term “graph summarization” to refer to this specific way of com-
pression, the term has also been used more generally, as surveyed in [20].
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Table 1. Symbols and definitions.

Symbol Definition Symbol Definition

V Set of subnodes G = (V, E) Input graph

E Set of subedges G = (S, P, ω) Weighted summary graph

S Set of supernodes G̃ = (S, P ) Unweighted summary graph

P Set of superedges Ĝ = (V, Ê, ω̂) Graph reconstructed from G

ω Superedge weight function Ǧ = (V, Ě) Graph reconstructed from G̃

Ê, Ě Sets of reconstructed edges A, Â, Ǎ Adjacency matrix of G, Ĝ, and Ǧ

ω̂ Subedge weight function EAB # of subedges between A, B ∈ S

Si Supernode containing i ∈ V ΠAB # of subnode pairs between A, B ∈ S

– Systematic Comparison: We conduct a systematic comparison between
two extensively-studied graph summarization models using three search algo-
rithms, eight datasets, and five evaluation metrics.

– Unexpected Observation: Our comparison leads to a surprising observa-
tion that using unweighted models is significantly better than using weighted
ones in all considered aspects. We support this finding theoretically (see The-
orem 1).

– Improvement of the State of the Art: By exploiting the observation, we
can improve a state-of-the-art algorithm [17] substantially in all considered
aspects (see Figs. 2, 3 and 4).

Reproducibility: The source code and the datasets are available at [1].

Roadmap: In Sect. 2, we introduce graph summarization models. In Sect. 3, we
define problems and present algorithms. In Sect. 4, we provide empirical results.
In Sect. 5, we present theoretical results. In Sect. 6, we offer conclusions.

2 Graph Summarization Models

We introduce weighted and unweighted graph summarization models, which are
compared throughout this work. See Table 1 for frequently-used symbols.

Input Graph. Consider an undirected graph G = (V,E) with a set of subnodes
V = {1, · · · , |V |} and a set of subedges E ⊆ (

V
2

)
. We use A ∈ R|V |×|V | to denote

its adjacency matrix. Each entry Aij = 1 if {i, j} ∈ E and Aij = 0 otherwise.

2.1 Weighted Graph Summarization Model

Definition. A weighted summary graph G = (S, P, ω) of G = (V,E) consists of
a set of supernodes S, a set of superedges P , and a superedge weight function ω.
The set S is a partition of V . That is, supernodes are disjoint sets of subnodes
whose union is V . Each superedge {A,B} ∈ P joins two supernodes A ∈ S and
B ∈ S. The function ω takes each superedge {A,B} ∈ P and returns its weight
ωAB , which is equal to EAB := |{{i, j} ∈ E : i ∈ A, j ∈ B}|, i.e., the number of
subedges in G that join subnodes between A ∈ S and B ∈ S.
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Reconstruction. The reconstructed graph Ĝ = (V, Ê, ω̂) obtained from G =
(S, P, ω) consists of the set of subnodes V , the set of reconstructed subedges
Ê ⊆ (

V
2

)
, and a subedge weight function ω̂. If we let Si ∈ S be the supernode

containing each subnode i ∈ V and let ΠAB be the number of possible pairs of
subnodes between supernodes A and B. That is, ΠAB :=

(|A|
2

)
if A = B and

ΠAB := |A| · |B| otherwise. The adjacency matrix Â ∈ R|V |×|V | of Ĝ is defined
as

Âij = ω̂ij :=

{ ωSiSj

ΠSiSj
, if i �= j and {Si, Sj} ∈ P,

0, otherwise.
(1)

2.2 Unweighted Graph Summarization Model

Definition. An unweighted summary graph G̃ = (S, P ) of G consists of a set of
supernodes S and a set of superedges P . Note that, unlike G, G̃ does not have
the superedge weight function ω.

Reconstruction. The adjacency matrix Ǎ ∈ R|V |×|V | of the graph Ǧ = (V, Ě)
reconstructed from G̃ is defined as

Ǎij :=

{
1, if i �= j and {Si, Sj} ∈ P

0, otherwise.
(2)

While Ǧ is typically used with edge corrections for lossless compression [15,23,
28], this work focuses on Ǧ.

3 Problem Formulation and Algorithms

Based on the graph summarization models, we formulate graph summarization as
optimization problems. Then, we present six search algorithms for the problems.

3.1 Optimization Problem Formulation

Given a graph G, we aim to minimize the difference between a reconstructed
adjacency matrix A′ (i.e., Ǎ or Â) and the adjacency matrix A of G. Specifically,
we aim to minimize the Lp reconstruction error, i.e.,.

REp(A,A′) := ||A − A′||p, (3)

while constraining the size of the output summary graph G′ (i.e., G or G̃) to
be at most a given constant. The size can be (a) the number of supernodes in
G′[2,18,25], (b) the number of superedges in G′, or (c) the size of G′ in bits [17].

Size in Bits of Summary Graphs. The size of a weighted summary graph
G = (S, P, ω) in bits is defined as

sizebits(G) := 2|P | log2 |S| + |P |log2 ωmax + |V | log2 |S|, (4)
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Table 2. The outlines of the considered search algorithms are given in Algorithms 1
and 2, and the details of each algorithm are provided in the table below.

Algorithm Outline G′ T size() groups() loss() sparsify?()

k-Grass (W) Algorithm1 G Infinite |S| {S} Equation (3) False

k-Grass (U) Algorithm1 G̃ Infinite |S| {S} Equation (3) False

SSumM (W) Algorithm1 G Finite Equation (4) Clusters [6] Equation (6) True

SSumM (U) Algorithm1 G̃ Finite Equation (5) Clusters [6] Equation (7) True

MoSSo-Lossy (W) Algorithm2 G N/A N/A Clusters [6] Equation (6) N/A

MoSSo-Lossy (U) Algorithm2 G̃ N/A N/A Clusters [6] Equation (7) N/A

Algorithm 1: Batch computation of a summary graph
Input: (1) input graph G, (2) budget k, and (3) # iters: T
Output: summary graph G′

1 initialize G′; t ← 1
2 while size(G′)> k and t < T do
3 C ← groups(); t ← t + 1
4 for each Ci ∈ C do
5 merge one or more pairs within Ci to minimize loss()

6 if sparsify?() then sparsify G′ until size(G′)≤ k
7 return G′

Algorithm 2: Incremental update of a summary graph

Input: (1) summary graph G′ and (2) change in {src, dst}
Output: updated G′

1 C ← groups();
2 for each u ∈ {src, dst} do

3 N̂u ← sample neighbors of u

4 for each w ∈ N̂u do
5 P ← C′ ∈ C where w ∈ C′

6 v ← draw one in N̂u ∩ P
7 if loss() drops then move w to Sv

8 return G′

where ωmax is the largest superedge weight in G, and in our experiments in
Sect. 4, ωmax << |S|. The three terms on the right side in Eq. (4) correspond to
|P | superedges in bits, |P | superedge weights in bits, and the supernode mem-
bership of |V | subnodes in bits, respectively. Similarly, the size of an unweighted
summary graph G̃ in bits is defined as

sizebits(G̃) := 2|P | log2 |S| + |V | log2 |S|. (5)
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3.2 Weighted Graph Summarization Algorithms

We introduce three searching algorithms for finding a weighted summary graph
G = (S, P, ω) of the input graph G. See Algorithms 1 and 2 for their outlines
and Table 2 for details.

k-Grass. k-Grass [18] first initializes the set S of supernodes so that each subn-
ode forms a singleton supernode. Then, it repeats greedily merging a supernode
pair until |S| reaches the target number (i.e., the given constraint). Specifically,
in each step, among all supernode pairs, k-Grass merges a pair whose merger
increases Eq. (3) least. During the entire process, k-Grass creates a superedge
between each supernode pair A and B (i.e., {A,B} ∈ P ) if and only if EAB > 0.

SSumM. SSumM [17] initializes S as in k-Grass. Then, SSumM divides S
into disjoint groups of supernodes with similar connectivity to find pairs to be
merged efficiently. After that, in each group, SSumM repeats merging a pair of
supernodes whose merger decreases Eq. (6) most.

sizebits(G) +
∑

{A,B}∈P

ΠAB · H(
EAB

ΠAB
) +

∑

{A,B}/∈P

2EAB log2 |V |, (6)

where H(·) is the entropy function. Equation (6) considers both the size of a
summary graph and the reconstruction error. Specifically, the second term is
the number of bits for exactly restoring the subedeges between supernodes that
are joined by superedges, and the third term is that for the other subedges (see
[17] for details). During the process, the superedge between each supernode pair
exists only when it decreases Eq. (6). If sizebits(G) (i.e., Eq. (4)) cannot satisfy
the given constraint (i.e., the target size) within the given number of iterations,
SSumM sparsifies G greedily based on Eq. (3) to satisfy the constraint.

MoSSo-Lossy. MoSSo-Lossy is a lossy variant of MoSSo [15], which is a
lossless graph compression algorithm. While processing subedges incrementally,
it updates G = (S, P, ω). Specifically, for each subedge {u, v}, it samples a fixed
number of neighbors of u and v. Then, for each such neighbor w, MoSSo-Lossy
moves w from Sw to the supernode which another sampled subnode with similar
connectivity belongs to if this change decreases Eq. (6). As in SSumM, for each
pair of supernodes, a superedge joins them only when it decreases Eq. (6).

3.3 Unweighted Graph Summarization Algorithms

We extend the above algorithms for obtaining an unweighted summary graph
G̃ = (S, P ) of the input graph G. The differences are highlighted in Table 2 with
the outlines in Algorithms 1 and 2.

k-Grass (Unweighted). This variant is different from k-Grass in that Eq. (2)
is used, instead of Eq. (1), when Eq. (3) is computed. Moreover, for each supern-
ode pair, the superedge between them exists only when it decreases Eq. (3).
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Table 3. Summary of the eight real-world graphs used in the paper. They are obtained
from emails (EE), collaborations (DB), co-purchases (A6), computer networks (SK),
online social networks (LJ), and hyperlinks (WS, DP, and WL).

Name # Nodes # Edges Name # Nodes # Edges

Email-Enron (EE) 36,692 183,831 DBLP (DB) 317,080 1,049,866

Amazon-0601 (A6) 403,394 2,443,408 WebSmall (WS) 325,557 2,738,969

Skitter (SK) 1,696,415 11,095,298 LiveJournal (LJ) 3,997,962 34,681,189

DBPedia (DP) 18,268,991 126,890,209 WebLarge (WL) 18,483,186 261,787,258

SSumM (Unweighted). Instead of Eq. (6) used in SSumM, this variant uses
Eq. (7), whose second term is the number of bits for exactly restoring the
subedges between supernodes that are joined by unweighted superedges.

sizebits(G̃) +
∑

{A,B}∈P

2 (ΠAB − EAB) log2 |V | +
∑

{A,B}/∈P

2EAB log2 |V |. (7)

MoSSo-Lossy (Unweighted). This variant uses Eq. (7), instead of Eq. (6),
which is used in MoSSo-Lossy.

4 Experiments

We review our experiments for comparing weighted and unweighted graph sum-
marization in five aspects. We describe the settings and then present the results.

4.1 Experimental Settings

Machines: We performed our experiments on a desktop with a 3.80GHZ Intel
i7-10700K CPU and 64 GB memory.

Datasets: We used the eight datasets summarized in Table 3.

Search Algorithms: We used the six algorithms described in Sect. 3. We
implemented them commonly in OpenJDK 12 and set their target size to
{0.1, 0.2, · · · , 0.9} of the size in the input graph. We fixed T to 20 in both ver-
sions of SSumM. We excluded [15,23,28] from the comparison since they assume
extra components (e.g., edge corrections) in addition to a summary graph.

Evaluation Metric: Given the input graph G = (V,E) and a summary graph
G′ (i.e., Ĝ or G̃), the compression ratio is defined in bits as sizebits(G

′)
2|E| log2 |V | .

4.2 Results

Reconstruction Error: The L1 and L2 reconstruction error (i.e., p = {1, 2} in
Eq. (3)) is compared in Fig. 2. Unweighted summary graphs described the input
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Fig. 2. The reconstruction error is significantly lower in unweighted graph summariza-
tion than in weighted summarization. o.o.t.: out of time (≥48 h).

graph more accurately (specifically, up to 8.2× when comparing SSumM and its
variant) than weighted ones, when compression ratios were the same.

Error in Node Importance: We used PageRank [24] (with the damping fac-
tor 0.85) to measure the importance of subnodes. In Fig. 3(a)–(h), we report the
sum of absolute difference between PageRank scores obtained from input and
summary graphs (see Appendix A for how to compute PageRank scores on a
summary graph). When the compression ratios were the same, unweighted sum-
mary graphs maintained the node importance more accurately (specifically, up
to 7.8× when comparing SSumM and its variant) than weighted ones.

Error in Node Proximity: We used Random Walk with Restart (RWR) [31]
(with the damping factor 0.95) to measure the proximity between subnodes. For
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Error in Node Importance (Spec., PageRank Scores [24]):
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Fig. 3. Importance of nodes and proximity between nodes are preserved more accu-
rately in unweighted graph summarization than in weighted summarization. o.o.t.:
summarization or RWR computation ran out of time (≥48 h).

each query node, we compute the RWR scores between the query node and the
others on input and summary graphs, and we compute the sum of absolute differ-
ence (see Appendix A for how to compute the RWR scores on a summary graph).
In Fig. 3(i)–(p), we report the difference averaged over 100 randomly-sampled
query nodes. Unweighted summary graphs preserved the proximity between
nodes more accurately (specifically, up to 5.9× when comparing SSumM and
its variant) than weighted ones, when the compression ratios were the same.

Size of Reconstructed Graphs: As shown in Fig. 4, when L1 reconstruction
errors were similar, graphs reconstructed from unweighted summary graphs had
significantly fewer (specifically, up to 2.2× fewer when comparing SSumM and
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Fig. 4. When reconstruction errors are similar, more concise graphs are reconstructed
from unweighted summary graphs than from weighted summary graphs. o.o.t.: out of
time (≥48 h). o.o.r.: out of range with too many subedges.

its variant) subedges than those reconstructed from weighted ones. When recon-
struction errors are similar, fewer reconstructed edges, which lead to faster query
processing (see [25] and Appendix A for examples), are preferred.

5 Discussion: Why Can Edge Weights Be Harmful?

As answers to this question, we provide an example in Fig. 1, and we prove
in Theorem 1 that at least when the L1 reconstruction error is the objective,
the superedge weight function ω is not useful and even harmful. The theorem,
however, is not generalized to other objectives.

Theorem 1. Consider a graph G and its weighted summary graph G =
(S, P, ω). Assume ω is not fixed but variable. When RE1(A,A′) is minimized,
for each superedge {A,B} ∈ P , the weight ωAB

ΠAB
of subedges reconstructed from it

is either 1 or 0, just as in Eq. (2), where an unweighted summary graph is used.

Proof. The L1 reconstruction error can be written as follows:

RE1(A,A′) =
∑

{A,B}∈P

∑

{i,j}∈ΠAB

|Aij − A′
ij | +

∑

{A,B}/∈P

∑

{i,j}∈ΠAB

|Aij |,

Since the second term on the right side does not depend on ω, we focus on
the first term where

∑

{i,j}∈ΠAB

|Aij − A′
ij | = EAB

∣
∣
∣
∣1 − ωAB

ΠAB

∣
∣
∣
∣ + (ΠAB − EAB)

∣
∣
∣
∣0 − ωAB

ΠAB

∣
∣
∣
∣ . (8)
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Note that Eq. (8) is strictly larger when ωAB > ΠAB than when ωAB = ΠAB .
Moreover, Eq. (8) is strictly larger when ωAB < 0 than when ωAB = 0. Thus, for
the purpose of minimization, we can focus on when ωAB ∈ [0,ΠAB ], and thus
Eq. (8) can be rewritten as

∑

{i,j}∈ΠAB

|Aij − A′
ij | = EAB +

ωAB

ΠAB
(ΠAB − 2EAB). (9)

We consider two cases depending on the sign of ΠAB − 2EAB .

– Case 1. ΠAB < 2EAB : Since the derivative w.r.t. ωAB is negative between 0
and ΠAB , Eq. (9) is minimized when ωAB = ΠAB , i.e., when A′

ij is 1.
– Case 2. ΠAB ≥ 2EAB : Since the derivative w.r.t. ωAB is non-negative

between 0 and ΠAB , Eq. (9) is minimized when ωAB = 0, i.e., when A′
ij

is 0,

Therefore, when Eq. (8) is minimized, for each superedge {A,B} ∈ P , the
weight of subedges reconstructed from it (i.e., ωAB

ΠAB
) is either 1 or 0, as in the

unweighted model.

6 Conclusion and Future Directions

In this work, we conducted a systematic comparison between two extensively-
studied graph summarization models with and without superedge weights. To
this end, we extended three search algorithms to both models (Algorithms 1–
2 and Table 2) and compared their outputs from eight real-world graphs in
five aspects (Figs. 2, 3 and 4). Our empirical comparison revealed a surpris-
ing finding that removing superedge weights leads to significant improvements
in all five aspects, as in the example in Fig. 1. Then, we developed a theoret-
ical analysis to shed light on this counterintuitive observation (Theorem 1).
Noteworthy, we showed in Figs. 2, 3 and 4 that SSumM [17], a state-of-the-art
graph-summarization algorithm, can be improved substantially (specifically, up
to 8.2×, 7.8×, and 5.9× in terms of reconstruction error, error in node impor-
tance, and error in node proximity, respectively, when the compression ratio was
fixed; and 2.2× in terms of the size of reconstructed graphs, when the recon-
struction error was similar) based on the observation. As future work, we would
like to explore (a) better superedge weighting schemes and (b) combinations of
weighted and unweighted superedges.

Reproducibility: The source code and the datasets are available at [1].
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A Appendix: Graph Algorithms on Summary Graphs

Given a summary graph G′ (i.e., G or G̃) and a query node u ∈ V , an approx-
imate set of neighbors of u can be retrieved from G′ without reconstructing
the entire graph, as described in Algorithm3. In other words, neighborhood
queries can be answered approximately from G′. A wide range of graph algo-
rithms (e.g., DFS, BFS, PageRank, and Dijkstra’s) access the input graph only
through neighborhood queries, and thus they can be executed approximately on
summary graphs without restoring the entire graph. See Algorithm4 for exam-
ples.

Algorithm 3: getNeighbors(G′,u)

Input: (1) summary graph G′ (G or G̃) and (2) query subnode u
Output: approximate neighborhood N̂u of u with subedge weights

1 N̂u ← ∅
2 for each A where {A, Su} ∈ P do
3 for each v ∈ A do
4 if v �= u then

5 if G′ = G then

6 add v to N̂u with weight
ωASu
ΠASu

7 if G′ = G̃ then

8 add v to N̂u with weight 1

9 return N̂u

Algorithm 4: PageRank [24] and Random Walk with Restart (RWR) [31] on

G′

Input: (1) summary graph G′, (2) damping factor d, and
(3) (only for RWR) query subnode u

Output: score vector rnew ∈ R|V |

1 V ← ⋃
A∈S A

2 rold ← 0 ; rnew ← 1
|V | · 1 � 0 is the zero vector of size |V |

3 q ← 1
|V | · 1 � 1 is the one vector of size |V |

4 (only for RWR) q ← 0; qu ← 1

5 while rnew �= rold do

6 rold ← rnew; rnew ← 0
7 for each v ∈ V do

8 N̂v ← getNeighbors(G′, v)

9 wsum ← sum of weights in N̂v

10 for each neighbor l with weight w in N̂v do

11 rnew
l ← rnew

l + w
wsum

rold
v

12 rnew ← d · rnew + (1 − d · ∑
v∈V rnew

v ) · q
13 return rnew
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Abstract. Long-term spatio-temporal prediction (LTSTP) over differ-
ent resolutions plays a crucial role in planning and dispatching smart
city applications, such as smart transportation and smart grid. The
Transformer, which has demonstrated superiority in capturing long-term
dependencies, was recently studied for spatio-temporal prediction. How-
ever, it is difficult to leverage it using both multi-resolution knowledge
and spatio-temporal dependencies to aid LTSTP. The challenge typi-
cally lies in addressing two issues: (1) efficiently fusing information across
multiple resolutions that demands elaborate and complicated modifica-
tions to the model, and (2) handling the necessary long-term sequence
that makes concurrent space and time attentions too costly to be per-
formed. To address these issues, we proposed a multi-resolution recursive
spatio-temporal transformer (Mu2ReST). It implements a novel multi-
resolution structure with recursive prediction from coarser to finer reso-
lutions. This proposal reveals that an arduous modification of the model
is not the only way to leverage multi-resolution knowledge. It further uses
a redesigned lightweight space-time attention implementation to concur-
rently capture spatial and temporal dependencies. Experiment results
using open and commercial urban datasets demonstrate that Mu2ReST
outperforms existing methods for multi-resolution LTSTP tasks.

Keywords: Long-term spatio-temporal prediction · Multi-resolution ·
Recursive prediction · Spatio-temporal transformer

1 Introduction

Many applications that have spatio-temporal data, such as smart transporta-
tion and smart grid, demand long-term (e.g., several days ahead or longer)
spatio-temporal prediction. Besides, prediction requires to be done on multi-
ple resolutions for effective planning and dispatching purposes. For example, in
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Fig. 1. Example of average household electricity consumption aggregated from different
spatial and temporal resolutions (MinMaxScaler is performed on the data totalling 15
days from a Friday). The left and right curves show the average consumption in different
temporal resolutions {1-day, 6-h and 30-min} for a postcode region (PCR) and a larger
area composed of four postcode regions (FPCR), respectively. The curves show the 30-
min resolution has several fluctuations and confounds whatever patterns (e.g., weekday
vs. weekend, morning vs. noon vs. evening vs. night, weekly and daily periodicity) are
hidden. In contrast, the 6-h/1-day coarser resolution has less/the least fluctuations and
with more perceivable patterns emerging.

liberal electricity markets, some retailers require long-term predictions in mul-
tiple spatial and temporal resolutions to procure electricity from different mar-
kets. Spatial resolutions could be meshes, postal codes, wards and prefectures,
while temporal resolutions could be minutes, hours, days, or weeks. Low perfor-
mance in long-term spatio-temporal prediction (LTSTP) can result to a large
gap between actual demand and procurement, which in the end leads to a more
costly balance. Improving LTSTP performance is therefore of crucial importance
to electricity retailers.

Figure 1 illustrates some spatio-temporal data in multiple resolutions, which
generally exhibit different fluctuations and patterns. We posit, for instance, that
transferring learned knowledge from coarser to finer resolutions will benefit the
prediction task while reducing the impact of data perturbations on the model.
Recent advances in spatio-temporal prediction mainly rely on recurrent neural
network (RNN), convolutional neural network (CNN) and graph neural network
(GNN) based models. These models can be modified with convolution and pool-
ing operations for them to utilize multi-resolution knowledge [15,17].

Very recent studies have demonstrated the superiority of Transformer-based
models in capturing long-term dependencies. These notably include the Informer
model [18] that successfully outperforms SOTA on both long-term time series
prediction (LTTP) and LTSTP, thanks to its efficient time attention implemen-
tation. However, just like in any other Transformer-based models, leveraging
multi-resolution knowledge needs elaborate and even complicated modifications
in order to effectively utilize information across different resolutions by fusing
them. There have been some recent attempts in computer vision tasks [1,6], but
to our knowledge, a solution has yet to be proposed for LTSTP. In addition,
employing the Transformer to implement concurrent space and time attentions
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for LTSTP is intractable, that is, targeting long-term predictions over a large
number of spatial regions would require huge memory usage.

To address these challenges, we propose a multi-resolution recursive spatio-
temporal transformer (Mu2ReST). We first came up with a novel multi-
resolution structure with recursive prediction, which handles each resolution one
by one and transfers the predicted results from coarser to finer resolutions. Our
experiments confirm that this recursive prediction component efficiently lever-
ages knowledge from multiple resolutions without needing to fuse them. Second,
compared to existing works, and more importantly, to prevent our model from
being costly for LTSTP, we simply incorporated both space and time attentions.

Thus, the contributions of this paper are (1) a multi-resolution structure with
a recursive prediction strategy that provides an uncomplicated and effective way
of exploiting multi-resolution knowledge, (2) an end-to-end Transformer-based
model with a simplified space-time attention implementation that captures spa-
tial and temporal dependencies concurrently, and (3) experiments on both public
and proprietary spatio-temporal urban datasets confirming that our model out-
performs previous SOTA on average by 8.61% on RMSE and by 9.32% on MAE.

2 Related Works

RNN-/CNN-/GNN-Based Models
Models based on RNN, and its variants such as long short-term memory (LSTM)
and gated recurrent unit (GRU), have achieved significant performance in differ-
ent tasks to capture long-term temporal dependencies [4,12]. For LTSTP prob-
lems, combining RNN with CNN/GNN is usually adopted to capture spatio-
temporal dependencies simultaneously. For example, LSTNet [8] utilizes both
RNN and CNN to (i) discover long-term patterns of time series, and (ii) extract
short-term local dependency patterns among variables (i.e., spatial dependen-
cies). GraphWaveNet [15] uses stacked dilated 1D convolution component to seize
both short- and long-term temporal dependencies at different granular levels. It
also captures spatial dependencies using GNN with pre-defined and self-learned
graphs. GMAN [17] adapts an encoder-decoder architecture with multiple spatio-
temporal attention blocks to simulate the impact of spatio-temporal factors. In
order to capture spatial dependencies at both node and group levels, it particu-
larly applies attention to different node groups using max-pooling.

Transformer-Based Models
Based on a self-attention mechanism [13], Transformer models have recently
been used with great success in natural language processing and computer
vision [11,14]. However, applying Transformer for LTSTP requires huge mem-
ory, which deters reproducing such a success. Some effective methods have then
been proposed to lower memory requirement and improve computation speed,
such as Sparse Transformer [2], LogSparse Transformer [10], Reformer [7] and
Informer [18]. In particular, Reformer uses locality sensitive hashing attention,
while Informer introduces ProbSparse self-attention. However, these models do
not consider multiple resolutions and generally focus the attention on only one
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Fig. 2. Architecture of Mu2ReST.

dimension (spatial or temporal). In contrast, spatial-temporal transformer net-
work (STTN) [16] and spacetimeformer (STF) [5] proposed Transformer-based
models that have both space and time attentions for spatio-temporal data. How-
ever, even though both models can deal with LTSTP, they do not carefully
consider the complexity that arises when a large number of variables (spatial
regions/nodes) are involved.

3 The Proposed Method

We consider multi-resolution spatio-temporal data as shown in Fig. 1. Assuming
there are K temporal resolutions and N regions for all spatial resolutions, ut

n,k is
the value of region n ∈ {1, 2, · · · , N}, at temporal resolution k ∈ {1, 2, · · · ,K} for
a given time step t . At that time step, we represent the spatio-temporal data with
temporal resolution k as Ut

k =
{
ut
1,k, u

t
2,k, · · · , ut

N,k

}
. The N regions can be rep-

resented as nodes of a heterogeneous graph. For a specific period T from time
step t, the corresponding multi-resolution spatio-temporal data can be repre-
sented as MT =

{
MT

1 , MT
2 , · · · ,MT

K

}
, where MT

k =
{
Ut

k,U
t+1
k , · · · ,Ut+Ik−1

k

}

and Ik indicates the time steps of resolution k for period T. For instance, if the
target period is 30 days, Ik is equal to 30 for 1-day resolution and 1440 for 30-
min resolution. In other words, each MT

k has different lengths as they represent
different temporal resolutions. The goal for multi-resolution LTSTP is to pre-
dict Y = M

T+
based on input X = M

T−
, where T+ and T− are the long-term

future and historical periods, respectively, at time step t0. In addition, we denote
Yk = MT+

k and Xk = MT−
k as target and input of the temporal resolution k.

Figure 2 shows the overall architecture of Mu2ReST, which includes two com-
ponents: (1) a “vertical” multi-resolution structure exploiting multi-resolution
knowledge along the time dimension, and (2) a “horizontal” Transformer-based
model implementing a simplified space-time attention. Figure 2 illustrates multi-
resolution with three temporal resolutions (i.e., K = 3). In this example, the
higher the k value, the coarser the resolution. Considering the case in Fig. 1,
k = 1, 2 and 3 correspond to 30-min, 6-h and 1-day resolutions, respectively. We
use a dedicated spatio-temporal Transformer for each resolution, and perform
the prediction one by one from the coarsest, k = 3, to the finest, k = 1, resolu-
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tion. In addition, as further described below, the predicted result Ŷk of Yk, or
hidden vectors of the kth resolution, are transferred to the k − 1th resolution.

3.1 Multi-resolution Recursive Prediction

As shown in Fig. 1, data with different resolutions generally yield different varia-
tion patterns. Besides, as previously mentioned, there are relatively fewer noises
and fluctuations in the coarser resolution data. With our recursive prediction
scheme, the predicted results are passed from coarser to finer resolutions to
improve LTSTP. We shall use the instance of Mu2ReST with three temporal
resolutions in Fig. 2 to illustrate this idea. We first train the Transformer model
for the coarsest resolution based on a loss (e.g., MSE loss) function L:

L3 = L
(
Ŷ3,Y3

)
. (1)

We pass X3 to the trained model to get the corresponding prediction Ŷ3. From
the example in Fig. 1, the third resolution reflects the learned patterns from the
1-day resolution data, such as weekday vs. weekend and weekly periodicity.

As resolutions are linked to each other, by aggregating (e.g., summing or
averaging) data with finer resolution k, we can retrieve data with coarser res-
olution k + i (i > 0). For instance, we can obtain the 1-day resolution data by
aggregating every four elements of the 6-h resolution. We apply this constraint
as a regularization term that enables to train the model for finer resolutions:

L2 = L
(
Ŷ2,Y2

)
+L

(
Ŷ2→3, Ŷ3

)
and L1 = L

(
Ŷ1,Y1

)
+L

(
Ŷ1→2, Ŷ2

)
, (2)

where Ŷk→k+1 denotes the aggregation of Ŷk to k+1 resolution. By doing so, we
can exploit the learnt patterns from coarser resolutions to help the prediction of
finer resolutions. Thus, we can leverage the multi-resolution information without
needing to modify the model. The algorithm of the multi-resolution recursive
prediction is summarized in Algorithm 1.

In the same way that we downsample (i.e., aggregate) the temporal resolu-
tion predictions, we can optionally upsample Ŷk+1 to aid the prediction of Ŷk.
Moreover, we can optionally transfer encoder and/or decoder outputs from
coarser to finer resolutions as shown by the dashed lines (cross connections)
in Fig. 2.

3.2 Spatio-Temporal Transformer

For LTSTP, it is essential to reduce the memory demand as much as possible to
deal with long sequences. Although spatio-temporal transformer has been pro-
posed for spatio-temporal data [5,16], the models are not suitable for LTSTP
especially for a large number of variables. STTN [16] alternatively performs
space and time attentions, while STF [5] jointly performs them with Performer
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Algorithm 1: Multi-resolution recursive prediction
Input: Multi-resolution data (Xk,Yk), k ∈ {1, 2, · · · ,K}
Ouput: Trained Transformer model fk for each k
*Train:
1. Initialize parameters

2. Train fK (coarsest resolution) with LK = L
(
ŶK ,YK

)
, k = K;

3. while k > 1 do

Perform Ŷk = fk (Xk), then k = k − 1 ;

Train fk with Lk = L
(
Ŷk,Yk

)
+ L

(
Ŷk→k+1, Ŷk+1

)

end

*Test/Application: Perform Ŷk = fk (Xk) with test/real-time Xk for each k

FAVOR+ attention [3]. Consequently, their minimum memory usage require-
ments are O (

I2k + N2
)

and O (IkN), respectively. To overcome this issue, we
designed a lightweight spatio-temporal Transformer for LTSTP (cf. Fig. 2). It
applies the space attention only at the head of the encoder part, and incorpo-
rates the Informer as base model to acquire both high performance and efficiency.

(1) Space self-attention. Since we use a dedicated spatio-temporal Trans-
former for each resolution in our model, for simplicity, we omit the subscript k in
the following equations. For each input data Ut, we map the value of each region
ut
n onto a D dimension hidden vector ztn using a linear layer Lu: ztn = Lu (ut

n).
Space self-attention is based on [13]. The corresponding query, key and value

vectors are generated using Zt = [zt1, z
t
2, · · · , ztN ] with Zt ∈ R

N×D, as follows:

Qt,h = ZtWh
Qs

∈ R
N×d,Kt,h = ZtWh

Ks
∈ R

N×d,Vt,h = ZtWh
Vs

∈ R
N×d, (3)

where h ∈ {1, 2, · · · ,H} indicates the index over H attention heads, d = D/H.
Wh

Qs
∈ R

D×d, Wh
Ks

∈ R
D×d and Wh

Vs
∈ R

D×d are all learnable weight matrices
for the space attention. Self-attention in space dimension is then performed as

St = Concat(St,1,St,2, · · · ,St,H)WOs ∈ R
N×D, (4)

where St,h = Softmax(Q
t,hKt,h

√
d

)Vt,h, and WOs ∈ R
D×D is another learnable

weight matrix. To further reduce the memory usage when dealing with long
sequences, we also apply the ProbSparse self-attention (originally designed for
the time dimension in the Informer) to our space attention. Specifically, the
ProbSparse self-attention uses a sparse matrix Q

t,h
instead of Qt,h to calcu-

late each St,h. It basically makes it capable to accommodate long sequences
(see details in [18]). Note that, for simplicity, we currently do not consider any
pre-defined graph structure, and position embedding is not used in the space
attention block.

(2) Time self-attention and output module. We select the Informer as our
base model to realize these mechanisms. It has proved to handle efficiently long
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sequence inputs and achieves SOTA performance on both LTTP and LTSTP [18].
The time attention operates like the space attention described above, but per-
formed over the temporal, instead of the spatial, dimension. In addition, like
other Transformer-based models, it applies position and time embeddings to
help the model incorporate the order and temporal information.

Besides the ProbSparse self-attention, the Informer also includes self-
attention distilling and generative-style decoding to further improve its perfor-
mance. The details of the latter two are summarized as follows. The self-attention
distilling consists of applying a convolution operation on the output of a time
attention block before inputting it to the next time attention block. There-
fore, the length of output of the attention blocks will decrease gradually moving
further within the cascade of time attention blocks, which also reduces mem-
ory usage. As for the generative-style decoder, a standard Transformer decoder
structure plus a fully connected layer is used to realize a long sequence output
with only one forward step in order to avoid the time-consuming step-by-step
inference.

Lastly, our implementation can achieve a minimum memory usage of O (Iklog
(Ik) + N log (N)). This is more efficient than those of STTN (O (

I2k + N2
)
) and

STF (O (IkN)) for long sequence inputs (i.e., large Ik) with a substantial number
of spatial regions/nodes (i.e., large N).

4 Experiments

Table 1. Dataset description (SR: Spatial Res-
olution; TR: Temporal Resolution)

NYT HEC

Period 2017.01-2019.12 2019.05-2020.07

Coarse SR/regions 11 boroughs 5 FPCRs

Fine SR/regions 67 taxi zones 20 PCRs

TRs [1-day, 6-h, 30-min]

Input/Output period 30/10 days

We test Mu2ReST on two dif-
ferent urban datasets: an open
dataset, the New York Yellow
Taxi Trip Records (NYT)1 and
a commercial one, the Household
Electricity Consumption Records
(HEC). Their details are pre-
sented in Table 1.

For NYT, we aggregated the pick-up and drop-off numbers respectively over
both taxi zones and boroughs of Manhattan2, and considered [1-day, 6-h, 30-
min] temporal resolutions. For HEC, we use the average household electricity
consumption over postcode regions (PCRs) and four postcode regions (FPCRs),
and consider the same temporal resolutions. Our task is to perform 10-day pre-
diction (of both pick-up and drop-off for NYT, and household electricity con-
sumption for HEC) using 30-day historical data for each resolution. We generate
samples using a sliding window with 1-day steps (the coarsest temporal resolu-
tion). In addition, we construct the train, validation, and test datasets with 60%,
20%, and 20%, respectively, of the samples in time order.
1 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
2 The taxi zones and boroughs are according to https://data.cityofnewyork.

us/Transportation/NYC-Taxi-Zones/d3c5-ddgc and https://www1.nyc.gov/assets/
doh/downloads/pdf/survey/uhf map 100604.pdf respectively.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc
https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc
https://www1.nyc.gov/assets/doh/downloads/pdf/survey/uhf_map_100604.pdf
https://www1.nyc.gov/assets/doh/downloads/pdf/survey/uhf_map_100604.pdf
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Table 2. Main parameters of
Mu2ReST.

Space attention block 1

Time attention block of encoder 2

Time attention block of decoder 1

Batch size 2

Epochs 100

Patience 15

Minimum learning rate 1e−4

Dropout 0.05

Loss function MSELoss

We conducted the experiments on a
Linux server with a TITAN V 12GB GPU.
In order to handle long-term data, the
batch size is set to 2 for all methods.
Since we selected Informer as our base
model, we kept the default structure of
Informer in Mu2ReST and added a space
attention block at the head. We kept most
of the default parameters of Informer in
Mu2ReST. The main modifications are
summarized in Table 2. For a fair compar-
ison, we used the same modified parame-
ters on the original Informer, which has no space attention block.

4.1 Results and Analysis

We compared Mu2ReST to eight baseline methods, namely, GRU [4], LST-
net [8], GraphWaveNet [15], GMAN [17], Reformer [7], Informer [18],
STTN [16], and STF [5] (cf. details in Sect. 2). For GraphWaveNet and GMAN,
their pre-defined spatial graph are constructed based on traffic connectivity and
space proximity for NYT, and on space proximity for HEC. Table 3 shows the
LTSTP performance over the different resolutions, in which the upper/lower part
shows results for NYT/HEC. Performance is measured in root mean squared
error (RMSE) and mean absolute error (MAE). The presence of ‘-’ indicates
failure to obtain results due to out-of-memory error, albeit smaller hidden vec-
tors and less hidden layers are used. Further, Mu2ReST in Table 3 performs
recursive prediction based only on Eq. 2 without the optional upsampling and
cross connections.

We observe that Mu2ReST achieves the best LTSTP performance on both
datasets, i.e., outperforms with 10/12 on NYT and 7/12 on HEC, totaling 17/24.
While the best baselines (GRU and STF), each succeeds only 2/24. Notably,
Mu2ReST outperforms all other baselines for the finest resolution, i.e., the 30-
min resolution in fine regions, which is more important in many practical appli-
cations. On the other hand, baselines mainly perform best in coarse temporal
resolutions. As the data of coarse resolutions have less noise and less drastic
fluctuations, it is probably easier to discover some patterns even with the more
conventional solutions like GRU. Data with fine resolutions are more complicated
and, consequently, more difficult to estimate even with powerful models.

A drop in performance on finer temporal resolutions can be observed in all
methods. However, Mu2ReST benefits from the knowledge of coarser resolutions
via its recursive implementation. By building up from previously learned coarser
patterns, our model achieves better and more robust results compared to all
baselines. For instance, a weekly pattern could be unveiled (e.g., weekday vs.
weekend) in the 1-day resolution. Knowing this pattern, Mu2ReST targeted
daily patterns (e.g., morning vs. noon vs. evening vs. night) in the 6-h resolution.
Finally, it paid attention on finding finest patterns in the 30-min resolution.
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Table 3. Long-term spatio-temporal prediction (LTSTP) performance for different
resolutions with different methods. We repeat each experiment three times and report
the mean and standard deviation (results on HEC are magnified 100× for easy reading).
Comparison is based on mean values, and then, standard deviations. Best result in each
column is emphasized in bold.

Resolution 1 day 6 h 30 min

Metric RMSE MAE RMSE MAE RMSE MAE

NYT, coarse regions (boroughs)

GRU 112.79(9.59) 72.94(6.62) 122.20(9.92) 71.34(8.16) 135.71(29.71) 78.18(17.95)

LSTnet 82.21(4.74) 45.87(3.72) 101.12(7.38) 53.84(5.52) 110.04(5.03) 61.35(2.80)

GraphWaveNet 88.36(0.94) 51.15(1.49) 127.48(0.27) 74.53(0.51) 150.66(1.12) 86.43(0.59)

GMAN 83.26(11.80) 46.12(9.62) 239.78(0.12) 145.59(0.71) - -

Reformer 112.63(0.84) 76.62(1.89) 119.98(19.79) 71.38(12.55) 132.74(11.16) 78.17(8.20)

Informer 83.93(11.22) 49.57(9.21) 88.18(5.41) 49.47(3.25) 116.81(9.75) 66.99(6.36)

STTN 101.88(0.93) 61.68(2.97) 113.73(9.05) 63.24(4.78) - -

STF 71.06(3.78) 44.70(3.64) 87.34(1.31) 49.85(0.68) 175.54(7.88) 102.38(6.76)

Mu2ReST 79.50(2.36) 46.47(0.97) 85.49(3.08) 46.82(2.33) 103.03(6.06) 57.32(3.37)

NYT, fine regions (taxi zones)

GRU 20.05(1.48) 13.92(1.17) 23.20(1.38) 15.05(0.95) 26.46(3.05) 16.50(1.80)

LSTnet 15.79(1.00) 9.67(0.80) 20.23(1.20) 12.14(1.19) 24.76(0.63) 15.73(0.36)

GraphWaveNet 16.60(0.64) 9.75(0.24) 24.55(0.05) 14.66(0.48) 30.63(0.21) 17.65(0.11)

GMAN 17.87(3.27) 11.49(2.68) 43.21(0.41) 27.58(0.57) - -

Reformer 24.01(1.00) 18.24(1.22) 25.71(4.60) 17.48(3.64) 27.77(1.56) 17.52(1.24)

Informer 15.75(2.36) 10.57(2.23) 16.92(1.36) 9.84(0.84) 23.12(1.04) 13.41(0.60)

STTN 21.97(0.30) 15.65(0.41) 23.93(2.30) 15.86(2.24) - -

STF 16.76(0.70) 10.88(0.47) 21.15(1.25) 12.32(0.59) 35.90(4.00) 24.47(2.59)

Mu2ReST 14.27(0.42) 8.85(0.45) 16.19(1.10) 9.25(0.77) 21.46(0.30) 12.68(0.22)

HEC, coarse regions (FPCRs)

GRU 1.99(0.10) 1.59(0.05) 2.27(0.10) 1.77(0.08) 2.50(0.02) 1.88(0.00)

LSTnet 2.27(0.06) 1.65(0.03) 2.95(0.05) 2.20(0.03) 2.40(0.22) 1.84(0.19)

GraphWaveNet 2.79(1.10) 2.23(0.91) 3.04(0.75) 2.43(0.70) 2.59(0.22) 2.11(0.25)

GMAN 1.98(0.32) 1.61(0.30) 3.18(0.11) 2.53(0.02) 3.85(0.50) 3.14(0.45)

Reformer 1.99(0.16) 1.65(0.12) 2.75(0.34) 2.20(0.30) 2.85(0.25) 2.21(0.17)

Informer 2.26(0.08) 1.72(0.04) 2.49(0.06) 1.92(0.05) 2.56(0.12) 1.98(0.14)

STTN 2.07(0.22) 1.60(0.18) 2.35(0.11) 1.81(0.05) 2.50(0.27) 1.94(0.21)

STF 2.87(0.67) 2.28(0.64) 3.03(0.35) 2.30(0.30) 2.77(0.19) 2.13(0.20)

Mu2ReST 2.08(0.12) 1.63(0.06) 2.08(0.10) 1.60(0.06) 2.40(0.14) 1.85(0.09)

HEC, fine regions (PCRs)

GRU 2.01(0.07) 1.60(0.03) 2.33(0.09) 1.81(0.06) 2.57(0.03) 1.93(0.01)

LSTnet 2.31(0.07) 1.68(0.03) 3.02(0.05) 2.24(0.03) 2.49(0.21) 1.91(0.18)

GraphWaveNet 2.72(1.02) 2.20(0.85) 2.98(0.75) 2.36(0.70) 2.61(0.19) 2.11(0.21)

GMAN 2.07(0.37) 1.68(0.35) 3.21(0.10) 2.56(0.03) 4.16(0.93) 3.38(0.79)

Reformer 2.01(0.13) 1.65(0.10) 2.77(0.25) 2.21(0.22) 2.98(0.24) 2.31(0.17)

Informer 2.37(0.13) 1.79(0.08) 2.54(0.04) 1.95(0.03) 2.63(0.12) 2.04(0.13)

STTN 2.06(0.19) 1.59(0.16) 2.37(0.11) 1.82(0.05) 2.52(0.24) 1.96(0.19)

STF 2.90(0.68) 2.30(0.63) 3.08(0.33) 2.33(0.29) 2.83(0.15) 2.16(0.17)

Mu2ReST 2.12(0.11) 1.66(0.06) 2.14(0.08) 1.64(0.05) 2.49(0.13) 1.91(0.08)
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By capturing spatial and temporal dependencies simultaneously, STTN and
STF outperform Informer 3/12 on NYT and 12/12 on HEC. The corresponding
results show that the spatial dependency is especially effective for data with rel-
atively stable spatial dependencies. For example, the spatial dependencies may
not change or only change slightly over the 1-day resolution, but may change
drastically over the 30-min resolution. However, their space-time attention imple-
mentations limit the ability of LTSTP given a large number of variables. In fact,
when performing experiments on the 30-min resolution with the NYT dataset,
we could not run STTN, albeit with smaller parameters.

Although Mu2ReST uses a simpler space-time attention implementation in
order to account for long sequence inputs and outputs, it outperforms STTN and
STF with few exceptions (only some cases of the 1-day resolution prediction).
Moreover, Mu2ReST outperforms its base model Informer on all resolutions. On
average, Mu2ReST reduces RMSE and MAE by 6.84% and 8.96%, respectively,
on NYT dataset, and by 10.38% and 9.67%, respectively, on HEC dataset. These
results confirm the effectiveness of introducing multi-resolution based recursive
prediction and space attention in Mu2ReST.

Fig. 3. Examples of predicted results of Informer and Mu2ReST for both datasets on
the 30-min resolution and fine spatial resolution.

In addition, Fig. 3 illustrates some predicted results from both datasets.
Besides improving RMSE and MAE performance, Mu2ReST matches peak val-
ues better than the Informer (which is especially visible for HEC after the 5th

predicted day). Such improvements are essential for planning and dispatching.
For instance, these long-term refinements could lead to significant cost reduction
in electricity procurement in a liberal electricity market scenario.

4.2 Ablation Study

We performed an ablation study to further understand Mu2ReST’s perfor-
mance on both datasets. As Mu2ReST implements two separate components,
we can isolate each one in order to define the following specific settings: (1) w/o
SpaceAttn: adding only recursive prediction structure by deleting the space
attention part of Mu2ReST; and (2) w/o MRR: adding only space attention
to the Informer without using the multi-resolution recursive prediction.
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Table 4. Ablation study results on both datasets (due
to the space limitation, standard deviations are omitted
in this table).

Resolution 1 day 6 h 30min

Metric RMSE MAE RMSE MAE RMSE MAE

NYT, coarse regions (boroughs)

Informer 83.93 49.57 88.18 49.47 116.81 66.99

w/o SpaceAttn 83.93 49.57 93.54 53.68 115.91 67.66

w/o MRR 79.5 46.47 93.88 53.83 118.33 68.59

Mu2ReST 79.5 46.47 85.49 46.82 103.03 57.32

NYT, fine regions (taxi zones)

Informer 15.75 10.57 16.92 9.84 23.12 13.41

w/o SpaceAttn 15.75 10.57 17.12 10.44 22.27 13.22

w/o MRR 14.27 8.85 17.55 10.26 23.17 13.6

Mu2ReST 14.27 8.85 16.19 9.25 21.46 12.68

HEC, coarse regions (FPCRs)

Informer 2.26 1.72 2.49 1.92 2.56 1.98

w/o SpaceAttn 2.26 1.72 2.51 1.97 2.43 1.92

w/o MRR 2.08 1.63 2.52 1.96 2.83 2.18

Mu2ReST 2.08 1.63 2.08 1.6 2.4 1.85

HEC, fine regions (PCRs)

Informer 2.37 1.79 2.54 1.95 2.63 2.04

w/o SpaceAttn 2.37 1.79 2.58 2.02 2.52 1.97

w/o MRR 2.12 1.66 2.55 1.97 2.9 2.23

Mu2ReST 2.12 1.66 2.14 1.64 2.49 1.91

Results are shown in
Table 4. Firstly, we can
observe that both set-
tings alone cannot beat
the Informer in all tempo-
ral resolutions. The first
setting (w/o SpaceAttn)
only improves performance
for the finest temporal
resolution, which demon-
strates the effectiveness of
transferring information
via the recursive princi-
ple. On the other hand,
the space attention imple-
mentation (w/o MRR set-
ting) only improves the
performance for the coars-
est resolution. As afore-
mentioned, spatial depen-
dencies change drastically
between different time
steps in the finer tem-
poral resolutions. Such a
variation makes it more
difficult for space attention to appropriately capture their patterns. Nevertheless,
Mu2ReST achieves the best performance on all resolutions by jointly applying
recursive prediction and space attention. The former improves prediction per-
formance for finer resolutions after the latter improved it for coarser resolution.

4.3 Further Discussions

(1) Regularization Term. We performed additional experiments to fur-
ther confirm the effectiveness of the regularization term by modifying it from
L

(
Ŷk→k+1, Ŷk+1

)
to L

(
Ŷk→k+1,Yk+1

)
. In Table 5, RealY gives the results

after this modification. Results from this experiments show that it gives worse
performance than the original Mu2ReST for finer resolutions. Indeed, Yk+1 can
be obtained from Yk and does not contain any additional information compared
to Yk, following the information theory perspective3.

Nevertheless, Ŷk+1 is the predicted result from the trained model,
which reflects the learnt patterns of the data in resolution k + 1. Thus,
L

(
Ŷk→k+1, Ŷk+1

)
provides auxiliary information to assist the modeling of res-

olution k. It is to note that we did not consider recursive prediction along the

3 In fact, aggregation leads to information loss [9].
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spatial dimension for simplicity. However, we believe that this scheme should
equally be effective along the spatial dimension and it will be addressed in our
future work.

(2) Upsampling and Cross Connections. In addition, upsampling and cross
connections (XCon) could also be adopted along with recursive prediction, as
shown by the solid and dashed lines, respectively, in Fig. 2.

Table 5. Experiment results on different technical concerns.
In Mu2ReST, the coarsest resolution are not affected by dif-
ferent recursive prediction implementations, so 1-day resolu-
tion results are the same and not shown.

Resolution 6 h 30min 6 h 30min

Metric RMSE MAE RMSE MAE RMSE MAE RMSE MAE

NYT, coarse regions (boroughs) NYT, fine regions (taxi zones)

RealY 100.44 59.71 115.85 66.06 18.33 11.12 22.76 13.33

Upsamling 92.27 50.79 106.83 59.74 17.16 9.77 21.92 12.88

XCon 109.18 61.73 123.63 70.9 19.06 10.81 23.05 13.5

Mu2ReST 85.49 46.82 103.03 57.32 16.19 9.25 21.46 12.68

HEC, coarse regions (FPCRs) HEC, fine regions (PCRs)

RealY 2.38 1.82 2.79 2.18 2.44 1.87 2.85 2.22

Upsamling 2.27 1.74 2.48 1.91 2.34 1.79 2.56 1.97

XCon 2.6 2 2.79 2.13 2.67 2.05 2.87 2.2

Mu2ReST 2.08 1.6 2.4 1.85 2.14 1.64 2.49 1.91

We implemented
upsampling based on
fully connected lay-
ers (FC()) in order
to generate Ŷ′

k from
Ŷk+1, and get the
final result of Ŷk

using Ŷk = FC2(
Concat

(
Ŷk + FC1(

Ŷk+1

)))
.

XCon are hidden
space connections that
transfers the encoder
and decoder outputs
from coarser to finer
resolutions. This way, the hidden knowledge acquired in the kth resolution could
be concatenated to the one of the resolution k−1. However, as currently defined,
both upsampling and XCon could not bring additional gain to prediction per-
formance, as shown by the results in Table 5. A more complex implementation
of these components shall further leverage the benefit of multi-resolution. How-
ever, improving them is beyond the scope of this paper, and will therefore be
addressed in the future.

5 Conclusion

We proposed both recursive prediction and space attention in order to lever-
age the Transformer when performing long-term spatio-temporal prediction
(LTSTP). Specifically, we first designed a recursive prediction scheme to study
and transfer information from coarser to finer resolutions. This scheme proved to
improve the prediction performance for finer resolutions. Afterwards, we applied
a simplified spatio-temporal Transformer structure using the Informer (a SOTA
Transformer-based model for long-term time series prediction and LTSTP) as
the base model to capture both spatial and temporal dependencies. Such an
adaptation is especially effective for coarse resolution data with relatively sta-
ble spatial dependencies. As a result, these two ideas benefit all resolutions in
LTSTP. Furthermore, our recursive prediction proposal is a generic method,
which means that it could be applied to any model and not only Transformer.
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Besides, the flexibility of our structure allows us to use different models for dif-
ferent resolutions and further improve the performance. In the future, we will
evaluate these points as well as further investigate how to improve the attention
structure and information transfer methods between resolutions.
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Abstract. In recent years, an emerging research work in recommenda-
tion systems aimed at exploring users’ potential interaction preferences.
However, most existing methods can only capture information about the
user’s purchase (or click) history. To estimate users’ potential interac-
tion preferences more accurately, it is necessary to consider auxiliary
information when modeling user-item interactions. In this paper, a Light
Cross-Attention Network (LCAN) is proposed. LCAN makes full use of
existing information in three parts: 1) User-Item interaction graph. The
interaction history is an important signal, and the user’s interaction pref-
erences can be obtained directly from the interaction history. 2) User-
User and Item-Item relationships. The user-user and item-item graphs
are additionally constructed based on the similarity between users and
items to alleviate data sparseness. 3) Complementarity between graphs.
Information between different graphs is interrelated, and a graph-level
cross-attention network is used to capture the complementarity between
graphs. Extensive experiments have been conducted by comparing state-
of-the-art methods, and it shows that our LCAN model can outperform
the most advanced recommendation methods.

Keywords: Recommender system · Collaborative filtering ·
Cross-attention network · Multi-graph convolution

1 Introduction

Personalized recommendations play a central role in many online content-sharing
platforms, helping users to discover items of interest. Accurately capturing user
preferences is the core element of the recommendation system. As an effective
solution, Collaborative Filtering (CF) [15] has attracted wide attention because
of its simplicity and efficiency. The basic idea is that users who have purchased
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similar items in the past will also tend to purchase similar items in the future.
In essence, user-item interaction can be modeled as a user-item bipartite graph.
Therefore, graph neural networks (GNNs), especially graph convolutional net-
works (GCNs), have become a popular method in current collaborative filtering
recommendation systems [5,12,13].

The most common paradigm for CF is to learn latent features (a.k.a. embed-
ding) to represent a user and an item, and perform predictions based on the
embedding vectors [3,10]. Matrix factorization (MF) [7] is an early such model,
which directly maps the single ID of a user to his embedding. Some follow-on
studies [1,15] introduce personal history as the pre-existing feature of a user,
and integrate embeddings of historical items to enrich the user’s representation.
More recent works [4,11,12] organize all historical interactions as a bipartite
user-item graph to integrate the multi-hop neighbors into the representations
and achieve the state-of-the-art performance. These significant improvements
are attributed to the modeling of user-item relationships, which evolved from
using only a single ID to personal history, and then a holistic interaction graph.

Despite their effectiveness, two critical flaws limit their performance. First,
the previous modeling of user-item relationships is coarsegrained, because they
supposed that users purchase items with uniform motivation. However, the moti-
vations behind the user’s decision-making are multiple in the real world. For
example, some users purchase items because of their high-cost performance,
while others purchase items because of their eye-catching appearance. If the
user’s purchase motivation is not considered, it will lead to sub-optimal recom-
mendations. Second, the traditional methods do not make full use of existing
information. They only consider the modeling of user-item relationships and
ignore the user-user and item-item relationships. These relationships are also a
significant signal. When the data is sparse, it often fails to achieve reasonable
results.

In this paper, we propose a novel Light Cross-Attention Network For Collab-
orative Filtering Recommendation (LCAN) approach, an end-to-end deep model
that considers the diversity and heterogeneity of latent preferences in a uniform
framework. The model consists of three parts: preference extractor, fusion layer,
and prediction layer. First, given an edge of the user-item bipartite graph, the
preference extractor is to identify the latent preferences by decomposing the
edge into multiple latent spaces. Considering the inherent differences between
the user and item graphs, graph-level cross-attention is used to capture the com-
plementarity and heterogeneity between graphs. Second, the fusion layer with
preference-level attention automatically recognizes the importance of different
preferences and filters out unimportant ones to generate a unified embedding for
prediction. Third, the recommendation score is put forward through the predic-
tion layer.

The contributions made in this paper are as follows:

– LCAN is a novel collaborative filtering approach based on graph neural
networks, capturing more fine-grained user preferences hidden behind user
behavior based on a semantic transformation.



LCAN: Light Cross-Attention Network 83

– LCAN models user-user and item-item relationships explicitly: user-user and
item-item graphs are constructed. It conducts learning simultaneously on all
three graphs and employs cross-attention to capture the complementarity
between graphs.

– Extensive experiments on three real-world datasets are conducted to verify
the effectiveness of the proposed model.

2 Related Work

2.1 Collaborative Filtering

Given a user-item rating matrix, collaborative filtering methods usually map
both users and items into the same low-dimensional latent space [15]. MF is
a simple and efficient collaborative filtering method that decomposes the score
matrix into the product of two low-rank matrices. PMF [7] optimizes the max-
imum likelihood function by minimizing the mean square error between the
observed value and the predicted value. BiasMF [6] introduces a bias term and a
regular term to improve recommendation accuracy and alleviate the overfitting
problem. AutoRec [8] uses an autoencoder to decompose the score matrix, and
then reconstruct it to predict the score, and obtain competitive results directly
on many benchmark data sets. DMF [14] takes the interaction history of the
users and items as a feature vector and inputs it to a multi-layer perceptron
to learn the latent expression of users and items. GC-MC [1] stacks a graph
convolution layer followed by a dense layer to accumulate messages aggregated
according to different types of edges as node representations. However, these
methods assume that users have a unified purchase motivation and cannot cap-
ture more fine-grained user interaction preferences.

2.2 Graph Neural Networks

Graph neural networks [16], especially graph convolutional neural networks
(GCN), have gained considerable interest. The main idea of GCN is how to
iteratively aggregate the feature information of neighbors and integrate the
aggregated information with the current central node representation. LR-GCCF
[2] uses the residual method to represent the user-item bipartite graph in the
learning process. NGCF [10] iteratively propagates user and item embeddings
in the graph to distill high-hop collaborative signals with graph convolutions.
BGNN [17] considers the importance of interaction between neighbors and uses
a bilinear aggregator to perform element-wise product between neighbors of each
node. DGCF [11] and MCCF [12] hold that treating user-item interactions as
isolated data instances is not sufficient to capture the diversity of user prefer-
ences on adopting an item, may lead to suboptimal representations. NIA-GCN
[9] deployed a pairwise neighborhood aggregation layer to capture relationships
between pairs of neighbors. LightGCN [4] conducts ablation analyses on GCN
and improves the model’s performance and scalability by removing the feature
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Fig. 1. The overview framework of the proposed model. (a) Preference extractor. The
figure shows the preference extraction process of the user part, and the item part is
similar to it; (b) Fusion layer and prediction layer; (c) Cross-Attention. This example
predicts the rating User u1 would give to the Item I4.

transformation and nonlinear activation operation. However, these methods only
use the basic user-item bipartite graph. They ignore other rich information pro-
vided by users and items, which reduces the performance of recommendations.

3 Approach

There are two parts in the proposed method, the user part and the item part.
The general framework is shown in Fig. 1. This section uses the user part as an
example to introduce our model. First, the model takes the user-item interaction
graph, user-user graph, and item-item graph as input, and then predicts the
user’s rating of the item. Specifically, features of the purchased items and features
of neighbor users are aggregated as the user’s embedding. Second, in the process
of feature aggregation, the user’s potential interaction preferences are considered
through the following two modules: (1) The preference extractor with cross-
attention recognizes the user’s preferences from edges in different graphs. (2)
The fusion layer with preference-level attention automatically recognizes the
importance of different preferences and recombines them to obtain a unified
user embedding. Third, the predicted score is output through the Multilayer
Perceptron (MLP) layer.

3.1 Embedding Layer

Following the mainstream recommender models, we describe a User u (an Item
i) with an embedding vector eu ∈ R

d(ei ∈ R
d), where d denotes the embed-
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ding size. Assuming that the user’s interaction is driven by M preferences, in
order to distinguish the different preferences of users (items), M preference-
specific transformation matrices {Qk}m1 and {Rk}m1 are designed, respectively,
to extract different features that correspond to particular preference. Under the
m-th preference, the embedding of the user (item) is as follows:

Em = [emu1
, · · · , emuuN

, emi1 , · · · , emiiM
], (1)

where emu = euQm, emi = eiRm, uN is the number of users, iM is the number of
items, and m ∈ {1, 2, · · · ,M} represents the m-th user interaction preference.
There is a similar embedding process for the user-user graph and item-item
graph. In the following description, for the sake of simplicity, the preference
indicator superscript m is ignored, and m = 1 is taken as an example.

Multi-graph Encoding. In addition to the user-item bipartite graph, the rela-
tionships between user-user and item-item are also explicitly modeled to alleviate
the data sparse problem in collaborative filtering. Generally speaking, the graph
is constructed by calculating the pairwise cosine similarity on the rows (columns)
of the scoring matrix. In order to avoid the over-smoothing problem caused by
graph convolutional networks, only first-order neighbors are aggregated in the
user-user graph and item-item graph. At the same time, first-order neighbors
are used to generate attention coefficients for each layer in the user-item graph
convolutional network.

3.2 Cross-Attention Layer

Existing research treats each graph separately and then combines them, ignoring
the importance that different graphs are related to each other. For example, it
is possible to infer items that the target user may be interested in based on the
features of similar users. As shown in Fig. 1(c), a new graph-level cross-attention
mechanism is defined to calculate neighbor attention coefficients. The mechanism
is mainly divided into two parts: User-based item attention and Item-based user
attention.

User-Based Item Attention. A single mean-pooling is used to summarize
the similar users representation: Ḡ

(k)
u = 1

NS

∑NS

n=1 e
(0)
un . Next, combine the e

(k)
il

with Ḡ
(k)
u :

h
(k)
i = tanh(W(k)

i e
(k)
il

) ⊗ tanh(W(k)
u G̃(k)

u ), (2)

where Ns represents the number of similar users of User u, G̃u
m represents the

matrix filled by K column Ḡ
(k)
u . ⊗ is used to denote the Element-wise multipli-

cation of two matrices. Specially, h
(k)
i represents the probability that User u will

purchase Item i due to the m-th preference. Softmax function is used to obtain
the weight coefficient α

(k)
i→u:

α
(k)
i→u = softmax(W(k)

h h
(k)
i ), (3)
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Since the attention probability of each item feature under m-th preference is
calculated from the above formula, the new representation of the item is the
weighted sum of the item features:

e(k+1)
u =

∑

l

α
(k)
i→ue

(k)
il

(4)

Item-Based User Attention. User-based item attention can distinguish
which items are purchased by the User u due to m-th preference. In the same
way, Item-based user attention is used to distinguish which users have the same
purchase preference as the target user. Using the new item representation e

(k+1)
u

combined with the original user features e
(0)
un to screen out users who share the

same purchase preference as User u. The process is as follows:

h(k)
u = tanh(W(k)

u e(0)un
) ⊗ tanh(W(k)

u ẽ(k+1)
u ), (5)

α
(0)
u′→u = softmax(W(k)

h h(k)
u ), (6)

where ẽ
(k+1)
u represents the matrix filled by K column e

(k+1)
u . Since the attention

probability of each user feature under m-th preference is calculated from the
above formula, the new representation of the user is the weighted sum of the
similar users features:

e
(1)
u′ =

∑

n

α
(0)
u′→ue(0)un

(7)

3.3 Preference Extractor

After using the first-hop neighbors, we further stack more cross-attention lay-
ers in the user-item bipartite graph to collect influential signals from high-order
neighbors. In the aggregation process, feature transformation and nonlinear acti-
vation are removed, and only the neighborhood aggregation operation in the
standard GCN is retained. The message aggregation function of the k-th layer
is defined as:

e(k)u =
1√Nu

∑

i∈Nu

α
(k−1)
i→u e

(k−1)
i (8)

Considering that the norm of embedding after aggregation may be large, similar
to LightGCN [4], we scale these embedding by 1√Nu

.
After k layers, we sum the embeddings at different layers up as the final

embeddings:

Zu =
K∑

K=0

e(k)u + e
(1)
u′ (9)

Zu is the final embedding of the User u under the first preference (m =
1), plus the preference indicator superscript as Z1

u. User’s embedding set
{Z1

u, Z2
u, · · · , ZM

u } is abstained under different interaction preferences.
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Remark: The preference extraction of User u concentrates all the attention
points because the item part also has a similar process, and the embedded set
{Z1

i , Z2
i , · · · , ZM

i } of Item i under different preferences can be obtained.

3.4 Fusion Layer

Obviously, not every preference is equally important. One or two prefer-
ences dominate our interactions for most people, which leads us to propose a
preference-level attention mechanism to filter out unimportant preferences.

Preference-Level Attention. A new fusion layer is proposed, which integrates
{Zm

u , Zm
i },m ∈ {1, · · · ,M} into a unified representation, with the formula as

follows:
ϑ1
u, ϑ2

u, · · · , ϑM
u = att(Z1

u∞Z2
u∞ · · · ∞ZM

u ), (10)

where att is a two-layer neural network, which plays the role of preference-level
attention mechanism. ∞ represents a join operation. {ϑm

u } is normalized by the
softmax layer, and obtained the importance of m-th preference βm

u as follows:

βm
u = softmax(ϑm

u ) (11)

The greater of βm
u , the more dominant user’s preference will be. Through these

weight factors βm
u , the final embedding of user u is obtained through weighted

sum:
Zu =

∑
βm
u Zm

u (12)

In the same way, the final embedding Zi of Item i is obtained.

3.5 Prediction Layer

Once obtaining the final embeddings of user u and item i from the user and item
part separately, connect them in series and pass them through MLP to predict
the rating r′

ui from u to i as:

f1 = [Zu‖Zi],
f2 = σ(W2 · f1 + b2),

· · · (13)
fl = σ(Wl · fl−1 + bl),

r′
ui = wT · fl,

where l is the index of a hidden layer.
In this work, the training objective function is formulated as follows:

Lr =
1

2|O|
∑

(u,i)∈O
(r′

ui − rui)2 + λ‖θ‖22, (14)

where O is the set of observed ratings, and rui is the ground truth rating by
the User u on the Item i. λ and θ represent the regularization weight and the
parameters of the model.
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4 Experiments

In this section, experiments are performed on three real-world datasets, Movie-
lens, Amazon and Yelp. First, the experimental setup is introduced, and then it
is compared with other methods. Second, an ablation experiment is carried out
to verify whether the multi-graph auxiliary information can alleviate the prob-
lem of data sparseness and the effectiveness of the cross-attention mechanism.
Third, a hyperparameter discussion is carried out.

Datasets. Movielens, Amazon, and Yelp are used in the experiments.
MovieLens-100k has been widely used to evaluate recommendations, which con-
tains 100, 000 ratings from 943 users to 1, 682 movies. Amazon is a widely used
product recommendation dataset containing 65, 170 ratings from 1, 000 users to
1, 000 items. Yelp is a local business recommendation dataset containing 30, 838
ratings from 1, 286 users to 2, 614 items. For each dataset, randomly select the
historical score of 80% as the training set, and treat the remaining as the test
set.

Baselines. To evaluate the effectiveness of our model, we compare LCAN
with several state-of-the-arts, including matrix factorization methods: PMF [7],
BiasMF [6]; auto-encoders based methods: AutoRec [8]. Typically, we use I-
AutoRec to represent the item-based setting, which has better performance than
the user-based; GCN based methods: GC-MC [1], LightGCN [4], MCCF [12].

Implementation. All the programs are executed on a computer with dual
Intel Xeon E5-2678 v3 processors and an RTX 3090 GPU with 24-G mem-
ory. LCAN is implemented using PyTorch. We test the learning rate in the
range of {1e−4, 5e−4, 1e−3, 5e−3}, and the coefficient of L2 normalization in
{1e−1, 1e−2, 1e−3, 1e−4}. We have tried preference number M in the range of
{1, 2, 3, 4}, and the embedding dimension d in range {8, 16, 32, 64, 128, 256, 512},
and batch size in the range of {64, 128, 256, 512}. The model parameters are
initialized with a Gaussian distribution with a mean value of 0 and a standard
deviation of 0.1. Adam is used as the optimizer. At the same time, dropout
is applied to multi-preference fusion and the drop rate tests in the range of
{0.1, 0.4, 0.5, 0.6}. Two layers of neural parts are explicitly used for the neural
network, and ReLU is used as the activation function. Experiments are repeated
three times, and the average results are recorded.

Two widely used evaluation protocols: Root Mean Square Error (RMSE) and
Absolute Error (MAE), are used as evaluation metrics.

4.1 Performance Comparison

The comparative results are summarized in Table 1. From this table, there are
the following observations:
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Table 1. Overall comparison. The best performance is highlighted in bold, and the
second is underlined.

Models PMF BiasMF I-AutoRec GC-MC LightGCN MCCF LCAN

Movielens RMSE 0.9638 0.9257 0.9435 0.9145 0.9092 0.9070 0.8823

MAE 0.7559 0.7258 0.7370 0.7165 0.7072 0.7050 0.6815

Amazon RMSE 0.9339 0.9028 0.9213 0.8946 0.8898 0.8876 0.8653

MAE 0.7113 0.6759 0.7064 0.6619 0.6521 0.6428 0.6274

Yelp RMSE 0.3967 0.3902 0.3817 0.3850 0.3721 0.3806 0.3451

MAE 0.1571 0.1616 0.1201 0.1354 0.0997 0.1029 0.0925

– LCAN substantially outperforms baselines in most cases, which verifies the
effectiveness of our model. Compared to the strongest baseline, MAE is
improved by 3.33%, 2.40%, and 7.22% and RMSE is improved by 2.72%,
2.51%, and 7.26% on the three datasets, respectively. This significant improve-
ment is attributed to the preference extraction capabilities and the auxiliary
information of multi-graph.

– The GCN-based model outperforms the CF-based and AutoEncoder-based
models on the three datasets. These improvements are attributed to the graph
convolutional layer. At the same time, we found that LightGCN and MCCF
have similar performance, which further verifies that feature transformation
and nonlinear activation reduce the performance of the graph-based collabo-
rative filtering method.

– Our method has achieved better results on Yelp. The reason is that the Yelp
dataset is more sparse, and only considering user-item interactions is not
enough to obtain reasonable embedding. Adding auxiliary information can
significantly improve performance.

4.2 Ablation Experiments

The user-user and item-item relationships are explicitly modeled to alleviate
the problem of data sparseness in collaborative filtering. At the same time, a
cross-attention network is used to capture the complementarity between dif-
ferent graphs, and preference-level attention is used to filter out unimportant
preferences. To evaluate and verify the effectiveness of these components, an
ablation study is conducted on the Yelp Dataset.

From Table 2, It can be concluded that all three main components of
our proposed model, the Multi-Graph Encoding, the Cross-Attention, and the
Preference-level Attention, have been proven to be effective. The Multi-Graph
Encoding layer has the most significant impact on performance among all the
components, indicating that the sparse user-item bipartite graph is insufficient to
learn user/item embedding. When multi-graph information is added, the cross-
attention network can effectively improve the recommendation performance com-
pared to processing different graphs individually and then combining them,
which also validates our hypothesis: using complementary information between
different graphs can get better user/item embeddings. In addition, it can be
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Table 2. Ablation studies on Yelp

Architecture Yelp

RMSE MAE

Remove Multi-Graph Encoding 0.3885 0.1045

Remove Cross-Attention 0.3702 0.0994

Remove Preference-level Attention 0.3581 0.0942

LCAN 0.3451 0.0925

found that preference-level attention filters out unimportant preferences and
leads to significant performance improvements, and combining all three compo-
nents receives further improvements.

4.3 Hyper-Parameter Studies

In LCAN, the number of user preferences is a key parameter, and we explored its
impact on performance. The impact of embedding dimension d on performance
is also studied.

Fig. 2. Impact of preference numbers on three real world datasets.

Fig. 3. Effect of different embedding dimensions.
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Number of Preferences. To study the preference extraction ability of the
model, the preference amount M is changed within the range of {1, 2, 3, 4} while
keeping other parameters unchanged. Experiments on three datasets and the
experimental results are shown in Fig. 2. It can be concluded that the number
of preferences is inconsistent for different datasets when the best-recommended
performance is reached. On the Yelp dataset, most of the ratings are 1 or 2, which
indicates that one preference is enough to model latent semantics. On the Ama-
zon and Movielens datasets, user interaction is more complicated. At this point,
the power of multiple performances is more prominent. Increasing M leads to
performance improvement, proving that more fine-grained user preferences are
hidden in the user-item interaction, which cannot be expressed by edge infor-
mation. However, LCAN can effectively extract this information. At the same
time, as the number of preferences increases, the recommendation performance
first increases and then decreases, which may be caused by overfitting.

Impact of Embedding Dimensions. The dimension of embeddings d is also
a crucial hyper-parameter to control the complexity and capacity of LCAN.
Therefore, the influence of the embedding dimension on the recommendation
effect is studied, and the embedding size is set from 8 to 512. The experimental
results are shown in Fig. 3. A common trend can be found from the experimental
data: with the gradually increasing of embedding dimension, recommendation
performance will first increase progressively and reach the peak, and then with
the further increase of dimension, the performance will remain stable or even
decline. Therefore, an appropriate embedding Dimension d is used to balance
the trade-off between performance and complexity.

5 Conclusion

This work focuses on modeling the motivation behind user decision-making
through graph convolutional networks. A Light Cross-Attention Network
(LCAN) is proposed. To improve the recommendation performance, the addi-
tional information beyond the user interaction history is explicitly modeled.
First, the preference extractor is used to learn the preference-level embedding
of users and items. Second, the cross-attention network is used to capture the
complementarity between graphs. Finally, a fusion layer with preference-level
attention filters unimportant preferences and generates embeddings for predic-
tion. Comparison experiments and ablation studies have shown that LCAN is
superior to existing methods in terms of recommendation accuracy and captures
the different potential preferences of users. We will work on further improve-
ment by studying a more suitable combination mechanism of preference-level
representation of users and items in the future.
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Abstract. Hate speech on online social media seriously affects the expe-
rience of common users. Many online social media platforms deploy auto-
matic hate speech detection programs to filter out hateful content. To
evade detection, coded words have been used to represent the targeted
groups in hate speech. For example, on Twitter, “Google” is used to indi-
cate African-Americans, and “Skittles” is used to indicate Muslim. As a
result, it would be difficult to determine whether a hateful text including
“Google” targets African-Americans or the search engine. In this paper,
we develop a coded hate speech detection framework, called CODE, to
detect hate speech by judging whether coded words like Google or Skit-
tles are used in the coded meaning or not. Based on a proposed two-layer
structure, CODE is able to detect the hateful texts with observed coded
words as well as newly emerged coded words. Experimental results on a
Twitter dataset show the effectiveness of our approach.

Keywords: Coded hate speech · Few-shot learning

1 Introduction

Online social media bring people together and encourage people to share their
thoughts freely. However, due to the openness of social media, some users mis-
use the platforms to promote hateful language. As a result, hate speech, which
“expresses hate or encourages violence towards a person or group based on
characteristics such as race, religion, sex, or sexual orientation”1, unfortunately
becomes a common phenomenon on online social media. Hate speech on online
social media not only seriously affects the experience of regular users, but also
could lead to a real-world consequence. Currently, many online social media,
such as Facebook and Twitter, have a policy prohibiting hate speech. Users who
violate the policy could result in permanent account suspension.
1 https://dictionary.cambridge.org/dictionary/english/hate-speech.
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These companies also deploy programs to automatically filter out hateful
content. In early 2016, Google unveiled a tech incubator Jigsaw to reduce online
hate and harassment. In response to these programs, trolls started the “Oper-
ation Google Campaign”, which replaces racial slurs with names of technology
brands and products. For example, when racists publish hate speech to attack
African-American, instead of using the n-word that can be easily detected, they
use the word “Google” to represent African-American, such as “worthless google,
kill yourself”2. Since then, more coded words are proposed to represent differ-
ent targeted groups to avoid the censorship of hate speech. Table 1 shows some
coded words and their corresponding targeted groups. We call such hate speech
using coded words the coded hate speech.

Table 1. Commonly-used coded words

Coded word Targeted group Coded word Targeted group

Google African-American Butterfly Gay

Skittles Muslim Car Salesman Liberal

Pepe Alt-right Bing Asian

M&M Mexican & Muslim Yahoo Mexican

By replacing the targeted groups with specific coded words, it becomes an
uneasy task to detect whether a text is hateful or not because it is difficult to
determine whether these words are in the coded meanings. In this paper, we
detect the hateful texts by distinguishing the meanings of coded words based
on their contexts. Specifically, we consider coded words as a special case of
polysemy, i.e., a single word is associated with two or more different meanings.
In our case, each coded word is associated with a regular meaning, e.g., Google
is a search engine, and Skittles is a brand of candies, and also a coded meaning,
e.g., African-American or Muslin. We consider that if a coded word is in its
coded meaning, the text containing the coded word expresses hate.

Given a training dataset T consisting of regular and hateful texts and col-
lected with a set of coded words C, we aim to build a classifier that is able to:
1) detect the hateful texts with some observed coded words in C; and 2) detect
the hateful texts with new coded words. To achieve these goals, there are three
challenges: 1) how to represent the coded word with two different meanings; 2)
how to detect whether a coded word is used in its coded or regular meaning; 3)
how to detect new coded words without collecting new labeled texts.

In this work, we propose a COded hate speech DEtection (CODE) frame-
work, which is able to detect the observed coded words C as well as newly
emerged coded words. CODE makes use of Embeddings from Language Models
(ELMo) [10] as the pre-trained word embedding model to derive the contex-
tual embeddings of coded words. ELMo is capable of handling the polysemy by
2 https://knowyourmeme.com/memes/events/operation-google.

https://knowyourmeme.com/memes/events/operation-google
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representing a word in different texts with different word embeddings. CODE
then applies transformations on the derived embeddings via a two-layer structure
(general and specific layers) to detect the meaning of a coded word. In particular,
the general layer derives a generalized coded meaning anchor based on all the
observed coded hate speech and makes the coded words in the coded meanings
close to the anchor. We then expect a new coded word in the coded meaning also
close to this generalized coded meaning anchor. The specific layer then derives
the specialized coded meaning anchor for each observed coded word to detect
whether a coded word is used in its coded meaning. Experimental results on a
collected Twitter dataset indicate that CODE can detect hate speech by distin-
guishing the coded and regular meanings of coded words, even the new coded
words without collecting new training samples.

2 Related Work

Hate speech detection has attracted increasing attention in recent years [2,14].
Research in [3] develops a semantic dictionary of hate domain and uses a rule-
based classifier to detect hate speech. Research in [1,16] uses a bag-of-word
model to derive the features of hate speech and then adopt classical machine
learning models such as SVM, logistic regression, random forests to detect the
hate speech. Recently, deep learning models, such as recurrent neural networks
or deep auto-encoder, are also proposed for hate speech detection [9,11–13,15].

There are few studies focusing on coded hate speech detection. Research in [6]
composes a balanced dataset and adopt SVM to predict the coded hate tweets.
In this work, we consider the problem of coded hate speech detection given both
regular and hateful tweets while only a small number of coded hate tweets is
available for training, which is closer to the real-world scenario. Research in [7]
aims at identifying coded words from hateful tweets with a known coded word.
The proposed approach can only detect the coded words that co-occur with the
known coded word within the same corpus. Meanwhile, it cannot detect whether
a coded word is used in the coded or regular meaning given a new tweet.

3 Method

Given a set of coded words C and related hateful texts T h and regular texts
T r, for each coded word c ∈ C, there are associated hateful texts T h

c ⊂ T h and
regular texts T r

c ⊂ T r. Note that in most cases, the coded word is still used as
its regular meaning, i.e., |T r

c | > |T h
c |. In this work, we aim to detect a hateful

text by determining whether an observed coded word c ∈ C or a new coded word
c /∈ C in the text is in the coded meaning based on the training corpus {T r, T h}.

We propose a COded hate speech DEtection (CODE) framework as shown
in Fig. 1. CODE uses ELMo to derive contextual embeddings for coded words
and then applies transformations on the derived embeddings via a two-layer
structure. CODE derives generalized coded and regular meaning anchors and
makes the coded words with coded meanings close to the coded meaning anchor
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and away from the regular meaning anchor by training on T r and T h. We expect
if a new coded word c /∈ C is in its coded meaning, it should be also close to the
generalized coded meaning anchor. For the observed coded word c ∈ C, we have
the specific texts T r

c and T h
c . CODE further derives the specialized coded and

regular meaning anchors for each observed coded word c based on T r
c and T h

c

so that CODE can leverage the specialized anchors to detect the hate speech.

Fig. 1. The proposed CODE framework

3.1 Coded Word Representation

We use word embeddings to represent coded words. However, the traditional
word embedding approaches, such as word2vec, usually represent one word by
one embedding, which is unable to capture different meanings of coded words
[8]. In this work, we use ELMo to derive the coded word embeddings, which
addresses the issue of polysemy by representing each word based on its context
[10]. As a result, one word has different representations in different contexts. We
represent the coded word c in a text t as et,c = ELMot(c).

3.2 Transformation Layers

After obtaining et,c, we aim to detect whether the coded word c is in its coded
meaning. CODE consists of one general layer and one specific layer, both of which
make transformations to separate the regular and coded meanings of coded words
in the embedding space.



Coded Hate Speech Detection via Contextual Information 97

General Layer. The general layer of CODE is to identify the generalized coded
meanings. In general, for different coded words, although the regular meanings
could be different, the coded meanings should be all alike since they all express
the social hate towards specific groups. Based on this hypothesis, we first derive
prototype representations to represent the regular and coded meanings by using
ELMo on T r and T h. Then, we adopt a neural network as the general layer
to apply a transformation on the original embedding as well as the prototypes.
After we apply the transformation, we consider the transformed prototype rep-
resentations of regular and coded meanings as the generalized regular and coded
meaning anchors, respectively. The objective is to make the transformed coded
word embedding in different meanings close to their corresponding anchors. For
example, if “Google” is used to indicate the African-American in a text, we aim
to make it close to the coded meaning anchor. Because the generalized coded
meaning anchor is derived from several coded words C, the anchor should rep-
resent the generalized coded meaning. Hence, after training, given a new coded
word c /∈ C, if the coded word is used in its coded meaning, we expect the trans-
formed embedding has a smaller distance to the coded meaning anchor compared
with the distance to the regular meaning anchor.

More specifically, given a set of regular and hateful texts T r and T h, we first
adopt ELMo to obtain the word embeddings et,c of the coded word c in text
t. Note that for ELMo, the coded word has a unique word embedding for each
text t. Based on the obtained coded word embedding, we consider the centroid
of coded word embeddings in regular or coded meaning as the corresponding
prototype representation. Symbolically, the prototype representations of regular
meaning and coded meaning of a set of coded words C are computed by a mean
operation, respectively:

ēr =
1

∑

c∈C
|T r

c |
∑

c∈C,t∈T r
c

et,c ēh =
1

∑

c∈C
|T h

c |
∑

c∈C,t∈T h
c

et,c, (1)

where ēr and ēh indicate the prototype representations of regular and coded
meanings, respectively.

Then, we aim to map the coded word embedding derived from each text close
to the prototype representation based on its meaning via a neural network. To
this end, we adopt a neural network g to make a transformation on the coded
word embedding in each text t as well as the prototype representations:

gt,c = gθ(et,c) ḡr = gθ(ēr) ḡh = gθ(ēh), (2)

where θ indicates the parameters of the neural network g. We consider ḡr and
ḡh as the generalized regular and coded meaning anchors, respectively.

In order to separate ḡr and ḡh and to make the coded word embedding gt,c

close to the corresponding anchor, the objective of the neural network gθ is to
make the word embedding in the coded meaning (regular meaning) close to the
generalized coded meaning anchor (regular meaning anchor) and far from the



98 D. Xu et al.

regular meaning anchor (coded meaning anchor). To this end, we propose the
following triplet loss function to train the neural network gθ:

Ltri =
1

∑

c∈C
|T h

c |
∑

c∈C,t∈T h
c

max{d(ḡh,gt,c)−d(ḡr,gt,c)+α, 0}

+
1

∑

c∈C
|T r

c |
∑

c∈C,t∈T r
c

max{d(ḡr,gt,c) − d(ḡh,gt,c) + α, 0},

(3)

where α is the margin and d(x,y) = ‖x − y‖2.
Besides the triplet loss, as discussed above, for the coded hate speech, if

the coded words are in the coded meanings, they should group together in the
embedding space because the contexts of different coded words are similar, i.e.,
expressing the social hate. To this end, we further aim to minimize the distance
between the word embedding in coded meaning gt,c and the generalized coded
meaning anchor ḡh based on the mean squared loss:

Lmse =
1

∑

c∈C
|T h

c |
∑

c∈C,t∈T h
c

(gt,c − ḡh)2. (4)

Finally, the objective function for the general layer is defined as:

Lg = Ltri + λLmse, (5)

where λ is a hyper-parameter.

Specific Layer. The general layer mainly derives the generalized coded meaning
anchor to detect the coded hate speech. Because we have the labeled corpus for
each coded word c ∈ C, we can leverage the regular and hateful texts related with
each coded word, T r

c and T h
c , to further improve the performance of specific hate

speech detection. To this end, we propose the specific layer to detect whether a
coded word c ∈ C is in its coded meaning. In the specific layer, we derive the
prototype representations of regular and coded meanings for each coded word c,
respectively, and then adopt another neural network to finetune the coded word
representation to make it close to the corresponding prototype.

Given a coded word c ∈ C, we adopt the mean operation to derive prototype
representations of regular and coded meanings, ēr

c and ēh
c , respectively.

ēr
c =

1
|T r

c |
∑

t∈T r
c

et,c ēh
c =

1
|T h

c |
∑

t∈T h
c

et,c. (6)

Then, given et,c, ēr
c and ēh

c , we first use general layer to derive gt,c by Eq. (2).
Similarly, we have ḡr

c = gθ(ēr
c), ḡh

c = gθ(ēh
c ). After that, we adopt a neural

network fωc
to further derive the specialized representation for c ∈ C.

st,c = fωc
(gt,c) s̄r

c = fωc
(ḡr

c) s̄h
c = fωc

(ḡh
c ). (7)

It is worth noting that to achieve the specific hate speech detection, we train
a unique neural network fωc

for each coded word c. We consider s̄r
c and s̄h

c as
the specialized regular and coded meaning anchors for the coded word c.
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To train the neural network, for each coded word c, we adopt the triplet loss
as the objective function to make st,c close to the corresponding anchors.

Ls,c =
1

|T h
c |

∑

t∈T h
c

max{d(s̄h
c , st,c) − d(s̄r

c , st,c) + α, 0}

+
1

|T r
c |

∑

t∈T r
c

max{d(s̄r
c , st,c) − d(s̄h

c , st,c) + α, 0}.

(8)

Overall, CODE is trained in an end-to-end manner. The complete objective
function is defined as below:

L = Lg + λ′
∑

c∈C
Ls,c, (9)

where λ′ is a hyperparameter to balance two layers.

3.3 Coded Hate Speech Detection

CODE can detect the hateful texts with observed and new coded words.

Coded Hate Speech Detection on Observed Coded Words. Given a new
text t with an observed coded word c ∈ C, CODE derives the coded word repre-
sentation st,c from the specific layer and then compares the distances from st,c to
the specialized regular and coded meaning anchors (s̄r

c and s̄h
c ), respectively. If

the coded word representation is closer to the specialized coded meaning anchors,
i.e., d(s̄h

c , st,c) < d(s̄r
c , st,c), the text t will be predicted as hate speech.

Coded Hate Speech Detection on New Coded Words. Given a new
text t with a new coded word c /∈ C, CODE leverages the general layer for
coded meaning detection because there is no specialized network built for the
new coded word. First, CODE derives the coded word representation gt,c from
the general layer. It then compares the distances from gt,c to the generalized
regular and coded meaning anchors (ḡr and ḡh), respectively. If the coded
word representation is closer to the generalized coded meaning anchor, i.e.,
d(ḡh,gt,c) < d(ḡr,gt,c), CODE will predict the text t as hate speech.

4 Experiments

4.1 Experimental Setup

Coded Hate Speech Corpus. In this work, we evaluate our approach by using
the coded hate speech on Twitter. We first collect two sets of tweets, i.e., the
benign and hateful tweets, for several selected coded words shown in Table 2. In
benign tweets, the coded word is used in its regular meaning, while in hateful
tweets, the coded word is used in coded meaning targeting a specific group. In
order to collect benign and hateful tweets, we combine different sets of keywords
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with the coded word as query words to search tweets on Twitter, where the query
words are chosen based on the regular and coded meanings of the coded word. For
example, given the coded word Skittles, for crawling benign tweets, we compose
a set of query words, including pack, eat, and kid, while for crawling hateful
tweets, we use query words, such as Muslim, refugee, and terrorist combining
with Skittles. By using this strategy, we collected 10000 benign tweets and 6342
hateful tweets. The detailed information of collected benign and hateful tweets
for each coded word is shown in Table 2.

Table 2. The information of crawled benign and hateful tweets in the collection and
the adopted training corpus size for each coded word

c Benign Hateful Time period |T r
c | |T h

c |
Google 10000 69 09/20/16-04/09/18 300 20

M&M 10000 520 09/20/16-09/26/19 300 50

Pepe 10000 6499 08/16/17-09/26/19 300 50

Butterfly 10000 618 11/12/09-09/21/19 300 50

Skittles 10000 6342 09/20/16-10/01/19 0 0

Evaluation Tasks. We evaluate our model on two tasks. (1) Coded hate speech
detection on observed coded words. We build a training corpus consisting of the
coded words “Google”, “M&M”, “Pepe”, and “Butterfly”. We train a model
with this corpus and evaluate its performance on new tweets containing these
observed words. (2) Coded hate speech detection on a new coded word. Using
the model built on observed coded words, we detect coded hate speech on new
tweets containing an unobserved coded word, “Skittles”.

As shown in Table 2, in order to simulate the unbalanced nature of coded
hate speech, for the coded word, Google, we adopt 300 regular and 20 hateful
tweets as labeled texts in training. For coded words, M&M, Pepe, and Butterfly,
we adopt 300 regular and 50 hateful tweets in training. The remaining tweets in
our collection for each coded word all serve as the testing set.

Hyperparameters. We adopt the pre-trained ELMo model3 to derive coded
word contextual embeddings. The dimension of coded word embeddings et,c

is 2048. The dimension of the transformed general embeddings gt,c is 1024.
The dimension of the transformed word specific embeddings st,c is 512. The
hyperparameters λ and λ′ are set to 1 in default unless specified otherwise. Both
neural networks gθ and fθ are fully connected networks with one hidden layer.

Baselines. We compare CODE with following baselines. (1) LSTM [4], which
is a deep learning based binary classifier; (2) ELMo, which is based on the
raw embeddings derived from ELMo and uses the same distance-based approach

3 https://github.com/allenai/allennlp/blob/v0.9.0/tutorials/how to/elmo.md.

https://github.com/allenai/allennlp/blob/v0.9.0/tutorials/how_to/elmo.md
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proposed in this work to detect coded hate speech. The purpose is to show the
advantage of our two-layer framework; (3) S model, which removes the general
layer and train the neural network for each coded word separately to detect
coded hate speech as a comparison to show the advantage of the general layer.

Table 3. Experimental results on coded hate speech detection for the observed (Google,
M&M, Pepe, and Butterfly) and unobserved (Skittles) coded words in terms of precision
(P), recall (R) and F1-score (F1)

Model Google M&M Pepe Butterfly Skittles

P R F1 P R F1 P R F1 P R F1 P R F1

LSTM 0.589 0.524 0.555 0.579 0.392 0.468 0.937 0.489 0.643 0.933 0.997 0.963 0.674 0.548 0.605

ELMo 1.000 0.490 0.658 0.437 0.871 0.582 0.854 0.592 0.699 0.957 1.000 0.978 0.573 0.863 0.689

S model 0.821 0.653 0.727 0.600 0.758 0.670 0.919 0.558 0.694 0.957 1.000 0.978 - - -

CODE 0.889 0.653 0.753 0.630 0.715 0.670 0.871 0.664 0.754 0.959 1.000 0.979 0.689 0.855 0.763

4.2 Experimental Results

Coded Hate Speech Detection on Observed Coded Words. Table 3 shows
experimental results on coded hate speech detection for each observed coded
word, Google, M&M, Pepe, and Butterfly. For most coded words, our approach
significantly outperforms the LSTM model. For LSTM, it usually requires a large
amount of training data and a relatively balanced dataset between positive and
negative labels. However, it is mostly not the case when we are dealing with
coded hate speech. In comparison to ELMo, the post-transformation models (S
model and CODE) have improvement on the F1-score. It indicates that training
a coded hate speech detection transformation could further separate the coded
word embeddings in regular and coded meanings than the original coded word
embeddings by the pre-trained ELMo. For the coded word “Butterfly”, all models
have a nearly perfect performance on coded hate speech detection, which means
“Butterfly” in regular meanings and coded meanings are already separated in the
original embedding space. However, for other coded words in our experiments,
making the transformation on original coded word embeddings can boost the
performance on coded hate speech detection with a large margin. In CODE, the
transformation on the general layer leverages more training data from multiple
coded words, which creates a better context of hateful tweets. The specific layer
embedding further combines contexts specifically related to each coded word to
further improve the model performance. Hence, CODE has the best performance
in terms of the F1-score for all words.

Coded Hate Speech Detection on a New Coded Word. The last col-
umn of Table 3 shows experimental results on coded hate speech detection for
the unobserved coded word, “Skittles”. Tweets containing “Skittles” are not in
the training set. The predictions are made by models trained on other words.
Similar to the first task, LSTM does not have the best performance due to the
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same issues. The embeddings by ELMo before any transformation already can
achieve 0.689 F1-score. It indicates that there is a similarity in the context of the
hateful tweets across different coded words. The general layer transformation in
our approach further extracts the hateful context into a general layer embed-
ding, which has the best performance of 0.763 on the new coded hate detection.
The S model is not applicable here because it can only detect observed coded
words. However, if we compare CODE with the S model trained only on tweets
containing Skittles (F1-score: 0.702), our approach, which benefits from more
training tweets, even outperforms it.

(a) et,c, ē
r, ēh of C (b) gt,c, ḡ

r, ḡh of C

(c) et,c, ē
r
c , ē

h
c of “Google” (d) st,c, s̄

r
c , s̄

h
c of “Google”

Fig. 2. The visualizations of coded word embeddings. The red and black colors indicate
the coded and regular meanings, respectively. The triangles pointing down, up, left,
and right indicate Google, M&M, Pepe, and Butterfly, respectively. The stars indicate
the respected prototypes of coded/regular meanings. (Color figure online)

Visualization. We randomly select 300 regular tweets and 50 coded hateful
tweets from the testing set for each coded word. We adopt TSNE [5] to project
coded word embeddings to a two-dimensional space and visualize regular and
coded meanings of each word in the corpus. Figures 2 (a) and (b) show the
visualization results of regular and coded meanings as well as two prototype
representations before and after the transformations. We can observe that before
conducting the general layer transformation on the contextual embeddings, the
embeddings of regular and coded meanings are mixed within the same words,
and the prototypes of regular and coded meanings are also close to each other.



Coded Hate Speech Detection via Contextual Information 103

The embedding space is divided by words. There is no obvious general trend
to detect hateful meanings for all words. After conducting the general layer
transformation, the coded word embeddings in regular and coded meanings are
clearly separated, and the prototypes of the two meanings are also separated.
Meanwhile, most of the coded word embeddings in coded meanings are close to
the prototype of coded meaning regardless of the regular meaning of the coded
words, which meets our assumption that all hateful tweets have similar hateful
contexts. The embedding space is divided by hateful or regular meanings. It
indicates that our model exploits the common space for all coded words in the
direction of hatefulness. We use the coded word “Google” as an example for the
coded word specific layer embedding visualization. Figures 2 (c) and (d) show the
visualization results of regular and coded meanings before and after two layers
of transformations. After the transformations, the regular and coded meanings
of “Google” are better separated in the new embedding space.

Table 4. Parameter sensitivity of λ and λ′ on observed (average of all observed words)
and unobserved (Skittles) coded words

(λ, λ′) Observed Skittles

P R F1 P R F1

(1, 1) 0.718 0.819 0.763 0.689 0.855 0.763

(0.1, 1) 0.807 0.734 0.768 0.703 0.803 0.750

(10, 1) 0.608 0.874 0.718 0.660 0.911 0.765

(1, 0.1) 0.683 0.834 0.751 0.705 0.874 0.781

(1, 10) 0.783 0.779 0.781 0.685 0.819 0.746

Parameter Sensitivity. We also evaluate the parameter sensitivity of λ and λ′

defined in Eqs. (5) and (9), respectively. We evaluate on observed (average of all
observed words) and unobserved (Skittles) coded words. The results are shown
in Table 4. λ controls the relative weight of MSE loss in comparison to triplet
loss in the general layer. We change λ while keeping λ′ = 1. When λ = 0.1,
F1-score of the unobserved word decreases. When λ = 10, the average F1-score
of the observed words decreases.

λ′ controls the relative weight of the loss for specific layer in comparison
to general layer in the overall objective function. We change λ′ while keeping
λ = 1. As λ′ controls the trade-off of generalization and specialization of the
whole model, the increase of λ′ = (0.1, 1, 10) increases the average F1-score of
the observed words but decreases F1-score of the unobserved word.

5 Conclusion

In this paper, we have developed CODE to achieve coded hate speech detection
by determining whether the coded word is in its coded meaning or not. We treat
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each coded word as a polysemy and use ELMo to map the coded word in each
text to an embedding space. Based on that, we have developed a two-layer (gen-
eral layer and specific layer) transformation approach. The general layer derives
a generalized coded meaning anchor and makes the coded word in its coded
meaning close to the anchor, while the specific layer derives a specialized coded
meaning anchor for each observed coded word and also makes the specific coded
word in its coded meaning close to the specialized coded meaning anchor. CODE
can detect the hate speech with either observed or newly emerged coded words
by comparing the distance to the specialized or generalized anchor, separately.
Experimental results on a Twitter dataset show that our approach can effectively
detect coded hate speech and significantly outperform the baseline methods. In
the future, we plan to study how to identify newly emerged coded words based
on the existing coded hate speech corpus.
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1946391, and 2103829.
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Abstract. Our paper studies the continual learning (CL) problems in
which data comes in sequence and the trained models are expected to be
capable of utilizing existing knowledge to solve new tasks without losing
performance on previous ones. This also poses a central difficulty in the
field of CL, termed as Catastrophic Forgetting (CF). In an attempt to
address this problem, Bayesian methods provide a powerful principle,
focusing on the inference scheme to estimate the importance of weights.
Variational inference (VI), one of the most widely used methods within
this vein, approximates the intractable posterior by a factorized distribu-
tion, thus offering computational efficiency. Notwithstanding many state-
of-the-art performances in practice, this simple assumption about the
posterior distribution typically limits the model capacity to some extent.
In this paper, we introduce a novel approach to mitigate forgetting in the
Bayesian approach via enriching the posterior distribution with mixture
models, which intuitively promotes neural networks to acquire knowledge
from multiple tasks at a time. Moreover, in order to reduce the model’s
complexity growth when the number of components increases, we pro-
pose a solution that conducts low-rank decomposition on the variance of
each component based on neural matrix factorization. Extensive experi-
ments show that our method yields significant improvements compared
to prior works on different benchmarks.

Keywords: Continual learning · Catastrophic forgetting · Gaussian
mixture

1 Introduction

Despite the fact that artificial intelligent agents have surpassed human beings
at many specified tasks, their abilities are still far behind humans in terms of
performing well on wide-ranged, disjointed problems. However, this could not be
completely comparable, since current systems often fail to retain the previous
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knowledge while learning new tasks [13], whilst humans have a great capability
of learning in a continuous manner: accumulating knowledge and avoiding for-
getting. Continual learning, therefore, has emerged in recent years as a learning
regime, allowing deep learning models to learn sequential tasks efficiently.

A branch of preliminary work in CL [1,5,11,14] capitalizes on the idea of
injecting uncertainty into the neural network’s parameters, which is known as
Bayesian Neural Networks (BNNs) [2]. Unlike the original NN, BNN considers
its parameters as random variables drawn from a given prior distribution. Based
on this framework, Variational Continual Learning [14], or simply VCL, was
one of the first proposals to formulate the continual learning as an approxima-
tion Bayesian inference problem in which the combination of online variational
inference with an efficient sampling method soon achieved significant results.
Uncertainty-based Continual Learning [1] then re-interpreted the KL-divergence
term in VCL, defined the concept of uncertainty for hidden nodes and modified
the KL-divergence term following the principle: the more uncertain a parameter
is, the more likely it will be changed in subsequent tasks. Another advantage
this method brings is that the number of parameters stored is less than other
earlier works, which placed the importance on weights [11]. By contrast, Varia-
tional Generative Replay (VGR) [6] has shown that likelihood-focused methods
- those that estimate the likelihood of the preceding tasks with synthetic data
rather than directly employ the model’s posteriors as prior for successive tasks
- can outperform prior-focused methods. In a recent study, Uncertainty-guided
Continual Bayesian Neural Networks (UCB) [5] defined a metric for measuring
the weight’s importance and thereby developed an appropriate training strategy.

In spite of the variational inference’s popularity and the advantages it brings,
the inference quality is still heavily affected by the parametric family of the pos-
terior approximation distribution. Both recent methods VCL and UCB utilized
a simple diagonal covariance Gaussian for posterior approximation, which is
likely not flexible enough to match the true posterior, especially in the continual
learning context. That being said, the nature of the data stream exhibits a large
inconsistency. Because each of them is sampled from a different distribution,
the problem of CF, that existing approaches suffer from, could be explained as
the well-known mode-seeking in statistics, where the unimodal distribution is
unable to capture information in multiple modes. We use an example in Fig. 1
as a simple illustration for this conclusion, a trimodal Gaussian mixture (blue
curve) is approximated by a single Gaussian distribution and another mixture
of two components. While both of these approximation distributions cover the
middle mode, the RHS is covered by the mixture only. Since the overall range
and shape of the mixture is much closer to the true distribution, it is obviously
a better approximation to the target trimodal mixture.

Meanwhile, choosing the more expressive (i.e. richer representation capacity)
variational family could help obtain better inference. With this intuition in mind,
recent studies that go beyond mean-field variational inference are: normalizing
flows [16], auxiliary variables [12] and mixture models [7]. Firstly, normalizing
flows is a powerful framework that allows simple probabilistic density functions
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Fig. 1. The approximation abilities of Gaussian distribution and Mixture model. Given
the true distribution that is a mixture of 3 Gaussian distributions 0.2N (−1, 0.2) +
0.6N (0, 0.2) + 0.2N (1, 0.2), KL-divergence is used to find the approximation of the
true distribution. The learned Gaussian distribution is N (0, 0.208) while the learned
mixture of 2 Gaussian distributions is 0.754N (−0.007, 0.214) + 0.246N (1.003, 0.197).
(Color figure online)

(PDFs) to be iteratively transformed into the target PDFs via a chain of invert-
ible mappings. Secondly, auxiliary variables are included in the posterior in order
to augment itself into more expressive and structured distributions. Finally, the
mixture model is deemed to have the ability to approximate any given distribu-
tion with arbitrary closeness. However, all the directions seem to be impractical
to apply to BNNs in the continual learning context, since their need is to add a
huge number of extra parameters. In this work, we focus on an efficient solution
to can exploit Gaussian mixture approximations in CL.

The main contributions of our paper could be depicted as follows: first, we
present a novel inference method exploiting the Gaussian Mixture as a poste-
rior approximation distribution and an information-theoretic view on how this
could handle the CF. Accordingly, an efficient learning algorithm is also pro-
posed, combining the Gumbel softmax reparameterization trick and the closed-
form upper bound of KL diverge between two mixture models. Moreover, we
employ a parameter reduction technique using Neural matrix factorization [4],
which offers computational complexity benefits required for training. Finally,
our inference process is experimentally proved to be widely incorporated into
existing Bayesian-based learning methods for CL.

2 Backgrounds

2.1 Bayesian Inference

Consider the Bayesian Inference in the supervised learning setting, given the
dataset D = {xi, yi}n

i and a BNN parameterized by θ following the prior dis-
tribution p(θ). Typically, the main goal of Bayesian inference is to derive the
posterior distribution over the weights p(θ|D), which is in an intractable form
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(i.e. involving integrals). The variational inference (VI) provides an efficient solu-
tion in which the true posterior is approximated to a variational distribution
q(θ|λ) via minimizing the Kullback-Leibler divergence between these two dis-
tributions KL(p(θ|D)||q(θ|λ)). In the most popular form, both of the prior and
variational distributions are assumed to be Gaussian. In short, this optimization
is equivalent to maximizing the Evidence Lower Bound (ELBO) w.r.t variational
parameter λ:

L(θ) = Eq(θ|λ)log p(D|θ)
︸ ︷︷ ︸

expected-log likelihood

−KL(q(θ|λ)||p(θ))
︸ ︷︷ ︸

regularizer

(1)

The above objective function now can be optimized with the Stochastic Gradient
Variational Bayes (SGVB, [9]) estimator. More specifically, this process includes
two main steps: Reparameterization Trick and Monte Carlo sampling [9].

2.2 Bayesian Approach in Continual Learning

Variational Continual Learning [14] used the online Bayesian update following
the Bayes rule, and the posterior after observing previous tasks would be the
prior of the next one. The sequential tasks are denoted as D = {D1,D2, . . . ,DT }.
Then, the posterior distributions are recursively computed as:

p(θ|D1:t) =
p(θ|D1:t−1) p(Dt)

p(Dt|D1:t−1)
(0 < t ≤ T ) (2)

With p(θ) as the prior distribution placed on θ. Due to the intractable property,
qt(θ) ≈ p(θ|D1:t) ∀ t is the tth task’s posterior approximation. Specifically, both
the prior q0 and posterior qi (i > 0) are chosen to be multivariate diagonal Gaus-
sian distributions to simplify the computation. The VCL’s objective function on
tth step is:

LVCL(θ) = Eqt(θ) log(p(Dt|θ)) − KL(qt(θ)|qt−1(θ))

In a major advance in regularizing the change of the parameters, UCB [5]
estimates the importance of each weight by the multiplicative inverse of its stan-
dard deviation Ω = 1

σ . According to this notion of importance, they controlled
the parameter-wise learning rate update at each step as:

Ωμ ← 1
σ

⇒ αμ ← αμ

Ωμ

Ωσ ← 1 ⇒ ασ ← ασ

Ωσ

The learning rate scheduler in UCB aimed to lessen the substantial shifting in
important parameters, placed on their inherent uncertainty. This also provided a
memory-beneficial consequence, since it neither accesses the past data nor stores
the quantities associated with previous tasks.
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2.3 Gumbel Softmax and Categorical Reparameterization

Normally, training a neural network often involves backpropagation through a
chain of continuous-valued and differentiable functions. Even so, the discrete
random variables used in stochastic neural networks to represent distributions
sometimes yield a more meaningful and interpretable representation. In this
section, we briefly summarize some concepts behind the idea of smoothly relaxing
discrete distributions with Gumbel-Softmax and the way of training these models
with reparameterization trick (path-derivative) gradients.

Gumbel-Softmax Trick [8]: Let α be an n-dimensional vector on simplex
Δn−1 = {(x1, x2, ...xn)| xi ∈ (0, 1),

∑n
i=1 xi = 1} and g = {g1, g2, ...gn} with

gi are i.i.d drawn from the Gumbel distribution G(0, 1). Clearly, sampling from
the multinomial distribution with probability vector given by α can be written
as y = softmax( log α+g

τ ) where τ > 0 is the temperature parameter.

3 Gaussian Mixture Approximation in Bayesian Inference
for Continual Learning

In this section, we first present our proposal that exploits Gaussian mixture
approximation in continual learning. Then we introduce a solution to reduce the
number of parameters of the Gaussian mixture.

3.1 Proposed Method

A proper choice of the posterior approximation distribution theoretically
expands the searching space for the true posterior. Especially in continual learn-
ing settings, neural networks must be learned on data from several tasks, a
typically used unimodal Gaussian distribution is not rich and expressive enough
to approximate the true posterior of weights. Accordingly, a Gaussian mixture
approximation is more suitable to capture the multi-modality in data modeling.
We conducted a simple experiment to show how GM can be a better approxi-
mation to the true distribution than a single Gaussian distribution (Fig. 1). This
result provides convincing evidence to apply Gaussian mixture approximation
in learning multiple tasks (i.e. scenario of continual learning).

For continual learning, for each task, we approximate the true posterior of
weights to a Gaussian mixture instead of using unimodal Gaussian distribution as
in existing studies [1,5,14]. The approximate distribution is presented as follows:

q(θ|λ) =
K

∑

i=1

πi N (μi, σi) (π ∈ ΔK−1) (3)

Note that the posterior learned from the previous task is often used as the prior in
the current task [1,14]. Therefore, both the prior and variational distributions
are Gaussian mixtures. They are plugged into Eq. 1. However, optimizing the
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evidence lower bound (Eq. 1) poses two main challenges. On the one hand, KL-
divergence between two Gaussian mixtures (the regularization term) does not
have a closed-form formula. On the other hand, sampling from such distributions
typically involves categorical variables (the expected-log likelihood). The lower
bound in this case is thus difficult to optimize.

Algorithm 1: Reparameterization trick for Gaussian mixture

Input: Prior distribution: p(θ) and posterior: q(θ|λ) =
K∑

i=1

πi N (μi, σi)

Number of samples: N; temperature : τ

Output: Estimation of the log-likelihood Eq(θ|λ)log p(D, θ)

Function Log-likelihoodEstimation(p(θ), q(θ|λ), N, τ):
for n ← 1 to N do

for k ← 1 to K do

uk ← μk + σk � εk where εk ∼ N (0, 1)
gk ∼ Gumbel(0, 1)

end

y = (y1, y2, . . . yK) ← softmax( log (π)+g
τ

) // Gumbel softmax trick

hn ←
K∑

k=1

ukyk

end

return 1
N

N∑

n=1

log p(hn);

In terms of the first difficulty, the Kullback-Leibler divergence, fortunately,
has a closed-form upper bound [3]. Rather than directly maximizing the ELBO,
we substitute the KL divergence in Eq. 1 with its upper bound. Theorem1
presents the Upperbound KL.

Theorem 1. Consider 2 mixtures f(x) =
∑K

i=1 πa
i N (μa

i , σa
i ) and g(x) =

∑K
i=1 πb

i N (μb
i , σ

b
i )(π

a
i , πb

i ∈ ΔK−1), we have the below inequality:

KL(f |g) ≤ KL(πa|πb) +
K

∑

i=1

πα
i KL(N (μa

i , σa
i )|N (μb

i , σ
b
i )) (4)

Regarding the latter challenge, Gaussian mixture is regarded as a consolidation
of the categorical and Gaussian distributions. We propose a strategy to approx-
imate the expected-log likelihood (Eq. 1) with Monte Carlo and reparameteriza-
tion trick. Algorithm 1 presents the approximation of the expected-log likelihood.
The discrete mixing coefficients y = {y1, y2, .., yK} are reparameterized based
on the Gumbel-Softmax trick. Then samples u = {u1, u2, .., uK}) generated by

each Gaussian component are linearly combined: h =
K
∑

k=1

ukyk to calculate the
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expected-log likelihood. Moreover, the mixture coefficient π is reparameterized
by a 1-1 transformation via softmax function: π = soft max(0, π̂1, π̂2, . . . π̂K−1).
For brevity, this turns the constrained optimization problem into an uncon-
strained one that could be optimized by back-propagation gradient.

We emphasize that the proposed technique is model-agnostic, which means
that it is compatible with any Bayesian-based approaches. Without loss of gen-
erality, we analyze the application of our scheme on VCL [14] and UCB [5]. In
Algorithm 2, we derived the training algorithm for-almost-all continual learning
methods following the Bayesian principle. For those methods which adapt the
learning in each iteration (e.g. UCB, Sect. 2.2), a LearningRateUpdate proce-
dure, which takes the current learning rate α and parameter of interest λ and
returns the updated learning rate, would be retained as in the original study.

Algorithm 2: Training of proposed method in continual learning scenario

Input: A sequence of T datasets DT
t=1 = {x

(n)
t , y

(n)
t }NT

n=1

Prior distribution pt(θ), number of samples : N
Learning rate αλ, temperature: τ

Output: Update the variational parameter λ for tth task
for t ← 1 to T do

repeat
L1 = Log-likelihoodEstimation(pt(θ), qt(θ|λ), N, τ)
L2 = Upperbound KL(qt(θ|λ)|pt(θ))
L = L1 − L2
λ = λ − αλ∇λL
αλ = LearningRateUpdate(αλ, λ) // Optional

until convergence;
end

return Updated variational parameter λ

3.2 Dimension Reduction via Neural Matrix Factorization

Using Gaussian mixture approximation leads to the number of parameters to
being multiplied (along with the size of components) in comparison with uni-
modal Gaussian approximation. Consequently, optimization via a typical algo-
rithm is expensive, and a dimensional reduction technique is necessary in this
case. Recently, [17] proposed an idea of decomposing variance of each Gaussian
component N ( . |μ, σ) in (3) by: σ = diag(H) = diag(UV T ) for some matrix
H ∈ R

M×N , U ∈ R
M×K , V ∈ R

N×K and K is often set equal to a small pos-
itive integer. As a result, the number of parameters decreases from M × N to
(M + N) × K in each component. Experimental results showed that this matrix
factorization not only compresses the neural network, but also provides compet-
itive performance.
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Table 1. Average accuracy on final task.

Method Dataset

Permuted MNIST Split MNIST Fashion MNIST NotMNIST

VCL-Gauss 73.77 96.9 95.7 92.1

VCL-GMM 75.52 97.77 97.78 93.9

Unfortunately, it would be tough to tune the target rank for factorization in
the continual learning scenario, since a large K causes the over-parameterization
in some tasks whereas a small K might be underfitting in the others. For a
better solution, we alternatively use neural matrix factorization [4] to overcome
this shortcoming and describe the amelioration gained in Sect. 4.4. With H ≈
MLP(U, V ), this dimension reduction is no longer a low-rank approximation. The
density function of each Gaussian component in the posterior is: N ( . |μ, σ) =
N ( . |μ, f(U, V )) where f is defined as the multilayer perceptron parameterized
by θ.

4 Experiments

To study the contributions of the above methodologies in the continual learn-
ing scenario, we conducted extensive experiments in comparison with earlier
baselines, which are also governed by the Bayesian regime. Additionally, in the
last subsection, we analyze the effect of the matrix factorized used in dimension
reduction. All the results are averaged on five random seeds.

Datasets: The datasets for evaluation are Permuted MNIST, Fashion MNIST,
Split MNIST, and notMNIST.

Evaluation Metrics: At the point our model has been trained on i consecu-
tive tasks so far, let Ri,j be the accuracy of the achieved on jth task. We use
two different benchmark protocols (higher is better) to evaluate the performance
at Tth task: ACCT = 1

T

∑T
i=1 RT,i and BWTT = 1

T−1

∑T−1
i=1 RT,i − Ri,i. Con-

ceptually, the Average accuracy (ACCT) score is to measure model’s overall
performance, whereas Backward Transfer (BWTT) indicates its knowledge
transfer ability on preceding tasks.

4.1 Task-Incremental with Multi-head Architecture

First, we incorporate the introduced techniques into VCL on the four below
benchmark datasets:

– Permuted MNIST: [10] is a variation of the original MNIST, in which the
image’s pixels in are randomly shuffled via a random (and fixed) permutation
at each task.
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Fig. 2. Gaussian and Gaussian mixture on UCB.

– Split MNIST: [18] MNIST is partitioned into five subsets. In particular,
each of them comprises images from two different classes, namely 0/1, 2/3,
4/5, 6/7, 8/9.

– FashionMNIST, NotMNIST: Similar to the split MNIST, our model
would be incrementally trained in five separated binary classification tasks.

We replicate the model architectures used in [14], which is composed of two
fully connected layers (100 units each for permuted MNIST and 256 for split
MNIST). The given results in Table 1 show that VCL with mixture posterior sig-
nificantly outperforms the one with single diagonal Gaussian in terms of Average
accuracy (1–2% each dataset).

Ordinarily, the architecture of a discriminative model can be divided into
two parts: classifier (final layer) and extractor (earlier layers), the catastrophic
forgetting might occur on two components with different degrees, depending on
the data. Various methods [14,15] relied on the additional information about
task identification at inference time, as such, to avoid CF in the classifier.

4.2 Task-Incremental with Single-Head Architecture

The VCL’s prerequisite about task boundaries, however, is rarely feasible in the
use cases. In contrast, UCB implemented a single head network for all tasks,
thus becoming an effective baseline. Before digging deeper into the experiment
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Fig. 3. ACC (left) and BWT (right).

result, we briefly recall a minor difference between UCB and VCL, which lies in
the chosen prior. UCB uses a Gaussian mixture of two components (as mentioned
in [2]) with the weight factor π.

To ensure a fair comparison, the model architecture again remains as the orig-
inal UCB implementation1. Moreover, we carefully select π on different values
(0.25, 0.5, 0.75). We then plot the overall performance on split MNIST, fashion
MNIST and notMNIST in Fig. 2.

4.3 Task-Incremental with Data Overlapping

Up to now, many prior works focused on datasets with isolation characteristics,
which means there is no class overlapping in two separated tasks. To the best
of our knowledge, this is the first experimental setup to simulate the repetition
of data at different times. For example, the MNIST dataset now is allocated for
nine classification problems: 0/1, 1/2, 2/3, . . . , 8/9. This larger correlation allows
the learners to selectively transfer information between tasks in a soft way.

From Fig. 3, we observe that our proposed method in this setting produces
stable outputs: the performances on a range of hyper-parameters (ACC curves
stay closed to each other for all values of num component ∈ {2, 3, 4}) and the
knowledge transfer abilities (BWTs almost keep unchanged).

1 https://github.com/SaynaEbrahimi/UCB.

https://github.com/SaynaEbrahimi/UCB
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Fig. 4. Neural matrix factorization on multi-head VCL.

4.4 Additional Experiments About Dimension Reduction

In Sect. 3.2, we suggested that neural matrix factorization can compact the vari-
ational approximation for the covariance since it reduces the number of parame-
ters without diminishing the capacity. In the implementation, we employ a two-
hidden-layer MLP with the size of (2K,K,K, 1) which decreases the number of
trainable parameters for each component from 2MN to MN+K(M+N+3K+1)
and offers comparatively less resource in training when M,N >> K. With similar
strategies, Fig. 4 quantify the impact of this technique in Fashion MNIST and
NotMNIST datasets. We observe ∼1% increase in average accuracy on almost all
experiments, especially 2, 4% (from 93, 8 → 96, 4) in the case of 4 components
GMM on NotMNIST.

5 Conclusion and Future Work

In this paper, we propose a framework, which is applicable to any Bayesian-based
approach for continual learning. Our methodology unifies several recent propos-
als in variational inference and latent feature models and entails significant gains
in the model’s performance. We found that it is beneficial for incorporating these
enhancements into VCL and UCB via distinct setups. The future work should
take the initialization of mixtures into account (e.g. Iterated Laplace Approx-
imations). In addition, we plan to properly find the number of components of
the Gaussian mixture according to each task or even cast it into a trainable
parameter while ensuring computation time and memory.
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Abstract. Generative adversarial networks (GAN) have been mainly
applied to tasks such as synthesis, segmentation, and reconstruction in
the field of medical images since its appearance, and the research results
in the field of classification are relatively rare. In the field of Parkinson’s
disease, the development of deep learning in this field has been limited
due to the lack of available data sets and the differences between medical
images and natural images. This paper proposes a new neural network
for recognizing Parkinson’s disease called Triple Progressive Generative
Adversarial Networks (TP-GAN). Adding a classifier makes the model
change from a two-person game to a three-person game, and introduces
a manifold regularization method to guide the direction of classification
decisions. The use of progressive networks to replace the traditional con-
volutional network makes the model perform better than the original
network structure when processing large resolution data. The exprimen-
tal results demonstrate that our model performs better than the state-
of-the-art baselines on the dataset of brain Magnetic Resonance Imaging
(MRI).

Keywords: Semi-supervised · Generative adversarial networks ·
Parkinson’s disease · MRI

1 Introduction

Parkinson disease (PD) is the second largest neurodegenerative disease in the
world after Alzheimer’s disease. At present, the diagnosis of Parkinson’s disease
mainly relies on medical history, clinical symptoms and physical signs. When
clinical symptoms appear, the death of substantia nigra dopaminergic neurons
is at least 50%, and the dopamine content of the striatum is reduced by more
than 80% [5,12]. Therefore, when Parkinson’s disease patients are diagnosed,
most of the lesions are already in the middle or advanced stages. So far, there
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13280, pp. 118–130, 2022.
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is no cure for Parkinson’s disease, so all efforts should be devoted to the early
diagnosis of Parkinson’s disease [22].

In recent years, generative adversarial networks have received wide attention
in the field of medical imaging [3,20]. Many models have been applied to modern
medical-assisted diagnosis, such as synthesis, segmentation and reconstruction.

However, the current research still has some limitations. Compared with nat-
ural images, medical images have higher resolution, lower contrast and fewer sam-
ples [24]. These factors make it impossible for GAN to achieve as good results
when processing medical samples as when processing natural images [23].

In order to solve above problems, we propose a new Semi-supervised neu-
ral network Triple Progressive Generative Adversarial Networks (TP-GAN) for
recognizing Parkinson’s disease. Compared with the baseline in the experiment,
and the experimental results show that TP-GAN shows better performance. The
contributions of this paper are as follows:

1. We preprocess the PPMI dataset [11], and obtain a Parkinson’s disease brain
MRI image dataset containing three stages of control, PD and Prodromal PD
at the same size.

2. A new neural network model is proposed to classify the different stages of
Parkinson’s disease. Used the PPMI dataset to recognizing Parkinson’s dis-
ease and evaluate the model in the same experimental environment.

3. TP-GAN uses progressive network to replace the traditional convolutional
network. Add classifiers and introduce manifold regularization to alleviate
problems such as overfitting due to scarcity of medical data.

The rest of this paper is organized as follows. Section 2 introduces the related
work of generative confrontation network and semi-supervised classification.
Section 3 presents our new model Triple Progressive GAN. Section 4 gives the
experimental results. Section 5 summarizes this paper.

2 Related Work

In recent years, various machine learning techniques have been used to identify
Parkinson’s disease from medical data. Prasuhn et al. proposed to cut the brain
expansion image into multiple brain network atlas regions, using a greedy algo-
rithm to filter and perform a weighted average on the selected combination of
regions [13]. Gabriel et al. used the first-order and second-order statistical meth-
ods to detect the regions of the extracted features, so as to perform VBM on the
magnetic resonance image [18]. Bowman et al. used elastic network regression
technology to replace the original log loss function with a square loss function,
and jointly use the L1 and L2 norm penalty terms for regularization, which can
be effective when multimodal features are interconnected [2]. Sahand et al. used
the diffusion-based MRI data set to calculate the average apparent diffusion
coefficient of each patient, and used this as a feature to classify PD and patients
with progressive supranuclear palsy patients with linear kernel support vector
machines [21]. Huang et al. solved the problem of ambiguous gray and white
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matter in MRI images of PD patients by enhancing and segmenting the infor-
mation of MRI images extracted by discrete wavelet transform and inputting
the segmented images into fuzzy median filter, and improved the classification
accuracy of PD images [9].

In recent years, deep learning methods have been extensively studied in the
computer-aided diagnosis of Parkinson’s disease based on MRI images. Based
on the T1-weighted MRI image, Zhang et al. added a normalization layer to the
fifth layer of the original AlexNet network to improve the overall learning rate
and accelerate the convergence of the model [1]. Mohamed et al. used Siamese
neural network for the diagnosis of Parkinson’s disease to enhance the distri-
bution of similar samples among groups by clustering data sets before applying
classification [15]. Suvita et al. propesed the binary versions of Rao algorithms
and applied to four publicly available Parkinson’s disease datasets [16]. Basnin
et al. combining the DenseNet model and LSTM to enhance the ability of model
feature selection and used LSTM to discover the relationship between temporal
characteristics [7].

3 Methods

In this section, we propose our TP-GAN. First of all, we added a classifier to
make GAN have strong classification capabilities. In addition, we use progressive
network to replace the traditional convolutional network, which makes our model
more stable when processing high-resolution images and train faster. Finally, we
added manifold regularization to the classifier to solve problems such as the
model’s easy overfitting and poor generalization ability. The framework of TP-
GAN is shown in Fig. 1.

3.1 The Addition of Classifier

Our model contains three parts: generator, discriminator and classifier. The gen-
erator makes the generated sample distribution as similar to the real sample
distribution as possible, pg(x|y) ≈ pdata(x|y); The discriminator distinguishes
whether a pair of data (x, y) is a real sample from the real sample distribution
pdata(x|y) or a generated sample generated by the generator that conforms to
the generated sample distribution pg(x|y); The classifier makes the distribution
of classified samples as similar as possible to the true conditional distribution,
pc(y|x) ≈ pdata(y|x).

During the training process, the generator maps the input random noise z
∼ pz(z) that conforms to the distribution of the noise variable according to the
given label y into a pseudo sample G(y, z) ∼ pg(x|y), and output the corre-
sponding sample-label pair(xg, yg). The classifier inputs the sample x, generates
a pseudo-label y according to the classification sample distribution pc(y|x), and
outputs a pair of data (xc, yc) belongs to the joint distribution p(x)pc(y|x).
The discriminator needs to judge (x, y) from the true conditional distribution
pdata(x|y), (xg, yg) from the generator and (xc, yc) from the classifier, as much
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Fig. 1. General framework of TP-GAN

as possible put the sample-label pairs from the generator in the pseudo-sample
classes.

Since the generator and classifier have opposite goals to the discriminator, in
order to adapt to this situation, the optimal parameters of the model are solved,
and the objective function is optimized in a mini-max method, so the objective
function of training is:

min
C,G

max
D

U(C,G,D) = E(x,y)∼pdata(x,y)[log D(x, y)]

+ (1 − α)Ey∼p(y),z∼pz(z)[log(1 − D(G(y, z), y))]
+ αE(x,y)∼pc(y|x)[log(1 − D(x, y))]

(1)

where α is a constant adjustment parameter used to control the degree of influ-
ence of the classifier and generator on the objective function, pdata(x, y) is the
true sample distribution, pz(z) is the noise variable distribution, and pc(y | x) is
the categorical sample distribution. The structure of classifier is shown in Fig. 2.

3.2 Progressive Network

Equation (1) is balanced when pdata(x, y) = (1−α)pg(x, y)+αpc(y | x), so when
the generated sample distribution is closer to the true sample distribution, the
classification sample distribution is also more close to the true sample distribu-
tion. We gradually increase the scale of generators, discriminators and classifiers
so that the model can better improve the details during the training process.

The generator, discriminator, and classifier have 7 levels, each of which learns
images with different resolutions, and the level is the logarithm of the resolution
learned by the current level with the base two (level = log2(pix)), during the
transition from one level to another, the smooth transition technology is used
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Fig. 2. The structure of classifier

to stabilize the training process, avoiding the sudden change in the number of
network layers, which makes it take extra time for the model to converge from a
turbulent state to a stable state. By gradually increasing the number of network
layers, most of the iterations in the training process can be completed at low
resolution, which greatly accelerates the training speed and makes the train-
ing process more stable, while retaining and outputting low-resolution training
information will go to the next level.

3.3 Manifold Regularization and Use of Generated Samples

We added manifold regularization to the classifier to keep the classifier
unchanged for the local perturbation of the data manifold, and similarly mark
adjacent points on the manifold to enhance the stability of the classifier. In the
training process, based on the high-quality samples generated by the generator,
we input the generated samples as unlabeled samples into the classifier, which
alleviates the problem that the model is easy to overfit due to the scarcity of
medical images, and further helps the classifier learn the distribution character-
istic information of the sample.

The total loss function of the model can be defined as:

L = LD + LG + LC (2)

where LD is the discriminator loss, LG is the generator loss, LC is the classifier
loss.

�D = �[
1
k

(
∑

(x,y)

log D(x, y) +
∑

(xc,yc)

log D(xc, yc))

+
1 − α

m

∑

(xg,yg)

log(1 − D(xg, yg)) +
α

n

∑

(xc,yc)

log(1 − D(xc, yc))]
(3)
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�G = �[
1 − α

m

∑

(xg,yg)

log(1 − D(xg, yg))] (4)

where �D is the gradient ascend equation when the discriminator updates the
parameters during the training process, �G is the gradient descent equation
when the generator is updated, k, m, n are the sample numbers of the input
discriminator, generator and classifier respectively.

The classifier loss Lc is divided into three parts: supervised loss, unsupervised
loss and semi-supervised loss. Supervised loss is the cross-entropy loss between
the prediction of the real labeled image and the real label; the unsupervised loss
is the real unlabeled image and the generator generates the confrontation loss of
the image to help the classifier better learn the distribution feature information
of the real sample; the semi-supervised loss is a manifold regularization term
that penalizes the change gradient of the classification decision to make the
classifier output a locally consistent classification result, thereby improving the
classification decision-making ability of the classifier under disturbance.

LC = ρLsupervised + ϕLunsupervised + ωLMR (5)

where Lsupervised is the cross-entropy loss, Lunsupervised is the confrontation
loss function, LMR is the manifold regularization term, ρ, ϕ and ω are the
corresponding weight coefficients, representing the influence degree of different
types of data on the classifier.

Lsupervised = −E(x,y)∼pdata(x,y)[log D(x, y)] (6)

Lunsupervised = Ey∼p(y),z∼pz(z)[log(1 − D(G(y, z), y))]
+ E(x,y)∼pc(y|x)[log(1 − D(x, y))]

(7)

LMR =
∫

x∈M

|| �M c||2dPx(x) (8)

where M is a submanifold of Px, �M is the gradient of c along manifold M,
and c represents the classifier. Since it is very difficult to directly calculate the
manifold regularization term, the graph Laplacian approximation is used based
on labeled samples and unlabeled samples.

LMR ≈ 1
n

n∑

i=1

||c(g(z(i))) − c(g(z(i)) + εr̄(z(i)))||22 (9)

r̄(z) = g(z + ηδ̄) − g(z(i)) (10)

where g(z(i)) represents the classification decision on the manifold, ε represents
the adjustment parameter of the update step size of the gradient direction of
the manifold, r̄(z) represents the approximation of the manifold gradient on z,
δ ∼ N(0,1), δ̄ = δ

||δ|| , η is the adjustable step size.

LMR = Ez∼pz(z),δ∼N(δ)||c(g(z)) − c(g(z + εδ̄))||22 (11)
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�C = �[α(−ρ

h

∑

(xc,yc)

log D(xc, yc)) +
ϕ

j + l
(

∑

(xun,yun)

log(1 − D(xun, yun))

+
∑

(xg,ycg)

log(1 − D(xg, ycg))) +
ω

l

l∑

i=1

||c(g(z(i))) − c(g(z(i) + εδ̄))||22]

(12)
where �C is the gradient descend equation when the classifier updates the
parameters during the training process, h, j, and l are the number of real
labeled samples, real unlabeled samples and pseudo samples in the input classi-
fier, respectively.

In summary, the algorithm is shown in Algorithm1.

Algorithm 1. Algorithm process of TP-GAN
Input: The noises z∼ pz(z), the real labelled samples xl ∼p(x), the unlabelled real

samples xun ∼ p(x).
Output: The classification result (xc, yc), the generate pseudo samples-label pairs

(xg,yg).
1: for number of training iterations do
2: Sample z and y to generate G(y,z) and (xg,yg).
3: Sample xl to compute yl and (xl, yl).
4: Sample xun to compute yun and (xun, yun).
5: Sample xg and {z(1), z(2), · · · , z(l), } to compute ycg and (xg, ycg).
6: Concatenate (xl, yl), (xun, yun) and (xg, ycg) to (xc, yc).
7: Sampling (x, y) and (xc, yc).
8: Update D by ascending along its stochastic gradient according to Eq. 3
9: Compute Lsupervised, Lunsupervised and LMR aaccording to Eq. 6, 7, 11

10: Update C by descending along its stochastic gradient according to Eq. 4
11: Update G by descending along its stochastic gradient according to Eq. 12
12: end for

4 Experiments and Results

4.1 Dataset

We used brain MRI dataset from the Parkinson Progression Marker Initiative
(PPMI) database to evaluate the proposed method. The PPMI is a compre-
hensive observational, international, multicenter study designed to identify PD
progression biomarkers both to improve understanding of disease etiology and
course and to provide crucial tools to enhance the likelihood of success of PD
modifying therapeutic trials [11].

We downloaded the MRI dataset of PPMI database from the PPMI platform.
In our MRI data, there is a total of 2292 samples with three categories: normal
samples (Control), confirmed PD (PD), and samples in the incubation period
(Prodromal PD). All samples are in axial view.
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The dataset is split into training, testing and validation set with 1836:228:228
respectively. The training set contains 228 MRI samples with data labels and
1836 MRI samples without data labels. The dataset allocation is shown in
Table 1.

Table 1. The details of dataset allocation

Subject Training set Validation set Testing set Total

Labelled Unlabelled Labelled Labelled

Control 54 381 54 54 543

PD 155 1091 155 155 1556

Prodromal PD 19 136 19 19 193

4.2 Experimental Settings

All experiments are conducted on a platform with ubuntu system and NVIDIA
Tesla P100 16G GPU, and tensorflow and keras frameworks were used to build
models to complete the experiments. In our experiments, we found the best
batch size is 32 in the range of {8,16,32,64}. Also, we found the best epoch is
100, and the best learning rate is 3 × 10−4. Moreover, we optimize all of our
networks with Adam and we found when the first order exponential decay rate
for the moment estimate β1 is equal to 0.3, the epsilon ε is 10−6, and the second
order exponential decay rate for the moment estimate β2 is 0.999, training for
the best results. In order to view these parameters more intuitively, Table 2 lists
the best parameters of our model in the PPMI dataset.

In Table 2, on the PPMI dataset, the trade-off parameter α is set 0.3 as the
best parameter.

Table 2. The parameters of TP-GAN based on the PPMI dataset.

Parameters Optimal value

Batch size 32

epoch 100

Learning rate 10−4

β1 0.3

β2 0.999

ε 10−6

α 0.3

Specifically, we used k-fold cross-validation with k = 10 for choosing appro-
priate model parameters, and effectively avoid over-fitting that may be caused
by too small data sets.

The performance of the classification is measured using three metrics, i.e.,
Accuracy (ACC), Sensitive (SEN), F1-score (F1).
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4.3 Comparison Methods

We compared our model with Categorical Generative Adversarial Networks (Cat-
GAN) [19], Improved Techniques for Training GANs (ImprovedGAN) [14], Triple
Generative Adversarial Nets(TripleGAN) [10], Deep residual network(Resnet)
[6], Densely Connected Convolutional Networks(Densenet) [8], Very Deep Con-
volutional Networks (VGGnet) [17]. We chose these models because they are
used as baselines to achieve better results in image classification tasks.

4.4 Experimental Results and Analysis

In this section, we presented the results of the PPMI dataset under the same
experimental environment.

The performance of our model and baselines on the PPMI dataset for different
performance indicators is shown in Tables 3, 4 and 5, and the results with the
best classification performance in each epoch are marked in bold.

In Tables 3, 4 and 5, the ACC, SEN and F1 of our model reached 86.53%,
85.92% and 86.95%, respectively, achieving classification performance compara-
ble to or better than the current baseline. This shows that our model can learn
the true sample distribution better than baselines, and our model is a promising
network for classification tasks.

Table 3. Accuracy of the proposed model and six advanced classification models (%)

Model 25 epochs 50 epochs 75 epochs 100 epochs Average

CatGAN 69.89 72.28 74.75 77.63 73.64

ImprovedGAN 78.26 79.69 80.29 81.57 79.95

TripleGAN 77.03 79.52 81.24 82.84 80.16

Resnet 79.67 81.71 83.08 83.61 82.01

Densenet 70.87 73.29 76.33 79.91 75.10

VGGnet 77.19 79.37 81.73 83.12 80.35

TP-GAN 79.76 83.84 85.24 86.53 83.84

Table 4. Sensitive of the proposed model and six advanced classification models (%)

Model 25 epochs 50 epochs 75 epochs 100 epochs Average

CatGAN 73.27 75.67 77.06 81.94 76.99

ImprovedGAN 77.28 78.29 79.37 80.61 78.89

TripleGAN 77.76 79.33 81.91 83.06 80.51

Resnet 78.82 80.26 83.27 84.71 81.77

Densenet 71.27 74.34 78.73 82.29 76.66

VGGnet 78.09 80.02 82.01 84.36 81.12

TP-GAN 79.63 82.39 84.26 85.92 83.05
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Table 5. F1-score of the proposed model and six advanced classification models (%)

Model 25 epochs 50 epochs 75 epochs 100 epochs Average

CatGAN 69.93 79.28 75.37 77.81 74.10

ImprovedGAN 78.47 79.16 79.83 81.91 79.84

TripleGAN 77.18 79.29 81.87 83.07 80.35

Resnet 79.28 81.75 83.47 85.26 82.44

Densenet 71.44 74.42 77.27 79.97 75.78

VGGnet 77.28 78.92 81.49 83.73 80.36

TP-GAN 80.17 83.69 85.63 86.95 84.11

In order to compare the experimental results based on the PPMI data set
more intuitively, the visualization of Table 3, 4 and 5 above is shown in Fig. 3. It
can be clearly seen from Fig. 3 that on the PPMI data set, our model outperforms
other baselines in every evaluation index, which further proves that our model
can be applied to image classification tasks.

Fig. 3. Visualization of comparing results for TP-GAN and other baselines method on
PPMI dataset by three metrics.

4.5 Parameters Sensitivity Analysis

For our TP-GAN, we adjusted different batchsize, learning rate, β1 and β2 to
make the model achieve the best performance [4]. We also designed the trade-off
parameter α of TP-GAN, and find the best α in the range of {0.1, 0.2, 0.3,
. . ., 0.9}. The TP-GAN classification performance with different parameters α
on PPMI dataset is shown in Fig. 4. As shown in Fig. 4, how the classification
performance of TP-GAN changes with different α. The horizontal axis represents
the change of the parameter α, and the vertical axis is an index for evaluating
classification performance. In Fig. 4, we can see that when α = 0.3, all indicators
have achieved good results.



128 Z. Zhang et al.

Fig. 4. Visualization results of the TP-GAN classification performance with the param-
eters α on PPMI dataset by three metrics.

5 Conclusion and Future Work

This paper proposes a new neural network for recognizing Parkinson’s disease
called Triple Progressive Generative Adversarial Networks (TP-GAN). We first
add a classifier module to make the training process more stable. In addition,
we use progressive networks, which greatly improves the training speed and has
better performance when processing high-resolution images. Then, the manifold
regularization method is introduced to guide the change direction of classification
decision and improve the generalization ability of the model. The experimental
results on a real-world dataset prove that TP-GAN demonstrated superior per-
formance against the state-of-the-art six baselines in task of Parkinson’s disease
classification. In future work, we will try to utilize multi-modal data to identify
Parkinson’s disease, and further update the manifold regularization to improve
the classification ability of TP-GAN.
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Abstract. Extreme Multi-label text Classification (XMC) is a funda-
mental text mining task, which aims to assign multiple labels related
to the given text from a large-scale label set. Various models and many
data augmentation methods are proposed to improve classification per-
formance. However, the classification performance is limited due to the
long tail distribution of labels, which is an essential characteristic of
XMC. To address this problem, we propose a novel data augmentation
method named Attentional Data Augmentation Method (ADAM) for
long tail labels. Specifically, we split each sentence into several segments
of equal length and use an attention-based neural network to explore
the core segments of long tail labels. The unimportant segments of each
instance from the dataset are considered to be replaced by those seg-
ments related to the long tail labels. Extensive experiments show that
ADAM has an improvement based on the XMC method, especially on
the prediction of long tail labels.

Keywords: Extreme multi-label text classification · Long tail labels ·
Data augmentation

1 Introduction

Extreme Multi-label text Classification (XMC) is an important task in the nat-
ural language processing field, which has attracted universal interest. Given a
text, the XMC task aims to find multiple relevant labels from a pre-defined
label set. Different from the classical multi-label classification task, XMC needs
to select relevant labels from an extremely large label set. Therefore, existing
studies generally focus on two issues, including how to explore the significant
semantics associated with labels from the given text and how to reduce the
computational complexity.

Considerable deep learning models are proposed, such as AttentionXML [17],
X-Transformer [2], and LightXML [6]. They generally utilize the recurrent neural
network, Transformer, or pre-trained language model as encoder and classify by
the obtained text representation.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13280, pp. 131–142, 2022.
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Fig. 1. The labels distribution of EUR-Lex and AAPD datasets.

Although these models have achieved significant progress, they generally
neglect the effect of the long tail distribution. As shown in Fig. 1, most instances
correspond to few head labels, while a large number of tail labels only contain
minimal instances. This imbalance between head labels and tail labels can lead
to two problems. First, the associations between instances and tail labels are
difficult to capture due to the lack of training data corresponding to tail labels.
Second, being dominated by head labels, the model tends to predict these high-
frequency labels and omits low-frequency labels, leading to label absence and
label hallucination.

To alleviate the above two problems, an intuitive method is to augment
instances with tail labels. Recent data augmentation methods [4,11,13] for text
classification generally adopt synonym replacement, random insertion, and back-
translation mechanism. However, these methods hardly change the semantics of
texts and keep the original label set completely for each instance, which limits
the effectiveness of data augmentation. Therefore, it is an enormous challenge
how to obtain diverse training data with tail labels.

To address this challenge, we propose an Attentional Data Augmentation
Method (ADAM). Specifically, ADAM mainly consists of three steps, including
relevance learning, segments memory construction, and segments replacement.
Compared to a single token, segments of texts generally play a more important
role in text classification due to their abundant information. Hence, we first
divide the given text into different segments according to a fixed window size in
the first step. Then, we devise a label-segment attention mechanism to learn the
relevance degree between labels and segments. Due to the long tail distribution
problem, the reliability of the correlation degree between the label and segment
pairs for the head labels is higher than the tail labels. Thus, in the second step,
for each instance, the segments that have a low correlation with the head labels
are used as the candidate segments for tail labels. And we assign the candidate
segments to each tail label in the instance according to the attention weights.
Subsequently, we use long tail labels and their related segments to construct
memory. In the last step, we design a random replacement strategy to augment
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the training data for tail labels, which uses the segments related to a long tail
label that is come from the memory to replace the segments that have low
relevance with each label in the selected instance, and the corresponding long
tail label will be put into the original label set of the selected instance to form a
new sample. To verify the effectiveness of our framework, we conduct extensive
experiments on three benchmark datasets. The experimental results show that
our framework achieves significant improvements.

In summary, the contributions to this paper are three-fold:

– To deal with the long tail distribution problem existing in XMC, we propose
an Attentional Data Augmentation Method (ADAM).

– To generate diverse training data for tail labels, we devise a label-segment
attention mechanism to learn the relevance between labels and segments and
utilize a random replacement strategy to augment the training data for tail
labels.

– Our extensive experiments show that our method significantly outperforms
the baselines and other data augmentation methods on three benchmark
datasets.

2 Related Work

2.1 Extreme Multi-label Text Classification

There are many methods that have been proposed to solve the XMC problem,
and they can be broadly divided into two categories: One is traditional machine
learning methods that use the raw text features like TF-IDF as input, the other
is the neural network methods that extract the semantic level features before
classification.

Traditional Methods. The methods that treat each label as a binary classifica-
tion problem and classification is independent of each other like ProXML [1] are
called one-vs-all methods. Although they have improved a certain level of per-
formance, they always suffer from an enormous computational cost, and space
complexity is really high. To alleviate this problem, Tree-based methods that
use a probabilistic label tree [5] to partition labels are proposed to overcome the
high computational complexity. The state-of-the-art tree-based method named
Parabel [10] constructs a binary balanced tree by iteratively partitioning nodes
into two balanced clusters until the cluster size is less than a value. But there is
a problem that some long tail labels will be mistakenly grouped into a cluster
by unrelated labels, ultimately affecting the classification performance.

Neural Network Methods. Various neural networks have shown significant
improvement in XMC. These methods always extract the semantic features by
deep learning and classify based on the representation. XMLCNN [7] constructs
a CNN network and a fully connected layer to solve the problem. And Atten-
tionXML [17] is also a typical method that adopts a probabilistic label tree
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Fig. 2. Relevance learning model

(PLT) and RNN. What’s more, LightXML [6] obtains a representation of the
original text through the transformer-based model like BERT [3], and adopts
the dynamic negative labels sampling during the label recalling part. However,
none of the methods mentioned above solve the problem of poor long tail label
classification performance.

2.2 Data Augmentation in NLP

Data augmentation has shown its effectiveness in many fields of NLP. Wei et
al. [13] proposed EDA, which augments data by using Synonym Replacement,
Random Insertion, Random Swap, Random Deletion. Unsupervised learning is
becoming more and more popular because it reduces the cost of data labeling.
UDA [14] trains in an unsupervised way, and it uses back-translation to augment
the raw data, which translates raw texts to another language and translates them
back. However, all data augmentation methods have no significant improvement
in long tail label classification, which affects the overall performance improve-
ment.

3 Method

To effectively augment data for long tail labels, firstly, we split a sentence into
several segments, and learn the relationship between each label and each segment
through an attention-based neural network, as shown in Fig. 2. Subsequently,
we find the segments that have high relevance with the long tail labels and
form a memory. Finally, those segments that have low relevance to each label of
one instance are replaced by the segments that belong to the memory, and the
corresponding long tail label will be added to the label set of the current data.
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3.1 Notations

Given an original training set XN that is composed of {(xi, yi)}Ni=1, where xi is
raw text, and yi ∈ {0, 1}L is a L dimensional multi-hot vectors and stands for the
label of xi. Each xi can be split into T segments {wik}Tk=1 of equal length. The
dataset that has been augmented can be represented as X̂M , which is composed
of {(x̂i, ŷi)}Mi=1.

3.2 Relevance Learning

BERT [3] and its related models have shown excellent performance in the various
benchmark datasets. To better capture the relationship between segments and
labels, in our method, we adopt three pre-trained transformer [12] based models:
BERT, Roberta [8] and XLNet [16].

We can obtain word representation ht ∈ Rd through various encoders,

ht = encoder(x), (1)

where the encoder can be one of BERT, Roberta, XLNet, t is t-th word of the
instance x, t ∈ [0, z], z is the max length of the text.

How to judge a label belong to an instance is usually based on the features of
some segments in the text. Therefore, we split each text into T segments of equal
length where T is a hyperparameter. The representation of the k-th segment is
the mean pooling of all the ht in wk:

hs
k = mean(h(k−1)l, h(k−1)l+1, . . . , hkl−1), (2)

where hs
k ∈ Rd, l is the number of words in the segment, which can be calculated

by z/T .
And then, we can get the representation H ∈ RT×d of all segments:

H = [hs
1, h

s
2, . . . , h

s
T ], (3)

To capture the relationship between labels and segments, we use an attention
mechanism to learn the correlation between labels and segments. Because of the
different semantic information of each label, a trainable matrix C ∈ RL×g is
adopted to denote the label’s representation, g is the dimension of the label.

And then, we calculate the attention matrix A ∈ RL×T , whose element Ai,j

denotes the correlation intensity between the i-th label and the j-th segment:

A = softmax(CWHT ), (4)

where W ∈ Rg×d is a model parameter.
We can get the updated representation S of the segments through the atten-

tion matrix A:
S = AH, (5)

where S ∈ RL×d.
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Fig. 3. The process of segments replacement

Subsequently, we feed S into a fully connected layer with sigmoid and obtain
a L dimensional vector representation G(S), which is the scores of all labels:

G(S) = σ(WsS
T + bs), (6)

where Ws ∈ Rd and b ∈ RL are fully connected layer parameters.
And finally, we can update the model parameters, especially W , which in

attention by calculating Cross-Entropy loss:

L(G(S), y) =
L∑

i=0

(1 − yi)(− log(1 − G(S)i)) + yi(−log(G(S)i)), (7)

3.3 Segments Memory Construction

Based on the above training, we obtain a model that can learn the relationship
between labels and segments of texts, which is used to find the segments related
to long tail labels. We call these segments the core segments of long tail labels.
However, due to the fact that the data with long tail labels is rarely in the
datasets, the model cannot learn the relationship between the long tail labels
and segments well. On the opposite, because of the large frequency of head labels
in the dataset, the segments related to the head labels have strong confidence.

Therefore, we select the instances with both head labels and long tail labels
and filter out the segments whose attention scores with head labels greater than
α, the retaining segments can be used as core segments corresponding to the
long tail label.1

In this way, we can iteratively get the core segments corresponding to each
long tail label and form a memory M .
1 If there is more than one long tail label in an instance, segments that have a low

attention score with head labels belong to the long tail label that has the highest
attention score with them.



ADAM: An Attentional Data Augmentation Method 137

3.4 Segments Replacement

In data augmentation, we make a new instance by replacing some segments
which have low relevance to all labels of the original instance.

Firstly, we randomly select a raw instance (xq, yq) from the dataset and
randomly select a long tail label ya. Secondly, for a segment wk in xq, determine
whether wk needs to be replaced is A(wk, yq) < β, if the attention scores between
wk and all labels in yq are less than β, wk will be replaced by a segment that
is randomly selected from the memory Mya

, where ya is a long tail label that
is randomly selected from M . Finally, if there are r segments in xq have been
replaced, a new pair of instance (x̂q, ŷq) is formed, where ŷq is composed of the
original labels yq and the long tail label ya. After n repeated operations above,
the new training set X̂M can be obtained. Figure 3 shows the whole process of
segments replacement.

4 Experiment

4.1 Datasets

To validate the effectiveness of our method, we use two extreme multi-label text
classification datasets (EUR-Lex and Wiki10-31K) and an ordinary multi-label
text classification dataset with long tail label problem (AAPD).

– EUR-Lex2 [9] is a European Union legal document dataset containing 15449
documents in the training set and 3865 documents in the test set. And There
are 3956 labels in the EUR-Lex.

– AAPD [15] collects the abstracts and subjects of papers from arXiv, and
this dataset contains 53840 training data, 1000 test data, and 1000 validation
data. There are 54 labels in the AAPD.

– Wiki10-31K3 [18] contains 20762 articles from Wikipedia. Among them,
there are 14146 articles in the training set and 6616 articles in the test set.
The Wiki10-31K has a large label set which includes 30,938 labels totally.

4.2 Evaluation Measures

We use the evaluation metrics that are widely used in extreme multi-label text
classification, named P@k, which represents the percentage of accuracy labels
in top k score labels:

P@k =
1
k

∑

i∈rankk(ỹ)

yi (8)

where yi ∈ {0, 1}L, ỹ is the score of all labels predicted, i denotes the index of
the i-th highest element in ỹ.

2 http://www.ke.tu-darmstadt.de/resources/eurlex/eurlex.html.
3 http://manikvarma.org/downloads/XC/XMLRepository.html.

http://www.ke.tu-darmstadt.de/resources/eurlex/eurlex.html
http://manikvarma.org/downloads/XC/XMLRepository.html
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Table 1. The performance of various data augmentation methods based on XMLCNN
and AttentionXML. “BT” stands for the Back Translation.

Dataset XMLCNN +EDA +BT +ADAM AttentionXML +EDA +BT +ADAM

EUR-Lex P@1 66.9 66.2 71.2 73.1 86.5 85.1 86.0 86.1

P@3 51.7 53.3 57.2 58.8 72.4 72.8 73.4 73.4

P@5 42.0 43.5 47.3 48.5 60.4 60.9 61.6 61.6

AAPD P@1 70.8 65.9 71.7 81.5 83.0 82.9 84.1 84.6

P@3 50.9 48.0 51 56.8 59.8 60.7 60.2 60.7

P@5 35.4 33.9 35.7 38.0 41.3 41.3 41.5 40.7

Wiki10-31K P@1 80.7 45.7 80.6 66.5 87.1 80.7 82.5 80.2

P@3 51.9 40.5 53.4 43.8 77.4 61.5 73.5 64.3

P@5 39.9 36.2 41.4 35.0 68.7 50.6 65.6 53.5

4.3 Baseline

We apply our method to XMLCNN [7] and AttentionXML [17] which are pro-
posed to solve the XMC problem in recent years. And we compare our method
with two widely used data augmentation methods:

– EDA [13] is a universal data augmentation method, which uses a small prob-
ability to decide whether to do a Synonym Replacement, Random Insertion,
Random Swap, Random Deletion for every word.

– Back Translation [4,11] was originally used when there is a large amount
of monolingual corpus in machine translation. However, in recent years, due
to its practicality, it has been widely used in data augmentation for various
tasks in the NLP.

4.4 Experiment Details

For each dataset, we count the frequency of all labels and consider labels with a
frequency lower than the median frequency of all labels as long tail labels. In rele-
vance learning, we try three different Transformer architecture encoders, namely
Bert, RoBerta, XLNet, and we finally choose the Bert as encoder because of its
best performance in relevance learning. Due to the need to focus on learning
the parameters of the Attention mechanism and classifier, we set two differ-
ent learning rates during training. The learning rate of the encoder similar to
Bert is 0.00001, and the learning rate of the remaining parameters is 0.01, and
batch size is 10. The dimension of label embedding is 300, and the dimension of
W in attention is 300 too. The number of segments in each sentence is set to
100, the hyper-parameters α and β are both set to 0.01. For EUR-Lex, AAPD,
WiKi10-31K, we set the number of data augmentation n is 50000, 25000, 15000,
respectively.

For EDA, we have tried to set the number of augmentation for each instance
to 1 to 9, respectively. According to the performance of XMLCNN and Atten-
tionXML, we finally augment each instance only once.
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Fig. 4. The performance of different hyper-parameter and the proof of semantic
integrity on AttentionXML. (a) represents the performance of the various segments
number. (b) represents the performance of diverse maximum replacement numbers in
each sentence. (c) represents the performance of the data with those low relevance
segments and the data without low relevance segments.

For Back-Translation, we translate each instance into seven different lan-
guages and randomly pick one of them into the new dataset.

When we use the augmented data to train AttentionXML and XMLCNN,
the experimental settings are the same as training the original data.

4.5 Comparison Results and Discussion

In this section, the whole method ADAM is evaluated on three benchmark
datasets by comparing with all the baselines mentioned above. Like most meth-
ods in XMC, we use top prediction by varying k at 1, 3 and 5 in P@k.

Table 1 shows the prediction results on three datasets and two baselines.
Firstly, for EUR-Lex and AAPD, our method almost outperforms all methods
on both XMLCNN and AttentionXML. At the same time, both EDA and Back-
Translation have improved on the EUR-Lex. Secondly, for AAPD, EDA has
some performance degradation on XMLCNN, it is because CNN has a limited
ability to capture text semantics compared with LSTM, when there is some
noise in the data, it is difficult for CNN to obtain useful information from the
text. Unexpectedly, our method and EDA are limited on the Wiki10-31K, on
the contrary, the performance of Back-Translation has not decreased much, and
even almost better than baseline on XMLCNN. We find the average number
of labels per sample is 18.64 in the Wiki10-31K, which is a large number for
instance. Hence, almost every segment of the text is related to one of the labels
of a sample. When the core segments of the text are replaced or changed by the
data augmentation method, the classification of the corresponding label will be
affected. Back-Translation can retain the original semantics of the text, but our
method and EDA inevitably draw into some noise that affects the semantics of
the original data. However, due to our relation learning, we capture the relation
between segments and labels, some core segments of the original sample can avoid
being replaced. Therefore, our method outperforms EDA in P@1 and P@3.
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Fig. 5. The performance of the instances that include long tail labels on EUR-Lex,
AAPD and Wiki10-31K.

Fig. 6. The labels distribution based on various augmentation number on EUR-Lex
and AAPD.

4.6 Analysis of Different Segment Numbers

To observe the impact of the number of segments on performance, we set the
number of segments on the AAPD to 500, 100, 50, respectively. To eliminate
other influences, we fix the maximum number of replacements to 5. Since we set
the maximum text length of the input model to 500, thus, for the model that
has 500 segments, there is only one word in each segment.

As Fig. 4 (a) has shown, the performance of 100 segments is better than the
other two in P@1, and we analyze that the model with 500 segments cannot
capture the real core segment due to its limited number of words in a segment.
On the contrary, since there are a lot of words in a segment for the model with
50 segments, one segment may be associated with multiple labels, resulting in
incorrect classification.

4.7 Analysis of Maximum Number of Replacements

We also report the effect of the different maximum number of replacements in
Fig. 4 (b). Similarly, we fix the number of segments to 100. As we guessed, the
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Fig. 7. The case study of original text and updated text on AAPD. The original
labels are “cs.AI” and “cs.CV”, and the updated labels are “cs.AI”, “cs.CV” and
“physics.data-an”.

replacement of too few or too many segments will affect performance. When
we only replace one segment for each sample, the new segment related to the
long tail label may not promote the classification, even because the newly added
long tail label increases the difficulty of classification. Replacing ten segments for
each instance also obtains limited performance, although the new segments have
a correlation with the long tail label, it also causes the loss of some information
in the original text, which will disturb the classification of the original labels.

4.8 Analysis of Long Tail Labels

To further verify the effectiveness of our methods, we analyze the results on the
long tail labels for different datasets. We select the instances that include long
tail labels from the test dataset, the results are shown in Fig. 5. Our method has
an improvement on both three datasets. For Eur-Lex, our method outperforms
the baseline by almost 1%. Furthermore, on the AAPD, ADAM improves 1.2%
from the baseline in P@5. Especially, although we obtained limited performance
on the Wiki10-31K, we still achieved 0.8% growth on the long tail labels. This
also proves that our method can improve the performance of long tail labels.

4.9 Effectiveness of Data Augmentaion

To prove that our data augmentation method has little influence on the seman-
tic integrity of the original sentence, we compared the performance of the orig-
inal data with the data that have removed low-relevance segments(need to be
replaced by the core segments related to the long tail labels) through the rele-
vance learning model, as shown in Fig. 4 (c), their performance on AttentionXML
is almost the same. Therefore, it can explain that removing the segments with
low relevance to the labels has little impact on classification performance. Fig. 6
shows the distribution of original datasets and updated datasets. For long tail
labels, we increase their frequency to make the distribution of the entire label
set smoother. This is more significant on the extreme multi-label classification
dataset EUR-Lex. The case study of original data and updated data can be seen
in Fig. 7.
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5 Conclusion

In this paper, we focus on the problem of long tail labels in XMC and pro-
pose a simple but effective attention-based data augmentation method. With
the relation learning between segments and labels, the segments that have low
correlation with labels are replaced by the segments related to one of the long
tail labels. Meanwhile, the corresponding long tail labels are put into the origi-
nal label set of the selected instance. Extensive experiments on three benchmark
datasets prove the effectiveness of ADAM by comparing two widely used data
augmentation methods based on various baselines.
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Foundation of China under the grant No. 61976119 and the Natural Science Foundation
of Tianjin under the grant No. 18ZXZNGX00310.

References

1. Babbar, R., Schölkopf, B.: Data scarcity, robustness and extreme multi-label clas-
sification. Mach. Learn. 108(8–9), 1329–1351 (2019)

2. Chang, W., Yu, H., Zhong, K., Yang, Y., Dhillon, I.S.: Taming pretrained trans-
formers for extreme multi-label text classification. In: KDD 2020. ACM (2020)

3. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. In: NAACL-HLT 2019 (2019)

4. Edunov, S., Ott, M., Auli, M., Grangier, D.: Understanding back-translation at
scale. In: EMNLP 2018. Association for Computational Linguistics (2018)

5. Jasinska, K., Dembczynski, K., Busa-Fekete, R., et al.: Extreme f-measure maxi-
mization using sparse probability estimates. In: ICML 2016 (2016)

6. Jiang, T., Wang, D., Sun, L., et al.: LightXML: transformer with dynamic negative
sampling for high-performance extreme multi-label text classification. CoRR (2021)

7. Liu, J., Chang, W., Wu, Y., Yang, Y.: Deep learning for extreme multi-label text
classification. In: Proceedings of the 40th International ACM SIGIR (2017)

8. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach
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Abstract. Time series classification (TSC) aims to assign labels to time series.
Deep learning methods, such as InceptionTime and Transformer, achieve promis-
ing performances in TSC. Although deep learning methods do not require man-
ually crafted features, they do require careful manual design of the network
structure. The design of architectures heavily relies on researchers’ prior knowl-
edge and experience. Due to the limitations of human’s knowledge, the designed
architecture may not be optimal on the dataset of interest. To automate and opti-
mize the architecture design, we propose a data-driven TSC network architecture
design method called AutoTransformer. AutoTransformer designs the suitable
network architecture automatically depending on the target TSC dataset. Inspired
by the overall architecture of Transformer, we first propose a novel search space
tailored for TSC. The search space includes a variety of substructures that are
capable of extracting global and local features from time series. Then, with the
help of neural architecture search (NAS) technique, a suitable network architec-
ture for the target TSC dataset can be found from the search space. Experimental
results show that AutoTransformer finds proper architectures on different TSC
datasets and outperforms state-of-the-art methods on the UCR archive. Ablation
studies verify the effectiveness of the proposed search space.

Keywords: Time series classification · Neural architecture search ·
Transformer · Convolutional neural network

1 Introduction

A time series is a sequence of data points chronologically arranged. Time series classifi-
cation (TSC) is the task that classifies time series as predefined classes. It is considered
as an important and challenging problem in data mining [9] and attracts much research
interest.

Different from supervised learning for structured data, TSC methods should be able
to harness the temporal information in time series. Early methods are mostly traditional
feature-based methods. They identify various hand-crafted features that could repre-
sent the global/local time series patterns and feed them into classifiers [4,19]. These
feature-based methods need hand-engineering and domain-specific knowledge to derive
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features. Then, inspired by the successful application of deep learning models in com-
puter vision, researchers apply many deep learning models to TSC [11,24] which are
free from hand-crafted features, such as InceptionTime [11] and Transformer [23].

However, existing deep learning models depend on the careful manual design
of the model architecture. Manual designed architecture’s performance is limited by
researchers’ prior knowledge and experience, thus the designed architecture may not be
the optimal one on the target dataset.

To address the aforementioned problem, we propose a novel deep learning method
for TSC called AutoTransformer. First, AutoTransformer adapts the neural architecture
search (NAS) algorithm for TSC and searches for the suitable network architecture for
each TSC dataset in a data-driven way. For example, one suitable neural architecture
is designed automatically for each dataset in the UCR archive instead of one architec-
ture for all datasets. Second, considering both the short-term local features and long-
term global features in time series data, we proposed a novel search space inspired by
the overall architecture of Transformer [23], which achieves great success in modeling
sequence data in natural language processing (NLP). As for the concrete operation in
the overall architecture, we retain the convolution operations used in the previous TSC
models to extract local features. Besides, we include operations such as RNN and self-
attention to capture global long-term dependency in time series. We also proposed an
improvement on the search algorithm to enable the search of layer inputs and resid-
ual inputs. Our search space and search method can automatically combine multiple
operations freely to modeling both local and global features in time series based on the
characteristics of each TSC dataset.

Experimental results on the UCR archive show that our proposed AutoTransformer
can design suitable architectures tailored for each TSC dataset in the UCR archive and
archives the new state of the art. Case study is performed to show the rationality of
searched architectures. Moreover, several ablation studies verify the effectiveness of
the proposed novel search space.

In summary, the major contributions of this paper are as follows:

– Unlike the existing deep learning methods, we design network architecture automat-
ically in a data-driven way. We adapt the neural architecture search (NAS) for TSC
to automatically design the proper architecture tailored for each TSC dataset, while
former deep learning methods design only one model architecture based on human’s
prior knowledge and apply it to all TSC datasets.

– Different from the search space used in image classification domain, we propose a
novel search space tailored for TSC tasks. We adopt the overall architecture of Trans-
former and include operations specialized in capturing local and global features in
time series. Also, we propose an improvement to the search algorithm which makes
the search process of input choice and residual input choice feasible.

– Extensive experiments are conducted on the UCR time series classification archive
(85 datasets), experimental results show that AutoTransformer outperforms state-
of-the-art methods. We also conduct case studies to demonstrate AutoTransformer’s
ability to design the suitable architecture for each TSC task. Ablation studies verify
the effectiveness of key components of the proposed search space.
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2 Relate Work

Time Series Classification (TSC). Over the last two decades, many efforts have been
invested in TSC. Early researches focus on feature-based methods. A variety of hand-
crafted features are proposed, such as Dynamic Time Warping (DTW) distance [18].
These approaches transform time series to one or several feature spaces and use an
ensemble of discriminant classifiers to classify time series [2,4,6,13,17,19,21].

Then, several deep learning methods free from hand-engineering efforts are pro-
posed and achieve promising results in TSC [4,10,11,24]. These methods adopt convo-
lutions which are commonly used to capture local information in image classification
and utilize RNN to extract global features [16]. Different from previous studies which
design complex networks manually, we aim to automatically learn suitable neural archi-
tectures for different tasks.

Neural Architecture Search. In recent years, many neural architecture search (NAS)
methods are proposed [26,27], which make automatic model design feasible. Also,
recent methods can finish searching in only a few GPU-hours [8,15], which is similar
as training a normal neural model. These methods mainly utilize various convolution
operations in their search space to extract local features, as they focus on the image clas-
sification domain. In this paper, we make an early exploration to design an search space
tailored for TSC tasks and make use of convolution operations and other operations to
capture both local and global features in time series.

Transformer. Transformer [23] achieves great success in many tasks of NLP [7]. One
important reason is that Transformer have great ability to capture long-term global fea-
ture in sequence data. In this paper, we adapt the overall architecture of Transformer
and the multi-head self-attention operation to help modeling time series.

3 Methodology

We generalize neural architecture search (NAS) to time series classification (TSC).
We propose AutoTransformer to automatically design one TSC network architecture
depending on each target TSC dataset.

3.1 Time Series Classification Search Space

The overall architecture of AutoTransformer search space is shown in Fig. 1(a). Inspired
by Transformer encoder, we formulate the overall architecture of AutoTransformer as a
stack of N layers. For each layer L, there are three components that are searchable: (i)
the operation to conduct on the input in layerL; (ii) the input of layerL; (iii) the residual
inputs of layer L. One layer of Transformer is shown in Fig. 1(b), we can observe that
Transformer is a special case of AutoTransformer. Each layer of Transformer can be
viewed as two cascaded layers of AutoTransformer with the searchable components in
each layer fixed. In the following, we will introduce the searchable parts in detail.

Operation Choice. In each layer, an operation is selected from the candidate operations
to extract features from the input. We construct the candidate operation set based on the
following considerations.
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Fig. 1. (a) The whole search space of AutoTransformer. Solid lines are fixed data flows, red dotted
line are candidate inputs and blue dotted lines are candidate residual inputs. (b) Architecture of
one layer of Transformer encoder. (Color figure online)

First, in TSC tasks, some subsequences of a time series may be discriminating in
classification [25]. Thus, it is important to capture local features from subsequences. We
adopt convolution operations to model such local correlation. In addition, convolutions
of different kernel sizes model the spatial dependency in different ranges, so we include
various convolution kernel sizes. We use 1D standard convolutions and dilated convolu-
tions with kernel size {1, 3, 5, 7, 9, 11, 13, 17, 21} among which the dilated convolution
can be used to enhance the capability of capturing longer subsequence information and
each convolution is applied as a Relu-Conv-BatchNorm structure. Note that the 1-D
convolution with kernel size = 1 is equivalent to feed-forward. We also utilize max
pooling and average pooling with kernel size 3 to extract local features. To keep the
shape of output the same as input, we utilize the convolution of stride = 1 with SAME
padding and the filter dimensions of output is the same as input.

Second, we include LSTM [14] and multi-head self-attention [23] in the operation
candidate set, because of their verified excellent performances in capturing global fea-
tures in sequence data [7].

Input Choice. In InceptionTime [11], convolutions with different kernel sizes are uti-
lized to extract local features in time series in parallel from different aspects, then mul-
tiple feature maps are fused (e.g., concatenation or summation) to form the final output,
which can improve the model’s performance. This technique is shown in Fig. 2(a).

Motivated by InceptionTime, we make the input of each layer searchable. Formally,
one layer can select one output from lower layers as its input. For example, Layer 3 can
select one from set {original input, layer1 output, layer 2 output} as its input. In this
way, the layers can be assembled both in cascade and in parallel. The proposed input
choice schema makes the architecture in Fig. 2(b) possible. This architecture is equiv-
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alent to the aforementioned InceptionTime technique, which makes the InceptionTime
technique a special case of AutoTransformer.

Fig. 2. (a) InceptionTime extracts multi-aspect features in parallel with different kernel size con-
volutions. (b) An instance of our search space. Each layer can select one from lower layers’
outputs as its input. These two architectures are equivalent.

Residual Input Choice. Low-level features captured by low layers and high-level fea-
tures encoded by high layers are both important to TSC. Therefore, residual connections
are often useful in combining multi-level features. Inspired by ResNet [12] and Trans-
former, we add residual input choice module to AutoTransformer. A layer can decides
whether each one of its former layers’ outputs can be its residual input independently,
this means that one layer can have multiple residual inputs. For example, the second
layer in AutoTransformer can have two residual inputs both from the original input and
the first layer.

3.2 Optimization Procedure

The goal of neural architecture search (NAS) is to find an architecture α and the model
weights ωα of α, which together achieve the minimum loss L on the train data. For
example, ωα can be weights of RNN in the model.

Given an α, optimal model weights ω∗
α can be easily obtained through gradient

descent as shown in Eq. 1.
ω

′
α = ωα − β∇ωα

L (1)

where β is the learning rate.
To optimize α through gradient descent, we follow the gradient-based search

method used in GDAS [8]. We sample architectures from a distribution characterized by
a set of learnable distribution weights. As the architecture α is sampled from a discrete
probability distribution, L is not differentiable with respect to the distribution weights.
Thus, we use the Gumbel-Max trick and softmax to make L differentiable with respect
to the distribution weights. The details are as follows.

Operation Choice in Each Layer. In each layer, we sample an operation to extract
features from the input. Suppose the candidate operation set is {O1, ...,On}, the corre-
sponding distribution weights of the operations are o = [o1, ..., on]. Then, the probabil-
ity of sampling operation Oi is computed as Eq. 2
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POi
=

exp(oi)∑n
j=1 exp(oj)

(2)

We can sample an operationO from distribution (PO1 , ..., POn
) and compute the output

y0 as Eq. 3.
y0(x) = fO(x) (3)

where x is the input and fO is the operation O’s function.
However, the sampling process prevent us from back-propagate gradients from L

to distribution weights o. To enable back-propagation, we replace the sampling process
with Gumbel-Max trick and compute the output y0 as:

y0(x) =
n∑

i=1

hi · fOi
(x) = 1 · fOk

(x)

s.t. h = one hot(k), k = arg max
i

(oi + gi) (4)

where gi are samples drawn from Gumbel(0, 1), and h is an n-dim one-hot vector with
the k-th item being 1. As argmax is not differentiable, we relax argmax with softmax.
Thus, we compute the output y0 as:

P
′
Oi

=
exp((oi + gi)/τ)

∑n
j=1[exp((oj + gj)/τ)]

(5)

y0(x) =
n∑

i=1

P
′
Oi

· fOi
(x) ≈ P

′
Ok

· fOk
(x)

s.t. k = arg max
i

(P
′
Oi

) (6)

where τ is the temperature. When τ → 0, then P
′
Ok

→ 1, the architecture distribution
approaches one-hot, thus y0(x) → P

′
Ok

fOk
(x). In practice, we compute y0 as:

y0(x) = (1 − detached(P
′
Ok

) + P
′
Ok

) ∗ fOk
(x) (7)

where detached(a)means a does not receive gradients. In this way, the output is fOk
(x)

during forward and y0 is differentiable with respect to operations’ distribution weights
o. After trained, we select the operation with the highest weight as the final operation
choice in this layer as shown in Eq. 8.

O = arg max
Oi

(oi) (8)

GDAS [8] does not conduct input choice and residual choice. Here, we propose to
formulate these two modules as follows.

Input Choice in Each Layer. Suppose there are n layers’ outputs for selection, which
form a set {U1, ...,Un}. We introduce distribution weights u = [u1, ..., un], thus the
output of the operation O with input choice can be modified from y0 (see Eq. 7) to y1
as Eq. 9:
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y1 = (1 − detached(P
′
Uk
) + P

′
Uk
) ∗ y0(Um)

s.t. k = arg max
i

(P
′
Hi

) (9)

where the probability P
′
Ui

is computed the same as P
′
Oi

in Eq. 5. After trained, we
choose U = arg max

Ui

(ui) as the final input similar as Eq. 8.

Residual Choice in Each Layer. All of one layer’s former layers’ outputs can be its
residual inputs. For one former layer’s output xr, suppose R1 represents that we keep
xr as a residual input while R0 means that we discard xr. Then we utilize weights
r = [r0, r1] as distribution weights. The final output y2 of a layer is computed as:

y2 = y1 + (1 − detached(P
′
Rk

) + P
′
Rk

)(Rk == R1) ∗ xr

s.t. k = arg max
i

(P
′
R0

, P
′
R1

) (10)

where P
′
Ri

is computed the same as P
′
Oi

in Eq. 5 and y1 is from Eq. 9. After trained, if
arg max

Ri

(r0, r1) = R1, this means R1 has the highest weight, thus we keep the residual

input xr. On the contrary, if arg max
Ri

(r0, r1) = R0, we discard xr. For each possible

residual input, the aforementioned process is repeated to decide whether we keep it as
a residual input.

Finally, all layers’ outputs are attentively added up and then passed to a linear layer
and a softmax layer to give a probability prediction Pr(y | x) of a possible class. The
final loss L is computed as:

L = E(x,y)∼Dtrain
− logPr(y | x;o,u, r, wα) (11)

where Dtrain is train data. In the search stage, we follow DSNAS [15] and optimize
model weights ωα and distribution weights (o, u and r) of architectures α by mini-
mizing L at the same time. After converge, we infer the optimal architecture α from
optimized o, u and r as aforementioned. In this way, we get a suitable model architec-
ture α for a specific dataset. Then, in the retrain stage, we fix the model architecture
as the inferred architecture α, and we train the model of the inferred architecture α by
minimizing L. This is just the same as we train a normal model such as InceptionTime
and RNN, as we only optimize model weights ωα by minimizing L. We evaluate the
model on the test data to get metrics such as accuracy. In this way, we can get the final
performance of the searched architecture on a TSC dataset.

4 Experiments

In this section, we conduct experiments on the UCR Time Series Classification
Archive [3] to evaluate AutoTransformer. We compare our method with several TSC
methods. Most of them are deep learning models and some of them are traditional meth-
ods. We also compare AutoTransformer with GDAS, which is a differentiable neural
architecture search method. For a better understanding, we further report several abla-
tion studies.
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Fig. 3. Critical difference diagram showing the performance of AutoTransformer (AutoT) com-
pared with other methods. Each number on the axis means the average rank on all datasets. If a
thick horizontal line connected a group of classifier, these classifiers are not-significantly different
in terms of accuracy when performing the Wilcoxon Signed-rank test.

4.1 Experiment Setup and Details

Dataset. Following existing literature [1,11,22], we use the UCR Time Series Classifi-
cation Archive 2015 [3]. It consists of 85 univariate time series classification datasets,
which can be used to evaluate the performances of methods in different scenarios.

Evaluation Measurements. On each dataset of the UCR archive, we report the accu-
racies. As no single method performs best on all datasets, we follow the recommended
evaluation measurement [1,5,11,22]. We first adopt the Friedman test to reject the null
hypothesis which claims that all methods have the same performance. Then, we perform
the pairwise post-hoc analyse using the Wilcoxon signed-rank test to analyse whether a
pair of methods are significantly different. To visualize this comparison we use a critical
difference diagram [5], where a thick horizontal line indicates that a group of classifiers
are not-significantly different in terms of accuracy.

Model Setting. In all experiments, for AutoTransformer, we set the hidden dimension
d = 128 and the layer number as 6. We train all models for 1, 500 epochs and pick the
model with the lowest train loss.

Table 1. Accuracies on Adiac, CricketX, DiatomSizeReduction (DSR) and DistalPhalanxOutlin-
eAgeGroup (DPOAG) datasets.

Method Adiac CricketX DSR DPOAG

Transformer 0.6854 0.7769 0.9705 0.8650

ResNet 0.7953 0.8102 0.9477 0.8399

InceptionTime 0.8235 0.8153 0.9509 0.8500

HIVE-COTE 0.7962 0.8161 0.9142 0.8239

GDAS 0.7953 0.8179 0.9542 0.8375

ROCKET 0.7720 0.8390 0.9580 0.8115

AutoTransformer 0.8184 0.8512 0.9869 0.8675
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4.2 Overall Results

We compare AutoTransformer with several methods.

Fig. 4. Accuracy plot for comparisons of pairs of methods. Each axis represent one method. A
point in the plot represent the accuracies of the two methods on one dataset.

– Deep Learning Methods: We choose several deep learning models, which are
shown to be effective in TSC [10]: the multi-layer perceptron (MLP), the fully
convolutional neural network (FCN) [20], the residual network (ResNet) [12],
InceptionTime [11], the long short-term memory (LSTM) [14] and Transformer
(Transf) [23]. Moreover, we choose NAS method GDAS [8] to demonstrate the
effectiveness of AutoTransformer search space.

– Traditional TSC Methods: Time Series Forest (TSF) [6], Bag-of-SFA-Symbols
(BOSS) [21], Hierarchical Vote Collective of Transformation-Based Ensembles
(HIVE-COTE) [19] and ROCKET [4]. We obtain the results of these 4 methods
from UEA & UCR Time Series Classification Repository1.

The critical difference diagram of all methods is shown in Fig. 3. Due to space
limitations, in Table 1, we only report part of these methods’ accuracies on four datasets.

From Fig. 3, we can observe that a thick horizontal line delineates a high-rank group
composed of AutoTransformer, ROCKET, GDAS, HIVE-COTE and InceptionTime.
Methods in this group perform significantly better than other methods. Among meth-
ods in the high-rank group, AutoTransformer achieves the highest average rank. This
demonstrates the effectiveness of AutoTransformer.

To further visualize the difference between AutoTransformer and two best perform-
ing deep learning methods, we depict the accuracy plot of AutoTransformer against
InceptionTime and GDAS for each of the 85 UCR datasets in Fig. 4. From Fig. 4(a), we
can see a Win/Tie/Loss of 51/11/23 in favor of AutoTransformer against InceptionTime
(p-value = 0.043 with Wilcoxon signed-rank test). This implies an advantage of Auto-
Transformer over the SOTA deep learning TSC method. From Fig. 4(b), we can observe
that compared with GDAS, AutoTransformer achieves a Win/Tie/Loss of 49/15/21, this
verifies the superiority of proposed search space in TSC tasks (p-value = 0.045).

1 http://www.timeseriesclassification.com/.

http://www.timeseriesclassification.com/
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Training Time Cost Comparison. We compare the training time cost of 6-
layer InceptionTime and 6-layer AutoTransformer on the StarLightCurves dataset.
StarLightCurves has 1, 000 train samples, each of length 1, 024. Trainig time of Incep-
tionTime is 2, 310 s. While training time of AutoTransformer search and retrain is 1, 472
s and 1, 353 s. The whole time cost is 2, 828 s, which is of the same order of magnitude
with InceptionTime. This is because InceptionTime has multiple parallel convolutions
in one layer, which makes the number of total operations in a 6-layer InceptionTime
more than that of a 6-layer AutoTransformer.

Fig. 5. Searched architectures on two datasets: cricket and DiatomSizeReduction (DSR). Solid
black lines represent data input, and dotted blue lines indicate residual connection. Numbers rep-
resent convolution filter sizes. Final output is computed by adding all layers’ outputs attentively.

Fig. 6. Accuracy plot for comparisons of pairs of methods.

4.3 Case Study

In this section, we demonstrate AutoTransformer’s ability to design proper architecture
for each specific dataset visually. The searched architectures on datasets CricketX and
DSR are shown in Fig. 5. We can observe these architectures have 2 main differences.

First, the searched architecture for DSR utilizes self-attention while the searched
architecture for CricketX only utilizes convolution operations. As shown in Table 1,
Transformer performs better than convolution-based ResNet and InceptionTime on
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DSR, this implies the effectiveness of self-attention on DSR. Thus AutoTransformer
chooses to include the effective self-attention on DSR.

Second, the searched architecture for DSR has less long filter convolution opera-
tions (average filter size is only 9 while CricketX is 19), since encoding local features is
enough for DSR which is an easier 4-class classification task, while CricketX is a more
complex 12-class classification task.

4.4 Ablation Studies

In order to further prove that the performance increments are independently contributed
by each of the key components, we conduct ablation studies from the following aspects.

Effectiveness of Search. To verify the effectiveness of the search process, we adopt a
randomly sampled architecture for each dataset, then we retrain the sampled architec-
tures and get the accuracies on test set. Figure 6(a) depicts the accuracy plot of Auto-
Transformer against randomly sampled architectures for each of the 85 UCR archive
datasets. We can observe aWin/Tie/Loss of 62/14/9 in favor of AutoTransformer against
the random method with a p-value < 1 ∗ 10−7 after performing the Wilcoxon Signed-
rank test. This verifies that the search process can find more suitable architectures in the
search space compared with random selection.

Effectiveness of RNN and Self-attention in the Search Space. In order to find out
whether it is useful to adopt RNN and self-attention in the search space, we remove
RNN and self-attention operations from the search space and repeat experiments. The
reduced search space is named AutoTransformer-NoSeq (AutoT-NS). In Fig. 6(b), we
can see a Win/Tie/Loss of 57/17/11 in favor of AutoTransformer, which shows that
adding RNN and self-attention in the search space makes the found architectures better
(p-value < 1 ∗ 10−6).

Effectiveness of Overall Architecture of Transformer. Last, we examine the effec-
tiveness of the overall architecture of Transformer. Note that AutoTransformer without
RNN and self-attention (AutoT-NS) has the same candidate operation set (convolu-
tion and pooling operations) as GDAS. The only difference between them is the over-
all architecture. The overall architecture of GDAS is the stack of the same searched
cells. We compare AutoTransformer without RNN and self-attention with GDAS on
the UCR archive datasets, From Fig. 6(c), we can observe that AutoTransformer without
RNN and self-attention is slightly better than GDAS with a Win/Tie/Loss of 38/16/31
(p-value < 0.7). This proves that the overall architecture of Transformer is slightly
better than GDAS.

5 Conclusion

In this paper, we propose AutoTransformer, which can automatically design suitable
neural architecture for a specific TSC task. Experiments show that AutoTransformer
is capable of learning proper architectures for TSC tasks and achieves state-of-the-art
results in the UCR archive. In addition, it is also demonstrated that the proposed novel
search space is effective in modeling time series data.



154 Y. Ren et al.

References

1. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification
bake off: a review and experimental evaluation of recent algorithmic advances. Data Min.
Knowl. Disc. 31(3), 606–660 (2016). https://doi.org/10.1007/s10618-016-0483-9

2. Baydogan, M.G., Runger, G., Tuv, E.: A bag-of-features framework to classify time series.
PAMI 35(11), 2796–2802 (2013)

3. Chen, Y., et al.: The UCR time series classification archive, July 2015. www.cs.ucr.edu/
∼eamonn/time series data/

4. Dempster, A., Petitjean, F., Webb, G.I.: Rocket: exceptionally fast and accurate time series
classification using random convolutional kernels. Data Min. Knowl. Disc. 34(5), 1454–1495
(2020)
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Abstract. A sentence may express sentiments on multiple aspects. When these
aspects are associated with different sentiment polarities, a model’s accuracy is
often adversely affected. We observe that multiple aspects in such hard sentences
are mostly expressed through multiple clauses, or formally known as elementary
discourse units (EDUs), and one EDU tends to express a single aspect with uni-
tary sentiment towards that aspect. In this paper, we propose to consider EDU
boundaries in sentence modeling, with attentions at both word and EDU levels.
Specifically, we highlight sentiment-bearing words in EDU through word-level
sparse attention. Then at EDU level, we force the model to attend to the right
EDU for the right aspect, by using EDU-level sparse attention and orthogonal
regularization. Experiments on three benchmark datasets show that our simple
EDU-Attention model outperforms state-of-the-art baselines. Because EDU can
be automatically segmented with high accuracy, our model can be applied to sen-
tences directly without the need of manual EDU boundary annotation.

1 Introduction

Aspect-based sentiment analysis (ABSA) is challenging because a sentence may
express complex sentiments towards multiple aspects. We call these sentences hard
sentences. For example, “Despite the waiter’s mediocre service, the food is tasty and
the bill is never too large.” mentions three aspects: service, food, and price, and they
are associated with different sentiment polarities. Because an aspect may not always be
explicitly expressed through such representative terms, ABSA has been approached by
dividing this challenging task into subtasks, e.g., to identify aspects in a sentence, and
to predict sentiment polarities of the identified aspects. In this paper, we focus on the
latter, also known as aspect category sentiment analysis (ACSA). In ACSA, the aspects
expressed in a sentence are given, and the task is to predict the corresponding sentiment
on each given aspect. Note that, the aspect in ACSA is an abstractive category label
(e.g., price). The name of such an aspect category may not literally appear in a sentence
(e.g., bill is never large). Our task is different from aspect term-based sentiment analysis
(ATSA), where the aspect indicative term in the input sentence are pre-annotated.
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Table 1. Each of the three 3 EDUs expresses a clear sentiment on one aspect.

Elementary discourse unit (EDU) Aspect Polarity

e1. Despite the waiter’s mediocre service Service Neutral

e2. the food is tasty Food Positive

e3. and the bill is never too large Price Positive

In the example sentence, sentiments to the three aspects are expressed in three
clauses, or more formally Elementary Discourse Units (EDUs), shown in Table 1. EDUs
are clause-like grammatical units for discourse parsing in rhetorical structure theory
(RST) [16]. One EDU carries coherent semantic meaning towards a subtopic [6,7].
Thanks to the development of neural models, EDU segmentation can be achieved auto-
matically with high accuracy [12].

From three benchmark datasets (see Experiments), we observe that, an EDU tends
to express at most one aspect and unitary sentiment polarity towards an aspect. Moti-
vated by this observation, we propose the EDU-Attention model. Our model learns
aspect-specific representation for each EDU independently, as a part of a full sentence
representation. Because of single aspect and unitary sentiment in one EDU, we apply
sparse self-attention to select only relevant words to the target aspect in an EDU and
ignore irrelevant ones. Considering all EDUs in one sentence, we apply EDU-level
sparse self-attention to select the correct EDU(s) for a target aspect. As each EDU only
describes a single aspect, we further apply Orthogonal Regularization on EDU-level
attention scores to diversify the attention distributions among all aspects, i.e., to ensure
that the same EDU is not selected for more than one aspect.

The EDU-Attention model is simple and effective in handling hard sentences in
ACSA. Experiments show that our model achieves better accuracy than BERT based
models on hard sentences with a much smaller model size and faster inference time.

2 Related Work

Predicting sentiment at aspect level is a fine-grained task. Attention mechanism [2], as
a way of extracting important features from an input sentence, has shown its success
in previous studies. A line of work uses target aspect as a ‘query’ on terms in an input
sentence, to give more weights to aspect relevant terms [8,22,23,28]. There are also
work that try to fuse target aspect representation with each term in the sentence before
applying attention [5,15,26,29]. The word-level aspect and term feature fusion makes
the input to a model to be more target-specific.

Syntactic dependency between an aspect and its corresponding opinion expression
has also been explored [13,18,24]. By utilizing additional syntactic knowledge obtained
from external syntax parsers, the relative position in a syntactic tree is used to measure
the distance between aspect-related terms and opinion-bearing text span in the sentence.
These approaches require the terms that describe target aspect explicitly appearing in
the sentence, and are pre-annotated. They are not applicable in our work.
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Fig. 1. The model architecture of EDU-Attention.

Several studies utilize discourse structure/relationship for sentiment analysis.
Authors in [10,31] explore discourse relationship between two adjacent EDUs for
predicting sentiment polarity. Hand-crafted rules are used to segment text into sen-
timent expression units (SEUs); a SEU contains either a sentiment, or an aspect, or
both [30]. In [4], a full discourse parse tree is utilized to find precise context for a given
aspect term. There are also neural network approaches that utilize EDU segments for
document-level sentiment prediction [1,11,25]. The overall sentiment polarity becomes
an aggregation of sentiment distribution of EDUs in the document.

Different from these models, we do not consider relationships between adjacent
EDUs or their locations in a discourse parse tree. Instead, we model each EDU inde-
pendently and apply word-level sparse attention to give more weights to relevant terms.
By assuming one EDU expresses at most one aspect, we use regularisation at EDU-level
attention to avoid the same EDU being selected for multiple aspects.

3 The Proposed Model: EDU-Attention

We follow the definition of aspect category sentiment analysis (ACSA) in previous stud-
ies [8,14,27]. There are k predefined aspect categories A = {a1, . . . , ak}, and a list of
predefined sentiment polarities P = {negative, neutral, positive}. Given a sentence
s and the m aspect label(s) expressed in the sentence As = {a1, . . . , am}, As ⊆ A, we
aim to predict the sentiment polarity associated with each aspect label, i.e., all pairs of
(am, po), for am ∈ As, po ∈ P .
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3.1 Model Overview

EDU-Attention is a simple model that takes in an EDU-segmented sentence as input.
EDU segmentation of a sentence can be achieved with high accuracy by using off-the-
shelf tools.1 After automatic EDU segmentation, an input sentence is denoted by its
EDUs {e0, . . . , ej}, and an EDU is a sequence of words ej = {w0, . . . , wi}.

Figure 1a shows the EDU-encoder in our model. It learns an aspect-specific EDU
representation for a given EDU. Specifically, an EDU is represented as a k-dimensional
feature, one for each of the k aspects. The encoder applies sparse self-attention to words
within the EDU, to give sentiment-bearing words more weight for that particular aspect.
Shown in Fig. 1b, with all aspect-specific EDUs representations learned in a sentence,
we apply EDU-level sparse self-attention for locating the right EDU(s) for the right
aspect. We further apply orthogonal regularization to force different aspects to focus on
different EDUs. Finally, sentence representation is obtained as a linear sum of the EDUs
representations with respective attention scores. We use aspect category prediction as
an auxiliary learning objective, in addition to sentiment label prediction.

3.2 EDU Representation

The EDU-encoder learns aspect-specific EDU-representation for an EDU in three steps:
word-aspect feature fusion, EDU encoder, and word-level sparse attention, see Fig. 1a.

Word-Aspect Feature Fusion. To promote interaction between aspect and words, we
fuse word embedding wi with aspect embedding ak to derive aspect-specific word fea-
ture wk

i , shown in Eq. 1. Here, We and Wk shared for all aspects are learnable param-
eters. Aspect embedding ak can be initialized by using embedding of a matching word
for the aspect (e.g., ‘food’, ‘service’), or be initialized randomly, if there is no represen-
tative word for the aspect (e.g., ‘anecdotes/miscellaneous’).

wk
i = tanh

(
wiWe + akWk

)
(1)

EDU Encoder. With the fused aspect-word features, we perform EDU encoding by
using a bidirectional GRU shown in Eq. 2. The bidirectional GRU learns contextual
information within an EDU, for each aspect. Specifically, the encoder takes in an aspect-
word feature matrix of the EDU ej for aspect k, and stacks hidden output from every
time step of GRU into Hk

j for further processing.

Hk
j = GRU([wk

0 , wk
1 , . . . , wk

i ]) (2)

1 In our implementation, we use the pretrained SEGBOT tool http://138.197.118.157:8000/
segbot/ released by its authors [12]. If an EDU returned by SEGBOT contains conjunction
words (i.e., ‘but’, ‘and’, ‘although’, and ‘or’), we further split this EDU by using regular
expression.

http://138.197.118.157:8000/segbot/
http://138.197.118.157:8000/segbot/
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Word-Level Sparse Attention. Ideally, a classifier only needs to extract aspect-specific
opinion-bearing words for predicting the sentiment. The remaining words can be
ignored. We apply the attention mechanism on Hk

j to highlight such important words.
A straightforward solution is to apply self-attention with softmax normalization [2].

The resulting probability is distributed to all words in an EDU, i.e., the attention score
after softmax is not equal to 0 for every word wi ∈ ej . This does not well serve our
purpose of ignoring irrelevant words in the EDU. Hence, we adopt sparsemax func-
tion [17], which returns the euclidean projection of the k element input vector z onto
the (k − 1)-dimensional simplex �k−1 defined as {p ∈ R

k|1T p = 1, p ≥ 0} [17]. The
projection is likely to hit the boundary of the simplex, in which case the sparsemax(z)
becomes sparse. sparsemax produces sparse distribution while retaining the important
properties of softmax. Equation 3 shows the sparse attention computation.

sparsemax(z) = argmin
p∈�k−1

||p − z||2 (3)

By using feature matrix Hk
j obtained earlier, we apply sparsemax to compute a weight

vector for all words in EDU ej , for aspect ak. The sparse attention computation, where
αk
i is the attention score of word wi in EDU ej towards aspect ak is calculated by:

αk
0 , . . . , α

k
i = sparsemax(Hk

j We), (4)

where We is a learnable parameter.
Then, for EDU ej , we derive the k number of EDU representations [e1j , . . . , e

k
j ],

one for each aspect. For aspect ak, ekj is the weighted sum of the sparse attention scores
αk
i ’s and hk

i ’s for all the words in ej . We also add position embedding [3] of EDU ej ,
denoted by Embp(ej) , for its relative position in the sentence, as shown in Eq. 5.

ekj = Embp(ej) +
∑

wi∈ej

αk
i h

k
i (5)

3.3 Sentence Representation and Learning Objective

So far, for an EDU ej , we obtain its aspect-specific representation [e1j , . . . , e
k
j ]. As we

observe that one EDU tends to express sentiment on one aspect, we now try to identify
the right aspect for each EDU in a sentence.

EDU-Level Sparse Attention. For each aspect ak, we apply sparse attention on the cor-
responding aspect-specific EDU-representations in the sentence [ek0 , . . . , e

k
j ], for choos-

ing the right EDU for this aspect. The sparse attention shares the similar process as
word-level sparse attention, or formally:

βk
0 , . . . , βk

j = sparsemax([ek0 , . . . , e
k
j ]Ws), (6)

where Ws is a learnable parameter. Then, the aspect ak specific sentence representation
sk is a linear combination of its aspect-specific EDU representations.

sk =
∑

ej∈s

βk
j ekj (7)
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Table 2. Statistics of datasets, with number of sentences expressing single and multiple aspects.
We remove sentence with conflict polarities.

Datasets Rest14 Rest14-Hard Laptop15 Laptop15-Hard MAMS-ACSA

Train Test Test Train Test Test Train Val Test

Single 2,345 595 – 1,174 539 – – – –

Multiple 539 172 25 209 93 20 2,839 710 400

Negative 841 222 20 616 258 14 1,883 460 263

Neutral 501 94 12 58 44 8 2,776 689 393

Positive 2,174 657 21 860 424 19 1,742 428 263

Each sk is used to predict sentiment label, and also to predict the corresponding aspect
as an additional objective.

The Aspect-Level Orthogonal Regularization. As stated earlier, an EDU tends to
express a single aspect and a unitary sentiment. In a complex sentence, opinions for
different aspects reside in different EDUs. The sparse attention computed in Eq. 6 is
for one specific aspect, and attention scores for different aspects are computed indepen-
dently.

To constraint that one EDU should be attended to a single aspect, we put the EDU-
level attention scores βk

j ’s computed for the k aspects over the j EDUs in a sentence,
into a j × k attention matrix M . Then we apply orthogonal regularization to force the
dot product of attention vectors of each aspect to be orthogonal, as shown in Eq. 8. I is
an identity matrix.

Rorth =
∥
∥MTM − I

∥
∥ (8)

Learning Objectives. The key objective is to predict sentiment polarities for the given
aspects mentioned in a given sentence. In EDU-Attention, we also use aspect prediction
as an additional learning objective in addition to the sentiment labels. Specifically, a
binary prediction on each aspect existence in the input sentence is added into the loss
function of our model. We use cross-entropy loss J(θ) for sentiment labels prediction,
and binary cross-entropy loss U(θ) for aspect prediction. The aspect-level orthogonal
regularization R(θ)orth is also a part of our learning objectives. The full loss function
of our model is as follows:

L(θ) = λ1J(θ) + λ2U(θ) + λ3R(θ)orth, (9)

where λ1, λ2, λ3 are the scaling parameters set for each loss. The collection of model
parameters is θ.

4 Experiments

We evaluate the proposed EDU-Attention on three benchmark datasets, with a focus on
hard sentences.
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4.1 Datasets and Baselines

Table 2 summarizes the three datasets in our experiments. Following previous stud-
ies [23,26], we remove samples with conflict polarities. Rest14 is from SemEval-2014
Task-4 Restaurant Review [20]. Rest14-Hard is a collection of hard sentences sampled
from Rest14 test set [29]. Each sentence in Rest14-Hard contains at least two aspects,
and the aspects have different sentiment polarities. Laptop15 is from SemEval-2015
Task-12 Laptop Review [20]. To be consistent with other datasets, we keep aspects only
and ignore attributes. Accordingly, we update sentiment labels of aspects following the
original annotation guideline [20].2 We choose to keep the aspects that contain at least
one sentence in every sentiment class (positive, neutral, and negative). In total, there
are 22 aspects.3 Laptop15-Hard is a collection of hard sentences sampled from Lap-
top15 test set, following the same sampling strategy as Rest14-Hard.MAMS-ACSA is
a restaurant review dataset [8]. All sentences in MAMS-ACSA are hard sentences; Note
that, MAMS-ACSA’s annotation scheme is different from that of other datasets. We
observe that a sentence is annotated with an aspect if the sentence mentions a match-
ing keyword. The differences in annotation scheme results in majority of the sentiment
labels being ‘neutral’ in MAMS-ACSA, making the dataset challenging.

We evaluate the following baselines. ATAE-LSTM [26], is a strong baseline where
aspect embeddings are concatenated with word vectors. MemoryNet [23], employs
two LSTMs and an interactive attention mechanism to learn representations of sentence
and aspect. HAN [25] is a hierarchical attention network built on word, clause (EDU),
and sentence for aspect-specific sentence representation. GCAE [29] uses CNNs to
extract features and then employs two Gated Tanh-Relu units to selectively output the
sentiment information flow towards the aspect, for predicting sentiment labels. ATAE-
CAN-2Ro [5] uses aspect detection as an auxiliary task. AS-Capsule [27] is a capsule
alike network. Each capsule encloses a set of computations for one aspect. CapsNet [8]
is a capsule-network based model. It learns the association between aspect and context.
AC-MIMLLN [14] is a multi-instance learning model. It has two separate encoders to
learning aspect- and sentiment- representations.

These baselines use different approaches of learning aspect-specific sentence rep-
resentations. ATAE-LSTM, ATAE-CAN, GCAE, HAN fuse aspect features with term
features, then apply attention on the fused features. MemoryNet and CapsNet use care-
fully designed attention mechanisms on term features only. In addition, AC-MIMLLN,
ATAE-CAN, and AS-Capsule use aspect category prediction as an auxiliary task for
learning the interaction between aspect representation and sentiment representation.

We also evaluated Bert-based models. The simple Bert-baseline and its ‘distilla-
tion’ versions (DistillBERT [21], TinyBERT[9]) encode an aspect-specific sentence
representation with this input format: [CLS] words in sentence [SEP] aspect category
[SEP] [28]. The sentiment prediction is done by softmax with a linear layer. In the
Bert variant of our model, we replace the EDU representation learning (i.e., Fig. 1a)
by Bert encoding with: [CLS] words in EDU [SEP] aspect category [SEP]. For each
EDU, we enumerate all aspect categories to obtain its aspect-specific representation.

2 https://alt.qcri.org/semeval2014/task4.
3 The re-processed Laptop15 dataset can be found at: https://github.com/Ting005/
EDU Attentions.

https://alt.qcri.org/semeval2014/task4
https://github.com/Ting005/EDU_Attentions
https://github.com/Ting005/EDU_Attentions
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Table 3. Accuracy and Macro-F1 of all models on all datasets. We reproduce results of baselines
by using authors’ implementation except two models. ATAE-CAN-2Ro is by our own implemen-
tation following authors’ paper. Results of AC-MIMLLN model are reported in its original paper.
We run a model 5 times with random seeds and report the average. The best scores are in boldface
and second best underlined, among non-Bert and Bert models respectively.

Model Rest14 Rest14-Hard Laptop15 Laptop15-Hard MAMS-ACSA

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

MemoryNet 81.29 70.79 54.72 46.65 71.80 52.03 36.59 26.09 64.04 62.57

AC-MIMLLN* 81.60 – 65.28 – – – – – 76.64 -

HAN 81.74 71.49 58.49 49.67 73.21 53.64 48.78 41.05 73.64 72.42

AS-Capsule 82.03 71.55 59.24 51.99 76.31 55.65 48. 78 41.05 75.44 74.37

GCAE 82.32 72.08 56.13 51.07 76.08 54.00 55.29 42.78 70.59 69.01

ATAE-CAN-2Ro 82.43 71.18 64.62 53.74 76.24 53.00 51.22 43.66 76.42 75.23

ATAE-LSTM 83.10 73.32 59.91 53.08 76.86 56.88 46.34 38.35 75.02 73.93

CapsNet 83.10 72.58 53.78 44.50 75.48 52.33 48.78 33.65 72.92 71.86

Ours 83.97 73.96 70.28 65.59 77.83 56.39 56.10 46.35 77.14 76.00

Ours w/o reg. 82.88 72.69 68.68 60.79 76.37 55.05 51.22 41.49 75.65 74.50

Ours w/o aux. 82.99 73.02 58.51 54.49 77.05 55.23 53.66 45.08 75.03 73.91

DistilBERT 65.57 38.36 41.51 26.72 59.09 32.39 53.66 33.73 59.16 47.17

TinyBERT 67.52 26.87 39.62 18.92 57.44 32.58 56.10 38.02 59.49 47.45

Bert-baseline 87.82 80.07 66.98 62.83 83.47 63.94 58.40 24.58 78.86 78.06

CapsNet-Bert 87.80 79.81 50.94 38.66 84.07 57.25 48.78 33.65 77.42 76.65

BERT-pair-QA-B 87.25 78.09 52.83 46.58 83.88 69.77 46.34 39.19 79.35 78.89

Ours-Bert 87.94 80.74 72.95 70.71 84.85 65.07 58.54 41.56 79.64 79.02

CapsNet-Bert is a variation of CapsNet; BERT-pair-QA-B [22] constructs an auxil-
iary sentence for each aspect and transforms the task into a sentence-pair classification.
For CapsNet-Bert and BERT-pair-QA-B, we use authors’ implementation.

4.2 Implementation and Parameter Setting

All models are implemented by using Pytorch4 with CUDA 11.1 on RTX3090 GPU
in Windows OS. Models’ parameters are optimized by using Adam. For non-Bert
models, we set a learning rate of 1e − 3 for model parameters and 1e − 4 for word
embedding adjustment. The word embeddings are initialized by Glove [19] with 300
dimensions, and randomly initialize positional embedding for each EDU with dimen-
sion of 300. We set the mini-batch size to 32 and evaluate every 16 mini-batches, and
use a dropout rate of 0.5 during model training. We use ‘bert-base-uncased’5 for fine-
tuning models use BERT, ‘distilbert-base-uncased’6 for DistillBERT model, and ‘Tiny-
BERT General 6L 768D’7 for TinyBERT model. For fine-tuning, we keep dropout
probability at 0.1, learning rate at 3e − 5. We set the scaling parameter λ1, λ2 to 1,
and λ3 to 0.1 for EDU-Attention (see Eq. 9). In the Bert variation of EDU-Attention,
we set λ1, λ2, λ3 to 0.5, 0.4, and 0.1 respectively for the best performance. Models’

4 https://pytorch.org/.
5 https://huggingface.co/bert-base-uncased.
6 https://huggingface.co/distilbert-base-uncased.
7 https://huggingface.co/huawei-noah/TinyBERT General 6L 768D.

https://pytorch.org/
https://huggingface.co/bert-base-uncased
https://huggingface.co/distilbert-base-uncased
https://huggingface.co/huawei-noah/TinyBERT_General_6L_768D
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parameters are tuned on validation set. The MAMS-ACSA dataset comes with a valida-
tion set. For Rest14 and Laptop15 datasets, we randomly sample 20% of training data
as validation set. We run the models for 5 times with random seed initialization, and
report the average metric on test sets.

4.3 Comparison with Baselines

Non-Bert Models. Reported in Table 3, among non-Bert models, our EDU-Attention
performs the best on almost all metrics, except Macro-F1 on Laptop15, which is the
second best. Large improvements are achieved on Rest14-Hard and Laptop15-Hard.

The Rest14 dataset contains 19% multi-aspect sentences (see Table 2). Models that
use aspect and term fused features (e.g., ATAE-CAN, ATAE-LSTM, GCAE) generally
perform better than others. In particular, ATAE-LSTM performs the second-best among
non-bert models by both accuracy and Macro-F1. We produce results on Rest14-Hard
by using the models trained on Rest14 training dataset. Our EDU-Attention outperforms
all baselines by a large margin on both metrics, showing the effectiveness of modeling
EDU contextual boundaries in handling hard sentences.

The Laptop15 dataset contains 15% multi-aspect sentences. All models are less
affected by noise introduced by sentiment terms of non-target aspects, compared to
other datasets. On hard sentences, our model shows clear advantage on Laptop15-Hard.

All sentences in MAMS-ACSA are hard sentences. A different annotation scheme
is adopted in MAMS-ACSA as described in the Dataset section. The annotation based
on appearance of surface terms, makes the dataset challenging with many neutral labels.
Our model is the best performer, demonstrating its effectiveness in handling hard sen-
tences.

Bert Models. As expected, Bert-baseline outperforms all non-Bert models and brings
in big improvements on Rest14 and Laptop15 datasets. The improvement over EDU-
Attention on the MAMS dataset, however, is relatively small. On Rest14-Hard, Bert-
baseline performs poorer than EDU-Attention by about 3 points for both Accuracy and
Macro-F1. Recall that MAMS, Rest14-Hard, and Laptop15-Hard datasets only contain
hard sentences; the comparable performance between EDU-Attention and Bert-baseline
suggests that modeling EDU contextual boundary is beneficial to aspect category senti-
ment analysis. By using Bert for EDU representation learning, our EDU-Attention-Bert
model outperforms all models. In particular, on Rest14-Hard, our EDU-Attention-Bert
outperforms Bert-baseline by 6 to 7 points on both Accuracy and Macro-F1. We also
compare the ‘distillation’ version of BERT (DistillBERT, TinyBERT) with the same
input format and model training strategy, the performance of both models does not
come close to the rest of the baselines.

4.4 Ablation Study

The orthogonal regularization in our model makes the distribution of EDU-level atten-
tion scores diverse by aspects. We also predict the existence of an aspect (i.e., U(θ) in
Eq. 9) as an additional learning objective to enable the model to concentrate more on
the aspect relevant EDU(s).
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Fig. 2.Attention scores from aspect-specific representations of ATAE-LSTM and EDU-Attention,
on two aspects food and service. Outputs from ATAE-LSTM is shown in one sentence for each
aspect. EDU-Attention has both word- and EDU-level attentions, shown with EDU boundaries.

We conduct ablation study to analyze effectiveness of the orthogonal regulariza-
tion (reg.) and the auxiliary aspect prediction (aux.) in EDU-Attention. Reported in
Table 3, removing either orthogonal regularization or auxiliary aspect prediction leads
to performance drop on all datasets and on all measures. The amount of performance
drop is comparable on Rest14, Laptop15, and MAMS-ACSA datasets. Large drops are
observed on Rest14-Hard. On hard sentences, our model relies on orthogonal regular-
ization to spread out the EDU-level attention scores. The additional objective function
guides the model to recognize the aspect expressed in an EDU. The amount of drop
on the MAMS-ACSA dataset is slightly larger than that on Rest14 and Laptop15. On
the one hand, all sentences in MAMS-ACSA are hard sentences. On the other hand, its
annotation scheme is different from the other datasets. The model might have captured
the association between term appearance and aspects, and the model performance is
heavily affected by the large number of neutral labels (see Table 2).

4.5 Analysis of Sparse Attention

As a case study, we compare attention scores computed by ATAE-LSTM [26], and the
attention scores of our model at both word- and EDU- levels. Figure 2 shows an exam-
ple sentence from Rest14. The sentence expresses sentiments towards two aspects: food
and service, with indicative words. ATAE-LSTM computes two aspect-specific repre-
sentations, one for each aspect. In both representations, the model highlights ‘mediocre’
and ‘severely’ with larger scores. Nevertheless, the score of ‘mediocre’ dominates in
both representations. Even though ATAE-LSTM also correctly highlights ‘severely’ for
aspect ‘service’, the larger score of ‘mediocre’ would interfere with the correct predic-
tion of sentiment label for service.

In contrast, the word-level attention scores computed by EDU-Attention is con-
fined within an EDU contextual boundary, and normalized within the EDU. Opinion
words ‘mediocre’ and ‘severely slow’ are given large attention scores. In fact, all the
rest non-opinion words are assigned 0 scores, thanks to sparse attention (see Eq. 3).
The association between the opinion words and their corresponding aspects is through
the EDU-level sparse attention. Recall that, for each EDU, we learn an aspect-specific
representation. As shown in Fig. 2, for the first clause (i.e., EDU e0), its attention score
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Table 4.Model size, and inference time (in second) on MAMS test dataset.

Model #Params Inference(s) Model #Params Inference(s)

MemoryNet 2.4M 0.0673 Distill-Bert 66.3M 0.3679

GCAE 2.8M 0.0775 Tiny-Bert 66.9M 0.3736

ATAE-LSTM 3.8M 0.1298 Bert-baseline 109.5M 0.9065

ATAE-CAN-2R0 3.8M 0.3702 BERT-pair-QA-B 109.5M 17.496

HAN 6.0M 0.2195 CapsNet-Bert 111.9M 0.9122

CapsNet 6.0M 0.9072 Ours-Bert 110.7M 3.5734

AS-Capsule 10.0M 0.4215 EDU-Attention (Ours) 3.5M 0.4625

for ‘food’ aspect is 92.17, compared to 2.68 for ‘service’ aspect. Note that, EDU-level
attention scores are normalized across all EDUs in the same sentence on each aspect.
Similarly, the second clause, EDU e1, receives high score 97.32 for ‘service’, and a
very small score 7.83 for ‘food’ aspect. In short, sparse attentions at both EDU- and
word- levels guide our model to correctly identify aspect-relevant EDU in a sentence,
and opinion words in an EDU.

4.6 Model Size and Inference Time

Table 4 summarizes the model size in number of parameters, and reports the inference
time for processing the 400 sentences in MAMS-ACSA test dataset. Among non-Bert
models, our model has relatively small size. The slightly longer inference time is due to
aspect-specific EDU representation computation. A hard sentence often contains multi-
ple EDUs. Compared to Bert-baseline, our model is much smaller and only takes about
half of its inference time. The Bert variant of our model has a longer inference time
as our model needs to encode an EDU at a time using Bert, instead of encoding a full
sentence at a time as in Bert-baseline. Overall, our EDU-Attention has a small model
size, and achieves good performance with reasonable inference time.

5 Conclusion

We observe that text span in an EDU tends to express a single aspect and unitary sen-
timent towards the aspect. Hence, we propose a simple EDU-Attention model to learn
aspect-specific representations of EDUs in a sentence. Based on our observation, we
apply sparse attention at both word-level and EDU-level, to highlight sentiment-bearing
words, and to constraint an EDU to one aspect. Our model shows improvement over
strong baselines on three benchmark datasets. The detailed ablation study also shows
that the model behaves as expected. Interestingly, the prediction of aspect labels of
EDUs, based on EDU-level attention scores, can be beneficial to other applications like
review summarization.
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Abstract. Contextual multi-armed bandit algorithms are widely used
to solve online decision-making problems. However, traditional methods
assume linear rewards and low dimensional contextual information, lead-
ing to high regrets and low online efficiency in real-world applications. In
this paper, we propose a novel framework called interconnected neural-
linear UCB (InlUCB) that interleaves two learning processes: an offline
representation learning part, to convert the original contextual informa-
tion to low-dimensional latent features via non-linear transformation,
and an online exploration part, to update a linear layer using upper
confidence bound (UCB). These two processes produce an effective and
efficient strategy for online decision-making problems with non-linear
rewards and high dimensional contexts. We derive a general expression
of the finite-time cumulative regret bound of InlUCB. We also give
a tighter regret bound under certain assumptions on neural networks.
We test InlUCB against state-of-the-art bandit methods on synthetic
and real-world datasets with non-linear rewards and high dimensional
contexts. Results demonstrate that InlUCB significantly improves the
performance on cumulative regrets and online efficiency.

Keywords: Contextual bandits · Upper confidence bound · Neural
networks · Regret bound

1 Introduction

Contextual multi-armed bandit algorithms are powerful solutions to online
sequential decision making problems such as influence maximisation [17] and
recommendation [20]. In its setting, an agent sequentially observes a feature
vector associated with each arm (action), called the context. Based on the con-
texts, the agent selects an arm which provides a random reward that is assumed
to follow some distribution. Since the underlying distribution is unknown and
the reward can only be observed at run-time, the agent should balance explo-
ration and exploitation to maximise total rewards or, equivalently, to minimise
regret.

Well-established contextual bandit methods, e.g., linear upper confidence
bound (LinUCB) [7] and linear Thompson sampling (LinTS) [2], were effective
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assuming that the reward is linear and the contexts are low-dimensional. How-
ever, these methods face two important challenges when applied to real-world
scenarios such as online image classification [19] and online audio recognition
[23]: First, these applications involve reward distributions that are non-linear
w.r.t. the contexts. This violates the linear-reward assumption which is needed
to achieve non-trivial regret bounds. Thus it is possible that these methods could
result in high regrets. Second, most of these existing methods involve inverting
a matrix online [4] whose dimension coincides with that of the contexts. How-
ever, the applications above usually involve high-dimensional contexts. Thus the
existing methods will suffer from poor online efficiency. Although some recent
methods relax the liner-reward assumption, they still rely on relatively restric-
tive modelling assumptions on rewards and/or cannot provide acceptable online
efficiency. For instance, KernelUCB [16] relaxes the linear reward assumption
by asserting that the reward function belongs to a reproducing kernel Hilbert
space, but it incurs an even higher computation cost on matrix inversions as the
dimension of the kernel matrix increases with time.

Recently, several new methods under the name of neural contextual bandits
[24] are proposed to extend classical contextual bandit algorithms. Leveraging
the expressive power of neural networks, these methods aim to learn richer
non-linear reward function and latent features through representation learn-
ing. So far, two major neural contextual bandit paradigms have been proposed:
Neural-Linear and NeuralUCB. The former uses neural networks to extract
a dimension-reduced latent feature (representation learning) and conduct explo-
ration on top of the latent features [15,22], while the latter uses neural networks
as a reward predictor and use UCB for exploration [24]. Despite showing promise
in certain empirical tasks, these methods still suffer from some significant short-
comings. (1) While Neural-Linear is time-efficient, the method often incurs
high regrets. This is because that it trains networks end-to-end, failing to use
the result of exploration to boost representation learning. Worse yet, its regret
bound is still unknown [15]. (2) NeuralUCB, in contrast, can provide the the-
oretical guarantee on regret bound. But updating the entire network every step
results in low online efficiency, which makes it infeasible in practice.

Contributions. This paper addresses the need for an efficient contextual ban-
dit algorithm applicable to non-linear rewards and high-dimensional contexts.
We summarise our main contributions as follows: (1) We propose a new neural
contextual bandit framework, called interconnected neural-linear upper confi-
dence bound (InlUCB) (see Sect. 4). To our knowledge, InlUCB is the first
contextual bandit method that achieves high online efficiency with a theoretical
guarantee on its regret bound. InlUCB uses neural networks with two parts: the
lower layers transform raw contexts to a low-dimensional latent feature space;
and the last linear layer represents a linear model that fits the observed reward
in terms of the latent features. The key novelty of InlUCB lies in an inter-
connected offline-online update mechanism to train the two parts. The offline
process (representation learning) updates lower layers subject to the current lin-
ear model, simplifying the task at hand. The online process (exploration) follows
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UCB-based exploration to update only the last linear layer based on the proposed
representation, thereby guaranteeing online efficiency. (2) We derive a general
expression of the regret bound of InlUCB by decomposing the total regrets
into regrets caused by representation learning and online exploration (see Theo-
rem 1). Specifically, we present a tighter regret bound under certain assumptions
on neural networks (see Corollary 1). (3) We test InlUCB against state-of-the-
art contextual, non-linear contextual, non-parametric contextual and neural con-
textual bandit methods on synthetic dataset with high-dimensional contexts and
non-linear rewards as well as on real-world datasets with audio and images as
contextual information (see Sect. 6). Results demonstrate that InlUCB achieves
much lower cumulative regrets than linear contextual bandit baselines and higher
online efficiency than neural contextual bandit baselines.

2 Related Work

Classical Contextual Bandits. Both classical multi-armed bandits and con-
textual bandits have been studied extensively along with their variants. Classi-
cal bandit algorithms such as Upper Confidence Bound (UCB) and Thompson
Sampling (TS) [1] achieve ˜O(

√
KT ) regret, where K is the number of candidate

arms, T is the number of steps, and ˜O(·) hides the logarithmic factors. Since this
regret bound depends on K, they are inefficient in real-world applications when
K is large. To alleviate this problem, one can assume that the reward of each
arm is a function of some observed features (i.e., contexts), yielding the family of
methods called the contextual bandits [9,13]. As two widely-adopted contextual
bandit algorithms with the linear-reward assumption, LinUCB [7] and LinTS

[2] have a regret bound of ˜O(
√

dT ) and ˜O(d
√

T ), respectively, which depends
on the dimension d of features rather than K. However, contextual bandits may
result in high regrets when the reward function is non-linear or d is large.

High-Dimensional Contexts and Non-linear Rewards. Despite works
exist that attempt to extend contextual bandits to the setting of either high-
dimensional contexts or non-linear rewards [6,11,18,21], no method so far can
resolve these two challenges simultaneously with acceptable efficiency. Lasso
regression is investigated for the sparse contexts [6,11,18]. Although its regret
bound [11] is superior to LinUCB, optimising a lasso regression problem online
makes it too time-consuming to be used in practice. CBRAP [21] adopts random
projection to map the high-dimensional contexts onto a low-dimensional space.
Although it improves efficiency, its performance heavily relies on a good initial
projection matrix, leading to poor robustness. KernelUCB [16] adopts kernel
functions to handle non-linear rewards but it uses matrix inversion which incurs
high computation costs. Neural-Linear [22] and NeuralUCB [24] adopt neu-
ral networks to model rewards, each with issues mentioned above. In InlUCB,
we propose a novel interconnected-update framework that makes our method
unique and allows our method to overcome the shortcomings of the existing
neural contextual bandit methods.
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3 Problem Formulation and Background

Problem Setting. We consider the stochastic contextual bandit problem with
K arms (actions) and T steps. At each step t ≤ T , the agent observes the
context (feature) xt,a ∈ R

d of each arm a with ‖xt,a‖2 ≤ 1, where the contextual
dimension d is usually very large in applications. An algorithm selects an action
at ∈ [K] at step t and receives a reward rt,at

∈ [0, 1], where [K] denotes the set
{1, 2, . . . ,K}. The reward rt,at

is an independent random variable conditioned
on context xt,at

. The regret of the algorithm is defined as:

RT �
T

∑

t=1

rt,a∗
t

−
T

∑

t=1

rt,at
, (1)

where a∗
t = arg maxa∈[K] E[rt,a|xt,a] is the optimal action at step t that max-

imises the expected reward. The goal is to find an algorithm to minimise RT .
We focus on the cases where the reward function is non-linear in terms of

contexts. To capture this fact, for each step t, we assume that the reward is
generated by:

rt,a � g(xt,a) + ξt, (2)

where g : R
d → R is an unknown non-linear function satisfying g(x) ∈ [0, 1] for

any x, and ξt is a sub-Gaussian noise satisfying E[ξt] = 0. The sub-Gaussian
noise is a standard assumption in the stochastic bandit literature, which can
represent any bounded noise [14].

Neural Contextual Bandits. Neural contextual bandit methods [15,22,24]
compute the rewards using a neural network. In this way, the method handles
high dimensional contexts and non-linear rewards. Formally, the function g in
Eq. (2) is realised by:

g(xt,a) = f�
� (xt,a)θ�, (3)

where f� : R
d → R

p represents all layers except the last that satisfies
‖f�(xt,a)‖2 ≤ 1, θ� represents the weights of the last linear layer that satis-
fies ‖θ�‖2 ≤ 1, and p � d. We call f and θ the dimension reduction mapping
and latent weight vector, respectively. Intuitively, f serves as a non-linear trans-
formation that converts raw contexts of a large dimension d to latent features of
a much lower dimension p, and the reward function is linear in latent features.
Since a neural network with suitable size and activation functions is a global
function approximator [5], it is reasonable to assume that Eq. (3) expresses the
underlying reward function, i.e., there exists a pair (f�,θ�) that fulfils Eq. (3).

We introduce the two major neural contextual bandits: (1) Neural-Linear
[15,22] trains θ by applying linear contextual bandit methods (e.g., UCB or
TS) on top of f for exploration. The training of f (representation learning) and
θ (exploration) are executed at different time-scales. Whenever the exploration
is terminated, we turn to representation learning by training the entire model
(both f and θ) end-to-end. Although online exploration quantifies uncertainties
over rewards, end-to-end training makes Neural-Linear ignore this important



Interconnected Neural Linear Contextual Bandits with UCB Exploration 173

information in representation learning. This may lead to a low convergence speed
and thereby result in high regrets. Notably, the regret bound of Neural-Linear
is still unknown. (2) and NeuralUCB [24] provides a regret bound of ˜O(d̃

√
T )

through leveraging the neural tangent kernel (NTK) [10] to characterise a fully
connected neural network, where d̃ is the effective dimension of a NTK matrix.
However, reformulating a neural network as a NTK matrix requires updating all
parameters (both f and θ) of a neural network at once after each step of online
decision-making, making NeuralUCB too inefficient to be used in practice.

Fixed

Fixed

UCBMSE Loss

Online Data

OnlineOffline

Fig. 1. The process flow of InlUCB framework. Solid and dashed arrows represent
input/output and sampling, respectively.

4 The Interconnected Neural-Linear UCB Framework

To address the need for novel contextual bandit methods with non-linear rewards
and high-dimensional contexts, we propose a new contextual bandit framework
called interconnected neural-linear UCB (InlUCB). Following the neural con-
textual bandits regime, InlUCB alternates between the training of f and θ.

The key to InlUCB is an interconnected online-offline mechanism rather
than end-to-end training. Fixing f , the online process tunes θ using UCB to
balance exploration and exploration. In turn, freezing θ, the offline process
updates f based on samples collected by online exploration. Figure 1 depicts
this mechanism. This interconnected update mechanism overcomes the short-
coming of Neural-Linear in the sense that representation learning and online
exploration are alternatively performed to boost each other. Besides, the method
has two extra advantages: (1) online exploration is an effective way to sample
data since initially data is often too scarce to train the entire model offline, i.e.,
the cold-start problem; (2) moving the heavy workload of updating hidden layers
offline can significantly improve online efficiency. Formally, let n ∈ [N ] denote
the index of iterations, and denote by θn and fn the values of θ and f after the
nth iteration, respectively. Let Dn denote the offline dataset at the nth iteration.
Initially, we assume D0 = ∅. We next formally introduce the two processes.
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Online Exploration. Each iteration starts from the online exploration. In the
nth iteration, we fix fn−1 to extract a latent feature fn−1(xt,a) for each context
xt,a. As for updating θ, we apply LinUCB on top of the extracted latent features
for exploration. The basic idea is to maintain a reward predictor (i.e., predicted
expected reward) r̂t,a and a confidence interval around it with width wt,a that
captures the variance of rewards. Then, at each step t, we choose the action with
the highest upper confidence bound r̂t,a + wt,a. Formally, we use θn,t to denote
the estimation of θ at the tth step of the nth iteration. For each action a, the
reward predictor and the width of the confidence interval are given by

r̂t,a � f�
n−1(xt,a)θn,t, and wt,a � α

√

f�
n−1(xt,a)A−1

n,tfn−1(xt,a), (4)

where α > 0 is a given constant and

An,t � Ip +
∑t−1

τ=1
fn−1(xτ,aτ

)f�
n−1(xτ,aτ

). (5)

Here, Ip denotes the identity matrix of size p which is to guarantee the non-
singularity of An,t. After choosing an action with the highest r̂t,a + wt,a, we
update θ as follows:

θn,t = A−1
n,tbn,t, where bn,t �

∑t−1

τ=1
fn−1(xτ,aτ

)rτ,aτ
. (6)

Online training terminates after T steps (T is a predefined constant). Then,
accumulated online samples {(xt,at

, rt,at
)}T

t=1 are appended to the offline dataset
Dn−1, yielding Dn.

Offline Representation Learning. In the nth iteration of offline learning, we
fix θn and train fn on Dn by minimising the mean square error (MSE) loss:

LDn
(f ;θn) � E(x,r)∼Dn

[

(f�(x)θn − r)2
]

, (7)

Since the sub-Gaussian noise on rewards has zero mean, the minimiser of Eq. (7)
is an unbiased estimator of the optimal f w.r.t. θn. Algorithm 1 presents the
pseudocode of InlUCB.

5 Regret Analysis

This section studies the regret bound of InlUCB. By Eq. (1), the total regret
of InlUCB with N iterations, each of T online steps, can be written as

RN,T =
N

∑

n=1

Rn,T �
N

∑

n=1

[

T
∑

t=1

rn,t,a∗
t

−
T

∑

t=1

rn,t,at

]

, (8)

where Rn,T denotes the regret at the nth iteration. We study the per-iteration
regret Rn,T . The total regret can then be obtained by summing Rn,T over all N
iterations. For simplicity, we will omit the iteration index n in some notations.
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Algorithm 1. InlUCB

Input: α ∈ R
+, N, T, K, d ∈ N, p < d ∈ N

Output: f : R
d → R

p and θ ∈ R
p.

Initialisation: D0 = ∅, random f0, A
′ ← Ip and b′ ← 0p

1: while n = 1, 2, . . . , N do
2: � Online Exploration
3: A ← A′, b ← b′

4: for t = 1, 2, . . . , T do
5: θn,t ← A−1b

6: Observe K features xt,1,xt,2, . . . ,xt,K ∈ R
d

7: for each arm a = 1, 2, . . . , K do

8: Compute pt,a ← f�
n−1(xt,a)θn,t+ α

√
f�
n−1(xt,a)A−1fn−1(xt,a)

9: end for
10: Choose action at ← arg maxa∈[K] pt,a

11: Observe payoff rt,at ∈ [0, 1]

12: A ← A + fn−1(xt,a)f�
n−1(xt,a)

13: b ← b + fn−1(xt,a)rt,at

14: end for
15: θn ← θn,T , Dn ← Dn−1 ∪ {(xt,at , rt,at )}T

t=1
16: � Offline Representation Learning
17: Fix θn, train f(n) on Dn through gradient descent on the loss defined in Eq. (7)

18: end while

Recall that the agent always pulls the arm with the highest UCB which is a sum
of the reward predictor r̂t,a and a width term wt,a. Therefore, to bound Rn,T ,
we need to know the error in reward prediction:

|r̂t,a − f�
� (xt,a)θ�| = |f�

n−1(xt,a)θn,t − f�
� (xt,a)θ�|.

Same as LinUCB, the reward predictors r̂t,a in InlUCB are sums of depen-
dent variables since predictions in later steps are made using previous outcomes,
which prevents us from applying Azuma-Hoeffding inequality to control the
error in reward prediction. Thus, directly analysing regret bound of InlUCB
is intractable. To sidestep this problem, we use the construction in [3] to mod-
ify the online learning of InlUCB into BaseInlUCB which assumes statistical
independence among samples. We then use a master algorithm SupInlUCB to
pull arms in a way that ensures this assumption holds. The pseudocode for both
algorithms can be found in Appendix A. In the literature of contextual bandits,
due to the intractability of the regret bound of the original algorithm, the con-
vention is to instead analyse the regret bound of the master algorithm [3,7,16],
which can be viewed as an appropriate modification of the original algorithm.
Following this convention, we next analyse the regret bound of SupInlUCB.

However, although the above technique ensures independence among sam-
ples, directly calculating the error in reward prediction is still intractable due to
the coupling between the estimation errors of θn,t and fn−1 in the total error
of reward prediction. One of our main contributions is proposing a method to
separate them by defining the offline error:

εn � max
x∈Rd

∣

∣f�
n−1(x)θ� − f�

� (x)θ�

∣

∣ ∈ [0, 1], (9)

and the online error: γn(xt,a) �
∣

∣f�
n−1(xt,a)θn,t − f�

n−1(xt,a)θ�

∣

∣ .
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Intuitively, the offline error and online error capture the effects of the estima-
tion error of fn−1 and θn,t arising from representation learning and exploration,
respectively. By applying a triangle inequality, we derive an upper bound of the
error in reward prediction by splitting it into online and offline errors:

|r̂t,a − f�
� (xt,a)θ�| ≤ γn(xt,a) + εn.

Our main result given below is derived by bounding γn(xt,a), and leaving εn as
a factor in the total regret. The proof is given in Appendix B.

Theorem 1. If SupInlUCB is run with α =
√

1
2 ln 2NTK

δ , with probability at
least 1 − δ, the regret of the algorithm is

O

((

N + T

N
∑

n=1

εn

)

√

Tp ln3(NTK ln(T )/δ)

)

. (10)

Remark 1. Theorem 1 provides a general expression of the regret bound which
implies that the rate of convergence of the sequence of offline errors {εn}N

n=1

determines the order of the regret bound. Generally, we know
∑N

n=1 εn ≤ N as
εn ≤ 1. But substituting N for

∑N
n=1 εn leads to a loose bound ˜O(NT

√
Tp). In

general, the bound of εn depends on the complexity of the underlying dimension
reduction mapping f� and the error of estimating f� using the neural network.
Thus, we cannot derive a universal non-trivial upper bound for εn as we cannot
guarantee that the neural network attains global minimum. While, if we discard
the error of neural networks and assume the latent feature is in a simple form
(e.g., linear in raw contexts), we can derive a tighter regret bound by further
bounding εn (see Corollary 1). Also, empirically, we show that εn decreases fast
with the number of iteration n increases (see next section).

Remark 2. We relate our regret analysis of InlUCB to that of LinUCB [7]. As
for InlUCB, if we known in davance that the reward function degenerates to a
linear mapping, offline representation learning is no longer needed, which means
that only online exploration remains (i.e., N = 1) and the offline error would
be zero (i.e., εn = 0). Then in this case, the regret bound in Theorem 1 reduces
to

√
Td ln3(TK ln(T )/δ), which is the same as that of LinUCB [7, Theorem 1].

This suggests that InlUCB recovers LinUCB as a special case.

Corollary 1. Assume that f� is linear, i.e., f�(x) = Q�x where Q� ∈ R
p×d.

Let InlUCB use a fully connected network of three layers, each of size d, p and
1. Also assume for all n ∈ [N ], (fn,θn) minimises LDn

(f ;θ). If SupInlUCB

is run with α =
√

1
2 ln 2NTK

δ , then there exist constants σ ∈ [0, 1] and Cσ ≥ 0
such that with probability at least (1 − δ)(1 − σ), the regret is

O

(

(

N + T + Cσ

√
NT

)

√

Tp ln3(NTK ln(T )/δ)
)

.
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Remark 3. The regret of random selection is O(NT ). Thus, the regret bound
in Corollary 1 is non-trivial as the magnitude of ˜O((N + T + Cσ

√
NT )

√
Tp) (p

is constant) is smaller than that of O(NT ). On the other hand, the non-trivial
regret bound of other neural contextual bandit methods, e.g., NeuralUCB [24],
also relies on the assumption that the error of neural networks can be bounded.

6 Experiments

We empirically evaluate the accuracy (cumulative regret) and efficiency (run-
time per step) of InlUCB on both high-dimensional synthetic and real-world
datasets with non-linear rewards. We adopt eight bandit methods as baselines:
(1) LinUCB [7], a linear contextual bandit method using UCB for exploration.
Its regret bound is ˜O(

√
dT ); (2) LinTS [2], a linear contextual bandit method

using Thompson sampling (TS) for exploration. It has a regret bound of ˜O(d
√

T ).
(3) CBRAP [21], a method that uses random projection to do dimension reduc-
tion and UCB for exploration. (4) KernelUCB [16], a method that ultilises
kernel functions for handling non-linear rewards and uses UCB for exploration.
Its regret bound is Õ(

√
d̃T ), where d̃ is the effective dimension of kernel matrixes.

(5) NeuralUCB [24], it uses a fully connected neural network for reward predic-
tion, uses UCB for online exploration, and updates the whole neural network at
each step. It has a regret bound of ˜O(d̃

√
T ); (6) Neural-Linear [22], a method

that extracts latent features using NN and use TS on the top of the last linear
for exploration. The regret bound is not given by authors. (7) EXP3 [4], a rep-
resentative adversarial bandits algorithm that pulls arms with probabilities and
adjusts such probabilities based on received rewards; (8) ε-Greedy: a classic
exploration method; with high probability 1 − ε pulling the arm with highest
average reward in history and with small probability ε pulling an arm randomly.

6.1 Experimental Setting

For UCB-based methods, we tune the constant α through a grid search over
{0.01, 0.1, 1}. For TS-based methods, we do grid search over {0.01, 0.01, 1} for
the hyper-parameter that controls the covariance of the prior and posterior dis-
tributions. For KernelUCB, we adopt radial basis function (RBF) kernel and
empirically set the parameters with best results. For EXP3 and ε-Greedy, we
do grid search for the exploration parameter over {0.01, 0.1, 1}. For InlUCB,
NeuralUCB and Neural-Linear, we use the same neural network structure:
a fully connected network of four layers of size d, d, p and 1, respectively. For
CBRAP, the dimension after projection is also p. We vary p from 10 to 100 with
step size 10, and vary T from 100 to 1000 with step size 100. For all grid-searched
parameters, we choose the best setting for comparisons. For all contextual ban-
dit methods we test their efficiency with respect to the context dimension and
the number of steps. Results are averaged over 10 independent runs.
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Table 1. Real-world Datasets statistics.

Dataset Feature dimension Number of classes Number of samples

MUSIC 518 193 106,574

FONT 409 20 100,000

MNIST 784 10 60,000

Synthetic Datasets. We generate synthetic datasets with contextual dimension
d = 500 and K = 200 arms. Contextual vectors are chosen uniformly at random
from the unit ball. We use three artificial non-linear reward functions: g(x) =
cos(3x�a) (shorten as COS), g(x) = 10(x�a)2 (SQU), and g(x) = exp(x�a) (EXP),
where a is randomly generated from uniform distribution over unit ball. These
typical functions cover a wide range of non-linear mappings [24].

Real-World Datasets. We use three real-world classification datasets: MUSIC
and FONT from the UCI Machine Learning Repository [8] and the MNIST dataset
[12]. Table 1 lists key statistics of the datasets. Following [15], we transform
classification tasks into bandit tasks: each step we randomly select one sample;
the agent gets reward 1 if it classifies the sample correctly, and 0 otherwise.

6.2 Results

Figure 2 and Table 2 report results of cumulative regrets and runtime per step,
respectively. Overall, InlUCB exhibits the lowest regret and superior efficiency
in all cases. Specifically, only InlUCB shows convergence in synthetic datasets,
which indicates the fast decrease of offline errors with the number of iterations
grows. For real-world datasets, although we do not observe convergence in some
cases, InlUCB achieves the lowest regret on all tasks.

Table 2. Results for runtime per step (in milliseconds).

Algorithm COS SQU EXP MUSIC FONT MNIST

LinUCB 0.9 0.6 0.6 0.8 0.5 0.5

LinTS 6.6 6.5 6.6 6.5 4.7 4.2

CBRAP 0.7 0.9 0.9 0.9 0.1 0.1

KernelUCB 2089.4 2114.8 1850.7 2128.1 2100.6 2228.0

NeuralUCB 1121.2 1075.2 1003.1 1027.3 1193.5 1239.6

Neural-Linear 8.7 6.1 6.0 7.1 1.8 2.3

EXP-3 0.3 0.6 0.6 0.5 0.08 0.08

ε-Greedy 0.01 0.01 0.01 0.009 0.04 0.004

InlUCB (ours) 4.3 5.6 5.7 9.5 3.8 5.0
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Fig. 2. Results for cumulative regrets.

LinUCB and LinTS show low regrets in some cases but fail to converge, as
they are able to take use of complete contextual information but cannot handle
non-linear reward functions.

KernelUCB costs more than 10s after 1500 steps since it needs to invert
a matrix whose dimension is proportional to the number of steps, which gives
the evidence that it is inefficient for practical use. Although Neural-Linear
is efficient, it suffers from high regrets since the end-to-end training framework
prevents the online exploration from effectively boosting representation learning.
CBRAP is relatively efficient but has high regret since empirically we find that
it is really sensitive to the initial value of the projection matrix. The classical
probability-based exploration techniques EXP3 and ε-Greedy have the highest
regret although they are most efficient. The reason is that they lack the capability
of modeling environments with contextual information.

Results of sensitivity test (see Appendix C.1) show that NeuralUCB is not
applicable to environments with high dimensional contexts. Thus, the result of
NeuralUCB in Fig. 2 is reported using a selected subset of features that result
in the best performance. Even though NeuralUCB runs on a subset of original
contexts, it has extremely high runtime cost. In contrast, InlUCB is three orders
of magnitude faster than NeuralUCB for online decision making. We also show
that InlUCB has comparable cumulative regrets to NeuralUCB on the same
subset of features in Appendix C.2. Thus, we conclude that InlUCB achieves a
better balance between the accuracy and online efficiency.
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7 Conclusion

We propose InlUCB, the first contextual bandit method that can simultane-
ously handle high dimensional contexts and non-linear rewards with high online
efficiency. InlUCB uses neural networks to model reward functions and cre-
atively adopts an interleaving online/offline update mechanism to combine effi-
cient online exploration and representation learning. We give a general expression
of regret bound for InlUCB and present a tighter regret bound under certain
conditions. Results of experiments on synthetic and real-world datasets confirm
the high accuracy and efficiency of InlUCB.
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Abstract. Graph neural networks (GNNs), which generalize deep neu-
ral network models to graph structure data, have attracted increas-
ing attention and achieved state-of-the-art performance in graph-related
tasks such as graph classification, link prediction, and node classifica-
tion. To adapt GNNs to graph classification, existing works aim to define
the graph pooling method to learn graph-level representation by down-
sampling and summarizing the information present in the nodes. How-
ever, most existing pooling methods lack a way of obtaining informa-
tion about the entire graph from both the local and global aspects of
the graph. Moreover, in these pooling methods, the difference features
between nodes and their neighbors are usually ignored, which is crucial
in obtaining graph information in our opinions. In this paper, we pro-
pose a novel graph pooling method called Node Information Awareness
Pooling (NIAPool), which addresses the limitations of previous graph
pooling methods. NIAPool utilizes a novel self-attention framework and
a new convolution operation that can better capture the difference fea-
tures between nodes to obtain node information in the graph from both
local and global aspects. Experiments on five public benchmark datasets
demonstrate the superior performance of NIAPool for graph classifica-
tion compared to the state-of-the-art baseline methods.

Keywords: Graph pooling · Graph classification · Graph
representation learning · Graph neural network

1 Introduction

Graph neural networks (GNNs) are a class of deep learning models that oper-
ate on data represented as graphs with arbitrary topological structures such as
body skeletons [22], brain networks [14], molecules [6], and social networks [12].
Unlike some regular grid data (e.g., images and texts), the inputs of GNN are
permutation-invariant variable-size graphs consisting of rich information. By
passing, transforming, and aggregating node features across the graph, GNNs
can capture graph information effectively [9] and demonstrate strong ability on
related tasks such as text classification [10], mental illness analysis [32], drug
discovery [24], relation extraction [25], and particle physics analysis [23]. Some
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of the existing methods focus on node-level representation learning to perform
tasks such as link prediction [11,18] and node classification [12,27]. Others focus
on learning graph-level representations for tasks like graph classification [7,34]
and graph regression [21]. In this paper, we focus on graph-level representation
learning for the task of graph classification.

In brief, the task of graph classification is to generate the graph-level repre-
sentation of the entire graph to predict the label of the input graph by utilizing
the given graph structure information and node representation. The majority of
existing GNNs usually generate the graph-level representation by applying sim-
ple global pooling strategies [15,28,35] (i.e., a summation over the final learned
node representations). These methods are inherently “flat” [36] and lack the
capability of aggregating node information in a hierarchical manner since they
treat all the nodes equivalently when generating graph representation using the
node representations. Furthermore, the structure information of the entire graph
is almost neglected during this process. For example, to prove a molecule is toxic
or not, which depends on not only the features of atoms but also the structure
information in atoms’ interaction networks.

To address this problem, hierarchical pooling architectures have been pro-
posed, which have the ability to coarsen the graph in an adaptive, data-
dependent manner within a GNN pipeline, analogous to image downsampling
within convolutional neural networks. The first end-to-end learnable hierarchical
pooling operator is DiffPool [33]. DiffPool groups nodes into super-nodes by com-
puting soft clustering assignments of nodes. Since the cluster assignment matrix
is dense, its ability to scale to large graphs is limited. TopKPool [7] uses a simple
scalar projection score for each node to select top-k nodes in a sparse pooling
manner, so the computing limitation of DiffPool is overcome. Following that,
SAGPool [13], a variant of TopKPool, uses self-attention to incorporate global
structure information, and EdgePool [4] learns a localized and sparse hard pool-
ing transform by edge contraction. Nevertheless, a critical limitation of these
pooling operations is the lack of a way to combine the local and global infor-
mation in graphs simultaneously. To address the above limitations, ASAP [17]
devises a cluster scoring procedure to select nodes depending on the feature-
based fitness scores and self-attention network. [8] uses a two-stage attention
voting process that selects more important nodes in a graph. Although [17]
and [8] have proved the ability of their methods to capture graph information,
we argue that self-attention mechanisms in these methods may render mutual
exclusion effect on node importance, which means these methods focus too much
on the nodes with high similarity and almost ignore the node information with
high differences. In addition, we find that the difference features of nodes are
vital for the entire graph. For example, even if two molecules have the same
structure and atomic number, as long as there is a pair of different types of
atoms, there will be huge differences between the molecules. However, most of
the existing methods cannot effectively capture the difference features between
nodes or even do not take them into consideration. Therefore, hierarchical graph
pooling methods that capture the difference features between nodes effectively
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while reasonably considering both local and global graph information currently
do not exist.

In this work, we propose a new pooling operator called Node Information
Awareness Pooling (NIAPool) which overcomes the problems mentioned above.
It uses a novel Difference2Token attention framework (D2T), which balances
important node selection reasonably, to enhance the node information represen-
tation locally, and then utilizes a new convolution operation called Neighbor
Feature Awareness Convolution (NFAConv) to capture the difference features
between neighbor nodes and perform global node scoring.

Our contributions can be summarized as follows:

– We propose D2T to evaluate each node’s information given its neighborhood
and then enhance local node information.

– We propose a new convolution operator NFAConv. Compared with state-
of-the-art convolution operations, NFAConv is more powerful in extracting
difference features between nodes.

– We conduct extensive experiments on five public datasets to demonstrate
NIAPool’s effectiveness as well as superiority compared to a range of state-
of-the-art methods.

2 Preliminaries

2.1 Notations and Problem Formulation

Given a set of graph data D = {(G1, y1) , (G2, y2) , . . . , (Gn, yn)}, where the
number of nodes and edges in each graph might be different. For an arbitrary
graph Gi = (Vi, Ei,Xi) with N = |Vi| nodes and |Ei| edges. Let A ∈ R

N×N be
the adjacent matrix describing its edge connection information, and X ∈ R

N×d

represents the node feature matrix assuming each node has d features. Each
graph is also associated with a label yi indicating the class it belongs to. The
goal of graph classification is to learn a mapping function f : G → Y where G is
the set of graphs and Y is the set of labels. A pooled graph and its adjacency
matrix are denoted by Gp = (Vp, Ep,Xp) and Ap, respectively. For each node
vi, we use N (vi) to represent its 1-hop neighbors.

2.2 Graph Convolutional Neural Network

Graph convolutional neural network (GCN) [12] is a powerful tool for handling
graph-structured data and has shown promising performance in various challeng-
ing tasks. Thus, we choose GCN as the building block to design the framework
for graph classification. For the l-th layer in GCN, it takes both the adjacent
matrix A and hidden representation matrix X l of the graph as input, and then
the new node embedding matrix will be generated as follows:

X l+1 = σ
(
D̃− 1

2 ÃD̃− 1
2 X lW l

)
(1)
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Here, σ (·) is the non-linear activation function, Ã = A + I is the adjacency
matrix with self-loops. D̃ is the diagonal degree matrix of Ã, and W l ∈ Rdl×dl+1

is the trainable weight matrix.

2.3 Self-attention Mechanism

Self-attention is used to discover the dependence of input on itself [26]. The atten-
tion coefficient αi,j is computed to map the importance of candidates hi on target
query hj , where hi and hj are obtained from input entities h = {h1, . . . , hn}.
We introduce three variants of self-attention mechanisms.

Token2Token (T2T) [19] explores the dependency between the target and
candidates from the input set h. The attention coefficient αi,j is computed as:

αi,j = softmax
(
�vTσ (Whi‖Whj)

)
(2)

where ‖ is the concatenation operator.

Source2Token (S2T) [19] drops the target query term to explore the depen-
dency between each candidate and the entire input set h.

αi,j = softmax
(
�vTσ (Whj)

)
(3)

Master2Token (M2T) [17] is a self-attention mechanism that works on graph
data. M2T utilizes intra-cluster information by using a master function to gen-
erate a query vector within the node and its 1-hop neighbors. Compared with
other self-attention mechanisms, M2T can capture graph information better.
Formally, M2T is defined as:

αi,j = softmax
(
�vTσ (Wmi‖hj)

)
(4)

mi = max
hi∈N (hj)

(hi) (5)

Here, hj refer to node representation in graph and N (hj) are the 1-hop neighbors
of hj .

3 NIAPool (Proposed Method)

In this section, we give an overview of the proposed method NIAPool. As
shown in Fig. 1, NIAPool initially focuses on the local structure of the given
graph, considering all nodes and their 1-hop neighbors, and utilizes a new self-
attention to enhance node information by aggregating neighbor node features.
These enhanced nodes are then globally scored using a modified GCN. Further,
a fraction of the top-scoring nodes will be saved. Below, we discuss the modules
of NIAPool in detail.
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Fig. 1. The illustration of the proposed NIAPool: (a) Input graph to NIAPool. (b)
Local node information enhancement based on D2T attention. (c) We utilize NFAConv
to capture node difference features and then score nodes. (d) A fraction of top-scoring
nodes are kept in the pooled graph. (e) The overview of hierarchical graph classification
architecture

3.1 Local Node Information Enhancement

Initially, we consider each node and its 1-hop neighbors. We learn the attention
coefficient between each node in the graph and its neighbor nodes through the
self-attention mechanism. Further, the learned attention coefficient is used to
fuse information from vi and its neighbors N (vi). The task here is how to learn
the enhancement representation of nodes effectively by attending to the relevant
nodes. We observe that the self-attention mechanisms mentioned in Sect. 2.3
may have a node importance mutual exclusion problem (Please refer to Sect. 4.3
or Sect. 1 for more details). To address this problem, we propose a new variant
of self-attention, called Difference2Token (D2T) to balance the attention
procedure. D2T is defined as:

αi,j = softmax
(
�vTσ (W1 (hi − hj) ‖W2hj)

)
(6)

Here, hi is node representation and hj ∈ N (hi).
Our motivation for designing D2T is that if a node’s information can be

reconstructed or inferred by its neighborhood information, it means this node
can probably be deleted in the pooled graph with almost no information loss. In
general, the nodes with similar information can be substituted for each other.
That is, the more similar the nodes are, the less important they are, which is
different from the self-attentions in Sect. 2.3. In Eq. (6), the difference hi −
hj will show significant differences when a node representation hi is similar to
one representation of its neighbor hj or not, so D2T can balance the attention
procedure reasonably by taking hi − hj into consideration.
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After obtaining the attention coefficient, node information can be enhanced
as follows:

he
i = hi +

|N (vi)|∑
j=1

αi,jhj (7)

where he
i is the enhanced node representation.

3.2 Global Node Scoring Using NFAConv

The difference feature between nodes is critical for generating graph-level repre-
sentation. For example, even if the graph has the same topology, different node
features can make the whole graph greatly different. How to effectively capture
the difference features between nodes becomes a new problem, which is ignored
by most graph classification methods. To solve this problem, inspired by [17]
and [30], we propose Neighbor Feature Awareness Convolution (NFA-
Conv), a powerful variant of GCN which is aware of node features:

θi = hi · W + φ

⎛
⎝ ∑

hj∈N (hi)

(hi − hj) ‖ (hi � hj)

⎞
⎠ (8)

where W is learnable parameter matrix and φ denotes a neural network. � is
broadcasted hadamard product.

NFAConv utilizes hi − hj and hi � hj to obtain difference features between
nodes and their neighbors, and then a neural network φ is applied to extract use-
ful information from these features. In this paper, φ is a Multilayer Perceptron
(MLP) with three linear layers. It is worth noting that φ can also be Convolu-
tional Neural Network (CNN) like the one used in [35], or other neural networks.
We keep this for future work.

After enhancing local node information, we sample nodes based on the global
node fitness score θi which calculated by NFAConv. For a given pooling ratio
k ∈ [0, 1), the top �kN� nodes are saved in the pooled graph Gp.

3.3 Graph Coarsening

Following the graph coarsening procedure in [33], we make global node fitness
vector Θ = [θ1, θ2, . . . , θN ]T learnable by multiplying it to the node feature
matrix X l. The indices of selected nodes î are obtained by choosing the top
�kN� nodes based on X l:

X̂ l = Θ � X l, î = TOPk

(
X̂ l, �kN�

)
(9)

The node feature matrix Xp ∈ R
�kN�×d and the pruned cluster assignment

matrix Ŝ ∈ R
N×�kN� are given by:

Xp = X̂ l(̂i, :), Ŝ = S(:, î) (10)
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Here, S ∈ R
N×N is the cluster assignment matrix, where Si,j represents the

membership of node vi ∈ V in N (vj). Finally, the pooled new adjacency matrix
Ap can be obtained as follows:

Ap = ŜT (A + I) Ŝ (11)

3.4 Model Architecture

The architecture used in SAGPool [13] is adopted in our experiments. We use
JK-net [31] as our readout layers to aggregate pooled node features. Figure 1
shows the details of the model architecture.

4 Experiments

In this section, we present our experimental setup and results. Our experiments
are designed to answer the following questions:

– Q1 How does NIAPool perform compared to other state-of-the-art pooling
methods at the task of graph classification?

– Q2 Is local node information enhancement by D2T attention more powerful
compared to other self-attentions?

– Q3 Compared with some state-of-the-art GCN variants, can NFAConv effec-
tively capture the features of nodes in the graph?

4.1 Experimental Setting

Datasets: Five graph datasets are selected from the public benchmark graph
data collection. D&D [5,20] and Proteins [3,5] are two datasets containing graphs
of protein structures. NCI1 [29] and NCI109 are biological datasets used for
anticancer activity classification. Frankenstein [16] is a set of molecular graphs
representing the molecules with or without mutagenicity. Table 1 summarizes
the statistics of all datasets.

Table 1. Statistics of the datasets.

Dataset # |G| # |c| Avg.# |V| Avg.# |E|
D&D 1178 2 284.32 715.66

Proteins 1113 2 39.06 72.82

NCI1 4110 2 29.87 32.30

NCI109 4127 2 29.68 32.13

Frankenstein 4337 2 16.90 17.88
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Baselines: We compare NIAPool with previous state-of-the-art graph pool-
ing methods, including Set2Set [28], GlobalAttention [15], SortPool [35], Diff-
Pool [33], TopKPool [7], SAGPool [13], ASAP [17], EdgePool [4], GSAPool [34],
MinCUT-Pool [2], HGP-SL [36], and GMT [1].

Training Procedures: In our experiments, we use 10-fold cross-validation to
evaluate the pooling methods, where each time we split each dataset into three
parts: 80% as the training set, 10% as the validation set, and the remaining 10%
as the test set. The average performance with standard derivation is reported. For
NIAPool, we choose k = 0.5 and set the dimension of node representations 128
for all datasets. For baseline algorithms, we use source codes released by authors
and follow the experimental setup that is mentioned in their manuscript. Adam
optimizer with a learning rate of 0.001 is adopted as our optimizer.

4.2 Q1: Comparison with Baseline Models

We compare the performance of NIAPool with baseline methods on five datasets.
The graph classification results are reported in Table 2. We also show the different
pooling ratios based on the NIAPool architecture in Table 3.

Table 2. Comparison with the state-of-the-art graph pooling methods.

Methods D&D Proteins NCI1 NCI109 Frankenstein

Set2Set 71.60 ± 0.87 72.16 ± 0.43 66.97 ± 0.74 61.04 ± 2.69 61.46 ± 0.47

GlobalAttention 71.38 ± 0.78 71.87 ± 0.60 69.00 ± 0.49 67.87 ± 0.40 61.31 ± 0.41

SortPool 71.87 ± 0.96 73.91 ± 0.72 68.74 ± 1.07 68.59 ± 0.67 63.44 ± 0.65

DiffPool 66.95 ± 2.41 68.20 ± 2.02 62.32 ± 1.90 61.98 ± 1.98 60.60 ± 1.62

TopKPool 75.01 ± 0.86 71.10 ± 0.90 67.02 ± 2.25 66.12 ± 1.60 61.46 ± 0.84

SAGPool 76.45 ± 0.97 71.86 ± 0.97 67.45 ± 1.11 67.86 ± 1.41 61.73 ± 0.76

ASAP 76.87 ± 0.7 74.19 ± 0.79 71.48 ± 0.42 70.07 ± 0.55 66.26±0.47

EdgePool 70.37 ± 3.81 73.67 ± 4.18 73.65 ± 2.20 70.66 ± 2.01 65.28 ± 1.88

GSAPool 74.95 ± 4.51 73.22 ± 3.37 72.21 ± 1.35 70.11 ± 2.39 60.99 ± 2.08

MinCUT-Pool 77.50 ± 4.89 74.85 ± 3.72 75.38 ± 1.46 73.73 ± 1.56 63.57 ± 2.26

HGP-SL 76.66 ± 3.07 74.03 ± 3.21 74.59 ± 1.46 72.09 ± 2.06 62.81 ± 1.36

GMT 77.75 ± 3.48 75.01 ± 2.89 74.57 ± 1.59 73.25 ± 2.63 64.35 ± 1.41

NIAPool (ours) 79.28±4.30 75.25±3.71 78.08±1.92 75.56±2.32 65.35 ± 2.58

Overall, a general observation we can draw from the results is that our model
obtains the highest accuracy on most of the datasets compared with baseline
models. In particular, NIAPool achieves approximate 2.70% higher accuracy
over the best baseline on the NCI1 dataset and 2.31% on the NCI109 dataset,
respectively. This superiority of NIAPool may be attributed to its advanced
mechanism for effectively capturing both local and global node information in
pool operation. Although ASAP exhibit the best performance among all baseline
methods and is even better than ours on the Frankenstein dataset, NIAPool has
an average improvement of 3.89% over ASAP on the other four datasets.
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Table 3. The evaluation of different pooling ratios based on the NIAPool architecture.

Pooling ratio D&D Proteins NCI1 NCI109 Frankenstein

0.25 77.67 ± 4.13 74.03 ± 2.18 76.35 ± 1.81 74.63 ± 2.38 62.39 ± 3.28

0.50 79.28±4.30 75.25 ± 3.71 78.08±1.92 75.56 ± 2.32 65.35±2.58

0.75 76.05 ± 3.40 75.73±4.14 77.38 ± 1.17 75.87±1.95 64.46 ± 2.71

4.3 Q2: Effectiveness of D2T Attention

To show the effectiveness of D2T attention, We replace the D2T attention module
in NIAPool with previously proposed S2T, T2T, and M2T attention techniques,
respectively. The results are shown in Table 4. We observe that D2T attention
achieves better performance than other attentions, which indicates that the pro-
posed D2T attention framework can reasonably select important nodes.

T2T models the membership of a node by generating a query based only on
the medoid nodes. S2T attention scores each node for a global task. M2T extends
T2T by using a master function to utilize intra-cluster information. There is a
disadvantage causing the node importance mutual exclusion problem when these
methods are used for local node information enhancement. That is, they pay too
much attention to the nodes with high similarity, resulting in the loss of other
node information. From the results, we can prove that D2T deal with the above
problem well by taking hi − hj into consideration.

Table 4. Effectiveness of different attention framework.

Attention module D&D Proteins NCI1 NCI109 Frankenstein

T2T 78.18 ± 4.44 74.71 ± 3.12 77.13 ± 3.23 75.07 ± 2.02 65.18 ± 1.53

S2T 78.35 ± 4.43 74.82 ± 4.02 76.55 ± 1.89 74.11 ± 1.95 65.30 ± 2.73

M2T 79.03 ± 4.40 74.93 ± 3.90 77.10 ± 0.85 74.23 ± 2.24 65.29 ± 2.23

D2T 79.28±4.30 75.25± 3.71 78.08±1.92 75.56±2.32 65.35±2.58

4.4 Q3: Effectiveness of NFAConv

In this section, we analyze the impact of NFAConv as a fitness scoring func-
tion in NIAPool. We use three famous graph convolutional operations, including
GCN [12], GAT [27], and GraphSAGE [9] as our baselines. In Table 5, we can
see that NFAConv performs significantly better than others. In particular, our
method has obvious advantages in datasets NCI1 and NCI109, which achieve
approximate 3.24% and 2.67% accuracy improvement over the best baseline,
respectively.

GCN can be viewed as a procedure that computes a score for each node fol-
lowed by a weighted average operation over neighbors and a nonlinearity oper-
ation. If some of the nodes get a high score, it may increase the scores of its
neighbors indirectly, which biases the pooling operator to select nodes. Graph-
SAGE directly averages the neighbor features of central nodes, ignoring the
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feature diversity among nodes. GAT is an example of T2T attention in graphs.
GAT utilizes attention coefficient to weight and sum node features but lacking a
way to capture specific node difference features. NFAConv addresses the above
problems by focusing on capturing node difference features between nodes. The
results from Table 5 verify the effectiveness of NFAConv.

Table 5. Effectiveness of different graph convolutional operations as fitness scoring
function.

Fitness function D&D Proteins NCI1 NCI109 Frankenstein

GCN 78.89 ± 3.54 74.48 ± 3.66 74.14 ± 1.49 72.21 ± 2.25 62.44 ± 3.06

GraphSAGE 78.61 ± 4.03 74.39 ± 3.38 74.84 ± 2.68 72.89 ± 2.10 64.65 ± 3.84

GAT 77.08 ± 2.67 74.11 ± 3.23 74.44 ± 1.50 71.97 ± 2.14 61.24 ± 3.50

NFAConv 79.28±4.30 75.25±3.71 78.08±1.92 75.56±2.32 65.35±2.58

5 Conclusion

In this paper, we introduce NIAPool, a novel graph pooling operator for the
graph classification task. NIAPool is aware of the node information from both
the local and global aspects of the graph. For the local aspect, we propose a
Difference2Token self-attention framework to better capture the membership
between each node and its 1-hop neighbors. For the global aspect, we propose
NFAConv, a novel GCN variant that focuses on capturing node difference fea-
tures and uses it to score nodes. We validate the effectiveness of the components
of NIAPool empirically. Through extensive experiments, we demonstrate that
NIAPool achieves state-of-the-art performance on multiple graph classification
datasets.
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Abstract. Preserving privacy of an individual in network structured
data while enhancing utility of published data is one of the most chal-
lenging problems in data privacy. Moreover, different individuals might
have different privacy levels based on their own preferences, thereby per-
sonalization needs to be considered to achieve personal data protection.
In this paper, we aim to develop a privacy-preserving mechanism to pub-
lish network statistics, particularly degree distribution, and joint degree
distribution, which guarantees personalized (edge or node) differential
privacy while enhancing network data utility. To this extend we propose
four approaches to handle personal privacy requirements of individuals
in a differentially private computation. We have empirically verified the
utility enhancement and privacy guarantee of our proposed approaches
on four real-world network datasets. To the best of our knowledge, this is
the first study to publish network data distributions under personalized
differential privacy, while enhancing network data utility.

Keywords: Privacy-preserving graph data publishing · Personalized
differential privacy · Network data distributions · Graph data utility

1 Introduction

Network analysis provides unique insights about social network activities, disease
transmission, consumer behaviour, communication patterns, and recommenda-
tions [22]. However, given the private nature of data about individuals stored
in networks, releasing network data raises privacy concerns, and there has been
much interest to devise privacy preserving mechanisms for network data analy-
sis [2,11]. The current focus of privacy is around differential privacy (DP) [5],
because of its provable mathematical privacy guarantee. DP ensures that the
output of a computation undergoes enough perturbation to mask whether an
individual is present or not in the output. The magnitude of random noise for
perturbation is determined by the sensitivity of the computation (i.e., the max-
imum impact that one individual can have on the output), and a global privacy
parameter ε ∈ [0,∞), also called privacy level, where a smaller value of ε implies
a stronger privacy guarantee and requires larger noise.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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One fundamental shortcoming of DP is that, a uniform privacy level (i.e., ε) is
assigned to each individual while performing perturbation; however, in practice,
different individuals have different privacy levels based on their own preferences
subject to their data [6,10]. For instance, in social networks an individual (user)
tends to share their personal information with their close ones and only share
obscured data with acquaintances or strangers. Therefore, DP may lead to pro-
vide insufficient protection for some individuals, while over-protecting others.

Early studies [1,6,10,16] which consider personalization under DP frame-
work, such as personalized DP (PDP) [6,10] or heterogeneous DP (HDP) [1] are
limited to relational databases. Later some works [13,14,24] explore graph data
perturbation with PDP, however, these works are also limited to publish single
queries. Additionally, DP has two variants when applying to network data, i.e.,
edge-DP [11] and node-DP [2], and to the best of our knowledge there is no work
which considers these variations before under personalization.

In this paper, we aim to publish higher-order network statics such as degree
distribution and joint degree distribution under personalized edge and node DP,
where individuals (nodes) in a network can specify their own privacy preferences.

Undertaking the problem of releasing network data distributions under PDP
brings up two challenges: (i) each node in a network has its own privacy prefer-
ence in personalized settings whereas each data point in data distribution reflects
information about more than one node, and (ii) network data is highly sensitive
to structural changes under DP. To address these challenges, we propose four
PDP mechanisms and introduce degree queries for controlled sensitivity.

Contributions. To summarize, our work makes the following contributions: (1)
We show how to publish network data distributions in a personalized differen-
tially private manner under edge and node DP. (2) We analyse the sensitivity
of degree queries for publishing degree distribution, and joint degree distribution
under edge and node DP. (3) We introduce four approaches for generating per-
sonalized differentially private network data distributions while enhancing utility.
(4) We conduct comprehensive experiments over four real-world networks, and
the results demonstrate that our proposed approaches can effectively enhance the
utility of differentially private network data distributions with personalization.

2 Related Work

Privacy issues have received much attention in recent years, due to the grow-
ing popularity of social networking, and recommendation platforms providing
personalized services for enhancing user experience and anticipating individual
needs. In recent years, privacy-persevering techniques based on personalized dif-
ferential privacy (PDP) [5] have been proposed [1,6,10]. These techniques can
be broadly categorized into three areas: user-grained [6,10,16], distance-grained
[13,14] and item-grained [1,24]. User-grained PDP approaches generalized the
classic definition of DP [5] to provide freedom to each individual to have a person-
alised privacy preference [6,10] in relational database settings. Distance-grained
PDP approaches [13,14] consider social network and scale individuals’ privacy
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Fig. 1. An illustrative example of two (edge or node) neighboring graphs G ∼ G′ with
their corresponding dK-distributions, for d = 1, and d = 2.

based on distance between individuals in a network (e.g., length of a shortest
path between two nodes). Item-grained PDP approaches for relational databases
include heterogeneous DP (HDP) [1], which allows different privacy levels for dif-
ferent data items (e.g. salary, age, etc.). Later for social networks, a fine-grained
approach based on both distance and item-grained has been presented in [24].
Despite considerable progress being achieved in understanding PDP, these works
have either limited to relational database setting [6,10,16] or only studied the
release of single queries in a network setting [1,13,14,24].

Different from existing work, we aim to release network data distributions,
i.e., degree distribution and joint degree distribution under edge-DP [11] and
node-DP [2] with personalization while enhancing network data utility.

3 Problem Formulation

Throughout, a network is an undirected graph G = (V,E), where V is the set
of nodes and E ⊆ V × V is the set of edges. Let NG(v) = {u ∈ V |(u, v) ∈ E}
be the set of neighbors of a vertex v in G. Denote v’s degree by deg(v) and G’s
maximum degree by deg(G) = max{deg(v)|v ∈ V }.

Definition 1 (Neighboring graphs). Two graphs G = (V,E) and G′ =
(V ′, E′) are edge neighboring graphs G

e∼ G′ if V = V ′, E ⊂ E′ and
|E| + 1 = |E′|, and are node neighboring graphs G

n∼ G′ if V ′ = V ∪ {v+}
and E′ = E ∪ E+, where E+ is the set of all edges incident to v+in G′.

Personalization allows each v ∈ V to specify its own privacy preference ε
in G. However, given two (edge or node) neighboring graphs G ∼ G′ where G′

is obtained from G by adding (or deleting) an edge (or node) can affect more
than one node. Thus, PDP should be formalized in terms of all affected nodes
to guarantee ε-indistinguishability. In a privacy specification Φ = {ε1, . . . εn},
denote Φv the privacy preference ε of a node v. For G

e∼ G′, adding (or deleting)
an edge affects exactly two nodes u and v; likewise, for G

n∼ G′, adding (or
deleting) a node v+ affects |E+| nodes incident to v+ and v+ itself. We formally
define edge and node PDP below.
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Definition 2 (Edge Φ -PDP). A randomized mechanism K satisfies edge Φ-
personalized differential privacy, if for each pair of edge neighboring graphs G

e∼
G′, and all possible outputs O ⊆ range(K), it holds:

Pr[K(G) ∈ O] ≤ emin{Φu,Φv} × Pr[K(G′) ∈ O].

Definition 3 (Node Φ -PDP). A randomized mechanism K satisfies node Φ-
personalized differential privacy, if for each pair of node neighboring graphs G

n∼
G′, and all possible outputs O ⊆ range(K), it holds:

Pr[K(G) ∈ O] ≤ emin{Φv|(v+,v)∈E+} × Pr[K(G′) ∈ O] and

Pr[K(G) ∈ O] ≤ eΦv+

× Pr[K(G′) ∈ O]

The dK-graph model [20] offers a systematized method to extract sub-
graph degree distributions from a given graph, i.e. dK-distributions. For d nodes
v1, . . . , vd of degrees g1, . . . , gd, where d ∈ [1, |V |], let Dd be the set of all possible
degree tuples dt = (g1, . . . , gd) in a graph G.

Definition 4 (dK-distribution). A dK-distribution over a graph G = (V,E),
denoted as dK(G), is a probability distribution p : Dd → N defined by p(dt) = n,
where n is the number of the subgraphs with degrees g1, . . . , gd.

The degree distribution of a graph is captured by 1K-distribution. The joint
degree distribution, i.e., the number of edges between nodes of different degrees,
is captured by 2K-distribution. This paper studied the private release of 1K and
2K-distributions. Figure 1 depicts the 1K and 2K-distributions of the graph G.
In 1K(G) we have p(2) = 4 which corresponds to 4 nodes A,B, C and D. In
2K(G) we have p(2, 2) = 4 which corresponds to 4 edges with joint degree (2, 2).

To show how a dK-distribution is extracted from a graph, we define dK
function. Let Gn be the set of graphs with n nodes and D be the set of dK-
distributions over a graph.

Definition 5 (dK-function). A dK function γdK : Gn → D defined by
γdK(G) = dK(G) maps a graph G ∈ Gn to its dK-distribution.

Conceptually, γdK(G) queries the dK-distribution of G. Figure 1 provides
an illustrative example of two (edge or node) neighboring graphs with their
corresponding dK-distribution for d = 1, and 2. In our work, for each dK-
distribution D, we want to generate DΦ that is an anonymized version of D
satisfying (edge or node) Φ-PDP. Thus, we view the response to γdK for d = 1
and 2 as a collection of responses to degree queries, one for each tuple (entry)
in a dK-distribution.

Definition 6 (Degree query). A degree query γq : γdK(G) → N maps a
degree tuple dt ∈ γdK(G) to a frequency value in N s.t. (dt, γq(G)) ∈ γdK(G).
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As DP implies PDP [10], to guarantee (edge or node) Φ-PDP, we perform
perturbation over real responses of γq by adding controlled noise from Laplace
stochastic process [5]. The response to each γq can be combined into a complete
dK-distribution using the parallel composition property of DP [21]. More specif-
ically, we add random noise into the real response γq(G), yielding a randomized
response γq(G) + Lap(Δ(γq)/ε), where Δ(γq) denotes the sensitivity of γq and
Lap(Δ(γq)/ε) denotes random noise drawn from a Laplace distribution. Here,
ε refers to a personalized privacy preference. We will discuss in detail how to
utilize ε to perform personalized perturbation in Sect. 5.

4 Sensitivity Analysis

The key challenge of releasing dK-distributions under PDP is to determine the
right amount of noise that guarantees both privacy and accuracy. Unlike previous
studies [2,7,9,22,23] that analyzed the entire dK-distribution sensitivity, we
focus on the sensitivity of a single dK-distribution entry, i.e., degree query γq.

Sensitivity of γq for 1K-Distribution Under Node-DP. Suppose that a
node v+ is added to G with a set E+ of new edges. Each edge in E+ can cause
at most one change in a current 1K-distribution entry, so the total change in an
entry is at most |E+|. Furthermore, the new node v+ can cause an additional
change in the same entry. Thus, the maximum change in γq is at most |E+| + 1.

Lemma 1. Let G
n∼ G′ be two node neighboring graphs. When d = 1, γq(G)

and γq(G′) differ by at most |E+| + 1.

In the worst case, |E+| can be |V |. Thus, the total number of changes in
γq(G), for d = 1, by adding a node is upper bounded by |V | + 1.

Sensitivity of γq for 2K-Distribution Under Node-DP. For a 2K-
distribution, when it is connected to a maximum degree node, each new edge
(v+, vi) in E+ can affect at most deg(G) edges. If all the vis incident to v+ have
the same degree, then the maximum increase in an entry is deg(G) × |E+|. This
can be further increased if v+ has the same degree as all the vis. Hence, the
maximum change in γq is at most (deg(G) + 1) × |E+|.

Lemma 2. Let G
n∼ G′ be two node neighboring graphs. When d = 2, γq(G)

and γq(G′) differ by at most (deg(G) + 1) × |E+|.

Prior studies [15,22] have shown that, in large social networks, deg(G) is
upper bounded by O(

√
|V |). Thus, for such networks, the sensitivity of γq for

d = 2 of two node neighboring graphs is upper bounded by O(|V |3/2).

Sensitivity of γq for 1K-Distribution Under Edge-DP. This is straight-
forward, because each new edge can affect at most two nodes.

Lemma 3. Let G
e∼ G′ be two edge neighboring graphs. When d = 1, γq(G) and

γq(G′) differ by at most 2.
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Sensitivity of γq for 2K-Distribution Under Edge-DP. This is similar
to the node-DP case. But since only one edge is added, it can affect at most
2 × deg(G) existing edges. The new edge itself can further increase the entry by
1 when its end nodes have the same degrees as the those of the affected edges.

Lemma 4. Let G
e∼ G′ be two edge neighboring graphs. When d = 2, γq(G) and

γq(G′) differ by at most 2 × deg(G) + 1.

Prior studies [15,22] have shown that, in large social networks, deg(G) is
upper bounded by O(

√
|V |). Thus, for such networks, the sensitivity of γq for

d = 2 is upper bounded by O(
√

|V |) too.
We have observed that, by adding a single node or edge in G, the maximum

change induced in the entries of G’s corresponding dK-distribution is two times
greater than the maximum change induced in a single entry of a dK-distribution.
Thus the sensitivity of degree query γq, is half as compared to dK-function γdK .
This shows that our analysis as compared to analysis in existing studies [2,8,9,
22,23] significantly enhances utility of published dK-distribution.

5 Proposed Approaches

In this section, we present four mechanisms for generating personalized differ-
entially private dK-distribution for d = 1 and d = 2.

5.1 Local Least Based Personalized Perturbation

A straightforward perturbation can be done over dK-distribution D by invok-
ing the Laplace mechanism with the strongest privacy preference in G. This
will, however, overprotect some individuals and degrade the output utility. To
address this issue, we propose Local Least (LL-dK) mechanism to perturb the
entries of D with the strongest local privacy preference. More specifically, LL-dK
perturbs each entry xi ∈ D with the smallest privacy preference εxi

associated
the corresponding nodes for xi. For instance, in Fig. 2 the frequency p(1) = 2 in
1K(G), and the frequency p(2, 4) = 3 in 2K(G) are perturbed with the privacy
preference ε = min(ΦB , ΦF ), and ε = min(ΦA, ΦC , ΦD, ΦE), respectively.

In LL-dK, the perturbation is conducted using the Laplace mechanism based
on the sensitivity of γq, and personalized privacy preferences εxi

Thus, by the
parallel composition property of DP [21] we have the following lemma.

Lemma 5. LL-dK generates (max
i

εxi
)-personalized differentially private dK-

distributions.

As LL-dK uses the local strongest privacy preferences, which may lead to
adding excessive noise when nodes with strong privacy preference have high
centrality. To control the amount of random noise and improve personalization,
another option is to simply discard high degree privacy conscious nodes.
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Fig. 2. An illustrative example of aggregation based perturbation over dK-
distributions, for d = 1, and d = 2.

5.2 Threshold Projection Based Personalized Perturbation

Algorithm 1: TP-dK algorithm
Input: A graph G = (V,E);

a value d in 1, 2;
a threshold τ ;
a projection parameter θ;
a projection algorithm P

Output: a perturbed d̂K
1 Gθ ← Project G by P w.r.t. θ

2 Gθ,τ ← Truncate Gθ w.r.t. τ

3 dKθ,τ ← Query Gθ,τ with γdK

4 d̂K ← Perturb dKθ,τ

5 Return d̂K

The threshold projection (TP-dK)
approach (Algorithm 1) first trans-
forms a graph G to a θ-bounded
graph Gθ with θ < deg(G) [2,3],
removes all nodes in Gθ with Φv < τ
to get Gθ,τ , where min(Φv) < τ <
max(Φv) is a global threshold, and
then perturbs entries of γdK(Gθ,τ ).
Since we have deg(G) ≤ θ, the sen-
sitivity of γq is reduced; likewise,
with threshold τ all nodes with high
privacy concerns are removed which
results in adding less noise to release
D of Gθ,τ .

In Algorithm 1, the perturbation
is conducted using the Laplace mechanism (Line 4) based on the sensitivity of
γq, and personalized privacy preference τ . Thus, by the parallel composition
property of DP [21] we have the following lemma.

Lemma 6. TP -dK generates τ -personalized differentially private dK-
distributions.

The main challenge in this approach is to select good thresholds (i.e., θ, and
τ) that can lower the sensitivity and preserve as much topological structure of a
graph as possible [2]. To address this limitation, we now propose a personalized
mechanism based on sampling.
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5.3 Sampling Based Personalized Perturbation

Algorithm 2: ST-dK algorithm
Input: A graph G = (V,E);

a value d in 1, 2;
a threshold τ ;

Output: a perturbed d̂K
1 dK ← Query G with γdK

2 dKτ ← Split and Sample dK

3 d̂K ← Perturb dKτ

4 Return d̂K

Sampling is shown to be a power-
ful tool that can be integrated into
DP to amplify privacy protection
[10,17]. The sampling (ST-dK) app-
roach (Algorithm 2) first splits each
entry xi ∈ D such that frequency
count of each xi is equal to one.
Then samples each xi with proba-
bility pi = 1 if εxi

≥ τ , and sam-
ples other entries i.i.d. with proba-
bility pi = eεxi −1

eτ −1 if εxi
< τ , where

min(Φv) < τ < max(Φv), and εxi
is the smallest privacy preference associated

the corresponding nodes for xi. The inclusion probability for each xi depends on
the corresponding εxi

, and the global threshold τ .
In Algorithm 2, the perturbation is conducted using the Laplace mechanism

(Line 3) over sampled dK-distribution based on the sensitivity of γq, and per-
sonalized privacy preference τ . Thus, by the parallel composition property of DP
[21] we have the following lemma.

Lemma 7. ST -dK generates τ -personalized differentially private
dK-distributions.

Our sampling mechanism is inspired by the results from [10,17], where sam-
pling prior to DP is shown to benefit privacy by combining two sources of ran-
domness; however, introducing two kinds of errors: sampling error, and perturba-
tion error. We observe that, smaller τ increases perturbation error, and larger τ
increases sampling error, and vice versa. To reduce overall error, we now propose
a personalized mechanism based on aggregation.

5.4 Aggregation Based Personalized Perturbation

Algorithm 3: AG-dK algorithm
Input: A graph G = (V,E);

a value d in 1, 2;
a partitioning parameter k;
a partitioning algorithm M

Output: a perturbed d̂K
1 dK ← Query G with γdK

2 T ← Compute corresponding ε
3 dKp

i ← M(dK) with k and T
4 dKa

i ← Aggregate dKp
i

5 d̂K ← Perturb dKa
i

6 Return d̂K

The technique of aggregation is
shown to reduce noise and enhance
the utility of publishing differen-
tially private histogram [2,22]. Since
degree distribution is obtained from
normalizing the degree histogram
[2], the idea of aggregation can be
equivalently applied. Our aggrega-
tion mechanism AG-dK (Algorithm
3) computes a table T by combining
privacy preferences ε of correspond-
ing nodes associated with each xi ∈
D as a sorted list. Then, performing
aggregation over γdK(G) consists of
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two steps: (i) entries with similar degrees and privacy preferences are partitioned
into the same group; (ii) the frequency values of entries in the same group are
aggregated. For instance in Fig. 2, a dK-distribution with d = 1, and d = 2 is
partitioned into multiple groups, then the frequency values of entries in each
group are aggregated by an aggregation process. The perturbation is performed
over each aggregated frequency value with the smallest privacy preference εpi

associated with the corresponding nodes for each partition pi.
In Algorithm 3, the perturbation is conducted using the Laplace mechanism

(Line 5) over aggregated dK-distribution based on the sensitivity of γq, and
personalized privacy preferences εpi

associated to each partition. Thus, by the
parallel composition property of DP [21] we have the following lemma.

Lemma 8. AG-dK generates (max
i

εpi
)-personalized differentially private dK-

distributions.

AG-dK significantly reduces the total amount of noise to achieve PDP, par-
ticularly when the number of partitions in aggregated dK-distribution is smaller.

6 Experiments

In this section we evaluate our proposed approaches, and discuss the experimen-
tal results.

6.1 Experimental Setup

Datasets. We use four real-world network datasets from different domains
including social, citation, and email networks: (1) Facebook1 contains 4,039
nodes and 88,234 edges. (2) Wiki-Vote (see footnote 1) contains 7,115 nodes and
103,689 edges. (3) Ca-HepPh (see footnote 1) contains 12,008 nodes and 118,521
edges. (4) Email-Enron (see footnote 1) contains 36,692 nodes and 183,831 edges.

Privacy Specifications. Following [10], we randomly divide nodes in a network
into three groups: conservative with fraction fC = 0.54, moderate with fraction
fM = 0.37, and liberal with fraction fL = 1.0 − (fC+fM ), having high (randomly
drawn from range [εC , εM ]), medium (randomly drawn from range [εM , εL]), and
low (fixed at εL = 1.0) privacy preferences, respectively. We use εC , εM , εL ∈
[0.01, 1.0], which cover the range of DP levels used in the literature [8–10], where
default values of εC = 0.01, and εM = 0.2 [10].

Utility Metrics. Following [2,3,7], we use two utility metrics to measure the
difference between the original dK-distribution D and its private version DΦ: (1)
L1 distance measures the network structural error by calculating ‖D − DΦ‖1 =
∑deg(G)

i=1 |Di − DΦi
|. We pad a distribution entry with 0 if it does not exist in D

or DΦ; (2) Kolmogorov-Smirnov (KS) distance measures the closeness between

1 Network datasets are available at http://snap.stanford.edu/data/index.html .

http://snap.stanford.edu/data/index.html
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the cumulative distribution functions of D and DΦ by calculating KS(D,DΦ)
= maxi|CDFDi

− CDFDΦi
|.

Baseline Methods. We compare the utility of the following methods for gen-
erating personalized differentially private dK-distributions: (1) PDPmin is a
standard DP algorithm using Laplace mechanism [5] with the minimum privacy
preference in a network [10]. (2) LL-dK is our proposed local least approach. (3)
TP-dK is our threshold projection approach which extends the projection algo-
rithm Stable-Edge-Removal [7] for graph projection. (4) ST-dK is our sampling
approach. Additionally, we investigate two variations of TP-dK, and ST-dK with
threshold [10] τ = max(Φv), and τ = 1

n

∑
Φv (i.e., the average privacy preference

in a network). We denote these as TP-dKavg, and ST-dKavg. 5) AG-dK is our
proposed aggregation based approach which extends the algorithm MDAV-dK
[9] for partitioning dK-distributions.

Parameter Settings and Others. We choose θ ∈ {1, 2, 4, . . . , 2�2log2(|V |)�}
[2,3], for projection in TP-dK. We vary sample size m ∈ [30%, 70%] [18] to
study the impact of sample size in ST-dK. Following [4,8,9], we choose k ∈
{2, 4, 6, . . . , 100} for partitioning in AG-dK. For each method, we ran 3 times
and took the average result [8]. We use Orbis [19] to generate dK-distributions
for d = 1 and d = 2.

6.2 Results and Discussion

Evaluating Personalized Differentially Private 1K-Distributions.
Figure 3 presents our experimental results. For all four datasets, w.r.t. L1 dis-
tance, under both edge-PDP and node-PDP, our methods yield less network
structural error than PDPmin for every value of k, θ, and m, except for the
largest network Email-Enron, where PDPmin performs better than ST-dK
andST-dKavg, when sample size is greater than 30%. This is because, by increas-
ing the sample size for larger dataset, perturbation error dominates the impact
on the utility. Overall, our methods AG-dK, TP-dK, and TP-dKavg outperform
all other methods, because aggregation reduces the overall noise and projec-
tion reduces the sensitivity, thus enhancing output utility significantly. When
measured by the KS distance, for all four datasets, under edge-PDP our method
AG-dK, and under node-PDP our method LL-dK outperforms PDPmin by gen-
erating more similar 1K-distributions after perturbation. Overall, TP-dK, and
TP-dKavg yield higher values of KS distance under both edge-PDP and node-
PDP because graph transformation may change the topological structure of an
original graph which results in generating less similar dK-distributions.

Evaluating Personalized Differentially Private 2K-Distributions.
Figure 4 presents our experimental results. For all four datasets, w.r.t. L1 dis-
tance, under both edge-PDP and node-PDP, our methods yield less network
structural error than PDPmin for every value of k, θ, and m. Also, unlike
to 1K-distribution, in 2K-distribution ST-dK, and ST-dKavg perform better
than LL-dK because sensitivity of 2K-distributions is high as compared to 1K-
distribution, thus overall more noise is added into 2K-distribution as compared
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Fig. 3. The L1 and KS distance of 1K-distributions on four datasets varying θ, k, and
m: (upper half) under edge-PDP and (lower half) under node-PDP.

to sampled 2K-distribution. Overall, our methods TP-dK, and TP-dKavg out-
perform all other methods, w.r.t. L1 distance, and the results of AG-dK, for
larger k values, are close to them, because aggregation and projection enhance
the overall utility. On the other hand, w.r.t. KS distance, for all four datasets,
under edge-PDP our method AG-dK, and under node-PDP our method LL-dK
outperforms PDPmin by generating more similar 2K-distributions after pertur-
bation. In addition, under edge-PDP, the results of LL-dK, ST-dK, ST-dKavg

and PDPmin are close, which reflects both sampling error and perturbation error
contribute towards the results. Contrary, under node-PDP, the results of ST-dK,
ST-dKavg and PDPmin are almost same which reflect the impact of high sensi-
tivity, where perturbation error dominates. Overall, TP-dK, and TP-dKavg yield
higher values of KS distance under both edge-PDP, and node-PDP because of
graph transformation.
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Fig. 4. The L1 and KS distance of 2K-distributions on four datasets varying θ, k, and
m: (upper half) under edge-PDP and (lower half) under node-PDP.

Discussion. We analyse the trade-offs between utility and privacy of dK-
distributions under PDP generated using our proposed approaches. We have
noticed that, the error caused by random noise which depends on the sensitivity
and the personalized privacy preference ε dominates the impact on output utility.
Increasing ε and decreasing sensitivity can help to reduce error, though, generat-
ing more similar dK-distributions to their original dK-distribution is challenging
due to noise addition. Reducing sensitivity can increase the output utility with-
out compromising privacy; however, it is more challenging for node-PDP than
for edge-PDP as graph data is highly sensitive under node-PDP.

7 Conclusions and Future Work

In this paper, we have studied the problem of publishing degree distribution and
joint degree distribution under PDP. We have theoretically analyzed the sensi-
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tivity of these distributions under edge-PDP and node-PDP. We have proposed
four personalized privacy-preserving mechanisms while enhancing output utility.
The effectiveness of our proposed work has been empirically verified over four
real-world networks. Future extensions to this work will consider local differential
privacy [12] to release network statistics under personalization.
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Abstract. Product Quantization is popular for approximate nearest
neighbor search, which decomposes the vector space into Cartesian prod-
uct of several subspaces and constructs separately one codebook for
each subspace. The construction of codebooks dominates the quanti-
zation error that directly impacts the retrieval accuracy. In this paper,
we propose a novel quantization method, residual vector product quan-
tization (RVPQ), which constructs a residual hierarchy structure con-
sisted of several ordered residual codebooks for each subspace. The pro-
posed method minimizes the quantization error by jointly optimizing all
the codebooks in each subspace using the efficient mini-batch stochastic
gradient descent algorithm. Furthermore, an efficient encoding method,
based on H-variable Beam Search, is also proposed to reduce the compu-
tation complexity of encoding with negligible loss of accuracy. Extensive
experiments show that our proposed method outperforms the-state-of-
the-art on retrieval accuracy while retaining a comparable computation
complexity.

Keywords: Vector quantization · Approximate nearest neighbor
search · Residual encoding

1 Introduction

Nearest neighbor search plays an important role in many fields, such as informa-
tion retrieval, computer vision, pattern recognition and machine learning, etc.
Given a data point x ∈ RD, The aim of nearest neighbor search is to find an
element in a finite set, which is the closest point to x under certain distance mea-
surement. However, due to the curse of dimensionality [4] of high-dimensional
data, the nearest neighbor search is impractical because of the high computa-
tion complexity. Therefore, lots of attentions have been paid to more practical
approximate nearest neighbor (ANN) search methods, which achieves efficient
retrieval through compressing data and simplifying distance calculation between
vectors.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13280, pp. 208–220, 2022.
https://doi.org/10.1007/978-3-031-05933-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05933-9_17&domain=pdf
https://doi.org/10.1007/978-3-031-05933-9_17


Residual Vector Product Quantization 209

Vector quantization [14] is a popular way for ANN search. It maps the data
space into a finite set named codebook, and then the data points are presented
as short binary indices of codewords from the codebook and hence reducing
the memory cost. In addition, the approximate distance between vectors can
be efficiently computed using table lookups. Because of the advantages, lots
of vector quantization based methods have been proposed for large scale ANN
search [17]. These methods can be divided into two main categories according to
the generation way of codebooks, which are Cartesian product based methods,
such as Product Quantization (PQ) [8] and linear addition based methods, such
as Addition Quantization (AQ) [3].

PQ [8] is a pioneering Cartesian product based quantization method for ANN
search. PQ decomposes the vector space into several subspaces, and for each
subspace generates one sub-codebook. The Cartesian product of all the sub-
codebooks can generate enormous codewords so that a large scale dataset can
be indexed exactly. In order to improve the performance of PQ, OPQ [6] finds the
best partition of subspaces through an orthonormal matrix R, and OCKM [15]
generates two codebooks for each subspace to further reduce the quantization
error. DCPQ [13] constructs dual PQ quantizers to encode a vector and selects
the one with lower quantization error as the codes of a vector. LOPQ [9] locally
optimizes an individual PQ for per inverted list and use it to encode the residuals
of the corresponding list.

AQ [3] is the representative method of linear addition. AQ generates sev-
eral codebooks without any constraint, and then vectors are quantized using
the sum of several codewords coming from different codebooks. Despite that
the quantization error of AQ is smaller than PQ, the encoding method is very
computationally expensive due to the high level of freedom of codewords com-
bination. In addition, the distance computation is also less efficient since the
codeword dimension is higher than PQ. Residual Vector Quantization (RVQ)
[5] is another linear addition based method, which defines a hierarchy structure
for the residual codebooks, and each layer encodes the residuals of the previ-
ous layers. However, due to the isolated training and encoding, the quantization
error is high. And improvements based on RVQ have been proposed [1,12,16] to
improve the encoding of vectors or the training of residual codebooks.

In summary, compared to the Cartesian product based methods, because of
the more complex codebooks structure, linear addition based methods achieve
lower quantization error and hence acquire higher retrieval accuracy, while
they suffer from higher complexity of distance computation, which significantly
decreases the search efficiency. In this paper, we propose a novel quantization
method which utilizes the advantages of both the categories. The followings are
the key contributions of this work:

– A novel Cartesian product based quantization method Residual Vector Prod-
uct Quantization (RVPQ) is proposed, which achieves better retrieval accu-
racy for ANN search than the state-of-the-art methods.
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– All the residual codebooks for each subspace are jointly optimized by minimiz-
ing the quantization error, using an efficient training algorithm to converge
into a satisfying quantization error.

– An efficient encoding algorithm based on H-Variable Beam Search is pro-
posed, which improves the encoding efficiency without increasing the quanti-
zation error.

The rest of this paper is organized as follows: In Sect. 2, the related work and
some notations of vector quantization are introduced. In Sect. 3, the proposed
residual vector product quantization is described, and the theoretical analysis is
provided. In Sect. 4, the experiment setup and the datasets are described, and
then the experiment results are shown and analyzed. Finally, Sect. 5 concludes
this paper.

2 Related Work

Vector quantization [7] is a function Q that maps a space X ⊂ RD into a finite
codebook C of size K. Therefore, a vector x is presented by a binary indices of
the nearest codeword ck in codebook C and hence reducing the memory load.
And Q is formally defined as Q(x) = argmin

k∈{1,··· ,K}
dis (x, ck), where dis is a distance

function, which usually is the L2 distance between the vector x and codewords ck

coming from C. The construction of the codebook is crucial, and the quality of
vector quantization is measured by quantization error that is the mean squared
error (MSE) between the vectors and their corresponding codewords. Therefore,
vector quantization can be viewed as an optimization problem which optimizes
the codebook by minimizing the MSE. And the MSE of N vectors is formally

formulized as 1
N

N∑

i=1

‖xi − cki
‖22, ki = Q (xi). However, traditional vector quan-

tization methods, such as K-means, only construct a single codebook, and thus
they are impractical due to the high computation complexity when K is large,
and hence are not suitable for ANN search which requires significant codewords
to index a large scale dataset.

PQ [8] divides the space X ⊂ RD into J subspaces and generates one sub-
codebook of size K for each subspace. Then the Cartesian product of these J
sub-codebooks, denoted as

{
C1 × C2 × · · · × CJ

}
, constructs the codebook C of

PQ, which increases the codewords number from JK to KJ . When K is large,
the amount of codewords is enough for ANN search. Each sub-vector xj of x
is quantized separately by the corresponding sub-codebook Cj . Therefore the
MSE of PQ can be formulized as:

MSE
PQ

=
1
N

N∑

i=1

J∑

j=1

∥
∥
∥xj

i − cj
ki

∥
∥
∥
2

2
.

In the search stage of PQ, the distance between a query vector and any vec-
tors in the database can be approximated by asymmetric distance computation
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(ADC) [8], which computes the distances between the query and the codewords
of the database vectors. And this can be efficiently done by table lookups, all
distances between any sub-vector of the query and all the codewords from the
corresponding sub-codebook are precomputed and stored in J tables of size 1×K.
Then the distance is obtained by the sum of J lookups.

RVQ [5] defines a residual hierarchy structure for M ordered residual code-

books. The residual r = x −
m−1∑

i=1

Ci
xk

obtained by the previous m − 1 layers

is quantized as the nearest codeword coming from the corresponding residual
codebook Cm. RVQ optimizes the quantization error by solving M subprob-
lems, which are training the M residual codebooks successively. However, RVQ
only gets the local optimal solution of codebooks and codes of vectors due to
the interrelationship between residual codebooks and thus results in high quan-
tization error.

3 Residual Vector Product Quantization

The framework of RVPQ is that the vector space is divided into J subpaces and
then we construct a residual hierarchy structure consisting of M residual code-
books, denoted as C(j) =

{
Cj

1 , · · · , Cj
M

}
, for each subspace. Subspace partition

has a crucial role for minimizing quantization error and can be presented by
an orthonormal matrix R initialized by Eigenvalue Allocation [6]. We optimize
RVPQ using an alternative iteration strategy, thus all residual hierarchy struc-
tures are trained independently by solving J subproblems that minimizing the
quantization error with R fixed, and vice versa. Given N training vectors, we
formulate the MSE of the jth subspace as follows:

MSE
RV PQ(j)

=
1
N

N∑

i=1

∥
∥
∥
∥
∥
Rxi

(j) −
M∑

m=1

cm
ki

(j)

∥
∥
∥
∥
∥

2

2

, (1)

where Rxi
(j) represents the sub-vectors in the jth subspace and cm

ki

(j) represents
the codeword selected from the mth residual codebook of the jth residual hier-
archy structure. Therefore, the MSE of RVPQ is the sum of the quantization
error of all the J subspaces. The training algorithm of RVPQ is described in the
Algorithm 1, which consists of two sections. The function of the first section,
from line 3 to 10, is to update the residual hierarchy structure for all the J sub-
spaces, and the function of the second section, from line 10 to 12, is to optimize
R. In the subsequent subsections, we describe in detail the learning for RVPQ.

3.1 Learning for Residual Hierarchy Structure

Recall that RVQ obtains the residual codebook for each layer separately by
clustering the residual r computed by previous layers. However, the codebooks
in the residual hierarchy structure are interrelated, even though the optimal
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Algorithm 1: Training Procedure for RVPQ
Input: Training Set X = {x1, · · · , xN}; Learning Rate γ; Mini-Batch Size S;

The training times Epoch, the number of inner iteration I

Output: residual hierarchy structure C =
{

C(1), C(2), · · · , C(J)
}

,

transformation matrix R;
1 Initialize the residual hierarchy structure C and rotation matrix R;
2 while Epoch ≥ 1 do

3 Project the training set X to obtain X̂ = RX;

4 partition the training set X̂ into L mini-batches {MB1, · · · , MBL};
5 for each subspace j ∈ [1, J ] do
6 for each mini-batch MBl do

7 encode the samples x̂j
i ∈ MBl by the H- Variable Beam Search;

8 while I ≥ 1 do
9 calculate the gradient by formula (2), and update

C(j) =
{
Cj

1 , · · · Cj
M

}
;

10 I − −;

11 calculate the approximation Y of X̂;

12 apply SVD to obtain X̂Y T = UΣV T ;

13 update R by R = UV T ;
14 decrease the learning rate γ;
15 Epoch − −;

16 return C =
{

C(1), C(j), · · · , C(J)
}

and R;

residual codebook can be obtained for each layer, the whole residual hierarchy
structure generally gets a local optimal solution which leads to high quantization
error.

Therefore, in order to reduce the quantization error, the codebooks from
a residual hierarchy structure should train jointly. This is a challenging opti-
mization problem due to the large number of unknown parameters. We pro-
pose an efficient solution for this problem using mini-batch stochastic gradient
descent. The formula (2) calculates the gradient of (1) about C

(j)
m , where bj

m

is a K-dimensional unit vector which denotes the indices of a codeword, and
thus the code of sub-vector Rx(j) is presented as

[
bj
1, · · · , bj

m, · · · bj
M

]
, and the

codeword indexed by bj
m can be obtained through the product C

(j)
m bj

m. The train-
ing dataset is divided into L batches with size S. For the jth subproblem (1),
all the training vectors from a mini-batch is utilized to calculate the gradients{

∇
(
C

(j)
1

)
, · · · ,∇

(
C

(j)
M

)}
using formula (2). Then all the residual codebooks

{
C

(j)
1 , · · · , C

(j)
M

}
of the jth residual hierarchy structure are updated simultane-

ously using formula (3), where γ is the learning rate and t represents the epoch
number.
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∇
(
C

(j)
m

)
= ∂

∂C
(j)
m

(
N∑

i=1

∥
∥
∥
∥Rxi

(j) −
M∑

m=1
C

(j)
m bj

m

∥
∥
∥
∥

2

2

)

=
N∑

i=1

2
(

M∑

m=1
C

(j)
m bj

m − Rxi
(j)

)
(
bj
m

)T (2)

C(j)
m (t + 1) = C(j)

m (t) − γj (t) ∇
(
C(j)

m

)
(3)

Hence, each epoch updates the residual codebooks L times. The larger S is,
the less update frequency is, and hence reducing the communication cost. How-
ever, as S increases, the convergence level of quantization error rises because of
the over-training for each mini-batch. This problem can be solved using EM-SGD
[10] which sets a large S to improve the computation efficiency while retaining
a satisfying convergence level. Thus we add a regularization term to prevent
the codebooks from over-training in a single mini-batch for RVPQ. And hence
we reformulate formula (3) as (4), where η (t) is used to restrain the extent of
variation of residual codebooks in each mini-batch.

C(j)
m (t + 1) = C(j)

m (t) − γj (t)
(
∇

(
C(j)

m

)
+ η (t)

(
C(j)

m (t + 1) − C(j)
m (t)

))
(4)

3.2 Encoding Algorithm

The quantization code of d-dimensional subvector Rx(j) consists of M code-
words selected from the residual hierarchy structure of the jth subspace, where
d = D/J . In fact, the encoding for Rx(j) is a combinatorial optimization problem
which aims to find the best codewords combination from the corresponding resid-
ual hierarchy structure. We solve this problem by using a heuristic method which
is similar to Beam Search used in AQ [3]. More specifically, we remain a number
of candidates of codewords combinations with the minimum quantization error
for each layer. In the first layer, we choose the H = H0 nearest codewords to sub-
vector Rx(j) from the corresponding codebook to construct H0 candidates, and
then these H0 corresponding residuals are computed for the next layer. For the
subsequent layers, one way proposed in [12] still remains the best H0 candidates
from H0K combinations which are generated by adding the K codewords of the
corresponding codebook to the H0 candidates. After finishing the quantization
for all the M layers, the candidate with the best quantization error is selected
as the codes of subvector Rx(j). We name this method as H-Fixed Beam Search
since the H for each layer is always H0. Based on the hierarchy structure, this
encoding method is more efficient than AQ which needs to search for the best
H0 candidates from (M − m + 1)H0K combinations for the mth layer.

However, the contribution of each layer to the quantization error is not equal,
and the next layer contributes much less than the previous one. For instance,
at the mth layer, adding an identical codeword to the H candidates, the candi-
date with a smaller quantization error is probably still smaller than the others.
The deeper the layer is, the greater the probability is. Therefore, H-Fixed Beam
Search involves many unnecessary computation at the deep layers, and this prop-
erty suggests that it is not necessary to remain the fixed number of candidates
for each layer. Since the upper layer has a more important contribution to the
quantization error, we initialize H to a big value H0 in order to remain enough
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candidates. With the deepening of the layer, we set H = H0/2 to reduce the
computation of quantization error from dH0K to dH0K/2, and hence improves
the encoding efficiency. We name this method as H-Variable Beam Search, due
to the variable number H of candidates for different layers.

When encoding the residual r
(j)
m using the codebook of the mth layer, the

quantization error between r
(j)
m and codewords cm,k of the mth layer presented

in (5) needs to be computed, where r
(j)
m = Rx(j) −

m−1∑

l=1

cl,k, r
(j)
1 = Rx(j).

e
(
r
(j)
m , cm,k

)
=

∥
∥
∥r

(j)
m

∥
∥
∥
2

2
− 2

〈
Rx(j), cm,k

〉
+ 2

m−1∑

l=1

〈cl,k, cm,k〉 + ‖cm,k‖22 (5)

The first term is the length of the subvector r
(j)
m , which is calculated by the pre-

vious layer, and thus no extra computation is required. The second term is the
inner product between r

(j)
m and the codewords cm,k of the mth layer, which costs

O(dK). The third and the fourth terms are the inner product between cl,k and
the codewords cm,k of the mth layer, cost (m − 1) dKH/2m−2. Based on the H-
variable beam search, the best H/2m−1 candidates are selected from KH/2m−2

candidates, and it costs
(
KH/2m−2

)
log

(
H/2m−1

)
. After finishing the quanti-

zation of all the M layers, the best codewords combination for Rx(j) is retained.
The total computation complexity of J subvectors is presented in Table 1, and
the computation complexity of H-fixed Beam Search and Beam Search are also
presented. As the Table 1 shows, our encoding method is the most efficient.

Table 1. Computation complexity for different encoding algorithm

Method Computation complexity for encoding Rx

H-variable BS O

(
MDK + K logH +

M∑
m=2

(
(m − 1)DKH/2m−2 +

(
KH/2m−2

)
log

(
H/2m−1

)))

H-fixed BS O

(
MDK + K logH +

M∑
m=2

((m − 1)DKH + KH logH)

)

Beam search O

(
MDK + MK logH +

M∑
m=2

(M − m + 1) (DKH + KH logH)

)

3.3 Learning for Transformation Matrix R

PQ [8] involves decomposing the D-dimensional data space into J subspaces.
The experiment results of PQ suggest that the way of data space decompo-
sition has a great impact on quantization error. For instance, vectors such as
SIFT and GIST are structured descriptors, using a random order to divide the
vectors instead of the natural order will lead to poor results, and using the
structured order which groups together dimensions that are related can signifi-
cantly improve the performance. However, the structured information of data is
not always available in advance. Therefore, we view the space decomposition as
an unkonwn parameter to be solved, which can be obtained by minimizing the
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objective function of quantization error. Specifically, we take a similar method
proposed in [6]. Because of any reordering of the dimensions can be represented
by an identity matrix with rows rearranged that is an orthonomal matrix, thus
any space decomposition can be accomplished by an orthonormal matrix R.
Therefore, the D-dimensional data space is first transformed by R, then the
dimensions of transformed space are grouping in natural order into J subspaces.

Given the J residual hierarchy structures of RVPQ fixed, we optimize the
orthonormal matrix R. The decoding of Rx(j) is the sum of codewords selected
from the jth residual hierarchy structure, and then the decoding of Rx is pre-

sented as a vector y = [
M∑

m=1
C

(1)
m b1m, · · · ,

M∑

m=1
C

(j)
m bj

m, · · · ,
M∑

m=1
C

(J)
m bJ

m], which is

the concatenation of the approximations of J subvectors.
We use a matrix X ∈ RD×N to represent the training set, in which each

column is a training vector, and a matrix Y ∈ RD×N to represent the decoding
of the training vectors. Thus the matrix form of MSE of RVPQ can be formulated
as follows:

min
R

MSE
RV PQ

= ‖RX − Y ‖2F s.t. RT R = I. (6)

where ‖·‖2F is the Frobenius norm, and this optimization problem is an Orthog-
onal Procrusters Problem which has a closed-form solution that can be solved
by SVD, XY T = UΣV T , so R = V UT .

4 Experiment Results and Analysis

In this section, we evaluate our approach on three datasets1, and the descriptions
of these datasets are listed in Table 2. We use the Recall@R as the performance
measurement of ANN search, it means the proportion of query vectors for which
the nearest neighbor is ranked within the first R positions. Hence Recall@R rep-
resents the ratio of queries for which the nearest neighbor is retrieved correctly.

Table 2. Detail of the SIFT-1M and GIST-1M datasets

Dataset SIFT-1M GIST-1M SIFT-100M

Descriptor dimension 128 960 128

Training samples 100000 500000 5000000

Database samples 1000000 1000000 100000000

Query samples 10000 1000 10000

4.1 Parameters Setting for RVPQ

We set J = 2,M = 4,K = 256 for 64bits codes and train the RVPQ using
the Algorithm 1, which has several hyper-parameters including learning rate γ,
1 All of datasets used in this section are available at http://corpus-texmex.irisa.fr/.

http://corpus-texmex.irisa.fr/


216 Z. Xu et al.

regularization coefficient η and mini-batch size S. And these hyper-parameters
altogether decide the convergence level of quantization error. For epoch t, we use
the O(1/

√
t ) decay learning rate for EM-SGD, and hence γl(t) = γl(0)

√
α

t+α ,

where γl(0) is the initial learning rate used to update the codebook of the lth
layer for a subspace, and α corresponds to the decaying speed. Note that as the
layer deepens, the corresponding magnitude of codebook decreases, and thus we
set different initial learning rates for different layers of a subspace. Therefore, we

define a total value γtotal =
m∑

l=1

γl(0) and let γl(0) = 1
log2 l+1γ0. Then we search

the range of γtotal ∈
{
10−1, · · · , 10−5

}
, S ∈ {102, 103, 104}, α ∈

{
100, · · · , 104

}

and η ∈ {100, · · · , 105}.
Experimental results demonstrate that the quantization error is the best

when γtotal = 0.05, S = 103, α = 104, η = 50. We also compare the EM-SGD
with SGD and the curves of quantization error are shown in Fig. 1. This figure
shows that the convergence rate of EM-SGD is slower than SGD. However, as
epoch increases, the quantization error of SGD converged to a higher level after
about 150th epoch, while the error of EM-SGD still has a significant downward
trend and eventually converged to a lower level after 350 epochs.

Fig. 1. Convergence curve of EM-SGD
and SGD in SIFT-1M.

Fig. 2. The recall@R of exhaustive
search on SIFT-1M.

4.2 Comparison of Encoding Algorithms

In this section, we compare our encoding method to the Beam Search [3] and
the H-fixed Beam Search [12]. We encode SIFT-1M using the RVPQ based on
different encoding methods, and then we record the quantization error and time
consumption respectively. We test the performance of these encoding methods
for H0 = 32 and H0 = 64, and the results are shown in Table 3, which shows that
H-fixed Beam Search achieves the best quantization error. Although the encod-
ing time of Beam Search is the longest, the quantization error is still higher than
H-fixed Beam Search. It suggests that the high level freedom of codewords com-
bination is not suitable for residual hierarchy structure. Note that our encoding
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method is the most efficient with only 1.3% and 0.8% loss of accuracy compared
to the H-fixed Beam Search.

Table 3. The error and time cost for encoding the SIFT-1M (64bits)

H0 = 32 H0 = 64

Time (s) Error Time (s) Error

Beam search 14872.46 18405.48 38833.47 18325.38

H-fixed beam search 3906.60 18375.01 15023.68 18304.68

H-variable beam search 2438.10 18621.38 4524.73 18427.71

4.3 Exhaustive ANN Search

We perform exhaustive search for all query vectors of SIFT-1M and GIST-1M.
We set J = 2,M = 2 for 32bits codes and J = 2,M = 4 for 64bits codes to
train the RVPQ. And then the performance is compared to the state-of-the-art
methods that are the Cartesian product based methods including PQ [8], OPQ
[6], APQ [3] OCKM [15], DCPQ [13] and the linear addition based methods
including RVQ [5], AQ [3] and CompQ [12]. The results of Recall@R are listed
in Table 4, where the results of the other methods are taken from the original
publications. Note that the Recall@R results of all methods are based on the
identical datasets partition. In other words, the results are based on identical
training set, database, and query set.

As the Table 4 shows, RVPQ outperforms all the state-of-the-art Cartesian
product based methods. Furthermore, the recall of our method is comparable
to AQ and Compq which have much higher distance computation complexity
than RVPQ. Note that our method performs better than RVQ which suggests
that the training for residual codebooks of residual hierarchy structure is not a
separately optimal problem and should be solved jointly.

We also evaluate the impact of the number of subspaces J and the number of
codebooks M in a subspace on quantization error and accuracy of ANN search.
We set J ∈ {2, 4} and M ∈ {2, 4, 6, 8} to train the RVPQ respectively, and
then we encode SIFT-1M to obtain the codes of diverse lengths ranging from
32 bits to 256 bits. We perform the exhaustive search on SIFT-1M using these
codes of different lengths. Figure 2 shows the recall@R of different settings and
the corresponding quantization error. As can be seen from Fig. 2, the longer the
code length, the smaller the error and the higher the recall rate of the retrieval.
In addition, for the same length of codes, J = 2,M = 4 performs better than
J = 4,M = 2, while J = 4,M = 4 performs better than J = 2,M = 8. It
suggests that given a code length, we should find a proper trade-off between J
and M .
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Table 4. Exhaustive search on SIFT-1M and GIST-1M

(a) Recall@R on SIFT-1M, 32bits

recall@1 recall@10 recall@100

PQ 0.055 0.225 0.592
OPQ 0.068 0.263 0.658
OCKM NA 0.349 0.741
RVPQ 0.102 0.347 0.745
AQ 0.105 0.414 0.823
CompQ 0.135 0.435 0.818

(b) Recall@R on GIST-1M, 32bits

recall@1 recall@10 recall@100

PQ 0.024 0.056 0.155
OPQ 0.059 0.152 0.394
OCKM NA 0.173 0.466
RVPQ 0.067 0.177 0.471
AQ 0.069 0.188 0.465
CompQ 0.072 0.200 0.504

(c) Recall@R on SIFT-1M, 64bits

recall@1 recall@10 recall@100

PQ 0.220 0.605 0.921
OPQ 0.239 0.634 0.939
OCKM 0.279 0.683 0.945
APQ 0.297 0.740 0.972
DCPQ 0.254 0.656 0.943
RVPQ 0.303 0.738 0.974
RVQ 0.259 0.658 0.954
CompQ 0.327 0.773 0.984

(d) Recall@R on GIST-1M, 64bits

recall@1 recall@10 recall@100

PQ 0.048 0.114 0.336
OPQ 0.117 0.336 0.713
OCKM 0.131 0.355 0.722
DCPQ 0.049 0.121 0.382
RVPQ 0.146 0.397 0.765
RVQ 0.116 0.325 0.676
CompQ 0.155 0.419 0.801

4.4 Non Exhaustive Search Based on Inverted Multi-index

The inverted multi-index (IMI) [2,11] is an efficient non-exhaustive search frame-
work. IMI uses a PQ consisting of J sub-codebooks of size K to build the inverted
file system. Each codeword of PQ is assigned a short list that contains all the
vectors belonging to this codeword. For each query, IMI only reranks the vec-
tors from a number of short lists instead of the whole database, and hence
significantly improving the search efficiency. Based on the IMI, we perform the
non-exhaustive search using the codes quantized by RVPQ, and we name this
method as Multi-RVPQ-ADC.

During the non-exhaustive search, for each query, at first, a number of nearest
codewords from PQ codebooks are found. Since the distance between the query
and codewords of PQ can be obtained by table lookups, we can efficiently find
the corresponding short lists. The total number of vectors extracted from these
short lists is denoted as T . We only need to rerank the T vectors to retrieve the
nearest neighbor for each query.

We set J = 2,M = 1,K = 256 for PQ to build the IMI, and J = 2,M =
4,K = 256 for 64bits codes for RVPQ on SIFT-1M. Table 5 shows the recall
versus the T top re-ranked vectors. As can be seen, Multi-RVPQ-ADC sig-
nificantly decreases the number of comparisons with a negligible drop in the
Recall, and when T = 10000, the Recall@R is close to that of exhaustive
search. In addition, we also evaluate the performance of Multi-RVPQ-ADC on
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a larger database SIFT-100M and compare it to the Multi-OPQ-ADC [6]. We
also set J = 2,M = 1,K = 256 for PQ to build the IMI, and then we set
J = 8,M = 1,K = 256 for OPQ, J = 2,M = 4,K = 256 for RVPQ. The results
of Recall@R are listed in Table 5 which shows that RVPQ outperforms OPQ at
the same IMI for non exhaustive search.

Table 5. Non-exhaustive search based on inverted multi-index

(a) Results of Recall@R for SIFT-1M

T recall@1 recall@10 recall@100

Multi-RVPQ-ADC 10000 30.88 72.05 91.54
Multi-RVPQ-ADC 30000 31.09 73.88 96.76
Multi-RVPQ-ADC 100000 31.04 73.99 97.46
Exhaustive 1000000 31.04 73.95 97.46

(b) Results of Recall@R for SIFT-100M

T recall@1 recall@10 recall@100

Multi-RVPQ-ADC 100000 18.680 53.250 74.070
Multi-RVPQ-ADC 1000000 20.150 60.630 91.420

Multi-OPQ-ADC 100000 8.870 30.810 62.110
Multi-OPQ-ADC 1000000 8.800 32.040 69.520

5 Conclusion

In this paper, a novel vector quantization method RVPQ is proposed to effec-
tively solve ANN search tasks. The training algorithm of RVPQ achieves high
training efficiency and satisfying quantization error. In addition, our encoding
method improves the encoding efficiency with negligible loss of accuracy using
the H-variable Beam Search. Due to these novel improvements, RVPQ achieves
the state-of-the-art performance with comparable computation for ANN search.
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4. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: index
structures for improving the performance of multimedia databases. ACM Comput.
Surv. 33(3), 322–373 (2001)

5. Chen, Y., Guan, T., Wang, C.: Approximate nearest neighbor search by residual
vector quantization. Sensors 10(12), 11259–11273 (2010)

6. Ge, T., He, K., Ke, Q., Sun, J.: Optimized product quantization for approximate
nearest neighbor search. In: 2013 IEEE Conference on Computer Vision and Pat-
tern Recognition, Portland, OR, USA, 23–28 June 2013, pp. 2946–2953. IEEE
Computer Society (2013)

7. Gray, R., Neuhoff, D.: Quantization. IEEE Trans. Inf. Theory 44(6), 2325–2383
(1998)

8. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor
search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2011)

9. Kalantidis, Y., Avrithis, Y.: Locally optimized product quantization for approxi-
mate nearest neighbor search. In: 2014 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2014, Columbus, OH, USA, 23–28 June 2014, pp.
2329–2336. IEEE Computer Society (2014)

10. Li, M., Zhang, T., Chen, Y., Smola, A.J.: Efficient mini-batch training for stochas-
tic optimization. In: Macskassy, S.A., Perlich, C., Leskovec, J., Wang, W., Ghani,
R. (eds.) The 20th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD 2014, New York, NY, USA, 24–27 August 2014,
pp. 661–670. ACM (2014)

11. Noh, H., Kim, T., Heo, J.P.: Product quantizer aware inverted index for scalable
nearest neighbor search. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pp. 12210–12218, October 2021

12. Ozan, E.C., Kiranyaz, S., Gabbouj, M.: Competitive quantization for approximate
nearest neighbor search. IEEE Trans. Knowl. Data Eng. 28(11), 2884–2894 (2016)

13. Pan, Z., Wang, L., Wang, Y., Liu, Y.: Product quantization with dual codebooks
for approximate nearest neighbor search. Neurocomputing 401, 59–68 (2020)

14. Sloane, N., Wyner, A.: Coding theorems for a discrete source with a fidelity cri-
terioninstitute of radio engineers, international convention record, vol. 7, p. 1959
(1993)

15. Wang, J., Wang, J., Song, J., Xu, X., Shen, H.T., Li, S.: Optimized cartesian
k-means. IEEE Trans. Knowl. Data Eng. 27(1), 180–192 (2015)

16. Wei, B., Guan, T., Yu, J.: Projected residual vector quantization for ANN search.
IEEE Multim. 21(3), 41–51 (2014)

17. Wu, Z., Yu, J.: Vector quantization: a review. Front. Inf. Technol. Electron. Eng.
20(4), 507–524 (2019). https://doi.org/10.1631/FITEE.1700833

https://doi.org/10.1631/FITEE.1700833


Data Removal from an AUC
Optimization Model

Jie Li, Jun-Qi Guo, and Wei Gao(B)

National Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China

{lijie,guojq,gaow}@lamda.nju.edu.cn

Abstract. Our learned model may be required to make some dynamic
adjustments owing to data removals in privacy, adversarial learning, etc.
Previous studies on this issue mostly focus on the standard classification
accuracy. This work takes one step on data removal for AUC optimiza-
tion, where previous methods can not be applied directly since AUC is
measured by a sum of losses defined over pairs of instances from different
classes. We develop the Data Removal algorithm for AUC optimization
(DRAUC), and the basic idea is to adjust the trained model according
to the removed data, rather than retrain another model again from the
scratch. Our algorithm only needs to maintain some data statistics, with-
out storing the training data in memory. For high-dimensional data, we
utilize the frequent direction algorithm to approximate the second-order
statistics, and solve the numerical solution based on gradient descent
so as to avoid calculating the inverse of Hessian matrix. We verify the
effectiveness of the proposed DRAUC both theoretically and empirically.

Keywords: Machine learning · AUC optimization · Data removal

1 Introduction

Sometimes, it is necessary to make some dynamic adjustments for our learned
model due to data removal or accesses right in real applications. For example, we
may realize certain deceptive training data after getting a well-trained model in
data-poisoning attack [16], and removing such deceptive data may yield better
performance. Moreover, machine learning model may leak information on train-
ing data, and the data owners may demand the removal of their data from a
trained model [20]. Actually, data removal has become some basic right, which
has been written into the General Data Protection Regulation by European
Union [21]. This remains an important problem on how to ‘remove’ some data
from a trained model, rather than retrain another model from the scratch with
expensive costs on computation and storage.

Much attention has been paid to data removal in recent years. Data removal
is first formally proposed as a forgetting system that could forget certain data
quickly [3]. In addition, Ginart et al. [9] devise a notion of removal efficiency and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13280, pp. 221–235, 2022.
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give two algorithms for data removal from k-means clustering models. Recently,
the hessian-based methods are designed for removing certain data from linear
model [10,13]. However, these proposed methods need access to the training
data when updating the model, which needs expensive costs on computation
and storage. To this end, Wu et al. [23] propose the DeltaGrad which stores
all the gradients when training and approximates Hessian matrix using LBFS
algorithm. Izzo et al. [12] also proposed an algorithm, which calculates and stores
the Hessian of training data ahead, and updating it when removing data. The
storage of all the gradients and Hessian both cost a lot, making it unsuitable for
high-dimensional tasks. Previous studies on data removal focus on classification
accuracy. However, the classification accuracy may be not appropriate for some
applications with unevenly-distributed classes; for example, some categories may
have more instances than others in class-imbalanced tasks such as face detection
and collaborative filtering, and the level of imbalance can be as high as 106 [22],
where the model is almost determined by the data from the majority class.

AUC (Area Under the ROC Curve) has been a preferable measure for class-
imbalanced learning, cost-sensitive learning, information retrieval, etc., [1,5,18].
It is measured by a sum of losses defined over pairs of instances from different
classes, which is different from accuracy defined on a single instance, making
it challenging to develop algorithms for large-scale datasets. Various algorithms
have been developed for AUC optimization. Herschtal and Raskutti [11] uses
gradient descent to optimize an approximate objective of pairwise loss. Gao et al.
[6] develop an one-pass AUC maximization method that maintains and updates
the mean and covariance of training data with O(d2) space and per-iteration
time complexity. In recent years, Ying et al. [24] formulates the minimization of
the AUC loss into an equivalent min-max optimization problem and use primal-
dual SGD algorithm, which has O(d) space and per-iteration time complexity.
The followed works [14,17] also use the min-max formulation and give faster
convergence rate. However, previous works mainly focus on AUC maximization,
and it remains open for data removal from an AUC optimization model.

This work takes one step for data removals from an AUC optimization model,
and the main contributions can be summarized as follows:

– We develop an algorithm on Data Removal from an AUC optimization model
(DRAUC) and the basic idea is to adjust the trained model using the removed
data, rather than retrain another model from scratch, which only needs to
maintain some data statistics, without storing the training data.

– For high-dimensional tasks, we introduce the frequent direction algorithm to
approximate the second-order statistics with low-rank matrix, and look for
the numerical solution based on gradient descent so as to avoid the direct
calculation and storage of the inverse of Hessian matrix.

– Theoretically, we show that our DRAUC method, with exact data statistics,
could recover the model retrained from the scratch, and further present the
convergence analysis for high-dimensional tasks, where we approximate the
data statistics and obtain numerical solution.
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– We finally provide extensive experiments to support the effectiveness of the
proposed DRAUC method.

2 Preliminaries

Let X ⊆ [0, 1]d and Y = {+1,−1} denote the instance and label space, respec-
tively. Suppose that D is an underlying (unknown) distribution over the prod-
uct space X × Y. Note that the distribution D is unknown in practice, and
what we can observe is a training sample Sn = {(x1, y1), (x2, y2), . . . , (xn, yn)},
where each element is drawn independently and identically (i.i.d.) from distri-
bution D. We could divide Sn into S+

n = {(x+
1 ,+1), (x+

2 ,+1), . . . , (x+
n+

,+1)},
and S−

n = {(x−
1 ,−1), (x−

2 ,−1), . . . , (x−
n− ,−1)}, where n+ and n− are the cardi-

nalities of positive and negative instances, respectively, and n = n+ + n−. We
further derive their first- and second-order statistics as follows:

c+ =
∑n+

i=1

x+
i

n+
, S+ =

∑n+

i=1

x+
i [x+

i ]� − c+[c+]�

n+
,

c− =
∑n−

j=1

x−
j

n−
, S− =

∑n−

j=1

x−
j [x−

j ]� − c−[c−]�

n−
,

that is, the mean and covariance matrices of positive and negative training
instances, which is easy to obtain when training the model.

Let f : X → R be a score function, and the AUC of f over Sn is given by

AUC(f ;Sn) =
n+∑

i=1

n−∑

j=1

I[f(x+
i ) > f(x−

j )] + I[f(x+
i ) = f(x−

j )]/2
n+n−

,

where I[·] is the indicator function which returns 1 if the argument is true; and
0 otherwise. This work focuses on linear hypothesis space W = {w ∈ R

d} for
simplicity, and it can be extended to deep neural networks by treating the final
layer as a linear model and fixing the other layers [12].

Direct optimization of AUC often yields an NP-hard problem since it can be
cast into a combinatorial optimization problem. A feasible solution in practice
is to optimize some pairwise surrogate losses as follows:

L(w;Sn) =
n+∑

i=1

n−∑

j=1

�(w�(x+
i − x−

j ))
2n+n−

+
λ

2
‖w‖2, (1)

where � is a convex loss function, and λ denotes the regularized parameter.
A function f : W → R is said to be L-Lipschitz continuous for constant

L > 0, if it holds that |f(w) − f(w′)| ≤ L‖w − w′‖ for every w,w′ ∈ W. A
function f : W → R is said to be μ-strongly convex for constant μ > 0, if it holds
that f(w) − f(w′) ≥ ∇f(w′)�(w −w′) + μ‖w −w′‖2/2 for every x,x′ ∈ W. A
function f : W → R is said to be β-smooth for constant β > 0, if it holds that
‖∇f(w)) − ∇f(w′)‖ ≤ β‖w − w′‖ for every w,w′ ∈ W.
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Let |A| be the cardinality of set A, and denote by [n] = {1, 2, . . . , n} for
integer n > 0. Let Id and 0d denote the identity matrix of size d × d and the
zero vector of size d, respectively. Let ‖ · ‖ denote the Euclidian L2 norm of a
vectors: ‖x‖ =

√∑
i x

2
i , and 	r
 is the largest integer which is no more than r.

3 Data Removal for AUC Optimization

This section proposes the data removal framework for AUC optimization. We
consider square loss �(w�(x+

i −x−
j )) = (1 −w�(x+

i − x−
j ))2 for AUC optimiza-

tion, and the surrogate loss of Eq. (1) over sample Sn can be given by

L(w;Sn) =
n+∑

i=1

n−∑

j=1

(1 − w�(x+
i − x−

j ))2

2n+n−
+

λ

2
‖w‖2.

Notice that square loss has been shown to be statistically consistent with AUC
[7], and has been used for a series of studies on AUC optimization [15,19,24].

Based on empirical risk minimization, we can get the optimal linear model
as w∗ = arg minw{L(w;Sn)} over the full training data Sn. It is possible to
make some necessary adjustments in real applications after we train the model
w∗. For example, it is necessary to remove some noisy and incorrect training
data, which are detected after training; and we may be required to delete partial
Internet data from the data-owners due to privacy.

Let R ⊂ Sn be the removed data from training sample Sn, and the updated
classifier w∗

R can be given by w∗
−R = arg minw {L(w;Sn\R}. We could simply

and directly retrain the linear model w∗
−R from training data Sn\R, while this

requires to keep the entire training dataset, and take the same computational
cost on retraining of linear model w∗

−R as that of w∗. Therefore, the goal of this
work is to get the model w∗

−R directly from the trained model w∗ and removed
data R, rather than retrain the model w∗

−R from training data Sn\R.
For simplicity, we first consider the data removal of one single instance, and

assume that some positive instance (x+
i ,+1) is removed from training data Sn

without loss of generality. We then try to solve the following problem:

w∗
−i = arg min

w

{L(w;Sn\(x+
i ,+1)

}
= arg min

w

{
n+L(w;Sn) − L+

i (w)
n+ − 1

}
, (2)

with L+
i (w) =

∑n−
j=1 (1 − w�(x+

i − x−
j ))2/n− + λ‖w‖2/2. Motivated from

[4,13], our basic idea is to first minimize n+L(w;Sn) + εL+
i (w) with some per-

turbation ε, and then approximate w∗
−i according to Taylor expansion with the

selection of ε = −1. Specifically, we have

ŵ−i = w∗ +
[
H−i

w∗
]−1 ∇L+

i (w∗)/(n+ − 1),

where H−i
w∗ =

[
∂2L(w;Sn\(x+

i ,+1))/∂w2
]
w=w∗ . It is easy to calculate

H−i
w∗ = S−

−i + (c−
−i − c+−i)(c

−
−i − c+−i)

� + S+
−i + λId,

∇L+
i (w∗) = λw∗ − x+

i + c−
−i + (x+

i − c−
−i)(x

+
i − c−

−i)
�w∗ + S−

−iw
∗,
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Algorithm 1. Data Removal algorithm for AUC optimization (DRAUC)
Input: Trained model w∗, some data statistics n+, n−, c−, c+, S− and S+, and
removed data R

1: Count r+ and r− the cardinalities of positive and negative instances in R, resp.
2: Compute the mean c+−R and c−

−R from Eq. (3) and (4) , resp.

3: Compute the covariance matrices S+
−R and S−

−R from Eqs. (5) and (6), resp.
4: Compute the model ŵ−R from Eq. (7)

Output: Model ŵ−R

where c+−i, c
−
−i, S+

−i and S−
−i denote the mean and covariance matrices of positive

and negative instances in training data Sn\(x+
i ,+1), respectively.

We now consider the data removal of a subset R ⊂ Sn. Let r+ and r− be
the cardinalities of positive and negative instances in R, respectively. Denote
by c+−R, c−

−R, S+
−R and S−

−R the mean and covariance matrices of positive and
negative instances in data Sn\R, respectively. It is easy to derive

c+−R = c+ −
∑

(xi,yi)∈R

(xi − c+)I[yi = +1]
n+ − r+

, (3)

c−
−R = c− −

∑
(xj ,yj)∈R

(xj − c−)I[yj = −1]
n− − r−

, (4)

and

S+
−R =

n+(S+ + c+[c+]�)
n+ − r+

− c+−R[c+−R]� −
∑

(xi,yi)∈R

xix�
i I[yi = +1]
n+ − r+

, (5)

S−
−R =

n−(S− + c−[c−]�)
n− − r−

− c−
−R[c−

−R]� −
∑

(xj ,yj)∈R

xjx�
j I[yj = −1]
n− − r−

. (6)

We aim to solve w∗
−R = arg minw L(w;Sn\R) with

L(w;Sn\R) =
∑

yi=+1
(xi,yi)∈Sn\R

∑

yj=−1
(xj ,yj)∈Sn\R

�(w�(x+
i − x−

j ))
2(n+ − r+)(n− − r−)

+
λ

2
‖w‖2.

Denote Δ(w) = n+n−L(w, Sn) − (n+ − r+)(n− − r−)L(w;S\R). We first solve
minw {n+n−L(w;Sn) + εΔ(w)}] for some perturbation ε, and then approxi-
mate w∗

−R according to Taylor expansion with the selection of ε = −1. Specifi-
cally, we have

ŵ−R = w∗ +

[
∂2L(w;Sn\R)/∂w2

]−1

w=w∗ × [∂Δ(w)/∂w]w=w∗

(n+ − r+)(n− − r−)
, (7)

where
[
∂2L(w;Sn\R)

∂w2

]

w=w∗
= S−

−R + (c−
−R − c+−R)(c−

−R − c+−R)� + S+
−R + λId
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Algorithm 2. Frequent Directions
Input: instance x, sketch Z ∈ R

d×m

1: Insert x into a zero-valued column of Z
2: if Z has no zero-valued column then
3: [U, Σ, V ] ← SVD(Z)
4: δ = Σ�m/2�,�m/2�
5: Z = U

√
max(Σ2 − Id×mδ2,0d×m) (max(·) denotes an element-wise maximum)

6: end if

Output: Z

and [∂Δ(w)/∂w]w=w∗ equals to

n−
∑

yi=+1
(xi,yi)∈R

(
λw∗ − x+

i + c− + (x+
i − c−)(x+

i − c−)�w∗ + S−w∗
)

+ (n+ − r+)
∑

yj=−1
(xj ,yj)∈R

(
λw∗ + x−

j − c+−R + (x−
j − c+−R)(x−

j − c+−R)�w∗ + S+
−Rw∗

)
.

Algorithm 1 presents the detailed description of the Data Removal algorithm
for AUC optimization, short for DRAUC. As can be seen, our algorithm does
not retrain the model w∗

−R = arg minw L(w;Sn\R) from training data Sn\R,
but to learn from the trained model w∗ and removed data R, and merely need
to store the data statistics instand of the entire training data Sn.

3.1 Deal with High Dimension

The limitations of Algorithm 1 include the O(d2) storage cost for covariance
and Hessian matrices, as well as the O(d3) computational cost for the inverse of
Hessian matrix, making it unsuitable for high-dimensional data.

For the storage of covariance matrices, we take a deterministic sketching
method from [8] to approximate the covariance matrices by low-rank matrices.
Let X+

n and X−
n denote the matrices of positive and negative instances in Sn,

respectively. For covariance matrix, we have

S+ = X+
n [X+

n ]�/n+ − c+[c+]� and S− = X−
n [X−

n ]�/n− − c−[c−]�.

To represent the high-dimensional matrix S+, we approximate X+
n [X+

n ]� by
Z+[Z+]� of low-rank d × m sketch matrix Z+ (m � d). More precisely, we
initialize the sketch matrix Z+ = 0d×m, and insert instance xi into a zeros valued
column of sketch matrix Z+ every time. If Z+ has no zero-valued column, then
we utilize SVD to rotate Z+ with orthogonal columns and descending magnitude
order, and the sketch columns norms are “shrunk” so that at least half of them
is set to zero. We could approximate X−

n [X−
n ]� similarly. Algorithm 2 presents

the detailed description of frequent direction.
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The covariance matrices S+ and S− can be approximated, respectively, by

Ŝ+ = Z+[Z+]�/n+ − c+[c+]� and Ŝ− = Z−[Z−]�/n− − c−[c−]� .

Given the removed dataset R, we could further approximate the covariance
matrix S+

−R and S−
−R of data Sn\R, respectively, by

Ŝ+
−R =

Z+[Z+]�

n+ − r+
− c+−R[c+−R]� −

∑

(xi,yi)∈R

xix�
i I[yi = +1]
n+ − r+

, (8)

Ŝ−
−R =

Z−[Z−]�

n− − r−
− c−

−R[c−
−R]� −

∑

(xj ,yj)∈R

xjx�
j I[yj = −1]
n− − r−

. (9)

This follows that we can approximate [∂Δ(w)/∂w]w=w∗ by

n−
∑

yi=+1
(xi,yi)∈R

(
λw∗ − x+

i + c− + (x+
i − c−)(x+

i − c−)�w∗ + Ŝ−w∗
)

+ (n+ − r+)
∑

yj=−1
(xj ,yj)∈R

(
λw∗ + x−

j − c+−R + (x−
j − c+−R)(x−

j − c+−R)�w∗ + Ŝ+
−Rw∗

)
,

and[
∂2L(w;Sn\R)

∂w2

]

w=w∗
≈ Ŝ−

−R + (c−
−R − c+−R)(c−

−R − c+−R)� + Ŝ+
−R + λId.

where Δ(w) = n+n−L(w, Sn) − (n+ − r+)(n− − r−)L(w,S\R). We obtain the
final model

ŵ−R = w∗ +

[
∂2L(w;Sn\R)/∂w2

]−1

w=w∗ × [∂Δ(w)/∂w]w=w∗

(n+ − r+)(n− − r−)
. (10)

Notice that we do not require to calculate and store Ŝ+, Ŝ−, Ŝ+
−R and Ŝ−

−R,
but to maintain Z+, Z− and removed data R in memory. We take the O(md)
computational cost instead of O(d2) by using the trick A[A]�w = A([A]�w),
where A ∈ R

d×1 or A ∈ R
d×m.

Another challenge is to calculate [∂2L(w;Sn\R)/∂w2]−1
w=w∗ , i.e., the inverse

of Hessian. Here, we introduce an auxiliary function as follows:

f(w) = w�Aw/2 + b�w + c (for positive semi-definite matrix A), (11)

and minimizing f(w) gives the closed-form solution w∗ = A−1b. In practice, it
is difficult to calculate A−1 directly, especially for high-dimensional matrix. We
could instead calculate the numerical solution based on gradient descent.

Precisely, we set A = [∂2L(w;Sn\R)/∂w2]w=w∗ and b = [∂Δ(w)/∂w]w=w∗

in Eq. (11), and calculate the gradient ∇f(w) = Aw + b with O(md) compu-
tational cost. We finally solve the numerical solution of w∗ = A−1b base on
gradient descent with several iterations.

To implement this approach, we just maintain c+, c−, Z+ and Z− in memory,
and calculate c+−R and c−

−R from Eq. (3) and (4). We finally obtain the output
model ŵ−R from Eq. (10) based on gradient descent with T iterations.
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Table 1. Benchmark datasets

Datasets # instance # feature Datasets # instance # feature Datasets # instance # feature

vehicle 846 18 letter 15,000 16 acoustic 78,823 50

splice 3,175 60 a9a 32,561 123 aloi 108,000 128

satimage 4,435 36 w8a 49,749 300 ijcnn1 141,691 22

usps 7,291 256 cod-rna 59,535 8 skin 245,057 3

phishing 11,055 68 connect-4 67,557 126 covtype 581,012 54

4 Theoretical Results

This section presents the main theoretical results for our proposed algorithm.
We first present the theoretical analysis on Algorithm 1 as follows:

Theorem 1. Let ŵ−R be the output model of Algorithm 1, and let w∗
−R be the

retrained model from data Sn\R. We have ŵ−R = w∗
−R.

This can be obtained from that the hessian-based method gives an exact local
quadratic approximation for square loss. From this theorem, we can see that the
output model ŵ−R of Algorithm 1 is exactly the same as the model w∗

−R, which
is retrained from remaining training data Sn\R. In contrast, our algorithm
merely stores the data statistics in memory and does not need access to the
remaining training data Sn\R.

We now present the convergence analysis for high-dimensional tasks, where
the covariance matrices are appproximated by low-rank matrices.

Theorem 2. Suppose ‖w‖ ≤ B. Let ŵ−R be the output of Eq. (10) from trained
model w∗ and removed data R, and let w∗

−R be the retrained model from data
Sn\R. We have

∥∥ŵ−R − w∗
−R

∥∥ ≤ 2τB

λm
+

(
2

λ + 2

)T (
2τB

λm
+

4B(4 + λ)(r+n− + r−n+ − r+r−)

λn+n−

)
,

where T is the iteration number of gradient descent, m is the sketch size of
frequent direction, τ = max(rank(X+

n [X+
n ]�), rank(X−

n [X−
n ]�)), and λ is the

regularization parameter.

The detailed proof is presented in the Appendix. This theorem shows that the
convergence of approximation algorithm depends on the iteration number t of
gradient descent, sketch size m, the rank τ of training data, and the proportion
of removed data (r+n− + r−n+ − r+r−)/(n+n−).

5 Experiment

In this section, we evaluate the performance of DRAUC on benchmark datasets
in Sect. 5.1, and present an evaluation and parameter influence on high-
dimensional sparse datasets in Sects. 5.2. The program code for replicating our
experiments is available on Github1.
1 https://github.com/sven-lijie/DRAUC.

https://github.com/sven-lijie/DRAUC
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Table 2. Distance, Test AUC and Running Time for Retraining and DRAUC with
10% removal rate over benchmark datasets

Dataset Distance Test AUC Running time

‖w∗ − w∗
−R‖ ‖ŵ−R − w∗

−R‖ Retraining DRAUC Retraining DRAUC Speed-up

vehicle 7.3 × 10−3 1.0 × 10−6 .7872 ± .0050 .7872 ± .0050 0.061 0.002 30.5×
splice 3.3 × 10−2 2.7 × 10−6 .9239 ± .0056 .9239 ± .0056 0.023 0.001 23.0×
satimage 2.4 × 10−2 4.5 × 10−6 .9123 ± .0088 .9123 ± .0088 0.027 0.001 27.0×
usps 4.0 × 10−2 1.2 × 10−4 .9164 ± .0031 .9164 ± .0031 0.967 0.009 107.4×
phishing 2.1 × 10−2 4.0 × 10−5 .9751 ± .0033 .9751 ± .0033 0.375 0.009 41.6×
letter 1.7 × 10−2 4.6 × 10−5 .7900 ± .0073 .7900 ± .0073 0.290 0.008 37.2×
a9a 2.0 × 10−2 7.6 × 10−5 .8958 ± .0015 .8958 ± .0015 0.457 0.012 38.7×
w8a 6.0 × 10−2 1.3 × 10−4 .9553 ± .0058 .9553 ± .0058 1.010 0.031 32.6×
cod-rna 6.9 × 10−3 5.2 × 10−4 .9561 ± .0059 .9560 ± .0059 0.295 0.007 43.4×
connect-4 1.8 × 10−2 6.8 × 10−5 .8410 ± .0030 .8410 ± .0030 0.528 0.016 32.4×
acoustic 8.9 × 10−3 2.4 × 10−5 .7907 ± .0027 .7907 ± .0027 0.187 0.015 12.6×
aloi 1.7 × 10−2 1.7 × 10−6 .6123 ± .0046 .6123 ± .0046 0.173 0.007 24.7×
ijcnn1 1.1 × 10−2 1.7 × 10−5 .9177 ± .0030 .9177 ± .0030 0.128 0.010 12.8×
skin 1.3 × 10−3 5.2 × 10−7 .9464 ± .0007 .9464 ± .0007 0.035 0.002 17.5×
covtype 4.6 × 10−3 4.1 × 10−4 .8572 ± .0064 .8573 ± .0064 0.953 0.033 29.1×

5.1 Benchmark Results

We conduct our experiments on ten benchmark datasets2 as summarized in
Table 1, which have been used in previous studies on AUC optimization. We
transform all multi-class datasets into binary ones by randomly partitioning
classes into two groups, where each group contains the same number of classes,
and the features of all dataset have been scaled to [−1,+1].

The regularized parameter λ is set to 0.1 in all experiments as done in [23],
since it is insensitive to the final AUC scores for relatively-small parameter. Let
w∗ be the model trained from the training dataset Sn, and store data statistics
simultaneously. Then, 10% of the training data, denoted by R, are removed from
Sn randomly and independently without replacement. Let ŵ−R be the output
model of DRAUC (Algorithm 1) from trained model w∗ and removed data R.

Let w∗
−R denote the model which is retrained from data Sn\R. For faster con-

vergence, we use gradient descent with step-sizes 1/(γt + 10) to get w∗
−R, where

the parameter γ ∈ 10[−7,0] is selected in advance with 5-fold cross-validation.
Table 2 shows the performance between our DRAUC model ŵ−R and the

retained model w∗
−R from data Sn\R. We first observe that the distance

‖w∗ − w∗
−R‖ is large, since the removed data could yield the changes of train-

ing model. However, it is relatively small for the distance ‖ŵ−R −w∗
−R‖, which

shows our model ŵ−R, trained from w∗ and removed data R, have no signifi-
cantly difference from the model w∗

−R, which is retained from Sn\R. This is in
accordance with our theoretical analysis in Theorem 1.

It is also observable that, from Table 2, our DRAUC algorithm takes the
same AUC on test data sets most times as the retraining model w∗

−R, since

2 http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/.

http://www.csie.ntu.edu.tw/{~}cjlin/libsvmtools/
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Table 3. Distance, Test AUC and Running Time for retraining and DRAUCh with
10% removal rate over High-dimensional dataset

Dataset smallNORB real-sim siam-competition2007 rcv1.binary

Instance 24,300 72,309 21,519 20,242

Feature 18,432 20,958 30,438 47,236

Distance ‖w∗ − w∗
−R‖ 3.8 × 10−2 1.6 × 10−1 3.3 × 10−1 2.5 × 10−1

‖ŵ−R − w∗
−R‖ 5.8 × 10−3 2.5 × 10−2 4.0 × 10−2 3.6 × 10−2

Test AUC Retraining .9199 ± .0041 .9828 ± .0008 .7505 ± .0075 .9852 ± .0015

DRAUCh .9199 ± .0041 .9828 ± .0008 .7504 ± .0075 .9853 ± .0015

Running time Retraining 102.511 102.641 158.401 380.680

DRAUCh 4.680 6.535 7.305 13.846

Speed-up 21.9× 15.7× 21.7× 27.5×

our DRAUC model ŵ−R is close to w∗
−R. However, our DRAUC method takes

much smaller running time than the retraining method on Sn\R; for example,
our DRAUC achieves significant 10∼100× speed-up compared to the retraining
method. In addition, our DRAUC only needs some data statistics, rather than
store the entire training data Sn in memory.

5.2 High-Dimensional Results

We consider four high-dimensional datasets3 as shown in Table 3, and all multi-
class datasets are transformed randomly into binary ones with the same number
of classes, and the features of all dataset have been scaled to [−1,+1].

Let w∗ be the original model trained from the entire training dataset Sn.
10% of the training data, denoted by R, are removed from Sn randomly and
independently without replacement. We set the regularized parameter λ as 0.01,
the iteration numbers T as 200 and the sketch size m as 2000 in all experiments.
The low-rank sketch matrices are generated by frequent direction (Algorithm
2) when we train w∗, and calculate the first-order statistics simultaneously. We
refer our algorithm as DRAUCh for high-dimensional data, and let ŵ−R be our
output model of DRAUCh from the trained model w∗ and removed data R.
Let w∗

−R denote the model which is retrained from data Sn\R. We use gradient
descent with learning rate 1/(γt + 10) to get w∗

−R, similarly to Sect. 5.1.
Table 3 shows the comparisons of different measure between our DRAUCh

model ŵ−R and the model w∗
−R retrained from data Sn\R. We first observe that

the original model w∗ is quite different from w∗
−R due to data removal, and our

DRAUCh model ŵ−R is a relatively-good approximation to the retrained model
w∗

−R because of low-rank approximation on covariance matrices and numerical
solution. Despite of the low-rank approximation, our DRAUCh takes almost the
same AUC on test data sets as retraining. In addition, our DRAUCh method
takes smaller running time than retraining (e.g., about 15–28× speed-up).

3 http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
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Fig. 1. Distance with varied sketch size m

Fig. 2. Distance with varied iteration number T

We finally analyze the influence of parameters for high-dimensional datasets.
Figure 1 shows that we can make good approximation when the sketch size is
greater than 500, and there is no significantly improvement when the sketch size
reaches 2000. Figure 2 shows the convergence of our approach on finding the
numerical solution, which convergences after about 300 iterations.

6 Conclusion

In this work, we develop an efficient algorithm on data removal from an AUC
optimization model. The main challenge lies in that AUC is measured by a sum
of losses defined over pairs of instances from difference classes, while most previ-
ous works focus on univariate loss. Our algorithm maintains the data statistics,
rather than store the entire training data. For high-dimensional data, we approx-
imate the second-order statistics with low-rank matrices by frequent direction,
and obtain the numerical solution with gradient descent so as to avoid the cal-
culation of Hessian and its inverse explicitly. We verify the effectiveness of our
algorithm both theoretically and empirically.

Acknowledgement. The authors want to thank the anonymous reviewers for helpful
comments and suggestions. This research is supported by National Science Foundation
of China (61921006, 61876078).
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A Analysis of DRAUC with High-Dimensional Data

We introduce the following lemma [2] for strongly convex and smooth function:

Lemma 1. Let w∗ = arg minw L(w) w.r.t. μ-strongly convex and β-smooth
function L(w). After t iterations of gradient descent with step size ηt = 2/(β+μ),
we have

‖wt − w∗‖ ≤
(

β − μ

β + μ

)t

‖w0 − w∗||.

We introduce a lemma for AUC optimization as follows:

Lemma 2. For bounded space W = {w : ‖w‖ ≤ B}, let w∗ =
arg minw∈W L(w;Sn) and w∗

−R = arg minw∈W L(w;Sn\R). For regularization
parameter λ > 0, we have

‖w∗ − w∗
−R‖ ≤ 4B

4 + λ

λ

(
r+
n+

+
r−
n−

− r+r−
n+n−

)
.

Proof. From the definition of L(w;Sn), we have

‖∇L(w1;Sn) − ∇L(w2;Sn)‖ ≤ (4 + λ)‖w1 − w2‖,

where w1,w2 ∈ W, ‖xi‖ ≤ 1 and ‖xj‖ ≤ 1, and thus L(w;Sn) is (4+λ)-smooth.
From Cauchy’s mean-value theorem, we have

|L(w1;Sn) − L(w2;Sn)| = |∇L�(κw1 + (1 − κ)w2;Sn)(w1 − w2)|
≤ ‖∇L(κw1 + (1 − κ)w2;Sn)‖‖w1 − w2‖ (12)

where κ ∈ [0, 1] and κw1 + (1 − κ)w2 ∈ W. We also have ∇L(w∗;Sn) = 0, and
it holds that

‖∇L(tw1 + (1 − t)w2;Sn)‖ ≤ max
w∈W

‖∇L(w;Sn) − ∇L(w∗;Sn)‖ ≤ 2B(4 + λ)

which yields that L(w;Sn) is 2B(4 + λ)-Lipschitz from Eq. (12). Recall that
Δ(w) = n+n−L(w;Sn) − (n+ − r+)(n− − r−)L(w;Sn\R), and we have

n+n−L(w∗
−R;Sn) = (n+ − r+)(n− − r−)L(w∗

−R;Sn\R) + Δ(w∗
−R)

≤ (n+ − r+)(n− − r−)L(w∗;Sn\R) + Δ(w∗
−R)

= n+n−L(w∗;Sn) + (Δ(w∗
−R) − Δ(w∗))

≤ n+n−L(w∗;Sn)
+2B(n+n− − (n+ − r+)(n− − r−))(λ + 4)‖w∗

−R − w∗‖ (13)

where the first inequality holds from the optimal solution of L(w∗
−R;Sn\R), and

the last inequality follows from the 2B(n+n− − (n+ − r+)(n− − r−))(λ + 4)-
Lipschitzness of Δ(w). For λ-strongly convex function L(w;Sn), we have

L(w∗
−R;Sn) − L(w∗;Sn) ≥ λ

2
‖w∗

−R − w∗‖2 (14)

from ∇L(w∗;Sn) = 0. Combining Eq. (13) and (14) completes the proof.
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It is necessary to introduce the following lemma from [8]:

Lemma 3. Let Z be the sketch matrix of X using frequent direction. We have
∥∥X[X]� − Z[Z]�

∥∥ ≤ 2tr(X[X]�)/m

where m is the sketch size.

Proof of Theorem 2.

Proof. Let L̂(w, Sn\R) be the loss by replacing covariance matrices S+
−R and

S−
−R with Ŝ+

−R and Ŝ−
−R, and ŵ∗

−R = arg minw{L̂(w;Sn\R)}, we have

‖ŵ−R − w∗
−R‖ ≤ ∥∥ŵ−R − ŵ∗

−R

∥∥ +
∥∥ŵ∗

−R − w∗
−R

∥∥ . (15)

Combining with Lemma 1, this follows that

‖ŵ−R − w∗
−R‖ ≤

(
2

λ + 2

)T ∥∥w∗ − w∗
−R

∥∥ +

(
1 +

(
2

λ + 2

)T
)

∥∥ŵ∗
−R − w∗

−R

∥∥ .

(16)
To bound ‖ŵ∗

−R − w∗
−R‖, we first rewrite L(w;Sn\R) as

L(w;Sn\R) = w�(A1 + A2)w + w�a + 1/2

where a = c−
−R−c+−R, A1 = S+

−R+S−
−R+λId and A2 = (c−

−R−c+−R)(c−
−R−c+−R)�.

Similarly, we rewrite L̂(w;Sn\R) as

L̂(w;Sn\R) = w�(Â1 + A2)w + w�a + 1/2 with Â1 = Ŝ+
−R + Ŝ−

−R + λId.

Minimizing L(w;Sn) and L̂(w, Sn) gives

w∗
−R = (A1 + A2)−1a and ŵ∗

−R = (Â1 + A2)−1a, respectively.

It is easy to get
∥∥∥(A1 + A2)

1/2(Â1 + A2)
−1(A1 + A2)

1/2 − Id

∥∥∥

=
∥∥∥(Â1 + A2)

−1/2(A1 − Â1)(Â1 + A2)
−1/2

∥∥∥ ≤
∥∥∥A1 − Â1

∥∥∥
∥∥∥(Â1 + A2)

−1
∥∥∥ ≤ 2τ

λm
,

where τ = max(rank(X+
n [X+

n ]�), rank(X−
n [X−

n ]�)), and the inequality comes
from Lemma 3. Denote Ω = (A1 +A2)1/2(Â1 +A2)−1(A1 +A2)1/2 − Id, we have

∥∥ŵ∗
−R − w∗

−R

∥∥ =
∥∥∥
(
(Â1 + A2)−1 − (A1 + A2)

−1
)
a
∥∥∥

=
∥∥∥(A1 + A2)−1/2Ω(A1 + A2)−1/2a

∥∥∥ ≤ 2τ

λm

∥∥(A1 + A2)−1a
∥∥ ≤ 2τ

λm
B,

which completes the proof by combining with Eq. (16) and Lemma 2.
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Abstract. Ranking aggregation is commonly adopted in cooperative
decision-making to assist combining multiple rankings into a single repre-
sentative. To protect the actual ranking of each individual, some privacy-
preserving strategies, such as differential privacy, are often used. This,
however, does not consider the scenario where the curator, who collects
all rankings from individuals, is untrustworthy. This paper proposed
a mechanism to solve the above issue using the distribute differential
privacy framework. The proposed mechanism collects locally differen-
tial private rankings from individuals, then randomly permutes pairwise
rankings using a shuffle model to further amplify the privacy protection.
The final representative is produced by hierarchical rank aggregation.
The mechanism was theoretically analysed and experimentally compared
against existing methods, and demonstrated competitive results in both
the output accuracy and privacy protection.

Keywords: Ranking aggregation · Distributed differential privacy ·
HRA algorithm, Shuffle model

1 Introduction

Cooperative decision-making [14] is pervasive in business management, because
of its superiority in providing information from different aspects for better
decision-making. As an essential step in cooperative decision-making, aggrega-
tion combines all individual preferences into a representative output. In daily
life, individuals often rank all available alternatives to reveal the preference rela-
tion of multiple alternatives, hence ranking aggregation has become essential for
society, and many researchers focus on its two requirements, which are hard to
be satisfied simultaneously: privacy and utility. Preference data in ranking has
sensitive information, and the leaking of it may make individuals susceptible to
coercion. Utility represents whether the aggregation result stands for the major-
ity preference. Consequently, the ability to effectively aggregate private ranking
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into a representative result is important in ranking aggregation. In the past few
years, substantial research efforts have been devoted to ranking aggregation.

Traditional anonymizing methods such as anonymization hardly solves the
problem. For example, Hugo Awards 2015 incident [8] shows that the anonymized
preferences could result in the re-identification of individuals because the adver-
sary with background knowledge is able to launch a linkage attack. According
to the weakness of the traditional anonymizing method, many researchers resort
to differential privacy (DP) [5].

DP is an effective method to provide a rigorous privacy guarantee, and it
can defend against various attacks, no matter how much background knowl-
edge the adversary has [19]. As a lightweight methodology to protect privacy,
many current works address the ranking aggregation problems with DP. Shang
et al. [16] designed a privacy-preserving rank aggregation algorithm, and what-
ever the ranking rules, the algorithm adds noise to votes and returns the his-
togram of rankings. Based on Quicksort [10], Hay et al. [9] proposed three
differentially private rank aggregation algorithms includes P-SORT, a pairwise
comparison method about private ranking aggregation. The benefit of using DP
to protect individual sensitive information is that the adversary is unlikely to
obtain sensitive information by observing the releasing results. In the meantime,
the results have high availability. Nevertheless, DP is not without limitations: in
real-world applications, the curator may collude with the adversary to leak some
information before perturbing.

Local differential privacy (LDP) [7] alleviates this issue through adding noise
locally and uploading noisy data to the untrusted curator. Yan et al. [18] pro-
posed the LDP-KwikSort algorithm, and they use the number of queries K to
trade-off between utility and privacy. Besides privacy and utility, Wang et al. [17]
studied another property, soundness, and then proposed the weighted sampling
mechanism and the additive mechanism to improve the ranking utility. Unfortu-
nately, LDP needs a large amount of data to achieve an acceptable utility. More-
over, existing approaches that use pairwise comparison information to rank [9,18]
share a common limitation: they introduce additional errors through the random
pivot selection. In conclusion, two obstacles need to be overcome simultaneously.
Firstly, the ranking algorithm needs to output an aggregation result with utility
as high as possible. Secondly, in order to protect individuals’ sensitive data, the
untrusted curator should not receive the original raw preferences.

With the increased awareness of privacy protection, many researchers are
interested in distributed differential privacy (DDP) [15] to amplify the privacy.
DDP builds on LDP but further protects privacy using an intermediate node.
This may mitigate the problem of poor utility in LDP. Besides, recently advances
in ranking aggregation such as the algorithm HRA [4], which takes advantage of
pairwise comparisons to aggregate ranking, and provides one way to eliminate
the errors of random selecting pivot. However, as this algorithm applies Borda
count [2] and pairwise comparison method, it costs too much privacy budget if
it is directly combined with DP, and results in very poor performance.
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In this paper, we propose a novel algorithm DDP-Helnaksort to meet the
requirements of privacy and utility in ranking aggregation. The contributions of
this algorithm are two-fold:

– DDP-Helnaksort employs a new ranking aggregation that avoids the random
pivot selection as in quicksort-based LDP methods. Moreover, Borda count
in HRA was replaced by a new method that scores the alternatives to reduce
the noise effect caused by small privacy budget. Experiments show that it
outperforms some pairwise comparison-based DP rank aggregations.

– We firstly adopt DDP to deal with the ranking aggregation problem. This was
achieved by combining LDP with a shuffle model [1] that randomly permutes
the preferences in order to amplify the privacy before submitting rankings to
the untrusted curator. This provides a stronger DP guarantee, which can be
measured by calculating the amplification bound.

The rest of this paper is organized as follows. Section 2 provides the preliminary
of ranking aggregation, differential privacy and shuffle model. Section 3 presents
the DDP-Helnaksort algorithm and gives the privacy guarantee. Section 4 reports
the comparison results with baseline algorithms and analyzes the effect of adjust-
ing parameters. Final conclusions and future directions are shown in Sect. 5.

2 Preliminaries

2.1 Ranking Aggregation

2.1.1 Conception and Measurement

In a ranking scenario, an agent u is asked to rank a set A = {a1, a2, ..., am}
of alternatives and to provide the order of preferences, denoted by pu =
[x1, x2, ..., xm], where xi is the ranking index of ai, and xi = 1 means that agent
u’s favourite alternative is ai. A curator then collects the order from each agent
and uses a ranking aggregation algorithm to output a representative ranking R
based on {pu}. In this paper, ai � aj means that ai is preferred than aj .

Ranking aggregation aims to find the most representative ranking R∗. Ken-
meny optimal aggregation (KOA) [6] is used to find R∗ by minimising the aver-
age Kendall tau distance K. Kendall tau distance [11] measures the distance
between two rankings by counting the number of inconsistent pairs among all
pairs of alternatives: K(R, pu) = 1

(m
2 )

∑
i�=j,i,j∈[m] κij(R, pu), κij(R, pu) is 1 when

the pair ai and aj is ordered differently in rankings R and pu, otherwise it is 0.
The average Kendall tau distance is then computed over the rankings {pu} from
all agents: K(R, pu) = 1

n

∑
u∈[n] K(R, pu).

Hierarchical Ranking Aggregation. Hierarchical ranking aggregation
(HRA) [4] algorithm can consolidate all agents’ rankings into a total order. It is
a recursive process like Quicksort, but does not rank alternatives based on the
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random pivot selections as in Quicksort, which is likely to reduce the utility of
a private ranking besides the impact of additive noise such as in DP.

Given m ranking alternatives, the HRA algorithm first computes an m by m
pairwise comparison matrix (PCM) M , where each entry M(i, j) = 1

n

∑n
u=1 luij is

a comparison score for (ai, aj) over all n rankings. luij = 1 and 0 when ai � aj and
aj � ai respectively and 0.5 otherwise. Then, the algorithm computes an m by m
pairwise preference relation (PPR) matrix D. Each entry D(i, j) = 1 or 0 when
M(i, j) is greater or smaller than M(i, j) respectively, and 0.5 for equality. Third,
every alternative is allocated to a different level according to its score L(i) that
is the row sum of D(i, j). As multiple alternatives can be allocated at the same
level, they are further compared and allocated into sublevels using a sub-PCM
that only includes the rankings of the corresponding alternatives. If alternatives
have the same score in sublevel, Borda count is used to select a winner. Finally,
the algorithm finishes when each level contains only one alternative.

2.2 Differential Privacy

Differential privacy (DP) [5] is a privacy protection model that adds calibrated
noise to query outputs to ensure an adversary having negligible chance of guess-
ing the sensitive information in a database. Formally, DP can be defined as:

Definition 1. (ε, δ)-Differential Privacy. A random algorithm M provides
(ε, δ)-differential privacy if for any two datasets D and D′ that differ in at
most a single record, and for all outputs A ∈ Range(O): Pr[M(D) ∈ O)] ≤
eεPr[M(D′) ∈ O)] + δ.

The parameter ε is defined as the privacy budget, which controls the privacy
guarantee level of the mechanism. Another parameter δ is responsible for the
probability that ε does not hold. DP assumes that there is a trusted curator, but
in reality, the adversary has possibility to collect information from the curator.
Hence, the local differential privacy (LDP) [7] has been utilized. In the LDP
model, each agent uses an algorithm M to perturb data locally and then upload
the noisy one to the untrusted curator. The definition of LDP is as follows:

Definition 2. (ε, δ)-Local Differential Privacy. A local algorithm M pro-
vides (ε, δ)-local differential privacy if for any two value x and x′, and for every
output y: Pr[M(x = y)] ≤ eεPr[M(x′ = y)] + δ.

Although LDP solves the problem that the curator may disclose information,
it requires a huge amount of data to achieve a satisfactory utility [1]. Based
on LDP, distributed differential privacy (DDP) [15] can improve the data util-
ity. In DDP, every agent adds noise locally, and uploads the data to a trusted
intermediate node to protect privacy further, finally sends the results to the
curator. On the one hand, we do not need to worry about the privacy leakage
from the curator in DDP. On the other hand, it has a higher utility than LDP.
In this paper, we apply DDP model to aggregate ranking. And we use Gaussian
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mechanism [7] to perturb preferences. An application of Gaussian mechanism
satisfies (ε, δ)-DP, if variables drawn from the Gaussian distribution with μ = 0

and σ = Δgf
√

2 log( 1.25
δ )

ε , where Δgf is the global sensitivity of the function f .

2.3 Shuffle Model

Shuffle model can be used in intermediate nodes to realise DDP, and the protocol
P was proposed in [1]. The protocol has three components: a randomizer R, a
shuffler S and an analyzer A. First, R applies LDP to perturb data to get (ε, δ)
protection. Then, S chooses a random permutation π to shuffle the data, and
cut the connection between the outputs and their sources. Finally, A analyses
the data and gets the query result. The shuffle step can amplify the privacy, and
the following theorem [3] quantifies the amplification bound of shuffling:

Theorem 1. If every agent sends a message to the shuffle model, and the
randomizer R satisfies (ε + ln n, δ)-local differential privacy, then the protocol
P = (R,S,A) satisfies both (ε, δ)-differential privacy and (ε + lnn, δ)-local dif-
ferential privacy, where ε′ is smaller than ε, and n is the number of agents.

3 Ranking Aggregation Algorithm Under DDP

In this section, we propose an algorithm DDP-Helnaksort to solve the private
ranking aggregation problem. It can be formalised as follows: given m alterna-
tives to be ranked by n agents, a curator need to present a final ranking that
represents most agents’ preferences. In addition, each agent u’s ranking pu must
not reveal to the curator his true preferences over the alternatives.

The DDP-Helnaksort algorithm consists of three steps, as shown in Fig. 1.
These steps are discussed respectively in Sect. 3.1, Sect. 3.2 and Sect. 3.3. The
first step (①–④) is ranking preference collection, in which each agent, before

Fig. 1. Overview of DDP-Helnaksort
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submitting the answers to the curator, adds the Gaussian noise to the rank
of each pair (ai, aj) that being queried. The second step (⑤–⑥) is a shuffling
process, which collects the ranking of (ai, aj) from the corresponding agents
that answered the query, in order to further reduce the risk of privacy breach.
The third step (⑦) aggregates to generate a final ranking of all m alternatives.

3.1 Ranking Preference Collection

The first step collects K private pairwise rankings from each agent, where K is
an input parameter. A larger K leads to a more accurate aggregated ranking,
because each pair (ai, aj) will be answered by more agents. The drawback is the
partition of the privacy budget into a tiny piece for each query, which results
in adding large noise that diminishes the utility. A smaller K can guarantee
the utility, but the curator may end up with a less representative final ranking.
We explore the optimal K in Sect. 4.2. The ranking preference collection step is
shown in Algorithm 1. lij ← pu represents the preference in agent u’s ranking of
a randomly selected pair (ai, aj). This algorithm uses the Gaussian mechanism
for noise addition (other mechanisms can be used too).

Algorithm 1. Ranking Preference Collection
Input: Agent u’s ranking pu, K queries, privacy parameter ε and δ
Output: Private pairwise preferences Q
1: Qu = ∅
2: for k ∈ [K] do
3: lij ← pu

4: l̃ij = lij + Gau(KΔf
√

2 ln 1.25
δ

ε )
5: if l̃ij > 0.5 then
6: l̃ij = 1
7: else
8: l̃ij = 0
9: end if

10: Qu = Qu ∪ {l̃ij}
11: end for

3.2 Shuffling

Shuffling before aggregation can amplify privacy without affecting the output
utility. In DDP-Helnaksort, each pair (ai, aj)’s answers from the corresponding
agents are collected and randomly permuted at an intermediate node, so that
when the private rankings are submitted, the curator is unable to guess the source
of an answer with a non-negligible probability. The shuffle model finally provides
a protection of DP with a smaller ε, which is further discussed in Sect. 3.4.
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3.3 Ranking Aggregation

Once all the private rankings are submitted, the DDP-Helnaksort algorithm goes
into the final stage, ranking aggregation. This step is based on the HRA algorithm,
but with a different fallback to sort equal alternatives in sublevels in order to
reduce the noise effect. The algorithm is shown in Algorithm 2. M is the number
of alternatives in the unsorted sublevel, and Caiaj

is the number of agents who
voted ai � aj . The method uses pairwise preference to calculate a score for aj

Caj
=

∑

j∈[M ]

(Cajai
− Caiaj

), (1)

hence avoids splitting some privacy budgets as in Borda count.
This RA(ranking aggregation) algorithm mainly adopts a separate-layer rank-

ing thought to generate the aggregation ranking, which uses the information
about Caiaj

and Cajai
. The calculations of PCM and PPR matrix happen at

Line 6–8 and Line 9, respectively. After that, we can count the scores of every
alternative in M (Line 10–12). And if the scores are same in two rounds, we
calculate the Caj

, and then put the highest one in a high level and others at a
low level to do the next round (Line 13–16). The algorithm iterates until M = 1
in each level, and finally the aggregated ranking R̃ is generated (Line 17–20).

Algorithm 2. RA
Input: Agents pairwise aggregation Caiaj

and Cajai

Output: Aggregate ranking R̃
1: M = number of alternatives needed to rank
2: L = [0] ∗ M
3: if M = 1 then
4: return
5: end if
6: for each i, j ∈ [m] do

7: Calculate PCM(i, j) =
Caiaj

Caiaj
+Cajai

8: end for
9: Calculate PPR according to PCM

10: for j, i ∈ [M ] do
11: Calculate alternatives’ level score L(j)+ = PPR(i, j)
12: end for
13: if L(1) = L(2) = ... = L(M) then
14: put the Caj

winner into a high-ranking level and others into a low level
15: end if
16: for l = 1 to the number of different levels do
17: ranking of l-th level = RA (input ranking about the alternatives in l-th

level)
18: end for
19: Rank the alternatives according to their levels to get aggregate ranking R̃
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3.4 Privacy Guarantee

Theorem 2. DDP-Helnaksort satisfies (ε, δ)-local differential privacy and (ε −
ln n

(m
2 )

, δ)-differential privacy when K = 1.

Proof. In the ranking preference collection phase, Gaussian mechanism is used
to add noise into every agent’s answers. Because are K rounds, εk = ε

K in each
round. In Gaussian mechanism, we set

δ =
Δgf

√
2 ln 1.25

δ

εk
=

KΔgf
√

2 ln 1.25
δ

ε
(2)

And DDP-Helnaksort executes the post-processing procedure after applying
Gaussian mechanism, hence it satisfies (ε, δ) − LDP . Besides, K = 1 means
that every agent answers once and uploads a single message (latter experiments
confirm the algorithm utility is the highest when K = 1). In the shuffling phase,
there are

(
m
2

)
pairs of alternatives, so the number of same pair and the size of

set S in shuffle model is
n′ =

n
(
m
2

) (3)

Therefore, by using Theorem 1, the algorithm DDP-Helnaksort satisfies (ε −
ln n

(m
2 )

, δ)-DP when K = 1.

4 Experiments

In this section, we evaluate the performance of DDP-Helnaksort, and compare
it with benchmark methods on both real and synthetic datasets. All algorithms
were implemented in Python and executed 300 times to get the result.

4.1 Experiment Settings

Datasets. The experiments were conducted on synthetic datasets and a real-
world dataset TurkDots [13]. By using R package PerMallows 1.13, we obtained
four synthetic datasets with n ∈ {100, 1000, 2500, 5000}, θ = 0.25, and m = 15
from Mallows model [12]. The dispersion parameter θ represents the distance
between the generated ranking and ground truth ranking. The generated ranking
is closer to the ground truth ranking when θ is larger. TurkDots is from Amazon
Mechanical Turk, and it contains m = 4 alternatives rankings.

Baseline Algorithms

– LDP-Kwiksort [18]. It has K rounds’ interactions between every agent and the
untrusted curator. In each round, the curator random selects paired alterna-
tives to ask agents preference and receives noisy answers from agents (queries
to an agent are not the same), then uses the Kwiksort algorithm to get the
aggregate ranking. Its utility is the highest when K = 1.
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– LDP-Quicksort. Compared with LDP-Kwiksort, it only differs in when a
new pivot random chosen in Quicksort, the curator queries the preference
between the pivot and other alternatives. This setting is only to collect prefer-
ence used in Quicksort, and avoid the waste of privacy budget for other pairs.
K in this algorithm represents the times of the agent’s answers. Finally, when
the Quicksort algorithm is finished, the curator gets an aggregated ranking.

Utility Metric - Average Kendall Tau Distance. We use the average
Kendall tau distance to measure the accuracy of the aggregated ranking. The
larger the average Kendall tau distance, the worse the algorithm performance.
We normalise this distance by m(m − 1)/2 because we can directly compare it
with different number of alternatives. Hence, the average Kendall tau distance
can be calculated as K(R,Ru) = 2

nm(m−1)

∑
u∈N K(R,Ru).

4.2 Performance of DDP-Helnaksort

Comparison between DDP-Helnaksort and Baseline Algorithms. We ran
three algorithms LDP-Quicksort, LDP-Kwiksort, DDP-Helnaksort with Gaus-
sian noise. Here ε is the parameter in LDP. We set K ∈ {1,m,max} to observe
the performance of different algorithms in different K, and m is the number of
alternatives. When K = max, the maximum value of K in LDP-Kwiksort and
DDP-Helnaksort is

(
m
2

)
, but in LDP-Quicksort, the value is according to the cho-

sen pivot, and it is (m−1) log m in general. We did the experiment on TurkDots
with n = 100. With ε = 1, δ = 10−4 in local differential privacy, the average
Kendall tau distance of LDP-Quicksort, LDP-Kwiksort and DDP-Helnaksort
are shown in Fig. 2.

Fig. 2. Comparison of algorithms according to average Kendall tau distance on Turk-
Dots across different K

The results in Fig. 2 proves our algorithm outperforms others across different
K. When we add the same scale of noise to these algorithms, the average Kendall
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tau distance of DDP-Helnaksort is the shortest. The cause is when adding same
scale of noise, DDP-Helnaksort uses more pairwise alternatives’ information (the
comparison information provided by pairwise comparisons) to rank, which leads
to a more accuracy result. Besides, it keeps away from the error of pivot random
selection, which can not be avoided by the other algorithms.

Impact of Query Amount to Every Agent. Different number of the queries
has different ranking aggregation results. More information can be obtained when
increasing the number of queries, but at the same time, the privacy budget of
each round becomes smaller, and the larger noise is added to every answer. In
order to get the best performance with the best K, we ran DDP-Helnaksort on
dataset TurkDots and the synthetic dataset with 100 agents. We set δ = 10−4,
ε ∈ {0.5, 1} (this ε is the parameter of DP, also means that it is the amplification
result of local randomizer, and ε in following experiment is the same) as well as
varying the number of queries K to observe the performance of DDP-Helnaksort.
The results are shown in Fig. 3.

(a) (b)

Fig. 3. Performance of DDP-Helnaksort: Average Kendall tau distance on TurkDots
(a) and a synthetic dataset (b) across different K when δ = 10−4, ε ∈ {0.5, 1}

It is apparent that as the decreasing of K, the performance of DDP-Helnaksort
is better. The average Kendall tau distance reaches the minimum when K = 1.
This experiment result is the same as [18], which reveals the best performance is
achieved when K = ε

2 . The reason of this phenomenon is large K leads to a small ε
in each round, and large scale of noise has a great impact on results. Although some
information about agents’ preferences is lost whenK is small, a small noise is added
to each answer, and the impact is smaller than large noise with more information.
The result also implies if we want to further improve performance of the algorithm,
we can do some works about handling ε such as implementation of personalised
differential privacy which can release some needless privacy.

Ablation Study: Impact of Shuffle Model and Privacy Budget. As seen
in Sect. 3.4, shuffle model turns LDP to DDP and amplifies the privacy. When
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every agent gives his noisy answers, a shuffling mechanism used before aggrega-
tion can offer another protection. After using the shuffle model, the algorithm
satisfies DP with a smaller ε than before. In order to demonstrate the privacy
amplification of shuffling, we compared the algorithm with and without shuffle
model in a same ε. Besides, ε reflects the level of privacy protection of every
agent. We varied ε to observe the changes in average Kendall tau distance. We
set k = 1, and other experimental setup is unchanged.

(a) (b)

Fig. 4. Comparison of DDP-Helnaksort with and without shuffle model according to
average Kendall tau distance on TurkDots (a) and a synthetic dataset (b) across
different ε when K = 1 and n = 100

We can conclude from Fig. 4 that adding the shuffle step results in a better
utility. The reason is that shuffling is equivalent to adding another noise on data.
Consequently, when we compared the algorithm with and without shuffling at
a certain ε, the second one has a large ε locally, so it perturbs less on data and
performs better. In Fig. 4, the distance average increases more in TurkDots
than the synthetic dataset from with shuffling to without shuffling, and this
mainly relates to different number of alternatives m. The synthetic dataset has
more alternatives than TurkDots, thus the synthetic dataset has more alterna-
tive pairs and it has fewer collected preferences about a certain pair. Therefore,
the shuffle model offers a smaller amplification on the synthetic dataset. This
phenomenon is consistent with the Theorem 2 that the amplification bound is
proportional to the amount of data about a certain pair. Moreover, when decreas-
ing the privacy budget, the average Kendall tau distance increases due to large
scale of noise, which make the final aggregation ranking further to the represen-
tative ranking. Furthermore, in DDP, we can choose alternative methods, such
as some cryptography tools, to amplify the privacy.

5 Conclusions

In order to improve the utility of private ranking aggregation, we proposed a
new algorithm DDP-Helnaksort, which avoids the issue of random pivot selec-
tion which appears in other private ranking algorithm using the pairwise method.
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We designed a new method to give alternatives’ score according to preference in
pairs, which can save some privacy budget and lead to a higher utility. Experi-
mental results indicate that our algorithm achieves a better performance. Besides,
We’re first applying the DDP mechanism shuffle model to amplify the privacy.
Theoretical analysis of amplification bound of shuffle model and experimental
results all confirm that the shuffle model is valid.

In the future, we will further improve the ranking utility, such as using some
cryptography tools. Besides, this algorithm can be further optimised if it could
apply personalised DP, which can release some redundant privacy budget to
achieve a higher utility.
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Abstract. Although traditional recommendation methods trained on
observational interaction information have engendered a significant
impact in real-world applications, it is challenging to disentangle users’
true interests from interaction data. Recent disentangled learning meth-
ods emphasize on untangling users’ true interests from historical inter-
action records, which however overlook auxiliary information to cor-
rect bias. In this paper, we design a novel method called SeDLR
(Semantics Disentangled Learning Recommendation) to bridge this
gap. Particularly, by leveraging rich heterogeneous information networks
(HIN), SeDLR is capable of untangling high-order user-item relation-
ships into multiple independent components according to their seman-
tic user intents. In addition, SeDLR offers reliable explanations for
the disentangled graph embeddings by the designed Monte Carlo edge-
drop component. Finally, we conduct extensive experiments on two
benchmark datasets and achieve state-of-the-art performance compared
against recent strong baselines.

Keywords: Semantic-aware representation · Disentangled learning ·
Monte Carlo edge-drop · Explainable recommendation

1 Introduction

Recommendation systems (RS) have become popular personalization tools to
assist users in sorting through the ever-growing corpus of content and discover-
ing contents in which they would be interested [3,11,13,22]. Early work mainly
used collaborative filtering methods to simply learn user/item ID representation
based on historical interactions [1,20,23]. More effective methods exploit interac-
tion as graph-structured data and aggregate feature information from high-order
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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neighborhoods using neural networks [7,14,20]. Despite effectiveness, modeling
user-item relationships via embedding functions fails to differentiate user intents
on different items, which could easily lead to suboptimal representations [5,9,21].
The disentangled learning emerges as the state-of-the-art and aims to explore the
diverse user-item relationships and learn disentangled representation for users’
true interests [4,11,12,21,25].

The principal motivation of disentangled learning is to separate users’ intents
behind each interaction in order to achieve a robust recommendation. Although
disentangled learning has made promising improvements for distilling users’
intents, a deficiency is that they emphasize historical interaction records and
overlook auxiliary information to correct bias in the recommendation. As shown
in Fig. 1, there are four interactions between u1 and movies (i.e., i1, i2, i3 and
i4). With context information of user and item, we may infer that u1 prefers
to watch a movie with type and director. More importantly, the interaction
between u1 and i4 might be due to the conformity bias that u1 tends to watch a
movie i4 that is strongly recommended by a friend u2, even if this goes against
u1’s own preference. Merely using interactions without contextual information
fails to capture users’ pure interests that are independent of conformity. There-
fore, exploiting the contextual information of users (e.g., social relationship) and
movie (i.e., director and type) is crucial for distinguishing the conformity bias
from users’ true interests.

Towards this end, we empower disentangled learning with contextual infor-
mation, with the aim of discovering users’ true interests from the biased inter-
actions and offering explainable recommendations. Overall, the three main con-
tributions of this work are summarized as followings:

Fig. 1. An illustration of interactions between users and items with contexts.

– To the best of our knowledge, we are the first to incorporate heterogeneous
information networks (HIN) into disentangled learning. Our SeDLR model
can exploit high-order user-item relationships at the finer granularity and
learn disentangled representations towards different semantic-aware aspects.

– We design a Monte Carlo edge-drop strategy, which modifies the HIN struc-
ture and drops users’ intents-irrelevant semantic information, with the aim
of facilitating the explainability of our SeDLR model.
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– We conduct extensive experiments on two benchmark datasets to show the
superiority and explainability of our SeDLR model.

2 Preliminary and Related Work

In this section, we will introduce recent works that are highly related to ours
includes HIN-based learning, graph-based entangled learning and disentangled
learning for the recommendation.

Heterogeneous information networks (HIN) include multiple node types and
connection relationships, which can flexibly use rich objects and information
to model heterogeneous data effectively [18]. HIN enhanced methods leverage
meta-path based social relationships derived from rich HIN information, which
greatly improve the Top-K recommendation performance. Many HIN-based rec-
ommendations have proven the effectiveness of using HIN. For example, IF-BPR
[24] propose meta-path based social relations derived from a HIN, then capture
the similarity between users for the recommendation. While MCRec [8] uses rich
meta-path context representation and attention mechanism.

Graph-based entangled methods learn user/item embeddings by linearly
propagating with neighborhood aggregation in the Graph Convolution Network
(GCN) component, such as NeuMF [7] and NGCF [20]. NeuMF [7] combines
traditional matrix factorization and neural network, which can extract low and
high dimensional features at the same time, then concatenate multiple neural
network layers with matrix factorization layer to gain the final likelihood score
[10]. While NGCF [20] refine the embedding vector from high-order connection
information, and integrates by three Graph Neural Network (GNN) layers, then
trains by optimizing losses to gain the affinity score of the pair of user and item.

Disentanglement recommendation methods learn users’ intents by disentan-
gling users’ latent factors, which is more effective to recommend items by know-
ing the intent rather than the historical records [21]. For instance, DGCF [21] is
a state-of-the-art disentanglement recommendation method, which disentangles
latent factors of user intents by the neighbor routing and embedding propagation,
then applies an independent module to separate intents. M-VAE [16] achieves
the macroscopic entanglement by inferring the high-level concepts associated
with user intentions, and simultaneously captures user preferences for different
items. However, neither M-VAE nor DGCF is able to associate learned intent
with real-world users’ aspects which can be seen as pre-defined intent.

3 Methodology

The architecture of the proposed SeDLR’s framework is shown in Fig. 2. Our
method takes the holistic user-item interaction graph with a HIN as the input,
and passes through a graph disentangling network (top-left) to divide the holistic
interaction graph into q intent-aware sub-graphs for learning the separated user
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intent representations, while the HIN embedding network (bottom-left) lever-
ages meta-path schemes retained in the HIN to construct expressive represen-
tations of context (i.e., aspects). The learned context representations are then
incorporated into user intent representations to derive the semantic-aware intent
representation for the later recommendation task. Finally, to better explain the
disentangled learning based recommendation, we use Monte Carlo edge-drop
strategy to select the important aspects as explanations (right).

Fig. 2. The overview of the proposed SeDLR framework.

3.1 Graph Disentangling for Users Intents

Our first target is to disentangle q intents of the user as initialization, hence we
divide user/item embedding into q chunks and associate each with a potential
intent as follows:

u = (u1,u2, . . . ,uq) , i = (i1, i2, . . . , iq) (1)

where uq and iq illustrate chunked representation for q-th intent on interaction
of user/item. Additionally, we employ random initialization for each chunk rep-
resentation to ensure the difference before the training stage. We then adopt a
score vector to explore the relationships between intent and interaction as:

S(u, i) = (S1(u, i), S2(u, i), · · · , Sq(u, i)) (2)

where Sq(u, i) represents the score vector over q-th intent on interaction, which
is the possibility of adopting interaction is due to q-th intent. Accordingly, a
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set of score vectors can be initialized as the same values to indicate the same
contribution on interaction before training. Hence, this score vector can be seen
as an adjacency matrix for an intent-aware graph.

Next, we design a graph disentangling layer to explore valuable information
via the high-order connectivity, we employ a graph disentangling layer that con-
sists of embedding propagation mechanisms and neighbor routing as follows:

eu(1)
q = g (uq, {iq | i ∈ Nu}) (3)

where e
u(1)
q collects information from neighbors of u, and index 1 represents the

first-order neighbor. Nu is the historical interacted items, more formally, it is
the first-hop neighbor. We then perform an iterative update rule which is to
update the intent-aware embedding by embedding propagation in the intent-
aware graph, then use it to refine the graph. Consequently, score vector Sq for
each interaction after n iteration can be generated. To get its distribution across
all intents, we normalized by softmax as:

S̃n
q (u, i) =

exp Sn
q (u, i)

∑q
q′=1 expSn

q′(u, i)
(4)

to illustrate the importance of each intent. Accordingly, we can obtain normalized
adjacency matrix S̃n

q for each intent. The Laplacian matrix of S̃n
q is adopted as:

Mn
q (u, i) =

S̃n
q (u, i)

√
Dn

q (u) · Dn
q (i)

(5)

where Dn
q (u) =

∑
i′∈Nu

S̃n
q (u, i′) and Dn

q (i) =
∑

u′∈Ni
S̃n

q (u′, i) are the degrees
of u and i, respectively. Besides, the embedding propagation for each graph can
encode the information influenced to the interaction and the sum aggregator is
defined as:

un
q =

∑

i∈Nu

Mn
q (u, i) · i0q (6)

where un
q illustrates the sum of historical items and importance weighting in

q-th aspect at n-th iteration, and i0q is the input representation for the historical
item. It can temporarily memorize the information collected from neighbors Nu.

Thereafter, we iteratively the update intent-aware graph. Intuitively, inter-
acted items driven by the same intent tend to have similar chunked representa-
tions, encouraging stronger relationships between them can achieve this purpose.
Thus, we iteratively update the interaction score vector Sn

q (u, i) to adjust the
degree of u and neighbor i as follows:

Sn+1
q (u, i) = Sn

q (u, i) + un�
q tanh

(
i0q

)
(7)

where un�
q tanh

(
i0q

)
represents the affinity between un

q and i0q in Eq. (6), while
tanh is a nonlinear activation function can improve the representation ability.



254 D. Yu et al.

Finally, output a graph disentangling layer after n iterations, that contains dis-
entangled representation e

u(1)
q = un

q and intent-aware graph S̃n
q .

We then combine multiple layers to gather rich semantics from high-order
connectivity. While the first-order neighbors have been used above, hence we
can stack r layers to obtain influence signals from r-th high-order connectivity
as:

eu(r)
q = g

(
eu(r−1)
q ,

{
ei(r−1)
q | i ∈ Nu

})
(8)

where e
u(r−1)
q and e

i(r−1)
q serve as the representations of u and i on q-th intent

which save the propagated information from (r − 1)-hop neighbors. Every dis-
entangled representation is associated with explanatory graph serve as weighted
adjacency matrix S̃r

q . We can sum up the intent-aware representations after r

layers as eu
q =

(
e
u(0)
q , e

u(1)
q , · · · , e

u(r)
q

)
and ei

q =
(
e
i(0)
q , e

i(1)
q , · · · , e

i(r)
q

)
for u

and i, respectively. Furthermore, we summarized user/item representations as
eu =

(
eu
1 , · · · , eu

q

)
, ei =

(
ei
1, · · · , ei

q

)
, respectively.

3.2 Semantic-Aware Intent Representation Learning

In this section, we aim to extract aspect embeddings from meta-paths of the rich
HIN context. The HIN, which records different types of relationships between
users and items, carries diverse semantics and is beneficial to intent represen-
tation learning. Specifically, such semantics can be reflected in the meta-path
schemes of the given HIN, which is some paths defined composites of different
node types with diverse edge types. By characterizing meta-path schemes, the
complex relations of the involved nodes can be captured, reflecting higher-level
semantics to augment user intent learning. Taking the UMU as an example, the
path sequence Uu1 − Mm1 − Uu2 defined under such a meta-path can reflect the
behavior similarity of u1 and u2, while the social influence of u2 to u1 is the
important aspect that may affect the intent of u1. This motivates us to leverage
the aspect embeddings modeled from meta-paths as the context to refine the
user intent representations.

Formally, given the pre-defined meta-path p, we should firstly generate a
series of high-quality path instances ρ = {u1, u2, · · · , ul}. Here we resort to Meta-
path Based Random Walks [2], which is a wildly used path sampling strategy that
generates path instances that constitute multiple types of nodes, under a specific
meta-path p to further capture both the semantics and structural correlations
between various types of nodes. Then we learn the embeddings of the acquired
path instances ρ by a Convolution Neural Network (CNN) [6,15] parameterized
by Θ, then adopt the max-pooling operation to derive the final embedding for a
meta-path p by aggregating the embeddings of L selected path instances:

cp = max-pooling
(
{CNN ({Xρ

i };Θ)}L
i=1

)
(9)

where {Xρ
i } means the set of embeddings for L path instances of meta-path p.

Each Xρ
i illustrates the embedding matrix.
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The meta-paths carry important semantic meanings, which can guide the
intent learning of users. We propose to extract the semantic embedding from
meta path embedding cp, serving as the context information that waits to
be incorporated into the latter semantic-aware intent learning. Specifically, the
semantic representation of user u can be derived by the embedding lookup oper-
ation as:

vp = c�
p · u (10)

where u ∈ R
1×|U| is the one-hot encoding of user u. The learned vp is then serves

as the aspect embeddings for all user u ∈ U under meta-path p. Therefore, we
can extract and generate all the aspect embeddings under different meta-paths.

We then perform the semantic-aware intent learning from intent representa-
tion eu and ei for users and items in Eq. (3), and aim to incorporate semantics as
retained in vp for users and items to learn the semantic-aware intent representa-
tions for the latter recommendation. Towards this end, we design a Factorization
Machine (FM) operator to instantiate semantics-aware intent representation hp,
which denotes the user intent towards different aspects under meta-path p. For-
mally, we now have obtained vp ∈ R

1×d as the semantics-aware representation
and the intent-aware representations eu = (eu

1 , · · · , eu
q ) ∈ R

1×d for user u. Then
hp can be calculated by a FM module:

hp = eu � vp (11)

where � denotes the element-wise product.
Lastly, we perform optimization for model parameters. In detail, the

semantics-aware intent representation hp can be incorporated into recommen-
dation models as one additional user representation. Formally, we use the col-
laborative filtering to calculate the prediction score ŷui given user and item ID
representations as follows:

ŷui = αu�i + (1 − α)h�
p i (12)

where u and i are the ID embeddings given by id mapping techniques in Eq. (1),
such as Multi-OneHot [17] and α is the coefficient that describes how much each
component contributes to the prediction score. After obtaining the final repre-
sentation for user/item, we optimize the parameters for hp in Eq. (11) by using
Bayesian Personalized Ranking (BPR) loss, which encourages the prediction of
an observed to be higher than its unobserved counterparts user:

LBPR =
∑

u,i,j∈D
− ln σ (ŷui − ŷuj) + λ‖E‖22 (13)

where D = {(u, i) : u ∈ U, i ∈ I, j ∈ I} is the training set and E is the embedding
matrix of all users and items.
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3.3 Monte Carlo Edge-Drop for Explainability

To further explain the recommendation we propose a novel strategy namely
Monte Carlo edge-drop, which aims to provide explainable semantics for the rec-
ommendation. By optimizing Eq. (13), we finally produce our prediction model
denoted as f(·). We further conduct an inference with a HIN with an edge b
removed from meta-path p, i.e., removing the influence of attribute b, which
generates the prediction as ŷs

ui. Thereafter, we define a criterion, which denotes
the absolute error variation between ŷs

ui and the original prediction ŷui, to deter-
mine the importance of attribute b. If the variation is greater than a threshold
δ, we then claim this aspect is influential since it has a significant impact on the
prediction.

4 Experiments

In order to thoroughly evaluate and analyze the proposed methodology, we con-
ducted extensive experiments to answer the following research questions:

– (RQ1) How does our method compare with other state-of-the-art models?
– (RQ2) How does the threshold δ in Monte Carlo edge-drop strategy improve

Top-K recommendation?
– (RQ3) How does our method explain users’ aspects and provide semantic

information for the recommendation?

4.1 Settings

We conduct extensive experiments on two publicly available datasets: Walmart
Recruit1, and Douban Book2. Walmart Recruit contains historical retail data
from 2011 to 2013 as HIN context includes price, discount, user, gender, category
type and city and has been widely used for recommendation related research [19].
The ratings of Walmart Recruit are the user’s rating number of transactions.
Douban Book includes rich HIN information such as 3 attributes for the user
and 4 attributes for the book. The ratings of Douban Book are the user’s rating
number of books. For both two datasets, we binarize the feedback data (i.e.,
ratings) by interpreting ratings of 5 or higher as positive feedback (i.e., r = 1)
or lower as negative feedback (i.e., r = 0). Moreover, we use negative sampling
to randomly sample unobserved items and pair them with the user as negative
instances. The statistics detail are summarized in Table 1.

1 https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting.
2 https://github.com/librahu/HIN-Datasets-for-Recommendation-and-Network-

Embedding/tree/master/Douban%20Book.

https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting
https://github.com/librahu/HIN-Datasets-for-Recommendation-and-Network-Embedding/tree/master/Douban%20Book
https://github.com/librahu/HIN-Datasets-for-Recommendation-and-Network-Embedding/tree/master/Douban%20Book
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Table 1. Statistic details: density is #Connections/(#Users · #Items), relation is
connection number and Avg.Degree of A is #Relation/#A.

Dataset (density) Node Relation A-B Avg.Degree of A/B

Walmart Recruit
(0.11%)

#User(U): 5,647 #U-G: 5,645 #U/G: 1/2822.5

#Gender(G): 2 #U-C: 5,645 #U/C: 1/564.5

#City(C): 10 #U-T: 23,053 U/T: 4.1/1.1

Transaction(T): 20,878 #U-U: 0 U/U: 0/0

#Category Type(CT): 5 #T-A: 23,053 #T/A: 1.1/4.0

#Amount(A): 5,764 #T-CT: 23,053 #T/CT: 1.1/4610.6

Douban Book
(0.27%)

#User(U): 13,024 #U-Bo: 792,062 #U/Bo: 60.8/35.4

#Book(Bo): 22,347 #U-U: 169,150 #U/U: 13.0/13.0

#Group(Gr): 2,936 #U-Gr: 1,189,271 #U/Gr: 91.3/405.1

#Author(Au): 10,805 #Bo-Au: 21,907 #Bo/Au: 1.0/2.0

#Publisher(P): 1,815 #Bo-P: 21,773 #Bo/P: 1.0/12.0

#Year(Y): 64 #Bo-Y: 21,192 #Bo/Y: 1.0/331.1

All experiments are conducted on a Linux server with RTX3070 GPU. We
adopt three popular metrics including Recall@K, NDCG@K, and Precision@K,
where K is set as 1, 10, 20 and 40 in Table 2. Both two datasets are split as a
proportion of 80%/10%/10%, train/test/validate set, respectively. A grid search
is used to find the best parameter settings. The embedding size is initialized with
Xavier and searched in {16, 32, 64, 128}, and learning rate is in {0.001, 0.01, 0.05,
0.1}. The maximum epoch is set as 1000 with an early stopping strategy. Default
hyperparameters of SeDLR are: embedding size 128, disentangled layer iteration
number n = 3, latent intent number q = 4, learning rate 0.01. We compare our
proposed SeDLR with three kinds of state-of-the-art recommendation methods:
(1) HIN-based methods including IF-BPR [24] and MCRec [8]; (2) Graph-based
entangled methods including NeuMF [7] and NGCF [20]; (3) Disentangled-based
methods including DGCF [21] and M-VAE [16]3.

4.2 RQ1 Performance Comparison

To understand the performance of SeDLR, we adopt deep comparison with mul-
tiple state-of-the-art models on Top-K recommendations. The overall statistical
outcomes can be found in Table 2. On both two datasets, our SeDLR consis-
tently outperforms all other approaches. Especially, SeDLR improves over the
strongest baselines at NDCG@20 by 27.7% and 15.2% on Walmart Recruit,
and Douban Book, respectively. Specifically, most improvements are more than
10%, which validates the Monte Carlo edge-drop has critical effects on improving

3 Refer to related work for more details of baselines.
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Table 2. Overall performance comparison: the best results are marked as bold,
strongest baselines are marked with underline.

Datasets Metrics NeuMF NGCF DGCF M-VAE IF-BPR MCRec SeDLR Improv.

Walmart Recruit Recall@1 0.0376 0.0299 0.0421 0.0391 0.0385 0.0381 0.0476 13.1%

Recall@10 0.0401 0.0387 0.0447 0.0472 0.0419 0.0437 0.0512 8.5%

Recall@20 0.0451 0.0430 0.0516 0.0509 0.0479 0.0448 0.0552 7.0%

Recall@40 0.0612 0.0582 0.0572 0.0519 0.0556 0.0622 0.0672 8.0%

Precision@1 0.0301 0.0315 0.0357 0.0322 0.0316 0.0351 0.0417 16.8%

Precision@10 0.0457 0.0385 0.0477 0.0369 0.0399 0.0426 0.0516 8.2%

Precision@20 0.0528 0.0497 0.0519 0.0489 0.0462 0.0512 0.0556 5.3%

Precision@40 0.0609 0.0599 0.0712 0.0603 0.0591 0.0621 0.0776 9.0%

NDCG@1 0.0201 0.0315 0.0362 0.0288 0.0291 0.0343 0.0415 14.6%

NDCG@10 0.0341 0.0392 0.0448 0.0429 0.0409 0.0422 0.0512 14.3%

NDCG@20 0.0396 0.0499 0.0513 0.0489 0.0502 0.0511 0.0591 15.2%

NDCG@40 0.0670 0.0689 0.0711 0.0676 0.0709 0.0712 0.0823 15.6%

Douban Book Recall@1 0.0267 0.0205 0.0333 0.0301 0.0329 0.0324 0.0387 16.2%

Recall@10 0.0311 0.0377 0.0411 0.0339 0.0362 0.0401 0.0458 11.4%

Recall@20 0.0339 0.0252 0.0431 0.0309 0.0396 0.0478 0.0515 7.7%

Recall@40 0.0641 0.0707 0.0749 0.0691 0.0628 0.0481 0.0801 6.9%

Precision@1 0.0302 0.0344 0.0351 0.0325 0.0281 0.0294 0.0401 14.2%

Precision@10 0.0391 0.0402 0.0415 0.0378 0.0356 0.0352 0.0476 14.7%

Precision@20 0.0420 0.0495 0.0538 0.0322 0.0376 0.0309 0.0541 0.6%

Precision@40 0.0599 0.0618 0.0725 0.0425 0.0564 0.0468 0.0745 2.8%

NDCG@1 0.0301 0.0295 0.0327 0.0341 0.0205 0.0202 0.0395 15.8%

NDCG@10 0.0356 0.0441 0.0457 0.0401 0.0398 0.0268 0.0552 20.8%

NDCG@20 0.0391 0.0301 0.0502 0.0425 0.0463 0.0294 0.0641 27.7%

NDCG@40 0.0682 0.0691 0.0663 0.0645 0.0601 0.0507 0.0813 19.2%

recommendation performance. Additionally, disentangled methods achieved bet-
ter results than the other two methods in most cases, which justifies the disen-
tangled representation has a better performance by separating intents, therefore
our SeDLR adopts it in our method.

4.3 RQ2 Aspect Threshold Influence

We conduct extensive experiments to explore the influence of aspect thresh-
old δ in Monte Carlo edge-drop strategy for three popular metrics Recall@K,
NDCG@K, and Precision@K on the recommendation. The empirical results
can be found in Fig. 3. Through the comparison, we observed the highest accu-
racy existing in the δ value 0.6 for all three metrics on both two datasets with
K@20 and K@40. Then the accuracy drops dramatically later, which is reason-
able since the Monte Carlo edge-drop start to filter aspects from 0 and leads to
improvement. But the accuracy has decreased when dropped too many aspects,
which is a lack of inputs. Accordingly, we summarized with 0.6 is the best aspect
threshold on HIN-based disentangled network recommendation.
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Fig. 3. The influence of aspect threshold δ in Monte Carlo edge-drop strategy on Top-K
recommendation evaluated by Recall@K, NDCG@K and Precision@K.

4.4 RQ3 Model Explainability and Visualization

We visualize two case studies include two users and one item from Walmart
Recruit to gain a deeper understanding of SeDLR’s explainability in Fig. 4. By
jointly analyzing interaction and aspect, we find the aspect differ across each
interaction, which is reflected by score values. For instance, user 268136 only
keeps male aspect scoring 0.78, and man store aspects scoring 0.62, under thresh-
old δ value 0.6. It can provide semantics meaning that a male user is likely to
interact with an item laptop at the man store. These results show SeDLR not
only can effectively untangle users’ intents but also add semantic supplements
for learned intents.

Fig. 4. A visualization of two case studies from Walmart Recruit, the bold lines rep-
resent retained aspects after Monte Carlo edge-drop strategy with threshold δ value
0.6.
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5 Conclusion and Future Work

This paper introduces a novel HIN-based disentangled learning method for Top-
K recommendation, namely SeDLR. With the disentangled learning augmented
by the HIN, our method is capable of empowering the capability of the recom-
mendation model addressing the bias in historical user interactions. In addition,
we resort to Monte Carlo edge-drop strategy to provide the semantic explana-
tions for the recommendation in the real-world datasets. In future work, we will
explore the deeper fine-grained level for the item, which is another promising
direction.
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Council (ARC) under Grant number DP22010371, LE220100078, DP200101374, and
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Abstract. In this paper, we propose MuTATE, a Multi-Task Aug-
mented approach to learn Transferable Embeddings of knowledge graphs.
Previous knowledge graph representation techniques either employ task-
agnostic geometric hypotheses to learn informative node embeddings or
integrate task-specific learning objectives like attribute prediction. In
contrast, our framework unifies multiple co-dependent learning objec-
tives with knowledge graph enrichment. We define co-dependence as mul-
tiple tasks that extract covariant distributions of entities and their rela-
tionships for prediction or regression objectives. We facilitate knowledge
transfer in this setting: tasks→graph, graph→tasks, and task-1→task-2
via task-specific residual functions to specialize the node embeddings for
each task, motivated by domain-shift theory. We show 5% relative gains
over state-of-the-art knowledge graph embedding baselines on two public
multi-task datasets and show significant potential for cross-task learning.

Keywords: Knowledge graphs · Knowledge graph embedding · Graph
neural networks · Multi-task learning · Residual learning

1 Introduction

Knowledge graphs enable versatile storage, visualization, interpretation, and
manipulation of large volumes of contextual information across interacting enti-
ties (nodes) via relations (links) in diverse domains such as linguistics (Wang et
al. (2013)), biomedicine (Ernst et al. (2015)) and finance (Cheng et al. (2020)).
The transitive entity association structure enhances inferencing applications
involving entity attribute prediction and entity-to-entity relation prediction.
However, the persistent challenges with knowledge graphs are two-fold, link spar-
sity and its task-unaware inflexible structure (Huang et al. (2019); Wang et al.
(2014)). To overcome these challenges, a popular direction is to embed knowl-
edge graphs in dense vector spaces (Bordes et al. (2013); Wang et al. (2014);
Sun et al. (2019)) via path-based patterns such as symmetry, anti-symmetry,
composition and analogy (Sect. 3.1). However, these learned patterns are static
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13280, pp. 262–275, 2022.
https://doi.org/10.1007/978-3-031-05933-9_21
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https://doi.org/10.1007/978-3-031-05933-9_21


Multi-task Knowledge Graph Representations via Residual Functions 263

and not task-specific. To address this, the second direction integrates knowledge
graph embeddings with specific learning tasks (Huang et al. (2019); Wang et al.
(2019a)). In this case, the node/link embeddings are optimized for a single-task,
but cannot combine or benefit multiple tasks.

Unlike these two directions, our approach unifies multi-task learning, graph
enrichment, and embedding learning. We specifically focus on co-dependent tasks,
i.e., tasks depending on shared aspects of the graph structure. As an example, we
consider two well-defined prediction objectives in Fig. 1, book recommendation
and book genre prediction. We consider a collaborative recommender model on
the user-book links and a prediction model on the book-genre links.

U1

U2

B1

B2

Fiction

Children

likes genre 

B3

Adult

Teen

age-group 

B4 History

U4

U3

prefers

GenresUsers BooksAge-group

Book RecommenderModels

Fig. 1. Toy knowledge graph with four entity
types: users, books, age-groups, genres. Enti-
ties are linked via user prefers genre, user in
age-group, user likes book, book is genre rela-
tions. Sample task-models include recommen-
dation and book genre prediction.

These two task-models extract
task-biased views of the knowledge
graph depending on their inductive
biases. However, both tasks (rec-
ommendation, genre prediction)
require accurate book embeddings,
i.e., shared subspace of the joint
(User, Item, Genre) latent distri-
bution. Further, each model can
address link sparsity in the graph
by predicting new links of the
same type, thus transferring the
extracted knowledge back to the
graph. These newly predicted links
represent the task-biased distribu-
tion learned by each model. Com-
bining multiple tasks in this man-
ner jointly enriches the graph as
well as the other tasks through
their shared subspaces. In sum-
mary, our contributions are as fol-
lows:

Merging Multi-task Learning and Knowledge Graph Embed-
ding/Knowledge Graph Enrichment: We propose a holistic view of knowl-
edge graphs and multi-task learning to enable bidirectional knowledge transfer
between the graph and multiple co-dependent learning objectives.

Generalizability: The proposed framework makes no assumptions about the
data-domain or learning tasks. We validate this empirically.

Modeling Multi-task Embedding Updates via Residuals: We identify
the connection between multi-task knowledge graph updates and covariate shift
(Johansson et al. (2016)) to unify multiple task distributions over shared node
embeddings via task-specific residual functions.

Strong Experimental Results: We demonstrate strong experimental results
on knowledge graphs constructed from two large public datasets, Google Local
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Reviews1 (He et al. (2017); Pasricha and McAuley (2018)) and Yelp Challenge2

and using two co-dependent task-models, word2vec (Mikolov et al. (2013)) and
a context-aware recommender (Krishnan et al. (2020)).

2 Problem Definition

Knowledge Graph Notations: We consider a heterogeneous directed knowl-
edge graph with multiple entity (node) types, E = {E1,E2 · · · E|E|}.

Factual Links: R = {R1,R2 · · ·R|R|} is the set of all links (called factual
links), where each set Rr : E1(r) → E2(r) is a specific relation r ∈ {1, 2, · · · |R|}
between head and tail entity sets E1(r),E2(r) ∈ E . Each factual link (e1, r, e2)
∈ Rr denotes head and tail entities e1 ∈ E1(r), e2 ∈ E2(r) with relation r. �e1,�e2
denote the d-dimensional entity embeddings of e1 and e2. For each relation r,
we also learn d-dimensional head and tail embedding projectors (�p1(r), �p2(r)).

Task-Model Notations: Task-Model M(r) predicts relation-r links between
entity sets E1(r) and E2(r). Each M(r) is trained with factual links Rr.

Model-Biased Links: We predict new links (e′
1, r, e

′
2) via task-model M(r)

between the input entity e′
1 ∈ E1(r) and the model predicted output e′

2 ∈ E2(r)
(e.g., a specific user e′

1 and a specific book e′
2 from the recommender task-model

in Fig. 1). Note that factual links (e1, r, e2) ∈ Rr exist apriori in the knowledge
graph unlike model-biased links (denoted (e′

1, r, e
′
2) ∈ R′

r).

3 Knowledge Graph Embeddings

Knowledge graph embedding techniques typically encode static node connectiv-
ity pattens to mitigate link-sparsity (Sun et al. (2019)) such as:

– Symmetry: (e1, ra, e2) =⇒ (e2, ra, e1)
– Anti-Symmetry: (e1, ra, e2) =⇒ not (e2, ra, e1)
– Inversion: (e1, ra, e2) =⇒ (e2, rb, e1)
– Composition: (e1, ra, e2) and (e2, rb, e3) =⇒ (e1, rc, e3)
– Analogy: (e1, ra, e2) and (e3, ra, e4) =⇒ (e1, rb, e3)/(e2, rc, e4)

None of these first-cut patterns are task-specific. Prior approaches in this
vein do not provide mechanisms for task-adaptation or multi-task learning. We
formalize task-to-task knowledge transfer as follows:

– How do we leverage links (e1, ra, e2) for link predictions of the form (e1, r′, e′),
(e2, r′, e′), (e′′, r′′, e1), (e′′, r′′, e2)?

Note that the solution to the above transfer learning is specific to the relation
types ra, r′, r′′ as well the entity nodes e1 and e2, and thus can be combined
with task-models M(r) involving these entities or relations. We thus propose a
two-step solution where we first leverage the static patterns to generate first-
cut embeddings and then augment them with task-specific residual functions
(Sect. 3.2) to enable adaptation to the respective task-models.
1 http://cseweb.ucsd.edu/∼jmcauley/datasets.html.
2 https://www.yelp.com/dataset/challenge.

http://cseweb.ucsd.edu/~jmcauley/datasets.html
https://www.yelp.com/dataset/challenge
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3.1 Link Embedding Model

Parallelizable embedding learning is critical for knowledge graph applications
owing to their massive sizes. DistMult (Yang et al. (2014)) describes a block-
optimizable bilinear form with a learnable diagonal embedding projector (Pr)
for each relation type r Lerer et al. (2019). Under this approach, the likelihood
of a link (e1, r, e2) is given by:

L(�e1, r, �e2 ) = �eT
1 Pr�e2 (1)

However, due to the symmetric nature of the above transformation, it cannot
encode anti-symmetry and inversion patterns (Sun et al. (2019)). In contrast,
other methods that do not have a symmetric objective wrt. head and tail entities
(e.g., Sun et al. (2019)) pose block optimization constraints. To overcome these
limitations, we break the symmetry in Eq. (1) by describing two projectors (for
the head and tail entity embeddings) for each relation type. Our form adds twice
as many relation-specific projectors. However, the number of relation-types is
typically orders of magnitude less than the number of nodes so that the overhead
is insignificant. We now define the likelihood of a link (e1, r, e2):

L(�e1, r, �e2 ) = cosine-sim
(

�e1 ⊗ �p1(r), �e2 ⊗ �p2(r)
)

(2)

The above modification enables composition, inversion, and anti-symmetry:

– Anti-Symmetry: Consider relations ra to be anti-symmetric, so that,
(e1, ra, e2) =⇒ not (e2, ra, e1) We can encode this in our likelihood term
with orthogonal projectors for the head and tail, i.e., �p1(r) ⊥ �p2(r) so that
we take the orthogonal projections of the head and tail entity when the direc-
tion of the relation is reversed.

– Inversion: Consider relations ra, rb to be inversions of each other, so that,
(e1, ra, e2) =⇒ (e2, rb, e1) We can encode this in our likelihood term by
switching the head and tail projectors, i.e., �p1(ra) = �p2(rb) and �p2(ra) =
�p1(rb). It is easy to verify that this would result in L(�e1, ra,�e2) = L(�e2, rb,�e1)
which results in the desired inversion.

– Composition: Relation rc composes ra and rb if (e1, ra, e2), (e2, rb, e3) =⇒
(e1, rc, e3). We can encode this in our likelihood terms with the following sim-
ple switch, i.e., �p1(rc) = �p1(ra) and �p2(rc) = �p2(ra). This would transitively
align the composed relation with the head and tail entities e1 and e3.

Finally, we also add a scale factor to Equation (2) (sim = cosine-similarity):

L(�e1, r, �e2 ) = sim
(

�e1 ⊗ (�p1(r) + sI) , �e2 ⊗ (�p2(r) + sI)
)

(3)

In the next subsection, we describe task-specific embedding adaptation and
link-sparsity mitigation on the first-cut factual embeddings from Eq. (3).
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3.2 Embedding Augmentation via Model-Biased Links

Consider the prediction task for relation r between entity sets E1(r), E2(r).
Task-model M(r) predicts model-biased links (e′

1(r), r, e
′
2(r)) where e′

1(r) ∈
E1(r), e′

2(r) ∈ E2(r), from its inferred co-occurrence distribution. In this man-
ner, each M(r) generates model-biased links R′

r different from the factual links
Rr of the same relation type. Under Eq. (3), the likelihood of each factual link
(e1, r, e2) ∈ Rr is given by:

L(�e1, r,�e2) = sim
(

�e1 ⊗ (�p1(r) + sI) , �e2 ⊗ (�p2(r) + sI)
)

(4)

Upon optimization, we obtain the first-cut factual embedding space �E with
the latent factual embedding distribution P (�E). However, each task-model M(r)
represents a co-occurrence distribution between entity sets E1(r),E2(r) which
differs from those in P (�E), depending on the specific task and the model-
architecture (inductive bias). We thus learn model-specific embedding spaces
�E′

r by optimizing Eq. (3) over the model-biased links R′
r instead of Rr (Fig. 2).

Fig. 2. (a) We learn the facutal entity embeddings via Eq. (3), (b) we then generate
model-biased links with the Book Recommender model to train residual functions (Eq.
(7)), (c) improve the task-model with the residual functions from step (b) in Eq. (12).
Steps (b), (c) can be iteratively optimized.

Thus for pairs of entities e1 ∈ E1(r), e2 ∈ E2(r), we obtain both factual and
model-biased embeddings (�e′ denotes the model-biased embedding of entity e):

�e1, �e2 ∼ P (�E); �e′
1, �e′

2 ∼ P (�E′
r) (5)

We learn the divergence Δ(r) between distributions P (�E) and each P (�E′
r)

so that the knowledge graph embeddings can be adapted to each task-model:

Δ(r) = KL(P (�E), P (�E′
r)) (6)

We encode Δ(r) for each task-model M(r) via embedding residual shifts
motivated by covariate domain-shift theory (He et al. (2016), Johansson et al.
(2016)). In the next subsection, we show how this enables task→graph and
graph→task embedding conversion via task-specific residual functions.
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3.3 Residual Shift

The factual and model-biased embedding distributions (P (�E), P (�E′
r)) represent

different covariate-shifts in the node embedding space depending on the biases
of each task-model M(r). We model each of these shifts with a task-specific
residual function δr to translate between the spaces �E and �E′

r):

�e′
1 = �e1 + δr (�e1 ); �e′

2 = �e2 + δr (�e2 ) (7)

where �e1 denotes the factual embedding of the entity e1(r) and each residual
function δr is given by,

δr (�e) = tanh( Wr (�e) + br ) (8)

We learn the weights Wr and biases br to optimize the likelihoods of the
model-biased links (L(�e′

1, r, �e′
2) ∀ (e′

1, r, e
′
2) ∈ R′

r) by placing the residual
shifted entity embeddings �e′

1, �e′
2 in Eq. (3).

4 Training Methods

4.1 Learning the Task-Specific Residual Functions

We generate the model-biased links (e′
1, r, e

′
2) ∈ R′

r for each e′
1 ∈ E1(r) via

M(r). We then learn the residual function δr via alternating optimization of the
following likelihoods:

L(Rr) =
∑

(e1,r,e2)∈Rr

log L(�e1, r, �e2 ) (9)

L(R′
r) =

∑
(e′

1,r,e′
2)∈R′

r

log L ( �e′
1, r, �e′

2 ) (10)

with notations following from Eq. (3), Eq. (7) and Table 1.

4.2 Graph and Model Co-training

Table 1. Residual function notations

Symbol Description

�e1, �e2 Factual embeddings

δr (.) Residual function for M(r)

Wr, br Weight, bias for δr

�e′
1, �e′

2 Residual shifted embeddings

�e′
1 = �e1 + δr (�e1 )

�e′
2 = �e2 + δr (�e2 )

We now describe our training approach
to concurrently learn entity embeddings
and task-models with continuous dif-
ferentiable objective functions. In Eq.
(10), the task-model is held constant,
i.e., we only learn the entity embed-
dings and residual functions. For co-
training, we apply the same residual
transformations to the factual links in
the graph; and add them to the task-
model’s optimization objective as soft-criteria.
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For each factual link (e1, r, e2 ) ∈ Rr, we estimate the residual shifted likeli-
hood as follows:

SA(e1, e2 ) = L( �e′
1, r, �e′

2) (11)

where L follows from Eq. (3). We now add the following regularization term to
the objective function O(r) of M(r):

λ(r)
( ∑

Rr

SA (e1, e2) − M(r) (e1, e2)
)

(12)

Here, M(r) (e1, e2) indicates the confidence score assigned by M(r) to link e2
to e1 and λ(r) is the regularization strength.

4.3 Model to Model Cross-Training

Let us consider the following direction of transfer, M(r1) → M(r2) (teacher-
model → student-model). To cross-train M(r2) with M(r1), we need at least
one entity set to be shared across the two models. Let us denote a shared entity
set E with factual embeddings �e, e ∈ E obtained via Eq. (3). We then learn the
residual function δr1 corresponding to the teacher-model M(r1), and update the
entity embeddings for E with Eq. (10), while holding δr1 constant. Finally, we
perform the graph-to-model updates described in Sect. 4.2 to train student-model
M(r2) with the updated embeddings.

5 Experimental Results

Here, we present our experimental analyses on diverse multi-domain datasets and
validate our framework. First, we show that counterfactual enrichment with effec-
tive task-models can significantly improve node embedding quality with sparse
connections, by evaluating the updated embeddings on the held-out link comple-
tion task. Next, we show that co-training a context-aware neural recommenda-
tion model with the knowledge graph leads to simultaneous embedding updates
and better model performance for nodes with lower degrees. We also notice a
small degradation in the performance for high-degree nodes. Additionally, we
exhibit that we can significantly improve the above context-aware neural recom-
mendation model by leveraging a distributed word embedding model using the
illustrated cross-training method. Finally, we do a scalability analysis against
publicly available baseline implementations and conclude with limitations and
discussion.

5.1 Data Description, Setup

Google Local Reviews Dataset: He et al. (2017); Pasricha and McAuley
(2018): Users rate businesses on a 0–5 scale with temporal, spatial, and textual
context features in each review. We filter this dataset for at least 10 users per
business and 5 businesses per user recursively and eliminate all reviews with
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less than a 3-star rating. The resulting dataset has 38,614 users and 26,922
businesses, and contextual node types - Review Words (5000 nodes), Business
Name Words (2000 nodes), Categories of the Business (650 nodes), Pricey-ness
(4 nodes), Location (312 nodes) - states, cities, and Time (23 nodes) - time
(binned into 6-h chunks), month, day.

We create our knowledge graph by connecting all users to the businesses they
rated, business name and review words to each business, review words, categories
of visits, and business names to users who rated them, the pricey-ness, locations,
and times to businesses and users. On each of these links, we associated a 1–4
level depending on the strength of the associations (measured statistically on a
per-user and per-business basis). These levels constitute our relation types. The
total number of nodes and links in the graph is 73,525 and 7,325,614 respectively.

Yelp Challenge Dataset: Users rate businesses on a 0–5 scale with temporal,
spatial, and textual context features for each review. We filter this dataset for at
least 30 users per business and 10 businesses per user recursively and eliminate
all reviews with less than a 3-star rating. The resulting dataset has 25,3695 users
and 69,738 businesses. We obtain the following contextual nodes - Review Words
(2000 nodes), Business Attributes (200 nodes), Location (1062 nodes) - states,
cities, lat-long (binned using a KD-tree), Time (23 nodes) - time (binned by 6-h
chunks), month, day.

We create our knowledge graph by connecting all users to the restaurants they
rated, the review words and attributes of the restaurants to each restaurant, the
location nodes, the associated time nodes, and likewise for the users as well. On
each of these links, we associated a 1–4 level depending on the strength of the
associations (measured statistically on a per-user and per-business basis). These
levels constitute our relation types. The total number of nodes and links in the
graph is 99,906 and 10,102,877 respectively.

Baselines: We choose a broad array of diverse knowledge graph embedding base-
lines as a representative set to evaluate the edge completion task: TransE Bor-
des et al. (2013), DistMult Yang et al. (2014), ComplEx Trouillon et al. (2016),
Rotate Sun et al. (2019), RotH Chami et al. (2020) and GAAT Wang et al.
(2019b). We used the OpenKE implementations3 in Tensorflow/PyTorch with
default parameter settings, wherever applicable.

5.2 Task-Models

For both datasets, we used a pair of task models that both have the same input
entity-set (users), and different output entity sets (business category and busi-
nesses respectively).

We train the distributional word2vec word-embedding model Mikolov et al.
(2013) on the set of review text words, business names, and all the business
attributes text over all the reviews in the dataset. We use the basic version (non-
transfer) of the context-aware recommender proposed in Krishnan et al. (2020)

3 http://139.129.163.161//.

http://139.129.163.161//
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Table 2. Overall Link Prediction Results. Bold-font denotes statistically significant
gains over all baselines at the 0.05 significance-level under paired t-tests, while * denotes
the second-best performer.

Link type User to business User to category

Metric R @ 5 R @ 10 R @ 5 R @ 10

TransE [Bordes et al. 13] 0.43 0.60 0.52 0.68

RotatE [Sun et al. 19] 0.59* 0.72 0.64 0.80

RotH [Chami et al. 20] 0.58 0.76* 0.65* 0.79

DistMult [Yang et al. 14] 0.56 0.70 0.63 0.77

CompleX [Trouillon et al. 15] 0.57 0.70 0.61 0.76

GAAT [Wang et al. 19] 0.59* 0.74 0.63 0.82*

MutatE-F 0.58 0.73 0.64 0.79

MutatE-CF 0.62 0.80 0.68 0.84

with the non-textual categorical links of the users and businesses (as above)
forming the context of each review. To predict business category/attribute words
for each user, we take an average of their review word set embeddings, and map
the average to the closest business category words as learned by the model.

Parameters: In both the above datasets, for the context-aware recommenda-
tion model Krishnan et al. (2020), we use the author recommended parameters
with 200-dimensional embeddings, while we use the gensim4 implementation of
word2vec with a maximum 10-length window. The additional parameters of our
model, such as the discrepancy scaling in Eq. (10) were tuned with an exponen-
tial grid-search approach (e−5 to e0). The knowledge graph and counterfactual
residuals were also trained with 200-dimensional embeddings, and implemented
in Tensorflow, and run on a Tesla K80 GPU.

Metrics for Link Prediction: In both the datasets, we attempt to predict
held-out links using the embeddings learned by our models, as well as the embed-
ding baselines. For each held-out link of the form (e1, r, e2), we create several
negative samples of the form (e1, r, ẽ2) and (ẽ1, r, e2), i.e., with the same rela-
tion type and head and tail entity types, however a randomly sampled entity
for either the head or tail. We then rank the entire list of negative samples
against the true link (e1, r, e2) under each embedding model and measure the
Recall@K metric for the respective ranked lists. Specifically, we measure the
Recall@5, Recall@10 for two types of held-out links - User → Business and
User → Category-word (Attribute in case of yelp), for a 100-length ranked list.

5.3 Primary Results - Link Prediction

We evaluate the above two knowledge graphs on the link completion task. We
randomly tag 20% of the user nodes as held-out nodes. We then held out two
4 https://pypi.org/project/gensim/.

https://pypi.org/project/gensim/
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types of links for these users - we held out half of their user-business links and
half of their user-business attribute/category word links. These two link types
directly correspond to the two task models we used: The word2vec model predicts
user-business category word links while the context-aware recommender predicts
the user-business links.

For our model, we present two variants - MUTATE-F, which only uses the
factual nodes, and MUTATE-CF, which uses counterfactual enrichment for the
held-out user set. Specifically, we use the top-5 words predicted by the word2vec
model, and the top-5 businesses predicted by the recommender to form coun-
terfactual user-business and user-word links. We also trained all the baseline
embedding models on the same knowledge graphs and attempted to predict the
same set of held-out links using their trained embeddings.

Key Observations from Table 2: The relative order of performance of the
baselines is as expected, DistMult Yang et al. (2014) performs moderately owing
to the inverse nature of some relation-types in our graphs across user-context-
business paths. In contrast, our base model can overcome this challenge and
perform comparably to the other baselines.

We also observe that our MUTATE-CF model strongly outperforms all the
competing models on the User-Word link prediction and User-Business link pre-
diction tasks. The two external task models, namely word2vec and the context-
aware recommender, can better predict the missing links and enrich the graph
compared to the heuristic or path-based link completion approach in the other
baselines. It is easy to see how we can leverage the inductive biases of the specific
models. While the word2vec model can interpret the review text’s distributional
properties, the context-aware recommender leverages the multiplicative predic-
tors from the context features. Also, note that these two models use the same
data as the Knowledge Graphs and do not depend on any external sources.

5.4 Co-training Model with Graph

In this section, we describe our co-training approach for the recommender model
with the knowledge graph. Specifically, we make predictions from these models
for users and use these counterfactual links to update knowledge graph embed-
dings, as described in Eq. (9). Simultaneously, we make predictions from the
updated embeddings for users and use these to augment the recommendation
loss function as described in Eq. (11).

Table 3. Co-training performance gains against the infor-
mation-flow parameter λj

λj e−5 e−4 e−3 e−2 e−1

Word2Vec −5.6% −1.3% +8.1% −4.9% −18.6%

Context recommender +2.8% −1.03% +5.4% −8.6% −28.9%

Although we did
not achieve a dra-
matic performance
difference, we observe
that overregularizing
the model or under-
regularizing the model

is suboptimal. In other words, the co-training proceeds best when we set the
regularizer λj to an optimal balance. The numbers in Table 3 indicate the best



272 A. Krishnan et al.

performance improvements we were able to achieve for the recommender model
under different settings of λj . A higher value of λj meant that the recommender
was more constrained by the knowledge graph, while a lower value meant that
more information flows from the model to the graph. Thus, we need an ideal
trade-off between the forward and reverse information flow.

5.5 Cross-Training Across Tasks

Next, we describe our cross-training approach for the recommender model by
leveraging the word2vec model.

Table 4. Cross-training performance gains for the
context-recommender with word2vec, Mword2vec →
Knowledge Graph → Mcontext-aware-recommender, parame-
ter λj is set to varying values as in Eq. (10), percentages
relative to isolated performance

λj e−5 e−4 e−3 e−2 e−1

Context recommender −1.2% +6.4% +12.9% −10.3% −22.1%

We first train the
word2vec model on
the base data, then
use it to update the
knowledge graph emb
eddings using the
model to graph knowl-
edge transfer method
from Sect. 4.3. We then

use the reverse direction to regularize the recommender model as in Eq. (12),
i.e., knowledge now flows from the updated graph to the recommender model.
Thus, the overall direction of knowledge flow is as follows:

Mword2vec → Knowledge Graph → Mcontext-aware-recommender

Since the review text is informative of both user and business embeddings
owing to their shared link structure, we were able to achieve noticeable perfor-
mance gains for the recommender model (Table 4) after leveraging the sequence
of steps described in Sect. 4.3.

Table 5. Cross-training performance gains for the
word2vec model, Mcontext-aware-recommender → Knowledge
Graph → Mword2vec, parameter λj is again set to vary-
ing values as in Eq. (10), percentages relative to isolated
performance

λj e−5 e−4 e−3 e−2 e−1

Word2vec −7.9% −2.1% −1.6% −4.1% −18.3%

However, we observe
that the reverse trans-
fer direction, i.e. context-
aware recommender to
word2vec model, does not
result in noticeable per-
formance gains (Table 5),
indicating the importance
of choosing the more

informative model to enrich the knowledge graph.
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5.6 Sparsity Analysis

In this subsection, we study the impact of counterfactual updates on sparse
and non-sparse nodes. Specifically, for both the tasks, user-word link predic-
tion, and user-business link prediction, we study the relative gains obtained by
counterfactual updates, i.e., the difference in the performance of MUTATE and
MUTATE-F for the different sparsity sets.

Fig. 3. The gains of MUTATE-CF relative to
MUTATE-F on the two types of link predic-
tion. In each case, we measure the performance
gains across 4 quartiles of users, arranged by
the density of that specific type of link for the
user.

Q1, Q2, Q3 and Q4 denote
the four sparsity quartiles for each
respective user node, and we then
measure the average performance
difference between MUTATE and
MUTATE-F for each quartile in
Fig. 3. As expected, we obtain the
strongest gains for sparse users,
i.e., users in quartiles Q3/Q4, since
they lack the word-associations to
help us learn better embeddings.
Thus, the distributional knowledge
encoded in the word2vec model
bridges this gap in the knowledge

graph and enriches the corresponding node embeddings.

5.7 Limitations and Discussion

The two primary limitations of our work are the non-exchangeability of cross-
training and homoscedastic embedding assumption in each entity set. This
results from our assumption that a single residual function, conditioned on the
node embeddings, can encode the distributional differences introduced by the
task-models. Alternatives such as Gaussian mixture embedding spaces (Casale
et al. (2018)) can encode heteroscedastic node embeddings. However, they are
quite hard to implement efficiently within a knowledge graph neural network
optimization framework. We plan to study the trade-offs between generalizabil-
ity and overall exchangeability in future work.

6 Conclusion

We propose a holistic view of knowledge graphs and multi-task learning to enable
task-enhancement and graph enrichment. Our framework unifies co-dependent
task distributions with the underlying knowledge graph via residual learning.
The key strength of our approach lies in delegating the extraction of task-specific
distributions to the respective task-models while enabling cross-task knowledge
transfer. While the current work primarily demonstrates empirical applications
of such a framework, we intend to study the theoretical exchangeability of the
proposed method for future work.
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Abstract. Online continual learning (OCL) is the setting where deep
neural network (DNN) incrementally learns new tasks with online data
streams. The major problem in OCL is catastrophic forgetting, that
DNN forgets the acquired knowledge on previous tasks quickly. Recently
emerged studies tackle a more realistic problem that the data follows an
imbalanced class distribution in OCL by storing particular exemplars.
However, preserving exemplars causes memory burden and privacy issues.
In this paper, we propose a non-exemplar based method—Adaptive Fea-
ture Generation (AdaFG) for OCL from imbalanced data, which tackles
the class imbalance and catastrophic forgetting problems simultaneously.
Specifically, we argue that one common reason for these problems is the
decision boundaries of minority or old classes with few or no samples are
affected by majority classes. Therefore, we first maintain a representative
prototype for each class in the feature space, which dynamically changes
with the streaming data to approximate the class mean feature. Then,
we generate new features adaptively for old and minority classes based
on their prototypes and train the DNN’s classifier to adjust the decision
boundaries. Experiments on three popular datasets demonstrate AdaFG’s
effectiveness in consolidating previous knowledge and addressing the class
imbalance problem without preserving exemplars.

Keywords: Online continual learning · Imbalanced learning · Data
augmentation

1 Introduction

In the last decade, Deep Neural Network (DNN) has achieved human-level or
even better performance in many individual tasks [8,20,26]. When applying the
DNN to practice, a typical paradigm is training the DNN sufficiently on a pre-
pared dataset, then fixing the model parameters to deploy on various devices.
However, the well-trained model can only tackle a specific task, lacking the capac-
ity of continually learning from data when the environment changes, e.g., new
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Fig. 1. Online continual learning from imbalanced data. Each batch is sampled from
an imbalanced distribution.

classes not seen in the prepared dataset occur. Motivated by human’s lifelong-
learning ability [25], continual learning has been proposed to incrementally learn
new tasks without access to previous data while maintaining the acquired knowl-
edge on old tasks at the same time [15].

In this paper, we consider classification tasks and focus on the online con-
tinual learning (OCL) setting where the task data are coming in an online man-
ner [18]. Different from the offline continual learning (Off-CL) [21] setting where
the entire data of the new task are accessible and can be processed numerous
times, we can only obtain a tiny batch of data at a time in OCL, which resembles
the way humans learn more closely [3]. The major problem in OCL is catastrophic
forgetting [19], i.e., DNN forgets previous knowledge quickly when learning a new
task. Existing methods in OCL can be divided into two categories: exemplar
based methods, which keep previous knowledge by storing observed samples
(i.e., exemplars), and non-exemplar based methods that remember important
parameters. However, most studies implicitly assume that the data follows a
balanced distribution in each task [12,16,22,30], ignoring many realistic scenar-
ios of imbalanced distributions, e.g., fraud detection and spam classification.

In this paper, we tackle the problem of online continual learning from imbal-
anced data (OCL-Imb) that each batch is sampled from an imbalanced distribu-
tion, as shown in Fig. 1. Besides catastrophic forgetting, we also need to solve the
class imbalance problem in OCL-Imb, i.e., minority classes that have few samples
in the new task are hard to learn [10]. Recently emerged studies address these
problems in OCL-Imb by storing particular exemplars, e.g., Class-Balancing
Reservoir Sampling [5] and Partitioning Reservoir Sampling [11]. However, these
exemplar based methods bring memory burden for resource-constrained devices
and cause privacy issues that arouse wide attention nowadays. Inspired by the
non-exemplar based method protoAug [31] in Off-CL, we propose Adaptive Fea-
ture Generation (AdaFG) to address the class imbalance and catastrophic for-
getting problems in OCL-Imb without preserving any exemplars. Specifically,
we argue that one common reason of these problems is the decision bound-
aries for minority or old classes with few or no samples are affected by majority
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classes that dominate the learning process. To solve this problem, we maintain a
representative prototype in the feature space for each class, which dynamically
changes with the streaming data to approximate the class mean feature on all
seen samples. The prototype contains rich information and can be used to gen-
erate new features by adding gaussian noises [31]. AdaFG generates features for
old and minority classes based on their prototypes, which are used to train the
DNN’s classifier along with the new coming data. The generated feature shows
to be very helpful to alleviate the bias and adjust the decision boundaries. More-
over, since the distribution of observed samples dynamically changes, we adopt
an adaptive strategy that controls the number of generated features according
to the dynamic distribution to balance the learning process better.

To verify the effectiveness of the proposed AdaFG, we construct imbalanced
tasks on three popular datasets (i.e., CIFAR-100 [13], Food-101 [2] and Mini-
ImageNet [27]), and compare it with the state-of-the-art exemplar and non-
exemplar based methods. Our empirical results show that AdaFG outperforms
previous methods by large margins.

2 Related Works

In this section, we briefly review the related works of the OCL-Imb problem.

2.1 Online Continual Learning (OCL)

The existing OCL methods can be divided into two categories: exemplar based
and non-exemplar based methods. Exemplar based methods use a memory buffer
to store exemplars selected from previous tasks, which are retrieved to train the
model along with the new coming data. Experience Replay [23] takes a naive app-
roach that updates the memory with reservoir sampling and randomly retrieves
the exemplars. Various memory updating and retrieving strategies are proposed
to improve the performance, such as diversifying the gradients of the exemplars
in the memory update [1] and leveraging Shapley Value adversarially in the
memory retrieval [24]. As for the OCL-Imb problem, recent works design bal-
anced schemes to make the memory updating and retrieving processes friendly to
minority classes, e.g., Class-Balancing Reservoir Sampling [5] and Partitioning
Reservoir Sampling [11]. Exemplar based methods try to maintain previously
acquired knowledge by exploiting the information of exemplars as more as pos-
sible, but they may bring memory burden and cause privacy issues in many
resource-restricted and data-sensitive applications.

Non-exemplar based methods usually use various regularization terms to
consolidate the acquired knowledge on previous tasks. As representative meth-
ods, EWC [12] uses Fisher information matrix to estimate the importance of
model parameters and penalizes the drastic changes of important parameters,
and LwF [16] adopts knowledge distillation terms to prevent the feature drift
of old classes. In addition to designing regularization terms, protoaug [31], a
pioneering work in the field of Off-CL, maintains prototypes for old classes in
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the feature space and generates prototype-based features to keep and expand
the decision boundaries of old classes. The class-representative prototype shows
to be very effective in keeping previous knowledge. Moreover, Lange and Tuyte-
laars [14] propose to use the prototype for nearest neighbor classification in
OCL-Imb. However, this method needs to store exemplars to update the pro-
totype with online data streams. In this paper, we extend the prototype-based
method with no exemplars preserved to tackle the catastrophic forgetting prob-
lem in OCL-Imb.

2.2 Online Imbalanced Learning

Different from OCL that incrementally learns new tasks, online imbalanced
learning focuses on learning a single task, and the streaming data is sampled
from an imbalanced distribution. Due to the lack of samples, minority classes are
highly under-represented and harder to learn compared with majority classes [7].
Many re-sampling strategies are proposed to solve this problem. For instance,
Wang and Pineau [28] introduce online bagging techniques for online binary clas-
sification by randomly oversampling and undersampling samples of minority and
majority classes, respectively. Furthermore, Wang et al. [29] extend online bag-
ging techniques to tackle the multi-class imbalance problem. Besides re-sampling
samples, data augmentation strategies are used to address the class imbalance
problem. For instance, Generative Adversarial Networks [6] produce virtual sam-
ples by approximating the distribution of minority classes, and SMOTE [4] gen-
erates new samples for minority classes around the neighbor of original data.
In this paper, we tackle the class imbalance problem in OCL-Imb also from the
perspective of data augmentation.

3 Method

In this section, we first introduce the OCL-Imb setting and analyze the major
problems in OCL-Imb, then illustrate the framework and details of our proposed
method AdaFG.

3.1 Problem Analysis

Firstly, we consider the OCL setting. When learning the t-th task Tt, the model
receives a tiny batch of samples of size b at a time, which is denoted as Bi

t for
the i-th step. The entire data of Tt are Dt = {B0

t ,B1
t , · · · ,Bτ

t }, where τ is the
number of the totally received batches. When it comes to the OCL-Imb problem,
Tt is not a balanced task and Bi

t are sampled from an imbalanced distribution
Dt, which is unknown in advance. As for the DNN model, we divide it into two
parts: the feature extractor G and unified classifier F . The goal is to minimize
the statistical risk incurred by all seen tasks, which is formulated as:

min
t∑

n=1

E(x,y)∈Dn
[� (Ft (Gt (x;φt) ; θt) , y)] , (1)
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Fig. 2. The framework of Adaptive Feature Generation (AdaFG).

where φt and θt are the parameters of Gt and Ft after learning Tt, Gt (x;φt)
extracts the feature of a sample (x, y), Ft (Gt (x;φt) ; θt) gets the outputs of the
classifier, and � is the loss function. Note that the data Dn of previous tasks
Tn(n < t) are not accessible, and we can only receive b samples of Tt at a time.
The statistical risk of Tt can be approximated by the empirical risk [15]

1
τ

τ∑

i=1

∑

(x,y)∈Bi
t

�
(Ft

(Gt(x;φi
t); θ

i
t

)
, y

)
, (2)

where φi
t and θi

t are parameters after the model trained on the i-th batch Bi
t.

There are two major problems in OCL-Imb. One is catastrophic forgetting,
which is caused by the drastic changes of decision boundaries for old classes when
learning new classes in Tt [31]. Moreover, the learning process mainly focuses on
majority classes, which contribute most to the changes of decision boundaries.
The other is class imbalance that the decision boundaries are close to minority
classes, because the optimization process of minimizing Eq. (2) is dominated by
majority classes. The catastrophic forgetting and class imbalance problems are
correlated, and one common reason of them is the decision boundaries for both
old and minority classes are affected by the majority classes.

3.2 Adaptive Feature Generation (AdaFG)

In this subsection, we propose Adaptive Feature Generation (AdaFG) to adjust
the decision boundaries by generating new features for old and minority classes,
which are used to train the DNN’s classifier.

Firstly, we handle the class imbalance problem by generating different num-
bers of features for classes in the current task Tt. For the k-th class in Tt (denoted
as ct,k), we maintain a prototype μi

t,k, which is a feature approximating the class
mean on all observed samples and dynamically changes with the incoming batch
Bi

t (illustrated in Sect. 3.3). The new feature is generated based on μi
t,k:

gi
t,k = μi

t,k + e · r, (3)
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where e is a Gaussian noise with the same dimension as μi
t,k, and r is a predefined

value (e.g., 0.1). The generated feature can be seen as a certain disturbance of
the prototype, which is used to train the classifier Ft to consolidate the just
learned knowledge and expand the decision boundaries [31]. When receiving a
new batch Bi

t, the number of observed samples of ct,k is denoted as si
t,k. Since the

distribution of si
t,k (k = 1, 2, · · · , Ct, Ct is the number of classes in Tt) changes

with incoming batches, we adopt an adaptive strategy to control the number of
generated features for each class:

ai
t,k =

[
N1 ·

(
1 − si

t,k

si
max

)]
, (4)

where si
max is the maximum number of si

t,k (k = 1, 2, · · · , Ct), N1 is a predefined
positive value (e.g., 10), and [a] returns the integer closest to a. ai

t,k is close to
N1 if si

t,k � si
max and close to 0 if si

t,k ≈ si
max. In this way, minority classes have

superiority in the number of generated features, making the decision boundaries
far from minority classes, thus improving their performance.

Furthermore, we tackle the catastrophic forgetting problem by generating
features for old classes in a similar way as Eq. (3) to keep previous decision
boundaries. For the k-th class in the old task Tn (n < t), the maintained proto-
type is μn,t and the new feature is generated as:

gn,k = μn,k + e · r. (5)

To generate features in a balanced way, we randomly select an old class to
generate one feature by Eq. (5) and repeat N2 times when receiving a new
batch. To reduce the computation, N2 is set to be a constant (e.g., 10) instead
of a variable proportional to the number of seen classes.

The framework of AdaFG is illustrated in Fig. 2. When training on a new
batch sampled from an imbalanced distribution, we update the number of
observed samples for each class and the prototypes by current features. Then, we
generate new features for old and minority classes in the ways mentioned above,
which are used for training the classifier Ft to adjust the decision boundaries.

3.3 Online Prototype Update

For each class, the class mean in the feature space contains rich information and
can be used for data augmentation [17]. Recent work [31] in Off-CL generates
features for old classes to alleviate forgetting based on the maintained class
mean features, which are computed until the feature extractor Gt is sufficiently
trained on Tt. However, since only the current batch Bi

t are accessible and feature
extractor parameters change over time in OCL-Imb, the class mean feature on
all observed samples can’t be computed directly. To overcome this problem, we
adopt a moving average strategy to update the maintained prototype online
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to approximate the true class mean feature. When receiving Bi
t, the previously

maintained prototype for ct,k is μi−1
t,k and will be updated by:

μi
t,k = (1 − αi

t,k) · μi−1
t,k + αi

t,k · μ̃i
t,k,

μ̃i
t,k =

1
|Xi

t,k|
∑

x∈Xi
t,k

Gt(x;φi−1
t ) , (6)

where Xi
t,k are samples of ct,k in Bi

t, |Xi
t,k| is the size of Xi

t,k, and φi−1
t is the

parameters of Gt after training on last batch. αi
t,k is a factor controlling the

prototype update, which can be adopted as:

αi
t,k =

|Xi
t,k|

∑i
j=1 |Xj

t,k| .

The prototype μi
t,k will not be updated if |Xi

t,k| is 0. After learning the last batch
Xτ

t,k, the obtained prototype μτ
t,k (also denoted as μt,k) will be maintained for

continually learning later tasks. In Sect. 4.3, we conduct experiments to demon-
strate that the prototype updated by Eq. (6) is a good approximation to the
true class mean on previously observed samples.

3.4 Training Process

When learning from the streaming data of a new task Tt, the training process
can be divided into two parts. The first part is training on the new coming batch
Bi

t. For a new sample (x, y) in Bi
t, the outputs of the current and last model are

ξt and ξt−1, respectively. Typically, we adopt the cross-entropy loss Lce(ξt, y)
for classification and use the well-known knowledge distillation loss Lkd(ξt, ξt−1)
[16,22,30] to mitigate forgetting by making outputs of the current model close
to those of the last model, which are defined as:

Lce(ξt, y) = −
C∑

c=1

yc log(σ(ξt)c),

Lkd(ξt, ξt−1) = −
C∑

c=1

σ(ξt−1)c log(σ(ξt)c),

(7)

where C is the number of classes seen so far, y ∈ R
C is a label vector, and σ(·)

is a softmax function. The overall loss of learning from the new data can be
defined as previous works [22,30]:

Lnew =
1
t
Lce(ξt, y) +

(
1 − 1

t

)
Lkd(ξt, ξt−1). (8)

With the growth of tasks, the proportion of Lkd increases to remember more
and more knowledge.
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The second part is training the classifier on the generated features by AdaFG.
For the generated data (go, yo) and (gm, ym) of old and minority classes, we adopt
Lfgt and Limb to train the classifier Ft:

Lfgt = Lce(Ft(go; θi−1
t ), yo),

Limb = Lce(Ft(gm; θi−1
t ), ym) + Lkd(Ft(gm; θi

t),Ft−1(gm; θt−1)).
(9)

Lfgt and Limb focus on mitigating forgetting and learning minority classes,
respectively. Notice that in the first batch of each new task, the prototypes
of new classes are not available, and only Lfgt is calculated.

The total loss is comprised of the above terms:

L = Lnew + ηLfgt + γLimb, (10)

where η and γ are coefficients that control the impact of corresponding terms.

4 Experiments

In this section, we compare AdaFG with several state-of-the-art methods and
analyze the results to validate our approach. Furthermore, we visualize the gen-
erated features to verify the effectiveness of the maintained prototype in AdaFG.

4.1 Setup

Datasets. CIFAR-100, Food-101 and Mini-ImageNet are used in our exper-
iments, which are both balanced datasets. CIFAR-100 contains 50k training
images and 10k test images in 100 classes. Food-101 contains 75k training images
and 25k test images in 100 classes. Mini-ImageNet contains 60k images in 100
classes, and we split them into 50k training images and 10k test images.

OCL-Imb Settings. Similar to previous works [9,31], we divide the whole
classes into two parts: base classes (20 classes for CIFAR-100 and Mini-ImageNet,
and 21 classes for Food-101) and rest classes (80 classes). The base classes
are used to train a base feature extractor offline, which is beneficial for the
DNN model to cope with the streaming data. The rest classes are divided

(a) N = 2 (b) N = 5 (c) N = 10

Fig. 3. Accuracy for each incremental task on CIFAR-100 when N = 2, 5, and 10.
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(a) N = 2 (b) N = 5 (c) N = 10

Fig. 4. Accuracy for each incremental task on Food-101 when N = 2, 5, and 10.

(a) N = 2 (b) N = 5 (c) N = 10

Fig. 5. Accuracy for each incremental task on Mini-ImageNet when N = 2, 5, and 10.

into N tasks, and N can be 2, 5, or 10, which means each task contains 40,
16, and 8 classes, respectively. Following Chrysakis and Moens [5], we select
a random percentage p of instances in the original dataset for each rest class
to construct imbalanced streams. p is randomly selected from a retention set
{1, 10−r, 10−2r, 10−3r, 10−4r}. In this paper, we use r = 0.25 for all experi-
ments, i.e., the maximum imbalance between two classes is 10. When learning
the sequential tasks, the number of samples received at a time is set to 10 (i.e.,
b = 10), and each sample can only be processed once.

Evaluation. After learning a new task, the performance is evaluated on test
images of the observed rest classes by computing the average accuracy. We use
two popular criteria to measure the ability to incrementally learn new tasks
[22,30]. One is the last accuracy, which is the performance after learning the last
task. The other is the average incremental accuracy, which computes the mean
value of the performance over all incremental tasks. For each task division N ,
we construct 15 different imbalanced streams by setting 15 random seeds and
report the average result. Additionally, we show the results of the accuracy for
each incremental task in Fig. 3, 4 and 5.

Experimental Details. We use ResNet-18 [8] for all experiments. To train a
base feature extractor, we use the SGD optimizer with the batch size of 32, and
the initial learning rate is 0.1. For CIFAR-100, the learning rate is divided by
10 after 30, 60, and 90 epochs (100 epochs in total). For Food-101 and Mini-
ImageNet, it is divided by 10 after 100, 150, and 180 epochs (200 epochs in
total). When learning the sequential N tasks online, we adopt the SGD optimizer
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with the learning rate of 0.1. The hyper-parameters used in AdaFG are set to:
N1 = N2 = 10, η = γ = 1.0, and r = 0.1.

Table 1. Last accuracy (Last) and average incremental accuracy (Aver) on CIFAR-100.

CIFAR-100 N = 2 N = 5 N = 10

Last Aver Last Aver Last Aver

FT 21.9 ± 1.2 32.9 ± 1.4 12.0 ± 0.8 26.9 ± 0.7 2.0 ± 3.3 19.9 ± 0.4

LwF 30.2 ± 1.8 37.0 ± 2.0 23.6 ± 1.3 37.0 ± 1.6 17.6 ± 1.1 32.2 ± 1.4

EWC 20.2 ± 1.0 29.3 ± 1.6 16.7 ± 1.4 27.6 ± 1.5 13.4 ± 2.0 28.3 ± 1.7

AdaFG 36.1 ± 1.1 43.5 ± 1.4 31.5 ± 1.2 44.1 ± 0.8 23.4 ± 1.8 39.3 ± 1.0

CBRS-50 25.8 ± 0.9 34.7 ± 1.4 17.3 ± 0.7 32.5 ± 0.9 9.8 ± 3.6 30.3 ± 1.2

CBRS-100 28.5 ± 1.0 36.0 ± 1.5 20.8 ± 0.9 36.0 ± 0.8 13.6 ± 3.5 35.3 ± 0.8

CBRS-200 30.9 ± 1.0 37.2 ± 1.5 25.1 ± 0.6 39.4 ± 0.6 19.1 ± 3.1 39.9 ± 1.0

Table 2. Last accuracy (Last) and average incremental accuracy (Aver) on Food-101.

Food-101 N = 2 N = 5 N = 10

Last Aver Last Aver Last Aver

FT 21.5 ± 2.0 32.4 ± 2.5 11.7 ± 0.9 25.7 ± 1.0 5.2 ± 1.7 19.7 ± 0.7

LwF 34.4 ± 2.5 38.8 ± 2.9 25.1 ± 1.3 37.2 ± 1.6 18.1 ± 1.2 32.0 ± 2.0

EWC 24.8 ± 1.9 34.9 ± 2.0 21.0 ± 1.9 33.6 ± 1.5 16.3 ± 1.5 32.5 ± 1.9

AdaFG 40.8 ± 1.6 45.3 ± 2.4 30.8 ± 1.9 43.0 ± 2.0 20.6 ± 1.8 36.0 ± 1.9

CBRS-50 29.3 ± 1.2 36.3 ± 2.0 16.7 ± 1.1 32.2 ± 0.9 11.4 ± 0.7 28.3 ± 0.9

CBRS-100 32.0 ± 1.4 37.9 ± 2.2 20.0 ± 1.4 35.4 ± 1.2 15.2 ± 1.3 32.6 ± 0.9

CBRS-200 35.3 ± 1.8 39.5 ± 2.5 25.3 ± 1.3 39.9 ± 0.9 20.2 ± 1.1 38.7 ± 0.7

Compared Methods. We compare our proposed method AdaFG with several
state-of-the-art non-exemplar and exemplar based methods:

– FT: (non-exemplar) A naive but important method that fine-tunes the model
on the receiving data without any approach for avoiding forgetting.

– LwF [16]: (non-exemplar) Learning without Forgetting trains the model with
the classification loss Lce and knowledge distillation loss Lkd.

– EWC [12]: (non-exemplar) Elastic Weight Consolidation uses a regulariza-
tion term to constrain the updates of important parameters.

– CBRS [5]: (exemplar) Class-Balanced Reservoir Sampling uses a memory
buffer to solve the OCL-Imb problem by storing particular samples. The buffer
size is set to 50, 100 and 200 in our experiments.

4.2 Results

The results are reported in Tables 1, 2 and 3. For different task divisions (N =
2, 5 or 10), FT gets poor results, e.g., only 2.0% last accuracy on CIFAR-100
when N = 10. Since the importance of model parameters is hard to estimate,
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Table 3. Last accuracy (Last) and average incremental accuracy (Aver) on Mini-
ImageNet.

Mini-ImageNet N = 2 N = 5 N = 10

Last Aver Last Aver Last Aver

FT 19.8 ± 0.9 26.9 ± 1.4 9.9 ± 0.8 21.7 ± 0.7 2.3 ± 2.7 16.2 ± 0.8

LwF 26.2 ± 1.3 30.1 ± 1.8 20.8 ± 1.5 29.4 ± 1.5 15.1 ± 1.3 26.0 ± 1.6

EWC 15.9 ± 1.0 18.5 ± 1.4 12.4 ± 1.2 15.3 ± 2.0 8.9 ± 1.4 12.5 ± 2.1

AdaFG 28.8 ± 1.2 33.8 ± 1.4 25.2 ± 1.2 33.8 ± 1.2 17.3 ± 2.3 30.9 ± 1.1

CBRS-50 22.3 ± 0.6 28.0 ± 1.4 12.3 ± 0.5 24.4 ± 0.6 6.5 ± 2.9 21.0 ± 0.6

CBRS-100 23.3 ± 0.8 28.6 ± 1.5 14.3 ± 1.0 26.5 ± 0.8 8.7 ± 2.9 23.8 ± 0.9

CBRS-200 24.8 ± 0.7 29.4 ± 1.6 17.2 ± 0.9 28.8 ± 0.9 11.4 ± 2.3 27.6 ± 0.7

the results of EWC are not good compared with the distillation-based method
LwF. In contrast, AdaFG achieves superior performance over all compared non-
exemplar based methods whether on CIFAR-100, Food-101 or Mini-ImageNet.
This is because these methods don’t consider the class imbalance problem when
designing the algorithms, thus shows unsatisfactory performance in the OCL-
Imb setting. On Mini-ImageNet, AdaFG outperforms LwF by 3.7%, 4.4%, and
4.9% on the average incremental accuracy when N = 2, 5, and 10, respectively.
On Food-101, the gaps are 6.5%, 6.2%, and 4.0%. As for CIFAR-100, the gaps are
increased to 6.5%, 7.1%, and 7.1%. The performance of AdaFG on CIFAR-100
is much better than that on Mini-ImageNet, because the data in Mini-ImageNet
are more complex (84 × 84 pixels v.s. 32 × 32 pixels) and the representation
learning of the DNN model becomes more difficult.

As for the exemplar-based method, CBRS heavily depends on the mem-
ory size, and the performance gain of increasing the size is quite obvious. For
instance, CBRS achieves 9.3% improvements on the last accuracy on CIFAR-100
(N = 10) when enlarging the memory size from 50 to 200. Compared with CBRS,
AdaFG achieves comparable or even better results even if the memory size is
200. Specifically, AdaFG outperforms CBRS by large margins on Mini-ImageNet,
e.g., 8.0% improvements on the last accuracy when N = 5, demonstrating the
effectiveness of AdaFG to cope with complex data.

Performance of the Largest and Smallest Classes. After learning a new
task, we compute the average accuracy of the largest and smallest observed
classes (i.e., p = 1.0 and 0.1). As shown in Fig. 6, compared with other methods,
AdaFG achieves comparable results on the largest classes but surpasses others
greatly on the smallest classes, which shows that AdaFG can improve the learn-
ing of minority classes effectively at a slight expense of performance degradation
on majority classes.

Ablation Study. We analyze the impact of hyper-parameter r that controls the
scope of the generated features in AdaFG, and the results of the average incremen-
tal accuracy on CIFAR-100 are shown in Fig. 7. When r > 0.4, the accuracy drops
rapidly with the increasing value of r. In this paper, we set r = 0.1 as it obtains
good performance when learning a long sequence of tasks (N = 10).
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Fig. 6. Performance of specific classes when continually learning 5 tasks on CIFAR-
100 (N = 5). (a) The mean accuracy of the observed largest classes (p = 1.0). (b) The
mean accuracy of the observed smallest classes (p = 0.1).

Fig. 7. Average incremental accuracy on CIFAR-100 w.r.t. r when N = 2, 5, and 10.

4.3 Visualization of Generated Features

Fig. 8. Real (light color) and generated
(dark color) features (Color figure online)

To verify the quality of generated fea-
tures by AdaFG, we visualize the gen-
erated features based on the prototypes
and the real features of classes with dif-
ferent percentages p by collecting all
seen samples. As shown in Fig. 8, the
generated features are in the core of
real features and can almost cover the
real features of minority classes (e.g.,
p = 0.10 and 0.18), which demonstrates
the prototype computed by Eq. (6) is
close to the true class mean feature.

5 Conclusion

In this paper, we tackle the realistic problem of online continual learning from
imbalanced data (OCL-Imb) and analyze the catastrophic forgetting and class
imbalance problems encountered in OCL-Imb. To address these problems, we
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propose a simple yet effective method AdaFG that gets rid of storing exem-
plars. AdaFG maintains a representative prototype for each class and gener-
ates new features based on the prototype to mitigate forgetting and improve
the performance of minority classes. Experiments on CIFAR-100, Food-101 and
Mini-ImageNet show that AdaFG achieves better performance than the state-
of-the-art methods.
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Abstract. Graph neural networks (GNNs) have gained impressive suc-
cess in the task of sequential recommendation due to their advantage
in obtaining the complex transition patterns of items. However, exist-
ing GNN-based sequential recommenders still face some problems: (1)
The global order information is lost when converting a sequence into a
graph. (2) The long-term dependencies in a sequence are ignored due
to the over-smoothing problem in GNNs. In this paper, we propose an
order-aware GNN with long-range connections (OAG-LC) for sequence
modeling. To capture the global order of a sequence, a novel graph update
mechanism is proposed, which evolves the graph embedding recurrently
over time rather than concurrently for order preservation. And a novel
gate is used to incorporate both order and structural information in
the update phase. To model the long-term dependencies of user behav-
iors, we convert the sequence into a graph via reachability and apply the
attention mechanism for information propagation through the long-range
connections. Furthermore, the proposed graph construction method dif-
ferentiated repeated items with their positions for information lossless
encoding. We conduct extensive experiments on four public datasets, and
the experimental results demonstrate the effectiveness of our proposed
model.

Keywords: Graph neural network · Recommendation · Sequence
model

1 Introduction

Recommender system is an important information filtering tool to solve the
information overload problem. The chronological order of users’ behavior plays
an important role in inferring users’ interests. Therefore, many sequential recom-
mendation models are proposed to utilize user history in a sequential manner for
future behavior prediction and recommendation. Early works use Markov chains
to learn a transition graph over time and predict users’ next action based on their
recent actions [11]. Recent studies have highlighted the importance of using deep
neural networks in sequential recommendation tasks, e.g. RNNs [3,13,16] and
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attentive networks [4,7]. Furthermore, due to their remarkable advantage to learn
the complex transition patterns, GNN-based methods [14,15] are proposed in
recent years to convert a sequence into a graph and encode sequential behaviors
through information aggregation and updating. Although the GNN-based meth-
ods enable sequential recommendation to capture the graph-structured depen-
dencies, there are still some drawbacks.

(a) (b) (c)

Fig. 1. Lossy sequence encoding problem of GNN. Two different sequences
(v1, v1, v2, v1, v3) and (v1, v2, v1, v1, v3) are converted into the same graph (a), EOP
multigraph solves this problem by assigning an order to each edge (b), the proposed
OAG module solves this problem by updating graph representation recurrently (c).

First, when converting a sequence into a graph, the order information is usu-
ally lost. The existing GNN-based methods [14,15] usually convert a sequence
to a graph using the unique items as nodes and transitions between items
as edges, which will cause the order unawareness problem. Take the sequence
s1 = (v1, v1, v2, v1, v3) and s2 = (v1, v2, v1, v1, v3) as an example. As shown in
Fig. 1(a), graphs constructed from these two different sequences are the same and
it fails to reconstruct the two sequences from this graph. However, the order of
items in a sequence embodies critical information for the sequence encoding task.
To solve the problem, recent work [2] designs EOP multigraph that assigns orders
to edges and aggregates information following these orders (Fig. 1(b) is the EOP
multigraph converted from s1). However, EOP multigraph can only keep the local
order (the relative order of a pair of items) and miss the global order (the abso-
lute position of items) of the sequence. Take the sequence s1 = (v1, v1, v2, v1, v3)
as an example. Without loss of generality, when updating v1’s embedding, the
EOP takes its neighbors (v1, v2) sequentially as the input of GRU. Therefore,
even assign order numbers to edges, the EOP multigraph can only tell that as
v1’s neighbors, v1 appears before v2 (local order). It can not distinguish the
positions of v1 or v2 (global order) in the sequence s1.

Secondly, GNNs cannot capture the long-term dependencies in the sequence.
Because of the over-smoothing problem, the optimal number of layers for these
GNN models is usually no larger than 3 [2], which is not enough for finding the
long-term dependencie. To solve this problem, researches [2] propagate informa-
tion along long-range connections. However, repeated items are treated equally
and the position information of each item are ignored when propagating mes-
sages from the neighbors to a target item. As a word with different contexts in a
sentence are represented differently, different representations should be learned
from repeated items according to their positions and neighbors.
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To overcome the aforementioned problems, we propose an order-aware graph
neural network with long-range connections (OAG-LC for short). OAG-LC con-
sists of two modules: an order-aware graph update module for the lossy sequence
encoding problem (OAG for short) and an attentive graph aggregation mod-
ule for long-term dependency capturing problem (LPG for short). As shown in
Fig. 1(c), the general idea of the OAG module is to recurrently encode a sequence
into a graph and the snapshots of the graph-structured sequence are different
at each state. To take advantages of GNN-based and RNN-based methods, a
novel gating mechanism is proposed, where both order and structure informa-
tion can be unitized to learn the node embeddings. In this way, OAG module
maintains the global order of a sequence by the lossless recurrent graph encoding
and mainly focuses on capturing the short-term interests.

Furthermore, LPG module first converts a sequence into a graph via reacha-
bility where edges exist between all the reachable pairs. To further streagthen the
different importance for repeated items at different positions, we treat repeated
items as different nodes in the graph and distinguish them with their positions.
Then, it propagates information using an attention mechanism and repeated
items at different positions learn different representation with their context.
Finally, we apply a readout function to generate the representation of users’
next interests for Top-K recommendation by taking both short-term and long-
term preferences into account. We will show that the OAG module and the LPG
module are crucial in the sequential recommendation task on four real-world
datasets in experiment.

In summary, we conclude the main contributions of this paper as follows:

– To handle the lossy global order problem of GNN, we propose an order-aware
graph update module that recurrently encodes a sequence into a graph, and
uses a gating mechanism to obtains both order and structure information.

– To efficiently capture the long-term dependencies in a sequence, we construct
a sequence into a directed graph via reachability and treat the repeated items
in a sequence differently in the graph aggregation phase.

– We conduct extensive experiments on four public datasets. The experimental
results demonstrate that the proposed OAG-LC model outperforms the state-
of-the-art methods.

2 Related Work

User preferences dynamically evolve with time. The order information of behav-
ior sequences is crucial to capture interests of users. Compared with the general
recommenders that model the static preferences of users [12], the sequential rec-
ommendation mainly focuses on the order of user behaviors. Early works use
Markov chains [11] to learn a transition graph over items, which usually suffered
from the computation complexity problem of exponentially growing state space.

Inspired by neural language models, deep neural recommenders are proposed
to capture the dynamic preferences from users’ sequential behaviors. GRU4Rec
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[3] is the first to employ RNN-based models in sequential recommendation. The
NARM model [5] further incorporates an attention mechanism into RNN to
emphasize the user’s main purpose in a sequence. Some researchers adopt self-
attention in user modeling, e.g. SASRec [4] seeks to identify the correlations of
items by the dot-product attention. However, these attentive and recurrent mod-
els mainly focus on modeling the sequential patterns without the consideration
of the complex transitions of items.

In recent years, to model the complex transition patterns in sequential behav-
iors, some GNNs has been applied to sequential recommendation. SRGNN [14]
first converts a sequence to graph-structured data, then learns item embedding
using gated GNN. Though the GNN-based methods show promising potential to
model the complex transition in a sequence, they still face some problems. The
first one is that GNNs fail to capture the long-term dependencies in a behavior
sequence due to the over-smoothing problem [6]. GCSAN [15] adds an additional
self-attention layer after GNN to preserve the long-term dependencies, but does
not change the inherent disadvantage of GNN. LESSR [2] uses an SGAT layer to
learn the global dependency by propagating information along long-range edges.
However, repeated items in a sequence are treated equally, so that absolute order
of items in the sequence is also ignored. The second problem of GNN is the
lossy graph construction of the sequential order information. Recent research [2]
attempts to solve the lossy order problem by assigning an order to each edge and
aggregating latent features following the edge order. LESSR focuses on retaining
the local order, but how to maintain the global order information of a sequence
in GNN-based methods is still not explored.

In this paper, we develop a graph neural network, which can preserve the
global order and the long-term dependency information.

3 Methodology

In this section, We will first give a formal description of the sequential recom-
mendation task (Sect. 3.1). Then we describe our OAG-LC model in detail. The
complete framework is demonstrated in Fig. 2. At first, an input sequence is
converted to a graph and the snapshots of the graph-structured sequence are
different at each state (Sect. 3.2). Then, for each snapshots, the LPG module
uses attention mechanism to learn the long-term dependencies in the sequence
(Sect. 3.3). After that, the OAG module is applied to learn item representation
recurrently (Sect. 3.4). Finally, a readout function is used to learn the sequence
representation (Sect. 3.5).

3.1 Problem Definition

Suppose there are N items. A behaviour sequence is denoted as s =
(v1, v2, ..., vls), where vi ∈ V is the i-th item in the sequence and ls is the
sequence length. As shown in Fig. 2, we focus on the candidate generation stage
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Fig. 2. The overview of the OAG-LC. A sequence is first converted to a graph with
long-range connections. The Aggregation stage captures long-term dependency with
attention mechanism. Meanwhile, our model learns graph-structured sequence repre-
sentation recurrently to remain the order information at the update stage. Then a
readout function is used to computes the sequence representation from both short-
term and long-term aspects. Finally, we apply dot-product based k-nearest neighbor
search method to retrieval the top-K items for next item recommendation.

of an industrial recommendation system [1], of which the sequential recommen-
dation task is to recommend the top K items for the next click based on the
previous behavior sequence s. Let E ∈ Rd×N be the item projection matrix,
where d is the dimension of the embedding size. We first project the behavior
sequence s = (v1, v2, ..., vls) into the embedding space s = (x1,x2, ...,xls). The
proposed OAG-LC model aims to learn a preference embedding xs ∈ R1×d based
on the behavior sequence s, which is formulated as: xs = OAG-LC(s). Then
we calculate the scores for all items as the dot-product between the preference
embedding xs and the item embedding matrix E: ys = xsE, where ys ∈ R1×N

can be used for ranking the top K items. Finally, we use the cross-entropy loss as
the optimization target: L(y′, ŷ) =

∑
s∈S −y′

slogŷs
T . y′

s is the one-hot coding
of ground truth item, ŷs = sotfmax(ys) is the predicted probability distribution.
S is the sequence set (Table 1).

(a) (b)

Fig. 3. The adjacent graph (a),
and our proposed graph (b) of the
sequence [v1, v1, v2, v1, v3].

Table 1. Dataset statistics

Statistics #user #item #interaction Avg. length

Elec 41861 87128 1325678 31.67

MT 31609 34587 1430261 45.25

HK 165420 102425 2657933 16.07

Tmall 101118 36648 1572610 15.55
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3.2 Graph Construction

To learn the representation of sequential data with a GNN, a sequence should
be converted into a graph. Here we take the sequence s = (v1, v1, v2, v1, v3) as
an example, as shown in Fig. 3 (The solid line refers to the one-hop relationship,
while the dotted line refers the self-loop and multi-hop relationship). A common
way is to construct s into an adjacent graph Gs = (Vs, Es), where Vs is a set of
unique items in sequence s and Es is a set of weighted [10] or unweighted [14,15]
edges (Fig. 3(a)). We call it an adjacent graph because the edge set contains edge
ei,j = (vi, vj) iff vi and vj are adjacent items in sequences s.

However, the one-hop relationship fails to capture the long-term dependencies
between items, which is necessary for sequential recommendation. And unique
items in the graph will brings order-losing problem of the repeated times. To
solve these problems, we develop a lossless graph construction method.

For each sequence s we convert it to a directed graph Gs = (Vs, Es)
(Fig. 3(b)), where Vs stands for all the items and Es are the reachable item
pairs in the sequence s. Inspired by [2], we set an item pair (vi, vj) reachable
iff there exists a path from vi to vj . We also add self-loops to all of the items
in s. Besides, repeated items with different positions in a sequence may con-
tains different information. Therefore, we differentiate repeated items with their
positions.

3.3 Aggregation Stage

In this subsection, we introduce a long-term dependency preserved graph aggre-
gation mechanism (LPG for short) which aims to learn the long-term depen-
dencies of graph-structured sequences. Since we construct an lossless graph
Gs = (Vs, Es) from sequence s where the edges exist between all the reachable
pairs, the information from multi-hop relationships can be captured without
going through intermediate nodes. This construction method enables us to learn
long-term dependency information in one hop.

When aggregating information from the neighbors, the position information
is necessary for finding the most related items. And our repeated item setting
in the graph makes it convenient for position incorporation. Therefore, we add
items’ position encoding into their original embedding before message propaga-
tion: zi = xi + pi, where pi ∈ R1×d is the position embedding of item vi, xi

is the initial embedding of vi, and the output zi is used for information prop-
agation. We apply the attention mechanism [2,10] for message passing and the
aggregation function can be formulated as:

bli =
∑

(vj ,vi)∈Es

eijz
l
jWv, αij =

(zl
iWq)(zl

jWk)T√
d

, eij =
exp(αij)∑

(vj ,vi)∈Es
αij

(1)

where W∗ ∈ Rd×d are the learnable parameters. zl
j is the embedding of item

vj at layer l with z0
j = x0

j + pj as its initial embedding. bli is the neighbors’
information of vi at layer l.
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To further capture the complex structure information in sequence s, we can
stack multiple layers. After we stack L layers, the final neighbors’ embedding of
item vi is bLi . These embeddings will serve as the input of the OAG module that
we will introduce in detail below.

3.4 Update Stage

After aggregating information from items’ neighbors, the common GNN methods
usually update items’ embeddings with their neighbor information concurrently,
which only maintain the structure information like the neighborhood relationship
and ignores the order of each item in the sequence. To overcome this defect, we
develop an order-aware graph update mechanism (OAG for short) which updates
the item embedding recurrently based on the structure information and the order
information. We use bLi as the structure information of item vi, which is denoted
as gi in this section.

The general idea of the OAG module is to encode the sequence into a history
state which preserves the order information at each step, and then update the
items’ embedding and the new history state recurrently following the order of
the sequence. Formally, we encode the sequence at state i− 1 as a hidden vector
hi−1, which preserves the order up to i − 1. At the ith step, we update hidden
vector hi and the node embedding xi with a recurrent updating function fOAG,
where the inputs are the history state hi−1, its structure information gi−1 and
node representation xi. The update function can be formulated as:

x′
i,hi = fOAG(xi,hi−1, gi), (2)

where x′
i is the updated node embedding. In this way, the order is preserved by

both the history state hi and the recurrent update mechanism.
Inspired by the gating mechanism in the gated GNN model [14], we design

a gate to update the sequence representation in the OAG module, which aims
to take both order information and structure information into account. The
function fOAG is formulated as:

ri = σ([xi,hi−1]Wr + br), (3)
zi = σ([xi,hi−1]Wz + bz), (4)

h
′
i = φ([xi,hi−1 � ri]Wh + bh), (5)

ui = σ([xiW1 + b1, giW2 + b2]Wu + bu), (6)

hi = zi � hi−1 + (1 − zi) � h
′
i � ui. (7)

x′
i = hiWt + bt, (8)

where Wr,Wh,Wz,Wu ∈ R2d×d, W1,W2,Wt ∈ Rd×d and b∗ ∈ R1×d are the
learnable parameters, ri,zi,ui are the reset gate, update gate and our proposed
structure gate resepectively, h′

i is the candidate state, hi−1 is the history state.
[·, ·] is the concatenate operation. � denote the element-wise multiplication. σ is
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the sigmoid function and φ is the tanh function. The outputs of update function
fOAG are hi and x′

i, where hi is the output hidden state and x′
i is the new

representation of node vi.

3.5 Generating Sequence Embedding

After the information propagation through all the modules, we then apply a read-
out function to generate the sequence representations. The neighbors’ embed-
ding of the last item considers the interaction between all the previous items
with the last item. Therefore, bLls can be used to represent the long-term pref-
erence. Besides, the gating update mechanism makes the OAG module focus
more on the short-term information. By combing the long-term and short-term
preference, the sequence representation of current interest can be computed as:
xs = x′

ls
+ bLls .

4 Experiments

In this section, we first describe the datasets, compared methods, and evaluation
metrics used in our experiments. Then we will give a detailed analysis of the
experimental results.

4.1 Experimental Settings

Datasets. We evaluate different recommenders on four public real-world
datasets, including three review datasets from Amazon1: Movies & TV (MT),
Home & Kitchen (HK), and Electronics (Elec) and one transaction dataset from
Tmall2.

Baselines. To evaluate the proposed OAG-LC model, we compare it with the
following representative methods. Top Pop/P-Pop recommends items of the most
interactions with all users/the target user. SKNN/VSKNN [8] recommend items
based on the nearest neighbors of the previous behaviors. VSKNN emphasizes
more on recent items. GRU4Rec [3] recommends items with GRU. NARM [5]
employs attention mechanism in the recurrent neural recommender to capture
users’ main purpose. STAMP [7] captures users’ long-term and short-term inter-
ests with an attentive method. SASRec [4] uses the self-attention methods for
sequential recommendation. SRGNN [14] learns item embeddings through mes-
sage passing in graph. GCSAN [15] modifies SRGNN by adding a self-attention
module. LESSR [2] uses two graphs to retains the order and long-term depen-
dencies. SGNN-HN [9] aplies a star node to model transitions between items.
The implementation of all the baseline models is based on Recbole [17]. The
source code of our model and the baselines is available online3.
1 http://deepyeti.ucsd.edu/jianmo/amazon/index.html.
2 https://tianchi.aliyun.com/dataset/dataDetail?dataId=53.
3 https://drive.google.com/file/.

http://deepyeti.ucsd.edu/jianmo/amazon/index.html
https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
https://drive.google.com/file/d/1n81NbuziONkAfChx3IO2mOO8gOgmxtxM/view?usp=sharing
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Evaluation Metrics. We use the commonly adopted HR@K (Hit Ratio) and
NDCG@K (Normalized Discounted Cumulative Gain) as the metrics for all the
models. We report the result when K = {5, 10}.

4.2 Overall Performance

To demonstrate the effectiveness of the proposed model, we compare it with the
state-of-the-art sequential recommendation methods. The overall performance is
illustrated in Table 2, and the best results are highlighted in boldface.

The Top-Pop and P-Pop methods are not competitive because they solely
base on the occurence frequency of items. The VSKNN outperform SKNN shows
that the recent interacted items are important for finding users’ intention. All
of the neural networks methods significantly outperform conventional models,
which proves the powerful ability of deep learning models in this task.

The RNN-based models (GRU4Rec and NARM) outperform GNN-based
models (SRGNN, GCSAN, and LESSR, SGNN-HN) on two of four datasates
including Elec and MT, and get a comparable result on the other two datasets,
suggesting that the order of items in a sequence is important to model users’ pref-
erence. When it comes to whether long-term information is necessary in sequence
modeling, we may conduct several comparisons between models with and with-
out long-term information. (1) NARM model outperforms the GRU4Rec model
on two of four datasets. (2) The LESSR defeats the other GNN-based models
on two datasets including MT and HK, and gets competitive results on Elec.
Such results prove that users’ long-term preferences are also important in the
sequential recommendation task. The proposed OAG-LC model captures both
global order and long-term dependencies information in a sequence. Thus it out-
performs all the baseline models significantly.

Table 2. Performance comparison of different methods

Datasets Metrics T-Pop P-Pop SKNN VSKNN GRU4Rec NARM STAMP SASRec SRGNN GCSAN LESSR SGNN-HN OAG-LC Improv p-val

Elec HR@5 0.00095 0.00070 0.01035 0.01450 0.04985 0.04790 0.04575 0.04755 0.04805 0.04795 0.04860 0.04525 0.05285 6.0% 8.9e−4

NDCG@5 0.00042 0.00055 0.00592 0.00828 0.04488 0.04386 0.04258 0.04260 0.04294 0.04071 0.04245 0.04078 0.04665 3.9% 4.9e−3

HR@10 0.00275 0.00115 0.01710 0.02360 0.05760 0.05455 0.05065 0.05380 0.05435 0.05385 0.05580 0.05265 0.06025 4.6% 1.3e−2

NDCG@10 0.00100 0.00069 0.00810 0.01124 0.04737 0.04597 0.04418 0.04460 0.04496 0.04260 0.04478 0.04316 0.04904 3.5% 8.0e−3

MT HR@5 0.00320 0.00165 0.03135 0.03940 0.18585 0.18845 0.16865 0.17275 0.17590 0.17645 0.18660 0.17655 0.19305 2.4% 1.0e−3

NDCG@5 0.00156 0.00136 0.01661 0.02110 0.17133 0.17345 0.15455 0.15547 0.16220 0.15771 0.17229 0.16297 0.17590 1.4% 1.2e−2

HR@10 0.00640 0.00245 0.06000 0.07045 0.20690 0.20970 0.18420 0.19630 0.19495 0.19535 0.20750 0.19610 0.21630 3.1% 5.3e−5

NDCG@10 0.00257 0.00160 0.02586 0.03111 0.17811 0.18030 0.15956 0.16303 0.16831 0.16382 0.17901 0.16924 0.18338 1.7% 1.4e−3

HK HR@5 0.00340 0.00115 0.02305 0.02855 0.04670 0.04775 0.04425 0.04420 0.04610 0.04615 0.04790 0.04660 0.05030 5.0% 5.7e−4

NDCG@5 0.00271 0.00076 0.01231 0.01536 0.04294 0.04333 0.04038 0.04087 0.04213 0.04122 0.04312 0.04254 0.04588 5.9% 2.4e−7

HR@10 0.00595 0.00775 0.03500 0.04150 0.05080 0.05245 0.04745 0.04900 0.05010 0.04995 0.05265 0.05100 0.05570 5.8% 1.3e−4

NDCG@10 0.00357 0.00277 0.01615 0.01957 0.04426 0.04485 0.04141 0.04240 0.04342 0.04245 0.04467 0.04398 0.04763 6.2% 1.3e−8

Tmall HR@5 0.00015 0 0.02310 0.02420 0.08660 0.08285 0.08890 0.08155 0.08725 0.07610 0.08335 0.08340 0.09215 3.7% 2.3e−2

NDCG@5 0.00015 0 0.01090 0.01138 0.06645 0.06250 0.06779 0.06156 0.06621 0.05393 0.06333 0.06397 0.07040 3.9% 1.0e−2

HR@10 0.00030 0 0.03740 0.04205 0.11095 0.11000 0.11245 0.10705 0.11090 0.09925 0.10695 0.10615 0.11770 4.7% 6.7e−4

NDCG@10 0.00020 0 0.01547 0.01706 0.07425 0.07128 0.07533 0.06977 0.07388 0.06141 0.07091 0.07131 0.07855 4.3% 7.9e−4
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4.3 Ablation Studies

In this section, we conduct some ablation studies to demonstrate the contribu-
tion of each module. To better compare the influence of order and long-term
information, we compare the proposed methods with two representative GNN-
based models: SRGNN and LESSR. We also report the significance test results
between our OAG-LC model and the best ablation module on each metric of
all the datasets. −, ∗ and ∗∗ means not significance, significance, and strong
significance. Due to the space limit, we only report the results on the Elec and
HK datasets. Results on the other datasets follow similar patterns.

OAG stands for the variant that removes the LPG aggregation phase, which
is degenerated into a normal gated recurrent unit. This variant only considers the
order information. LPG only keeps the long-term dependency preserved aggrega-
tion phase, and we use the neighbors’ representation as the target item’s repre-
sentation. As shown in Fig. 4, OAG-LC defeated LPG and OAG modules consis-
tently, suggesting that both the order and long-term information are important
for sequence modeling. Not surprisingly, LESSR performs better than SRGNN
on most datasets because the former can preserves items’ order and the long-
term dependencies. Compared with LESSR, which only keeps the local order
around a target item, our proposed model performs better.

(a) HR on Elec (b) NDCG on Elec (c) HR on HK (d) NDCG on HK

Fig. 4. Ablation analysis on four datasets. OAG stands for the original model removes
the LPG aggregation phase, which is degenerated into a normal gated recurrent unit.
LPG refers to the model only keeps the long-term dependency preserved aggregation
phase, and uses the neighbors’ representation as the target item’s representation.

4.4 Utility of the LPG Aggregation Method

We perform some discussion studies to show the effectiveness of our LPG mod-
ule. First, to show the repeated nodes in the graph construction phase help
capture the long-term dependencies in a sequence, we remove the repeated
nodes in our proposed graph and still add edges with the reachability of the
sequence. We call this variant as no-repeated-oag. Furthermore, to evaluate
the effectiveness of the long range information captured by the LPG module,
we compare it with the aggregation methods from other GNN-based methods,
including gated GNN from SRGNN [14], weighted graph attention method from
FGNN [10], and a heuristic average aggregation method. These variants are
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called gated-oag, wgat-oag and heur-long-oag accordingly. For a fair comparison,
we keep the same update and readout function for each variant as our original
model. From Table 3 (Agg is short for aggregation), although no-repeated-oag
converts a sequence into a graph via the reachability, it performs worse than
the OAG-LC model. Such results demonstrate that repeated items with differ-
ent contexts should be represented with different embeddings. When comparing
no-repeated-oag with other variants that use different graph construction and
message aggregation method, the former performs better. This is because all the
other variants construct a graph with one-hop connections, making them fail
to aggregate information from long-range connections. Though heur-long-oag
averages the embedding of items that can reach the target item, it is unaware of
relevant and irrelevant items.

Table 3. Aggr methods comparison
Elec MT HK Tmall

HR@10

no-repeated-
oag

0.05765 0.21305 0.05550 0.11750

gated-oag 0.05770 0.20225 0.05220 0.10825
wgat-oag 0.05785 0.21320 0.05485 0.11260
heur-long-oag 0.05495 0.20815 0.05230 0.10940
OAG-LC 0.06025 0.21630 0.05570 0.11770

NDCG@10

no-repeated-
oag

0.04801 0.18069 0.04716 0.07790

gated-oag 0.04730 0.17206 0.04498 0.07135
wgat-oag 0.04797 0.18182 0.04684 0.07524
heur-long-oag 0.04568 0.17692 0.04502 0.07223
OAG-LC 0.04904 0.18338 0.04763 0.07855

Table 4. Update methods comparison
Elec MT HK Tmall

HR@10

lpg-gru 0.05545 0.19440 0.05445 0.11585
lpg-gated 0.05515 0.19525 0.05475 0.11900

lpg-linear 0.05585 0.19805 0.05365 0.11850
lpg-weak-
order

0.05560 0.19200 0.05430 0.11040

OAG-LC 0.06025 0.21630 0.05570 0.11770

NDCG@10

lpg-gru 0.04509 0.16385 0.04636 0.07607
lpg-gated 0.04462 0.16149 0.04584 0.07242
lpg-linear 0.04524 0.16555 0.04634 0.07936

lpg-weak-
order

0.04477 0.16002 0.04620 0.07338

OAG-LC 0.04904 0.18338 0.04763 0.07855

4.5 Utility of the OAG Update Method

To show the effectiveness of our OAG update module, we replace it with other
update functions from the existing GNN-based methods, including gated update
function from SRGNN [14] and linear update function from LESSR [2]. We call
these two variants as lpg-gated and lpg-linear. Besides, we also design two vari-
ants called lpg-weak-order and lpg-gru, based on our OAG update method.
lpg-weak-order uses the average embedding before the target item as the order
information. lpg-gru removes the structure gate in the OAG module, which
makes the update function degenerated to a normal GRU. For a fair compari-
son, for all the variants, the graph construction, aggregation and readout func-
tion are kept the same as our original model. From Table 4, we can see that
after replacing our OAG update function with other methods, the performance
decreases dramatically. The reason might be that the gated or linear update
method can only preserve the structure of the sequence, and they fail to retain
the order information of the sequence. Though lpg-weak-order takes the average
item embeddings that appear before the target item as the order information,
it fails to credit the position of each item. Such results show that the order is
necessary for sequence modeling. lpg-gru gets competitive results by preserving
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the sequence order using a gated recurrent unit. However, it uses the addition
of neighbor and item embeddings as the input, making it can not balance the
order and structure information well.

5 Conclusion

In this paper, to capture the global order and long-term dependency informa-
tion of sequences with the GNN-based models, we propose a novel graph neural
network named OAG-LC. This model first converts a sequence to a directed
graph where edges exist between connected items and repeated items are dis-
tinguished with their positions for long-term dependency capturing, and then a
recurrent update module is applied to retain the global order information in the
sequence. Extensive experimental results on four real benchmark datasets show
the effectiveness of our model.
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Abstract. Aspect-based sentiment classification (ABSC) is a very chal-
lenging subtask of sentiment analysis (SA) and suffers badly from the
class-imbalance. Existing methods only process sentences independently,
without considering the domain-level relationship between sentences, and
fail to provide effective solutions to the problem of class-imbalance. From
an intuitive point of view, sentences in the same domain often have high-
level semantic connections. The interaction of their high-level semantic
features can force the model to produce better semantic representations,
and find the similarities and nuances between sentences better. Driven
by this idea, we propose a plug-and-play Pairwise Semantic Interaction
(PSI) module, which takes pairwise sentences as input, and obtains inter-
active information by learning the semantic vectors of the two sentences.
Subsequently, different gates are generated to effectively highlight the
key semantic features of each sentence. Finally, the adversarial interac-
tion between the vectors is used to make the semantic representation of
two sentences more distinguishable. Experimental results on four ABSC
datasets show that, in most cases, PSI is superior to many competitive
state-of-the-art baselines and can significantly alleviate the problem of
class-imbalance.

Keywords: Aspect-based sentiment classification · Pairwise semantic
interaction · Class-imbalance

1 Introduction

Aspect-based sentiment classification (ABSC) is a fine-grained sentiment classi-
fication subtask of sentiment analysis [10], which aims to identify the sentiment
polarity of each aspect in a sentence (positive, negative or neutral). It is widely
used in different domains, such as online comments (e.g., movie and restaurant
reviews [9]), data mining and e-commerce customer service. For example, sen-
tence 1 in Fig. 1 shows that the customer enjoys the restaurant’s food but thinks
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the ambience is just not bad. For this sentence, ABSC needs to recognize that
the two aspects “ambience” (A1) and “food” (A2) contained in the sentence are
“neutral” and “positive”, respectively.

In fact, people’s comments often have obvious emotional preferences, which
means that they may suffer the problem of class-imbalance. Since there are
far more comments with “positive” and “negative” in the same domain than
those with “neutral”, “neutral” comments are always marginalized and thus
misjudged. At present, the commonly used ABSC methods, whether they are tra-
ditional methods [1,19] or deep learning models [5,22], none of them has solved
the problem of class-imbalance. Moreover, the similarity of semantic contexts
between sentences in the same domain has not been fully utilized. In our paper,
we define “semantic” as a highly abstract coding vector of sentences extracted
by the information extractor, e.g. BERT. If we can make interactive learning of
two similar sentences in the same domain, they can learn more domain semantic
information from each other and enrich the high-level semantic encoding of sen-
tences. It will also help to find the similarities and nuances between sentences,
which can reduce misjudgments due to class-imbalance.

Fig. 1. The two sentences have different aspects, but they all belong to the same
domain “restaurant” and have similar semantic context.

For example, making interactive learning of S1-A1 and S1-A2 in Fig. 1, can
help to distinguish different sentiment polarities of a sentence which contains dif-
ferent aspects. The interaction between S1-A1 (“neutral”) and S2 (both aspects
are “positive”) can make the semantic encoding of “neutral” more discrimina-
tive, by comparing it with the strong “positive” sentence S2. At the same time,
the interaction between S1-A2, S2-A1, and S2-A2 can also enrich the features of
the same sentiment polarity in different aspects or different sentences.

Based on this intuition, we propose a domain-level plug-and-play Pairwise
Semantic Interaction (PSI) module for ABSC. For the construction of sentence
pairs, it is worth emphasizing that we consider that the sentences in the same
dataset belong to the same domain. We do not limit that two sentences must
have the same aspect, and encourage richer interactions between sentences (refer
to Sect. 3.4 for detailed sentence pair construction strategy). For PSI mod-
ule, firstly, we extract the semantic vectors of the two sentences by semantic
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extractors (e.g., BERT [5]), respectively. Subsequently, through a gating mecha-
nism, sentences can learn each other’s high-level semantic information adaptively,
which enriches the semantic representation of a single sentence. Finally, we addi-
tionally use a design similar to the adversarial network [6] to help promote the
model to distinguish the nuances between similar semantic representations. In
summary, the contributions of this paper are as follows:

– We introduce a Pairwise Semantic Interaction (PSI) module for the inter-
action between sentences, help to find the similarities and nuances of sen-
tences, and can significantly reduce the misjudgments due to class-imbalance.
Through the interaction between sentences in the same domain, the sentences
get better and more discriminative semantic representations.

– The PSI module is plug-and-play and can be easily combined with most
mainstream semantic extractors such as BERT.

– The experiments on four prestigious ABSC datasets have justified the efficacy
of PSI, achieving or approaching SOTA results.

2 Related Work

Existing ABSA researches focus on the use of deep neural networks, such as
target dependent LSTM models [18] and Attention-based LSTM [21] for aspect-
level sentiment classification. In recent years, the pre-trained language model
BERT [5], which has been very successful in many Natural Language Process-
ing tasks, has been applied in ABSA and achieved significant results such as
[11,17,23]. However, all of the above studies have ignored semantic relation-
ship between sentences in the same domain. Recently, contrastive learning has
achieved great success in both Computer Vision (CV) and Natural Language
Processing (NLP). Its main purpose is to make the features of the same cate-
gory closer to each other, while the distance between the features of different
categories is farther. In [25], through an attention interaction, the network can
adaptively find delicate clues from two fine-grained images in pairs. In ABSA,
Chen et al. [4] proposed a Cooperative Graph Attention Networks (CoGAN)
method for cooperatively learning the aspect-related sentence representation in
document level. However, their model is based on transformer combined with
Graph Networks, which has high computational overhead. By contrast, our pro-
posed PSI is a plug-and-play module, which can achieve decent performance
with a little extra overhead.

3 The Proposed Method

In this section, we will describe our PSI module. PSI compares two similar
sentences together to find the common semantic representation and semantic
differences between them, rather than studying the semantic representation of a
single sentence alone.

The module PSI will take two similar sentences as input and go through
three carefully designed sub-modules i.e., mutual vector learning, semantic gate
generation, and adversarial interaction. The entire structure of PSI is shown in
Fig. 2.
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Fig. 2. The structure of PSI. We simply use S1-A1 and S1-A2 in Fig. 1 as an example
of pairwise sentences (Sentence1, Sentence2). In this case, PSI can promote the model
to distinguish different sentiment polarities of different aspects in the sentence. It is
worth emphasizing that the PSI is a plug-and-play module, i.e., PSI can be combined
with most mainstream semantic extraction backbones (e.g., BERT) during the training
phase, and flexibly unload it for single-input test sentence.

3.1 Mutual Vector Learning

Before this sub-module, the semantic of these two sentences are extracted by
backbone, and two D-dimensional semantic vectors i.e., v1 and v2 ∈ R

D are
generated, respectively. Then, in this sub-module, we learn a mutual vector vm ∈
R

D from individual v1 and v2,

vm = fm([v1, v2]). (1)

where [ ] is concatenation operation and fm(·) is a mapping function of
[v1, v2]. Specifically, we use the multi-layer perceptron (MLP) as the mapping
function. By summarizing the two feature vectors v1 and v2, the mutual vector
vm is produced accordingly, which contains common high-level semantic infor-
mation and discriminative semantic clues of two sentences.

3.2 Semantic Gate Generation

After producing the mutual vector vm, we can use vm to activate v1 and v2.
In order to generate more discriminative information for later comparisons, the
dot product of vm with two feature vectors v1 and v2 is carried out according
to channels to locate the contrastive information in the two vectors. Then, the
gate vectors, i.e., g1 and g2 are generated by a sigmoid function,

gi = sigmoid(vm � vi), i ∈ {1, 2} . (2)
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Therefore, gi can be used as an attention vector to highlight the important
semantic representations belonging to individual vi. For example, the previous
example of S1-A1 and S1-A2 in Fig. 1, the gates will help to highlight two dif-
ferent key words “ambience” and “food”, respectively. This helps to distinguish
different sentiment polarities belonging to different aspects.

3.3 Adversarial Interaction and Model Training

When comparing two sentences, humans not only focus on the salient parts of
one sentence, but also focus on the salient parts of the other one. Based on this,
we introduce an adversarial interaction mechanism through residual attention.
As shown in Fig. 2, two feature vectors v1 and v2 and two gate vectors g1 and g2
are combined in pairs, we could then get four attentive semantic vectors with

vself
1 = v1 + v1 � g1,

vself
2 = v2 + v2 � g2,

vother
1 = v1 + v1 � g2,

vother
2 = v2 + v2 � g1.

(3)

Intuitively, the semantic vector vi(i ∈ {1, 2}), is guided by the attention of the
gate vector gj(j ∈ {1, 2}), strengthens or weakens certain semantic information,
and then adds to itself to get the output. While vself

i ∈ R
D reinforces the feature

region belonging to its own gate vector, and vother
i ∈ R

D reinforces the feature
region belonging to another gate vector.

Then vj
i (where i ∈ {1, 2}, j ∈ {self, other}) are feed into the softmax clas-

sifier by pji = softmax(Wvj
i + b), where pji ∈ R

C represents the score vector of
prediction, C indicates the number of polarities, and {W, b} is the parameter set
of the softmax classifier. In order to effectively train the entire PSI module, we
define the following loss function as

J = Jce + μJrk. (4)

Among them, Jce is the cross-entropy loss, and Jrk is the score ranking
regularization loss with a coefficient of μ. Specifically we choose the hinge loss
function as the score ranking regularization Jrk,

Jrk =
∑

i∈{1,2} max(0, potheri (yi) − pselfi (yi) + ε). (5)

where pji (yi) ∈ R represents the score got in the predicted vector pji , and yi
denotes the index of the true polarity of sentence i, and ε is the penalty term.
The motivation of this design is that, vself

i is activated by its own gate vector.
Hence, compared to vother

i , it should be more discriminative to the corresponding
label. That is, the score difference pselfi (yi)-potheri (yi) should be larger than a
margin ε, which means that pselfi (yi) should be larger than potheri (yi) and must
keep a distance with potheri (yi). At the same time, when cross-entropy loss Jce is



308 Z. Wu et al.

optimized, due to having the same label, pselfi (yi) and potheri (yi) will tend to be
closer. Therefore, Jrk and Jce will be optimized adversarially. As a result, vother

i

can learn the semantic information shared by the two sentences, and vself
i can

learn its own unique information which will be more discriminative and reduce
the noise of sentence pairs.

3.4 Sentence Pair Construction

Next, we’ll provide an explanation on how to construct multiple sentence pairs in
a batch for end-to-end training. Specifically, we randomly sample Np polarities
in a batch (there are 3 polarities in total, i.e. positive, negative, neutral). For
each polarity, we randomly sample Ns training sentences. Consequently, there
are Np×Ns different sentences in each batch (we set the same sentence to express
different aspects, belonging to different sentences). After getting a batch of sen-
tences, we input these sentences into the backbone to generate their respective
semantic vectors. For every sentence, we compare its semantic vector with the
different sentences in the batch in accordance to Euclidean distance. We do not
limit that two different sentences must have the same aspect, and encourage
richer interactions between sentences (the following ablation study proves our
point). Then, we can construct the inter/intra-pairs in a batch. The inter-pairs
are the following sentence pairs which contains two situations. 1) The current
sentence and itself (with different aspect and different polarity), e.g., S1-A1 &
S1-A2 in Fig. 1; 2) The current sentence and the most similar sentence with dif-
ferent polarities from the current sentence, e.g., S1-A1 & S2 (A1/A2). On the
contrary, intra-pairs refer to the following sentence pairs. 1) The current sen-
tence and itself (with different aspect and same polarity), e.g., S2-A1 & S2-A2;
2) The current sentence and the most similar sentence with the same polarity
from the current sentence, e.g., S1-A2 & S2 (A1/A2). This design permits the
PSI to learn to distinguish between truly similar and highly overlapping pairs.

3.5 Model Testing

Because PSI is a practical plug-and-play module. In the training phase, the back-
bone and the PSI module can summarize the comparative clues from sentence
pairs, and step by step improve the discriminant capacity of backbone represen-
tation for sentences. Therefore, in the testing phase, only the backbone model
with updated parameters is used, but not the PSI module, so that the general-
ization ability of the model can be guaranteed without losing the performance
of the model. To be specific, in testing phase, we input a sentence into the back-
bone, extract its semantic vector X∗ ∈ R

D, and then directly input X∗ into the
softmax classifier. It is worth emphasizing that the softmax classifier are shared
between the training phase and the testing phase. The score vector P∗ ∈ R

C

is applied to label prediction. Thus, our test scheme is the same as a regular
backbone, which demonstrates the strong applicability of PSI.
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Table 1. Statistics of the datasets.

Polarity Res14 Lap15 Res16 Lap16

Train Test Train Test Train Test Train Test

Positive 839 222 765 329 749 204 1084 274

Neutral 500 94 106 79 101 44 188 46

Negative 2179 657 1103 541 1657 611 1637 481

Sum 3518 973 1974 949 2507 859 2909 801

4 Experiments

4.1 Datasets and Metrics

We have carried out experiments on four datasets to verify the performance of
our proposed model, PSI. Restaurant14 is from Semeval-2014 Task 4 [16], Lap-
top15 is from Semeval-2015 Task 12 [15], and the other two datasets (Restau-
rant16 and Laptop16) are from Semeval-2016 Task 5 [14]. The statistics for these
datasets are shown in Table 1. And we use Accuracy (Acc.) and Macro-F1 (F1)
as performance metrics.

4.2 Implementation Details

Unless stated otherwise, we implement PSI as follows. For each aspect of a
sentence, we concat the corresponding aspect at the end of the sentence. Then
we adjust the length of each sentence to 85 (the maximum sentence length after
the tokenizer tokenizes is 85). If it is not enough, fill it with zero, and then use
it as the input of backbone. Firstly, we extract the semantic vector vi ∈ R

786

by BERT. Secondly, for all the datasets, we randomly sample 3 polarities, i.e.,
Np = 3. And for each polarity, we randomly sample 4 sentences to form a batch,
i.e., Ns = 4. For each sentence, we find its most similar sentence from its own
polarity and the rest polarities, according to Euclidean distance between their
semantic vectors. As a result, we obtain an intra-pair and an inter-pair for each
sentence in the batch. For each pair, we concatenate v1 and v2 as input to a two-
layer MLP, i.e., FC (1572→ 512), FC (512 → 786). Consequently, this operation
generates the mutual vector vm ∈ R

786. All of our models are implemented
by Pytorch with a single NVIDIA GTX 2080Ti GPU with 11G Memory. For
all datasets, the coefficient μ in Eq. 4 is 1, while the margin ε is 0.05 in score
ranking regularization. Among them, BERT is optimized by Adam optimizer
with β1 = 0.9, and the initial learning rate is 0.0001. For our PSI (backbone is
BERT or BERT-Large) method, we use another Adam optimizer for training,
and the initial learning rate is 0.00002 with β1 = 0.9. There are a total of 20
training epochs, and if the loss does not decrease for 5 consecutive epochs, it
will invoke early-stop. In addition, we set a fixed seed when training the model
to ensure the reproducibility of the results.
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Table 2. The comparative results, with data for non-BERT models from [4], kumaGCN
from [2], RepWalk from [24], and IMN from [8]. The data for BERT-QA from [17], AC-
MIMLLN from [11], and CoGAN from [4]. The experimental configuration for standard
BERT and PSI is shown in implementation details. “–” denotes no data available yet.
The best result of each dataset is bolded, and the second-best result is underlined.

Models Res14 Lap15 Res16 Lap16

Acc. F1 Acc. F1 Acc. F1 Acc. F1

TC-LSTM 0.781 0.675 0.745 0.622 0.813 0.629 0.766 0.578

ATAE-LSTM 0.772 – 0.747 0.637 0.821 0.644 0.781 0.591

RAM 0.802 0.708 0.759 0.639 0.839 0.661 0.802 0.627

IAN 0.793 0.701 0.753 0.625 0.836 0.652 0.794 0.622

Clause-Level ATT – – 0.816 0.667 0.841 0.667 0.809 0.634

LSTM+synATT+TarRep 0.806 0.713 0.822 0.649 0.846 0.675 0.813 0.628

kumaGCN 0.814 0.736 – – 0.894 0.732 – –

RepWalk 0.838 0.769 – – 0.896 0.712 – –

IMN 0.839 0.757 0.831 0.654 0.892 0.71 0.802 0.623

BERT 0.867 0.764 0.818 0.699 0.884 0.755 0.817 0.665

BERT-QA – – 0.827 0.595 0.896 0.715 0.812 0.596

AC-MIMLLN 0.893 – – – – – – –

CoGAN – – 0.851 0.745 0.920 0.816 0.842 0.707

PSI (BERT) 0.916 0.857 0.860 0.756 0.901 0.788 0.839 0.723

PSI (BERT-Large) 0.924 0.863 0.868 0.760 0.913 0.828 0.87 0.737

4.3 Comparison with SOTA Methods

To fully evaluate the performance of our method, we apply PSI based on BERT
or BERT-Large. We compare it with the state-of-the-art (SOTA) baselines
including (1) ABSA models without BERT: TC-LSTM [18], ATAE-LSTM [21],
RAM [3], IAN [12], Clause-LevelATT [20], LSTM+synATT+TarRep [7],
kumaGCN [2], RepWalk [24] and IMN [8]. (2) BERT-based models for ABSA:
BERT [5], BERT-QA [17], AC-MIMLLN [11] and CoGAN [4]. Table 2 shows the
results of our experiments on four datasets.

From Table 2 we can come to the following conclusion. The performance of
PSI (Based on BERT or BERT-Large) on Res14, Lap15 and Lap16 is better
than those of all baselines. And in Res16, our PSI module approaches SOTA
results. The experiments justify that PSI is a very powerful plug-and-play mod-
ule, showing the effectiveness of our method.

Table 3. Comparison of accuracy (%) of different polarities between PSI and BERT.

Model Negative (%) Neutral (%) Positive (%) Overall (%)

BERT 92.5 47.9 86.0 86.7

PSI (BERT) 97.6 (+5.1) 60.6 (+12.7) 86.9 (+0.9) 91.6 (+4.9)
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4.4 Alleviating the Problem of Class-Imbalance

As shown in Table 1, the mainstream datasets have the problem of class-
imbalance. For example, in Res14, the “negative” comments is significantly more
than the data of other polarities (“negative” accounts for 62%), while the “neu-
tral” comments is far lower for other polarities (“neutral” accounted for 14%). In
order to illustrate the advantages of the our method, we compared PSI (Based
on BERT) with the standard BERT model on the Res14 dataset, for each polar-
ity (positive, negative, and neutral). Table 3 shows the comparison results of the
accuracy of different sentiment polarities.

It can be seen that the “positive” and “neutral” accuracy of our model (PSI)
is better than that of BERT model. Specifically, PSI significantly improves the
performance of “neutral” classification. And the overall accuracy of our model
was greatly improved compared with BERT model. It indicates that the sen-
tence pair interaction learning in PSI module can make the semantics between
sentences complement each other and effectively learn the nuances between sen-
tences. This can make the semantic representation of different polarities of sen-
tences more distinguishable, and can effectively alleviate the problem of class-
imbalance.

4.5 Ablation Study

Our proposed method encourages richer interactions between sentences and do
not limit that two different sentences must have the same aspect. In order to
study the impact of different sample extraction methods (sentiment polarity
and aspect) on ABSC, we conducted the following ablation experiments. We
use BERT as semantic vector extractor to evaluate different sample extraction
methods on Res14.

As mentioned above, our proposed sample extraction method is that
Intra/inter pairs are constructed from the same/different sentiment polarities
without limiting the range of aspect (Interacting Polarity, I P ). And there
are three other sample extraction methods, including 1) Interacting Aspect
(I A). Intra/inter pairs are constructed from the same/different aspects with-
out limiting the range of sentiment polarity. 2) Interacting Polarity and
Limiting Aspect (I P & L A). Intra/inter pairs are constructed from the
same/different polarities by limiting the same aspect. 3) Interacting Aspect
and Limiting Polarity (I A & L P ). Intra/inter pairs are constructed from
the same/different aspects by limiting the same polarity.

From Table 4, in all the four datasets, the results of the other three abla-
tion experiments are worse than I P (Ours). For I P & L A and I A & L P ,
results demonstrate that we should not limit aspects (in order to better distin-
guish different aspects of a sentence) and should also allow different polarities
to interact in pairs (in order to better distinguish different sentiment polarities).
For I A, due to class-imbalance, if we do not limit the range of sentiment polar-
ity (by constructing the inter-pair of different sentiment polarities), there will
be a lot of interactions between sentences belonging to the same majority class
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Table 4. Different sample extraction method.

Methods Res14 Lap15 Res16 Lap16

Acc. F1 Acc. F1 Acc. F1 Acc. F1

I P (Ours) 0.916 0.857 0.860 0.756 0.901 0.788 0.839 0.723

I A 0.914 0.854 0.834 0.699 0.896 0.753 0.830 0.680

I P & L A 0.909 0.852 0.840 0.699 0.893 0.787 0.819 0.656

I A & L P 0.895 0.826 0.836 0.689 0.873 0.738 0.820 0.641

(“negative”), while the interaction between different sentiment polarities will
be insufficient. Finally, for I P , we explicitly construct inter-pairs (belonging
to different polarities) in each batch to ensure that the number of interactions
between different polarities is sufficient. In this way, the nuances between dif-
ferent sentiment polarities can be better learned by the model. Therefore, we
choose I P as the sample extraction method for ABSC.

4.6 Visualization Analysis

In order to understand the discriminability of our method, we use UMAP [13]
to visualize the polarity separability and compactness in the semantic features
extracted from a standard BERT and the PSI (based on BERT) in Res14. In
Fig. 3, it is evident that when using our PSI module, the clusters are farther
apart and more compact, leading to a more clear distinction of various clusters
representing different polarities. This also proves that adding PSI module can
promote the model to learn better semantic representation of sentences and make
them more distinguishable.

Fig. 3. Discriminability using UMAP to visualize polarity separability and
compactness.
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5 Conclusion

In this paper, we proposed a domain-level Pairwise Semantic Interaction (PSI)
for ABSC. Through the interactions between sentences, PSI can effectively enrich
the semantic encoding of sentences and produce better semantic representations.
Meanwhile, PSI is plug-and-play module and can further help the model distin-
guish the nuances between similar sentences and effectively alleviate the prob-
lem of class-imbalance. Finally, the empirical results on four prestigious ABSC
datasets justified the power of PSI that has achieved SOTA performance in
most cases. In future work, we will consider integrating some advanced atten-
tion mechanisms into this method.
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Abstract. Solution to many real-world problems often involve the
use of expert-level knowledge from various specializations. Such inter-
disciplinary problems are usually divided into tasks which are then
assigned to a set of bots, each specialized in a particular skill. Super-
vised selection of the right bot each time is cumbersome and not scal-
able. Hence there is a need for an AI system that identifies the type of
task and assigns it to a suitably trained bot. Challenges arise in non-
stationary environments when the cost of choosing different bots vary
or the bots themselves might evolve in their skills. In this paper, as in
Conversational AI, a number of bots are at our disposal, each of which is
trained to handle (i.e., answer) a specific type of question in a conversa-
tion. We develop a meta-algorithm that learns about capabilities (Skill
Discovery) of the available bots in real-time and appropriately selects
a relevant bot for the question at hand. We present contextual bandits
as a solution in this setting and introduce gradual finetuning of query
information to improve Skill Discovery. Using two popular datasets from
conversational AI: CoQA and SQuAD, we show promising results of our
method on non-stationary environments.

Keywords: Bandits · Conversational AI · Nonstationary agents

1 Introduction

Intelligent Virtual Assistants (VA) are being increasingly used to provide rel-
evant information to end-users pertaining to varied everyday activities [6,11].
Whenever a new task is assigned to a VA, it needs to allocate appropriate
resources to complete it with the highest possible accuracy and least possible
cost. Figure 1 shows how often a single interaction with a VA may invoke dif-
ferent bots, each specialized to perform a specific kind of task. Hence real-time
identification of the type of query asked and the selection of an appropriate bot
is essential for a seamless conversation.

However, to begin with, any VA must first identify the capabilities or skills
of each of its available bots. Such Skill Discovery involves mapping these bots to

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13280, pp. 315–327, 2022.
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Fig. 1. Example of a conversation with a virtual personal assistant which can involve
using multiple specialized sub-bots under the hood. Here, bot-1 is trained to pull-up
user specific information from employer’s database, bot-2 is skilled in searching and
presenting geographical information, and bot-3 is skilled in connecting the user to
external agencies, if needed.

their respective skills. Performing this manually will be cumbersome, especially
when the number of bots is large. This process is further complicated when
skills of the bots evolve (i.e., we have evolving or nonstationary bots). Hence,
dynamic Skill Discovery must be automated. In addition to this, the VA needs
to identify the type and complexity of each task from a query (Context) coming
from an end-user and assign it to an appropriate bot. Most existing work on
Virtual Assistants focus on algorithms for incorporating various Skills into the
AI system and much less has been studied on the Discovery of the skills. First,
identification of the skill required to answer a query is traditionally done based on
the presence of a ‘trigger’ word or ‘skill-invocation-name’ within the query. This
requires end-users to get trained to know and update themselves with a list of
skill-invocation-words. This can be confusing in the long-run when the system’s
skill-set changes [13]. In order to move towards more natural conversations, some
systems use ‘intent detection’ to detect the skill referred to in the query [2].
In such techniques, there needs to be an internal mapping between commonly
used words and ‘intent’ within the machine. In [8], clustering is performed on
all available unlabeled data, and a unique encoding function is learnt for each
cluster. Once this is done offline, every new incoming data is mapped to its cluster
and encoded using the corresponding encoding function. This new encoded data
is used by a contextual bandit to choose relevant action. The received reward
from the bandit is then used to update the encoding functions of all clusters.
This method assumes availability of some training data to begin with.

In many real-life scenarios, there might not be any training data to perform
an offline Skill Discovery for a given application. The VA might receive its first
stream of tasks (query data) directly in the field and hence needs to perform
Skill Discovery in real-time. It also needs to keep updating its knowledge of
the skills of each of its bots in an online manner. This is analogous to a human
manager discovering the strengths of her/his new human employees by assigning
them new tasks and observing their performances on the job over time. Thus the
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problems of dynamically discovering skills in an online fashion and using context
of the query to assign the task remain open.

In this work, we present contextual bandits as a solution for dynamic Skill
Discovery of bots. We also discuss a new method to improve the accuracy of
this task by finetuning the representation of Contexts fed to the bandit. We
test the efficacy of these methods on two popular datasets in the domain of
conversational AI: CoQA and SQuAD. Though the proposed algorithm has been
tested on conversational AI datasets, it is inherently domain-agnostic and can
be applied to any AI system which needs to discover and update its knowledge
of the strengths of its available bots in real-time.

2 Preliminaries

Since our proposed method for Skill Discovery uses contextual bandits, we first
describe them briefly here.

Contextual Bandits: A contextual bandit [9] is a sequential decision-making
machine. As its input, it receives a sequence of d-dimensional vectors, known as
‘contexts’ {cj ∈ R

d|1 ≤ j ≤ T} from outside world (or ‘environment’) over time
T . It has at its disposal a finite number of arms {ai|1 ≤ i ≤ n}. At a time instant
t (round t), the bandit needs to choose (activate) one of the arms a(t) based on
the context ct. Depending on its choice, it receives a ‘reward’ r(t) from its envi-
ronment. A high reward implies a good decision, i.e., an appropriate arm being
chosen for the given context. Therefore, over time, the bandit selects an arm that
has maximum likelihood of giving the best reward for the given context. It does
this by learning a reward function for each of its arms. After each round, it trains
and updates its reward function of all arms based on the history of contexts, arms
chosen, and rewards received: {(c1, a(1), r(1)), (c2, a(2), r(2)), . . . , (ct, a(t), r(t))}.
After sufficient number of rounds, the bandit is trained to take nearly accurate
actions for every context it receives. If rewards are binary, a binary classifier such
as logistic regression is used as a reward function for each arm. If rewards are
real-valued (as will be in our experiments), a regression model is used to learn
the reward function, and linear, ridge regressions are popular choices. This pro-
cess is illustrated in Fig. 2. In addition to choosing the best arm based on past
experience (‘exploitation’), a bandit also has a mechanism to choose previously
unexplored arms (‘exploration’). Different exploitation-exploration mechanisms
exist in literature, each leading to a unique type of bandit-algorithm. Two of
them are Epsilon-Greedy and Upper Confidence Bound (UCB).

– Epsilon-Greedy: At round t, an epsilon-greedy bandit chooses a random
arm with a probability ε and the arm with highest reward-estimate with
probability 1 − ε. Hence, if si(t) denotes the reward-estimate of arm i for
the current context ct, and ε denotes the probability of exploration, then the
selected arm at time t is given by

a(t) =

{
arg maxi{si(t)} with probability 1 − ε

random arm i with probability ε.
(1)
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Fig. 2. Framework for selection of an arm using contextual bandits. A ‘score’ denotes
a reward-estimate of an arm for the received context.

After each round, ε diminishes by a fraction decay. This enables more explo-
ration in the beginning and relies on exploitation later on. ε and decay are
design parameters that decide the exploitation-exploration trade-off. Pseudo-
code of this technique is illustrated in Algorithm 1.

Algorithm 1: Epsilon Greedy Contextual Bandit
Initialize Ridge regressor for each arm, exploration probability ε, decay rate
while Incoming context ct, and query number t do

Infer reward-estimates {s1(t), . . . , sn(t)} from ridge regressors of each arm.
Choose a uniform random number r between 0 and 1.
if r > ε then

Select arm as a(t) = arg maxi{si(t)}.
else

Choose a random arm.
end
ε = ε ∗ decay
Get reward r(t) from environment.
Based on the current and all previous sets of contexts, arms chosen and
rewards received, {cj , a(j), r(j)|1 ≤ j ≤ t}, learn a new ridge regression
model for each arm.

end

– Linear Upper Confidence Bound: This is a more principled approach [3,7]
than Epsilon-Greedy. Here, selection of an arm a(t) at round t is based on
a score that is a sum of two components: expected mean reward of ith arm,

si(t) for the current context ct, and variance in expected reward
√

log(t)
N(i) ,

where N(i) denotes the number of times the ith arm was chosen in the past.
Specifically, a(t) is chosen such that
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a(t) = arg max
i

{
si(t) + e.

√
log(t)
N(i)

}
. (2)

e is a design parameter denoting confidence in exploration. In the beginning,
N is small for any arm, and hence the uncertainty term has more weight.
After an arm is chosen many times, its selection is done primarily based on
its expected mean reward, as illustrated in Algorithm 2.

Algorithm 2: LinUCB Contextual Bandit
Initialize: Ridge regressor for each arm, regularization strength α, matrix
A ←− Id (d-dimensional identity matrix).

while Incoming context ct, and query number t do
Infer reward-estimates {s1(t), . . . , sn(t)} from ridge regressors of each arm.

Select arm a(t), where a(t) = arg maxi{si(t) + α.
√

cTt Aict}.
Get reward r(t) from environment.
Update Aa ←− Aa + ctc

T
t

Update reward model: Based on the current and all previous sets of
contexts, arms chosen and rewards received, {cj , a(j), r(j)|1 ≤ j ≤ t},
learn a new ridge regression model for each arm.

end

In this work, ‘arms’ of a bandit will be referred to as ‘agents’ to appropriately
refer to skilled bots in an application.

3 The Proposed Skill Discovery Framework

In conversational AI, a Context is a vector representation of the question together
with a reference paragraph and some history of the conversation. This is tradi-
tionally embedded using one of the many available text transformations, such
as BERT (Bidirectional Encoder Representations from Transformers) [5]. Given
this Context, we perform Skill-Discovery in two independent ways:

– Feeding an off the shelf pre-trained BERT-embedded Context directly to a
contextual bandit.

– Feeding finetuned BERT+(Conversational-AI network)-embedded Context to
a contextual bandit. The network for finetuning the Context (see Fig. 3) con-
sists of a cascade of two networks: a BERT-base network and a task-specific
conversational-AI network. The first one outputs a generic BERT-embedded
vector1 and the latter further tunes the BERT-embedded vector to suit to
the specific conversational-AI application at hand. At the end of each round
(query received and answered), this network is incrementally trained based on

1 We used ‘BERT-base-uncased’ model from Hugging Face.
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Fig. 3. Pipeline for finetuning the Context. The BERT-base network provides a generic
vector representation of the query. This is fed to a task specific Conversational-AI
network to generate a task specific vector (Context). At the end of each round (query
received and answered), the weights of conversational AI network are incrementally
trained or finetuned. This cascade of BERT and conversational AI network is referred
to as ‘finetuned model’ in Fig. 4.

the current query and its true answer. We call this process as ‘finetuning the
Context’. After sufficient number of rounds, the finetuned Context is better
suited for predicting a conversational answer.

Figure 4 shows the overall framework for Skill Discovery using the second
method. Once a new query is received, its finetuned Context is computed and
fed to a bandit (as shown earlier in Fig. 2) in order to select the right agent
which is skilled enough to answer the current query. Pseudocode of this tech-
nique is presented in Algorithm 3. Note that in the presence of a cost-factor,
we aim to maximize cost-normalized reward-estimates, i.e., if pi is the cost of
accessing agent ai and si(t) is its reward-estimate for query number t, then we
aim to maximize si(t)/pi over all 1 ≤ i ≤ n agents. As will be seen later in the
experimental results, finetuning significantly assists the bandit to select the right
agent over time. The accuracy of the predicted answers is measured as F1 score
of word overlap, where F1 score is the harmonic mean of precision and recall.

Fig. 4. The Overall framework for Skill Discovery. Each query is passed through the
finetuned model (shown in Fig. 3) and the resulting Context is fed to a contextual
bandit which selects the appropriate agent to answer the query.
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Algorithm 3: Proposed method for Online Skill Discovery in Conversa-
tional AI.
Initialize Ridge regressor for each agent, cost p for each agent , bandit
algorithm BA and its hyper-parameters.

while Incoming Query Q, and query number t do
if First batch then

Context ct = BERT embedding of Q.
else

Context ct = Finetuned BERT+(Conversational-AI) embedding of Q.
end
For ct, compute score (reward-estimate) for each of n agents:
{s1(t), s2(t), . . . , sn(t)} from ridge regressors fit on each agent.

Let cost of each agent ai be pi.

Compute cost-normalized scores for n agents:
{

s1(t)/p1, . . . , sn(t)/pn

}
.

Select the best agent based on the exploitation-exploration strategy of BA.
Next, the selected agent a(t) predicts an answer A for the query Q.
Compute reward r(t) = F1-score of the answer A.
Based on the current and all previous sets of contexts, agents chosen and
rewards received, {cj , a(j), r(j)|1 ≤ j ≤ t}, learn a new ridge regression
model for each agent.

Based on all previous ground-truth answers and queries, incrementally train
the (BERT+Conversational-AI) model.

end

This is the recommended evaluation metric in the popular CoQA [12] dataset.
However, one may also choose to use other metrics such as Bilingual Evaluation
Understudy Score (BLEU) and exact-match metric.

4 Experimental Design and Datasets

We study Skill Discovery under the presence of agents which have evolving
skills and unequal costs. Table 1 shows our design of scores to emulate gradually
increasing skill-levels of such agents. An additional agent, called the ‘Oracle’ is
included. ‘Oracle’ is assumed to be fully skilled for all query-types, but is twice
as expensive when compared to other agents. The other agents have mutually-
exclusive skills and equal costs. Their skill-level (as indicated by their scores in
Table 1) denotes the average accuracy of conversational answers predicted by
them. We assume that skill-level of agents improve with time and reaches max-
imum accuracy after a sufficient number of rounds. This is indicated by their
scores slowly increasing from 0 (min. accuracy) to 1 (max. accuracy) in steps of
0.1 after every 1000 queries. This scheme emulates the scenario of increasing the
skill-level of an agent by externally training it with more data when it becomes
available. Table 1 also shows the right agent (‘optimal choice’) that the bandit
is expected to choose for a particular query. Until the low-cost agents become
sufficiently skilled (with score >= 0.5), the ‘Oracle’ is the optimal choice because
its normalized-score-to-cost ratio is the maximum. For scores > 0.5, other
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individual agents are best suited to answer the queries. Table 2 shows exam-
ples of scores of low-cost agents once their skills are fully evolved.

Table 1. Design of scores for agents and Oracle in order to simulate cost-sensitivity
and evolution of skills over time.

Query number n Score of agent

(Cost= 1)

Score of oracle

(Cost= 2)

Maximum

(Score/Cost)

Optimal choice

n < 1000 0 1 0.5 Oracle

1000 ≤ n < 2000 0.1 1 0.5 Oracle

2000 ≤ n < 3000 0.2 1 0.5 Oracle

3000 ≤ n < 4000 0.3 1 0.5 Oracle

4000 ≤ n < 5000 0.4 1 0.5 Oracle

5000 ≤ n < 6000 0.5 1 0.5 Oracle or agent

6000 ≤ n < 7000 0.6 1 0.6 Agent

7000 ≤ n < 8000 0.7 1 0.7 Agent

8000 ≤ n < 9000 0.8 1 0.8 Agent

9000 ≤ n < 10000 0.9 1 0.9 Agent

10000 ≤ n 1 1 1 Agent

Note that in a real application, the evolution of skills and costs of different
agents will vary from our design. For example, a few agents might have overlap-
ping skills or different agents might evolve at different rates. However, in order
to have a predictable trajectory of skill-evolution to enable our study of effects
of finetuning Contexts, we choose the design discussed above.

Table 2. Example scores for agents after their skills are fully evolved.

Query Score of agent
1 (Cost= 1)

Score of agent
2 (Cost = 1)

Score of agent
3 (Cost = 1)

Optimal choice

Type 1 0 0 1 Agent 3

Type 2 1 0 0 Agent 1

Type 3 0 1 0 Agent 2

Datasets: Our dataset consists of 20000 queries from Conversational Ques-
tion Answering dataset (CoQA) [12] and Stanford Question-Answering Dataset
(SQuAD) [10]. For this work, each of these datasets was further used to cre-
ate sub-datasets as shown in Tables 3 and 4. From the CoQA dataset, we cre-
ated four sub-datasets: Question Category, Question Domain, Question Difficulty
and Question Length. The Question-Category sub-dataset consists of 3 types of
queries: those which begin with ‘What’, those which begin with ‘Who’,‘Where’
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or ‘When’, and those that begin with other words such as ‘How’,‘Why’, etc. Here,
Skill Discovery denotes mapping of agents to the Question-Category which they
are skilled at, and selection of the right agent for answering a given query. In the
Question-Domain sub-dataset, each query is labelled with its domain (Wikipedia
or Literature or Others) based on its content. This domain name was available to
us from the CoQA dataset. The third sub-dataset, Question-Difficulty, is based
on the difficulty-level of a query. Every query came along with its reference para-
graph and a region-of-interest within the paragraph which potentially has clues
for answer to the query. Hence, we created this sub-dataset based on the presence
or absence of a lexical-match between words in the query and those in the region
of interest within its reference paragraph. We assumed that queries with no lex-
ical match are more difficult to answer than queries with some lexical match.
In this case, one of our agents is assumed to be skilled in answering easy ques-
tions and the other in answering difficult questions. In the fourth sub-dataset,
Question-Length, each query was divided into two types based on the number
of words in the question: small-length questions (<=4 words) and big-length
questions (>4 words). In any conversation, smaller length questions generally
refer to some information from the previous query or answer. Hence, any agent
that specializes in answering small questions must have a good understanding
of the history of the query and this is a specialized skill. The choice of the
number 4 was made because average length of queries in CoQA is 5. From the
SQuAD dataset, we created two sub-datasets: Question Category and Question
Length. The rationale in creating these is the same as the one used in CoQA,
the only difference being–SQuAD questions were split into small and big length
questions based on question length being <=9 or >9. This follows due to the
fact that average length of a query in SQuAD is 10 words. Each of the above
sub-datasets: four from CoQA and two from SQuAD consist of 20000 queries
and form six independent datasets for our experiments. Tables 3 and 4 also show
the fraction of questions in each type of query.

Table 3. Sub-datasets created from CoQA

Question
Category

% Composition
Question
Domain

% Composition

What 29 Wikipedia 24
When,
Where,
Who

22 Literature 23

Others 49 Others 53

Question
Difficult y

% Composition
Question
Length

% Composition

Lexical Match 41 4 words 38
No Lexical
Match 59 4 words 62
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Table 4. Sub-datasets created from SQuAD

Question
Category

% Composition
Question
Length

% Composition

What 42 words 49
When,
Where,
Who

20 9 words 51

Others 38

5 Results and Discussion

We use ‘cumulative number of correct agents chosen’ as our evaluation met-
ric to measure efficacy of Skill Discovery. If an algorithm has better ability to
discover skills of its agents, it will eventually choose the right ones over time.
Additionally, we assume the right agent will always answer the given query with
a mean accuracy indicated as ‘scores’ in Tables 1 and 2. We use the follow-
ing three types of algorithms and compare their performances for the task of
Skill Discovery: Random-Selection, Epsilon-Greedy and Sliding Window-UCB
(SW-UCB). Random-Selection chooses an agent randomly irrespective of Con-
text and skills of the agents. For Epsilon-Greedy, the exploration probability ε
and decay-rate decay were chosen to be 0.2 and 0.99 respectively. In SW-UCB,
the agents are updated based on the statistics computed from the query-rounds
within the sliding window alone. The window width was set to 500, since the
agents evolve after every 1000 rounds in our design (Table 1). Compute infras-
tructure consisted of Intel(R) Xeon(R) 80-core CPU (E5-2698 v4) running at
2.20 GHz with 500 GB RAM together with NVIDIA’s Tesla-V100 series GPU
with 32 GB memory. In this machine, completing 20000 turns of queries took
6.5 h when gradual finetuning was performed and 2.5 h when finetuning was not
done. All experiments were run 10 times, each with a different shuffle pattern
of the query-set i.e., the sequence of questions differed. The code repository is
in [1]. Figures 5 and 6 show results for all datasets. The solid lines denote mean
number of cumulative right agents chosen and the shaded band represents ±1
standard deviation. In all cases, the deviation from mean was negligible. To
interpret these plots, it is helpful to again refer to query-numbers in Table 1. All
plots plateau around query 5000, since it is at this stage when the optimal agent
shifts from being the Oracle to any of the other low-cost agents. The algorithm
takes some time to adapt to this change. Finetuning the Context helps only
after the skill-levels have stabilized. Until then, performance using the generic
BERT Context is as good as the finetuned Context. This indicates that Bert
Context alone may be preferred until skills stabilize and this will offer an added
benefit of saving time that is otherwise required for finetuning. However, once all
agents are fully evolved, finetuning the Context offers a superior representation
enabling better decisions. These experiments also indicate superior performance
of SW-UCB over Epsilon-Greedy and Random-Selection. As expected, random
choice of agents is the least accurate method.
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One of the future directions of work is to study cases when skills of all agents
are not mutually exclusive or are evolving at different rates. The possibility of
using restricted contexts [4] and neural bandits [14] may also be explored.

Fig. 5. Results on CoQA a) Question Category dataset, b) Question Domain dataset,
c) Question Difficulty dataset, and d) Question Length dataset. The solid lines denote
mean number of cumulative right agents chosen and shaded bands represent ±1 stan-
dard deviation.
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Fig. 6. Results on SQuAD a) Question Length dataset, and b) Question Category
dataset. The solid lines denote mean number of cumulative right agents chosen and
shaded bands represent ±1 standard deviation.

6 Conclusions

It has become increasingly common to have multiple AI agents work together
and collaborate on a single project. In such scenarios, discovering skills of each
agent is the first crucial step followed by their selection for an appropriate task.
In this work, we presented contextual bandits as a solution for real-time Skill Dis-
covery. We tested Sliding Window UCB, Epsilon-Greedy and Random selection
algorithms for agents having varying costs and evolving skills. Our experiments
on 6 sub-datasets in Conversational AI showed that gradual finetuning of the
Context helps to create a better representation for real-time Skill Discovery,
irrespective of the chosen bandit algorithm.
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Abstract. Knowledge graph entity typing, which is an important way
to complete knowledge graphs (KGs), aims at predicting the associating
type of certain given entities without any external knowledge. However,
previous methods suppose that many (entity, entity type) pairs (ETPs)
can be obtained for each entity type, performing poorly on entity types
that only have a few associative entities and do not fully utilize the
internal information in KGs. In this work, we propose a novel model
named Meta Entity Typing (MET) for few-shot knowledge graph entity
typing. In MET, we achieve knowledge graph entity typing by meta-
learning with three sub-tasks formed by the hierarchical entity type tree
in its meta-training stage. In this way, MET can focus on transferring
type-specific meta information to learn the most important knowledge for
entity typing. Besides, to fully employ the internal information in KGs
given limited ETPs, inspired by Factorization Machines, we design a
novel Relation To Relation Graph Convolutional Networks (R2R-GCN),
in which we consider different relation combinations could have distinct
influence on its corresponding entity, R2R-GCN can explicitly model the
interactions between different relations. Empirically, our model achieves
state-of-the-art results on few-shot entity typing KG benchmarks.

Keywords: Knowledge graph entity typing · Few-shot learning ·
Graph convolutional networks

1 Introduction

Knowledge bases (KBs), such as DBpedia [10] and YAGO [11], have incorporated
large-scale multi-relational data. These KBs store Knowledge Graphs (KGs) that
can be categorized as two views: (i) the instance-view knowledge graphs that
contain huge amount of triples in the form of (head entity, relation, tail entity)
and (ii) the ontology-view knowledge graphs that constitute semantic meta-
relations of abstract concepts (types).
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Fig. 1. Different relation combinations for the same entity.

The entity in instance-view KG and its type in ontology-view KG is linked
by cross-view link. The cross-view links are incomplete and hard to complete
manually, jeopardizing their usefulness in tasks such as relation extraction [8],
coreference resolution [6], entity linking [5]. In this work, we focus on knowledge
graph entity typing, which aims to infer missing entity types (cross-view links)
formed as (entity, entity type) in KGs. It is also an important sub-problem for
knowledge graph completion (KGC).

To automatically mine entity types, recent researches mainly focus on infer-
ring missing entity types based on the internal information of KGs, their methods
can be divided into embedding and graph convolutional networks (GCNs) meth-
ods. Embedding-based methods [7,12,22], obtaining entity embeddings, then use
them to infer missing type. GCN methods [16,17,19], infer the type of entity by
aggregating the information from its neighbors for multi-relational graph.

Previous knowledge graph entity typing methods usually suppose that many
ETPs can be obtained for each entity type. However, the frequency distributions
of entity types in real data sets often have long tails, which means a large portion
of entity types have only few associated entities in KGs. The long tail scenario
incurs the infeasibility of previous models which assume available and sufficient
training instances for all entity types. Therefore, it is crucial for models to be
able to complete entity types with limited ETPs.

Besides the above-mentioned shortcoming, recent GCN-based methods ignore
the interactions between different relations, i.e., they believe that one relation
would not be influenced by another relation when aggregating the information
of entity neighbors, which is not correct. For instance, in Fig. 1(a) there are two
triples, we can infer from (killer queen, writer, queen) that killer queen is a song
or a book, thus the writer relation provides more information than the language
relation. However, when the writer relation combines with the music style rela-
tion, we should pay more attention to the later because it is almost certain that
killer queen is a song by music style relation. In short, previous methods have
not considered the distinct influence by different relation combinations.

To overcome these shortcomings, we propose a novel method for knowledge
graph entity typing in few-shot scenarios, named MET (Meta Entity Typing).
MET can be divided into three stages: Embedding stage: we design a Relation
to Relation Graph Convolutional Networks (R2R-GCN) to obtain the vector rep-
resentations of entities and entity types. In R2R-GCN, we model the different
relation combinations explicitly, and the model could perceive the distinct influ-
ence of all kinds of these combinations when aggregating the information of cen-
tral entity. In this way, we can get the embedding of each kind of relation, which
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is an available byproduct for its associated entity embedding. Meta-training
stage: our model will be trained with a meta-learning mechanism. We adopt the
episodic paradigm where the meta-training sets are formulated as a series of tasks
(i.e., episodes). For each meta-training task, we design three sub-tasks, positive-
negative, positive-father and father-negative sub-task, by the hierarchical type
tree. By minimizing the weighted loss generated by these three-sub tasks, our
model can fully utilize the structure information in the ontology-view KGs. In
other words, our model can transfer the most important information for entity
typing from types with sufficient ETPs to types with few-shot ETPs. Meta-
testing stage: when facing a new type which is never seen in meta-training
sets, our model can fast adapt to current task and make accurate prediction
with limited ETPs. And the model will be tested at this stage.

We summarize our contributions as follows:

– To the best of our knowledge, this is the first attempt to use the meta-learning
based methods to alleviate the few-shot problem in knowledge graph entity
typing task, and we propose three sub-tasks in meta-training stage to utilize
the hierarchical information in type tree.

– We propose R2R-GCN, which can explicitly model the interactions between
different relations, thus the central entity can aggregate the information of
its connected relations and neighbor entities in a more precise way.

– We evaluate our framework’s performance against different baselines in few-
shot knowledge graph entity typing task and get state-of-the-art results.

2 Related Work

Knowledge graph entity typing is an important sub-problem for KGC research
filed. Recent researches mainly focus on inferring missing entity types based on
the information of KGs. In this section, we first introduce the embedding-based
methods, and then cover the mainstream methods based on GCNs. At last, we
will introduce the meta-learning.

2.1 Embedding-Based Methods

Embedding-based methods aim to obtain the low-dimensional vector representa-
tions of entities semantics and then use the vectors to infer the missing types of
entities. Neelakantan [13] proposed projection embedding model (PEM), Moon
[12] proposed to learn type embedding by combining triple knowledge and entity
type instances. Zhao [22] claimed that previous methods lack expressive ability
due to its simplicity and proposed the more advanced model ConnectE which
includes two mechanisms. One is E2T, which uses a mapping matrix to project
the entity from entity space to entity type space. The other is TRT, which uses
the types of neighbors to infer the types of central entities. However, these above-
mentioned methods assume that there are enough instances for every entity type,
ignoring the long tail scenario in knowledge graph entity typing task.
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2.2 GCN-Based Methods

GCNs operate on local graph neighborhoods to large-scale relational data. To
fully utilize the information in multi-relational graphs like knowledge graph,
Schlichtkrull [16] proposed R-GCN, which is an extension of GCNs for multi-
relational graphs. R-GCN aggregate the information with relation-specific aggre-
gator. Shang [17] proposed Weighted Graph Convolutional Network, which uti-
lizes learnable relational-specific weights to aggregate the information of neigh-
bors. Vashishth [19] considered that the information of neighbor entity will be
influenced by its relation. However, these GCN-based methods all ignore the
different relation combinations will have distinct influence when aggregating the
information for the central entity.

2.3 Meta-learning

Meta-learning has been widely used in various domains to address few-shot
problems. Recent meta learning models have two categories: (1) metric based
approaches [18,20]; (2) meta-optimizer based approaches [4,9]. The former one
learns an effective metric and corresponding matching function among a set
of training tasks. The later one aims to learn the global optimal initialization
parameters and the model can lead to fast learning on a new task.

3 Problem Formulation

In this section, we introduce the problem definition and episodic meta-learning.

3.1 Few-Shot Entity Typing

We use GI and GO to denote the instance-view KG and ontology-view KG
respectively. GI is formed with ε, the set of entities, and RI , the set of relations.
GO is formed with τ , the set of types, and RO, the set of meta-relations. S is
used to denote the set of known cross-view links (ETPs) in KG.

In few-shot entity typing, we have τ = tb ∪ tn, where tb and tn are the set of
base and novel types respectively, and they are disjoint. Every tb have amount of
ETPs. However, for tn, we only have a few ETPs. Given any subset of m novel
types, we aim to train a model with only k ETPs for each novel type, in order
to predict the types of the remaining unlabeled entities among these m types.
This is called m-way k-shot entity typing.

3.2 Episodic Meta-learning

We adopt the episodic paradigm, which has shown great effectiveness in few-
shot learning problem. For episodic paradigm, the problem will be divided into
the meta-training stage and the meta-testing stage. We employ tb and tn as the
meta-training and meta-testing sets respectively. Both of these two stages are
formulated as many independent tasks (i.e., episodes).
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Fig. 2. The architecture of our approach. The blue dotted boxes belong to embedding
stage, which will produce entity, relation and type embedding. These embeddings will
be input to meta-training stage, which is denoted as yellow dotted boxes. Our model
will be fine-tuned at meta-testing stage with red dotted boxes. E2T and R2T mean
transferring the entity and relation from the entity space and the relation space to the
type space respectively. (Color figure online)

4 Our Approach

The architecture of our approach is given in Fig. 2. Our model mainly consists
of three stages: embedding stage, meta-training stage and meta-testing stage.
We obtain representations of entity and type at the embedding stage. At the
meta-training stage, we use ETPs of each entity type to train our model based
on the embedding adopting the episodic paradigm. At the meta-testing stage,
we will test our model on novel types with limited ETPs.

4.1 Embedding Stage

R2R-GCN: There are two main inputs to the embedding stage. One is the
triples in GI , which are formed as (ε, r, ε), and the other is the triples in GO,
which are formed as (τ, r, τ). We propose Relation to Relation Graph Conven-
tional Networks (R2R-GCN), an extension of R-GCN, to obtain the embeddings
of entities and entity types, which are inputs for meta-training stage.

R-GCN operates on local graph neighbors to large-scale multi-relational
data and aggregates the information with relation-specific aggregator. However,
R-GCN ignores the different combinations of relations could have distinct and
non-negligible influence when aggregating the information for the central entity.
In other words, R-GCN can not perceive the mutual information of neighbor
entities under their particular relation combinations.

Inspired by factorization machines [15], our R2R-GCN uses factored param-
eters to model all interactions between neighboring entities under different rela-
tions as follows:
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i denotes the set of neighbor nodes (entities) i under relation r. W
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is the relation weight matrix of relation r. h
(l+1)
i ∈ Rd(l) is the hidden state of

node (entity) in the l-th layer, and d(l) is the dimensionality of representations
of this layer. The symbol σ(·) denotes a nonlinear activation function (such as
ReLU(·)). ci,r is a problem normalization constant which is always set as |Nr

i |.
〈ri, rj〉 :=

∑k
f=1 ri,f · rj,f is the dot product of the relation of the i-th and

the j-th entity with k factors. k ∈ N+
0 is a hyper-parameter that defines the

dimensionality of the factorization.
Generally, 〈ri, rj〉 models the interaction between the relations of the i-th and

the j-th neighbor entity. It can also be regarded as relation combination specific
parameters. Instead of using independent parameter wi,j ∈ R for each interac-
tion between relation i and relation j, the R2R-GCN models the interaction by
factorizing it. In this way, the parameters can be estimated in sparse settings.

Besides, to build the the embeddings of entities and entity types into two
different spaces, we use two R2R-GCN models without sharing their parameters.

Aggregating the Information of Relation: In instance-view KGs, the rela-
tions can be considered as predicates in triples, which contain huge amount
of information about the type of its head entity. For example, in Fig. 1(c), we
remove the tail entity of (killer queen, Music style, rock) and this triple degen-
erates to (killer queen, Music style, ?). Although we do not know its tail entity,
we can still figure out that the head entity is a song based on the Music style
relation.

In R2R-GCN, the embeddings of relations can be considered as its by-
products, which are very useful to model the embedding of each head entity for
entity typing task. Firstly, the different embeddings of relations can be added to
generate the aggregated relation embedding (ARE) as follows:

−−−→
ARE =

∑|R|
i=0

−→ri
|R| (2)

where R means the set of relations connected with a specific entity and ri ∈ R.
For aggregating the relation information when classifying the head entity, we
project the relation embedding from relation space to type space and get the
relation embedding in type space (R2T). Specifically, we achieve it by a non-
linear affine transformation:

−−→
R2T = σ

(
Wct · −−−→

ARE + bct

)
(3)

where Wct ∈ Rd(r)×d(t), d(r) and d(t) is the dimensionality of the relation and
type embedding respectively. bct is a bias vector. σ(·) is a non-linear activation
function, for which we adopt tanh(·). The

−−→
R2T will be added as a part of entity

embedding when comparing the similarity between entities and types.
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Entity Embedding: We can get the embedding of each entity
−→
E ∈ Rd(e) and

entity type
−→
ET ∈ Rd(t). The entity embedding and entity type embedding exist

in two completely different embedding spaces. To compare the similarity between
entities and entity types, we project the entities and entity types into the same
vector space. Specifically, the entity will be mapped to an embedding in the
entity type space in the same way as Eq. (3), which is close to the embedding of
its corresponding type. We denote the outcome as

−−→
E2T.

To take relation embeddings into consideration, we add
−−→
E2T and

−−→
R2T with

a hyperparameter α: −→
ER = α

−−→
E2T + (1 − α)

−−→
R2T (4)

α ∈ [0, 1] can be used to control the importance of relation and neighbor entity:
the smaller the value of α, the lower the importance of neighbor entity when
classifying the central entity, while increasing α decreases the importance of
relation.

4.2 Meta-training Stage

To overcome the few-shot problem in knowledge graph entity typing, we adopt
the episodic paradigm. At meta-training stage, our model will be trained at tb.
Under m-way k-shot setting, we aim to classify the positive type among the m
types with k ETPs in each meta-training task.

Training Objectives: Given a distance function d : RM ×RM → [0,+∞), our
model produces a distribution for a query entity

−→
ER based on a softmax over

distances to the types in the embedding space:

p(y = k | −→
ER) =

exp
(
−d

(−→
ER,

−→
ETk

))

∑
k′ exp

(
−d

(−→
ER,

−→
ETk′

)) (5)

Learning proceeds by minimizing the negative log-probability J =
− log p(y = k | −→

ER) of the positive type k via SGD. The training tasks are
formed by selecting a subset of types from the training set with some special
rules.

Rules of Sub-tasks Construction: The types in the ontology-view KG will
form some hierarchical trees rooted by a top-level super type (e.g., /person,
/place, etc.). And these (sub-type, father-type) pairs in the forest are constructed
by triples in ontology-view KG with is-a relation.

We suppose y denotes the positive type. y ∈ yf denotes type y is a sub-type
of type yf . The sibling types sharing the same parent type with y are denoted
as Sb(y). To fully utilize the hierarchical information, inspired by Chen [3], we
propose three sub-tasks for every episode in meta-training stage:
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i) positive-negative sub-task: The similarity between entity and its corre-
sponding positive type should be higher than other sibling negative types:

y > y′, ∀y′ ∈ Sb(y) (6)

We define this subset of types as st1, the log-probability of this sub-task as
J1 = − log p(y = k | st1,

−→
ER).

ii) positive-father sub-task: The entity should be more similar with its pos-
itive type compared with its father type:

y > yf (7)

We define this subset of types as st2, and J2 = − log p(y = k | st2,
−→
ER).

iii) father-negative sub-task: The father type should rank higher than sibling
negative types of y:

yf > y′, ∀y′ ∈ Sb(y) (8)

We define this subset of types as st3, and J3 = − log p(y = k | st3,
−→
ER).

Besides, different type levels will lead to different penalties. Intuitively, the
types in lower level should be harder to classify (e.g., /pop singer vs /classical
singer should be more difficult than /singer vs /painter). Therefore, we introduce
a loss coefficient to give greater penalties for higher levels. Therefore, the overall
learning objective function is given as:

J =
1
l
(λ1J1 + λ2J2 + (1 − λ1 − λ2)J3) (9)

where l denotes the level of the positive type. λ1 and λ2 is set to 0.7 and 0.15
respectively.

4.3 Meta-testing Stage

We adopt the episodic meta-learning framework of MAML [4] for MET. MAML
is flexible to work with any model with gradient-based optimization, and learns
a set of initial parameters to enable rapid adaptation to new tasks with only a
few gradient updates. Since the hierarchical information has been fully utilized
at meta-learning stage, for convenience of comparison with other methods, we
do not follow the sub-tasks settings and select negative types from tn randomly.
To verify the effectiveness of our model, we perform our model on meta-testing
task tmte. The model will fast adapt to each task given meta-testing support set
Smte, which consists of a few labeled data. Then we use the meta-testing query
set Qmte to calculate the classification accuracy.

5 Experiments and Analysis

In this section, we first introduce our datasets and experimental setup in
Sect. 5.1, and then present the experimental results and analysis in Sect. 5.2.
Finally, we present the ablation study in Sect. 5.3.
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Table 1. Statistics of datasets.

Datasets Instance-view KG GI Ontology-view KG GO Type links S

Entities Relations Triples Types Meta-relations Triples

YAGO26K-906 26,078 34 390,738 906 30 8,962 9,962

DB111K-174 111,762 305 863,643 174 20 763 99,748

5.1 Datasets and Experimental Setup

Datasets: We adopt YAGO26K-906 and DB111K-174 proposed by Hao [7] as
our datasets. They are extracted from YAGO and DBpedia respectively. Table 1
provides the statistics of both datasets.

Evaluation Protocols: We separate the types of each dataset into meta-
training and meta-testing sets with the ratio of 70% and 30% flowing the method
described in Sect. 3. Each type in the support set of meta-training and meta-
testing tasks has only three or five ETPs (i.e., K = 3 or K = 5) for all datasets.

The task of entity typing aims to predict the most probable missing type
in ontology-view KG for every entity in instance-view KG. We set sibling and
father types of the positive type as negative types for each task. As for evaluation
metrics, we use MRR (that is the mean reciprocal rank over all the positive
types), Hit@1 (i.e., accuracy) and Hit@3 (the proportion of the positive types
ranked in top 3) on the Qmte for every meta-testing task.

Parameter Settings: In our experiments, we use three-layer R2R-GCN for GI

but one-layer for GO. We set α = 0.7 to make the entity pay more attention to
its neighbor entities. And we set d(e) = d(r) = 200, d(t) = 100, since the type
embedding is more general compared with entity and relation. For meta-learning
process, we set learning rates for base class training and novel class fine-tuning
to 0.001 and 0.01 specifically. We set m = 10 for meta-learning stage.

5.2 Compared with the State-of-the-Art Methods

We compare MET with the competitors i.e., TransE [1], DistMult [21], HoIE [14],
MTransE [2], etc. For JOIE and ConnetE, we refer to the original paper [7,22] to
set the parameters. For TransE, DistMult and HoLE, we convert ETPs to triples
(e, type-of, t). Therefore, entity typing task is equivalent to the triple completion
task. For R-GCN and MTransE, we treat types and entities as different views.

Some models are not trained under episodic meta-learning framework. For
fair comparison, the ETPs at meta-training stage and the Smte at meta-testing
stage will be set as training sets, and the Qmte at meta-testing stage will be
set as testing sets. We report results of our model MET on YAGO26K-906 and
DB111K-174 in Table 2 for comparing above-mentioned methods.

We observe that all MET methods perform better than other competitors.
The original MET outperforms the previous state-of-the-art method JOIE by
2.0% w.r.t accuracy and 1.6% w.r.t MRR on YAGO26K-906, 2.2% and 2.0% on
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Table 2. Experimental results of entity typing under the 3-shot setting.

Datasets YAGO26K-906 DB111K-174

Metrics MRR Acc. Hit@3 MRR Acc. Hit@3

TransE 0.435 38.41 55.34 0.452 39.36 57.63

DistMult 0.662 58.71 75.34 0.673 59.87 77.32

HoIE 0.628 53.63 72.35 0.648 55.24 74.31

MTransE 0.753 63.31 85.28 0.768 64.32 86.55

R-GCN 0.762 63.60 86.89 0.776 65.45 87.36

ConnectE 0.721 61.08 83.36 0.735 62.45 84.02

JOIE 0.813 71.32 89.36 0.785 68.35 90.55

MET 0.829 73.35 91.25 0.805 70.57 91.87

MET-E 0.822 72.82 90.84 0.792 69.83 91.14

MET-S 0.818 72.23 89.79 0.802 70.25 91.26

MET-R2R 0.815 71.35 89.54 0.795 69.46 91.17

DB111K-174. R-GCN and MTransE outperform other traditional embedding-
based methods significantly, which reflects the advantage of performing different
models for two views separately. Surprisingly, ConnectE has not shown compet-
itive results. One possible reason is that ConnectE introduces some hypothetical
meta-relations, which may damage the performance of the model.

5.3 Ablation Study

The Effectiveness of Our Proposed Modules: To better understand each
module, we implement three variants based on MET. The MET-E only utilizes
entity embedding when aggregating the information for central entity without
relation embedding. The MET-S removes sub-tasks settings at meta-training
stage. And the MET-R2R only applies R2R-GCN without episodic paradigm.

As shown in Table 2, these models adopting episodic paradigm are better than
MET-R2R. It demonstrates that meta-learning paradigm brings great benefits
for few-shot knowledge graph entity typing task. Compared with MET, MET-E
has 0.7% and 0.8% performance degradation w.r.t accuracy and MRR respec-
tively on YAGO26K-906. The performance degradation on MRR and accuracy is
1.1% and 1.6% on DB111K-174. It demonstrates that for the datasets with more
kinds of relations, the relation embedding is more important for entity typing
task. When compared with MET, the performance of MET-S drops more on
YAGO26K-906 compared with DB111K-174. The reason is that YAGO26k-906
has more is-a relations in ontology-view KG, and this kind of datasets is more
sensitive to sub-tasks setting which can extract hierarchical information.

Influence of the Number of ETPs: We use the same datasets in Sect. 5.2
and explore the influence of the number of ETPs (shot) for every novel type.
We increase the ETPs for every novel type from 3 to 5, and choose R-GCN,
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Table 3. Experimental results of entity typing under the 5-shot setting.

Datasets YAGO26K-906 DB111K-174

Metrics MRR Acc. Hit@3 MRR Acc. Hit@3

TransE 0.543 46.34 64.18 0.564 48.52 67.53

R-GCN 0.786 64.60 87.91 0.792 67.55 89.91

ConnectE 0.753 64.25 85.32 0.762 64.86 86.22

JOIE 0.824 72.62 90.89 0.796 69.42 91.30

MET 0.835 73.63 91.77 0.812 71.15 92.37

ConnectE, JOIE and MET for comparison. The results are shown in Table 3.
When increasing the ETPs, for TransE, the accuracy and MRR increase 20.64%
and 24.82% respectively on YAGO26k-906. For JOIE, the increment is 1.82%
and 1.35%. However, the increment drops to 0.5% and 0.7% for MET. MET can
fully study the transferable information contained in few-shot ETPs. Therefore,
it gets the low growth. But for these methods without meta-learning paradigm,
their performances strongly depends on the number of ETPs, thus they can
perform better significantly on 5-shot setting compared with 3-shot setting.

6 Conclusion

In this paper, we propose a novel knowledge graph entity typing model named
MET, which is particularly designed for few-shot setting. MET adopts meta-
learning paradigm and can fully utilize the hierarchical information contained in
type tree. In addition, MET includes an GCN-based model R2R-GCN which can
explicitly model the interactions between different relations. Our experiments
performing on two real-world KGs show that our approach is superior to the
most advanced models in most cases.

Appendix

Fig. 3. positive-father sub-task.
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We use an example to illustrate the effectiveness of positive-father sub-task in
Fig. 3. The entity piano belongs to the entity type keyboard, but also is a kind
of music instrument. The entity type keyboard is the positive type of piano, and
the entity type music instrument is the father type of piano. Our model want
to figure out the fine-grained entity type of each entity, so the probability of
positive type should be higher than the probability of father type.
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Abstract. Entity disambiguation plays the role on bridging between
words of interest from an input text document and unique entities in a
target Knowledge Base (KB). In this study, to address the challenges of
global entity disambiguation, we proposed Conditional Masked Entity
Model Using Knowledge Graph Regularization (CMEM-KG), based on
a conditional masked language model, in which multiple mentions in a
context can be disambiguated in one forward pass. In addition, to address
the long-tailed distribution of global entity disambiguation, we proposed
a link prediction regularization, in which the entity embeddings were
jointly learned to predict knowledge graph links to prevent the model
from overfitting. Compared to other global entity disambiguation models,
the model proposed in this study exhibited improved performance on six
public datasets without an iterative decoding.

Keywords: Entity disambiguation · Parallel decoding

1 Introduction

Entity disambiguation, which is also known as entity linking, refers to the task
of assigning entities (such as famous locations, brands, or companies) mentioned
in a sentence to a unique identity in a given knowledge base. For example, “A
jaguar is cruising on the highway” and “A jaguar is hiding in the jungle” are
both mentions of “jaguar”, but they refer to two different entity labels based
on the contexts. The former refers to a Jaguar Car, whereas the latter refers
to a Jaguar Animal. Entity disambiguation is an essential task across multiple
natural language processing (NLP) applications, such as coreference resolution
[24], canonicalization [8] and question answering [17].

Generally, entity disambiguation can be classified into local entity disam-
biguation and global entity disambiguation. Local entity disambiguation [14,16]
focuses on disambiguating mentions based on their local contexts. However, the
locality limits the performance when the information provided in a local context
is not sufficient. In contrast, global entity disambiguation [4,11,26] overcomes
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the limitation of the local entity disambiguation by maximizing the coherence
between entities and the context of a document. However, despite the progress
in global entity disambiguation, the increase in computing complexity with an
increase in the number of mentions in a given document has limited its applica-
tions.1

Although tremendous efforts have been devoted to overcome the challenges
of global entity disambiguation, three issues have restricted the effective appli-
cation of this task. 1) Topic Coherence: When a given context is with multiple
mentions, global entity disambiguation should choose entities that belongs to the
same topic as the document. For example, “Clark Kent is Superman cover up
identity” and the “Superman” mention is known to link to the comic character,
global entity disambiguation model should choose the fictional character in the
comic for the mention of “Clark Kent” rather than the music producer since the
former fits under the same topic as “Superman”. 2) Slow Decoding Speed: To
achieve an optimal coherence between multiple mentions, entity disambiguation
models must explore all possible entity combinations. Existing state-of-the-art
methods [15,32] adopt iterative methods, of which the computation complexity
increases linearly with an increase in the number of mentions. Although iterative
method is better than the exponential complexity from previous works [23,25],
a more efficient entity disambiguation is still desirable. 3) Long-tailed Distri-
bution. The distribution of entities usually follows a long-tailed distribution. A
dataset is majorly composed of the tail of a distribution. Thus, many entities
are only contained by a small number of labeled documents, which cannot be
disambiguated well owing to overfitting by the model. Although this issue can be
alleviated by filtering out infrequent entities, this approach significantly reduces
the amount of entity vocabulary; thus, limiting the number of entity predictions.

To address these challenges, in this study we proposed a novel framework,
namely Conditional Masked Entity Model Using Knowledge Graph Regulariza-
tion (CMEM-KG). Particularly, to address the topic coherence challenge, a bi-
directional transformer-based decoder was used to model the coherence between
mentions. The decoder can implicitly learn to determine the coherent entity
via a self-attention between mentions. To address the slow decoding speed, we
formulated an entity disambiguation task as a conditional entity disambigua-
tion problem, which is similar to the masked language model [7], to facilitate
the parallel prediction of all the unknown entities. To overcome the long-tailed
distribution, CMEM-KG utilized a knowledge graph link prediction as a reg-
ularization term to improve the disambiguation of long-tailed entities. As a
frequently-mentioned entity may share a common relation with less-frequently
mentioned entities, updating the parameters of frequently-mentioned entities
can also update those of the less-frequent entities as they are linked through a
common relation. In contrast to the previous approaches [21,28], the method
proposed in the study learned knowledge graph links separately. Furthermore,
we proposed an entropy-based filtering method to trim excessive nodes in a
knowledge graph. The entropy-based filtering method implicitly represented the

1 Previous work [9] proves the exact solution for the coherence of a global entity is
considered as an NP-hard problem.
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number of edge degrees and link probability in one value; thus, simplifying the
hyperparameters used to remove unwanted nodes. The performance of the model
on six public datasets was investigated and the results revealed that the perfor-
mance of the proposed approach on a CoNLL testing dataset without finetuning
was at least 24% better than those of all baseline models. Our implementation
is available at: https://github.com/basiclab/CMED.

2 Related Work

Neural network-based entity disambiguation achieves a state-of-the-art perfor-
mance [12,15,16] owing to the utilization of multiple training objectives to model
the relation between an entity and its surrounding context (i.e., words and enti-
ties within the same documents). However, this approach relies on finding the
co-occurrence matrix between entity-entity and entity-words. Consequently, the
application of this approach is limited owing to the sparse matrix. To address
this issue, additional features such as entity types [32] and Wikipedia link infor-
mation, are often required to further improve the performance of this approach
[9,30].

Recently, pre-trained transformer-based models (such as BERT [7]) have
attracted significant attention as a promising alternative for entity disambigua-
tion. [2] reported that the use of pre-trained bi-directional transformers, such
as BERT, can easily achieve competitive scores. In addition, [15] modified the
BERT model by iteratively disambiguating one entity with the highest confi-
dence score and feeding the entity back into the model as inputs to disambiguate
the next entity until all entities are resolved. However, the use of the same model
to encode both context and entities exhibits a sub-optimal performance as they
follow two different distributions. In contrast, the model proposed in this study
utilized two modules to encode context and entity separately.

As knowledge graphs store interlinked descriptions of entities, recent studies
have incorporated knowledge graph into entity disambiguation [21,28]. For exam-
ple, [21] utilized a local knowledge graph triplets as part of the input sequence.
However, this approach does not solve the long-tailed problem as the knowledge
graph relations are still part of the model inputs, which falls under the same
long-tailed distribution. [28] concatenated the knowledge graph embedding of
the entity candidate with the mention embedding as the auxiliary information.
Nevertheless, this approach only tackles local entity disambiguation, while our
model focuses on global entity disambiguation, which is more challenging.

3 Conditional Masked Entity Model Using Knowledge
Graph Regularization (CMEM-KG)

3.1 Architecture Overview

Given a set of M mentions m1,m2,m3, ...,mM found in a context C and a
vocabulary of V predefined entities e1, e2, ..., eV , the entity prediction task aims

https://github.com/basiclab/CMED
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Fig. 1. The model architecture of the proposed CMEM-KG. The decoder predicts the
missing entity marked by [MASK].

to predict which entity should be linked to each of the mentions. To tackle
this problem, we proposed Conditional Masked Entity Model Using Knowledge
Graph Regularization (CMEM-KG). The architecture of CMEM-KG consistsed
of a text encoder and bidirectional Transformer-based [29] entity decoder. First,
we masked out the entity linked for each mention. Thus, the model must predict
the masked entity conditioned to the context features and mention features.
Figure 1 shows the overall architecture of the model proposed in this study. The
text encoder encodes the mentioned context into a contextual representation,
which consisted of position embeddings and word token embeddings, similar to
that of the Transformer. Thereafter, the entity decoder utilized the hidden states,
h, of the mention tokens and entity embedding (denoted as: E ∈ RVe×H), and
outputs a set of hidden states d representing the mention features. If the mention
tokens span over more than one-word tokens, the average of the hidden states is
utilized instead. Next, we passed the mention features to a linear model to predict
the entity of the mention. It is worth noting that the entity decoder attends to
both left and right entities because the optimal order of entity disambiguation
was unknown. Moreover, similar to the sequence-to-sequence transformer model,
the entity decoder subjects the outputs from the text encoder to a cross self-
attention.

3.2 Entity Prediction

After deriving the mention representation (d), the entity linked to the mention
was predicted. Based on the study of [10], which utilized a parallel decoding
model, we used a conditional masked loss by randomly replacing half of the
entity labels with a mask token [MASK] after which the probability strategy
proposed by [10] was utilized. The decoder aims to predict the correct entity
label for every masked token conditioned to the mention embedding and context
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representation. The prediction of each entity label can be learned parallelly, as
the probability that an entity is masked is independent to other entities.

To predict the original entity of the masked token, the decoder output of the
i-th mention, denoted by di ∈ RH , was multiplied by the full entity embedding
matrix E before the softmax function was applied:

yentity−i = softmax(E · di). (1)

To ensure that both spaces were aligned in the same entity space without any
bias shift, we did not include the commonly-used bias term in the prediction
model of the masked language model.

3.3 Link Prediction Regularization

Although the proposed model could predict entities based on context and men-
tion features, the prediction still suffers from overfitting the entities with the
small number of mentions in the Wikipedia paragraphs because neural net-
works can easily memorize the mentions linked to an entity without learning
the surrounding contexts. This indicates that the performance of the model for
unseen mentions within similar contexts may be poor. Therefore, in this study,
we proposed a novel knowledge graph regularization to prevent overfitting by
the model.

Particularly, the knowledge graph enables the linking of a commonly-used
entity to a rare entity as a triplet relation (i.e., (ei, r, ej)), where r is the relation
between ei and ej . For example, Jaguar Car (commonly-used) can be linked
to William Lyons (rare) through a foundedBy relation. Entities in a triplet
relation share the same entity vocabulary found in the entity disambiguation
task. Moreover, the knowledge graph also contains types (e.g., Jaguar Car and
William Lyons have the types of Car and AutomotivePioneers, respectively),
the type of the entity can be extracted as type sets t1, t2..., tK with a total
vocabulary size K. Accordingly, each entity was linked to a various subsets of
types to represent the characteristics of an entity. To leverage the information
from the knowledge graph, one possible approach is to use the graph embed-
ding [3,22] and margin distance loss similar to TransE [1], which is able to learn
one-to-one relations of (ei, rij , tj). Let φei , φtj , and φrij respectively represent
the embeddings of the i-th entity, the j-th type, and the relation between them.
Moreover, (êi, rij , t̂j) represents the corrupted entity triplet pair, i.e., either the
entity or type is replaced by a random entity or type. The triplet loss minimizes
the distance for (ei, rij , tj) and maximize the distance for (êi, rij , t̂j), and can
be calculated as follows.

Ltriplet = γ + d(φei + φr, φtj ) − d(φêi + φr, φt̂j
), (2)

where γ is the margin hyperparameter. However, the relation between entity to
types is a one-to-many mapping (ei, r, Tk), i.e., an entity ek has a set of valid
type Tk = {tk,1, tk,2, · · · , tk,Nk

} with size Nk. According to a previous study
[19], this approach cannot learn one-to-many mapping results. Therefore, in this
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study, the set of types was initially passed through an aggregation function f ,
after which model the output embedding was modelled as one-to-one relations.
Let rtype denote the relation between entity and type. Thus, the loss functions
of links2 and types were be represented using:

Ltype(ei, Ti) = γ + d(φei + φrtype
, f(Ti))

−d(φêi + φrtype
, f(T̂i),

Llink =
1
N

∑
Ltriplet +

1
N

∑
Ltype.

(3)

The first approach of f is to use the average sum of all the type embeddings for
aggregation:

favg(Tk) =
1
N

N∑

i=1

(φTki
). (4)

However, the average function may not be optimal because not all types share
equal contribution to form the entity representation. Therefore, we proposed
an attention-weighted sum, in which the query vector was replaced with the
representation of an entity, i.e.,

Q = FQ(φt),K = FK(e)

α = softmax(
QTK√

d
)

fattn(Tk) =
T∑

i

αi φTk,i
,

(5)

Using the attention-weighted sum in Eq. 5, the model dynamically assigned a
weight value α to each type. Subsequently, the normalized weights were com-
puted by calculating the dot product of the entity representation entity and the
type embeddings, which were scaled using the dimension of entity representation√

d after which the normalized weights were passed through the softmax func-
tion. The normalized weights were used to calculate the weighted contribution
corresponding to each of their type embeddings.

The final objective function of CMEM-KG was:

−
∑

y log(p(x)) + λ1Llink + λ2

∑
Ltype(di, rtype, Ti), (6)

where the first term is the cross entropy loss for entity disambiguation, λ1 and
λ2 are the weighted terms for the regularization term, and d ∈ R

h is the output
embedding from the decoder. The key idea here is that the type relations were
uniformly sampled; thus, ensuring that each entity embedding was uniformly
updated to alleviate the problem caused by the long-tailed distribution.

2 Only entity to entity relations are minimized in link loss.
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3.4 Entropy-Based Type Filtering

During the inference stage of entity disambiguation, the relation and type from
the knowledge graph are not required. As the vocabulary size for both relation
and type should be sufficiently small to reduce the total training parameters,
a good filtering method is required to remove commonly-used and rare types
linked to only one entity. For example, Person contains lesser information com-
pared to Male characters in film as the former type can be found in most
entities. Therefore, we proposed an entropy-based filtering to reduce the size of
type “vocabulary”. As the entropy value of types indicates the amount of the
information that a linked entity can provide, we calculated the sum of entity
entropy of a type based on the entity conditional probability on types using:

Htj (e,R) = − 1
N

∑

(ei,tj)∈R

p(ei|tj)log p(ei|tj), (7)

where R is the set of valid entity-type pairs found in the knowledge graph, N is
the total numbers of entity-type pairs, and p(ei|tj) is the conditional probability
of observing the known entity ei given a type tj . The conditional probability
is equal to the reciprocal of the edge degree of a given type node. Hence, the
entropy increases with an increase in the edge degree of a type node. It is worth
noting that [5] uses a similar conditional entropy-based filtering to build a diverse
conversation data. In contrast to the study of [5], we added a denominator N to
the entropy for penalizing common type such as Person, Thing. To the best of
our knowledge, this is the first study that applies an entropy-based filtering for
trimming knowledge graph nodes.

4 Experimental Results

4.1 Experimental Settings

Datasets. We evaluated the performance of the proposed model on six bench-
mark datasets, including AIDA-CoNLL [13], MSNBC [6], AQUIANT [20],
ACE2004 [26], WNED-ClueWEB [11] and WNED-Wiki datasets [11]. In addi-
tion, according to the study of [9], we utilized the top-30 entity candidates for all
datasets evaluated using the prior p(e|m) computed from Wikipedia and Yago
datasets. The statistics for all six datasets can be found in the appendix.

Implementation Details. We choose to use the transformer architecture of
Roberta base[18] as the encoder model while using a significantly smaller Trans-
former for the decoder since the mentions size is small compared to their docu-
ment length. We initialized the encoder parameters by Roberta base and entity
embeddings parameters by the parameters pre-trained on link prediction task of
Dbpedia knowledge graph.3 Meanwhile, the decoder parameters are initialized

3 The statistics of the knowledge graph can be found in the appendix.
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following the previous work [29]. All models are trained on Wikipedia datasets
for 250,000 iterations. Mixed precision training is used to speed up training while
retaining a large batch size during each feed-forward pass. We implement our
models with Pytorch 1.7 and run experiments on an RTX 3090 GPU. The source
code and trained models will be publicly available.

Table 1. Micro-F1 on the CoNLL validation dataset. Train marks the model is trained
on the CoNLL training dataset.

Train Micro-F1

DCA-SL � 89.34 ± 0.59

DCA-RL � 88.72 ± 0.32

roberta-GCN � 87.34 ± 0.05

LUKE+IT � 87.06 ± 0.23

LUKE+IT+KG � 87.64 ± 0.15

CMEM-KG (no-kg) � 84.23 ± 0.19

CMEM-KG (avg) � 90.57 ± 0.04

CMEM-KG (attn) � 90.70 ± 0.14

roberta-GCN 68.39

LUKE 62.27

LUKE+IT+KG 66.87

CMEM-KG (no-kg) 68.97

CMEM-KG (avg) 85.66

CMEM-KG (attn) 86.46

Baselines. We compare CMEM-KG with the following state-of-the-art meth-
ods. 1) DCA [32]: a global entity disambiguation model which constructs a
dynamic context of entities through an iterative process, containing two ver-
sions of supervised learning (DCA-SL) and reinforcement learning (DCA-RL)
to explore all possible linking results. 2) Roberta+GCN, which extends [15]
by adding graph convolution network (GCN) [27] to generate features for the
knowledge graph. 3) LUKE+IT [15], which modifies [31] to tackle global entity
disambiguation through an iterative decoding algorithm maximizing the pre-
diction confidence score, together with the pretrained Roberta base encoder. 4)
LUKE+IT+KG, a variant of LUKE+IT that includes our proposed KG
regularization.

To ensure a fair comparison, we re-implement all baselines under the same
version of English Wikipedia dump (2020-04-20) to prevent domain gap advan-
tage according to [14]. Moreover, a set of entity vocabularies consisting of 274,409
entities is used in all experiments. By sharing the same set of entity vocabularies,
all baselines have the same top candidate sets for each mention. The embedding
dimension is set to 300, and the number of training iterations is 250,000. Adam is
adopted as the optimizer with a learning rate of 1e-4 during 10,000-step warm-up
and, followed by a linear decay.
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4.2 Quantitative Results

The performance of the CMEM-KG on CoNLL-test dataset was compared to
those of other entity disambiguation models, and the results are shown in Table 1
in terms of the micro-F1 scores. CMEM-KG with link prediction regularization
(i.e., CMEM-KG (avg) and CMEM-KG (attn)) outperformed other disambigua-
tion models. Furthermore, the performance of the CMEM-KG trained only on
Wikipedia-based annotations without training on the in-domain training set of
the CoNLL dataset was significantly higher than those of other models by at
least 26.4% in terms of micro-F1. This could be attributed to the fact that the
link prediction regularization had a positive influence on the architecture of the
CMEM-KG; thus, preventing the overfitting of the model at the initial stage.

Table 2. Average Micro-F1 scores on WNED-ClueWEB (CWEB), MSNBC, ACE
2004, WNED-Wiki (Wiki), AQUAINT, each score is averaged from five different runs
with different random seeds. The best results are shown in bold.

CWEB MSNBC ACE2004 Wiki AQUAINT Avg

Prior p(e|m) 74.81 75.06 76.15 73.72 76.40 75.23

DCA-RL 70.67 93.50 88.29 70.39 83.36 81.24

DCA-SL 72.75 93.04 87.81 75.21 84.81 82.74

roberta-GCN 69.81 91.10 86.87 71.85 81.15 80.16

LUKE+IT 72.57 90.59 89.90 76.21 84.81 82.82

LUKE+IT+KG 72.71 90.64 90.10 76.40 84.81 82.93

CMEM-KG (no-kg) 67.85 87.47 91.37 75.41 83.34 81.09

CMEM-KG (avg) 69.33 93.58 90.19 73.156 83.69 81.99

CMEM-KG (attn) 72.01 91.25 92.69 76.44 88.30 84.14

Table 2 shows the comparison of the performance of CMEM-KG and those of
the other entity disambiguation models on the other five datasets. All the models
listed in Table 2 were fine-tuned based on CoNLL datasets, and their hyper-
parameters were tuned using the CoNLL validation set. The results revealed that
the proposed CMEM-KG outperformed the baselines; particularly, on ACE2004
and AQUAINT datasets. This could be attributed to the fact that CMEM-
KG with a link regularization prevented the overfitting of long-tailed mentions.
However, the performance of CMEM-KG on CWEB was slightly poor which
could be attributed to the fact that the automatic generation of the label resulted
in noisy mentions. As pointed out by [32], CWEB also contains cases where none
of the candidates are the actual answer which cause our model to predict the
wrong answers. Moreover, adding link prediction regularization to LUKE+IT
only slightly improves the overall average micro-F1, since it does not separate
entity and word domain using different encoders.
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4.3 Ablation Study

Impact of Aggregate Function. We evaluate the performance of two pro-
posed aggregation functions (avg and attn) against the original TransE model
by the link prediction on Dbpedia test dataset. Table 3 shows that adding aggre-
gation function to model one-to-many relations improves link prediction with
TransE+avg and TransE+attn performs better than TransE baseline in terms
of Mean Reciprocal Rank, Hit@3, and Hit@10. The results indicate that our
proposed attention mechanism performs better than the average function in all
evaluation metrics, since they are able to learn distinct entity embedding with
the help of fine-grained types.

Table 3. Comparison of link prediction results on Dbpedia test dataset.

Dbpedia MRR Hit@3 Hit@10

TransE 16.5 13.9 29.2

TransE+avg 16.8 14.8 31.0

TransE+attn 19.3 17.4 40.7

Impact of Mention Frequency. To investigate the performance of our model
on rare entities, following the setting of previous work [15] method, we first
calculate the frequency for each entity found in Wikipedia dataset and split into
4 bins according to the frequency. Afterward, we calculate the Micro-F1 scores of
CoNLL test-B split by bins. Table 4 shows the proposed CMEM-KG outperforms
LUKE+IT, especially in predicting rare entities.

Table 4. Micro-F1 performance of the CMEM-KG on CoNLL test dataset split using
Wikipedia entity frequency. All models were finetuned based on CoNLL dataset.

# Annotations CMEM-KG LUKE+IT

Attn Avg Confidence Natural

0 68.37 58.95 54.90 53.78

1–10 93.42 93.61 91.92 91.03

11–50 89.66 91.30 89.54 89.54

≥51 91.26 90.13 89.91 89.51
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4.4 Evaluations on Iterative Entity Disambiguation

Table 5. The Micro-F1% difference compared to parallel entity disambiguation (N = 1)
of CMEM-KG on all 6 datasets when decoding using N iterations. Results are averaged
from 5 runs of different random seeds.

Iterations (N) CoNLL-test CWEB MSNBC ACE2004 Wiki AQUIANT

3 17.36 –1.18 –6.01 10.44 –4.76 15.98

5 23.64 12.08 0.23 25.09 0.85 11.03

M 23.84 10.70 0.02 25.09 0.46 11.03

Following a similar approach by [10], we extend parallel entity disambiguation to
N decoding iterations. For each iteration, the model only disambiguates the top-
K confidence mentions, where K = M

N and M is the total number of mentions.
Each step is repeated until all mentions are resolved. Note that N = 1 equals
to the parallel entity disambiguation used by our model while N = M equals to
the same confidence order proposed by [15].

Table 6. Micro-F1 performance of the CMEM-KG model on CoNLL dataset based on
the number of mentions for decoding iterations

# mentions in context N = 1 N = 3 N = 5 N=7

1 86.10 86.10 86.10 86.10

2 ≤ M < 5 86.54 86.69 86.69 86.69

5 ≤ M < 10 88.46 88.46 88.65 88.65

10 ≤ M 78.88 79.26 79.63 79.63

Table 5 shows that splitting the parallel decoding into K iterations only pro-
vides slight improvements (less than 0.3%) as compared to our original parallel
entity disambiguation (N = 1). Since most documents only have one mention to
resolve, the iterative decoding leads to a minor improvement even when N = M .
This suggested that our iterative decoding was more effective when there was
more than one mention in the documents. To verify this, Table 6 shows the
comparison of the performance of CMEM-KG on CoNLL dataset with differ-
ent number of mentions in a document and different number of iterations. The
results indicate that increasing the number of iterations improved the perfor-
mance of the model on documents with multiple mentions, suggesting that five
iterations are sufficient to handle documents with a large number of mentions.

5 Conclusion

In this study, we proposed a new global entity disambiguation model (CMEM-
KG) and a new regularization method to train CMEM-KG. The proposed
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CMEM-KG only required one feed-forward pass to disambiguate mentions found
in a given text. Moreover, the proposed regularization method prevented entity
overfitting during training using a link prediction. Furthermore, we employed an
entropy-based filtering to reduce the additional computation introduced by the
regularization method to prune the nodes in the knowledge graph. Experimental
results revealed that the proposed CMEM-KG is effective for different architec-
tures and datasets. In the future, we plan to use a knowledge graph constructed
by using relations between mentions from context instead of a predefined knowl-
edge graph.
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Abstract. Understanding the movement patterns of objects (e.g., humans and
vehicles) in a city is essential for many applications, including city planning
and management. This paper proposes a method for predicting future city-wide
crowd flows by modeling the spatio-temporal patterns of historical crowd flows in
fine-grained city-wide maps. We introduce a novel neural network named PAral-
lel Spatio-Temporal Attention with spatial auto-correlation gating (PASTA) that
effectively captures the irregular spatio-temporal patterns of fine-grained maps.
The novel components in our approach include spatial auto-correlation gating,
multi-scale residual block, and temporal attention gating module. The spatial
auto-correlation gating employs the concept of spatial statistics to identify irreg-
ular spatial regions. The multi-scale residual block is responsible for handling
multiple range spatial dependencies in the fine-grained map, and the temporal
attention gating filters out irrelevant temporal information for the prediction. The
experimental results demonstrate that our model outperforms other competing
baselines, especially under challenging conditions that contain irregular spatial
regions. We also provide a qualitative analysis to derive the critical time informa-
tion where our model assigns high attention scores in prediction.

Keywords: Fine-grained city-wide prediction · Spatial auto-correlation ·
Temporal attention module

1 Introduction

Location-based services with fine-grained maps are being widely introduced as a result
of the continuing development of positioning technology [8]. These services provide
city-wide crowd flow prediction to aid urban management, for use by the general pub-
lic and policy makers [6,15]. However, this prediction task turns out to be challeng-
ing, because the spatio-temporal dependencies are too complicated in the fine-grained
map [7,10].
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Spatio-temporal prediction has been actively studied in many previous studies
[8,12,14]. They partitioned a city into an N × M grid map based on latitude and
longitude where the grid represents specific region. With this grid map, they predict
the number of individuals (e.g., people or taxis) moving in each grid in the future. For
example, ST-ResNet [14] proposed a method based on the residual convolution to pre-
dict crowd flows. In addition, STDN [12] designed a model of integrating convolution
layers and long-short term memory (LSTM) to reflect both spatial and temporal depen-
dencies jointly. The long-term prediction of spatio-temporal data has also been accom-
plished using a spatial-attention module [8]. However, these previous approaches are
still inaccurate and inefficient in practice for predicting a fine-grained city-wide map
because of the following three major factors:

(1) Irregular spatial patterns: According to the first law of geography, similar spa-
tial attributes such as crowd flows have a tendency to be located near each other [10].
However, as the spatial pattern becomes more dynamic and irregularly distributed as
the resolution increases, cases that widely deviate from the first law of geography
are often observed. Figure 1 describes the spatial distribution of the number of mov-
ing individuals of Seoul in South Korea. In the coarse map, a specific grid (A) has
a value similar to its neighbors. However, grid (B) in the fine-grained map is sig-
nificantly different from its neighbors, creating spatially irregular patterns. These
irregular patterns are caused by a large value grid surrounded by small value grids
(i.e., high-low), or vise-versa (i.e., low-high). These high-low or low-high grids are
difficult to predict and likely to be regions of practical importance, such as a key
commercial hub.

Fig. 1. Illustration of the spatial distribution of crowd flows in coarse and fine-grained spatial
maps. The larger the volume of crowd flows, the darker the color. The variance in the crowd flow
in the fine-grained map is larger than in the coarse map. In the fine-grained map, grid B includes
a shopping complex where numerous people gather, and is a region of practical importance.

Therefore, we apply a spatial normalization method that can reflect the spatially
irregular patterns by leveraging the concept of localMoran’s I statistics representing
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spatial auto-correlation [1]. Spatial auto-correlation indicates the degree to which
similar values are located spatially nearby. The high-low and low-high grids have
negative statistics with large absolute values in the localMoran’s I statistics. There-
fore, Moran’s I statistics can be used to identify irregular spatial grids.
(2) Multi-range spatial dependency: Another difficulty comes from multi-range
spatial dependency in the fine-grained map. In other words, a specific grid has
strong correlations from adjacent to distant grids in terms of connection distance. In
addition, spatial distribution is naturally resolution-sensitive, and the interrelation of
attributes varies according to the level of resolution [13]. For example, a fine-grained
map may contain several geographical hierarchies such as districts and cities, and
has multiple interrelations between regions. For this reason, a residual convolution-
based architecture with multi-scale filters is adopted to effectively enlarge the recep-
tive field of filters to incorporate the multi-range context in the fine-grained map.
(3) Irrelevant temporal information introducing noise: In a historical observa-
tion, a considerable amount of irrelevant temporal information makes noise in the
prediction. With a fine-grained map, this phenomenon becomes more pronounced,
as the spatial pattern over time changes dynamically. Therefore, we introduce a tem-
poral attention gating module [11], which weights core temporal information for the
prediction.

In short, to address these three issues, we propose a PArallel Spatio-Temporal
Attention with spatial auto-correlation gating (PASTA) which consists of spatial auto-
correlation gating (SAG) to reflect spatial auto-correlation, a multi-scale residual block
(MSR) to handle multi-range spatial dependency, and a temporal attention gating mod-
ule (TAG) to capture significant temporal features for predicting city-wide crowd flows.
Our model outperforms other competing baselines, especially under challenging condi-
tions that contain irregular spatial regions.

2 Related Work

Convolution-based models were proposed in many previous studies to predict future
population crowds [12,14]. Those convolution-based models learn spatial patterns
which indicate high correlations between nearby regions. An attention module is
applied to filter out irrelevant information when predicting spatio-temporal data [8,12].

STDN [12] employs an attention module to capture long-term periodic informa-
tion and temporal shifting. DSAN [8] implements long-term flow prediction with an
attention module to minimize the impact of irrelevant spatial noise.

Previous studies also proposed a graph-based model to predict future crowd flows
[4,9]. For example, the spatio-temporal graph structure is employed, which connects
all grids at the previous and next timestamps, to model spatial and temporal adjacency
simultaneously [9]. In addition, spatio-temporal attention, to capture the traffic net-
work’s dynamic spatial and temporal correlations, is proposed using an attention based
spatial-temporal graph convolutional network [4]. However, we encounter several issues
when predicting a fine-grained map, such as irregular spatial patterns. For this reason,
this study employs a module to reflect irregular spatial patterns using spatial statis-
tics. In addition, graph-based models are inefficient for fine-grained maps because of
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the computational cost required to process the large number of nodes in the spatio-
temporal graph. Therefore, this paper uses residual convolution with temporal attention
to efficiently train the model.

On the other hand, the spatio-temporal prediction task is similar to the semantic
segmentation task which predicts a class label to every pixel in the image, in that input
and output of the same size are used, and multi-range spatial dependency should be
considered. Therefore, to design a model suitable for our problem, we explored vari-
ous architectures used in semantic segmentation task. Among them, the DeepLab series
[2,3] encourages the active utilization of dilated convolution to solve the semantic seg-
mentation task. In particular, atrous spatial pyramid pooling is proposed to apply multi-
scale context in DeepLab V2 [2] and DeepLab V3 [3], which adopts parallel dilated
convolutional filters to handle multi-scale objects.

In summary, most semantic segmentation tasks use the multi-filters strategy to cope
with various scales. This study also devises a structure that uses convolution filters of
different sizes in parallel to handle the multi-range spatial dependency.

3 Proposed Method

3.1 Problem Definition

Problem Setting. This study partitions a city into N × M equal-sized grids based on
latitude and longitude, where a grid represents a specific region. The grid is a rectangle
corresponding to a small region in a specific city. The actual grid resolution varies from
100m × 100m to 1 km × 1 km. We handle a fine-grained map whose grid map size is
under 500m. Each grid contains flow volume with timestamps.

We use xi,j
t ∈ R to denote the value of the (i, j) grid (i ∈ {1, · · · , N}, j ∈

{1, · · · ,M}) at timestamp t, and Xt ∈ R
N×M denotes the values of all grid maps

at timestamp t. We set X = (Xt−T+1,Xt−T+2, ...,Xt) ∈ R
N×M×T as the value of all

grids over T timestamps.
T timestamps consist of three fragments, denoting recent (closeness), daily-

periodic (periodic), and weekly-periodic (trend) segments. Therefore, intervals of
Tcloseness, Tperiodic, and Ttrend are an hour, a day, and a week respectively. From
this, the timestamps of closeness refers to the timestamps immediately before the tar-
get timestamp to be predicted. For example, if we predict the target timestamp t, then
the timestamps of the closeness in the input sequences can be {t − 1, t − 2, t − 3}.
The timestamps of periodic means the identical daily past timestamps of the target
timestamp and trend refers to the same weekly past timestamps of the target times-
tamp. The examples of the timestamps of periodic and closeness are {t − 1 × 24, t −
2 × 24, t − 3 × 24} and {t − 7 × 24, t − 14 × 24}, respectively, given the target
timestamp t. The number of timestamps in each fragment is represented as Tk, where
k ∈ (closeness, period, trend) indicates each fragment. The total number of times-
tamps T is equal to Tcloseness + Tperiodic + Ttrend.

This study set Tcloseness, Tperiodic, and Ttrend as five, six, and four respectively.
The Tk-channel crowd flows map of each time fragment is then concatenated with the
channel axis. In addition, Yt+1 = Xt+1 ∈ R

N×M represents the number of individuals
in all grids to be predicted at timestamp t + 1.
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Problem. Given the historical sequence of all the grids over past T slices X =
(Xt−T+1,Xt−T+2, ...,Xt) ∈ R

N×M×T , we aim to predict the future flows Yt+1 ∈
R

N×M .

Fig. 2.Architecture of PASTA. There are three major components: spatial auto-correlation gating,
temporal attention gating, and multi-scale residual block module. FC indicates fully-connected
layers and Conv is a convolution filter. σ is a sigmoid function. ⊕ denotes the element-wise
summation, and ⊗ element-wise multiplication.

3.2 Parallel Spatio-Temporal Attention with Spatial Auto-Correlation Gating

Overview. Figure 2 describes the architecture of PASTA, which is composed of three
components including spatial auto-correlation gating (SAG), temporal attention gat-
ing (TAG), and multi-scale residual block (MSR) module. First of all, we modify
flow volumes throughout a city with T timestamps into an N × M image-like matrix
X ∈ R

N×M×T . We element-wise sum them with their corresponding spatial positional
encodings (SPE) before entering the TAGmodule. The SPE is a particular bias to repre-
sent the location of grids [8]. The SAGmodule for local spatial normalization is applied
to X to produce the indicator of the spatial auto-correlation S ∈ R

N×M×T . Conse-
quently, the normalized outputs S are fed into the depth-wise convolution layer and a
sigmoid activation to produce gating values. The output of SAG is fed into the TAG
module and then the MSR module. Such structure captures significant channel-wise
features for temporal information and the multi-range dependency between nearby and
distant regions. In addition, the external features, such as weather, are fed into two-layer
fully-connected neural networks to extract latent features. These features are further
element-wise summed with the outputs of the MSR. Lastly, a tanh activation function
is adopted to map the aggregation into [−1, 1]. We adopts Huber loss [5] as the loss
function, which is less sensitive to outliers than the mean squared loss.
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SPE: Spatial Positional Encoding. Each grid has its own address. This is a character-
istic that differentiates the location data from the image. To consider relative positions
in the grid map, we equip the spatial positional encoding (SPE) as a bias to represent the
position of a location [8]. Given the coordinate matrix, we calculate the SPE as follows

SPEl
i,j =

{
sin(i/100002l/d) , if l = 2n,
cos(j/100002l/d) , if l = 2n + 1,

(1)

where SPEl
i,j ∈ R is the l-th dimension element of encoding vector of position

(i, j) in the grid map. We element-wise sum the SPE encoding with the sequence
of grid map X = (Xt−T+1,Xt−T+2, ...,Xt) ∈ R

N×M×T to produce X ′ =
(X ′

t−T+1,X
′
t−T+2, ...,X

′
t) ∈ R

N×M×T .

SAG: Spatial Auto-correlation Gating. In general, spatial information has the prop-
erty of spatial auto-correlation, where spatial attributes such as crowd flows in nearby
regions tend to be similar on a map. The spatial auto-correlation is denoted as the first
law of geography [10], which makes the proposition that ”Everything is related with
everything else, but near things are more related than distance things”.

However, as the map becomes finer, the opposite cases often appear, resulting in a
large volume region surrounded by a small volume region (i.e., high-low), or vise-versa
(i.e., low-high). These high-low or low-high region produce irregular spatial patterns
contrary to the first law of geography. Various indices have been proposed to mea-
sure the degree of spatial auto-correlation quantitatively. In particular, Local Moran’s I
statistic [1] is a popular statistics to quantify local spatial auto-correlation.

Suppose that xi,j
t is the value of the (i, j) grid among overall grids in timestamp t,

and i and j are the index of horizontal and vertical axis in the whole grid map respec-
tively. In addition, N and M are the total number of grids in the horizontal and vertical
axis of the map, respectively. Then the Local Moran’s I statistics si,jt of (i, j) grid in
timestamp t is calculated as follows

si,jt =
(xi,j

t − x̄t)
Pt

∑
z∈Wij

(xz
t − x̄t)
Pt

, (2)

where x̄t =
∑N

i=1
∑M

j=1 xi,j
t

NM and Pt =

√
∑N

i=1
∑M

j=1 (xi,j
t −x̄t)

NM−1 . Wij is the set of prede-

fined neighbor grids, which is all grids that share an edge or a corner with the (i, j) grid.
Therefore, xz

t is the Local Moran’s I statistics of neighbor grids with the (i, j) grid.
The statistics represent the relative value of a particular grid to its neighbors. If both

a grid (i, j) and its neighbors are greater than the overall average x̄t together, then a
positive si,jt is produced in the (i, j) grid. Conversely, if the value of a grid (i, j) is
greater than x̄t and its neighbors are less than x̄t, then the region (i, j) may have a
negative si,jt value. This region is denoted as high-low, and in the opposite case, low-
high. That is, a negative si,jt indicates that grid (i, j) has a relatively large or small value
compared to its neighbors. These grids with negative si,jt are challenging to predict in
that their spatial patterns are highly irregular.
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The local Moran’s I statistics are calculated for all grids X . In Fig. 2A, the illustra-
tive calculation process of local Moran’s I statistics is described. The output of local
Moran’s I statistics S ∈ R

N×M×T has the same shape as the original flow volumes X .
Then, the normalized output S is passed by depth-wise convolutional layer and sigmoid
activation function to produce G = (Gt−T+1, Gt−T+2, ..., Gt) ∈ R

N×M×T .
Meanwhile, the original flow volume X is also applied to the depth-wise convo-

lutional layer to extract the unique spatial pattern of each timestamp without sharing
temporal information. It is represented as F = (Ft−T+1, Ft−T+2, ..., Ft) ∈ R

N×M×T .
Then, G are element-wise multiplied by F to produce a gated output F ′ ∈ R

N×M×T .
This indicates that the normalized value G explicitly controls the volume information
associated with neighbor regions.

Fig. 3. Diagram of the TAG module. This module assigns high attention scores to meaningful
timestamps of input sequences for prediction. Input F ′ ∈ R

N×M×T (red tensor) is the output of
the SAG module and the output FTAG ∈ R

N×M×T (grey tensor), is fed into the MSR module.
FC indicates a fully-connected layer and σ is a sigmoid function. The element-wise summation
and element-wise multiplication are denoted as ⊕ and ⊗, respectively.

TAG: Temporal Attention Gating. Some past historical information may be irrelevant
for future prediction. For this reason, inspired by the channel attention module [11], we
proposes the TAG module, which filters out temporal features that are irrelevant for
prediction. The TAG module is described in Fig. 2B and Fig. 3. It produces a temporal
attention map to reflect the inter-time relationship. The channel indicates the timestamp.
This temporal attention focuses on the influential timestamps for prediction.

Specifically, we implement the max-pooling and average-pooling operation to F ′,
the outputs of SAG, and the both outputs F c

max and F c
avg are then forwarded to the

two fully connected layers. After the fully connected layer is applied to each feature,
we merge them using element-wise summation with a sigmoid activation function. The
temporal attention map T c ∈ R

1×1×T is described as

T c = σ(FC(AvgPool(F ′)) + FC(MaxPool(F ′)))
= σ(W1W0F

c
avg +W3W2F

c
max),

(3)

where σ is the sigmoid function. In addition, W0, W1, W2, and W3 are the train-
able weights in the fully connected layers. Then, the final output of the TAG module,
FTAG ∈ R

N×M×T is derived as follows

FTAG = T c ⊗ F ′, (4)
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where ⊗ denotes element-wise multiplication. Through this process, each channel is
multiplied by weight between 0 and 1, so that the model can only take critical tem-
poral information. A high attention weight will be given to timestamps essential for
prediction.

MSR:Multi-Scale Residual Block. It is crucial to consider multi-range spatial depen-
dence when dealing with a fine-grained map. Therefore, we designed an MSR module
composed of shallow layers using parallel convolution filters of different sizes.

The multiple filters are adopted with a parallel scheme as shown in Fig. 2C. The
output feature map FTAG ∈ R

N×M×T from the TAG module is fed into parallel con-
volutional layers with 1 × 1, 3 × 3, and 5 × 5 filters, respectively, followed by skip-
connections. Then, the outputs are element-wise summed in time axis. The input and
output in the same shape (i.e., N ×M ) are generated by using padding in a convolution
layer. The output feature map FMSR ∈ R

N×M×1 is derived as follows

FMSR = σ(f1×1(σ(f1×1(FTAG)) + f1×1(FTAG))

+σ(f3×3(σ(f3×3(FTAG)) + f3×3(FTAG))

+σ(f5×5(σ(f5×5(FTAG)) + f5×5(FTAG)),

(5)

where σ is the ReLU function and f l×l indicates a convolution operation with the filter
size l × l.

External Features. Numerous complex external factors significantly affect crowd
flows.We adopt time-of-day (24/48 dimensional variables for every 1 h/30min), day-of-
week (7), and holiday (1) as the external features. The embeddings of external features
from two fully-connected layers are concatenated with the outputs of the MSR mod-
ule. In two full-connected layers of external features, the first layer is a fully-connected
embedding layer followed by ReLU activation, and the second layer map low to high
dimensions with the same shape as FMSR. This output is denoted as F external. Then,
FMSR and F external are summed in a channel-wise manner. Finally, the predicted
value at the t + 1 timestamp, denoted by Ŷt+1, is defined as

Ŷt+1 = σ(FMSR + F external), (6)

where σ is a tanh activation function.

4 Experiment

4.1 Experiment Settings

Dataset. We evaluated our model on two public real-world datasets from New York
City (NYC). As shown in Table 1, we used three large datasets, NYC-Taxi and NYC-
Bike. NYC-Taxi contains the taxi demands in 16 × 12 grids in New York City every
30min from January 1, 2016 to February 29, 2016. The training set is set to data from
January 1, 2016 to February 15, 2016, and the test set is set to the remaining data.
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NYC-Bike contains the flows of bikes in 14 × 8 grids in New York City every 30min
from August 1, 2016 to September 29, 2016. We set the data from August 1, 2016 to
September 15, 2016 as the training set and remaining data as the test set.

In addition, we used fine-grained real-world data from the major cellular network
operator in South Korea. This data is collected from the base stations. When users
access the base stations for communication or data access, the logs including location
records are generated in the base stations. The location data of about three million
customers who agreed to collect and analyze their location information in Seoul were
collected from April to June 2021. We set the data from April 1, 2021 to June 15, 2021
as the training set and the remaining data as the test set in Seoul-Crowd. We normalized
those datasets by min-max scale.

Table 1. Summary of the dataset used in our experiments.

Dataset NYC-Taxi NYC-Bike Seoul-Crowd

Data type Taxi GPS Bike rent Mobile signal

Location New York New York Seoul

Time span 1/1–2/29, 2016 8/1–9/29, 2016 4/1–6/30, 2021

Time interval 30 mins 30 mins 1 h

Grid map size (16, 12) (14, 8) (68, 92)

Compared Algorithms. To evaluate the accuracy of our predictive model, we com-
pared the proposed model with several competitive methods:

– ST-ResNet[14]: It consists of simple architectures with residual block with CNN for
spatio-temporal data.

– STDN[12]: This research is based on the local CNN and LSTM to capture the com-
plex spatial dependencies and temporal dynamics.

– DSAN[8]: They focus on the long-term prediction task with an attention module
to deal with the dynamic correlation of spatio-temporal data. It is a state-of-the-art
model in NYC-Taxi and NYC-Bike dataset.

4.2 Results

Fine-grained Map Prediction. We experimented with fine-grained crowd flow data as
shown in Table 2. We measured performance for resolutions of 12×16, 24×32, 48×64,
and 68×92. Typically, the higher the resolution, the lower the model performance. This
is because the finer the map, the more spatio-temporal irregularity occurs. However, our
model showed robust performance in the fine-grained map with 68× 92 resolution and
better performance than other models. From the result, we discovered that reflecting
spatial auto-correlation and multi-range spatial dependencies in the model can reduce
error rate in fine-grained map prediction. In addition, we determined that filtering out
irrelevant temporal information was critical to achieving reliable performance.
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In order to better understand the effectiveness of our model, we carried out addi-
tional experiments as shown in Table 3. In this experiment, we used our Seoul-Crowd
dataset of 68× 92. We observed that our model outperformed other models in high-low
and low-high grids. These results demonstrate that our model makes more robust pre-
dictions for spatially irregular regions than other competitive baselines. This is because
spatially irregular regions are discriminated in our model, using our SAG module, to
prevent smoothing of the predicted values by surrounding regions.

Table 2. Fine-grained map predicion results (Seoul-Crowd)

Resolution 12 × 16 24 × 32 48 × 64 68 × 92

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

ST-ResNet[14] 115.94 22.47 114.43 22.23 118.11 21.73 132.20 23.92

STDN[12] 101.11 17.85 97.43 17.22 114.53 17.78 119.30 21.67

DSAN[8] 98.12 16.11 93.43 15.98 99.10 16.22 113.44 20.22

PASTA 96.57 15.49 91.79 14.55 96.21 14.58 108.55 18.92

Coarse Map Prediction. We evaluated the effectiveness of PASTA and other baselines
using a coarse map dataset. Table 4 shows the baseline performances. In some cases,
our model significantly outperformed other baselines, achieving the lowest RMSE or
MAPE even on the coarse map dataset.

Table 3. Result of spatial irregular regions prediction with fine-grained map

Model High-Low Low-High

RMSE MAPE RMSE MAPE

ST-ResNet[14] 139.77 33.65 60.76 26.88

STDN[12] 135.98 31.10 57.73 25.08

DSAN[8] 135.33 30.41 58.81 25.31

PASTA 132.12 28.78 56.12 24.78

Table 4. Coarse map prediction results

Model Dataset NYC-Taxi NYC-Bike Crowd-Flow

Metric RMSE MAPE RMSE MAPE RMSE MAPE

ST-ResNet[14] 23.82 18.87 9.43 22.03 115.94 22.47

STDN[12] 22.98 17.88 9.41 19.94 101.11 17.83

DSAN[8] 20.73 16.09 8.03 18.33 98.12 16.17

PASTA 19.89 16.12 8.26 17.76 96.57 15.49
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4.3 Ablation Study

We investigated the effectiveness of each module of our model. Table 5 shows the exper-
imental results, depending on whether each module was applied or not. From Rows (C)
and (F), we observe that the SAG module improved the performance of our model. This
result indicates that the SAG module helps improve the robustness in the fine-grained
map prediction by correcting the spatially irregular pattern. Rows (D) and (F) show
the effect of the MSR module. We found that the model with the MSR module was
better than the model without it. This is because the MSR module allows the model to
cope with multi-scale spatial dependency. The effect of the TAGmodule is illustrated in
Rows (E) and (F). This result demonstrates that filtering out irrelevant temporal feature
is indispensable to derive more accurate prediction.

Table 5. Component analysis

Model SAG TAG MSR RMSE MAPE

(A) � 116.12 24.11

(B) � 117.30 24.98

(C) � � 114.43 21.28

(D) � � 113.12 21.09

(E) � � 113.56 21.14

(F) � � � 108.55 18.92

4.4 Visualization of Temporal Attention Gating

We visualized the temporal attention map T c ∈ R
1×1×T of the TAG module to verify

the weight of temporal information. Each input sequence X ∈ R
N×M×T produces T c

respectively. We averaged the temporal attention map T c from our test dataset of Seoul-
Crowd for the T timestamps. As shown in Fig. 4, the model assigns large weights to the
feature map of an hour ago. This shows that the timestamp of an hour ago is critical to
the prediction. However, if the timestamp is close to the target timestamp but not the
same period, low weights are given to that timestamp. The attention weights of 2,3,4,
and 5 h ago are below 0.3. In addition, the model sometimes gives low weights for
feature maps in the far distant past, where the attention weights of 2 and 4 weeks ago
are below 0.3. This visualization demonstrates that not all time information is required
for prediction.

5 Conclusion

In this work, we proposed PASTA for predicting future city-wide crowd flows. Our
model consists of a SAG module to reflect spatial auto-correlation, an MSR module to
handle multi-range spatial dependency and a TAG module to filter out irrelevant tem-
poral features for prediction. This study discovered that reflecting spatial relativity and
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Fig. 4. An illustrative example of temporal attention maps. The higher the attention weights, the
darker the color. The y-axis indicates the day of the week and the x-axis is the timestamp. Each
grid denotes the average attention weights of the input. (a) is an attention map where the target
timestamp to be predicted is 9:00 AM. (b) is the attention map where the target timestamp to be
predicted is 18:00 PM.

multi-range spatial dependencies in the model can reduce error rates in fine-grained map
prediction. In addition, we determined that filtering out irrelevant temporal information
was critical to achieving reliable performance. We extensively evaluated our model on
future flow prediction tasks using real-world datasets of fine-grained maps. Our model
outperformed other competing baselines in both fine-grained and coarse maps cases.
In addition, the results also showed that our model performed better predicting regions
with spatially irregular patterns.
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Abstract. The existing research on continual learning (CL) has focused
mainly on preventing catastrophic forgetting. In the task-incremental
learning setting of CL, several approaches have achieved excellent results,
with almost no forgetting. The goal of this work is to endow such systems
with the additional ability to transfer knowledge when the tasks are
similar and have shared knowledge to achieve higher accuracy. Since the
existing system HAT is one of most effective task-incremental learning
algorithms, this paper extends HAT with the aim of both objectives, i.e.,
overcoming catastrophic forgetting and transferring knowledge among
tasks without introducing additional mechanisms into the architecture
of HAT. The current study finds that task similarity, which indicates
knowledge sharing and transfer, can be computed via the clustering of
task embeddings optimized by HAT. Thus, we propose a new approach,
named “partially relaxed masks” (PRM), to exploit HAT’s masks to not
only keep some parameters from being modified in learning subsequent
tasks as much as possible to prevent forgetting but also enable remaining
parameters to be updated to facilitate knowledge transfer. Extensive
experiments demonstrate that PRM performs competitively compared
with the latest baselines while also requiring much less computation time.

Keywords: Continual learning · Task similarity · Catastrophic
forgetting

1 Introduction

Continual learning has recently received substantial attention with the increasing
popularity of AI-embedded systems, but these systems still struggle to maintain
performance without retraining the model from scratch, which consumes a large
amount of time. The main issue in continual learning is catastrophic forgetting,
which refers to the phenomenon in which once a model has learned a new task,
its performance is likely to decline drastically on the previously learned data
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13280, pp. 367–379, 2022.
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[10]; thus, many studies have proposed approaches that address this issue [7,20].
In particular, HAT [25] proposes a mechanism called hard attention that blocks
the gradients of parameters, which are important for previous tasks to overcome
forgetting, and it achieves learning with almost no forgetting. However, consid-
eration of only the forgetting issue is not sufficient for practical applications.
There must sometimes be similar tasks that can be exploited for other tasks
and dissimilar tasks that are sensitive to forgetting issues at the same time;
however, conventional approaches that have focused mainly on forgetting issues
have not fully considered task similarity, which can enhance performance. There-
fore, another research theme has become the transfer of knowledge into a newly
coming task from previous tasks where, as a matter of course, forgetting should
be restrained. These challenges have been represented as task incremental learn-
ing (TIL), which aims at learning a mixed sequence of similar and dissimilar
tasks.

Additionally, looking ahead to the realistic use of continual learning, where
AI-embedded edge devices that learn continuously but do not have substantial
computational resources are commonly utilized, several studies have focused
mainly on the efficiency of learning [3,22]. To advance to the next stage, continual
learning methods also need to be as efficient as possible. CAT [13], for instance, is
the first approach for tackling a mixed sequence of similar and dissimilar tasks.
CAT extends HAT by introducing attention mechanisms across similar tasks
to enhance knowledge transfer; however, it is very inefficient and takes a much
longer time for task similarity detection because it tries every previous task one
by one to judge whether each task is worth being transferred to the current
learning task. Although it succeeds in task similarity detection and outperforms
HAT, it still faces enormous problems in terms of its efficiency and scalability.

To address these issues, the current study extends HAT so that it can enhance
knowledge transfer without another mechanism, such as attention, and even with
much shorter computation time. Our contributions to this challenge are as fol-
lows. First, the current study discovers that task similarity can be computed from
task embeddings that are optimized by a HAT-like approach. Second, we propose
a new approach named “partially relaxed masks” (PRM) that employs the masks
that are accumulated only for dissimilar tasks so it maintains parameters that
are important for the dissimilar tasks as much as possible to prevent forgetting,
while keeping the remaining parameters, which are useful for the similar tasks,
free to be updated for knowledge transfer. Extensive experiments demonstrate
that our approach achieves equal or greater performance than state-of-the-art
methods and requires much less computation time.

2 Related Work

Continual learning methods are categorized into three main types: regularization-
based methods [14,16,28], which add another penalty so as not to change the
important parameters for previous tasks; replay-based methods [4,5,18,23], which
keep the small size of previous tasks’ samples and exploit them to alleviate for-
getting; and parameter isolation-based [11,19,24,26] methods, which create new
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Algorithm 1. Learning procedure for PRM
Input: x1:T , y1:T , Model M with L layers

for t = 1 · · ·T do
# Dissimilar task detection (DTD) phase
state ← copy(M)
1st optimization: Freeze feature extractor, train only classifier of M with xt, yt
2nd optimization: Train whole M with xt, yt
Task embeddings

{
e1:tl

} ← M
Set of dissimilar tasks Dt

l ← Clustering
({

e1:tl

})

Load back: M ← state
# Learning with partially relaxed masks (LwPRM) phase
Train whole M with xt, yt,Dt

l

branches for new tasks, which are defined by new parameters. EWC [14] is one of
the most popular regularization-based methods. It computes the Fisher informa-
tion matrix that represents the importance of each parameter and adds a regular-
ization term that corresponds to the matrix to prevent forgetting. A-GEM [5] is a
typical replay-based method, and it uses an efficient approach to select samples of
previous tasks that will be learned together in a current task. A major issue with
these approaches is that they require an additional memory buffer for saving past
samples. To address this issue, many approaches exploit a data generator inside
the model, and the generated samples are used with current learning. One of the
latest parameter isolation-based methods is CCLL [26], which prevents forgetting
with few additional parameters by introducing calibration modules that convert
activation maps for previous tasks to a current task. Recently, several approaches
have been combined with the meta-learning paradigm to select more effective sam-
ples or parameters [4,12].

Although conventional approaches have focused mainly on catastrophic for-
getting, most do not have any mechanism for knowledge transfer across similar
tasks, which has become another important topic in TIL. In particular, HAT
[25] achieves learning with almost no forgetting by introducing hard attention
to block the updating of parameters that are important for previous tasks; how-
ever, the mechanism no longer enhances knowledge transfer. CAT [13] is the first
approach to deal with a mixed sequence of dissimilar tasks and similar tasks at
the same time by extending HAT. CAT introduces additional attention opera-
tions into classifiers and judges similar tasks using another network separately.
Although CAT achieves state-of-the-art performance in this scenario, it requires
substantial computational resources for task similarity detection because it tries
to build and train the reference and transfer models per previous task and check
whether this transfer actually improves its performance. Therefore, the more
previous tasks there are, the longer CAT takes to learn a new task.

3 Proposed PRM

The structure and procedure of our proposed method are presented in Fig. 1 and
Algorithm 1. The procedure is composed of the two phases: 1) dissimilar task
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Fig. 1. Structure of PRM for learning task t. PRM follows almost the same procedure
as HAT, except for part of the backward path. In dissimilar task detection (DTD), the
model uses a≤t−1

l to block all the parameters. In learning with partially relaxed masks

(LwPRM), it uses p≤t−1
l instead, which blocks only the parameters that are important

for the previous dissimilar tasks. In other words, LwPRM aims to relax the masks for
some parameters that are not important for previous tasks.

detection (DTD) and 2) learning with partially relaxed masks (LwPRM). As the
proposed method basically follows HAT, we refer to HAT first, and then explain
the proposed mechanism in detail.

3.1 Mechanism of HAT

HAT requires every layer to have a task embedding, etl , to control the gradient
of the layer’s parameters. Each layer’s mask, at

l , is computed from at
l = σ(setl),

and each layer’s output, ol, is replaced with hl = ol⊗at
l , where σ is an activation

function (e.g., sigmoid), s is a positive scaling parameter, and ⊗ denotes element-
wise multiplication. To preserve the information obtained in previous tasks, after
learning task t, HAT computes an accumulated mask, a≤t

l , as follows:

a≤t
l = max

(
at
l , a

≤t−1
l

)
, (1)

using elementwise maximum and the all-zero vector for a≤0. In learning task
(t + 1), the gradients of parameters, including etl , are computed by a standard
back-propagation, and then reduced based on the accumulated mask:

g′
l,ij =

[
1 − min

(
a≤t
l,i , a

≤t
l−1,j

)]
gl,ij , (2)

where unit indices i and j denote the l-th and (l−1)-th layer outputs, respectively.
gl,ij denotes its gradient. Additionally, HAT utilizes two more tricks to stabilize
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learning. First, in learning, scaling parameter s is linearly annealed as follows:

s =
1

smax
+

(
smax − 1

smax

)
b − 1
B − 1

, (3)

where smax is a hyper parameter, the value of which is a large positive number,
and b and B denote the batch index and the total number of batches, respectively.
In testing, smax is used instead of s. Second, to alleviate the side effect on
embedding gradient compensation, the formula below is used:

q′
l,i =

smax

[
cosh(setl,i) + 1

]

s
[
cosh(etl,i) + 1

] ql,i, (4)

where ql,i denotes the gradient that corresponds to etl,i and is replaced with q′
l,i.

3.2 Mechanism of PRM

First, the DTD phase aims to obtain the task similarity from the task embeddings
that are optimized in the same way as with HAT. Once the optimized task
embeddings, which are represented by {e1:tl }, where l and t denote the indices of
the layer and task, respectively, are obtained, the set of dissimilar tasks, Dt

l , can
be computed via a clustering on the embeddings. The reason that we focus on
task embeddings to measure task similarity is that since they are used as the basis
for masking the output of each layer, if two tasks emphasize similar parameters
and try to pass them without blocking (masking), their task embeddings should
be similar. Since HAT utilizes accumulated masks to block the gradients of
the model’s parameters, the task embeddings are more flexibly updated than
the model’s parameters; thus, we expect the task embeddings to provide an
informative representation for task similarity. Second, in the LwPRM phase, the
model’s parameters are optimized again using Dt

l with the intention of not only
blocking some parameters to overcome forgetting, as with HAT, but also making
remaining parameters free for updating to transfer knowledge.

Dissimilar Task Detection (DTD). To balance knowledge transfer and the
prevention of forgetting, it is important to determine which tasks are similar
and can be transferred to the current task and which tasks are dissimilar and
should be blocked so that they are not forgotten. To address this issue, we
focus on the task embeddings that are learned through the HAT mechanism.
Since the mechanism employs an accumulated mask that reduces the gradients
of the model’s parameters, the task embeddings can be more easily updated
than the model’s parameters. Therefore, the task embeddings are expected to
provide an informative representation of the tasks and their relations with one
another. Specifically, we adopt an unsupervised clustering method for judging
task similarity.
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First, the model follows the approach of HAT in learning task t by reducing
the gradients of the parameters according to (1) and (2), namely, as illustrated
in Fig. 1 at the bottom, a≤t−1

l is used to reduce the gradients for all the previous
tasks in the DTD phase. After learning task t, optimized

{
e1:tl

}
are obtained.

Using a clustering method, the set of previous tasks with embeddings that do
not belong to the same cluster as task t are regarded as dissimilar tasks, which
are represented by Dt

l . Although any clustering method can be used, we exploit
X-means[21] since it does not require the number of clusters as input; instead, it
searches for the optimal number of clusters based on the Bayesian information
criterion by applying K-means recursively.

Two Stage Optimization. We introduce a new optimization that proceeds
in two stages on the DTD phase. The model consists of two parts: the first
is the feature extractor that is to be shared across tasks, and the other is the
classifier that is built for each task. Therefore, we hypothesize that if both the
feature extractor and classifier are optimized simultaneously, the information
that represents the difference across tasks and can be used as a clue for task
similarity comparison may be dispersed both into not only the task embeddings
but also the classifier, which may degrade the performance of our approach. To
ensure maximum sharing in the task embedding inside the feature extractor,
which will facilitate similarity comparison, we first freeze the feature extractor
and learn only the classifier (i.e., depicted as “1st optimization” in Algorithm 1);
then, we optimize both the feature extractor and classifier simultaneously, from
which task embeddings are obtained for the clustering (i.e., “2nd optimization”).

Learning with Partially Relaxed Masks (LwPRM). Although the accu-
mulated mask, a≤t

l , in HAT plays a large role in preventing forgetting, it may
also restrain knowledge transfer among similar tasks because the gradients of
the parameters are reduced, regardless of task similarity. Thus, following HAT,
we extend it so that it can promote knowledge transfer by introducing a new
mechanism named “partially relaxed masks” (PRM).

PRM employs masks per previous task like HAT; however, not all masks are
used to reduce the gradients of the parameters according to the task similarity.
Instead, PRM accumulates only the masks that belong to previous dissimilar
tasks so that it can prevent forgetting only for dissimilar tasks while maintaining
opportunities for improvement for other tasks at the same time. Namely, the
accumulated mask focuses only on dissimilar tasks and is partially relaxed to
keep the parameters for other tasks updatable, which can enhance knowledge
transfer. Given that we know which tasks are dissimilar to the current new task
by clustering, (1) and (2) are replaced as follows:

p≤t
l = max

({
ai
l|i ∈ Dt

l , i ≤ t
})

, g′
l,ij =

[
1 − min

(
p≤t
l,i , p

≤t
l−1,j

)]
gl,ij (5)
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Table 1. The statistics of each task.

Dataset # Tasks # Classes # Trainings # Validations # Tests

CIFAR100-10T 10 10 4500 500 1000

EMNIST-10T 10 5 (Last three: 4) 500 200 200

F-CelebA-10T 10 2 400 40 80

F-EMNIST-10T 10 62 1240 310 310

4 Experiments

4.1 Datasets

We use the following four kinds of datasets to evaluate the performance in terms
of both prevention of forgetting and knowledge transfer. The datasets are split
into multiple tasks, and the statistics of each task are presented in Table 1.

Dissimilar Tasks: CIFAR100[15], which contains 100 classes, is split into
10 tasks, each of which has 10 classes; the dataset is named CIFAR100-10T.
EMNIST[6], which contains 47 classes, is split into 10 tasks, each of which has 5
(the last three tasks have 4) classes; the dataset is named EMNIST-10T. These
datasets are expected to be sensitive to forgetting as each task has different
classes and there are few relations or similarities across tasks.

Similar Tasks: F-CelebA[17] is a dataset that contains face images of celebrities
and labels that indicate whether or not they are smiling. Different celebrities
correspond to different tasks, and 10 celebrities are used in the experiments; the
dataset is named F-CelebA-10T. F-EMNIST[17] is a dataset that contains 62
classes of character images handwritten by different users. We use the images
that correspond to 10 writers; the dataset is named F-EMNIST-10T. These tasks
are supposed to have shared knowledge across tasks as each task has the same
set of labels and the data that are naturally similar.

We conduct experiments with three kinds of sequences that combine at most
two different tasks in random order, as presented in Table 2, Table 3, and Table 4:
only dissimilar tasks - #1 and #2, only similar tasks - #3 and #4, and
mixed of dissimilar and similar tasks - #5 and #6.

4.2 Baselines

We compare PRM with classic and latest continual learning methods that
can work as TIL systems, namely, EWC[14] in the HAT package (EHAT),
ACL[8], PathNet[9] (PNT), SupSup[27] (SS), HyperNet[19] (HYP), HAT[25]
and CAT[13]. Since HAT focuses only on preventing forgetting and does not
have any mechanism for knowledge transfer, it is expected to perform poorly
on similar tasks. To the best of our knowledge, CAT is the only approach that
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focuses on a mixed sequence of similar and dissimilar tasks; however, CAT takes
much longer to learn. Also, we prepare two reference methods: naive continual
learning (NCL) and single-task learning (STL). NCL learns a new task with-
out considering previous tasks; thus, severe forgetting is expected to occur for
dissimilar tasks. STL learns all the tasks at once. Although it does not follow
the continual learning scenario, it is expected to be the upper bound, only for
dissimilar tasks.

4.3 Implementation Details

The input go through two fully connected layers passing ReLU and dropout lay-
ers. The networks are optimized by minimizing the last classifier’s cross-entropy
loss using SGD. The learning rate starts from 0.025 and is gradually reduced until
it reaches 0.001. With no improvement in the validation loss for 5 epochs, the
training stops. The batch size and smax are set to 64 and 400, respectively. Other
hyper parameters, such as the dropout rate and the weight of regularization, are
searched over 20 trials using Tree-structured Parzen Estimator (TPE)[2], which
is implemented in Optuna[1]. The baselines are evaluated on the original code
with modifications while aligning with our setting as much as possible.

4.4 Metrics

Accuracy (Acc): The average accuracy for all tasks after learning them, where
the model is optimized with the best hyper parameters that are found in the
search. Parameter Sensitivity (PS): The standard deviation of “Acc” with
varied hyper parameters over 20 searches. Forward Transfer (FWT): The test
accuracy of task i just after learning task i is compared to the accuracy for task i
by STL, which is expressed as 1/T

∑T
t (αt

t − α̃t), where αj
i denotes the evaluated

accuracy of task i after learning task j, α̃i denotes the test accuracy for task i by
STL, and T denotes the total number of tasks. Backward Transfer (BWT):
The average of improvement from each task’s initial accuracy to the final accu-
racy, which is represented by 1/T

∑T
t (αT

t − αt
t)[18]. Negative values represent

that forgetting occurs. Computation Time (CT): The total computation time
for learning all the tasks, which is measured in seconds.

4.5 Results

The results are presented in Table 2, Table 3, and Table 4. Each row presents to
the average results over the same set of three random task sequences.

Only Dissimilar Tasks (#1 and #2): NCL causes severe forgetting (–3.4%
and –5.5%, as presented in BWT). PRM achieves competitive accuracy com-
pared to the baselines (especially PNT and CAT) without much forgetting. Also,
PRM requires only one-tenth the computation time of CAT in #2. Among the
baselines, PRM achieves almost the best score in the second shortest time.
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Table 2. Results for only dissimilar tasks sequences.

(#1) EMNIST-10T (#2) CIFAR100-10T

Acc PS CT FWT/BWT Acc PS CT FWT/BWT

(STL) 0.929 0.6% 45 –/– 0.612 1.4% 142 –/–

NCL 0.879 0.3% 26 –1.7%/–3.4% 0.534 1.1% 123 –2.3%/–5.5%

ACL 0.902 0.5% 916 –2.6%/–0.1% 0.508 0.6% 6328 –10.3%/–0.1%

PNT 0.910 0.3% 43 –2.0%/0.0% 0.571 0.5% 394 –4.1%/0.0%

SS 0.829 11.9% 172 –5.6%/–4.4% 0.462 11.2% 2800 –10.8%/–4.2%

HYP 0.822 10.9% 1105 –10.7%/–0.1% 0.219 3.4% 10825 –38.8%/–0.5%

HAT 0.905 0.3% 101 –2.4%/0.0% 0.582 0.8% 912 –3.0%/0.0%

EHAT 0.899 0.3% 187 –3.1%/0.0% 0.578 0.6% 1011 –3.4%/0.0%

CAT 0.907 0.3% 1276 –2.2%/0.0% 0.587 0.7% 6018 –2.5%/0.0%

PRM 0.897 0.4% 80 –2.3%/–1.0% 0.582 0.9% 635 –2.8%/–0.1%

Table 3. Results for only similar tasks sequences.

(#3) F-EMNIST-10T (#4) F-CelebA-10T

Acc PS CT FWT/BWT Acc PS CT FWT/BWT

(STL) 0.717 3.2% 126 –/– 0.823 0.6% 15 –/–

NCL 0.654 10.0% 48 –5.3%/–0.9% 0.820 1.2% 14 –3.7%/3.4%

ACL 0.043 0.9% 1633 –66.4%/–0.9% 0.695 2.4% 628 –14.3%/1.5%

PNT 0.572 15.7% 178 –14.5%/0.0% 0.716 1.1% 32 –10.6%/0.0%

SS 0.456 14.6% 1022 –14.3%/–11.7% 0.780 9.5% 440 –5.0%/0.8%

HYP 0.060 1.5% 3313 –65.5%/–0.2% 0.525 1.5% 1495 –26.6%/–3.2%

HAT 0.655 3.7% 245 –6.2%/0.0% 0.759 1.1% 70 –6.3%/0.0%

EHAT 0.655 3.8% 497 –6.1%/0.0% 0.769 0.8% 110 –5.3%/0.0%

CAT 0.643 2.1% 2171 –7.4%/0.0% 0.781 0.7% 707 –4.1%/0.0%

PRM 0.657 3.3% 176 –5.7%/–0.2% 0.796 1.4% 54 –5.5%/2.8%

Only Similar Tasks (#3 and #4): As the tasks are similar, NCL does not
cause much forgetting, and even improves task by task, as presented in BWT. In
both sequences, PRM outperforms all baselines without forgetting and even with
significant backward transfer, as shown in #4. As in the case of only dissimilar
tasks, which is presented in Table 2, PRM’s efficiency is only behind PNT, but
PNT’s performance is markedly lower than PRM in these only similar tasks.

Mixed of Dissimilar and Similar Tasks (#5 and #6): While PRM
achieves the best performance in #6, it underperforms CAT in #5. However,
the performance of CAT is highly sensitive to the hyper parameters, according
to the PS value of 7.2%, while PRM has 3.4% PS, which is the most stable
among the baselines. Moreover, CAT requires a long computation time as shown
in Fig. 2, where the computation time for each task and the accumulated time
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Table 4. Results for mixed of dissimilar and similar tasks sequences.

(#5) EMNIST-10T & F-EMNIST-10T (#6) CIFAR100-10T & F-CelebA-10T

Acc PS CT FWT/BWT Acc PS CT FWT/BWT

(STL) 0.791 1.4% 113 –/– 0.629 1.1% 254 –/–

NCL 0.728 5.0% 87 –5.6%/–0.6% 0.540 1.0% 154 –3.1%/–5.9%

ACL 0.370 9.3% 5437 –41.6%/–0.5% 0.521 0.4% 7515 –10.9%/0.0%

PNT 0.628 4.7% 281 –16.3%/0.0% 0.556 0.7% 425 –7.3%/0.0%

SS 0.572 16.2% 586 –7.6%/–14.3% 0.461 10.5% 1865 –11.1%/–5.7%

HYP 0.322 6.0% 6439 –46.2%/–0.7% 0.199 1.7% 19973 –42.2%/–0.8%

HAT 0.721 3.6% 357 –7.0%/0.0% 0.572 0.5% 891 –5.8%/0.0%

EHAT 0.728 6.9% 854 –6.3%/0.0% 0.572 0.6% 1801 –5.8%/0.0%

CAT 0.737 7.2% 9851 –5.3%/0.0% 0.581 0.8% 22810 –4.8%/0.0%

PRM 0.720 3.4% 310 –6.8%/–0.3% 0.582 0.6% 642 –4.2%/–0.6%

Fig. 2. Computation times for one sequence of #6. The right figure is plotted in log
scale. CAT, HYP and ACL take more time, while PRM requires less time.

for all tasks in #6 are plotted. According to these figures, CAT takes much
longer than the others, and learning more tasks requires more time. Based on
these observations, in practice, it is difficult to use CAT when there is a large
amount of data or many tasks, and due to its unstable performance, tuning is
essential. In contrast, PRM needs much less computation time, e.g., 1/35 that
of CAT when learning 20 tasks, and its performance is also stable with varied
hyper parameters.

4.6 Ablation Study

We check how much the DTD phase influences the total performance, as LwPRM
completely depends on its behavior. The results are presented in Table 5.
PRM(S) and PRM(D) indicate the cases in which all previous tasks are regarded
as similar and dissimilar, respectively, instead of actual clustering. PRM(T) rep-
resents the cases in which the types of tasks are given and used as a replacement
for clustering (e.g., when learning a new task of CIFAR100-10T, the model can
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Table 5. Results of ablation experiments.

PRM(S) PRM(D) PRM(T) PRM w/o 2SO

(#1) EMNIST-10T 0.882 0.904 – 0.897 0.897

(#2) CIFAR100-10T 0.562 0.581 – 0.582 0.579

(#3) F-EMNIST-10T 0.633 0.654 – 0.657 0.658

(#4) F-CelebA-10T 0.825 0.759 – 0.796 0.775

(#5) EMNIST-10T & F-EMNIST-10T 0.713 0.731 0.720 0.720 0.721

(#6) CIFAR100-10T & F-CelebA-10T 0.568 0.571 0.567 0.582 0.586

tell which previous tasks come from CIFAR100-10T, and only these tasks are
regarded as similar). When the sequence of tasks consists only of tasks from
the same dataset (#1 to #4), the behavior of PRM(T) is the same as that
of PRM(S). Additionally, we check the effect of the two stage optimization, as
shown in the column of “w/o 2SO”, where both the feature extractor and clas-
sifier are optimized simultaneously in the DTD phase.

Notably, PRM(T), where the types of tasks are given, does not always show
the best performance. Instead, PRM, which employs task embeddings through
clustering, can utilize not explicit but implicit relation across tasks, thereby
resulting in similar or better performance than PRM(T). Conversely, it is rea-
sonable that PRM(D) has the best performance in #1 and PRM(S) performs
the best in #4. Although PRM(D) performs the best in #5, the performance
differences among other the types of PRM are small. Generally, PRM treats
well task embeddings via clustering to handle various types of data sequences.
Moreover, it is demonstrated by comparing “PRM” and “w/o 2SO” that the
two stage optimization contributes PRM’s performance especially in #4, which
is consistent with our hypothesis that it can facilitate the similarity comparison.

4.7 Limitations

While PRM tries to open up masks for knowledge transfer and achieves better
transfer in similar tasks as shown in Table 3, there is room to employ another
explicit mechanism, such as attention. However, it is still unclear which com-
binations perform best. Additionally, as presented in Table 5, the current PRM
is sometimes outperformed by PRM(S) and PRM(D), which may indicate that
with a more effective method for utilizing task embeddings, it will be possible
to improve its performance. The effectiveness of exploiting task embeddings is
proven in most cases; however, a more effective approach needs to be developed.

5 Conclusion

To extend HAT so that it can not only overcome catastrophic forgetting but also
transfer knowledge, the current study makes two contributions. First, we discover
that the task embeddings optimized by parameter masking approaches, such as
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HAT, provide an informative representation for the task similarity. Second, we
propose a new approach, namely PRM, that controls which parameters should
be blocked or relaxed based on the task similarity that is obtained via clustering
on the task embeddings. The experiments show that PRM achieves at least
competitive performance in terms of both prevention of forgetting and knowledge
transfer compared to the latest baselines with much less computation time.
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Abstract. Knowledge tracing aims to trace students’ knowledge states
and predict their future performance based on their historical learning
processes. Most existing methods of characterizing a student’s state are
not effective enough, using only global representation or knowledge con-
cept level representation. Such representation methods cannot consider
the characteristics of knowledge concepts and the relations between con-
cepts at the same time. In this paper, we propose a Dual-State Knowl-
edge Tracing (DSKT) Model with Mutual Information Maximization.
DSKT uses dynamic routing to extract knowledge commonalities from
original knowledge concepts, updates the knowledge state at the concept
and commonality levels, and predicts future performance by fusing two
states. In addition, to incorporate the relationship between exercises and
knowledge concepts, we use the principle of mutual information maxi-
mization to learn their representations. Extensive experimental results
show the effectiveness of our model.

Keywords: Knowledge tracing · Dynamic routing · Mutual
information maximization · Knowledge commonality

1 Introduction

Online education has gradually become popular in recent years. Tracking the
students’ knowledge mastery level plays an important role in online education
so that education platforms can provide students with more personalized learn-
ing schedules. Knowledge tracing (KT) [5] is designed to model the students’
learning states and predict their future learning performance by analyzing lots
of historical logs produced during the learning process.

Although there has been considerable research on knowledge tracing [9,17],
their abilities to characterize students’ states are still limited, and these meth-
ods can be mainly divided into two categories. The first kind of method is to
represent the learner’s knowledge state at the latent global level, such as DKT
[18] summarizes the overall state of the student with the hidden state in RNN.
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Fig. 1. A case of a student’s exercising sequence. She initially answered e1 about
“Ordering Integer” incorrectly, but in the follow-up learning process, she answered
the questions about “Ordering Fraction” and “Ordering Real Number” correctly, we
could infer the correct response on e4 with a great probability.

Practically, a straightforward idea of judging how a student will perform on a
future exercise is to consider how well he has mastered the knowledge concept
contained in that exercise. However, the abstract fusion state representation
cannot give such an intuitive modeling process. DKVMN [26] extends the single
hidden state into several latent memory slots, but still lacks the use of corre-
spondence between exercises and knowledge concepts. Another type of method
is to represent the learner’s knowledge state at the concept level such as BKT
[5] uses a corresponding binary variable to indicate whether the student has
mastered each knowledge concept, but modeling knowledge states separately for
each knowledge concept tends to ignore the correlation between knowledge con-
cepts. To illustrate this, we give a case in Fig. 1. A certain concept may not be
practiced by the student for a relatively long period, the results of the student’s
interactions at other concepts will affect the state of this concept, the concept-
level state is hard to capture this effect. Some works like GKT [13], SKT [23]
have tried to solve this problem by modeling on concept graphs, but the effect
is not satisfactory due to the lack of explicit knowledge structure annotation.

To address the above problems, in this paper, we propose a novel knowl-
edge tracing method called Dual-State Knowledge Tracing (DSKT) Model with
Mutual Information Maximization to model the evolution of the student’s knowl-
edge state at different levels simultaneously. To capture the relevance between
knowledge concepts and incorporate this relevance when updating the knowledge
state, we use dynamic routing [19] to discover commonalities between knowledge
concepts and model the state evolution on them. The concept-level state provides
a more refined tracing capability and the commonality level state representation
can take into account the associations between knowledge skills. Besides, to
introduce the many-to-many relationship between exercises and concepts into
their representations, we minimize the InfoNCE [14] loss based on the idea of
maximizing mutual information between exercises and concepts. In summary,
the contributions of this paper are as follows:

1) We propose a new method to depict the student’s abilities by simultaneously
modeling the student’s knowledge state at the specific knowledge concept
level and abstract knowledge commonality level.
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2) We design a knowledge commonality extractor that introduces the dynamic
routing to extract knowledge commonalities from knowledge concepts.

3) We propose a pre-training task based on the principle of mutual information
maximization [7] to enhance the representation of exercises and concepts.

4) We validate the effectiveness of our method on multiple datasets, and the
experimental results show the superiority of proposed method.

2 Related Work

Early studies on knowledge tracing are based on traditional machine learning
methods. BKT [5] is the most representative work among them, which uses the
hidden Markov model to track the student’s learning state and models the stu-
dent’s mastery as a binary variable. In addition, some factor analysis models
based on logistic functions, such as LFA [1] and PFA [16], evaluate the probabil-
ities of students answering questions correctly by considering some factors (e.g.
the number of correct responses and incorrect responses) in the learning process.

The methods of deep learning have been introduced into the field of knowl-
edge tracing in recent years. DKT [18] uses a recurrent neural network for knowl-
edge tracing for the first time and represents the knowledge state of the student
by the hidden state. Many subsequent works have made extensions and improve-
ments to DKT, such as considering students’ forgetting process [12] or incor-
porating some feature engineering [27]. DKVMN [26] introduces the key-value
memory network [11] into the KT task, which maintains a key matrix and a
value matrix, and uses read and write operations to store and update the state.
These works do not utilize the text information of the exercise. EERNN [22]
uses a bidirectional LSTM [8] to learn semantic information in text of the ques-
tion to enhance the performance of the model. The outstanding performance of
Transformer [24] in the field of NLP also attracted the attention of researchers.
SAKT [15] introduces the multi-head self-attention mechanism into the KT task
for the first time, and SAINT [3] directly applies the encoder and decoder struc-
tures of the Transformer to the model. In addition, in order to use the structural
information between the knowledge concepts, GKT [13] uses the potential graph
structure formed by the knowledge concepts to model the temporal knowledge
state, SKT [23] introduces the transfer of knowledge theory [21] on this basis,
emphasizing the influence propagate between related knowledge concepts.

Previous methods used to represent the learner’s state cannot fully consider
the specificity of each concept and the potential relationship between them. Our
work tries to solve this problem by fusing the knowledge state at different levels.

3 Problem Formulation

In knowledge tracing, we have an exercise set E containing M exercises, a knowl-
edge concept set C containing N concepts, and an exercise-concept correlation
matrix Q ∈ R

M×N consisting only of zeros and ones, If exercise i contains knowl-
edge concept j, Qij = 1; otherwise Qij = 0. A student’s history record of doing
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exercises is X = {(e1, r1), (e2, r2), ..., (et, rt)}, where et ∈ E means that the stu-
dent answered the exercise et at time step t, rt = 1 means a correct response
and rt = 0 means an incorrect one.

The knowledge tracing task can be formalized as: At time step T , given an
exercise eT , we will predict the student’s performance on this exercise based on
the past performance up to time T −1, that is, p(rT = 1|eT ,XT−1), which means
the probability of answering eT correctly.

4 Method

In this section, we will present the proposed DSKT model in detail. The general
framework of the model is shown as Fig. 2.

Fig. 2. The architecture of the DSKT model.

In DSKT, the MIM module aims to obtain pre-trained representations of
exercises and knowledge concepts based on the principle of mutual information
maximization. The KCE module uses dynamic routing to extract knowledge
commonalities from the original knowledge concepts. Then, in the dual state
evolution module, a GRU [2] unit is used to model the changes in the student’s
concept-level state (noted as concept state). At the same time, we use the read
and write process to maintain and update the student’s knowledge commonality-
level state (noted as commonality state).

4.1 Representation Learning with MIM

Exercises and knowledge concepts can be regarded as two views of the content
that the student interacts with. For each exercise, the knowledge concepts that
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it contains are generalizations of its characteristics. Likewise, for a knowledge
concept, all the exercises associated with it are its concrete presentation.

Mutual information measures the dependence between two random variables,
but it is not easy to calculate directly in practice. Previous work [14] established a
connection between mutual information maximization and InfoNCE loss. Given
an exercise i, the set of knowledge concepts it contains is Ci = {j|Qij = 1}.
Now, let ei ∈ R

d denote the embedding of exercise i and cj ∈ R
d denote the

embedding of knowledge concept j. With the help of InfoNCE loss, we can
maximize the mutual information of the exercise and concept representations.
That is, we minimize the loss function as follows:

LMIM (i) = −
∑

j∈Ci

[log
f(ei, cj)∑
k∈C f(ei, ck)

] (1)

The function f is implemented with dot product with activation:

f(ei, cj) = σ(ei · cj) (2)

where σ is the sigmoid function. We can easily extend the loss of the single
exercise to the entire exercise set. In the pre-training stage, we learn embeddings
of exercises and concepts by minimizing this loss function, then use the learned
parameters to initialize the model in the subsequent process.

4.2 Knowledge Commonality Extractor

To obtain the representation of knowledge commonality, we feed the original
concept representation into a knowledge commonality extractor (KCE). In this
paper, we use dynamic routing to achieve it. Each knowledge commonality can
be seen as an aggregation of primitive concepts in different feature spaces.

Given the original concept embedding ci, where i belongs to {1, ..., N}, the
goal of the knowledge commonality extractor is to compute the knowledge com-
monality matrix V ∈ R

L×d, where L is the number of knowledge commonalities.
KCE is carried out in an iterative manner. We will first calculate the linear

transformation of each knowledge concept:

ui|j = Wjci (3)

The transformation matrix Wj ∈ R
d×d transforms the concept ci into the

potential contributor of the jth knowledge commonality.
Then, at r-th iteration, the candidate knowledge commonality vector ṽr

j will
be computed as a weighted sum of all the transformations of concepts:

ṽr
j =

M∑

i=1

drijui|j (4)

A normalization operation is applied to ṽr
j to obtain the bounded results of

this iteration:

vr
j =

ṽr
j

‖ṽr
j‖

(5)
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drij is the coupling coefficient, calculated as:

drij = Softmax(brij)

=
exp brij∑M
i=1 exp brij

(6)

b0ij is initialized to zero before the first iteration and accumulates the agree-
ment of the candidate knowledge commonality and the transformations of con-
cepts at the end of each iteration:

br+1
ij = brij + ui|j · vr

j (7)

After multiple iterations of the above process, we will finally get the com-
monality matrix V by stacking all commonality vectors vj of the last iteration.

4.3 Dual State Evolution

In DSKT, at time step t, we assume that students have two kinds of knowledge
state, concept state Ht ∈ R

N×d and commonality state Gt ∈ R
L×d. In this

section, we will combine the two states to predict student performance and
update them dynamically.

Performance Prediction. The embedding of the input exercise et ∈ R
d will

be dot-producted with the knowledge commonality matrix to get its importance
on each knowledge commonality. After a softmax unit, the final set of weights
for the exercise is obtained:

wi
t = Softmax(Vi · eet) (8)

where Vi is the i-th row of the knowledge commonality matrix. Using this set
of weights, we can read the commonality state related to the exercise from the
commonality state matrix Gt:

rt =
L∑

i=1

wi
tG

i
t (9)

Suppose that the set of knowledge concepts of size n corresponding to the
exercise et is Cet . The probability of a student answering et correctly is

yt =
1
n

∑
c∈Cet

σ(Wp(sct ⊕ eet) + bp) (10)

sct = σ(Ws(Hc
t ⊕ rt) + bs) (11)

where Hc
t ∈ R

d indicates the concept state corresponding to concept c (i.e., the
c-th row of Ht), ⊕ denotes the concatenation operator, Wp ∈ R

2d×1, Ws ∈
R

2d×d are weight matrices, bp ∈ R
1, bs ∈ R

d are bias terms.
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State Update Module. At each time step, the embedding xt of the student’s
interaction (et, rt) is constructed as:

xt =

{
eet ⊕ 1, if rt = 1
eet ⊕ 0, if rt = 0

(12)

where 1 = (1, 1, ..., 1) with the same dimension of eet , and 0 has a similar form.
For the concept state, we use a GRU unit to update it as:

Hc
t+1 =

{
GRU(Hc

t ,xt), if c ∈ Cet

GRU(Hc
t ,0), otherwise

(13)

For the commonality state, we update it with write process. To forget the
historical information in the commonality state and introduce the latest infor-
mation, an erase vector zt and an add vector at are calculated as:

zt = Sigmoid(Wzxt + bz) (14)

at = Sigmoid(Waxt + ba) (15)

the new commonality state matrix Gt+1 will be updated as follows:

G̃i
t+1 = Gi

t[1 − wi
tzt] (16)

Gi
t+1 = G̃i

t+1 + wi
tat (17)

where Wz, Wa ∈ R
2d×d, bz, ba ∈ R

d are weight matrices and bias items.

4.4 Training

According to the prediction of the probabilities of the student answering the
question correctly at each step, all trainable parameters will be trained by min-
imizing the binary cross-entropy loss:

loss = −
∑

t

(rtlog yt + (1 − rt)log (1 − yt)) (18)

5 Experiment

In this section, we carry out experiments to verify the effectiveness of DSKT.
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5.1 Dataset

Our experiments are conducted on the following four datasets: ASSIST-
ments20091, ASSISTments20122, ASSISTments Challenge3, Ednet4, and their
detailed statistical information is shown in Table 1.

Table 1. Statistics of datasets.

ASSIST09 ASSIST12 ASSISTCha Ednet

Students 4,217 46,674 1,709 784,309

Exercises 26,688 179,999 3,162 13,169

Concepts 123 265 102 188

Responses 346,860 6,123,270 942,816 95,293,926

Avg. skills per exercise 1.197 1.000 1.036 2.260

The ASSISTments2009 and ASSISTments2012 datasets are derived from stu-
dent interaction logs collected from online educational platforms in the school
year 2009–2010 and 2012–2013. The ASSISTments Challenge was used in the
2017 ASSISTments Datamining Competition, which is collected from students’
use of the ASSISTments blended learning platform in middle school from 2004–
2007. EdNet is a large-scale hierarchical dataset consisting of student interaction
logs collected over more than 2 years from Santa [4]. Due to the large scale of
the EdNet, we randomly selected 5000 students’ data to use.

For all the above datasets, we remove the sequences with lengths less than
5 and the exercises without knowledge concept annotation. In addition, instead
of dividing a question with multiple knowledge concepts into multiple questions
and simply treating the concept as the question like some previous works [18,26],
which will introduce unreasonable noise, we use the original question sequence as
input. We split 80% of the dataset as the training set and 20% as the test set, five-
fold cross-validation is applied on the training set to select the hyperparameter
setting. The area under the receiver operating characteristics curve (AUC) and
root mean squared error (RMSE) are used as the evaluation metrics.

5.2 Performance Comparison

We compare the performance of DSKT with the following models:

1) BKT [5] models the students’ skill mastery levels as binary variables and
traces them with hidden Markov model.

1 https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data.
2 https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-

affect.
3 https://sites.google.com/view/assistmentsdatamining/dataset.
4 https://github.com/riiid/ednet.

https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data
https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-affect
https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-affect
https://sites.google.com/view/assistmentsdatamining/dataset
https://github.com/riiid/ednet
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2) DKT [18] utilizes recurrent neural network to model the student’s learning
process and uses hidden layer vectors to represent the knowledge states.

3) DKT+ [25] tries to solve the problem of failing to reconstruct the observed
input and inconsistent predicted performance across time-steps in DKT.

4) DKVMN [26] uses a key-value memory network to store and update stu-
dents’ knowledge levels.

5) SAKT [15] applies the multi-head self-attention mechanism to the knowledge
tracking task.

6) AKT [6] uses a novel monotonic attention mechanism to capture relations
between questions that the learner has interacted with in the past.

7) LPKT [20] monitors students’ knowledge states from the perspective of learn-
ing gains, and considers the impact of answer time and interval time.

Table 2. Results of the KT methods on student performance prediction.

Method ASSIST09 ASSIST12 ASSISTCha Ednet

AUC RMSE AUC RMSE AUC RMSE AUC RMSE

BKT 0.6308 0.4849 0.5912 0.5403 0.5767 0.4917 0.5409 0.4880

DKT 0.7015 0.4538 0.7316 0.4253 0.7564 0.4443 0.6892 0.4542

DKT+ 0.7144 0.4536 0.7201 0.4281 0.7581 0.4404 0.6927 0.4522

DKVMN 0.6917 0.4511 0.6956 0.5216 0.7219 0.4571 0.6933 0.4535

SAKT 0.6385 0.4875 0.7179 0.4281 0.7129 0.4626 0.6640 0.4631

AKT 0.7426 0.4361 0.7417 0.4197 0.7497 0.4470 0.7192 0.4437

LPKT – – 0.6894 0.4368 0.6976 0.4652 0.6205 0.4674

DSFKT 0.7753 0.4174 0.7734 0.4070 0.7671 0.4376 0.7639 0.4282

The experimental results are shown in Table 2. As we can see, our proposed
DSKT model performs the best on all four datasets, indicating the effectiveness
of our model in terms of student performance prediction ability. Specifically,
models based on deep learning such as DKT outperform traditional machine
learning methods like BKT, which shows the advantage of deep learning for
knowledge tracing. Besides, our model outperforms DKT and DKVMN, indi-
cating the limitation of using only abstract fusion state to represent students’
mastery levels. In addition, DSKT performs better than models based on the
self-attentive mechanism. The possible reason is that DSKT considers the state
at concept level. Even if the two exercises are a long time apart, DSKT can
directly establish a connection through their shared concepts without relying on
the attention mechanism. Although LPKT additionally models the time effects
on learning gain and forgetting, it still performs worse than our model due to the
lack of key information of the concepts contained in exercises. It is worth not-
ing that although DSKT is designed to enhance the representation of questions
containing multiple knowledge concepts, it still performs well in cases where
the question contains only a single knowledge concept as the result shown on
ASSISTment2012.
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5.3 Ablation Analysis

In order to investigate the effectiveness of each module in DSKT, we construct
several variants of DSKT and conduct some ablation experiments.

1) DSKT/MIM removes the pre-training process of embeddings of exercises and
concepts, uses an embedding layer to learn the representation automatically.

2) DSKT/CS removes the knowledge commonality state, i.e., only the student’s
state at each knowledge concept is considered.

3) DSKT/KS removes the knowledge states at knowledge concept level.
4) DSKT/DR removes the dynamic routing-based knowledge commonality

extractor module and uses randomly initialized knowledge commonality rep-
resentation.

Table 3. Ablation study performance (AUC) of DSKT.

Method ASSIST09 ASSIST12 ASSISTCha Ednet

DSKT/MIM 0.7662 0.7620 0.7605 0.7300

DSKT/KS 0.7644 0.7566 0.7622 0.7289

DSKT/CS 0.7618 0.7590 0.7322 0.7115

DSKT/DR 0.7627 0.7700 0.7614 0.7298

DSKT 0.7753 0.7734 0.7671 0.7639

The performance of the above variants of the model is shown in Table 3.
From Table 3, we can see that (1) the original DSKT performs best, indicating
each module’s effectiveness in the model. (2) After removing the pre-training of
exercise and knowledge concept representations, the performance of the model
deteriorates on the four datasets, which indicates that the MIM module helps to
enhance the representations of our model. (3) Removing either the commonality
state or the concept state leads to a decline in model performance, which means
that it makes sense to consider knowledge states at these two levels. (4) From
the comparison of DSKT/DR and DSKT, the knowledge commonality extractor
based on dynamic routing can indeed learn better knowledge commonalities.

Fig. 3. Visualization of exercise embeddings with and without MIM.
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5.4 Embedding Visualization

In order to show the effect of DSKT on representation learning vividly, we use the
t-SNE [10] algorithm to visualize the embeddings of the exercises. To facilitate
differentiation, we select the top 30 knowledge concepts with the most exercises
from ASSISTment2012 and draw their associated exercises in different colors.

As shown in Fig. 3, the distribution of exercise embeddings learned by the
model without MIM is relatively chaotic, while the exercise embeddings of DSKT
are split into several clusters. The exercises with the same knowledge concept
are located in the same cluster and close to each other, and unrelated exercises
are well separated.

6 Conclusion

In this paper, we propose a dual-state knowledge tracing model to enrich the
student’s knowledge state representation. By mining the knowledge commonal-
ities, we establish the knowledge state at the commonality and concept levels
to jointly predict the student’s performance. Based on the principle of mutual
information maximization, we use the pre-training method to integrate the con-
nection between exercises and knowledge concepts into their representations.
Extensive experiments on several datasets verify the effectiveness of our proposed
model.

In the future, we will consider more diversified relations (such as hierarchical
relations, etc.) to enrich the student’s knowledge state representation. Further,
we will explore the learning process and provide a stronger explanatory for the
knowledge tracing process by combining relevant theories of pedagogy.

References

1. Cen, H., Koedinger, K., Junker, B.: Learning factors analysis – a general method for
cognitive model evaluation and improvement. In: Ikeda, M., Ashley, K.D., Chan,
T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 164–175. Springer, Heidelberg (2006).
https://doi.org/10.1007/11774303 17

2. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

3. Choi, Y., et al.: Towards an appropriate query, key, and value computation for
knowledge tracing. In: Proceedings of the Seventh ACM Conference on Learning@
Scale, pp. 341–344 (2020)

4. Choi, Y., et al.: EdNet: a large-scale hierarchical dataset in education. In: Bitten-
court, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020.
LNCS (LNAI), vol. 12164, pp. 69–73. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-52240-7 13

5. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of
procedural knowledge. User Model. User-Adapt. Interact. 4(4), 253–278 (1994)

6. Ghosh, A., Heffernan, N., Lan, A.S.: Context-aware attentive knowledge tracing.
In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2330–2339 (2020)

https://doi.org/10.1007/11774303_17
http://arxiv.org/abs/1406.1078
https://doi.org/10.1007/978-3-030-52240-7_13
https://doi.org/10.1007/978-3-030-52240-7_13


DSKT 391

7. Hjelm, R.D., et al.: Learning deep representations by mutual information estima-
tion and maximization. In: International Conference on Learning Representations
(2018)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

9. Liu, Q., Shen, S., Huang, Z., Chen, E., Zheng, Y.: A survey of knowledge tracing.
arXiv preprint arXiv:2105.15106 (2021)

10. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res.
9(11), 1–27 (2008)

11. Miller, A.H., Fisch, A., Dodge, J., Karimi, A.H., Bordes, A., Weston, J.: Key-value
memory networks for directly reading documents. In: EMNLP (2016)

12. Nagatani, K., Zhang, Q., Sato, M., Chen, Y.Y., Chen, F., Ohkuma, T.: Augmenting
knowledge tracing by considering forgetting behavior. In: The World Wide Web
Conference, pp. 3101–3107 (2019)

13. Nakagawa, H., Iwasawa, Y., Matsuo, Y.: Graph-based knowledge tracing: mod-
eling student proficiency using graph neural network. In: 2019 IEEE/WIC/ACM
International Conference on Web Intelligence (WI), pp. 156–163. IEEE (2019)

14. Oord, A.V.d., Li, Y., Vinyals, O.: Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748 (2018)

15. Pandey, S., Karypis, G.: A self-attentive model for knowledge tracing. arXiv
preprint arXiv:1907.06837 (2019)

16. Pavlik Jr, P.I., Cen, H., Koedinger, K.R.: Performance factors analysis-a new alter-
native to knowledge tracing. Online Submission (2009)
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Abstract. Dynamic link prediction target to predict future new links in
a dynamic network, is widely used in social networks, knowledge graphs,
etc. Some existing dynamic methods capture structural characteristics
and learn the evolution process from the entire graph, which pays no
attention to the association between subgraphs and ignores that graphs
under different granularity have different evolve patterns. Although some
static methods use multi-granularity subgraphs, they can hardly be
applied to dynamic graphs. We propose a novel Temporal K-truss based
Recurrent Graph Convolutional Network (TKRGCN) for dynamic link
prediction, which learns graph embedding from different granularity sub-
graphs. Specifically, we employ k-truss decomposition to extract multi-
granularity subgraphs which preserve both local and global structure
information. Then we design a RNN framework to learn spatio-temporal
graph embedding under different granularities. Extensive experiments
demonstrate the effectiveness of our proposed TKRGCN and its superi-
ority over some state-of-the-art dynamic link prediction algorithms.

Keywords: Dynamic graph · Link prediction · Network embedding

1 Introduction

Link prediction, as a task of predicting the relationship between entities, plays
a vital role in many graph mining applications, such as social networks [21] and
biology network [18]. It can be divided into two categories. One is to predict miss-
ing links on static graph, and the other predicts new links that may appear in the
future on dynamic graph. Since many real-world networks are dynamic, whose
nodes and edges appear or disappear over time, dynamic link prediction [4] can
keenly capture the variation trend and achieve better prediction effect, there-
fore attracts wide attention. For instance, in social networks, we predict future
interactions between users for friend recommendation; In academic networks, we
study the cooperation of scholars to predict their future co-workers.

Dynamic link prediction aims to learn the evolution of the graph from his-
torical information and predict future links. Existing methods mainly extract
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13280, pp. 393–405, 2022.
https://doi.org/10.1007/978-3-031-05933-9_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05933-9_31&domain=pdf
https://doi.org/10.1007/978-3-031-05933-9_31
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features (structure and attribute information) at different time from the entire
graph and use those time-stamped features to model graph dynamic, such as
GCRN [16], EvolveGCN [14], DynamicTriad [22]. However, all these methods
ignore the fact that the entire graph usually contains diverse structures, and
the evolution of different structures over time is different. This may lead to sub-
optimal performence of link prediction. For example, Fig. 1 shows the evolve
of subgraphs with varying structures from time t to time t+1. In blue and
yellow dense subgraphs, more links will appear at next time. In green sparse
subgraph, it is unlikely to have more future node interactions. Simply learning
the evolution of the entire graph without distinguishing structures will affect the
accuracy of link prediction. Therefore, it is necessary to use a multi-granularity
graph instead. The graphs of different granularities contain different structures,
which facilitates better learning graph structural characteristics and dynam-
ics. However, existing dynamic link prediction methods can’t well divide graph
to multi-granularity subgraphs to learn the evolution of graphs under different
granularities. Although in static link prediction there are some methods learn
graph structural characteristics on multiple granularities such as mlink [1] and
PME [2], this kind of method only build multi-granularity graphs on the local
subgraph composed of nodes and their neighbors, without dividing global sim-
ilar structures to same granularity. Thus, it can hardly be applied to dynamic
link prediction to learn the co-evolution pattern of the global similar structures.
A recent method CTGCN [11] uses multi-granularity graphs to capture richer
hierarchical structure features for dynamic link prediction. However, it does not
distinguish the structure evolution under different granularities.

Fig. 1. It shows the changes of the subgraphs from time t to t+1. The red line represents
the new link, and the circle represents the local multi-granularity subgraph divided by
the one-hop and two-hop neighbors of the middle node (best see in color).

Multi-granularity graphs can mine richer structure characteristics. Still, when
applied to dynamic link prediction tasks, the inherent difficulty mainly originates
from two aspects: 1) How to divide multi-granularity graphs? 2) How to learn
structural features and evolution patterns on multi-granularity graphs? To better
explain the first problem, the circle in Fig. 1 shows a partition way to get the
multi-granularity subgraphs by node multi-order neighbors. Still, this method
only focuses on the local multi-level structure, ignoring that, on the entire graph,
the structures in the blue and yellow subgraphs are similar and have similar
evolution patterns. Thus we attempt to seek a graph partition method that can
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retain both local and global information. For the second problem, the diversity of
the structural characteristic and dynamics of multi-granularity dynamic graphs
forces us to design a unified framework to aggregate them.

To materialize our idea, we present a novel Temporal K-truss based Recurrent
Graph Convolutional Network (TKRGCN) for dynamic link prediction, which
learns structural characteristics and dynamics from different granularity. Specif-
ically, we employ k-truss decomposition to extract multi-granularity subgraphs
which preserve both local and global structure information. To better extract
features to capture diverse structural information, we modify GCN to alleviate
the problem of over-smoothing as the number of layers deepens, enabling GCN
to propagate high-order features effectively. Then we design a framework to learn
the evolution process of subgraphs of different granularities. Subgraphs of differ-
ent granularities make different contributions to the evolution of the entire graph.
Discriminatively treating different subgraphs helps to model the complete evo-
lution process. We conduct extensive experiments on six real-world datasets and
the result shows that our model performs better than current state-of-the-art
methods. The main contributions of this paper are as follows:

– We propose TKRGCN for dynamic link prediction, which learns structural
characteristics and dynamic evolution from different granularity subgraphs
while preserving both local and global similar subgraph features.

– We decouple GCN and deepen the propagation depth of GCN to alleviate
the performance degradation so that GCN can effectively extract high-order
features from the subgraph.

– The experiment results demonstrate that TKRGCN outperforms the state-
of-the-art benchmark in link prediction.

2 Related Work

The dynamic link prediction method needs to capture both structural prop-
erties and time evolution patterns. It mainly falls into two broad categories:
discrete methods and continuous methods. Discrete methods pay more atten-
tion to changes in structural characteristics of dynamic graphs. Many methods
use the architecture of combining GNNs [15] and RNNs [13] such as GCRN [16],
RgCNN [17] and GGNN [10]. EvolveGCN [14] adapts to GCN in the time dimen-
sion by using RNNs to encode the parameters of GCN. DynGEM [6] employs
autoencoder to generate highly non-linear node embeddings and makes some
improvements on computation. In addition, continuous methods more consider
the graph evolving process. DynamicTriad [22] models dynamic network evolu-
tion through modeling the triadic closure process. Dyrep [19] defines topological
evolution and node interaction to simulate the evolution of dynamic graphs.
However, these methods do not consider the multi-granularity dynamic graph
evolution. Although CTGCN [11] divides out the multi-granularity graph to
better capture the structural information, it does not distinguish the different
evolution modes under the multi-granularity.
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In static link prediction, there are some methods to learn graph structural
characteristics on multiple granularities. For instance, mlink [1] proposes a node
aggregation method that can transform the enclosing subgraph into different
scales to learn scale-invariant features. PME [2] integrates first-order and second-
order proximities and projects feature to different spaces to model nodes and
links. But, they only build multi-granularity graphs on the local subgraphs and
can hardly be applied to dynamic link prediction to learn the co-evolution pat-
tern of the global similar structures.

3 Preliminaries

Consider a static undirected graph as G = (V,E), where V = {v1, . . . , vN}
denotes the node set with N nodes and E is the link set. We denote the dynamic
graph G as an ordered set of snapshots {G1, G2, . . . , GT } from time step 1 to
T . Gt = (V,Et) is the state of the graph at time step t with a shared node set
V and Et contains the links that appear at time step t. The adjacency matrix
At ∈ R

n×n can be either weighted or unweighted.
Given a series of snapshots represented by A = {A1, A2, . . . , At} and node

features X = {X1,X2, . . . , Xt}, the goal is to predict At+1 at time t + 1. In
our method, we learn the mapping series F = {f1, f2, . . . , ft} that ft encodes
each node in Gt into an embedding space with d(d � N) dimension. The node
embeddings at time step t + 1 will be utilized to predict links.

4 The Proposed Method

We propose Temporal K-truss based Recurrent Graph Convolutional Network
(TKRGCN) shown in Fig. 2, our method consists the following two parts: 1)
Multi-granularity graph partition and feature extraction: To mine richer graph
information, we apply the k-truss decomposition algorithm to divide multi-
granularity subgraphs. This algorithm retains the local similar structure and
reflects the global structural similarity, which is conducive to better learning the
evolution of dynamic graphs later. Besides, to capture diverse structural infor-
mation, we decouple GCN and deepen the depth of feature propagation, thus
alleviating the problem of deep GCN performance degradation and enabling
GCN to extract high-order features. 2) Spatio-temporal evolution embedding: To
learn the structural characteristics and temporal evolution process from multi-
granularity subgraphs, we design a novel architecture composed of RNNs and
Attention, which learn structural information and temporal evolution of differ-
ent granularities. Discriminatively treating different subgraphs helps to model
the entire graph embedding.
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4.1 Multi-granularity Graph Partition and Feature Extraction

Multi-granularity Graph Partition. To mine rich multi-granularity struc-
tures, we utilize k-truss decomposition [8] to obtain subgraphs. The definition is
defined as follows:

Fig. 2. Schematic illustration of TKRGCN.

Theorem. k-truss decomposition: Given a graph G and k ∈ N, a k-truss
subgraph ̂Gk of G is the largest subgraph such that ∀e ∈ E( ̂Gk), sup

̂Gk
(e) ≥

k − 2.
sup

̂Gk
(e) is the support of edge e, defined as the number of triangles contain-

ing e. G is divide to a series of nested hierarchical subgraphs { ̂G2, ̂G3, . . . , ̂Gkmax
}

by k-truss decomposition, where kmax is the max subgraph truss number.
According to the definition, ̂G1 = ̂G2, so the index of subgraphs start from
2.

From the definition, we know that a subgraph with a high value of k has a
denser structure and fewer nodes. Thus the probability of links between nodes
in ̂Gk is greater. Intuitively, the more friends two people have in common, the
stronger their relationship will be. In social networks, many groups are inter-
connected with dense structures, such as peer groups. People usually have close
connections with members of the same group and have little contact with other
groups. Meanwhile, the evolution of structurally similar groups, such as peer
groups from different companies, is similar. K-truss decomposition can divide
these similar structures into subgraphs under the same granularity, which is
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convenient for learning the common evolution process of these global similar
structures.

In summary, the multi-granularity subgraphs based on k-truss decomposition
retain both local and global similar structures, helping to capture rich hierar-
chical structure information and learn the evolution process of structures under
different granularities, respectively.

Modified GCN Architecture. To extract sufficient features from each sub-
graph to reflect the diversity of structures, we need to propagate features in large
fields. An effective and stable method for feature extraction is GCN [9], which
learns high-order node features by iteratively aggregating the features from its
neighbors. GCN mainly includes two operations: feature propagation and feature
transformation. The former is the propagate operation that propagates features
about a node’s neighbors to this node, and the latter represents the transform
operation that maps the aggregated node features to a required embedding space.
There are many variants of GCN. For instance, a general GCN [9] is formulated
as

X(l) = σ
(

˜D− 1
2 ˜A ˜D− 1

2 X(l−1)W (l)
)

, (1)

where ˜A = A + I is the adjacency matrix with self-connections and I is the
identity matrix. ˜D = diag(

∑

j
˜Aij) denotes a diagonal matrix where each diag-

onal entry is the same as corresponding position entry in ˜Aij . σ() is a nonlinear
activation function. The propagation of (1) is P (l) = ˜D− 1

2 ˜A ˜D− 1
2 X(l−1) while

the transform operation is σ
(

P (l−1)W (l)
)

.
High-order features are necessary to model multi-granularity graph struc-

tures. A one-layer GCN only considers the direct neighbors of nodes, while the
multi-layer stacking GCN can learn high-order structural features, but the prob-
lem of over-smoothing may occur. Over-Smoothing refers to the fact that as the
layer deepens, the features of all nodes in the same connected component tend
to be the same. Thus GCN performs worse as it goes deeper. Some works [7,12]
point out that the excessive entanglement of transformation and propagation in
current GCN is the key factor that affects the performance of the model. Decou-
pling these two operations can effectively alleviate the over-smoothing problem.
Inspired by this, We design a mGCN with disentangling propagation and trans-
formation operation as follows:

X0 = MLP (Xinit) , (2)

Xj = ˜D− 1
2 ˜Aj

˜D− 1
2 X0, j = 1, 2, · · · , J, (3)

attj = σ(MLP (Xj)), j = 0, 1, 2, · · · , J, (4)

Xout = softmax(sum(att0 ◦ X0, · · · , attJ ◦ XJ )), (5)

where J is the depth of the propagation, X0 ∈ R
N×d maps the initial node

feature Xinit. attj ∈ R
N×1 is trained to adaptively adjust the information that

each node should retain in each propagation depth. ◦ means the element of att is
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multiplied by the corresponding d-dimensional node vector. Xout is calculated by
combining each propagation layer Xj . We apply our mGCN on k-truss subgraphs
at each time t and get

Xt
k = mGCN(At

k,X
t
init,k). (6)

In our mGCN, we decouple the feature propagation and transformation and
deepen the propagation depth separately. By learning parameters att, we can
adjust the information that the node should retain in different propagation lay-
ers so that mGCN can be applied to larger receptive fields without affecting
performance.

4.2 Spatio-temporal Evolution Embedding

To learn spatial and temporal embedding in multi-granularity graphs, we design
the following architecture shown in Fig. 2.

Spatial Embedding. In spatial dimension, we intend to capture structure
embedding from multi-granularity subgraphs. It can be seen from the previous
section that there is a strong connection between the multi-granularity sub-
graphs {Xt

2,X
t
3, · · · ,Xt

K} obtained by k-truss decomposition. RNN is exactly
suitable for processing highly correlated sequences. On snapshot Gt, we reverse
the sequence as {Xt

K ,Xt
K−1, · · · ,Xt

2} and feed it into RNNs to learn structure
information in spatial dimension. We have a mathematical representation as:

St
2 =RNN(Xt

K , St
1),

St
3 =RNN(Xt

K−1, St
2),

· · ·
St
K =RNN(Xt

2 , St
K−1),

(7)

where S1 = 0 is the initial matrix. St
k represents the hidden state and Xt

k denotes
the input feature. In the input sequence, the subgraph with a high value of k has
a denser structure and fewer nodes. Therefore, the reverse order sequence input
into RNN is to learn the structural development pattern from the dense small
graph to the large sparse graph. In this process, the structure information under
different granularities is merged. The final hidden state output St

K contains
the structural properties of the entire snapshot. We do this on each snapshot
and ultimately obtain spatial node embeddings at each time {S1

K , S2
K , · · · , ST

K}.
Besides, RNN has many variants, we use the Gated Recurrent Unit (GRU) [3].

Temporal Embedding. The k-truss based multi-granularity subgraph extracts
the similar structure on the whole graph into the same granularity subgraph,
which retains the local and global similar structure. In temporal dimension,
subgraphs of different granularities make different contributions to the evolu-
tion of the entire graph. Discriminatively treating different subgraphs helps to
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model the complete evolution process. We use RNN to learn how the subgraphs
evolve over time of different granularities. Under each granularity k, we input
{X1

k ,X2
k , · · · ,XT

k } into RNN as follows:

H1
k =RNN(X1

k ,H0
k),

H2
k =RNN(X2

k ,H1
k),

· · ·
HT

k =RNN(XT
k ,HT−1

k ),

(8)

where T is the length of the time sequence. The temporal module is similar
to the spatial module, and the difference is their input. Note that the structure
embedding sequence {S1

K , S2
K , · · · , ST

K} is also fed into the temporal module with
the same formula as (8) and output ST .

To obtain the final node representation for link prediction, we use the multi-
head attention mechanism to learn the importance of the temporal embedding
and spatial embedding and get the final node embedding Hout. The formula is
defined as follows:

Hout = MultiHeadAtten(ST ,HT
2 , · · · ,HT

K). (9)

4.3 Optimization

To estimate the parameters of our model, we need to specify an objective function
to optimize. We design an unsupervised loss function described as:

L =
T

∑

t=1

∑

u∈V

(Lt
u+ − Lt

u−), (10)

Lt
u+ =

∑

v+∈N+(u)

σ(< hu, hv+ >), (11)

Lt
u− =

∑

v−∈N−(u)

σ(< hu, hv− >). (12)

The “positive” node set N+(u) includes the nodes that sampled in fixed-
length random walks where node u has appeared and the “negative” nodes in
N −(u) are randomly sampled from the entire graph. <,> denotes the Hadamard
product. Such a design guarantees the representations of closely related nodes
are close while the irrelevant nodes are far away from each other.
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5 Experiments

5.1 Datasets and Baselines

We experiment on six dynamic datasets in KONECT1 and SNAP2. Details are
summarized in Table 1. All the datasets are split by month.

We compare our model with two static methods and five dynamic methods.

GCN [9]: It can simultaneously perform end-to-end learning of node features
and structures.
GAT [20]: As an optimization method of GCN, GAT introduces an attention
mechanism to calculate the attention coefficient of the current node and its
neighbors to reduce the impact of noise.

Table 1. Datasets.

Datasets #Nodes #Edges K #Timesteps

UCI 1899 59835 6 7

AS 6828 1947704 11 100

MATH 24740 323357 11 77

FACEBOOK 60730 607487 7 27

ASKU 74924 356822 11 21

ENRON 87036 530284 18 38

GCRN [16]: A direct dynamic embedding method that lets GCN process
each snapshot and provides the output of GCN to the time series component
RNN to learn the temporal patterns.
DynGEM [6]: It uses a deep autoencoder to get non-linear graph embedding
and proposes PropSize to increase the scale of the neural network dynamically.
Dyngraph2vec [5]: A continuation of DynGEM which consider the historical
information of the past l snapshots. It has three variants: dyngraph2vecAE,
dyngraph2vecRNN, and dyngraph2vecAERNN.
EvolveGCN [14]: EvolveGCN uses RNNs to evolve GCN parameters. It has
better results in extreme situations where nodes change frequently.
CTGCN [11]: It uses k-core and GCN to capture the hierarchical nature of
graphs and extends it to dynamic graphs.

Settings. We use the previous l = 5 snapshots Gt−l+1 − Gt to predict the link
in Gt+1. The k-truss decomposition is used to extract 3 subgraphs from each
snapshot, namely, 2-truss to 4-truss subgraphs. For fair comparisons, we set the
embedding dimension d = 128 and uniformly utilize 2 layers in GCN, GAT,
GCRN, EvolveGCN.
1 http://konect.uni-koblenz.de/.
2 http://snap.stanford.edu/.

http://konect.uni-koblenz.de/
http://snap.stanford.edu/
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5.2 Performance Comparison

We conduct several experiments on link prediction. Each link feature vector is
calculated by the Hadamard product of the node-pair vectors. We train a logistic
regression classifier with L2 regularization to classify the positive and negative
links. In addition, the static version of our method KRGCN(remove the temporal
module) can also perform static link prediction, which predicts the missing links
using only the known information at time t. The area under the curve(AUC)
is employed as the evaluation metric. We take the average of AUC as the final
result.

Table 2 demonstrates the link prediction results on six datasets in static and
dynamic models. The best results are shown in bold. Due to memory limita-
tions, the AUC of DynAE and DynAERNN are not available on some datasets
indicated by ‘-’. Our method TKRGCN outperforms other methods on each
dataset, which strongly proves the effectiveness of our approach in using multi-
granularity subgraphs to capture structural and temporal information. Moreover,
our static method KRGCN surpasses some dynamic methods, showing that our
multi-granularity strategy can capture more effective structural properties.

Table 2. Average AUC scores for link prediction.

Methods UCI AS MATH FACEBOOK ASKU ENRON

GCN [9] 0.7082 0.7451 0.7887 0.5928 0.7741 0.8068

GAT [20] 0.7906 0.7027 0.7246 0.5553 0.6793 0.8601

Ours(static) 0.9266 0.9366 0.8857 0.7336 0.8361 0.9082

GCRN [16] 0.8258 0.9309 0.7929 0.6512 0.7818 0.9247

DynGEM [6] 0.9053 0.9413 0.8500 0.6023 0.8032 0.8767

DynAE [5] 0.9231 0.9284 0.9462 0.7401 − −
DynAERNN [5] 0.9019 0.8972 0.8383 − − −
EvloveGCN [14] 0.9126 0.9294 0.8954 0.7435 0.9279 0.9361

CTGCN [11] 0.9368 0.9544 0.9598 0.8158 0.9468 0.9855

Ours 0.9825 0.9608 0.9689 0.8500 0.9838 0.9941

An essential hyper-parameter is K. It determines the granularity level of
the graph. To analyze the influence of K on TKRGCN, we design a small-
scale experiment, take the last 20 snapshots of four datasets for training and
shorten the embedding dimensions to 32. The results are shown in Fig. 3. In the
beginning, with the increase of K, link prediction performance has a specific
improvement, especially in UCI.
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(a) UCI (b) MATH

(c) ASKUBUNTU (d) ENRON

Fig. 3. The AUC performance of various k numbers on four datasets.

5.3 Ablation Study

To further investigate the impact of k-truss decomposition and modified GCN
module for TKRGCN, we reconstruct the architecture as a)TKRGCN-sGCN:
replace the modified GCN with a simple GCN [9] in TKRGCN; b)TKRGCN-
single: TKRGCN without multi-granularity subgraphs. As shown in Table 3,
TKRGCN performs better than the other two methods on all datasets, illustrat-
ing that both the modified GCN and the k-truss decomposition have a positive
effect on TKRGCN. Additionally, compared with TKRGCN-sGCN, the perfor-
mance of TKRGCN-single drops more, which indicates that k-truss based multi-
granularity subgraph partition strategy is essential to dynamic link prediction.

Table 3. AUC for ablation study.

Methods UCI AS MATH FACEBOOK ASKU ENRON

TKRGCN 0.9825 0.9608 0.9689 0.8500 0.9838 0.9941

TKRGCN-sGCN 0.9583 0.9487 0.9349 0.8261 0.9505 0.9638

TKRGCN-single 0.9332 0.9418 0.8924 0.7815 0.9394 0.9471

6 Conclusion

In this paper, we propose a novel framework named TKRGCN for dynamic
link prediction, which learns structural characteristics and dynamic evolution
from multi-granularity subgraphs while preserving both local and global similar
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subgraph features. To better extract features in different subgraphs, we deepen
the propagation depth of GCN to alleviate the over-smoothing problem so that
GCN can be applied to larger receptive fields. The experimental results validate
our method’s effectiveness. Our future work will focus on studying large-scale
dynamic graphs.
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Abstract. Recently, the remarkable effect of applying Dynamic Graph
Neural Networks (DGNNs) to traffic speed prediction has received wide
attention. Existing DGNN-based researches usually use a pre-defined or
an adaptive matrix to capture the spatial correlations in traffic data.
However, these static matrices are not enough to match the dynamic
characteristics of spatial correlations. We argue that the global changes
and local fluctuations of spatial correlations are dynamic with differ-
ent frequencies. To this end, in this paper, we propose a Two-Tower
DGNN (T2-GNN) framework which divides the traffic data into a sea-
sonal static component and an acyclic dynamic component, thus enhanc-
ing traffic speed prediction. The two components generated by an auto-
decomposing block reflect global changes and local fluctuations of spatial
correlations, respectively. Moreover, we use two parallel dynamic graph
generation layers to construct a seasonal graph and an acyclic graph at
each time step. In this way, the high-level representations of these two
kinds of dynamic changes are learned through two dynamic graph con-
volution layers. Besides, the impact of fixed road network structure is
modeled on the pre-defined graph and added to the spatial correlations.
And we capture temporal correlations in temporal block before modeling
spatial correlations. Finally, skip connections are used to converge the
spatial-temporal correlations for final prediction. Experimental results on
an urban dataset and two highway datasets show our proposed frame-
work achieves the state-of-the-art prediction performances in terms of
Mean Average Error (MAE) and Root Mean Squared Error (RMSE).
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Fig. 1. The local fluctuations and global changes of spatial correlations. Figure (a)
is the speed of some nodes in METR-LA dataset for a period of time, and the node
distribution is on the right. The content inside the circle shows the rapid decline and
recovery of speed, about 50 time steps (4 h). Figure (b) is the average speed in two
datasets. In METR-LA, the average speed dropped from 65 to 60 and recovered to 65
after about 1500 time steps (125 h). In SZ-taxi, the average speed dropped from 17 to
10 and this change lasted for 2000 time steps (500 h).

1 Introduction

Traffic speed prediction has been studied for decades. Traditional methods
mostly require data to satisfy stationary assumption for each time series. There-
fore, they are limited by their ability to capture temporal and spatial correla-
tions [8,9]. Later, deep learning models are widely used for modeling temporal
correlations, like Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN), and spatial correlations, like CNN [3,17,19].

Most recently, GNNs have proven effective in modeling non-euclidean spatial
structure data due to their permutation, local connectivity and compositional-
ity [2,4,5]. Graph Convolution Network (GCN) is widely applied to learn spatial
correlations for traffic speed prediction .The effect of spatial correlations depends
on the adjacency matrix that describes the relationships between traffic nodes.
(1) Early GNN-based methods use a pre-defined static matrix as the descrip-
tion of node dependencies [10,12,23]. These matrices are mostly constructed by
calculating the similarity between pairs of nodes [10]. (2) The methods of
adding self-adaptive matrix try to learn the hidden node dependencies to
generate an adaptive matrix as a supplement or alternative to the pre-defined
matrix [15,16]. However, these static matrices are not enough to reflect the spa-
tial correlations of the traffic network. Node dependencies have not only the
inherent impact caused by road network structure but also the dynamic impacts
caused by traffic condition changes [11]. (3) The methods of constructing
dynamic graph are proposed to capture the dynamic changes of spatial corre-
lations [6,15]. What is inadequate is that they attempt to use dynamic graphs
to learn spatial correlations without discriminating different types of dynamics.

We observe that different dynamic changes of spatial correlations have dif-
ferent frequencies and impact ranges. For example, Fig. 1(a) shows that a traffic
congestion at node 15 (the orange speed drops first) affected nodes 3, 17 and
19 on the same road segment over a period of time and disappeared quickly. It
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indicates that this effect is local and occurs frequently (may be caused by spatial
factors such as traffic accidents on specific nodes), so it is called the local fluc-
tuations of spatial correlations. On the other hand, the average speed changes
of the overall road network can infer the common impacts on the traffic nodes.
Then, we observe that the average speed has a low-frequency jump phenomenon
as shown in Fig. 1(b), which may be caused by some events over time. These
events (such as bad weather or holidays) can affect road conditions and change
node dependencies. It is called global changes in spatial correlations. Therefore,
we assume that the traffic flow can be divided into a seasonal static component
and an acyclic dynamic component. Specifically, the seasonal static compo-
nent includes the impact of fixed road network structure and the global
changes of spatial correlations, and acyclic dynamic component represents
the local fluctuations of spatial correlations. A fine modeling of the dynamic
spatial correlations can further enhance DGNN’s ability to improve the accuracy
of traffic speed prediction.

In summary, we propose a Two-Tower Graph Neural Networks (T2-GNN)
for traffic speed prediction. The main contributions of our work are as follows:

– We propose a novel two-tower DGNN framework which consists of stacked
spatial-temporal layers containing a temporal block and a two-tower spatial
block. The spatial block includes an auto-decomposing block and two follow-
ing D-GCN (dynamic graph convolution network) blocks. Each D-GCN block
contains a dynamic graph generation and a graph convolution layer.

– Our D-GCN block utilizes dynamic graph generation to construct a sea-
sonal graph and an acyclic graph for seasonal static components and acyclic
dynamic components at each time step. Following these dynamic graphs, GCN
can capture global changes and local fluctuations in spatial correlations.

– Conducted on an urban and two highway datasets, experimental results show
that our framework outperforms the state-of-the-art methods in terms of
MAE and RMSE.

The rest of this paper is organized as follows. Section 2 discusses the related
work. The problem definition is in Sect. 3. Section 4 describes our framework.
The evaluation results are present in Sect. 5. Finally, Sect. 6 concludes our work.

2 Related Works

2.1 Traffic Speed Prediction

After years of efforts, the researches on traffic speed forecasting have achieved
great accomplishments. Previous studies build a data-driven statistical model for
prediction, such as ARIMA [8,9]. However, these methods are generally designed
for small datasets, and cannot deal with complex changes in traffic data well.
Later, deep learning methods perform better than traditional methods. RNN is
used to capture temporal correlations [10,13]. In order to make better long-term
predictions, Wu et al. designed CNN-based dilated causal convolution to model
temporal dependency, which can achieve better results with lower consumption
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than standard 1D convolution [16]. Another important work direction is how
to learn the spatial correlations in traffic data. Viewing the road network as a
grid graph is a way to learn the spatial correlations via CNN [19,20]. However,
compared with CNN, GNN is better at extracting node correlations due to its
ability to process non-European data.

2.2 Graph Neural Network

From the first application of GNN to traffic speed prediction, it is always a key
issue that how to construct a suitable graph to represent the node dependencies.
Bruna et al. first applied GCN to capture spatial dependencies based on a sym-
metric matrix [1]. Considering the directionality of traffic data, Li et al. applied
bidirectional random walks on an asymmetric matrix to learn the node depen-
dencies [10]. Following them, pre-defined adjacency matrix is adopted to model
the spatial correlations [12,18,22]. However, this static matrix is not enough to
describe the dynamic spatial correlations.

In order to overcome the limitation of the pre-defined matrix, self-adaptive
matrix is proposed to preserve hidden node dependencies [14,16,21]. However,
it is essentially a static matrix due to lack of dynamic adjustment. Wu et al.
proposed a graph learning layer that generates a dynamic graph by calculat-
ing similarities among learnable node embeddings [15]. Inspired by the Trucker
decomposition, Han et al. designed a dynamic graph construction layer to gen-
erate dynamic graphs for time-specific node dependencies during a day [6]. We
argue that global changes and local fluctuations of spatial dependencies have
different characteristics. Therefore, the power of DGNN can be further released
by constructing the fine topology of the dynamic graph at each time step.

3 Problem Definition

The traffic speed prediction is usually regarded as a multivariate time series pre-
diction with auxiliary prior knowledge. The traffic network, the prior knowledge,
is represented by a weighted directed graph G = (V, E , A). V is a set of nodes
|V| = N, and E is a set of edges. A ∈ R

N×N denotes the adjacency matrix.
At each time step t, the speed of traffic node is Xt ∈ R

N×D, where D is the
features length of each node. Given the graph G and T steps historical traffic
speed X(t−T+1):t, our task is to learn a function f (·) which is able to map
X(t−T+1):t and G to next Q steps traffic speed Xt+1:(t+Q), represented as follow:

[
X(t−T+1):t,G

] f(·)−→ Xt+1:(t+Q) (1)

4 Methodology

4.1 Our Framework

The overall framework of our T2-GNN is shown in Fig. 2 with k stacked
spatial-temporal layers and an output layer. In each spatial-temporal layer, the
temporal block (Sect. 4.2) and subsequent two-tower spatial block (Sect. 4.3)
are designed to capture the temporal correlations and spatial correlations of
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Fig. 2. Our framework.

traffic data, respectively. To avoid the problem of gradient vanishing, the resid-
ual connections are added from the input of the temporal block to the output
of the two-tower spatial block. The output of current spatial-temporal layer will
be used as the input of the next spatial-temporal layer. Finally, skip connections
are added after each temporal block to connect features for predicting future
traffic speed.

As shown in the bottom part of Fig. 2, our proposed two-tower spatial block
contains an auto-decomposing block, a S-GCN layer and two D-GCN blocks with
dynamic graph generation and a GCN layer. The auto-decomposing block divides
input into a seasonal static component Xs and an acyclic dynamic component Xd

by extracting key features of the data. S-GCN layer and D-GCN block are used
to model fixed features and dynamic changes of spatial correlations, respectively.

4.2 Temporal Block

The gated dilated causal convolution is used as our temporal convolution layer
to learn temporal trend [16]. It allows us to handle longer sequences with less
layers. The temporal block is described in the golden of the upper part of Fig. 2.
Given the input Xk ∈ R

T×N×D, it takes the form
∼

Xk = tanh
(
fk ∗ Xk

) � σ
(
gk ∗ Xk

)
, (2)

where ∗ denotes convolution operator, fk and gk are the learnable matrices in k-
th spatial-temporal layer, � is the element-wise Hadamard product. And tanh (·)
is an activation function, σ (·) is the sigmoid function which control the rate of
information flow to the next layer.
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Fig. 3. The process of auto-decomposing block.

4.3 Two-Tower Spatial Block

As mentioned before, spatial correlations are complex, because they not only
have the fixed impact from the road network structure but also have dynamic
changes determined by traffic characteristics. To capture the dynamic changes
of spatial correlations, the following two points need to be considered: (1) The
dependencies between traffic nodes can fluctuate rapidly; (2) The entire road
network will be affected seasonally due to the traffic conditions changes.

Therefore, we propose a two-tower spatial block, as shown in the bottom part
of Fig. 2. We first design an auto-decomposing block to divide traffic data into two
components, and then following two D-GCN blocks are used to capture two kinds
of changes in spatial correlations. S-GCN layer applies diffusion convolution on
the pre-defined graph to model the inherent influence of road network structure.

Auto-Decomposing Block. As shown in Fig. 3, the auto-decomposing block
divides the input data into a seasonal static component and an acyclic dynamic

component. The input traffic speed data
∼

Xk ∈ R
T×N×D passes the encoder

block and decoder block composed of multilayer CNNs to get the seasonal static
component Xs ∈ R

T×N×D. Besides, batch normalization is added behind every
encode convolution to accelerate convergence [7]. Finally, we use the input minus
the seasonal static component as the acyclic dynamic component Xd ∈ R

T×N×D.
The Xs includes the inherent impact of the road network structure and the

global changes of spatial correlations, while the Xd represents the local fluctu-
ations of node dependencies. As a result, we can separately model the different
changes of the spatial correlations.

D-GCN Block. Taking into account the different characteristics of global
changes and local fluctuations of spatial correlation, we design two D-GCN
blocks with the same structure to handle different components. Each D-GCN
block includes a dynamic graph generation and a GCN layer. The dynamic
graph generation constructs a dynamic graph based on the traffic data at the
current time step, and then the GCN layer relies on this dynamic graph to cap-
ture the dynamic changes of spatial correlations. Same technology is replicated
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Fig. 4. D-GCN block for Xd, Xs is the
same process.

Fig. 5. Dynamic graph generation
for Xt

d, the same goes for Xt
s.

to process different input components and generate seasonal graph or acyclic
graph, so that we take the processing of acyclic dynamic components Xd as an
example to introduce our D-GCN block, as shown in Fig. 4.

(1) Dynamic Graph Generation . The process of generating dynamic graph
can be divided into three steps, as shown in Fig. 5.

In The First Step, we apply graph convolution to process incoming traffic data
based on the pre-defined graph. This allows each node to perceive the information
of neighbor nodes for generating a more suitable real-time graph, as the Eq. 3.

DFt = G � fθX
t
d, (3)

where Xt
d is the acyclic dynamic component at t time step, and DFt ∈ R

N×D

denotes dynamic filter. � represents the GCN which is defined in later Eq. 6.

In The Second Step, we employ two static node embedding dictionaries
Ein, Eout ∈ R

N×D to represent source node embedding and target node embed-
ding, respectively. These two embedding dictionaries are randomly initiated, and
whose parameters are learnable. The element-wise Hadamard operation is then
computed between dynamic filter DFt and these two node embeddings:

DEt
in = tanh (λ (DF t � Ein)) ,

DEt
out = tanh (λ (DF t � Eout)) . (4)

In The Last Step, we construct a dynamic graph (acyclic graph for Xd, seasonal
graph for Xs) DGt ∈ R

N×N by calculating node similarities. It is showed as
Eq. 5.

DGt = softmax
(
ReLU

(
tanh

(
λ

(
DEt

inDEt
out

T − DEt
outDEt

in
T
))))

, (5)

where λ is a hyper-parameter for controlling the saturation rate of the activation
function, and softmax function is used to normalize the matrix.
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(2) GCN Layer . The diffusion convolution is adopted by as our GCN [10].
The process of diffusion convolution can be defined as Eq. 6, where θ ∈ R

K×2

are filters, k is diffusion step, and Dk
f ,Dk

b represent the forward and backward
transition matrixes, respectively.

X̂ = G � fθX =
K∑

k=0

(
θk,1Dk

f + θk,2Dk
b

)
X. (6)

Thus, the process of D-GCN block for Xd is shown as Eq. 7, where DGt is
the acyclic graph constructed by dynamic graph generation at t time step.

X̂t,:,:
d = DGt � gθX

t
d. (7)

4.4 Loss Function

We learn temporal and spatial correlations in temporal block and the two-tower
spatial block, respectively. And skip connections are added after the temporal
block to transmit the spatial-temporal correlations learned in each layer, then
are passed to output layer for final prediction. The output layer contains two
groups of ReLU and Linear layers to get desired prediction length. Residual is
used to speed up convergence [16]. They are shown in the upper part of Fig. 2.

The mean absolute error (MAE) is our loss function, described in Eq. 8.

Loss =
1

TND

T∑

t=1

N∑

i=1

D∑

j=1

∣
∣
∣Xt

ij − X̂t
ij

∣
∣
∣, (8)

where X and X̂ represent the ground truth and the predicted result, respectively.

5 Experiment

5.1 Datasets and Evaluation Measures

In order to verify our proposed framework, we conducted a series of comparative
experiments on two highway datasets1 and an urban dataset2 [10,15,16,22].

– METR-LA: A public traffic speed dataset collected from loop detectors
deployed on highway segments in Los Angeles. It contains 207 sensors and
records the traffic speed in 4 months, ranging from Mar 1st 2012 to Jun 30th
2012. The total number of timestamps is 34,272.

– PEMS-BAY: The traffic speed dataset is collected by the California Trans-
portation Agencies (CalTrans). It selects 325 sensors ranging from Jan 1st
2017 to May 31st 2017. The total number of timestamps is 52,116.

1 https://github.com/liyaguang/DCRNN.
2 https://github.com/lehaifeng/T-GCN.

https://github.com/liyaguang/DCRNN
https://github.com/lehaifeng/T-GCN
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– SZ-taxi: This is the taxi trajectory of ShenZhen from Jan 1st to Jan 31st,
2015. It contains 156 major roads of Luohu District, the speed on each road
is calculated every 15 min. The total number of timestamps is 2,976.

All data input is normalized by the Z-Score method. These datasets are split
in chronological order with 70% for training, 10% for validation, and 20% for
testing [10]. All experiments use historical traffic information in the past hour
to predict the traffic speed in the next 15, 30 and 60 min. Pre-defined static
adjacency matrix A is constructed based on pairwise road network distance
between sensors with thresholded Gaussian kernel [10]. It is defined as Eq. 9,

Aij =

⎧
⎨

⎩
exp

(
−d2

vi,vj

σ2

)
dvi,vj

≤ κ

0 dvi,vj
> κ

(9)

where dvi,vj
is the distance between sensors. σ is the deviation of distances, and

κ is the threshold. MAE and RMSE are used as evaluation metrics [10,15,16].

5.2 Baselines and Experimental Settings

Five baseline schemes are from traditional methods, static matrix-based methods
and dynamic graph-based methods. Following their parameters setting, DMST-
GCN is reproduced and applied to highway datasets, and some results are
reported in their paper [10,15,16]. Besides, all baseline models have been tested
on the urban dataset (SZ-taxi) to select their best results.
– ARIMA [9]: It uses traditional time series forecasting methods to predict

traffic speeds.
– DCRNN [10]: It considers RNN to capture temporal correlations and GCN

based on a pre-defined graph to model the inherent spatial correlations caused
by the road network structure.

– Graph WaveNet [16]: It integrates GCN with gated 1D dilated convolutions
and adds a self-adaptive matrix to preserve hidden node dependencies.

– MTGNN [15]: It designs a graph learning layer to generate a dynamic
graph by using external features and employs mix-hop propagation layers
and dilated inception layers.

– DMSTGCN [6]: It proposes a dynamic graph construction method to learn
the time-specific spatial dependencies.

About the parameters setting of our two-tower spatial block, based on our
experimental results, the auto-decomposing block has 4 layers, and the out chan-
nels are 16, 8, 16, 32. In the GCN layer, diffusion step K is 2 and dropout is
0.5. The hyper-parameter of dynamic graph generation λ is 3. The dimensions
of node embeddings Ein and Eout are 32. The out channel of spatial block is 32.
As the parameters setting of temporal block, following in [16], the number of
spatial-temporal layers is 8, and the temporal block’s diffusion parameters are
1, 2, 1, 2, 1, 2, 1, 2, respectively. Then, the out channel of temporal block is 32.

Our experiments are compiled and tested by Pytorch 1.7.1 on a computer
environment (GPU: NVIDIA Titan XP). The optimizer is the Adam algorithm,
and the initial learning rate is 0.001 with a decay rate of 0.1 after 70 epochs.
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Table 1. Performance comparsion of T2-GNN with baseline models. The smaller error,
the better performance.

T Metric ARIMA DCRNN GraphWaveNet MTGNN DMSTGCN T2-GNN

METR-LA 15min MAE 3.99 2.77 2.69 2.69 2.65 2.49 6.0%

RMSE 8.21 5.38 5.15 5.18 4.94 4.57 7.4%

30min MAE 5.15 3.15 3.07 3.05 2.94 2.73 7.1%

RMSE 10.45 6.45 6.22 6.17 5.66 5.24 7.4%

60min MAE 6.90 3.60 3.53 3.49 3.32 3.04 8.4%

RMSE 13.23 7.60 7.37 7.23 6.52 6.06 7.0%

PEMS-BAY 15min MAE 1.62 1.38 1.30 1.32 1.15 1.09 5.2%

RMSE 3.30 2.95 2.74 2.79 2.31 2.16 6.4%

30min MAE 2.33 1.74 1.63 1.65 1.40 1.31 6.4%

RMSE 4.76 3.97 3.70 3.74 2.99 2.79 6.6%

60min MAE 3.38 2.07 1.95 1.94 1.72 1.57 8.7%

RMSE 6.50 4.74 4.52 4.49 3.78 3.50 7.4%

SZ-taxi 15min MAE 4.98 3.92 3.32 3.04 3.17 2.47 18.7%

RMSE 7.24 5.39 4.70 4.31 4.49 3.69 14.3%

30min MAE 4.67 4.03 3.36 3.05 3.20 2.48 18.6%

RMSE 6.78 5.50 4.47 4.32 4.53 3.72 13.8%

60min MAE 4.66 4.29 3.42 3.08 3.24 2.50 18.8%

RMSE 6.77 5.77 4.83 4.35 4.57 3.74 14.0%

5.3 Experimental Results

Table 1 shows that our T2-GNN performs better than all baselines on three
datasets. For the 60 min traffic speed prediction on highway datasets, the DMST-
GCN is better than other baselines, and our model can further reduce its MAE
and RMSE by 8.4%, 7.0% on METR-LA, and 8.7%, 7.4% on PEMS-BAY, respec-
tively. As the urban dataset, MTGNN performs better than other baselines, our
model can further reduce its MAE and RMSE by 18.8%, 14.0%.

– Traditional method: The traditional ARIMA is limited by its own methods,
is unable to deal with complex nonlinear temporal correlations and lacks of
modeling spatial correlations. Thus, its prediction errors are the largest.

– Deep learning methods with static adjacency matrix: The deep learn-
ing models are used in temporal block, therefore, these methods all have
higher prediction accuracy than ARIMA. Compared with DCRNN on a pre-
defined matrix, Graph WaveNet adds an adaptive matrix to improve the
ability of model and thus obtains better prediction results.

– Deep learning methods with constructing dynamic graphs: Com-
pared with Graph WaveNet(static matrix), MTGNN and DMSTGCN can
better capture the dynamic spatial correlations by constructing dynamic
graphs. Our T2-GNN inherits the method of generating dynamic graphs and
further proposes fine modeling of the dynamic changes of spatial correlations,
which shows the lowest prediction errors.
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Table 2. Ablation study on SZ-taxi.

T Metric T2-GNN w/o seasonal
graph

w/o dynamic
graphs

w/o pre-defined
graph

15 min MAE 2.47 2.55 2.7 2.56

RMSE 3.69 4.07 4.31 4.09

30 min MAE 2.48 2.57 2.74 2.59

RMSE 3.72 4.1 4.35 4.13

60 min MAE 2.50 2.61 2.79 2.64

RMSE 3.74 4.15 4.42 4.14

5.4 Ablation Study

Affected by more external factors, the spatial correlations of urban road is more
complex. Compared with the highway datasets, our T2-GNN has larger improve-
ment effect on the urban dataset, reaching 18.8%. Therefore, we conduct an
ablation study on the SZ-taxi dataset. The variants of T2-GNN are as follows:

– w/o seasonal graph (variant I): We ignore the different characteristics of
the two dynamic changes of spatial correlations by removing the generation
of seasonal graphs (remove the upper D-GCN block in Fig. 2).

– w/o dynamic graphs (variant II): We do not consider the dynamic
changes of spatial correlations (remove all D-GCN blocks in Fig. 2).

– w/o pre-define graphs (variant III): We do not consider the impact of
the fixed road network structure by removing the S-GCN layer in Fig. 2.

Compared with the complete T2-GNN on the 60-mins prediction, in terms
of the MAE and RMSE, the variant I increases by 4.4% and 10.9%. The variant
II increases by 11.6% and 18.1%, the variant III increases by 5.6% and 10.6%.

For the variant I and variant II, deteriorating experimental results show that
constructing dynamic graphs at each time step can help to capture global changes
and local fluctuations in spatial correlations. And Compared with the variant I,
the prediction effect of the variant II has a more serious decline, about 7.2% and
7.2%. It shows that local fluctuations occur at a higher frequency than global
changes. Therefore, generating dynamic graphs and the fine modeling of spatial
dependences together improve the prediction effect of our framework.

Variant III only considers two dynamic changes of spatial correlations and
its forecast accuracy slightly decreases. It shows that the dynamic changes of
spatial correlations are more critical than the road network structure, which is
also in line with the complex and dynamic characteristics of traffic data.

6 Conclusions and Future Work

In this paper, we propose a novel T2-GNN model for traffic speed prediction.
To fine modeling node dependencies, D-GCN block is designed to process two
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components which contain different changes of spatial correlations. Our T2-GNN
outperforms state-of-art baselines on three datasets. In future, we will consider
the different effects of historical information to improve traffic speed prediction.
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Abstract. Minimax distance measure is a transitive-aware measure that allows
us to extract elongated manifolds and structures in the data in an unsupervised
manner. Existing methods require a quadratic memory with respect to the num-
ber of data points to compute the pairwise Minimax distances. In this paper, we
investigate two memory-efficient approaches to reduce the memory requirement
and achieve linear space complexity. The first approach proposes a novel hier-
archical representation of the data that requires only O(N) memory and from
which the pairwise Minimax distances can be derived in a memory-efficient man-
ner. The second approach is an efficient sampling method that adapts well to the
proposed hierarchical representation of the data. This approach accurately recov-
ers the majority of Minimax distances, especially the most important ones. It
still works in O(N) memory, but with a substantially lower computational cost,
and yields impressive results on clustering benchmarks, as a downstream task.
We evaluate our methods on synthetic and real-world datasets from a variety of
domains.

Keywords: Unsupervised learning · Representation learning · Memory
efficiency · Minimax distance measure · Sampling

1 Introduction

The complexity of data processing tasks often differs significantly depending on how
the data representation is derived. Therefore, deriving an appropriate data representation
is crucial. Representation learning is about developing machine learning algorithms to
discover useful representations and latent features from given data. Traditional feature
learning and deep learning models are two types of representation learning [21]. Tradi-
tional feature learning algorithms can be global or local. Global approaches generally
aim to extract global information from the data in the learned feature space, while local
methods focus on preserving the local similarity between the data while learning the
new representations [18]. In the context of Deep Learning, some representation learn-
ing methods [9] have been developed that are highly parameterized and require a large
amount of labeled data for training which is not available for some applications.

In various applications, the underlying patterns of data are better represented by
the transitive relationships between data points than by their direct (dis)similarities.
The transitive relation between two data points is derived from the different paths that
connect them. In particular, for clustering applications, the Minimax distance between a
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pair of data points, i.e., the minimum largest distance among all possible paths between
them, allows for easier separation of elongated manifolds and structures [17]. Minimax
distance is an unsupervised and nonparametric representation learning method that does
not require prior knowledge of the shape of the clusters and the structure of the data.
However, the major drawback of the Minimax distance technique is that it incurs high
computational and storage costs. There are recent studies to improve the computational
aspect [10,14]. Thus, we focus on reducing the storage cost, for which, to the best of
our knowledge, there are no previous studies. The contributions of this paper are as
follows:

– We propose a hierarchical representation for the data with a linear memory require-
ment with respect to the number of data points, from which the exact pairwise Min-
imax distances can be derived in a memory-efficient manner.

– We propose a memory-efficient sampling method that is able to exactly recover the
majority of Minimax distances, especially the most important ones, by exploiting
the proposed hierarchical representation of the data. The proposed sampling method
is adaptable to Minimax distances. Then, we investigate the effectiveness of the
sampling method on several synthetic and real-world datasets and compare it with
the alternatives.

2 Background

A category of unsupervised representations and distance measures, called link-based
distance [1,6,19], consider all paths between data points represented by a graph. These
distance measures are often obtained by inverting the Laplacian of a basic distance
matrix in the context of a Markov diffusion kernel [5]. However, computing link-based
distances for all pairs of objects requires a running time ofO

(
N3

)
, where N is the num-

ber of objects. A more promising distance measure, called Minimax distance (or path-
based distance [4]), looks for the minimum largest gap among all feasible paths between
the objects in the graph [13]. The Minimax distance measure, I) detects the underlying
characteristics of the data in an unsupervised manner, II) extracts elongated structures
and manifolds by considering transitive relations, and III) appropriately adapts to the
shape of different structures. It has demonstrated sophisticated results in several clus-
tering and classification applications [4,10,13,14].

Computing pairwise Minimax distances can be expensive both in terms of com-
putation and memory. The first methods on pairwise Minimax distance were based
on the Floyd-Warshall algorithm with a computational complexity of O

(
N3

)
. Later,

more efficient methods for computing pairwise Minimax distances were developed
[11,13], including the sparse setting in [12]. Spectral clustering [16], clustering for
hyper-spectral data [15], and K-nearest neighbor search are other tasks where Min-
imax distances have been successfully applied by several computationally efficient
methods [10,14].

Despite the recent advances in the computational efficiency of Minimax distances,
the memory efficiency of Minimax distances has not yet been studied in depth. The
computation of pairwise Minimax distances requires O

(
N2

)
memory; however, such

memory capacity may not be available in many applications, such as embedded
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devices and systems with limited memory. Therefore, in this paper, we investigate a
memory-efficient solution for computing pairwise Minimax distances by developing
two approaches for a memory-efficient Minimax computation with a memory complex-
ity of O (N) instead of O

(
N2

)
.

3 Definitions and Notations

We are given a dataset D consisting of N objects with indices O = {1, ...,N} and the
respective measurementsD= {d1,d2, ...,dN}where di is the feature vector of the object
i ∈ O. We assume a function f (i, j) that returns the pairwise dissimilarity of objects i
and j ,∀i, j ∈ O. We represent the dataset by a graph G(O,E), where the nodes O
represent the indices of the objects and the edge weights E indicate the pairwise dis-
similarities obtained by f . The function f is required to meet semi-metrics conditions.

In this work, we compute the transitive relations between the objects in order to
extract the elongated manifolds and structures, i.e., if object i is similar to l, and l is
similar to j, then objects i and j are considered as similar objects, even if their direct
pairwise similarity is low. To compute such a transitive-aware distance measure, we can
look for the smallest largest gap among all possible paths between i and j on graph G.
For each particular path, we compute the largest gap (maximal edge weight), and then
we choose the minimum of the largest gaps among different paths. Thus, this distance
measure, known as Minimax or path-based distance [4,13] can be formulated as

Mi j = min
p∈Pi, j

max
(n,m)∈p

En,m, (1)

whereMi j yields the Minimax distance between i and j ,∀i, j ∈ O; and Pi, j is the set of
possible paths connecting i and j over graph G(O,E). A path p ∈ P, is characterized
by a set of consecutive edges, each denoted by (n,m) where n,m ∈ O and n �= m is a
pair of vertices at two ends of edge En,m.

As shown in Eq. 1, to compute the Minimax distance between two objects, we need
to trace all possible paths between them, which is computationally expensive. As stud-
ies in [11,13], given graph G(O,E), a minimum spanning tree (MST) over G provides
the necessary and sufficient information to obtain the pairwise Minimax distances for
all pairs. Thus, the pairwise Minimax distances on an arbitrary graph are equal to the
pairwise Minimax distances computed on any MST over the graph. However, since we
assume the available memory is linear with the number of objects, we cannot have a
complete graph requiring memory of O

(
N2

)
. Thus, in our approach, we assume that

only objectsD are available, and instead of edge weights of a complete graph we assume
that we have access to an oracle that gives us the dissimilarity of objects i, j ∈ O,
f (i, j), upon request. We define the dissimilarity function f as squared Euclidean dis-
tance between objects i, and j; which can be interpreted as edge weights of the G.

4 Memory-Efficient Minimax Framework

We propose memory-efficient approaches for computing pairwise Minimax distances
where the memory complexity is linear to the number of objects, i.e., O (N). We study
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Algorithm 1. Incremental Prim’s algorithm
Input: Dataset D and an oracle returns f (i, j) for ∀ i, j ∈ O upon request, where f (., .).
Output: Vector ET ∈R

(N−1)×1 in tree T (O,ET) holding edge weights of T , and PT ∈N
(N−1)×2

denoting ET edges’ endpoints in T .

1: C ← {
v
}

2: I ← f (v, i) for all i ∈ O
3: I(v), S ← +∞, v
4: for n= 1 to N−1 do
5: ET (n), j ← min(I), argmin

(
I
)

6: C ← C∪{
j
}

7: I( j) ← +∞

8: PT (n, :) ← (
S( j) , j

)

9: for m= 1 to N do
10: if

(
Im > f ( j,m) and Im �= ∞

)
then

11: I(m), S(m) ← f ( j,m), j
12: end if
13: end for
14: end for

the memory efficient Minimax distances in two settings: I) We maintain the exact Min-
imax distances between all pairs of objects, addressing the memory constraints at the
cost of higher computational cost. II) We propose an efficient sampling method based
onMinimax distances and preserveMinimax distances only between samples. We argue
that our sampling procedure is able to capture the structures of all objects.

AnMST, provides all necessarily and sufficient information to compute the pairwise
Minimax distances [11,13]. Thus, both approaches get a tree T (O,ET) as an input. We
define a tree by set of objectsO, a vector ET ∈R

(N−1)×1 representing edge weights, and
a matrix PT ∈ N

(N−1)×2 denoting the two corresponding endpoints of the edges in ET .
Different MST algorithms usually assume a graph of a dataset likeG is given. However,
such a graph can require an O(N2) memory, which cannot be afforded in our settings.
Therefore, to compute the minimum spanning tree, we employ the Prim’s algorithm in
an incremental way. Rather than assuming the graph edges are given, we assume instead
there is an oracle that gives f (i, j) for ∀ i, j ∈ O at the request.

Algorithm 1, describes the incremental Prim’s algorithm, which the dataset D and
the mentioned oracle are the only inputs, and the outputs are ET in T (O,ET ) and PT .
Let list C shows the current objects in the MST, initialized by a random object v ∈ O,
i.e.,C=

{
v
}
. Also, vector I∈R

N×1 and S∈N
N×1 indicate the minimum dissimilarities

between C and each of the objects in O\C, and their corresponding indices (the vertex
in C which has the minimum dissimilarity from a vertex inO\C), respectively. At first,
I is initialized with the pairwise dissimilarities between v and the objects in O using
the oracle (returning f (., .)). We set a element in I to +∞ once the respective index
is included in C, thus, I(v) = +∞, and then, set all the elements in S to v. Then, the
algorithm at each step finds the minimum element in I and adds the element to the tree
edge weights ET . It obtains the index of the minimal element in I, i.e., j, and adds
the index element to C, and then sets the respective index in I( j) to +∞. Next, it adds
two endpoints of the newly added edge to PT . Then, it updates I which is the minimum
dissimilarity between the unselected objects inO and C, and then updates the indices in
S. Note that elements in I which are already set to +∞, stay unchanged. The algorithm
stops after N−1 iteration and returns T (O,ET) and edges’ endpoints PT .
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Algorithm 2.Maintaining exact pairwise Minimax dissimilarity

Input: Tree T (O,ET ) described by a vector of edges ET ∈ R
(N−1)×1, and PT ∈ N

(N−1)×2 hold-
ing the two endpoints of edges in T .
Output: Array A(N−1)×4

1: ET , sorted_ind ← Ascending sort the ET ,
and obtain sorted indices,

2: PT ← PT (sorted_ind)
3: Create A(N−1)×4 =

[
WA, NA, MA, CA

]

where the columns hold edge weights,
component IDs of two ends of edges, and
component IDs of edges.

4: for i= 1 to N−1 do
5: WA(i), CA(i) ← ET (i), 0
6: NA(i),MA(i) ← PT (i,1),PT (i,2)
7: end for
8: for s= 1 to N−1 do

9: CA(s) ← N+ s
10: for r = s+1 to N−1 do
11: if NA(r) = NA(s) or NA(r) =MA(s)

then
12: NA(r) = CA(s)
13: end if
14: if MA(r) =NA(s)orMA(r) =MA(s)

then
15: MA(r) = CA(s)
16: end if
17: end for
18: end for

4.1 A Memory-Efficient Algorithm for Exact and Complete Minimax Distances

In this setting, we compute exact pairwise Minimax distances for all pairs with a lin-
ear memory capacity. Naturally, given linear memory capacity, the pairwise distances
cannot be stored directly. Instead, we propose an algorithm that organizes the data hier-
archically so that all pairwise Minimax distances are encoded and the Minimax distance
between any pair of objects can be retrieved by a separate procedure.

Algorithm 2, works in a bottom-up fashion, and groups objects into a hierarchy of
what we will refer to as components. Each component is a sub-tree of the entire tree
T , and is specified by a component ID. Initially, the components are simply the objects
themselves. We start from sorting the edges of the tree T , with ascending weights. This
can be done via an in-place sorting method without a need for significant extra mem-
ory [2]. Starting with the smallest edge, the algorithm traverses all edges, and in each
step it merges the two components connected with the current edge. Referring to the two
components as “child” components, a new “parent” component is created. The sub-tree
of the parent component will then consist of the sub-trees of both child components,
as well as the connecting edge between them. We assign a component ID to the parent
component, and let the connecting (inner) edge carry a reference to it. Furthermore,
any outer edges previously connected to the child components, are redirected to the
new parent component. To conclude, the algorithm successively combines components
into larger components based on their similarities, while assigning a component ID to
each of them. The algorithm terminates when all components have merged into one,
and the final result is a hierarchy of nested components, from which Minimax distances
between all objects can then be retrieved. A couple of properties for the final hierarchy
of components can be observed: I) If going higher up in the hierarchy, the edge weights
are increasing. II) Intra-component objects (i.e., objects that are contained within the
same component) are treated similarly in the sense that they all have the same Minimax
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distance to any other inter-component objects (i.e., objects outside of that component).
III) The Minimax distance between any pair of objects, is exactly the edge weight of the
lowest level component containing both objects, since that is the maximum edge weight
along the path between the objects. Note that the path itself is unique when considering
a tree, and that an MST preserves Minimax distances.

Algorithm 2 illustrates our approach in greater detail. The algorithm starts with stor-
ing the edge weights ET of tree T in ascending order, and then, permutes the end-
points of the edges PT accordingly. In practice, the algorithm works with a matrix
A ∈ R

(N−1)×4 where each row corresponds to an edge in the tree T . The columns of A
are denoted as A=

[
WA, NA, MA, CA

]
, where for any given row, WA holds the corre-

sponding edge weights, NA andMA hold component IDs of the connected components,
and CA holds the component ID of the corresponding “parent” component, which can
also be considered as the component ID of the edge itself.

As an example, assuming tree T
′
withOT ′ = [1,2,3,4] and PT ′ = [< 1,2>,< 1,3>,

< 2,4 >] and ET ′ = [2,3,4]. Table 1 shows the steps of Algorithm 2 on the exam-

ple tree T
′
. In the initialization step, A is filled by the edge weights E

′
T , and indices

of the two ends of each edge, NA and MA, get values in PT ′ , and component ID are
initialized by zero. After initialization, the algorithm is performed sequentially on the
sorted edge weightsWA, whereat step s we first set the component ID of edgeWA(s) to
CA(s) = N+ s, corresponding to the new parent component resulting from the merge.
Then, we search through the remaining edges {r : s < r < N} (that is the ones with
larger weights), and for each edge r connected to any of the child components for s –
NA(s) or MA(s) – we replace the matching component ID – NA(r) or MA(r) – with the
parent component for s, N+ s. Algorithm 2 terminates when it has processed all edges
on WA, and consequently all components have merged into one. The final version of
A is returned, which then encodes the hierarchy of components as well as the exact
pairwise Minimax distances between all pairs of objects. The memory requirement of
Algorithm 2 is O(N); however, its computational complexity is O(N2).

Once we obtain the matrix A, any query about Minimax pairwise distance of two
arbitrary objects i and j can be acquired by Algorithm 3, with the memory requirement
of O(N) and computational cost of O(N2). In order to determine the Minimax distance
between i and j, we find the lowest level component such that both objects are con-
tained, noting that the edge weight of that component is exactly the Minimax distance
we are looking for, as mentioned previously. In more detail, the algorithm finds one list
of 2-tuples < componentID,weight > for each of the objects i and j, representing the

Table 1. Values of the matrix A, while running Algorithm 2 on the sample graph.

As=1 As=1 As=2 As=3

WA 2 3 4 2 3 4 2 3 4 2 3 4

NA 1 1 2 1 5 2 1 5 6 1 5 6

MA 3 2 4 3 2 4 3 2 4 3 2 4

CA 0 0 0 5 0 0 5 6 0 5 6 7
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Algorithm 3. Query on exact pairwise Minimax distance of a pair(i, j)
Input: Two arbitrary object i and j ∈ O, and a two-dimensional array A(N−1)×4. The columns
holdWA, NA, MA, and CA.
Output:Minimax distance of i and j.

1: i_list, j_list = [< i,null >], [< j,null >]
2: for k = 1 to N−1 do
3: if i_list.lastItem.componentID =

NA(k) or MA(k) then
4: i_list.append(< CA(k),WA(k)>)
5: end if
6: if j_list.lastItem.componentID =

NA(k) or MA(k) then

7: j_list.append(< CA(k),WA(k)>)
8: end if
9: end for
10: for k = 1 to |i_list| do
11: if i_list(k) exists in j_list then
12: return i_list.weight(k)
13: end if
14: end for

chain from the corresponding lowest level component (the object itself), to the highest
level component (the one “root” component containing all others). The lists are initial-
ized as [< i,null >] and [< j,null >], and are gradually extended by the algorithm. The
lists are iteratively appended with new tuples, corresponding to components at higher
levels. In each iteration, we take the componentID of the current last item in the list of
tuples, and search through NA and MA for a match. Assuming there is a match in the
k-th iteration, we appendCA(k) andWA(k) as< componentID,weight > to the list. We
perform the same steps for both i and j and obtain a list of 2-tuples for each. Finally, go
through one of the lists tuple by tuple, and for each of them look for a matching tuple in
the other list. Once we find a matched pair of tuples, these will correspond to the lowest
level component, containing both i and j. Consequently, as discussed before, the weight
of that tuple will be the desired Minimax distance between i and j. For the mentioned
example tree T

′
with the obtained matrix A represented in Table 1, to compute the Min-

imax distance between i= 4 and j= 3, first we form the i_list = [< 4,null >,< 7,4>]
and j_list = [< 3,null >,< 5,2 >,< 6,2 >,< 7,4 >], then we find the matching pair
between these two list according to the Algorithm 3 which is < 7,4>. Thus, the Mini-
max distance between i= 4 and j = 3 is 4. Also, the algorithm works the same way to
obtain the Minimax distance between two adjacent nodes.

4.2 A Computationally and Memory-Efficient Sampling-Based Algorithm

Due to the high computational cost of the previous approach for querying pairwise
Minimax distances, in this section we extend our approach to a memory-efficient sam-
pling framework that is also computationally efficient. The approach is hierarchical and
focuses on samples of the data. A sample in this context refers to a representative of a
subset of the objects. We present the sampling framework for the downstream task of
clustering, for which it is well suited, but note that it could be applied similarly to many
tasks. To evaluate our method, we apply a clustering task to the samples and then gen-
eralize the labels of the samples to the out-of-samples objects. For other tasks, the same
procedure can be applied: First, ruining the task on the samples and then generalize the
results to all objects. However, the nature of the final step depends on the task at hand.
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Algorithm 4 shows an overview of the different steps of our framework given a
dataset D of N objects and an oracle giving the squared Euclidean distance between
every two objects in O. the algorithm contains the following steps:

– Step1:We obtain the MST T (O,ET ) and the matrix PT by applying the incremental
Prim’s algorithm as described in Algorithm 1.

– Step2: We collect �√N
 samples from D by Minimax Sampling (MM) and store
the sample indices in S∈N

�√N
×1. Our sampling divides the dataset into |S| disjoint
components. We discuss this step in greater details in Subsect. 4.2.1.

– Step3:We compute the pairwiseMinimax distances between the �√N
 components
(samples) denoted by Ms ∈ R

�√N
×�√N
. Since every object in a given component
is similar, in the sense that all have equal Minimax distance to any object outside of
the component, we can pick any member to represent a component. Therefore, we
randomly pick one object from each component to obtain �√N
 samples and let S∈
N

�√N
×1 represent the sample objects indices. Then, using the algorithm proposed
in [11,13] we compute the pairwise Minimax distances between the samples in S
with spaces and run time complexity of O(N).

– Step4: Some applications require vector space representations. To obtain a vector
representation, we employ an embedding of the pairwiseMs with Multidimensional
Scaling (MDS) [20] to Ed ∈ R

|S|×d where d ≤ |S|. Therefore, the space complexity
after the embedding is O(|S|× |S|) = O(N).

– Step5:As mentioned, Minimax Sampling (MM) approach (step2), splits the dataset
into |S| disjoint components. Thus, each sample represents a group of objects sharing
the same component ID, and every object is represented by one and only one such
sample. The samples can be utilized by different machine learning tasks. We select
clustering; a fundamental task in machine learning, to assess the capacity of our
sampling method to capture underlying patterns in the dataset. So, we cluster the
samples and obtain label vector LS ∈ N

�√N
×1, LS = {l1, l2, ..., lS}.
– Step6: Since each sample belongs to one and only one component, we can con-
sider a sample as the representative of out-of-sample objects within the same com-

Algorithm 4. Clustering over sampling-based Minimax distances.
Input:DatasetD= {d1,d2, ...,dN}, and an oracle gives the square Euclidean distance of any two
arbitrary objects in D on request.
Output: Set of cluster labels L= {l1, l2, ..., lN}
1: Obtain tree T (O,ET ), and vector PT by described algorithm in Algorithm 1.

2: Collect �√N
 samples with indices hold by a vector S ∈N
�√N
×1 from the entire dataset D.

3: Obtain the pairwise Minimax distances Ms ∈ R
|S|×|S| of the objects in S.

4: EmbedMs with Multidimensional Scaling (MDS) to Ed ∈ R
|S|×d where d ≤ |S|.

5: Apply the clustering algorithm on Ed and obtain label vector of samples LS = {l1, l2, ..., lS}.
6: Extend the samples’ labels in LS to all other objects in D to obtain labels L= {l1, l2, ..., lN}.
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ponent. Therefore, we can generalize the labels of the samples to the labels of
their corresponding out-of-samples objects to obtain a label vector L ∈ N

N×1, L =
{l1, l2, ..., lN}.

4.2.1 Minimax Sampling (MM)
Algorithm 5 describes different steps of MM Sampling given the tree T (O,ET ), and
pairs of edge endpoints denoted by PT . We use the same definition for a component
as we defined in Sect. 4.1, and we construct components of objects in a bottom-up
fashion. The main difference between Algorithm 2 in Sect. 4.1 and Algorithm 5 is that
in Algorithm 2 we traverse all edges in ET , but here in Algorithm 5, we only traverse the
�√N
 smallest edges in ET and form �√N
 components. Then, we assign other edges
to one of these components. In the following, we will describe the algorithm in greater
detail.

In Algorithm 5, first, we start with ascending sorting edge weights and correspond-
ing two endpoints of edges. In each step, the algorithm merge two child components,
can be seen as two sub-trees, and forms a new parent component or parent sub-tree.
Therefore, two sub-trees and the connecting edge between them shape a parent sub-
tree. In each step, the algorithm assigns a new component ID to two child components,
and the connecting edge, after merging them. Vector C ∈ N

N×1 holds the component
IDs, initialized with the nodes indices. Thus, the algorithm starts with the number of
components equal to number of objects N. The algorithm performs iteratively on the
sorted edge weights ET in T . In the i− th iteration, the algorithm considers two child
components connected by ET (i), with the corresponding Component IDs represented
by PT (i, :). For simplicity, lets n and m hold the corresponding child component IDs
of these two endpoints, then the algorithm finds objects belongs to the child compo-
nents with component ID equal to n, and calls it S1, and similarity, S2 shows the objects
with the component ID equal to m. Then, the algorithm merges S1 and S2 and shapes
the parent component and assigns a new component ID to the objects in the parent
component, i.e.,C( j) = N+ i, for ∀ j ∈ (S1 ∪S2). The algorithm iterates until the num-
ber of (nonempty) components becomes equal to the desired number of samples, i.e.,
�√N
. The output of the algorithm is C which shows the component IDs of all objects.
Objects within the same component, shared their component IDs and there are �√N

non-identical component IDs in C.

Algorithm 5.Minimax Sampling (MM)
Input: T (O,ET ) characterized by a vector of edge wights ET and two endpoints of edges PT .
Output: C ∈ N

N×1 representing Component IDs of objects in O.

1: ET , sorted_ind ← Ascending sort the ET ,
and obtain sorted indices.

2: PT ← PT (sorted_ind)
3: C ← O
4: for i= 1 to N−�√N
 do
5: n, m ← C(PT (i,1)), C(PT (i,2))

6: for j = 1 to N do
7: if C( j) = n or C( j) = m then
8: C( j) = N+ i
9: end if
10: end for
11: end for
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As mentioned, an MST sufficiently contains the edges that represent the pairwise
Minimax distances. Thus, when we combine two child components, then the weight of
the respective edge represents the Minimax distance between the set of objects in the
child component S1 and the set of objects in the child component S2. Because, I) this
edge weight is the largest dissimilarity on the (only) MST path between the objects in
S1 and those in S2, II) all the other edge weights inside the components are smaller
(or equal) as they are visited earlier. This implies that our sampling method computes
the components (samples) such that internal Minimax distances (intra-sample Minimax
distances) are kept minimal. In other words, we discard the largest �√N
−1 edges of
the MST to produce �√N
 samples. Thus, this method is adaptive and consistent with
the Minimax distances on the entire data.

5 Experimental Results

In this section, we demonstrate the performance of our framework on clustering of sev-
eral synthetic and real-world datasets. We apply the different sampling methods on three
synthetic datasets [7] (Pathbased, Spiral, Aggregation), and five real-world datasets
from UCI repository [3] (Banknote Authentication, Cloud, Iris, Perfume, Seeds).

Our generic sampling framework in Algorithm 4 allows us to investigate different
sampling strategies for pairwise Minimax distances (step 2 of Algorithm 4). Here, we
study two other sampling methods, k-means and Determinantal Point Processes Sam-
pling (DPPS) presented by [8]. Table 2 shows the memory complexity of each sampling
methods. Note that for k-means, the space complexity is O

(
N(D+k)

)
, where the data

dimension is D and the number of clusters, k, is �√N
. To obtain �√N
 samples, we
apply k-means with k equal to �√N
. Then, we consider the centroids of the clusters as
our samples, letting each sample represents the objects belonging to its cluster.

For each dataset, we first sample the dataset with the mentioned approaches. Then,
we apply a clustering task on the samples using the most common clustering methods,
i.e., GMM, k-means, and spectral clustering. To evaluate the clustering results after
generalizing samples’ labels to out-of-samples objects, we use ground truths of our
datasets and apply three commonly used metrics: Rand score, mutual information, and
v-measure denoted by RS, MI, and VM.

For embedding (step 4 of Algorithm 4), first we transform the Minimax matrix into
a Mercer kernel and then perform an eigenvalue decomposition. Then, we sort nor-
malized eigenvalues of Ms. The eigenvalues drop in magnitude after a specific eigen
index which we consider this point as the proper value for d; so, the selected d is

Table 2. The space complexity of the sampling methods. N is the number of objects.

Sampling methods Space complexity

Minimax Sampling (MM) O
(
N

)

k-means Sampling (KMS) O
(
N

(
D+

√
N

))

DPP Sampling (DPPS) O
(
N2

)
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Table 3. Quantitative GMM results of different sampling schemes.

Sampling
method Metric Dataset

Pathbased Spiral Aggregation Banknote Cloud Iris Perfume Seeds

MM RS 0.61 1.0 0.80 0.62 0.96 0.56 0.64 0.48

MI 0.68 1.0 0.79 0.61 0.93 0.58 0.74 0.45

VM 0.70 1.0 0.88 0.61 0.93 0.71 0.85 0.50

KMS RS 0.43 0.32 0.92 0.07 0.73 0.74 0.59 0.75

MI 0.47 0.44 0.91 0.05 0.68 0.78 0.77 0.70

VM 0.52 0.63 0.93 0.05 0.69 0.70 0.81 0.69

DPPS RS 0.42 0.04 0.88 0.08 0.15 0.64 0.40 0.65

MI 0.43 0.10 0.90 0.06 0.22 0.66 0.51 0.67

VM 0.48 0.13 0.92 0.08 0.26 0.69 0.53 0.69

adjusted according to the dynamics of eigenvalues (using the elbow rule), resulting
in a (d×√�N
)-dimensional vector representation of samples.

Eventually, we apply GMM, k-means, and spectral clustering over the embedded
vectors Ed . Then, we extend the sample labels to the out-of-samples objects represented
by the corresponding sample. Next, we use the mentioned metrics to evaluate the clus-
tering with different sampling methods as shown in Table 3 for GMM. The results for
k-means and spectral clustering yield the consistent results. However, due to space limit,
we could not include them in this paper. In Table 3, we observe that for two out of three
synthetic datasets, MM sampling outperforms the other methods. However, even for
Aggregation dataset the results from MM sampling are acceptable. Similarly, on UCI
datasets, MM sampling yields often the best or close to best results.

Figure 1 illustrates GMM clustering on Spiral dataset which are two-dimensional
and thus suitable for visualization. Different colors denote different predicted cluster
labels, and dots and crosses indicate if predicted labels are correct or not. Figure 1a
shows the data points and their true labels. Figure 1b shows GMM results obtained over
samples fromMM sampling. In Fig. 1b all objects are correctly clustered. MM sampling
adapts well with the elongated structures in the data. Figure 1c, and Fig. 1d illustrate
the clustering results with KMS and DPPS methods. Both methods mistakenly assign
almost all data to a single cluster.

Fig. 1. Illustration of clustering results on Spiral datasets by GMM clustering.
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In terms of space complexity, MM sampling satisfy a linear space complexity
O (N). k-means sampling requires O

(
N

(
D+

√
N

))
memory, and as discussed, DPPS

requires computing samples offline with the space complexity of O
(
N2

)
.

6 Conclusion

We developed two approaches for memory-efficient computation of Minimax distances.
In the first approach, we compute the exact Minimax distances of all pairs of given
dataset in a linear memory with respect to the size of the dataset; however, the respec-
tive computational cost is high. In the second approach, we developed a framework
for memory-efficient computation of Minimax distances based on effective sampling
schemes. Within this framework, we developed an adaptive and memory-efficient sam-
pling method consistent with the pairwise Minimax distances on the entire datasets. We
evaluated the framework and the sampling methods on clustering of several datasets
with GMM, k-means, and spectral clustering.
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Abstract. Unsupervised domain adaptation aims to transfer knowledge
from a labeled source domain to an unlabeled target domain. Although
having achieved remarkable progress, most existing methods only focus
on learning domain-invariant features and achieving a small source error.
They ignore the discrepancy between labeling functions which will also
cause discrepancy across domains. Inspired by this observation, we pro-
pose a novel method to simultaneously perform feature adaptation and
labeling function adaptation. Specifically, for the feature adaptation, a
domain discriminator is trained to reduce the discrepancy between fea-
ture distributions across domains. For the labeling function adaptation,
we introduce a target predictor and a predictor discriminator. The target
predictor is trained on target samples with pseudo-labels. The predictor
discriminator is a novel component and is trained to distinguish whether
the prediction output is from the source or the target predictor while
the feature extractor and the label predictors try to confuse the predic-
tor discriminator in an adversarial manner. Additionally, the intrinsic
characteristics of the target domain are expected to be exploited thanks
to the task-specific training. Comprehensive experiments are conducted
and results validate the effectiveness of labeling function adaptation and
demonstrate that our approach outperforms state-of-the-art methods.

Keywords: Transfer learning · Unsupervised domain adaptation ·
Labeling function adaptation

1 Introduction

Transfer learning aims to transfer knowledge from a related but different source
domain to a target domain, such that we can get better performance in the
target domain [24,34]. Unsupervised domain adaptation is a sub-field of transfer
learning, where there are labeled data in the source domain and unlabeled data
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in the target domain [24,34]. As the source data and target data are drawn from
different distributions, by reducing the discrepancy across domains, the source
predictor (classifier) is able to generalize well in the target domain, which is the
key to unsupervised domain adaptation [2,24,40].

Many theories and algorithms have been proposed for unsupervised domain
adaptation [2,39,40]. A generalization error bound is proposed in a classical
theory [2]. As the theory revealed, the generalization error in the target domain
is bounded by three terms: the empirical error in the source domain, the feature
distribution discrepancy across domains, and the ideal joint error λ∗. For the
last term, it is assumed that there exists an ideal joint hypothesis that can
achieve small classification errors in both domains. In such a case, the ideal
joint error can be regarded as a small constant term. Based on the classical
theory [2], many methods have focused on learning domain-invariant features
to decrease the feature distribution discrepancy across domains and achieving a
small classification error in the source domain at the same time [9,18].

However, recent researches show that transforming the feature representa-
tions to be domain-invariant may enlarge the error of the ideal joint hypothesis
[16]. Such a phenomenon reminds us that the ideal joint error λ∗ can not be
ignored. Recently, a general and interpretable generalization upper bound with-
out the pessimistic term λ∗ for domain adaptation has been proposed in a new
theory [40]. Compared with the previous theory [2], the theory proposes a new
term named the shift between labeling functions (i.e., optimal predictors) across
domains which also cause the discrepancy between domains, instead of simply
regarding the ideal joint error λ∗ as a constant term.

Inspired by the new theory [40], two major insights are concluded. Firstly,
instead of assuming that there exists a predictor which can simultaneously per-
form well in both domains, we could learn different predictors for the source
domain and the target domain such that the intrinsic characteristics of each
domain can be exploited. Secondly, not only the feature distribution discrep-
ancy, but also the shift between the labeling functions can cause the discrepancy
across domains. Therefore, besides reducing the discrepancy between feature
distributions, the discrepancy between labeling functions across domains should
also be reduced.

In this paper, we propose a novel method called Joint Feature and Labeling
function adaptation (JFL) based on the above observations. The goal of JFL
is to perform both feature adaptation to learn domain-invariant features and
labeling function adaptation to pull the labeling functions across domains close
besides minimizing the source error. Notably, the labeling functions discussed
before are the “true” labeling functions in the source and the target domain and
are intrinsic to the feature space of the samples, so they are difficult to learn and
optimize. In this paper, we assume that the empirical optimal predictor learned
by our model is close to the ground-truth labeling function in each domain (In the
following sections, we refer to this assumption as Labeling Function Assumption).
Thus, minimizing the distance between labeling functions across domains can be
transformed into reducing the discrepancy between the learned predictors, where
the latter is more feasible in practice.
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To be specific, we train a source predictor to minimize the source error. For
feature adaptation, we adopt a widely used domain discriminator to measure
and decrease feature distribution discrepancy [9,19]. For labeling function adap-
tation, we introduce a target predictor and a label predictor discriminator to
reduce the discrepancy between the source and target predictors. The target
predictor is trained on target samples with pseudo-labels [20] provided by the
source predictor. Following the idea of GAN [11], we propose an adversarial
learning method to pull the predictors in both domains close. Specifically, the
label predictor discriminator takes the prediction outputs from the source and
target predictors as input and is trained to distinguish which predictor the pre-
diction output is given. While the feature extractor and predictors try to confuse
the predictor discriminator. To the best of our knowledge, this is the first time
that a predictor discriminator is proposed to reduce the shift between label-
ing functions in an entirely adversarial learning manner. Additionally, during
the learning procedure, the intrinsic characteristics of the target domain can be
explored by utilizing the task-specific training on the target domain. Moreover,
we perform discriminative feature learning to obtain discriminative information
of both domains for better adaptation and classification.

The results on three public datasets show that the proposed method outper-
forms state-of-the-art methods. And the performances on some difficult tasks
are significantly improved (e.g. mnist → svhn). Furthermore, the experimental
results show that the labeling function adaptation could improve the perfor-
mance of the previous methods by applying this objective to these methods
which only focus on feature adaptation and source error minimization. To sum
up, there are three contributions in this paper:

1. We propose a new method, which not only performs feature adaptation but
also performs labeling function adaptation to reduce the discrepancy across
domains more thoroughly, while the latter is ignored by existing methods.

2. To perform labeling function adaptation, we introduce a novel component
named label predictor discriminator and design an adversarial mechanism
to train the model. Moreover, we apply the labeling function adaptation to
previous methods and the results show that it can further improve the per-
formance, which empirically validates the effectiveness of this objective.

3. We conduct extensive experiments on three widely used datasets. Results
show that the proposed method outperforms baselines, especially on difficult
tasks.

2 Related Work

Domain adaptation theory. The theory in [2] is one of the pioneering theo-
retical works in this field. A new statistics named HΔH-divergence is proposed
as a substitution of traditional distribution discrepancies (such as L1 distance,
KL-divergence), and a generalization error bound is presented. The theory shows
that the target error is bounded by the source error, the feature distribution dis-
crepancy across domains, and the optimal joint error. It is usually assumed that



Joint Feature and Labeling Function Adaptation for Unsupervised Domain 435

Fig. 1. The architecture of JFL. G represents the feature extractor, Fs and Ft are the
source predictor and the target predictor respectively. Dg is the domain discriminator
which takes features from feature extractor G as input and aims to distinguish whether
the features are from the source domain or the target domain. Ps and Pt are the
prediction outputs for the samples of both domains given by Fs and Ft respectively.
Df is the predictor discriminator which takes the prediction outputs from Fs and
Ft as input and aims to distinguish whether the input is from the source predictor
or the target predictor. Ls and Lt are the classification losses in the source and the
target domain respectively. Lg is the domain classification loss, Lf is the predictor
classification loss and Ld is the discriminative learning loss. GRL is the gradient reversal
layer [9].

there exists a classifier that can perform well in both domains. In such a case, the
optimal joint error becomes a small constant term. So most domain adaptation
methods aim to minimize the source error and the feature distribution discrep-
ancy across domains. A general class of loss functions satisfying symmetry and
subadditivity are considered in [23], and a new generalization theory concerning
the newly proposed discrepancy distance is developed. A margin-aware general-
ization bound based on asymmetric margin loss is proposed in [39], and reveals
the trade-off between generalization error and the choice of margin. Recently,
a theory considering labeling functions is proposed in [40], which shows that
the error in the target domain is bounded by three terms: the source error, the
discrepancy between feature distributions, and the distance between the label-
ing functions across domains. The third term also cause the discrepancy across
domains, which is ignored by existing methods. JFL is able to optimize all the
three terms of the error bound simultaneously.

Domain adaptation algorithm. The mostly well-known domain adapta-
tion approaches include statistics matching [4,18,21,37] and adversarial domain
adaptation [1,5,8,17,19,28]. The statistics matching methods assume that there
exists a common space where the distributions of two domains are similar
and focus on finding a feature transformation that projects features of two
domains into another latent shared subspace with less distribution discrep-
ancy. DAN [18] tries to align marginal distribution across domains, which learns
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domain-invariant representations during feature mapping. JAN [21] tries to align
marginal distribution and conditional distribution simultaneously. Considering
the balance between the marginal distribution and conditional distribution dis-
crepancy, both DAAN [37] and MEDA [33] adopt a balance factor to leverage
the importance of different distributions.

The adversarial domain adaptation methods are inspired by generative adver-
sarial network [11] and enjoy strong theoretical insights. DANN trains a domain
discriminator to distinguish the source domain from the target domain while
learning features to confuse the discriminator [9]. ADDA uses asymmetric fea-
ture extractors for the source and target domain [31]. CDAN conditions the
domain discriminator on classifier predictions [19]. MCD generates target fea-
tures to minimize the HΔH-distance, which is a measure for the feature distribu-
tion discrepancy [28]. MCD also adopts two predictors, but both predictors are
trained with source labeled samples. While in our method these two predictors
are trained with the source samples and the target samples, respectively.

3 Method

3.1 Overview

In unsupervised domain adaptation, there are a set of labeled samples Ds =
{(xi

s, y
i
s)}ns

i=1 drawn from the source domain and a set of unlabeled samples
Dt = {xj

t}nt
j=1 drawn from the target domain, where X and Y denote the feature

space and the label space of both domains respectively, i.e., xi
s, x

j
t ∈ X = R

d,
yi
s ∈ Y = {1, 2, ...,K}. Let P (X ,Y) and Q(X ,Y) be the joint distribution of the

source and the target domain, respectively. We assume the joint distributions
across domains are different, i.e., P (X ,Y) �= Q(X ,Y). The goal of this work is
to train a model with both labeled source samples and unlabeled target samples
to achieve better classification performance in the target domain.

Most previous methods [9,18,19] only focus on learning domain-invariant
features and achieving a small source error. Such a strategy is not sufficient for
the success of domain adaptation, which is revealed by the theory proposed in
[40]:

εt(f) ≤εs(f) + d(Ds,Dt) + min{EDs
[|fs − ft|],EDt

[|fs − ft|]} (1)

where εt(f) = Ex,y∼Q(X ,Y)[f(x) �= y] and εs(f) = Ex,y∼P (X ,Y) [f(x) �= y] are
the expected errors in the target and the source domain, respectively. d(Ds,Dt)
represents the feature distribution discrepancy across domains. The third term
measures the discrepancy between the labeling functions fs and ft in the source
and the target domain.

Theoretically, most existing methods focus on optimizing the first two terms
while ignoring the discrepancy between the labeling functions across domains,
which may also lead to a larger upper bound of εt(f). Therefore, we should not
only adapt the feature distributions but also adapt labeling functions to further
reduce the discrepancy across domains.
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Inspired by the above analysis, we propose a method named Joint Feature
and Labeling function adaptation (JFL), to simultaneously adapt the feature
representations and the labeling functions between the source domain and the
target domain as well as minimizing the source error. As shown in Fig. 1, the
architecture of JFL is composed of five components: the feature extractor G, the
source predictor Fs, the target predictor Ft, the domain discriminator Dg, and
the label predictor discriminator Df .

For the source error minimization, we train a source predictor Fs to minimize
the source classification loss. For the feature adaptation, we adopt a domain
discriminator Dg to minimize the domain classification loss while the feature
extractor G is trained to fool domain discriminator Dg, which are widely used
in domain adaptation [9,19].

For the labeling function adaptation, we introduce a target predictor Ft and a
predictor discriminator Df . The target predictor Ft is trained on the target sam-
ples with the pseudo-labels predicted by the source predictor. Thus, the target
predictor can explore the inherent characteristics of the target domain thanks to
the task-specific training. Given a sample, the predictor discriminator Df aims
to distinguish whether the prediction output for the sample is from the source
predictor or the target predictor while the feature extractor G and predictors
Fs and Ft are trained to confuse the predictor discriminator. Moreover, as there
are only unlabeled data in the target domain, we perform discriminative feature
learning to obtain discriminative information of both domains.

3.2 Source Error Minimization and Feature Adaptation

To minimize the source error, we train the feature extractor G and the source
predictor Fs to classify the source samples. The classification loss in the source
domain is:

min
G,Fs

Ls(Xs, Ys) = E(xs,ys)∼(Xs,Ys)l(Fs(G(xs)), ys) (2)

where l(·, ·) is the cross-entropy loss. Fs(G(xs)) ∈ R
K represents the label pre-

diction output of Fs for sample xs and ys is the ground truth label of xs.
To extract domain-invariant features, we adapt the feature representations to

reduce the feature distribution shift between different domains in an adversarial
manner. Similar to previous methods [9,11], the adversarial learning procedure
is a two-player game. The first player, domain discriminator Dg, is trained to
distinguish whether each example belongs to the source or the target domain
while the second player, feature extractor G, tries to confuse the domain dis-
criminator. To be specific, the domain discriminator Dg aims to minimize the
domain classification loss, while the feature extractor G is trained to maximize
the domain classification loss. As a result, the feature extractor will extract
domain-invariant features to achieve feature adaptation. Technically, the objec-
tive of feature adaptation is:

min
Dg

max
G

Lg(Xs,Xt) (3)
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Lg(Xs,Xt) = Ex∼Xs
[log Dg(G(x))] + Ex∼Xt

[log(1 − Dg(G(x)))] (4)

where G(x) is the deep feature mapping of two domains extracted by feature
extractor G and Dg(G(x)) ∈ R is the domain classification output of the domain
discriminator Dg.

Through the adversarial leaning procedure, the discrepancy between feature
distributions across domains will be reduced. However, this is not sufficient to
guarantee a satisfying performance in the target domain based on the previous
analysis. Hence we will introduce the labeling function adaptation in the next
subsection.

3.3 Labeling Function Adaptation

Most existing methods ignore reducing the discrepancy between labeling func-
tions of different domains. To address this issue, besides feature adaptation, our
method further performs labeling function adaptation to pull the label predic-
tors across domains close so that the discrepancy across domains can be further
reduced.

In order to adapt the labeling functions, a target predictor Ft and a predictor
discriminator Df are introduced and we design an adversarial learning method to
train the predictor discriminator Df to pull the predictors of different domains
close. Additionally, the proposed target predictor and predictor discriminator
are helpful to exploit the intrinsic characteristics of the target domain itself by
utilizing the task-specific training on target samples [28].

The target predictor Ft takes features from the feature extractor G as input
and is trained on target samples with the pseudo-labels provided by the source
predictor Fs. As learning domain-invariant features can destroy the inherent
structure of the target domain, the supervised classification training on target
samples which is task-specific could help the feature extractor exploit the char-
acteristics of the target domain and combine the structural information of the
source and the target domain better. Formally, in the target domain, we mini-
mize the classification loss as:

min
G,Ft

Lt(Xt, Ŷt) = Ext∼Xt
l(Ft(G(xt)), ŷt) (5)

where l(·, ·) is the cross-entropy loss, and ŷt is the pseudo-label of sample xt

predicted by source predictor Fs:

ŷt = arg maxy∈Y Fs(G(xt)) (6)

The predictor discriminator Df takes the prediction outputs of a sample from
both predictors Fs and Ft as input, regardless of which domain the sample comes
from. The predictor discriminator is trained to distinguish whether the prediction
outputs for samples are given by the source or the target predictor while the
feature extractor and label predictors try to confuse the predictor discriminator
in an adversarial manner. Specifically, the predictor discriminator is essentially a
binary classifier. By this min-max game, the predictor discriminator can hardly
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distinguish which predictor gives the prediction, so that the discrepancy between
labeling functions can be reduced.

Technically, the optimization objective for labeling function adaptation is:

min
Df

max
G,Fs,Ft

Lf (Xs,Xt)

Lf (Xs,Xt) = Ex∼Xs∪Xt
[log Df (Ps(x)) + log(1 − Df (Pt(x)))]

(7)

where Df (Ps(x)) ∈ R and Df (Pt(x)) ∈ R are the predictor classification outputs
of the predictor discriminator Df , and Ps(x) = Fs(G(x)), Pt(x) = Ft(G(x)) are
the predictions for the samples given by Fs and Ft, respectively.

To further understand the adversarial learning process, we illustrate the min-
max process intuitively. For the process of maximizing Lf (Xs,Xt), the feature
extractor and the predictors try to confuse the predictor discriminator to make
the predictor discriminator Df can not distinguish which predictor gives the pre-
diction output. In other words, maximizing Lf (Xs,Xt) is equivalent to directly
minimizing the distance between the labeling functions. For the process of mini-
mizing Lf (Xs,Xt), the two predictors are expected to obtain the intrinsic char-
acteristics of each domain so that they can firstly achieve a better classification
performance before they are completely pulled close, which exactly accords with
the Labeling Function Assumption. Otherwise, if the process is discarded, the
source predictor Fs and the target predictor Ft will become identical immedi-
ately in the case of very poor performance which is not conform to the Labeling
Function Assumption. Therefore, the labeling function adaptation can be bet-
ter accomplished by the adversarial learning process, which is validated in the
experiments.

Remark: Labeling function adaptation is a general objective, it can not only
be used in our proposed method, but also be employed to previous methods to
improve the performance by more completely reducing the domain discrepancy,
which is validated by the results in Sect. 4.4.

3.4 Discriminative Feature Extraction

Besides the previous objectives, we also perform discriminative feature learning
to explore the discriminative information in both domains for better classifica-
tion.

At the sample level, a discriminative clustering loss Ldc
is introduced for each

domain: Ldc
(Xs,Xt) = Ldc

(Xs) + Ldc
(Xt). This loss encourages the features

from the same class to gather together, and pushes the features of different
classes to be far away from each other. Similar to the previous method [22], we
employ the following discriminative clustering loss for each domain:

Ldc (X) =
∑

xi,xj∈X
[δijd(G(xi), G(xj))+

(1− δij)max(0, μ − d(G(xi), G(xj)))]
(8)

where δij is an indicator function which outputs 1 only if the sample xi and
xj have the same ground-truth label (source domain) or pseudo-label (target
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domain), d(·, ·) is the distance between features (such as Euclidean distance),
and μ is a pre-defined margin.

At the class level, we further introduce a discriminative alignment loss Lda

to align the class centers of the same categories between domains for better
adaptation. Technically, the discriminative alignment loss Lda

is:

Lda(Xs, Xt) =
1

K

K∑

k=1

∣∣∣∣ 1

|Xs,k|
∑

xi
s∈Xs,k

G(xi
s) − 1

|Xt,k|
∑

x
j
t∈Xt,k

G(xj
t)

∣∣∣∣2 (9)

where Xs,k denotes the set of the source samples belonging to the k-th class,
and Xt,k denotes the set of the target samples whose pseudo-labels are k. To
sum up, the overall objective of discriminative learning is:

min
G

Ld(Xs, Xt) = Ldc(Xs, Xt) + Lda(Xs, Xt) (10)

3.5 Overall Objective

Combining the above objectives discussed in Subsects. 3.2–3.4 together, we get
the overall objective as:

min
G,Fs,Ft

λsLs(Xs, Ys) + λtLt(Xt, Ŷt) + λdLd(Xs, Xt)

− λgLg(Xs, Xt) − λfLf (Xs, Xt)
(11)

min
Dg

Lg(Xs, Xt) (12)

min
Df

Lf (Xs, Xt) (13)

Following the previous method [9], the min-max training procedure is accom-
plished by applying a Gradient Reversal Layer (GRL). GRL behaves as the
identity function during the forward propagation and inverts the gradient sign
during the backward propagation, hence driving the parameters to maximize the
output loss.

4 Experiments

We evaluate JFL on three datasets against state-of-the-art domain adaptation
methods. The code is available at https://github.com/yuntaodu/JFL.

4.1 Datasets

Digital dataset contains four datasets of 10 categories: MNIST is composed
of 60,000 images, MNIST-M [8] consists of 60,000 images, SVHN is composed
of 73,257 images and SynthDigits (DIGITS) [8] consists of 479,400 images. The
images in MNIST and MNIST-M are gray while the images in SVHN and DIG-
ITS are in color. Office-31 [26] is a standard benchmark for visual domain adap-
tation, containing 4,652 images of 31 categories from three diverse domains: A

https://github.com/yuntaodu/JFL
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Table 1. Accuracy (%) on digital dataset.

Source MNIST SVHN MNIST DIGITS

Target SVHN MNIST MNIST-M SVHN

Source-only 45.9 72.1 71.7 85.8

DANN [9] 60.6 68.3 94.6 90.1

DRCN [10] 40.1 82.0 – –

ATT [27] 52.8 86.2 94.2 92.9

d-SNE [35] 77.6 97.6 94.1 –

AADA [36] – 98.6 95.7 92.6

VADA [30] 47.5 97.9 97.7 94.8

DIRT-T [30] 54.5 99.4 98.9 96.1

Co-DA [13] 81.7 99.0 99.0 96.4

Co-DA + DIRT-T [13] 88.0 99.4 99.1 96.4

RCA [3] 89.2 99.3 99.4 96.2

JFL 91.7 99.6 99.4 96.2

Table 2. Accuracy (%) on Office-31 for unsupervised domain adaptation (ResNet-50).

Method A → W D → W W → D A → D D → A W → A Avg

ResNet-50 [12] 68.4 96.7 99.3 68.9 62.5 60.7 76.1

DAN [18] 80.5 97.1 99.6 78.6 63.6 62.8 80.4

ADDA [31] 86.2 96.2 98.4 77.8 69.5 68.9 82.9

JAN [21] 85.4 97.4 99.8 84.7 68.6 70.0 84.3

GTA [29] 89.5 97.9 99.8 87.7 72.8 71.4 86.5

MCD [28] 88.6 98.5 100.0 92.2 69.5 69.7 86.5

SHOT [15] 90.1 98.4 99.9 94.0 74.7 74.3 88.6

JFL 94.5 98.7 100.0 93.4 75.7 74.5 89.4

DANN [9] 82.0 96.9 99.1 79.7 68.2 67.4 82.2

DANN + LFA 86.8 98.5 100.0 90.0 70.2 72.6 86.4

CDAN [19] 94.1 98.6 100.0 92.9 71.0 69.3 87.7

CDAN + LFA 95.4 99.2 100.0 93.1 72.3 72.5 88.8

(Amazon), W (Webcam) and D (Dslr). Office-Home [32] is a more complex
dataset, which consists of 15,500 images with 65 object classes from four differ-
ent domains: Real-world (Rw), Clipart (Cl), Product images (Pr), and Artistic
images (Ar).

4.2 Setup

We follow the widely used protocol for unsupervised domain adaptation [19]. We
report the average accuracies of three independent experiments.
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For Office-31 and Office-Home dataset, we adopt ResNet-50 [12] pre-trained
on ImageNet [25] as well as a newly introduced bottleneck layer as the feature
extractor. The source predictor and target predictor are both 2-layer neural
networks with width 1024. The domain discriminator and the predictor discrim-
inator are both 3-layer neural networks with width 1024. For optimization, we
use the mini-batch Adam with the learning rate of 7.5e–5. The learning rate of
the other components except the feature extractor are set 10 times to that of
the feature extractor. And the learning rate is adjusted according to [9]. For the
digital dataset, we train the model with the learning rate of 1e–3 optimized by
mini-batch Adam. In all the experiments, we set μ = 30 to conduct discrimina-
tive feature extraction. At the test time, we combine the Fs and Ft to obtain
the predicted labels for the target samples by computing largest prediction con-
fidence in the probability prediction outputs of both the source predictor and
the target predictor.

Table 3. Accuracy (%) on Office-Home for unsupervised domain adaptation (ResNet-
50).

Method Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Avg

ResNet-50 [12] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN [18] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

DANN [9] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN [21] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN [19] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

ETD [14] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3

SymNets [38] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6

MDD [39] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1

JFL 52.1 73.7 78.6 65.6 72.7 73.7 65.2 52.9 78.3 74.6 58.5 83.1 69.1

4.3 Results

The results on the digital dataset are shown in Table 1. The results of source-only
are the accuracies of the model trained only with the labeled source samples.
For this dataset, JFL achieves the best or the second best results after RCA
[3] and Co-DA [30] in all the experiments. Especially in the most challenging
tasks MNIST → SVHN, for which state-of-the-art accuracies are below 90%,
JFL outperforms all the previous methods and reaches 91.7%.

The results on the Office-31 dataset are shown in Table 2. JFL achieves state-
of-the-art accuracies on four of six transfer tasks. We clearly observe that on W→
A and D → A with relatively large domain shift and imbalanced domain scales,
JFL exceeds all feature adaptation methods by a large margin and even performs
better than models incorporating complex generative architectures. This testifies
that by matching the labeling functions across domains, JFL is able to further
decrease the discrepancy across domains and therefore mitigate the imbalance
across domains.

The results on the Office-Home dataset are shown in Table 3. Compared
with previous methods, JFL makes remarkable performance boost when domain
discrepancy is significant. The average accuracy is 1% higher than the second
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best method. Most baselines only focus on performing feature adaptation and
minimizing the source error while JFL further adapts the labeling functions,
making a remarkable improvement.

4.4 Insight Analysis

In this subsection, we conduct extensive experiments to analyse the effect of our
method.

Table 4. Accuracy (%) on digital dataset of ablation study.

Source MNIST SVHN MNIST DIGITS

Target SVHN MNIST MNIST-M SVHN

JFL (SEM) 45.9 72.1 71.7 85.8

JFL (SEM + FA) 68.8 86.2 93.0 91.4

JFL (SEM + FA + DFL) 83.3 97.8 89.9 95.3

JFL (SEM + FA + LFA) 88.9 96.7 99.0 95.4

JFL (ALL) 91.7 99.6 99.4 96.2

Ablation Study. It is interesting to investigate the contribution of each part
of JFL: Source Error Minimization (SEM), Feature Adaptation (FA), Label-
ing Function Adaptation (LFA), and Discriminative Feature Learning (DFL).
To enable ease of use, we integrate these parts into a coherent loss. Results in
Table 4 justify that each part has its indispensable contribution. Moreover, the
results indicate that labeling function adaptation and feature adaptation are
both beneficial for bridging cross-domain discrepancy, and learning discrimina-
tive features can further improve the performance. Finally, a combination of all
losses can achieve the best result.

Improvement for Existing Methods. To verify the effectiveness of perform-
ing Labeling Function Adaptation (LFA) more comprehensively, we apply LFA
to previous methods. In this paper we choose DANN and CDAN as they are rep-
resentative domain adaptation methods, where only the feature adaptation and
the source error minimization are performed without any extra training tricks.
We denote these two methods as DANN + LFA and CDAN + LFA. The results
are shown in Table 2. As we can see, after applying LFA to DANN and CDAN,
the performance is improved by 4.2 % and 1.1%, respectively. And CDAN +
LFA achieves the best result in task A → W. The results show that perform-
ing labeling function is not only useful in our method but also can improve the
performance for the previous methods.

Effectiveness of Adversarial Learning for Labeling Function Adapta-
tion. Intuitively, we could adapt the labeling functions by directly minimizing
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Fig. 2. Comparison with non-adversarial baseline.

the pre-defined distance measurement for the discrepancy between the source and
the target predictor in a non-adversarial manner. Technically, the non-adversarial
loss for labeling function adaptation computed by the distance measurement pro-
posed in [28] is:

L′
f = Ex∼(Xs∪Xt)

∑K

k=1
|P k

s (x) − P k
t (x)| (14)

where P k
s (x) and P k

t (x) are the prediction outputs of the k-th class given by the
source and target predictors respectively. We replace the loss Lf with L′

f and
denote the baseline as non-adv. We compare the baseline with JFL on the digital
dataset and the results are shown in Fig. 2. As we can see, JFL outperforms this
baseline in all the tasks, especially in the most challenging task, i.e., MNIST →
SVHN. Such results also prove that the adversarial based method can perform
better than the non-adversarial method for labeling function adaptation.

5 Conclusion

In this paper, we focus on unsupervised domain adaptation. Previous methods
only aim to learn domain-invariant features and achieve a small source error while
they ignore the shift between the labeling functions. Thus, we propose a method
to perform feature adaptation, labeling function adaptation and minimize the
source error simultaneously. Especially, for labeling function adaptation, a novel
component named label predictor discriminator is introduced and is trained in
an adversarial manner. By optimizing these three objectives, the discrepancy
across domains can be reduced. The results on three real-world datasets show
that the proposed method outperforms state-of-the-art methods. In the future,
we would like to explore labeling function adaptation in semi-supervised domain
adaptation and multi-source domain adaptation. Besides, we will explore domain
adaptation in complex scenes such as source-free domain adaptation [6,15] and
activate domain adaptation [7].
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Abstract. Transformers have been widely applied in text classifica-
tion. Unfortunately, real-world data contain anomalies and noisy labels
that cause challenges for state-of-art Transformers. This paper proposes
Protoformer, a novel self-learning framework for Transformers that can
leverage problematic samples for text classification. Protoformer features
a selection mechanism for embedding samples that allows us to efficiently
extract and utilize anomalies prototypes and difficult class prototypes.
We demonstrated such capabilities on datasets with diverse textual struc-
tures (e.g., Twitter, IMDB, ArXiv). We also applied the framework to
several models. The results indicate that Protoformer can improve cur-
rent Transformers in various empirical settings.

Keywords: Text classification · Twitter analysis · Class prototype

1 Introduction

For real-world textual datasets, anomalies are known as samples that depart
from the standard samples. Such anomalies tend to have scattered textual dis-
tributions, which can cause performance drops for state-of-art Transformer mod-
els [13]. Moreover, models that rely on supervised learning can suffer from incor-
rect convergence when provided with noisy labeled data gathered from Inter-
net [14]. Hence, there is a need to automatically detect the anomalies and adjust
noisy labels to make the model more robust to complex noisy datasets.

As human annotations can be highly time-and-cost inefficient, it is more
common that noisy labels are gathered from the Internet. For instance, Twitter
has been increasingly adopted to understand human behavior [3]. However, such
data tend to complex and often contain noisy labels. This can make the standard
supervised learning objective lead to incorrect convergence [4].

One of the applications of this study is to classify college students’ academic
major choices based on their historical Tweets. When students follow a certain
college’s official account, it might indicate that the student belongs to that major.
However, there are uncertainties about the correctness of the labels. Therefore,
the supervised model’s results can become untrustworthy.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13280, pp. 447–458, 2022.
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Fig. 1. Distribution of embeddings for real world data samples is often scatterd.
Although conventional class prototypes are easier to select, difficult class prototypes
and anomaly prototypes require a more careful approach in selection and play a critical
role in improving the decision boundary.

There are some prior works on prototype embeddings. CleanNet [7] proposes
providing extra supervision for the training. Subsequently, SMP [5] proposes
using multiple prototypes to capture embeddings with high density without extra
human supervision. However, both approaches do not provide a solution for
troublesome embeddings that are scattered and are often minorities, as shown
in Fig. 1. To alleviate this issue, we select prototypes through their contextual
embeddings in a way to not only cover the difficult-to-classify samples but also
represent minority samples of the dataset (i.e., anomalies).

We propose Protoformer framework that selects and leverages multiple
embedding prototypes to enable Transformer’s specialization ability to classify
noisy labeled data populated with anomalies. Specifically, we improve the gen-
eralization ability of Transformers for problematic samples of a class through
difficult class prototypes and their specialization ability for minority samples
of a class through anomaly prototypes. We show that the representations of
both prototypes are necessary to improve the model’s performance. Protoformer
leverages these prototypes in a self-learning procedure to further improve the
robustness of textual classification. To our best knowledge, this is the first study
that extracts and leverages anomaly prototypes for Transformers.

In summary, the contributions are threefold:

• We propose a novel framework that learns to leverage harder to classify and
anomaly samples. This acts as a solution for classifying datasets with complex
samples crawled from the Internet.

• The framework contains a label adjustment procedure and thus is robust to
noise. This makes the framework suitable for noisy Internet data and can be
used to promote a more robust Transformer model. Leveraging the similarity
in the embedding space and a ranking metric, we can identify questionable
labels and provide a certain level of adjustment. This mitigates the potential
negative impact on the training.
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• We evaluate the framework based on multiple datasets with both clean and
noisy labels. Results show that our model improves the testing accuracy from
95.7% to 96.8% on the IMDB movie review dataset. For a self-gathered Twit-
ter dataset with noisier labels, the classification accuracy improved with a
greater margin (from 56.7% to 81.3%).

2 Problem Formulation

Given a sample text as xi, X = {x1,x2, · · · ,xN} represents all the N samples of
the dataset, while Ŷ = {ŷ1, ŷ2, · · · , ŷN} indicates the corresponding noisy labels
from the Internet. The noisy label ŷi ∈ {0, 1}c̄ is a binary vector format with only
one non-zero element, indicating the class label of xi, where c̄ is the total number
of classes. A Transformer model FW can be used as a classification model to
produce an estimated label FW (xi) ∈ [0, 1]c̄, where W represents the parameters.
The optimization strategy is based on the cross-entropy loss function:

L(FW (xi), ỹi) = −
c̄∑

j =1

ỹi,j log (FW (xi)j) , (1)

In addition, labels from the internet are often noisy. Hence, as detailed in
Sect. 3.4, the labels can be adjusted according to the similarities of the class pro-
totypes, resulting in adjusted labels ỹi ∈ [0, 1]c̄—it is a probability distribution,
and thus

∑c̄
j =1 ỹi,j = 1. Even when we have sufficient confidence in the original

labels, we can use it as a complementary supervision.
Specifically, for each batch with m samples, we would pursue the following

optimization problem:

W ∗ = argminW

1
m

m∑

i=1

L (FW (xi), ỹi) (2)

3 Design of Protoformer

This section provides the details of Protoformer. Specifically, we describe a pro-
cedure for extracting the difficult class prototypes (Sect. 3.1). Subsequently, we
describe a procedure for extracting anomaly prototypes (Sect. 3.2). Both types
of prototypes are then used in a multi-objective self-learning training process
that optimizes the network parameters for robust text classification (Sect. 3.3).
In order to handle noisy labeled data, we adjust the noisy labels through a label
adjustment procedure that uses the prototype similarities (Sect. 3.4).

3.1 Difficult Class Prototypes

Difficult class prototypes act as the representatives for the problematic sam-
ples of the dataset. For example, Fig. 2 showcases the fine-tuned embeddings
of a benchmark dataset gathered from the Internet (i.e., IMDB). Although the
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Fig. 2. Left: distribution of the embedding for IMDB dataset. Presence of anomalies
and problematic samples cause misclassification. Right: Distribution of the highest
output logits (scaled 0–1) for the same model. The higher values of the largest logits
can represent the confidence of the network’s classification.

majority of samples of each class are located closely together, there are anomaly
samples that are scattered and often far from the majority. Unfortunately, these
harder-to-classify samples are not the target focus of the state-of-art models in
text classification. Moreover, traditional clustering methods (e.g., K-means) are
not designed to capture or cluster such samples that are scattered and distributed
throughout the embedding space.

Intuitively, these problematic samples can cause the greatest error. For
instance, Fig. 2 also shows the classification error of the fine-tuned BERT [2]
model where the majority of the classification error stems from harder-to-classify
samples (over 51%). Such error arises when the highest classification logit values
are still low and in between classes, which indicates the indecisiveness of the
Transformer. Following [5], we define the similarity of the extracted embeddings
through pairwise similarity score (i.e., cosine distance) of any two inputs xi

and xj as:

sij =
e (xi)

T · e (xj)
‖e (xi)‖2 ‖e (xj)‖2

, (3)

where e(x) is the embedding vector of sample x, extracted from the first layer
of the Transformer1.

To determine the closeness of embeddings, we also define the proximity
metric p for each embedding as:

pi =
m∑

j =1

sign (sij − sc) , (4)

1 For large-scale datasets, one can randomly choose a limited number (e.g., q) of
samples per class to develop a triangular similarity matrix Sq×q which can enhance
the computational efficiency.
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Fig. 3. Selected embedding prototypes of a single class of Twitter dataset. Difficult
class prototypes have higher proximity, while anomaly prototypes suffer from low prox-
imity due to their complex nature.

where sign(x) is a sign function2 and sc is an arbitrary value from the similarity
matrix (default as 20-percentile). Intuitively, a higher proximity indicates that
the textual embeddings have more similar embeddings around them and are
‘closer’ to every other sample in the embedding space.

Follwing [12], problematic samples cause low confidence in output logits of
the model. Hence, we define the confidence metric c as:

ci = |
largest logit︷ ︸︸ ︷

maxĉ1 FW (xi)ĉ1 −
second largest logit︷ ︸︸ ︷
maxĉ2 FW (xi)ĉ2 | (5)

where logits are scaled (0–1 range) and are taken from the output before the
softmax layer after a preliminary training stage. Intuitively, when the confidence
is low (near zero), the model indecisivess is the highest.

We can now represent the embeddings in a three-dimensional space as shown
in Fig. 3 (similarity-proximity-confidence). The difficult class prototype selection
follows three general rules: (i) it should prioritize low confidence samples (i) it
should be ‘far’ enough from existing prototypes (if any), (iii) it should have high
‘proximity’ when possible. To this end, the first prototype with the lowest confi-
dence, highest proximity, and highest similarity is chosen. Then, the subsequent
difficult class prototypes are chosen in a logsparse [8] manner for every round
with an exponential selection step of sample size (log2(N)). Note that the sam-
ples are selected based on the low confidence, then high proximity but should
have the lowest average similarity with the previously selected prototypes to
be distinctive from each other. This strategy ensures us that the difficult class
prototype are well represent problematic samples of the dataset.

Next, at a certain round (t), a prototype set Xc =
{
x(1)
c , . . . ,x(t)

c

}
is already

formed for the c-th class, c = 1, ..., c̄. Given any text xi, we can calculate the
2 sign(x) = 1 for x > 0, sign(x) = 0 for x = 0, and sign(x) = −1 otherwise.
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average cosine similarity between sample xi and the selected prototype embed-
dings as:

sci,(c) =
1
t

t∑

j =1

si,c(j) , (6)

where sci,(c) is the average similarity of difficult class embeddings in the jth
iteration for the c-th class. This average similarity can then be used as a com-
plementary supervsion:

zci = argmaxc{sci,(c)|c = 1, ..., c̄}. (7)

As shown in Fig. 3, difficult prototypes are chosen with low confidence levels,
where they have the least similarity among the previously selected prototypes.
During this process, we ensure that the subsequent prototypes stay far enough
from existing prototypes so that there are limited redundant representations of
the similar samples.

3.2 Anomaly Prototypes

Anomaly prototypes are the selected sample prototypes that represent the scat-
tered and shattered minority samples of a dataset. Such samples are often harder
to detect and tend to deviate from normal samples.

Given that the remaining classification error can be caused by such anomalies,
it’s important to not only capture such anomalies robustly but also leverage them
for the optimization objectives of Transformers.

So far, difficult class prototypes can cover the problematic samples as they
are detected by having high proximity and similarity. However, a certain portion
of prototypes may be located ‘far’ from the difficult class prototypes and often
represent the minority members of a class, as indicated by the red dots in the in
Fig. 3. Such prototypes represent the minority of samples as they have a lower
density.

The prototype with the least proximity pmin is selected in the first round.
This ensures us that the elected prototype is representative of the minority
samples. We then select the subsequent ones in the same logsparse manner as
before, ensuring that the prototypes have the least similarity. The similarity
score is calculated in a similar manner to Eq. (6) while including the anomaly
prototypes in the summation.

Figure 2 also illustrates the process, where gray dots represent all sample
embeddings, and red dots indicate the embeddings of selected anomaly proto-
types.

3.3 Multi-objective Self-learning

Transformers used in text classification often rely on a single source of super-
vision which is the given labels. However, such design choice limits the Trans-
former’s ability to perform well when the datasets are noisy labeled. Moreover,
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Fig. 4. Protoformer leverages the embedding space to derive the difficult class and
anomaly prototypes. The network is trained jointly on Transformer and similarity of
embedding prototypes. The total loss is dependent on the α and β values which are
estimated in the training phase.

anomaly samples appear less in training compared to samples with high sim-
ilarity. Note that majority of self-learning objectives for Transformers are to
provide the greatest level of classification accuracy for all samples regardless of
whether they are in the majority or minority. Intuitively, such a self-learning
objective does not guarantee that the model suits well for minority classes due
to their lower occurrence. In order to incorporate our prototypes during the
training and test stage, we introduce a multi-objective self-learning mechanism
to Protoformer.

As shown in Fig. 4, the similarities of embedding prototypes are used as
self-supervision to train the Protoformer FW after its fine-tuning state. The
self-supervision is provided by the class prototype as below:

Lproto =
1
m

m∑

i=1

(α · L(FW (xi), zci ) + β · L(FW (xi), zai )), (8)

where the weight factors α, β ∈ [0, 1) and α+β < 1 indicate the concentration of
Transformer on the similarities of self-supervision of difficult class prototypes zci
and anomaly prototypes zai . Hence, the overall loss is calculated by minimizing
the classification loss based on three components:

Ltotal = (1 − (α + β)) · 1
m

m∑

i=1

(L(FW (xi), ŷi) + Lproto, (9)

To this end, when the network’s predictions are in between classes, the net-
work can improve its training by the self-supervision provided by the similarity
of difficult class prototype zci and anomaly prototype zai . Hence, we continue the
training procedure iteratively until convergence: W (t+1) ← W (t) − ξ∇ (Ltotal) ,
where the gradient descent vector ∇(Ltotal) holds the partial derivatives of
weights and biases of the total loss function, and ξ is the learning rate. We use
a fully connected layer over the final hidden state corresponding to the output
token of the Transformer (i.e., [CLS] token). The softmax activation function
is then applied to the hidden layer to provide classification. It is important to
note that this procedure can also be implemented solely during the test stage,
which can make the calculation timing complexity of Protoformer similar to the
fine-tuning process.
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3.4 Noisy Labels Enhancement

To mitigate the effect of noisy labels throughout the datasets, we are enhancing
the labels through the similarities of embedding prototypes. This allows Proto-
former to be robust toward datasets when the labels are not fully trustworthy.
Consequently, when the labels are wrong, the training procedure of Transformers
provides suboptimal weights, which makes the classification results untrustwor-
thy.

Specifically, we can obtain the adjusted label of the a noisy labeled sample
through maximum similarity to the difficult class prototype:

ỹi = argmaxc{si,(c)|c = 1, ..., c̄}, (10)

where si,(c) is the cosine similarity defined in Eq. (6) and the enhanced labels
ỹ can be used as a replacement for the noisy labels. Thus, the overall loss is
calculated in a similar manner as Eq. (9), while we are replacing the original
noisy labels with the adjusted label.

4 Experiments

In this section, we provide descriptions for the datasets. We also describe the
experimental settings and evaluation results. Lastly, we provide an analysis
section that further discusses the effectiveness of Protoformer components.

4.1 Benchmark Datasets and Baselines

We have experimented with three challenging real-world datasets3. The brief
discussion for each dataset is as follows:

Table 1. Summary statistics of the evaluation dataset.

Dataset Twitter-Uni IMDb Arxiv-10

# Examples 25,000 25,000 100,000

# Train 20,000 20,000 80,000

# Validation 2,500 2,500 10,000

# Test 2,500 2,500 5,000

# Classes 8 2 10

Twitter-Uni (See footnote 3). We crawled over 12 million historical Tweets of
25,000 Twitter profiles from 8 U.S. college followers. As an example, the college of
engineering holds near 3000 followers, which are labeled as engineering. Note that
3 Self-gathered datasets are accessible at https://github.com/ashfarhangi/

Protoformer.

https://github.com/ashfarhangi/Protoformer
https://github.com/ashfarhangi/Protoformer


Protoformer: Embedding Prototypes for Transformers 455

most existing benchmark Twitter datasets fail to hold high-quality labels that
are provided by the original Twitter users. To alleviate this issue, we extracted a
set of students that stated their major in their Twitter bio. This set can serve as
ground truth of the clean labels. We made this challenging new dataset available
online, which can be used for future text classification or noisy label correction
studies.

ArXiv-10 (See footnote 3). We also crawled the abstracts and titles of 100
thousand ArXiv scientific papers on ten research categories that include subcat-
egories of computer science, physics, and math. The dataset is downsampled to
contain exactly 10 thousand samples per category.

IMDB. The third dataset is the benchmark IMDb movie reviews [10]. The
dataset is widely used as the sentiment classification task. It contains 25 thou-
sand samples per sentiment (positive or negative). Both IMDb and ArXiv-10
datasets are originally labeled by the authors. It is however good to note that
the labels are still susceptible to noisy labels.

The baseline methods for comparison include:

– SVM [11], supervised learning with a linear separator to maximize the margin
between classes, with the fine-tuned embeddings derived from the Transform-
ers.

– HAN [6], a hierarchical attention network for textual classification with word
and sentence-level attention mechanisms.

– DocBERT [1], a document Transformer model with an LSTM architecture
rather than a fully connected layer.

– RoBERTa [9], a Transformer with an improved pretraining procedure. Specif-
ically, showing improvement by removing the next sentence prediction pre-
training objective.

Table 2. Hyperparameters of the Protoformer used for each dataset.

Parameter Twitter-Uni IMDb Arxiv-10

Batch size 32 64 32

Learning rate 5 × 10−5 3 × 10−5 5 × 10−5

Weight decay 5 × 10−5 1 × 10−5 1 × 10−4

Preliminary training epochs 5 3 2

Fine-tuning epochs 20 10 10

Training time 1:49 h 1:32 h 1:45 h

Transformer DistilBERT BERT RoBERTa

4.2 Experimental Settings

To showcase the generalization ability of our framework, we selected a unique
Transformer for each dataset (Table 2). The hyperparameters are based on the



456 A. Farhangi et al.

Table 3. Evaluation of the Protoformer and baseline methods.

Twitter IMDb ArXiv

Model Ma-F1 Recall Acc Ma-F1 Recall Acc Ma-F1 Recall Acc

SVM [11] 0.384 0.361 0.391 0.744 0.733 0.748 0.691 0.654 0.708

HAN [15] 0.412 0.392 0.425 0.894 0.882 0.896 0.732 0.696 0.746

DocBERT [1] 0.521 0.506 0.534 0.932 0.921 0.936 0.752 0.727 0.764

RoBERTa [9] 0.555 0.531 0.567 0.952 0.941 0.957 0.769 0.732 0.779

Protoformer 0.802 0.784 0.813 0.964 0.952 0.968 0.784 0.744 0.794

highest Macro-F1 score obtained on the validation set for all models (following
the standard 80-10-10 split). We used a grid search approach to explore the
hyperparameters: size of fully connected layer HD ∈ {256, 512, 768, 1024} and
dropout δ ∈ {0.0, 0.1, · · · , 0.9}. The experiments are conducted using PyTorch
on a cloud workstation using Nvidia Tesla A100 GPU.

4.3 Experimental Results

For a less noisy labeled datasets such as IMDB and Arvix, the evaluated meth-
ods performed comparatively. Note that the majority of the classification error
appears when the network does not show confidence in its classification, as was
previously shown for the IMDB dataset in Fig. 5. The Protoformer is also able to
provide a competitive accuracy for cleaner datasets such as IMDb and ArXiv-10.
Among the baselines, the performance of RoBERTa [9] is favorable compared to
others. This is partly due to the different pretraining objectives from DocBERT.
As shown in Table 3, Protoformer resulted in the highest margin of accuracy
for a noisy dataset, improving the Macro-F1 score from 55.5% to 80.2% for the
Twitter-Uni dataset. We observed that this dataset provides the greatest dif-
ficulties for baseline methods where the models often misclassify problematic
samples. To this end, we report a detailed accuracy breakdown for the Twitter
dataset in Fig. 5. The fine-tuning process for Transformers such as DocBERT,
RoBERTa results in suboptimal classification. Leveraging the selected proto-
types, Protoformer was able to improve its classification accuracy on the harder
and more complex samples (e.g., management students that are similar to other
classes). To this end, the fine-tuning process alone does not result in adequate
accuracy due to the noise of the dataset. The combination of both embedding
prototypes allows the Transformer to have a solution for anomalies and prob-
lematic samples of the dataset and further improves its generalization ability
through difficult class prototypes.

4.4 Analysis

In this section, we provide an extensive analysis of the performance of Proto-
former, as well as the role of each type of prototype on the overall performance.
Hence, we limited the number of prototypes per class for the Twitter dataset
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Fig. 5. Left: Accuracy increase from the initial (light blue), class protoype (blue)
and class anomalies (red), for Twitter dataset. Right: Influence of anomaly labeling of
hurricanes for Collier county gross hotel sales revenue. Middle: Number of anomaly
prototypes (AP) and difficult class prototypes (CP) per class for Twitter dataset.
Higher number of prototypes resulted in marginal improvement while the combination
of both category of prototypes gives us the optimal accuracy. Right: Testing accuracy
with respect to the weight factors (α and β) ranging from 0 to 1. (Color figure online)

and reported the changes. The results in Fig. 5 show that a single prototype
is not sufficient to provide competitive accuracy even with the help of a fine-
tuned Transformer. However, as the number of prototypes increased, we observed
improvements in the accuracy of the Protoformer. The prototype selection pro-
cedure previously discussed ensures that there are multiple prototypes for every
proximity metric, and the calculation of them is computationally expensive even
for the large-scale dataset. Moreover, the weight factors are reported separately
to showcase the effect of their self-supervision for the Twitter dataset. The results
show that relying on the noisy labels (α and β = 0) during training would be
suboptimal and perform poorly on confirmed test data. Moreover, the accuracy
would be optimal when weight factors sum to 0.5 (i.e., α = 0.2, β = 0.3).

5 Conclusion

In this work, we developed a novel Transformer framework, Protoformer, that
leverages the embedding prototypes of the dataset to enhance its generaliza-
tion and specialization abilities. It also includes a procedure for handling noisy
labels. Various experiments are conducted to demonstrate the effectiveness of
Protoformer over state-of-art topic and sentiment classification methods. For
future work, we are interested in applying Protoformer for the image recognition
tasks. We also like to explore the use of Protoformer on spherical and hyperbolic
embedding space.
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Abstract. Capturing complex spatio-temporal features of thousands of
correlated taxi-demand time-series in the city makes the traffic flow pre-
diction problem a challenging task. Hence, several Deep Neural Net-
work (DNN) models have been developed to mimic the latent spatio-
temporal behaviour of taxi-demand time-series in a city to improve the
prediction results. Despite, good performance of recent DNN based traf-
fic prediction techniques, such models can only identify either adjacent
or connected regions with direct or transitive connection; hence they
fail to capture spatio-temporal correlation among regions that exhibit
implicit or latent connection. Additionally, the dependency of the recent
DNN models on recursive components facilitates error propagation dur-
ing feature aggregation without any counter strategy for it. In view of
these existing glitches, we introduce a novel DNN model, graph Multi-
Head Convolution for Spatio-Temporal Aggregation (gMHC-STA)
which supports capturing spatio-temporal correlation among regions
with explicit and implicit connection both. Moreover, gMHC-STA
aggregates both spatial and temporal characteristics using multi-head
attention; thus overriding recursive RNN or its variant approach to pre-
vent noise propagation. The experimental results of gMHC-STA on
two real-world city taxi-demand datasets report minimum of 6.5–10%
improvement over the best state-of-the-art on standard benchmark met-
ric in varying experimental conditions.

Keywords: Spatio-temporal · Graph convolution · Multi-step
prediction · Time series · Taxi-demand

1 Introduction

Traffic demand prediction is important for transportation planners, traffic engi-
neers, and policymakers. More precisely, they are used by many Departments
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of Transportation (DOTs) and highway agencies to help plan, build, and main-
tain transportation infrastructure at the country, provincial, and national levels.
Taxi-demand prediction being a similar objective is of prime importance to the
taxi-companies to reduce cost on resources and meet commuters’ maximum sat-
isfaction. Hence, it becomes an essential challenge to predict the taxi-demand
of city traffic networks when thousands of daily commuters are dependent on it
for their professional needs. Many research have been carried in this direction
from classical machine learning (ML) [1,10–12,16] algorithms to trendy Artifi-
cial Neural Networks (AI) approach [7,8,22]. The initial time series statistical
predictive models like ARIMA [11], SARIMA [10], Bayesian Update [16] and
many of their variants have been found applicable to these prediction problems
having linear or simpler features. Their capability is challenged when the data is
multi-dimensional or has complex latent spatio-temporal features. Taxi-demand
of city traffic network comprise of multiple correlated time series data with com-
plex latent spatio-temporal features. Tensor-based [2,4,14,16] and Deep Neural
Networks models [5,19–22] have been very efficient in handling high dimen-
sionality as well as complex latent features in data. Tensor-Based models like
DTC [16], tucker-cur [4], CP-ALS [14] could efficiently predict short-term traffic
but are not able to harness traffic network characteristics which vary vastly for
different cities. Tensor models like TeDCaN [2] could efficiently predict long-
term prediction as well as capture city specific traffic characteristics. Despite
all, the high computational complexity of Tensor models [14] and their limited
performance on long-term predictions, DNN models have been now the first
choice of predictive models in this domain. Moreover, DNN [5,19–22] models
usually provide high predictive accuracy and are efficient for both short and
long-term prediction. The capability of DNN models to include any form of
additional features as attention make them a suitable predictive model for this
domain. For example recent DNN models like STGCN [20], GEML [19], ST-
MGCN [5], att-ConvLSTM [22], GMAN [21] have already shown their high pre-
dictive performance. These models use Convolutional Neural Networks (CNN)
or Graph Convolution Networks (GCN) to capture spatial features in the taxi-
demand data. While to capture temporal features, these models use Recurrent
Neural Networks (RNN) or its variants LSTM, GRU. Despite these advanced
techniques, these models show strategic limitations like the inability to capture
implicit connection, preventing high error accumulation due to recursive com-
ponents. Another major pitfall of these recent models is their limitation to pre-
dict region-pair prediction. Since taxi-demand from a region (s) to a region (d)
would differ vastly from that of d to s. Also, these to-and-fro demands depend
on explicit as well as implicit connections of many other regions. Except for
GEML, other models like att-convLSTM, ST-MGCN, GMAN, STGCN do not
support region to region taxi-demand prediction either due to their strategic
or structural limitations. att-ConvLSTM uses city-grid structure while STGCN,
ST-MGCN, GMAN would need large channel size for the region to region pre-
diction. Even then these models could not capture region pair correlation during
prediction owing to their structural limitations. With the view of culminating



gMHC-STA for Spatio-Temporal Attention in ODT Prediction 461

these constraints in taxi-demand predictions that are prevalent in recent models,
we propose gMHC-STA, a DNN based model that can override recursive app-
roach to mitigate error accumulation and use modified graph convolution [18]
that can help in capturing all explicit as well implicit connections to provide
attention with every region under study. Structurally superior to ST-MGCN,
GMAN, the proposed model can incorporate region-region interaction during
prediction for region pair prediction. Figure 1 demonstrates the implicit connec-
tion between two distant regions in the city and their similar demand pattern.
In the paper, we present how the proposed model is able to bring these regions
closer in the embedding space. Hence, the proposed model is able to retrieve
each region pair taxi-demand predictions using embedded features of region pair
interaction. We summarize the contributions of our work as follows:

– The proposed model introduces spatial and temporal convolution by means
of parallel multi-head convolution which overrides error prone recursive app-
roach and is able to identify spatio-temporal correlations among regions with
both implicit and explicit connection.

– The proposed model is capable of making region to region prediction which
varies both directions, unlike many recent predictive models which often over-
look the problem.

– The experimental findings on two real-world city taxi-demand dataset for
varying experimental condition presents the model’s distinct advantages over
the state-of-the-art in reducing prediction error for every region in the city.

Fig. 1. NYC (above), THS. The leftmost map shows two regions (GRs: grid represen-
tatives/nodes) that are not explicitly connected in data and are far away. The graphs
indicate the demand pattern of these GRs. Last column, TSNE plots by the proposed
model exhibit that those GRs (red) are closer in the plot despite no explicit connection
between them. The proposed model is able to capture implicit relation between these
GRs which GCN could have missed. (Color figure online)
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2 Problem Definition

An Origin-Destination Tensor (A ∈ R
t×n×n) prediction problem can be stated as

a group of mutually correlated time series prediction problem where taxi-demand
data being time series varies in different spatial and temporal snapshot of the
city. Taxi-demand prediction problem detailed for a region pair can be stated as
provided HistoricODTA = {A0, A1, A2 . . . At}, the objective is to find a model
that can well approximate to the real future ODT A◦ = {At+1, At+2 . . . At+r}
using PridictedODT Â = {Ât+1, Ât+2 . . . Ât+r} with minimum possible error.
The above problem can be mathematically formulated as follows:

argmin
θ

r∑

i=1

||At+i − Ât+i||2, (1)

where θ is the model parameter that needs to be learnt. A ∈ R
n×n, Â ∈ R

n×n

are real and predicted ODMs respectively and prediction is made for the r times-
tamps ahead.

(a) Conceptual View of gMHC-STA (b)Architectural

View of gMHC-STA

Fig. 2. Figure 2a presents the concept of Attention during Spatial and Temporal Con-
volution module. All the dashed lines are not shown in Temporal-convolution for clarity.
The dashed line presents the attention (implicit connection) involved during predic-
tion. Figure 2b shows the shared kernels and operations in each block of the model. The
shared kernels help to capture common features across spatial-temporal dimension.

3 Proposed Methodology

In this section, we present a detailed constructional view of gMHC-STA. Ini-
tially, we give a summarised view of the proposed model which consists of three
operational units (or modules) which are as follows:



gMHC-STA for Spatio-Temporal Attention in ODT Prediction 463

– Spatial-Convolution: The first module of gMHC-STA convolves over the
spatial features of each temporal snapshot of all the regions of the city. Unlike
many previous models where attention is based on neighbouring regions or
explicit connections [5,19], this module helps to provide attention based on
both explicit as well as latent behaviour of the nearby and distant regions.

– Temporal-Convolution: The second module convolves over the temporal
features of each region based on correlation attention among the temporal
components of the region; thus overriding the recursive requirement such as
utilizing RNN, GRU, LSTM etc. used in many state-of-the-art models [5,19,
20].

– Multi-Step Prediction: The final module is used to carry multi-step pre-
diction through a common kernel. It emphasizes on shared spatio-temporal
properties of the city regions.

3.1 Spatial-Convolution

Firstly, we attempt to aggregate spatial features of region pairs in a temporal
snapshot of the city. We convolve over the demand pattern of each region pair
irrespective of whether these regions are connected or not. In the process, the
strength of the convolution is decided by the correlation of demand pattern (σ
in Eq. 3) of region pair. This module leverages modified graph convolution [17].
A generic Graph Convolution Networks (GCN) has already shown their effec-
tiveness in aggregating graphs features in node domain depending up on the
connected neighborhood [5,19]. Such convolution is effective in mapping contex-
tual relations of nodes with its neighbors. Despite, generic graph convolution
can possibly miss many transitive or implicit relationships between nodes which
do not appear in graph connections. For example, if an important region is con-
nected to city airport through multiple other regions, that important region and
city airport forms an implicit connections. Such connections can not be directly
visible though they exhibit strong correlation. Hence, we attempt to aggregate
spatial features of each node depending on their correlation with any other exist-
ing nodes either in explicit or implicit connection; attention by using “complete
graph analog of ODM” in Fig. 2. The modified graph convolution operation on
an ODM (A ∈ R

n×n) and node feature matrix (X ∈ R
n×f ) is represented below:

H = AXW (2)

where W ∈ R
f×d is GCN kernel mapping f features to d dimension. H ∈ R

n×d

is the spatially convolved graph network (demand traffic network in our case).
n is the number of nodes (regions) in the network.

The above convolution can only aggregate neighboring features of the node
while we need to aggregate features of each node based on all other nodes’
correlation values. To achieve this, we apply 3 graph convolution kernels qs ∈
R

f×d, ks ∈ R
f×d and vs ∈ R

f×d. Now, the aggregation of graph (A) features
(X) are carried as follows:

Qs = AXqs, Ks = AXks, Vs = AXvs, H = σ(
QsK

T
s√

d
)Vs (3)



464 M. Bhanu et al.

where σ is softmax activation on last axis which provides attention to Vs and
is a measure of correlation strength between each region pair demand patterns.
H is generated as a result of multiple graph convolutions (heads). The obtained
convolved graph representation H ∈ R

n×d has each node whose features is a
weighted sum of all other nodes’ features based on the degree of their correlation
strength with them. Ultimately, the presented graph convolution can successfully
capture implicit as well as explicit correlation between each node pair irrespective
of their connection in the graph. We represent the above spatial convolution
operation over a temporal element (i) of the sequence of input of size t as follows:

Hi = φ(Ai,Xi) (4)

The model’s first module uses the sliding window strategy (for broadcast oper-
ation) to carry spatial convolution on each element of the temporally ordered
sequence of ODMs and its features as follows:

{H1,H2 . . . Ht} = {φ(A1,X1), φ(A2,X2) . . . φ(At,Xt)} (5)
H = {H1,H2 . . . Ht} (6)

The output of the first module of the model is a temporally ordered spatially
aggregated graph representative (H ∈ R

t×n×d). The output is fed to the next
module to carry temporal convolution, which is explained later.

3.2 Temporal-Convolution

Each region can be represented as a temporal sequence of its state. Using
temporal-convolution, we aggregate a region’s features in its different temporal
states into a single representation. Hence, we represent each region embedding
by aggregating that region’s features in all of its previous temporal states. Here
again, the strength between two temporal state depends on their correlation
value (Eq. 7). To present, the operations in this module, we define a temporal
slice of the input as H̃ ∈ H where H̃ ∈ R

t×d. It should be noted, H̃ is slice of
H on spatial axis while Hi in Eq. 6 is slice of same H on temporal axis. The fol-
lowing presents the convolution of each temporal slice of the input by 3 kernels
(qt ∈ R

d×g, kt ∈ R
d×g, vt ∈ R

d×g) of this module:

Qt = H̃qt, Kt = H̃kt, Vt = H̃vt, H = σ(
QtK

T
t√

g
)Vt (7)

The above temporal convolution can be represented on each spatial element (i)
of the input of size n as follows:

Hi = ψ(H̃i) (8)

For each node, the above temporal convolution is carried using the sliding win-
dow strategy and is demonstrated as follows:

{H1,H2 . . . Hn} = {ψ(H̃1), ψ(H̃2) . . . ψ(H̃n)} (9)
T = {H1,H2 . . . Hn} (10)
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In the above equation, T ∈ R
t×n×g is the spatio-temporal convolution of the

input ODT which can be used for the prediction in the next phase. g is the
dimension of the kernels in this module, bringing transformation of the input
from dimension d to g.

3.3 Multi-step Prediction

The output of the previous module T ∈ R
t×n×g preserves all the spatio-temporal

characteristics of the ODT in latent space which might not be explicitly evident
in the raw input data. Hence, T is the sufficient information that can now be
used to predict the future ODT. Though, the prediction of r windows needs a
proper aggregation of t windows information. Hence, we facilitate this process
by a kernel (u ∈ R

t×r) that transforms the t dimensional information into r
dimensional information. Firstly, we represent T as a sequence of n slices, i.e.,
T = {T g×t}n. Then, we apply matrix multiplication with the kernel u ∈ R

t×r

on each slice, i.e., the broadcast operation (Eqs. 11 and 12). This matrix multi-
plication is the transformation of the t dimensional space into the r dimensional
space. We represent the final result T̃ as a 3-D tensor (Eq. 13). The following
transformation represents this:

T̃ = {T g×t}nut×r (11)

T̃ = {Ṫg×r}n (12)

T̃ = T̃r×n×g (13)

In the above equations, subscript refers to the dimension and Ṫg×r is one of nth

slice of T̃ ∈ R
r×n×g. Equation 12 is the result of a broadcast operation on each

slice whose transformation can be seen as:

Ṫ = ξ(T ) (14)

The result T̃ can be seen as sequence of r slices as T̃ = {T̄n×g}r. We have a
broadcast operation of matrix multiplication using each slice, each slice transpose
and the kernel P ∈ R

g×g as follows:

Â = {T̄n×g}rPg×g{T̄T
g×n}r (15)

Â = {Ân×n}r (16)
Â = Âr×n×n (17)

The kernel in the Eq. 15 undergoes a broadcast operation and is implemented
using the sliding window strategy on each prediction-temporal element (i) of
input size r as follows:

Âi = ζ(T̄i) (18)

The sequence of the prediction-temporal slice are seen to undergo the following
convolution:

{Â1, Â2 . . . Âr} = {ζ(T̄1), ζ(T̄2) . . . ζ(T̄r)} (19)
Â = {Â1, Â2 . . . Âr} (20)
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where Â ∈ R
n×n is a predicted ODM. Ultimately, we obtain the predicted ODT

(Â) for the real ODT (A◦) by the model using the input ODT (A) provided.

4 Experimentation

4.1 Datasets

We evaluate our proposed approach on two benchmark real-world taxi demand
datasets [2,3]: New York City (NYC: January-March, 2014) and Thessaloniki
(THS: January-March, 2015). NYC dataset contains GPS information of both
the source and destination along with the time of journey, while the THS data
has only source GPS information together with the time of journey and taxi-id.
To extract the destination GPS information in THS data, we use the source
GPS information and timestamp of the next starting trip by the same taxi-id.
Both NYC and THS traffic regions are divided into equal size rectangular grids.
Central GPS of a grid is termed Grid Representative (GR). In ODT [2,3,13,15]
formation, many vacant and less significant grids are discarded. The top 55 and
25 grids are used for the experimental study for New York City and Thessaloniki
based on mobility count. The grid size of 5 × 5 km2 [2,5,22] is used and time
interval of 1 h is chosen; thus each ODT is composed of 2160 ODMs.

4.2 Experimental Setups

We use 80% of data for training, 20% for testing and 10% of training data for
validation. Model parameters are tuned using grid-search and the best parame-
ters are reported as follows: dimension size (d) is 10, epochs 600 (NYC) and 200
(THS), batch 32. Learning rate is 10−4 with optimizer ADAM and regularization
is l2(10−3). Activation functions are leakyReLU, sigmoid, softmax. Historic win-
dow (HWND) size is H = {12, 24, 168} and prediction window (PWND) size is
r = {1, 2, 4, 6, 8, 10, 12}, both in hours. Loss function is mse on metric accuracy.
Percentage of missing information under study is mi = {5, 10, 20, 40, 50}%.

4.3 Baseline Techniques

We compared the proposed model with the trendy Deep Neural Networks pre-
dictive models in this domain. ST-MGCN [5] is a temporal attention based
DNN model which uses ChebNets as GCN for spatial convolution and RNN
for temporal Convolution. GEML [19] uses GCN and LSTM with Multi-Task
Learning (MTL) strategy. It follows the concept of graph-sage [6] for improved
spatial convolution. ForGAN [9] is a generative adversarial predictive model
which uses the concept of Conditional-GAN for the prediction of traffic time-
series data. Recently, GMAN [21] uses the notion of multi-head attention [17]
mechanism instead of graph convolution for spatio-temporal attention.
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5 Result Analysis

We present the experimental results in this section. For evaluation of the test
case, we have used Root Mean Squared Error (RMSE) [19], Mean Absolute
Percentage Error (MAPE) [21], Symmetric Mean Absolute Percentage Error
(SMAPE) [19]. Reported MAPE, SMAPE are scaled between [0, 1].

Table 1. RMSE of multi-step prediction with Historic ODT of 24 on NYC and THS
datasets.

Models Prediction window (NYC) Prediction window (THS)

1 2 4 6 8 10 12 1 2 4 6 8 10 12

ST-MGCN 4.321 4.618 3.824 4.283 3.991 4.102 4.485 4.229 4.579 6.719 5.796 4.636 4.531 4.756

GEML 3.221 3.625 3.906 3.824 4.468 3.975 4.119 4.794 4.489 4.177 4.638 4.588 5.026 4.836

GMAN 6.054 6.059 6.031 6.050 5.533 5.720 6.053 10.23 10.21 10.22 10.22 10.21 10.21 10.20

ForGAN 6.038 6.031 6.036 6.020 6.006 5.989 5.971 5.489 5.712 5.748 5.854 5.846 5.869 5.871

gMHC-STA 3.623 3.621 3.614 3.615 3.616 3.615 3.615 4.190 4.187 4.186 4.186 4.189 4.195 4.190

Table 2. MAPE of multi-step prediction with Historic ODT of 24 on NYC and THS
datasets.

Models Prediction window (NYC) Prediction window (THS)

1 2 4 6 8 10 12 1 2 4 6 8 10 12

ST-MGCN 0.116 0.135 0.100 0.133 0.111 0.123 0.148 0.112 0.133 0.193 0.140 0.116 0.129 0.129

GEML 0.115 0.128 0.151 0.152 0.238 0.159 0.158 0.127 0.127 0.127 0.144 0.125 0.129 0.123

GMAN 0.589 0.589 0.564 0.588 0.443 0.473 0.588 0.536 0.519 0.519 0.509 0.502 0.498 0.488

ForGAN 0.378 0.378 0.375 0.372 0.369 0.369 0.369 0.561 0.541 0.526 0.524 0.523 0.523 0.522

gMHC-STA 0.080 0.079 0.079 0.079 0.079 0.079 0.079 0.098 0.098 0.097 0.097 0.097 0.097 0.096

Table 3. SMAPE of multi-step prediction with Historic ODT of 24 on NYC and THS
datasets.

Models Prediction window (NYC) Prediction window (THS)

1 2 4 6 8 10 12 1 2 4 6 8 10 12

ST-MGCN 0.099 0.104 0.096 0.101 0.096 0.099 0.106 0.135 0.131 0.146 0.138 0.136 0.136 0.136

GEML 0.102 0.105 0.108 0.109 0.112 0.109 0.107 0.136 0.135 0.138 0.142 0.136 0.140 0.139

GMAN 0.696 0.696 0.680 0.695 0.647 0.655 0.695 0.964 0.964 0.963 0.962 0.962 0.961 0.961

ForGAN 0.744 0.743 0.737 0.733 0.726 0.727 0.726 0.895 0.854 0.826 0.832 0.730 0.739 0.828

gMHC-STA 0.087 0.094 0.094 0.094 0.094 0.094 0.094 0.112 0.137 0.137 0.136 0.136 0.136 0.135

Table 4. Average value of RMSE, MAPE, SMAPE for Historic ODT size-{12,168}.

Models NYC dataset THS dataset

RMSE MAPE SMAPE RMSE MAPE SMAPE

12 168 12 168 12 168 12 168 12 168 12 168

ST-MGCN 4.065 5.07 0.112 0.15 0.098 0.107 5.276 6.182 0.107 0.116 0.135 0.141

GEML 4.083 5.245 0.167 0.266 0.111 0.15 4.756 4.72 0.133 0.143 0.139 0.142

GMAN 5.227 5.396 0.380 0.466 0.619 0.602 10.23 9.882 0.483 0.485 0.962 0.964

ForGAN 6.005 5.829 0.374 0.364 0.736 0.715 5.705 5.697 0.532 0.529 0.846 0.829

gMHC-STA 3.623 3.624 0.078 0.079 0.096 0.096 4.191 4.192 0.098 0.097 0.135 0.138
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Table 5. RMSE values with different spatial (left) and temporal embedding dimensions
at PWND 12 & HWND 24.

Dataset Spatial-embedding Temporal-embedding

5 10 20 40 50 4 8 16 32 128

NYC 3.672 3.672 3.672 3.6272 3.6280 3.6724 3.672 3.6723 3.6270 3.6281

THS 4.1915 4.1915 4.1908 4.1908 4.1910 4.1917 4.1915 4.1910 4.1906 4.1910

5.1 Performance on Varying Historic-Window Size

Referring to the Tables 1, 2, 3 and 4, we observe that RMSE, MAPE, SMAPE of
prediction error for prediction-windows 1–12 hr of gMHC-STA is comparatively
lower than the baseline methods. The lower value of SMAPE (Tables 3 and 4)
indicates that the proposed model can be well suited for many other similar
datasets. Among the baseline models, we find that GEML and ST-MGCN per-
form better than ForGAN, GMAN, stating that it is crucial to capture region
pairwise correlation. One potential reason is that GEML and ST-MGCN utilize
GCN+RNN/LSTM modules that can well adopt to region pair wise demand
prediction similar to gMHC-STA. Additionally, there is an evident strategic dif-
ference in the prediction module of GEML, ForGAN, GMAN models. Another
pitfall is that ForGAN being a generative model requires a huge amount of train-
ing data while GMAN despite using similar convolution strategy, does not have
sophisticated channel free “multi-step prediction module” which can incorpo-
rate region-region correlation during prediction (ζ). The proposed model reports
minimum of 6.5–10%, 49.7–24.63%, 13.08–4.3% improvement in RMSE, MAPE,
SMAPE over the best performing baseline model on NYC, THS respectively.
All the differences with the best performing baseline model is statistically sig-
nificant with p value 0.032012, 0.00001 (p ≤ 0.05) and 0.091367 (p ≤ 0.1) for
RMSE, MAPE, SMAPE respectively. An example of prediction performance of
the proposed model is demonstrated in Fig. 4.

Fig. 3. Comparison of mean RMSE, MAPE and SMAPE score of different approaches
with varying % of missing information at HWND 24 on NYC (top) and THS.
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Fig. 4. NYC (left) and THS showing correctly predicted demands GRs (red) over the
missed GRs (blue) for a test case. (Color figure online)

5.2 Performance on Varying Percentage of Missing Information

We also compare the proposed model in the scenario when a part of information
is missing due to noise or some other unavoidable interruptions. Following the
similar approach in [2,16]. Figure 3 shows the prediction results for the varying %
of missing information. gMHC-STA is capable of making better prediction than
the comparative models owing to its non-recursive approach. To maintain the
clarity of results, we have omitted ForGAN and GMAN for their lower predictive
performance than the others.

5.3 Performance on Varying Spatio-Temporal Dimension, Variants
and Latent Embedding Representation

We evaluate the effect of varying spatial and temporal embedding dimensions.
As shown in Table 5, we observe that the proposed model shows a consistent
performance with minute fluctuation in the reported results. Also, the results
minutely increase beyond the dimensions mentioned owing to increase noise due
to sparsity. We also find that the performance (RMSE) of the proposed model’s
variant with multiple sets of spatio-temporal convolution kernels at historic ODT
hr = 24 and predicted ODT hr = 12 are 6.09, 10.24 for NYC, THS respectively.
TSNE plots in Fig. 1 present that the proposed model is capable to bring GRs
with similar demand pattern nearer to each other in the embedding space. TSNE
is plotted on the GRs embeddings produced by the proposed model before multi-
step prediction to retain both spatio-temporal latent features.

6 Conclusion

In this work, we present a novel deep Graph Multi-Head Convolution for Spatio-
Temporal network model for taxi demand prediction. To capture all explicit as
well as implicit correlations among different nodes in a graph representation
of ODM, we propose a unique spatial-convolution module that utilizes Multi-
Head GCN. We further develop a Multi-Head based temporal-convolution unit
for capturing the temporal properties on each region; thus reducing the need for
error prone recursive models. Moreover, our approach is able to perform region to
region prediction and it can handle missing data comparatively better than the
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competitive models. Extensive experiments show that gMHC-STA consistently
outperforms all the baselines with a good margin on two standard city taxi
datasets.
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Abstract. Automated Machine Learning (AutoML) deals with finding
well-performing machine learning models and their corresponding config-
urations without the need of machine learning experts. However, if one
assumes an online learning scenario, where an AutoML instance exe-
cutes on evolving data streams, the question for the best model and its
configuration with respect to occurring changes in the data distribution
remains open. Algorithms developed for online learning settings rely on
few and homogeneous models and do not consider data mining pipelines
or the adaption of their configuration. We, therefore, introduce EvoAu-
toML, an evolution-based online learning framework consisting of het-
erogeneous and connectable models that supports large and diverse con-
figuration spaces and adapts to the online learning scenario. We present
experiments with an implementation of EvoAutoML on a diverse set of
synthetic and real datasets, and show that our proposed approach out-
performs state-of-the-art online algorithms as well as strong ensemble
baselines in a traditional test-then-train evaluation.

Keywords: Incremental learning · Ensemble learning · Evolutionary
algorithm · Data stream

1 Introduction

Automated Machine Learning (AutoML) has shown impressive performance on
offline learning tasks in which the whole data are available at once. In contrast
to stand-alone offline learning approaches, AutoML automates the data min-
ing pipeline by concatenating different algorithms and applying hyperparameter
optimization (HPO) techniques to find the best performing combination and
configuration of models. The success of AutoML has lead to the development
of multiple well-known frameworks, such as autosklearn [15,16,23], TPOT [26],
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GAMA [18] or H2O [34]. However, many real-world environments generate data
continuously and indefinitely in the form of never-ending data streams [2,17].
Unlike the batch setting, the unbounded nature of these data raises some prac-
tical and technical requirements that need to be addressed, where a stream
algorithm [6]:

– R1: processes a single instance at a time,
– R2: processes each instance in a limited amount of time,
– R3: uses a limited amount of memory,
– R4: is ready to predict at any time,
– R5: is able to adapt to changes in the data distribution1.

When retraining AutoML or other offline learning algorithms, a major part
of these requirements is infringed. Data patterns may change in unforeseen ways
leading to a decrease in the predictive performance of the machine learning
model because the current learned model may be no more representative for
the next upcoming data. As a result, offline learning AutoML algorithms might
not recommend suitable models for future data without retraining the entire
model (R1, R2 infringed). In order to enable adaption to ever-evolving data
streams current approaches; we either use (i) change detectors to decide if a
model should be retrained [13,24] or (ii) homogeneous ensemble learning tech-
niques [31,33]. Both approaches are not applicable in practice due to two main
reasons: retraining AutoML algorithms is often computational expensive [13]
(R1, R4 infringed), especially in large search spaces. The second reason is that
if large search spaces are acquired, pure ensemble techniques would lead to a
large increase in the number of parallel trainings (R3, R4 infringed).

Data streams evolve over time, just like natural environments change, so
survival of the fittest, mutations, and offspring allow populations to adapt to such
environmental changes. Evolutionary algorithms follow a similar concept, where
by creating offspring and allowing for mutations, they mimic natural selection
and let the fittest individuals move over to the next generation. In this manner,
they enable the system to adapt to changing data patterns which makes them
particularly well suited for Online Automated Machine Learning.

Our approach, EvoAutoML, takes up this idea and naturally adapts the pop-
ulation of algorithms and configurations if changes occur in the data. As a result,
we are able to avoid expensive retraining of an AutoML learner and take advan-
tage of ensemble learning techniques.

The proposed offline AutoML approaches are unable to work with evolving
data streams because they allow, among others, several access to data instances
and therefore broke the requirements of the streaming framework. Thus, for
fair comparison, we evaluate our approach by comparing the relevant perfor-
mance metrics on established datasets to related state-of-the-art online learning
approaches through compliance with the defined requirements. The main con-
tributions of this paper are summarized as follows:

1 Changes in data distributions or patterns are also referred to as concept drift [36].
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– We provide a formalization and implementation for adapting large algorithm
and configuration search spaces to evolving data streams.

– We conduct a broad evaluation of the proposed approach against state-of-
the-art algorithms.

– To foster reproducibility, the code and datasets employed in our work are
available on GitHub2.

2 Related Work

In this section, we present an overview of the related work for online AutoML.
We first discuss relevant offline AutoML methods and then relevant (ensemble)
algorithms for the Online Learning setting.

2.1 Automated Machine Learning

Generally, AutoML aims to automate a Machine Learning (ML) pipeline con-
taining the steps of (i) data cleaning, (ii) feature engineering and (iii) algorithm
modelling. It can be defined as the problem of automatically (without human
intervention) producing test set predictions for a new dataset within a fixed
computational budget [16]. To automate the data analysis pipeline, AutoML
addresses the Combined Algorithm Selection and Hyperparameter (CASH) opti-
mization problem [16]. The idea of AutoML was initially developed in [35], which
combines the WEKA ML framework [21] with Bayesian optimization [12] to
search for the best ML instance for a given dataset.

The most established frameworks for offline AutoML are Auto-Weka 2.0
[25], autosklearn [15,16,23], TPOT [26], GAMA [18], and H2O [34], that mainly
differ in their search space and HPO technique. As HPO technique, Auto-
Weka 2.0 exploits a random forest algorithm, autosklearn a Baysian optimiza-
tion [23] approach, TPOT and GAMA employs evolutionary algorithms, and
H2O a grid search approach. Our approach, EvoAutoML, extends current batch
AutoML approaches in order to make them applicable and suitable with evolving
data streams.

2.2 Online Learning

Since data streams are potentially infinite and new observations may arrive with
a high frequency, stream algorithms must be efficient in terms of resource usage,
i.e. time R3 and memory R4 consumption. Figure 1 exemplary shows how an
online learning framework is able to comply with the stream requirements for
a supervised learning task [6]. It processes each instance from an evolving data
stream S, updates the underlying model, and is ready to predict at any time.

2 https://github.com/kulbachcedric/EvOAutoML.git.

https://github.com/kulbachcedric/EvOAutoML.git
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Fig. 1. Online learning, following [28]

However, some algorithms have
been specifically created and/or
adapted to operate on data streams.
For instances, Hoeffding Tree (HT)
[14], Hoeffding Adaptive Tree (HAT)
[5], Logistic Regression, ensemble
methods such as Online Bagging
(OB) [29]. Other algorithms require
adaption so that they can be used in
an online fashion, such as creating mini-batches or introducing a sliding window
[3,30]. If concept drift occurs in the online learning setting, the initially selected
model may not longer be the optimal one. Ensemble techniques, such as OB
with or without an ADWIN change detector [31], Leveraging Bagging (LB) [8]
or Adaptive Random Forest (ARF) [19] have shown to be competent in adapting
to temporal changes. OB [29,30] propose an approach that updates a set of mod-
els by weighting each instance from the stream with a Poisson(1) distributed
number. Adding an ADWIN [4] change detector to OB enables dealing with con-
cept drifts. LB [8] improves the OB approach by adding more randomization
to the input and output of the classifier and therefore leverages the predic-
tive performance. ARF [19], an adaption to the random forest algorithm [10],
includes an effective resampling method that handles different types of concept
drifts. Streaming Random Patches (SRP) [20] is also a ensemble method that
combines random subspaces and bagging while using a strategy to detect drifts
similar to the one introduced in ARF [19]. To adapt the configuration of heteroge-
neous algorithms to changing data streams, in [13], authors proposed an AutoML
approach that uses different adaption strategies to retrain AutoML instances,
such as H2O, Autosklearn and GAMA [18], but without taking into account
costly retrainings of offline AutoML instances. However, the presented ensem-
ble approaches employ homogeneous algorithms with identical configurations.
Assuming algorithm and hyperparameter search spaces, such as in autosklearn
(|Λ| = 110 possible configurations), training base algorithms in the manner of
ensembles (e.g., OB [31] and LB [8]) becomes increasingly inefficient and does
not consider a combination of algorithms within the algorithm search space. Our
approach therefore introduces an evolutionary adaption strategy that consider
heterogeneous algorithms and configuration spaces to cope with different types
of concept drifts.

3 Approach

The question of changing and adapting the configuration of an algorithm as
well as the orchestration of models without infringing the requirements [6] for
online learning remains open. Our online AutoML framework is inspired by the
CASH problem, a Genetic Algorithm (GA) approach and extends OB [29,30]
to enable online training in a high-dimensional algorithm- and hyperparameter-
search space. However, the CASH solution does not consider the adaption of
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parameters in an evolving data stream environment so far, on the other hand,
the established online ensemble algorithms are only capable of processing a
small set of homogeneous algorithms. Whence, our proposal uses a GA approach
which naturally adapts its configurations within a small ensemble (population)
to enable the adaption of large algorithm- and hyperparameter-search spaces to
evolving data streams.

3.1 Online CASH

We first define the online CASH problem to adapt to the online learning scenario.
Following the definition from [37], a ML pipeline structure g ∈ G can be modelled
as an arbitrary directed acyclic graph (DAG), where each node represents an
algorithm A ∈ A.

Definition 1. Online CASH, adapted from [16,24]
Let A = {A(1), . . . , A(R)} be a set of step independent algorithms, and let the
hyperparameters of each algorithm A(j) have a domain Λ(j). Further, let S =
e1, e2, . . . , et, . . . be an ordered sequence of examples of possibly infinite length
and let t be the current observed example. Further, let S− = e0, . . . , et be an
ordered sequence of past examples. Each example ei = {xi, yi} is a tuple of
p predictive attributes xi = (xi,1, . . . , xi,p) and the corresponding label yi. Let
L(P

g,
−→
A,

−→
λ

(ST ), SV ) denote the loss that algorithm combination P (j) achieves
on a subset of validation examples SV ⊂ S− when trained on ST ⊂ S− with
hyperparameters

−→
λ . Denote that ST ∩ SV = ∅.

Then the Online CASH problem is to find the joint algorithm combination
and hyperparmeter setting that minimizes the loss:

g∗,
−→
A ∗,

−→
λ ∗ ∈ arg min

P (j)∈P,λ∈Λ(j),A∈A,g∈G

L(P
g,

−→
A,

−→
λ

(ST ), SV ) (1)

Existing online (ensemble) algorithms do not fully cover the Online CASH
problem. On the one hand, they do not consider a structure g ∈ G and only
cover a small range of hyperparameters λ ∈ Λ. On the other hand, their hyper-
paramters are usually set at the start of the stream and are not changed as
the stream evolves. The range of covered hyper-parameters is restricted by the
number of trained algorithms within the ensemble, whereas OB [29,30], ARF
[19], and other ensembles are based on homogeneous algorithms [27]. The graph
structure g enables a combination and stacking of algorithms within A e.g. clas-
sifying a set of features x, after they have been scaled. Furthermore, Online
CASH considers the configuration space Λ for each algorithm A ∈ A.

Assuming large search spaces, such as those inherent in the number of existing
algorithms and their configurations in the stream setting, a scaleable and adapt-
able approach becomes necessary. Therefore, by following Fig. 1, the introduced
Definition 1, and the requirements defined in [6], we propose in Algorithm 1 an
AutoML training algorithm, that adapts to concept drifts in an online learning
manner and is capable to handle large search spaces.
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3.2 EvoAutoML

The core of our training and adaption procedure is a GA inspired by [32]. Algo-
rithm 1 shows the EvoAutoML algorithm. The input consists of a data stream S,
a population size P , and a sampling rate fSS . The length of the incoming stream
S gives the number of updates �t/fSS� and is potentially infinite. Furthermore,
our algorithm requires a sampling rate fSS , which controls the rate at which
a mutation is applied. Finally, we need a loss function L which estimates the
performance of a pipeline configuration on given examples ei (interleaved test-
then-train evaluation) and a search space, containing all possible graph struc-
tures g ∈ G, algorithms A ∈ A and their configurations Λ. The algorithm is
initialized (lines 7–12) by building a random population of algorithm pipelines
P

g,
−→
A,

−→
λ

. Notice that by initializing p with random online learning pipelines, the
algorithm is able to predict at any time (R4).

Algorithm 1. EvoAutoML Training
1: Input:
2: Data stream S, population size P , sampling rate fSS , loss function L,

configuration space A, Λ, G
3: Output:
4: Set of suited algorithms configurations:

5: p∗ = {P(1), . . . , P(P )}
6:
7: p ← ∅ � Initialization
8: while |p| < P do
9: P ← Random(G, A, Λ)
10: p ← p ∪ P
11: end while
12: t ← 0
13: if et then � Start Datastream
14: if t mod fSS == 0 then
15: Pbest ← minP∈p L(P(ST ), SV )

16: Pweak ← maxP∈p L(P(ST ), SV )

17: Pmut ← Mutate(Pbest)
18: p ← p ∪ Pmut

19: p ← p\Pweak

20: end if
21: ω ← Poisson(6)
22: for P ∈ p do � Update Population
23: loop ω
24: P.fit(et)
25: end loop
26: end for
27: t ← t + 1
28: end if

In line 13, the data stream starts and a mutation is applied with a rate of
fSS (lines 14–20). Within the mutation steps the algorithm selects, in the first
step, the best Pbest and weakest Pweak pipeline configuration. Based on the best
pipeline Pbest configuration the mutation is applied in line 17, where similar to
[32] a random parameter of Pbest is changed within A and Λ, passed to Pmut

and added to p. The weakest pipeline Pweak is removed from p (line 19). After
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the mutation step, the population is trained on the new instance ei (lines 21–
25) similar to OB [30] with a ω ∼ Poisson(6) distribution. The choice for the
distribution results from LB [8].

Our approach respects the requirements of [6] (R1–R5) by processing each
example ei at a time (R1) and in a limited amount of time (R2), e.g. by adjusting
the population size P (see also Sect. 4). Since our approach has access to a pop-
ulation of trained pipelines at each point in time of the data stream EvoAutoML
is also able to predict at any time (R4). Algorithm 1 updates the population in
an ensemble manner within the training process to search for suited configura-
tions that can also be used for prediction. To predict for an unlabelled instance
(see Fig. 1), our approach uses a hard majority voting approach of the algorithm
configurations in p to predict the label ŷi = mode{P.predict(ei) ∈ p}.

In contrast to existing techniques which only consider the problem of algo-
rithm selection, our approach also takes into account the configuration space Λ
from a range of algorithms A and the pipeline structure g. As a result, EvoAu-
toML addresses the complete Online CASH problem while other approaches can
only deliver partial solutions.

4 Experiments

In this section, we describe our evaluation, present the baseline algorithms,
introduce the datasets used for evaluation, and discuss the experimental setup.
To evaluate our approach, we apply the interleaved test-then-train evaluation,
which is a commonly used approach in data stream settings. Here, each incom-
ing instance first serves for testing the current performance of the algorithm and
afterwards for training and updating the algorithm. In addition to the fulfillment
of the requirements R1 and R4 (see Sect. 1), we show that our approach is able
to outperform related algorithms by evaluating (i) the final accuracy (R5), (ii)
the avg. time required (R2) to process selected datasets, and (iii) the memory
consumption (R3). We show that EvoAutoML is compatible with recent online
algorithms and thus fulfills the requirements of [6] (R1–R5). In Table 1, we
present the stream datasets as well as the synthetic data stream generators used
within the evaluation.

Table 1. Datasets

Name Variables #Samples #Features #Classes

RBF(a, b) [7] a: #centroids 1M 50 5

b: moving speed

SEA(a) [23] a: changing width 1M 3 2

Agrawal(a) [1] a: changing width 1M 9 2

LED() [11] 1M 24 7

HYP(a, b) [22] a: #features 1M 50 2

b: magnitude change

SINE() [17] 1M 2 2

Covertype [7] 581,012 54 7

Elec [7] 45,312 6 2
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4.1 Search Space

Our approach uses two algorithm types that can be categorised into (i) prepro-
cessors A(i) and (ii) predictors A(ii), and can be variably linked with each other.
The preprocessing step can either be a missing value cleaner, min-max scaler,
or a standard scaler (|A(i)| = 3). The prediction step contains Gaussian Naive
Bayes (GNB), HT, k-Nearest Neighbors (KNN), and Logistic Regression classi-
fiers. In total, the classification step contains |A(ii)| = 4 and therefore 3×4 = 12
possible algorithm configurations.

All algorithms A(i) can be parametrized by their domain Λ(i). For example,
the KNN classifier can be parameterized by the number of neighbors, or the
HT classifier by its maximal depth or the tie threshold as well as by the binary
parameters if a binary split strategy should be applied or if poor attributes should
be removed. On the whole, our domain space contains 174 possible pipeline con-
figurations. Here, the advantage of our approach (Algorithm 1) comes apparent.
While current ensemble and boosting methods are based on homogeneous mod-
els (pipelines P), EvoAutoML is capable of handling a diverse set of pipelines
and pipeline configurations G,A.

4.2 Experimental Setup

We implemented EvoAutoML on top of River [27], the source code is made
publicly available3. We evaluated our approach with a population size P = 10
and a sampling rate fSS = 1000. The population size is chosen equal to the
size of the ensemble learners. Furthermore, the choice for the population size
and rate is two-folded: First, all algorithms within the population are trained
in an ensemble and thus a high population size or sampling rate would lead to
computational expensive training updates. Second, during the implementation,
the configuration P = 10, fSS = 1000 was found to be a compromise between
predictive performance and the amount of resources required. To compare our
approach with established ensemble learners, one can set (i) an equal algorithm
space A to all ensemble learners or (ii) compare our approach to the preset
configurations. However, by setting an equal algorithm space A, with or without
consideration of further configuration Λ, we pursue the question of the search for
the best performing parameterization, that ensemble learners answer by training
all algorithms in A in a parallel manner. In contrast, by using the default config-
uration of each ensemble learner, we pursue the question for the best performing
approach. Regarding the computational complexity for large search spaces, we
evaluated the related algorithms in their proposed configuration to pursue the
question for the best performing approach.

To cover a broad range and the most suitable incremental algorithms, we
evaluate EvoAutoML against HT [14], Gaussian NB, and KNN classifiers. Since
EvoAutoML contains a population of pipelines P

g,
−→
A,

−→
λ

, we also evaluate our
approach against ensemble learners such as ARF [8], LB [8] and OB [19,31]

3 https://github.com/kulbachcedric/EvOAutoML.git.

https://github.com/kulbachcedric/EvOAutoML.git
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using HT as base classifier. Each ensemble learner contains 10 base classifiers.
Each instance from the stream is transformed using a standard scaler (zero mean
and unit variance) before passing it to the ML algorithm. All baseline algorithms
are carried out with their default configuration.

To conclude our experimental setup, we evaluated the predictive perfor-
mance, the total running time, and memory consumption of our approach with
the search space proposed in Sect. 4.1 against the proposed baseline algorithms.

5 Results

In this section, we present the results of our approach and show that our app-
roach is able to adapt to temporal changes, outperforms the state-of-the-art
algorithms in predictive performance and has comparable computational costs
as other online ensemble approaches. To show the adaption to temporal changes
by following the requirements of [6] (esp. R5), we exemplary depict, in Fig. 2,
the learning curves of our approach and the baseline approaches presented in
Sect. 4.2 for the Covertype dataset.

Fig. 2. Accuracy curve and time (in seconds) for
EvoAutoMLand baseline algorithms

The Covertype dataset [7]
contains labeled instances of
forest cover type (7 classes)
from the US Forest Service,
where 581,012 samples (mea-
sured in 30 × 30 m cells) are
characterized by 54 attributes.
It has been used in several
papers on data stream classifi-
cation [9] and shows exemplary
the adaptanility of EvoAutoML
against other streaming classi-
fiers (see Sect. 4.2). One can
see in Fig. 2 that EvoAutoML
adapts to changes faster than
LB, ARF and OB. While the other approaches show decreases in their accuracy
at ∼250, 000 evaluated instances, EvoAutoML remains stable. Furthermore, we
compare the training and testing time incurred by each model. The graph is
in agreement with the statements from [19], and shows that single algorithms
(HT, GNB and KNN ) have the the lowest running time. For the ensemble learn-
ers, ARF has the lowest running time, followed by LB, EvoAutoML and OB.
The evaluation of EvoAutoML takes slightly more time than LB, whereby the
running time of OB increases faster than LB and EvoAutoML. In addition to
other ensemble learners, EvoAutoML is able to adapt its parameters during the
datastream based on a given loss function L. This allows the adaptation to
the data stream in terms of accuracy, but could also incorporate metrics such
as latency or memory consumption. However, Table 2 and Table 3 already show
that EvoAutoML is competitive in terms of the final percentage of correctly clas-
sified examples, memory and the time consumption with an underlying accuracy
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loss. Table 2 compares EvoAutoML against the baseline approaches presented in
Sect. 4.2. It shows that EvoAutoML outperforms the baseline algorithms with an
average final avg. accuracy of 93.32%. Comparing EvoAutoML against the sin-
gle best algorithms, EvoAutoML performs 10.71% better on average. However,
beside the strong results of our approach and the chosen ensemble learners, Table
2 also shows, that in the case of KNN classifiers on the RBF dataset, single best
algorithms might perform marginally better than the ensemble learners. This
slightly better performance on the RBF dataset may be the result of (i) an
unsuitable baseline algorithm for the ensemble learners, or the transition gap to
a suitable pipeline in the case of EvoAutoML. Comparing our approach against
the ensemble algorithms, EvoAutoML slightly outperforms them with 0.32% on
average. Taking the average rank into account EvoAutoML performs best with
an avg. rank of 2.08. Furthermore, all ensemble algorithms perform better on
the avg. accuracy and the avg. rank than the chosen single algorithms. Table 3
records the memory consumption, as well as the used RAM-hours and the avg.
time consumption. One RAM-Hour equals to 1 Gb of RAM deployed for 1 h and
is accumulated over the generators and datasets. It shows that the significantly
better performance of the ensemble learners is accompanied by higher mem-
ory and time consumption than with single algorithms. However, comparing the
deployed RAM-hours and the time consumption of the ensemble learners, our
approach consumes a fraction of the memory in terms of deployed RAM-hours
and manages to iterate the quickest over the data stream.

Table 2. Accuracy comparison of EvoAutoML against baselines. Accuracy is measured
as the final percentage of examples correctly classified. The best individual accuracies
are indicated in boldface

Dataset EvoAutoML HT GNB KNN ARF LB OB

Agrawal(50) 99.02 ±0.01 98.09 ± 0.01 62.31 ± 0.09 55.73 ± 0.02 94.98 ± 0.95 99.69 ± 0.00 98.46 ± 0.01

Agrawal(50000) 94.43 ± 0.02 91.84 ± 0.02 62.33 ± 0.09 55.52 ± 0.02 93.03 ± 0.93 97.52 ± 0.01 92.89 ± 0.02

HYP(50,0.0001) 87.51 ± 0.02 84.38 ± 0.00 91.61 ± 0.01 67.93 ± 0.00 71.19 ± 0.71 84.54 ± 0.01 87.14 ± 0.01

HYP(50,0.001) 83.69 ± 0.01 81.79 ± 0.01 80.83 ± 0.02 68.01 ± 0.00 71.67 ± 0.72 83.95 ± 0.01 84.43 ± 0.01

LED() 76.49 ± 0.01 75.95 ± 0.01 76.48 ± 0.01 66.6 ± 0.00 76.47 ± 0.76 76.48 ± 0.01 76.42 ± 0.01

RBF(10,0.0001) 99.82 ± 0.00 89.32 ± 0.03 65.86 ± 0.09 100 ± 0.00 99.85 ± 0.01 99.64 ± 0.00 98.07 ± 0.00

RBF(10,0.001) 99.63 ± 0.00 77.61 ± 0.02 39.75 ± 0.11 99.99 ± 0.00 99.22 ± 0.99 99.01 ± 0.00 93.68 ± 0.01

RBF(50,0.0001) 97.51 ± 0.01 83.05 ± 0.03 35.26 ± 0.13 99.83 ± 0.00 98.21 ± 0.98 98.71 ± 0.01 96.17 ± 0.01

RBF(50,0.001) 96.99 ± 0.01 48.15 ± 0.04 25.32 ± 0.07 99.80 ± 0.00 94.31 ± 0.94 93.56 ± 0.01 71.87 ± 0.03

SINE() 99.87 ± 0.00 99.63 ± 0.01 93.62 ± 0.00 98.75 ± 0.00 99.74 ± 0.01 99.68 ± 0.00 99.77 ± 0.01

SEA(50) 98.99 ± 0.00 97.78 ± 0.01 95.65 ± 0.00 97.23 ± 0.00 99.64 ± 0.01 99.67 ± 0.01 98.34 ± 0.01

Elec 88.09 ± 0.01 79.61 ± 0.02 72.87 ± 0.03 79.53 ± 0.01 87.79 ± 0.88 87.32 ± 0.01 81.74 ± 0.02

Covertype 91.09 ± 0.07 66.67 ± 0.10 63.64 ± 0.11 73.74 ± 0.12 89.7 ± 0.09 90.41 ± 0.08 83.66 ± 0.12

Avg. acc. 93.32 82.61 66.58 81.74 90.45 93.09 89.43

Avg. rank 2.08 5.31 5.92 4.77 3.46 2.54 3.85

In summary, we show beside the requirements R1 and R4 (see Sect. 3)
that EvoAutoML meets the requirements R2 and R3 of [6] by consuming less
time and memory as state-of-the-art ensemble learners. EvoAutoML outperforms
these ensemble learners in a common test-then-train evaluation, which shows the
ability to adapt (R5) to changes in the data distribution.
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Table 3. Comparison of memory consumption (in MB) and Avg. Time (in s). One
RAM-Hour equals to 1 Gb of RAM deployed for 1 h.

Dataset EvoAutoML HT GNB KNN ARF LB OB

Agrawal(50) 17.609 0.604 0.013 0.455 11.093 12.205 6.008

Agrawal(50000) 56.854 2.223 0.013 0.455 12.920 37.600 21.501

HYP(50,0.0001) 104.576 18.287 0.066 2.020 229.900 528.847 180.870

HYP(50,0.001) 127.877 18.516 0.066 2.020 356.600 395.203 187.146

LED() 35.954 2.104 0.048 0.379 10.133 39.723 18.570

RBF(10,0.0001) 24.527 13.359 0.133 2.020 25.803 22.897 134.988

RBF(10,0.001) 36.107 30.530 0.133 2.020 11.668 4.893 291.346

RBF(50,0.0001) 64.458 24.165 0.166 2.020 27.117 35.643 236.124

RBF(50,0.001) 29.288 9.173 0.166 2.020 25.453 8.023 98.340

SINE() 9.760 0.421 0.004 0.169 14.622 11.128 4.211

SEA(50) 17.833 0.716 0.005 0.205 8.408 14.070 7.454

Elec 12.697 0.205 0.012 0.417 6.850 1.729 1.938

Covertype 12.082 0.125 0.080 2.170 4.750 15.549 19.368

Avg. time 33,638 4,635 1,489 2,119 56,786 58,347 35,243

RAM-hours 7.19 0.32 0 0.01 50.38 44.55 24.35

6 Conclusion

In this paper, we propose an approach for evolution-based online automated
machine learning that extends the CASH problem to the stream setting and
adapts the hyperparameter search to work with data streams. The adaption
of hyperparameters and the possibility of algorithm pipelines, showed that an
evolutionary approach is able to outperform state-of-the-art single and ensemble-
based methods. We evaluated EvoAutoML on performance metrics, as well as
the total running time and the used memory as efficiency metrics on several
common online learning generators and datasets.
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Abstract. Adversarial attacks represent a threat to every deep neu-
ral network. They are particularly effective if they can perturb a given
model while remaining undetectable. They have been initially introduced
for image classifiers, and are well studied for this task. For time series,
few attacks have yet been proposed. Most that have are adaptations of
attacks previously proposed for image classifiers. Although these attacks
are effective, they generate perturbations containing clearly discernible
patterns such as sawtooth and spikes. Adversarial patterns are not per-
ceptible on images, but the attacks proposed to date are readily percep-
tible in the case of time series. In order to generate stealthier adversarial
attacks for time series, we propose a new attack that produces smoother
perturbations. We find that smooth perturbations are harder to detect by
the naked eye. We also show how adversarial training can improve model
robustness against this attack, thus making models less vulnerable.

Keywords: Time series · Adversarial attack · Smooth perturbations ·
InceptionTime · BIM

1 Introduction

A time series is a set of data points ordered in time. Time series have become a
growing field of research in deep learning and more globally in artificial intelli-
gence. Nowadays, thanks to the presence of sensors, they have become abundant
and we can find use cases in almost all sectors of industry. For example, time
series are used in healthcare [12], for weather forecasting [13] and for predictive
maintenance [7].

Time series classification (TSC), refers to the task of classifying time series
according to the presence or not of phenomena. Szegedy et al. [6] have found
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Fig. 1. Scheme of adversarial attack. Time series from the BME dataset, perturbation
generated with SGM, not represented at scale.

that adding a small perturbation to an input sample can change a classifier’s
output. This is known as an adversarial attack. It is illustrated on Fig. 1.

As adversarial attacks are a vulnerability present in every neural network,
many attacks were proposed but first for image classification tasks. It is necessary
to study them in order to assess the robustness of the models, and to prevent
them on critical systems. For example, Eykolt et al. [5] showed an application
on real-world road sign classification, which is an obvious threat for autonomous
vehicles.

Fawaz et al. [9] introduced and adapted some of them for time series clas-
sification. The main difference between adversarial attacks on images and time
series lies in the visualization and the interpretation of the data. When sightly
changing the value of one or few pixels, an image will always look the same and
have the same appearance. Theses changes only affect how the neural network
will process the data, but not how we, humans, perceive the image. For images,
the human classifier is a competitive benchmark, often used as gold standard.
For TSC it is not, because time series data are more complex to analyze.

The attacks introduced by Fawaz et al. [9] are effective to perturb time series
of the UCR Archive [3]. But when we look at their visual appearance, it is some-
times easy to distinguish the disturbed series from the original ones. Indeed, the-
ses perturbed samples often contain patterns like spikes of a sawtooth. Because
the presence of such elements can easily be spotted, they can warn about the
presence of an attack.

In this paper, we will introduced a novel adversarial attack based on a gradi-
ent method. We will show that it outperforms BIM’s performance over most of
the UCR archive datasets. But unfortunately this method generates perturba-
tions that also contain spike and sawtooth patterns. We will then explain how
we reduced these patterns, by enforcing a smoothness condition. Finally, we will
show how adversarial training is a good way to improve a time series classifier’s
robustness against smoothed perturbations.

Our main contributions are:

– A novel adversarial attack for time series classifiers that outperforms BIM
– An altered version of the first attack, that produces smooth perturbations
– A benchmark of our two methods along with BIM over the UCR archive
– We showed how smoothed perturbations are harder to detected
– We showed that adversarial training is a good counter measure against smooth

attacks.
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2 Related Work

Given a neural network trained on an image classification task, such as ImageNet,
Szegedy et al. [20] showed that it is possible to change the model output by
adding low magnitude noise, small enough to be imperceptible to the human
eye. It was also shown that this vulnerability is present regardless of the number
of layers, activation functions or training data and thus affects all deep neural
networks.

Goodfellow et al. [6] proposed a single step attack called Fast Gradient Sign
Method (FGSM). Then, Kurakrin et al. [14] presented the Basic Iterative Method
(BIM), an iterative version of FGSM. Inspired by them, many similar attacks
were proposed, like M-IGSM [4] or vr-IGSM [21].

Other approaches where studied, like adding black and white strips on stop
signs [5] or stickers on objects [15]. These real life attacks raised the issue of
security threat for sensitive applications like autonomous vehicles. Along with
new attacks, multiple defensive strategies have also emerged, including leveraging
denoisers [16], randomization [23] and adversarial training [11,22].

Adversarial training trains a model using both normal and perturbed sam-
ples. Rathore et al. [18] shows how adversarial training can help a model to
become more robust.

Most of the work on adversarial attacks was first done on image classification,
as it is a trending topic in deep learning. It is only later that Fawaz et al. [9]
introduced adversarial attacks for time series classification.

It is sometimes quite straightforward to adapt adversarial attacks from
images to times series. However, some attacks that work well on images can’t
be used, or are ineffective on time series. For example Su et al. [19] describes
attacks where only one pixel of an image is affected. An equivalent perturbation
for time series would modify the value of only a single data point. But such
modifications would be very noticeable as it takes extreme values to sufficiently
perturb a sample based solely on a single data point.

Adversarial attacks can be categorized into black and white-box strategies.
Black-box attacks, like presented in [1,17], don’t use any knowledge of the archi-
tecture, the parameters or the weights of the model. They have also no access
of the datasets used for the training. Huan et al. [8] showed that even in these
conditions, many current models are still at risk. In contrast, white-box attacks
may use any of those elements to perform the attack. Some attacks have both
black-box and white-box variants, like the Carlini & Wagner method [2]. In this
paper we will focus exclusively on white-box attacks.

3 Background Material

3.1 Mathematical Description

In this paper, we only use univariate time series. We can describe each time
series as a vector x such as x ∈ R

T ,x = [x1, ..., xT ] with T denoting its length.
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Given a time series classifier f and a time series x, the aim of an adversarial
attack is to perturb the classifier by adding a small variation r to a time series x. r
will be referred as noise or perturbation. We call the perturbed time series xadv =
x + r an adversarial sample. The attack is successful if the class predicted for the
original time series is different from the class predicted for the adversarial sample,
arg maxf(x) �= arg maxf(xadv). The added noise r must be imperceptible by
design, thus we need that x and xadv remain close to each other.

3.2 Basic Iterative Method

In order to improve the success rate of FGSM, Kurakin et al. [14] developed BIM.
At each iteration N , the gradient is computed and then added to the input, in
the same way as for FGSM. Instead of minimizing the loss function, the aim is to
maximize it by taking a step in the direction of the gradient. At each iteration,
the values are clipped using an ε parameter. This ensures that each value of xadv

will stay close to x within a ε-neighbourhood.

xadv
0 = x

xadv
N+1 = Clipx,ε

{
xadv

N + α sign(ΔxJ(Θ,xadv
N , ytrue))

} (1)

ytrue denotes the label of the time series x. If we don’t know ytrue, as in a real
attack scenario, we replace it by f(x). The noise clipping is done for r = xadv −x
as follow:

∀ri ∈ r, ri =
{

ε, if ri > ε
−ε, if ri < −ε

By adding iterations, BIM becomes more effective than FGSM to perturb
time series. But BIM requires clipping in order to control the amount of the
noise. This method had two main disadvantages. First, clipping the noise in
such way often produce sawtooth shapes between −ε and +ε as we can see on
Fig. 5. This particular pattern can easily be detected when added to a smooth
time series and is therefore to be avoided.

With BIM, in order to obtain a stealthier noise, we need to reduce to value of
ε. By doing this, the saw-tooth shapes will be harder to be noticeable, but this
will result in a lower attack success rate. This trade-off prevents the perturbation
that are both hard to detect and have a high attack success rate.

4 Proposed Methods

4.1 Gradient Method (GM)

In order to correct the flaws of BIM, we need to design a method that, given a
model, can perturb a time series while optimizing the quantity of noise according
to the L2 norm.

Ensuring f(x) �= f(x′) can be written as a maximization problem of the
KL-divergence between the two probability distributions, as follows:
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max DKL(f(x), f(x′)) ≡
c∑

f(x) log
f(x)
f(x′)

, (2)

with c denoting the classes in the dataset.
Generating an adversarial example can then be written as follows where the

primary addition is the term (−‖x − x′‖2) to be maximized:

max {μDKL(f(x), f(x′)) − ‖x − x′‖2} , (3)

with μ denoting a hyper-parameter to control the penalty of miss-classification.
Let us consider the generated time series x′ = x+ r. Then the maximization

problem is equivalent to the following minimization problem:

min {−μDKL(f(x), f(x + r)) + ‖r‖2} (4)

We can add an hyper-parameter α in order to control the regularization of
‖r‖. Finally, we have:

xadv = min {−μDKL(f(x), f(x + r)) + α‖r‖2} (5)

4.2 Smooth Gradient Method (SGM)

The previous method manages to generate adversarial samples while optimizing
the L2 norm of r. But it does not prevent the appearance of sawtooth. In order
to obtain smoother perturbations, we need to ensure a smoothness condition
on r. This can be done by adding a fused lasso term to the minimization. The
equation can now be written as:

min{−μDKL(f(x), f(x + r)) + α‖r‖2 + λ

T−1∑

i=1

‖ri − ri+1‖1} (6)

In Eq. 6, ‖.‖1 denotes the L1 norm. λ is a hyper-parameter that controls the
penalty for the smoothness condition. To minimize the latter equation, we will
use the gradient descent by computing the gradient with respect to r (which will
be initialized randomly).

5 Experimental Setup

In this section, we present the data, models and the parameters we used during
our experiments.
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5.1 Classifier and Datasets

We used InceptionTime [10] for all our experiments. InceptionTime is a TS clas-
sifier, that was the state-of-the-art model on the UCR archive, when published in
2019. All the weights used are the InceptionTime defaults, as used and presented
in its paper.

In order to demonstrate our results over several datasets, we used the well
know TSC benchmark UCR Archive [3]. The 2018 version of this archive com-
prises 128 univariate time series datasets.

Each dataset of the UCR archive is split between the training and the test
set. When generating adversarial samples, we used the samples of the test set,
as the model has only been trained on the training set.

5.2 Reproductibility

The code used and all our results are publicly available in our companion repos-
itory1.

All experiments were done by leveraging the computation power of a remote
GPU cluster containing Nvidia GTX 1080 Ti graphic cards. Reproducing the
results on a single graphic card takes roughly 7 days of computing time.

5.3 Hyper-parameters

For BIM we set the number of iterations at 1000. For the noise clipping we use
the value ε = 0.1. We use the same value of ε, when applying the noise clipping
to the Gradient Method.

In the case of GM and SGM both μ and α parameters are always set to 1.
In the case of SGM, when nothing is specified, λ is also equal to 1.

5.4 Comparison Metrics

Average Success Rate. For evaluating the relative success of adversarial
attacks, we used the Average Success Rate (ASR). The ASR, corresponds to the
rate of reclassified samples. In other words, it is equal to the percentage of cases
where the attack was able to alter the output of the network (f(x) �= f(xadv)).

L2 Norm. The L∞ norm is commonly used to quantify the noise for adversarial
attacks. This is especially true in the case of attacks on images. The L∞ norm
of a time series is equal to ‖x‖∞ = maxt |xt|. As explain earlier, our aim is to
design smooth perturbations that are hard to detect by the naked eye. Moreover
attacks designed for images are easily detectable when adapted to times series.
Thus, we needed to evaluate the overall quantity of noise, not just its maximum
value and choose to use the L2 norm over the L∞ norm.

1 https://github.com/Gpialla/SmoothPerturbationsTSAA.

https://github.com/Gpialla/SmoothPerturbationsTSAA
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5.5 Adversarial Training

We will present an example of adversarial training using adversarial samples
generated by SGM. For each dataset, we doubled the size of the training set,
by adding the corresponding adversarial samples of the original training set.
The validation is done with the original test set, without additional adversarial
samples. Finally, we will show how adversarial training is effective at reducing a
classifier’s susceptibility to adversarial attack.

6 Results

In this section, we will first compare SGM with the other methods according to
the two metrics we selected: the ASR and the L2 norm. The benchmark between
the others methods is available in our companion repository. In a second study,
we will vary the SGM’s λ parameter and see its influence on the ASR. Finally will
perform an adversarial training, in order to propose a counter measure against
SGM attacks.

6.1 SGM Benchmark

Fig. 2. Win/Draw/Loss diagram. BIM vs SGM. On the left: average success rate, on
the right: L2 norm of the perturbation

Figure 2 represents a Win/Draw/Loss diagram comparing BIM and SGM. Each
blue dot represent a single dataset. If a dot lies above the median line in the
upper left triangle, it means that this dataset has an average value bigger for
SGM than for BIM for the given metric.

As we want to maximize ASR, in the corresponding plot, the most successful
method is the one with the most dots on its side of the median line. For the L2
norm, however, the reasoning is reversed as we want to minimize the metric.

Given Fig. 2, as the dots are evenly distributed, we conclude that SGM as
an overall ASR as good as BIM on the UCR archive. This also means that
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SGM manages to perturb datasets that BIM can not and vice-versa. But for an
equivalent efficiency, BIM introduces an higher quantity of noise than SGM, in
a majority of datasets.

Figure 3 compares GM with SGM. We can see that for almost all datasets,
GM has a better ASR than SGM. This shows that the sawtooth and spikes which
can only be produced by GM are decisive elements in order to perturb a TSC.

Fig. 3. Win/Draw/Loss diagram. GM vs SGM. On the left: average success rate, on
the right: L2 norm of the perturbation

6.2 Varying the λ Parameter

According to our previous results, the best case scenario would be an attack
with GM’s ASR and SGM’s smoothness. As the only difference between the two
methods is the adding of the smoothness condition, it is interesting to vary the
λ parameter. If λ is equal to zero, the attack is GM and if it’s equal to 1, we
have SGM as we tested it previously.

Figure 4 shows the impact of varying the λ parameter over two datasets, Beef
and Car. As we could expect, the more we enforce the smoothness condition,
the fewer the samples the method manages to perturb successfully.

This parameter should be tuned for each dataset in order to get the optimal
trade-off between smoothness and ASR.

Fig. 4. Varying SGM’s λ parameter. For each value of λ is displayed the number of
samples successfully perturbed (blue) or not (orange). (Color figure online)
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6.3 Visual Comparison

In order to remain undetectable by the naked eye, an attack performed on a time
series must be as smooth as possible. As we did not find any suitable metric to
assess the smoothness of a time series, we propose a visual comparison between
the four methods presented, on the same test sample of the Beef dataset. To be
fair, we picked a time series which is successfully perturbed by all the attacks.

(a) Original time series from the Beef dataset

(b) BIM adversarial attack. (c) GM adversarial attack.

(d) GM without clip adversarial attack. (e) SGM adversarial attack

Fig. 5. Time series from the Beef dataset. All methods perturbed time series (blue)
and generated noise (red). The purple circles show the presence of sawtooth on the
perturbed time series. (Color figure online)

In this example, shown on Fig. 5, we plotted in green the original time series,
and for each method, in blue the perturbed time series and in red the perturba-
tion.
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We plotted a second version of GM with a clipped perturbation in the same
way as BIM. As expected, for BIM and the GM methods, the perturbations
are clearly visible, in particular the parts containing sawtooth patterns that are
circled in purple. The example of GM with clipping shows that clipping the noise
reduce indeed the amount of noise and the visual impact, but not sufficiently
enough. SGM is the only attack that produced an adversarial sample with a
perturbation that is not noticeable when judging with the naked the eye.

But being closer to the eye, doesn’t mean being closer when using the L2
metric. Indeed, SGM’s perturbation has the biggest L2 norm. This shows that,
although a method is better in average for a given dataset, this is not necessary
true when we look at each sample independently.

6.4 Adversarial Training

Figure 6 presents the results of adversarial training using SGM adversarial sam-
ples. On the left scatter plot, we compare the classification accuracy of the
basic InceptionTime compared to the accuracy of InceptionTime with adversar-
ial training. In most cases, adversarial training led to a decrease of accuracy.

The right scatter plot, shows that the model trained with adversarial training
led to zero ASR for most of the datasets. This huge drop, shows the effectiveness
of adversarial training against SGM attacks.

Fig. 6. Adversarial training results of 13 randomly chosen datasets.

7 Conclusion

In this paper, we explained that adapting adversarial attacks from image clas-
sifiers to time series classifier is not trivial. The attacks are more likely to be
detected on time series, and thus need smoother perturbations.

We introduced two novel adversarial attacks for time series classification. The
Gradient Method (GM) and a smooth version, called Smooth Gradient Method
(SGM). We used the Basic Iterative Method (BIM), a well known adversarial
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attack, as a baseline to have a benchmark over the entire UCR archive. We
showed that GM, has the higher success rate on perturbing an InceptionTime
classifier, followed by BIM and SGM.

Through examples, we illustrated that GM, like BIM produces perturbations
which have recognizable patterns like spikes and sawtooth. On one hand, these
patterns can help the attack to fool the network, but on the other hand, they
can be easily detected, even by the naked eye.

Our second method SGM, is based on GM but has an added fuzed lasso regu-
larization. It has the effect of smoothing the generated perturbations. Smoothing
the noise makes it harder to differentiate perturbed and original time series by
the naked eye. But smoothed adversarial samples are less effective for attack-
ing the neural network. This highlights the current trade off between having a
stealth attack and an effective one.

Finally, we showed that adversarial training is an effective way of countering
SGM attacks.

For the future works, we would like to find a metric that can measure the
smoothness of a time series. This would help in order to find a new smooth
adversarial attack that is better than SGM at fooling time series classifiers.
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Abstract. In this paper, we propose to investigate Misleading Inference
Generation, a new natural language generation task. The goal is to gen-
erate a counterfactual sentence for a context and a factual sentence. This
paper proposes a framework based on BART and reinforcement learn-
ing for the misleading inference generation task. The experiment results
show our model significantly outperforms the compared models, making
our solution a necessary and strong baseline for future research toward
misleading inference generation.

Keywords: Text generation · Educational application

1 Introduction

In this paper, we propose to investigate Misleading Inference Generation (MIG)
task, which is formulated as follows. Given a context (a factual sentence and two
contextual sentences before and after the factual sentence), the MIG task is to
generate a misleading sentence with respect to the factual sentence. As a con-
crete example, given the context illustrated in Table 1, our task is to generate a
misleading inference (i.e., “Ben got over his fear”) with respect to the contextual
sentences and the factual sentence.

The MIG task is motivated by automatic preparation of educational reading
comprehension assessment. A direct MIG application is to generate a distractor
(wrong option) for Cloze questions in English exams. Since the cost of counter-
factual rewriting is quite expensive (e.g., roughly 4 or 5 min per counterfactual
[6]), automatic misleading sentence generation is therefore desired.

A naive baseline for the MIG task is to apply counterfactual (CF) generation
techniques [13,17]. In the CF generation, the goal is to transform a given fac-
tual sentence y to a CF sentence ŷ. However, in misleading inference, we target
at the mapping {x, y, z} → ŷ. Note that the misleading inference generation is
needed to consider the factual sentence y and contextual sentences x, z. In com-
parison, the CF generation considers only factual sentence y. The MIG result
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13280, pp. 497–509, 2022.
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considers the context for misleading demands, which are more challenging than
CF generation.

Table 1. Examples of misleading inference generation

First
contextual
sentence

Ben was afraid of the dark

Factual
sentence

Ben bought himself a nightlight

Second
contextual
sentence

The light helped ben sleep much easier

Misleading
inference

Ben got over his fear

In this paper, we propose a model called MIG-PPO (Misleading Inference
Generation via Proximal Policy Optimization). Our MIG-PPO is featured by
the following designs. First, we propose two novel training strategies (negative
training (See Subsect. 3.2) and incoherent training (See Subsect. 3.3)) for boost-
ing the performance. Second, we propose to enhance the MIG-PPO performance
by reinforcement learning (See Subsect. 3.4).

The contributions of this paper are summarized:

1) We address Misleading Inference Generation (MIG) task.
2) We establish baseline performances using BART with negative training and

incoherent training on the MIG task.
3) We demonstrate that proximal policy optimization improves the performance

on the misleading ability and maintains sentence fluency at the same time.

The rest of this paper is organized as follows. Section 2 reviews the existing
literature and discusses the difference between the existing works and our study.
In Sect. 3 we introduce our MIG-PPO model and discuss its design intuition.
In Sect. 4, we conduct a series of experiments to evaluate the performance of
the compared models and present case studies for qualitative comparison. We
conclude this research in Sect. 5.

2 Related Work

In this section, we discuss the existing works related to our MIG task. The
related works can be categorized into two categories: Counterfactual Generation
and Abductive Inference Generation.
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Table 2. Related works comparison

Task Study Input Target

Counterfactual

generation

Counterfactual generation [13,17] y ŷ

Controllable counterfactual generation [16] control code, y ŷ

Distractor generation [2,9] passage, question, y ŷ1, ŷ2, ŷ3, ...

Misleading inference generation this work x, y, z ŷ

Abductive inference

generation

Story rewriting [12] x, y, z, ŷ ẑ

Abductive reasoning [1] x, z y

Counterfactual Generation. Counterfactual is useful for many applications, such
as strengthening the language model’s ability by closing the systematic gaps
between training and testing data [4], empowering natural language understand-
ing ability on generated counterfactual inferences [3], or mitigating gender stereo-
types by counterfactual data augmentation [20].

In recent years, counterfactual generation based on neural models are
reported [13,17]. The main idea behind the works is to use language models
and various sampling strategies to generate counterfactuals. Following our nota-
tion used in the introduction section, the goal of the counterfactual generation
is to generate a counterfactual ŷ with respect to a factual y. As mentioned, our
goal is to generate counterfactuals by further considering contextual informa-
tion. Thus, the counterfactual techniques can not fit for our MIG task. As will
be seen in the experiment section, directly using the counterfactual techniques
leads to poor performance.

Further, the authors [16] present a controllable framework called Polyjuice
for generating counterfactual of various types. Polyjuice enables the control of
generation type with respect to the various type defined. Essentially, Polyjuice
is still a variant of counterfactual generation by further allowing the generation
type control, which is still not a good fit for our MIG task.

Another types of counterfactual generation is distractor generation [2,9]. The
distractor generation is motivated by the need for reading comprehension assess-
ment preparation. Given a passage, question, and answer, the goal is to generate
distractors (plausible wrong options) with respect to the given context. The work
[9] was a pioneer for neural-based distractor generation investigation. Following
the work, [2] proposes to focus on multiple distractor generation by proposing a
negative training strategy to enhance the performance of distractor generation.
The setting and application of distractor generation are different from the MIG
task setting. The different applications will have different design considerations.
The technique for distractor generation cannot be directly employed for our task.

Abductive Inference Generation. The second category of our related works is
abductive inference generation whose goal is to generate plausible sentences
with respect to a given context. One representative work for abductive infer-
ence generation is the story rewriting task proposed by [12]. The goal of the
task is to rewrite/generate a new story with respect to a given original story
and an intervening counterfactual event/sentence; the generated story will have
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different endings with respect to the original story. Following our notation used
in the introduction section, the goal of story rewriting is to take a story x, y, z
and a counterfactual sentence ŷ to generate a new story ending ẑ. In comparison,
as mentioned, our MIG goal is to take x, y, z to generate ŷ.

Yet another interesting work most related to our work is [1] for abductive
commonsense reasoning. Abductive reasoning is inference to the most plausible
explanation for incomplete observations. Again, following our notation, the goal
of [1] is take x, z to generate y. The goal is to generate a plausible sentence y
with respect to the contextual sentence. This work can be viewed as a factual
generation, while our work is counterfactual generation.

In Table 2, we summarize the related tasks mentioned above. Counterfactual
Generation generates the counterfactual ŷ from factual y. Controllable Coun-
terfactual Generation additionally adds control code for different types of coun-
terfactual. Distractor Generation generates multiple distractors from a passage,
question, and answer. Counterfactual Story Rewriting generates the consecu-
tive ending ẑ from the original story x, y, z and a counterfactual ŷ. Abductive
Reasoning generates the most plausible explanation y from the before and after
contextual sentences x, z.

3 Methodology

3.1 MIG-Base

A baseline (called MIG-Base) for the MIG task is to fine-tune BART [7] by taking
x, y, z as input and training/predicting ŷ as output. However, our experiment
results indicate this baseline does not work as intended; the MIG results in
many cases are exactly the same as the given factual sentence. To better see this
problem, Table 3 shows the token scores (BLEU-1, BLEU-4, and ROUGE-L)
between y and ŷ. The high scores raise the concern of low misleading capability.
For ease of discussion, we call this problem as copying problem in the following
discussion (Fig. 1).

Table 3. The token score between factual sentence y and misleading inference ŷ.

BLEU-1 BLEU-4 ROUGE-L

MIG-Base 85.81 68.44 83.56

3.2 Negative Training

We investigate the idea of negative training to address the copying problem. The
negative training is inspired by the unlikelihood loss strategy proposed by [8] to
regularize the text generation. The loss function of the negative training is as
follows.

LNeg.Training = LBase
x,y,z→ŷ + αLNeg

x,y,z→y,

where LNeg.Training is the sum of Base loss LBase
x,y,z→ŷ and Negative loss LNeg

x,y,z→y,
and α ∈ R is a hyper-parameter for weighting the two losses.
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Fig. 1. The overall loss of incoherent training

Base Loss Given a training instance D = ({x, y, z, } ŷ), the Base loss is computed
as follows:

LBase
x,y,z→ŷ(pθ) = −

|ŷ|∑

i=1

logpθ(ŷi|x, y, z, ŷ),

where x, y, z is the input and ŷ is a gold label for likelihood training, and ŷi is
the i-th token of ŷ.

Negative Loss We employ the unlikelihood loss [8] to regulate the copying prob-
lem. The idea of the Neg loss is to penalize the results similar to the factual
sentence y.

LNeg
x,y,z→y(pθ) = −

|y|∑

i=1

∑

yi∈y

log(1 − pθ(yi|x, y, z)),

3.3 Incoherent Training

Furthermore, we propose incoherent training by extending the negative training
idea with a data augmentation mechanism as follows.

The incoherent training proceeds as follows. Given a training instance
({x, y, z}, ŷ), we expand it into four instances:

– ({x, y, z}, ŷ)
– ({x, y, z}, y)
– ({x}, ŷ)
– ({ŷ}, z)

The main idea is to maximize two likelihoods: (1) generating ŷ given {x, y, z}
and (2) generating ŷ given x while minimize the unlikelihoods (3) generating y
given {x, y, z} and (4) generating z given ŷ
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The overall incoherent training loss is the sum of the Base loss and Neg-
ative loss inherited by Negative Training and additionally Coherent loss and
Incoherent loss as follows:

LIncoherentTraining = LBase
x,y,z→ŷ + αLNeg

x,y,z→y + βLCo
x→ŷ + γLInc

ŷ→z,

where LIncoherent mixing the Coherent loss LCo and Incoherent loss LInc and
α, β, γ ∈ R is the mixing hyper-parameter.

Coherent Loss. Given a training instance ({x}, ŷ), the Coherent loss which min-
imizes the loss as above statement:

LCo
x→ŷ(pθ) = −

|ŷ|∑

i=1

logpθ(ŷi|x, ŷ),

where x is the input and ŷ is a gold label for our training, and ŷi is the i-th
token of ŷ.

Incoherent Loss. Follow the Negative loss mentioned on Sect. 3.2, we construct
Incoherent loss to penalize the incoherent sentence in our settings. The form of
the Incoherent loss which the misleading inference ŷ is coherent with the first
contextual sentence x, but incoherent with the second contextual sentence z
shows as follow:

LInc
ŷ→z(pθ) = −

|z|∑

i=1

∑

zi∈z

log(1 − pθ(zi|ŷ, z)),

where LInc is Incoherent loss, z is the second contextual sentence, and zi is the
i-th token in z.

3.4 Proximal Policy Optimization

In our previous method, we established a MIG model on different training strate-
gies with a strong performance on the token-based metric. While the model
can generate a fluent and sensible result, we would like to further improve the
misleading ability of our MIG model. We propose to employ Proximal Policy
Optimization.

Proximal Policy Optimization (PPO) [14] is a popular deep policy gradient
algorithm in reinforcement learning which was proposed by OpenAI in 2017.
PPO alternate between sampling data through interaction with the environment,
and optimizing a surrogate objective function using stochastic gradient ascent.

We use PPO in the decoding layer which aims to replace the undecidable
distribution with a learnable random variable, predicted by an RL agent that
takes the last hidden state, the previously decoded token, and the context as
input. In other words, PPO learns an RL actor to manipulate the model’s hidden
states for a suitable outcome.
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Fig. 2. The RL Architecture for MIG task

The goal of PPO fits the reinforcement learning objective, which is to max-
imize expected reward (misleading ability) over trajectories (action sequences)
induced by policy (actor). We formulate the trainable decoding algorithm with
PPO as a sequential decision-making process.

At each time step i, let the state si be the last hidden representation given
from our M(C, ŷ[1:i−1]), which M stands for our model, C stands for input
context and ŷ[1:i−1] is the current generated tokens. In RL formulation, we seek
to find a stochastic policy π, which maps si to a probability distribution πθ(ai|si)
over the action of decoding vocabulary V, where ai ∈ V .

Thus, the generation process can be viewed as an action sequence τ =
(a1, ..., a|ŷ|). The probability of an action sequence is:

P (τ |π) =
|ŷ|∏

t=1

P (st+1|st, at)π(at|st)

Further, let R(τ) the reward of the action sequence τ . The expected return J(τ)
can then be expressed by:

J(τ) = E
τ∼π

[R(τ)] =
∫

τ

P (τ |π)R(τ)

The RL objective is to maximize the expected reward by finding the optimal
policy π∗:

π∗ = arg max
π

J(π)

We employ proximal policy optimization for our RL formulation. In PPO,
there are two set of parameters to learn: the parameters θ of policy πθ and φ of
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value function Vφ. In each exploration iteration k, a set of action sequences {τi}
is collected by running policy πθk

, and the computed rewards R(τi).
Specifically, with the collected action sequences, the policy parameter θ is

updated via

θk+1 = arg max
θ

E
s,a∼πθk

[L(s, a, θk, θ)],

Here L(s, a, θk, θ) is given by

min(
πθ(a|s)
πθk

(a|s) Â(s, a), g(ε, Â(s, a))),

where

g(ε,A) =
{

(1 + ε)A,A ≥ 0
(1 − ε)A,A < 0

and Â is the estimated advantage based on Vφ.
Further, the value function parameters φ is updated via

φk+1 = arg min
φ

∑

∀τi

|τi|∑

t=1

(Vφ(st) − R(τi))2

Figure 2 shows the RL architecture for the MIG task. We set the environment
as our fine-tuned BART model, actor as the linear layer to decode the token from
the last hidden state in BART, and reward function for adjusting actor. The RL
architecture aims to strengthen the Misleading Ability and maintain the basic
MIG task-oriented ability.

Reward Function. With the RL formulation, we propose to use Misleading Ability
and Language Modeling as reward for RL. The goal is to enhance the mislead-
ing ability but maintain the original model generating ability. In the following
discussion, we denote ŷτ be the misleading inference generated according to the
action sequence τ given by the RL policy and ŷ as the non-PPO misleading
inference.

1) Misleading Ability : To examine the misleading ability of the misleading infer-
ence, we propose to use classification confidence of the original classifica-
tion task αNLI in the ART dataset. We fine-tuned an αNLI classifier with
DeBERTa pre-trained model [5], which was the state-of-the-art open-source
model on αNLI leaderboard. We evaluate misleading ability by the confidence
of misleading inference generated by our MIG model. αNLI’s confidence is
formulated as

p(yi|x, z) = softmax(αNLI(yi, θ)),

where yi represents the classified sentence in αNLI. θ is the parameters of the
αNLI, fixed during fine-tuning. The reward is

RMA = p(ŷ|x, z) − p(y|x, z)
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where ŷ represents the misleading inference and y is the factual sentence in
MIG. If the probability of ŷ is higher than the probability of y that implies
that our misleading inference has a better misleading ability, then the actor
will receive a positive reward. In contrast, if the probability of ŷ is lower than
the probability of y then the actor will receive a negative reward i.e. actor
encourages the current action.

2) Language Modeling : We propose language modeling as a reward for our RL
formulation. Language modeling stands for the probability of a given sequence
of words (including input and generated sentence) occurring in a sentence.
We compute the language modeling score of misleading inference ŷ in our
model to prevent model collapse. The reward of language modeling is

RLM (q) = exp(
1
|q|

|q|∑

i=1

log(p(tq,i|tq,<i)))

where q is the sentence generated in RL, and tq,i is the i − th token of mis-
leading inference token.

We conclude our overall reward given by a weighted sum of the individual
rewards.

R = δMA · RMA + δLM · RLM

with hyperparameters δMA and δLM .

4 Experiment

4.1 Datasets

In this study, we adopt the dataset (referred to as ART, Abductive Reasoning
in narrative Text) released by [1] for our MIG task. ART is a dataset with two
sub task usages, Abductive Natural Language Inference (αNLI) and Abductive
Natural Language Generation (αNLG). The instances in ART are as follows:

– x: The observation at time t1.
– z: The observation at time t2 > t1
– y: A factual sentence that explains the observations x and z.
– ŷ: An implausible hypothesis for observations x and z we called it misleading

inference in the following discussion.

We use the original ART dataset setting. There are 169654 training instances
and 1532 testing instances for performance.

4.2 Automatic Metric

The most common metrics used to evaluate text generation’s performance is
overlap metrics, based on the textual overlap between candidate-generated sen-
tence and reference sentence. We chose BLEU [11] and ROUGE-L [10] to measure
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Table 4. Performance comparison on token scores

BLEU-1(↑) BLEU-2(↑) BLEU-3(↑) BLEU-4(↑) ROUGE-L(↑) BertScore(↑) Self-BLEU (↓) Self-ROUGE(↓)

CF-Base 16.62 6.57 3.42 2.00 16.09 88.75 12.61 22.56

MIG-Base 21.21 12.32 8.77 6.81 20.25 89.54 68.43 83.56

MIG-Neg 19.92 10.85 7.54 5.80 18.72 89.25 61.19 76.14

MIG-Inc 20.14 11.11 7.66 5.81 19.71 89.38 60.25 79.87

MIG-PPO 19.53 10.81 7.35 5.48 19.48 89.32 50.49 69.36

the number of overlapping n-grams and the length of the longest common subse-
quence. We also use BERTScore [18] to evaluate our model ability. BERTScore
computes each token score between the candidate sentence and the inference sen-
tence, instead of exact matches, it will compute token similarity using contextual
embeddings.

For evaluating diversity between factual sentences and misleading inference,
we adopt self-BLEU and self-ROUGE to calculate the similarity between factual
sentence y and misleading inference ŷ to specify the diversity of them. Self-BLEU
score based on the BLEU-4 score calculating which was proposed in [19]. Since
the generated sentences’ length may be restricted to training data, we add self-
ROUGE as our diversity metrics which are based on ROUGE-L calculating.

4.3 Implementation Details

All models are implemented based on huggingface Transformer [15] architecture.
The transformer is an open-source library consisting of state-of-the-art model
implementation under a unified API. The BART model we employed is one of
the model implementations in huggingface projects. To compare the quality of
the MIG model, we implement several methods fixed on the same parameters as
follows.

We train our models on two GeForce RTX
TM

3090 s with a memory of 48
GB. For all MIG models, we use the BART model released by huggingface and
limit the maximum input length to 256 tokens. The AdamW optimizer is applied
with the learning rate of 5e-5. All models are set to run 5 epochs with batch
size = 16.

4.4 MIG Models Comparison

Before we evaluate the following metrics, we introduce the MIG models we use
in following comparison.

– CF-Base: A simple counter-factual generation model trained directly by
y → ŷ.

– MIG-Base: We implement MIG-Base with only base loss in Subsect. 3.2.
– MIG-Neg: The MIG-Negative model is an implementation with the negative

training loss in Subsect. 3.2.
– MIG-Inc: The MIG implementation with the incoherent training loss intro-

duced in Sect. 3.3.
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Table 5. Case study

Example 1

First
contextual
sentence(x)

Daisy was at her middle school graduation

Factual
sentence(y)

She lost her hat

Second
contextual
sentence(z)

She decided to forget about it, and went home

MIG-Inc She found her hat

MIG-PPO Daisy found her hat in the trashcan

Example 2

First
Contextual
Sentence(x)

Sandy lived in New York

Factual
Sentence(y)

It stormed in New York

Second
Contextual
Sentence(z)

Sandy was prepared

MIG-Inc It was sunny in New York

MIG-PPO Sandy was glad she had gone to New York

– MIG-PPO: The implementation with the Proximal Policy Optimization
introduced in Subsect. 3.4.

4.5 Evaluation Results

We summarize the automatic evaluation result in Table 4. We have the following
observations to note about the experiment results. First, by looking only at
BLEU scores, it seems that MIG-Base is a winner. However, we would like to
note that the BLEU scores cannot reflect the true performance of the models. As
mentioned, by observing the real generated sentences, we find the MIG results
are similar to the original factual sentences. We can also see this fact from the
high Self-BLEU scores of MIG-Base shown in Table 4.

Second, by comparing MIG-Base and MIG-Neg, we can see that the negative
training indeed brings performance improvement (a Self-BLEU improvement
from 68.43 to 61.19). This validates our negative training design for mitigating
the copying problem.

While the improvement on Self-BLEU was observed, we see a side effect for
MIG-Neg that the BLEU-1 score is degraded from 21.21 to 19.92 when MIG-
Neg is used. In comparison, our MIG-Inc design shows improvement both on
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BLEU and Self-BLUE, indicating MIG-Inc is a better choice than MIG-Neg.
Last, we see our MIG-PPO design significantly improve the Self-BLEU scores
with a slight performance degradation on BLEU scores.

4.6 Case Studies

In this subsection, we present two case studies for the qualitative comparison in
Table 5. We also show the results with the PPO employment. In Example 1, we
see that the factual sentence is modified by replacing the verb (lost to found).
We can also see that with the PPO employment, the more diverse result is gen-
erated (i.e., Daisy found her hat in the trashcan). We see a similar observation in
Example 2. We see that MIG-Inc again changes the verb to generate a mislead-
ing result. Furthermore, we see MIG-PPO generates a nice misleading result,
which is different from the factual sentence both on a semantic and syntactical
structure.

5 Conclusion

This paper proposes to investigate the Misleading Inference Generation task,
which is a challenging task for the current state-of-the-art natural language gen-
eration model with a conditional generation setting. We established baseline per-
formances of state-of-the-art language models on MIG-Inc using the ART dataset
with different strategies. Furthermore, we propose to use PPO to strengthen the
misleading ability. A strong baseline for the targeted MIG task is recorded in
this paper.
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Abstract. Multi-modal Fake News Detection (MFND), which aims
to identify fake news by integrating texts and attached images, has
attracted considerable attention in recent years. Existing works on
MNFD have made a great progress by enhancing text-only fake news
detection with visual information. However, most prior efforts focus
on conducting multi-modal fusion yet largely ignore the significance
of multi-modal representation, which is insufficient to explore various
semantic interactions between images and texts. In this paper, we pro-
pose an instance-guided multi-modal graph fusion method by jointly
modeling the intra- and inter-modality relationships between image and
text. Specifically, considering that the content of multi-media news is
always narrated around instances, we extract instance-level features of
images to represent visual contents. After that, we construct a unified
graph to enhance the multi-modal representation for improving fake news
detection. In addition, we utilize multiple fusion layers to learn the graph
embeddings, which is able to capture the intra-modality relationship
within each modality and the inter-modality relationship between tex-
tual and visual instances simultaneously. Finally, we devise a fake news
detector with hierarchical multi-modal representations to identify the
fake news. Experimentation on two benchmark datasets demonstrates
the superiority of our model.

Keywords: Fake news detection · Multi-modal representation · Intra-
and inter-modality

1 Introduction

Social media posts become increasingly multi-modal recently, which engage more
readers and provides them with a better reading experience [5]. However, multi-
modal contents always foster various forms of fake news, which brings harmful
social impacts. Accordingly, it is urgent and crucial to detect fake news involved
the image on social media [19].
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Fig. 1. An example for multi-modal fake news detection with (a) the region-guided
visual cues, (b) global-guided visual cues and (c) instance-guided visual cues.

As with other Vision-and-Language task [16], existing prominent MFND
models mainly follow an extract-then-fuse paradigm: extracting visual and tex-
tual features from image and text respectively, and then fusing them by atten-
tion mechanism to obtain the multi-modal information. From the perspective of
visual feature extraction, we classify existing approaches into the two main cate-
gories: (i) Region-guided methods, which segment the whole image into multiple
regions and make them interact with the text sequence [4,15]. (ii) Global-guided
methods, which encode the whole image into a global feature vector to perform
cross-modal interaction with sentence-level features [7,14,18]. Despite their com-
pelling success, these methods involve two limitations.

The first limitation is that they ignore the mapping relations between visual
instances and textual tokens. Actually, the contents of multi-modal news are
mostly instance-centric description [9,12], such as “Ane Lee” in Fig. 1. Accord-
ingly, capturing this instance-level alignment is beneficial for fake news detec-
tion. However, both of these methods fail to capture such instance-level semantic
interactions between the two modalities. Taking Fig. 1 (a) as an example, region-
guided methods consider fine-grained visual features but fail to maintain the
integrity of visual instance, such as “trophy” in the image. In the global-guided
methods shown in Fig. 1 (b), all visual objects and relations are fused in a sin-
gle vector, making it hard to produce fine-grained semantic mapping relations
between vision and language. Thus, it is necessary to utilize the instance-level
features for detecting fake news rather than region- and global-level features.

The other limitation is that the above works focus on conducting various
multi-modal fusion mechanisms but largely neglect the importance of multi-
modal representation. Indeed, a unified multi-modal representation can exploit
the complementarity of different modalities and lay a solid foundation for the
following fusion stage [1]. Nevertheless, current MFND models only consider
intra-modal and inter-modal semantic interactions during fusion, which lacks
such informative interactions during the multi-modal representation learning
stage. Therefore, we believe that constructing a unified multi-modal represen-
tation is beneficial for fake news detection since this way can model intra- and
inter- semantic correspondences simultaneously.
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In this work, to tackle above challenges, we propose an instance-guided multi-
modal fake news detection framework, which fuses multi-modal clues to detect
fake news. Specifically, as illustrated in Fig. 1 (c), considering the characteristics
of multi-modal fake news, we introduce the visual instances to capture the fine-
grained semantics of images. In addition, to build a comprehensive multi-modal
representation, we construct a unified graph to connect the visual and textual
instances. After that, we leverage multiple graph-based fusion layers to con-
duct graph encoding, which can capture semantic relationships within the same
modality (intra-modality) and semantics interactions between different modali-
ties (inter-modality). Finally, we employ these representations with a fake news
detector to recognize fake posts. Overall, the major contributions of our work
are listed as follows:

• We propose a novel instance-guided multi-modal graph fusion model which
enhances the multi-modal representation for improving fake news detection.
To the best of our knowledge, our work is the first to construct a instance-level
based multi-modal graph in MFND.

• We design a dynamic multi-modal fusion module that is able to jointly capture
the semantic interactions of intra- and inter-modality for fake news detection.

• Without the need of incorporating extra knowledge as other works, exper-
imental results on two public datasets demonstrate the superiority of our
model, and further analysis illustrates the effectiveness of our proposed
modules.

2 Related Work

With the quick development of social media on the Internet, perceiving and rec-
ognizing fake news with texts and images become progressively prominent [19].
To date, several previous works have attempted to perform fake news detec-
tion using multi-modal contents and obtain superior performance. Jin et al. [4]
extracted the multi-modal information including textual, visual and social con-
text features, and then fused them by local attention mechanism. Wang et al. [14]
developed an adversarial network to learn event-invariant features and then
obtained the multi-modal features of each post. Khattar et al. [7] utilized a
multi-modal variational autoencoder to learn the shared representation of the
text and the attached image. Zhou et al. [18] explored the textual and visual
information along with their relationship are jointly learned and used to detect
fake news. Wu et al. [15] took a further step to introduce frequency-domain fea-
tures of image and stack multiple co-attention layers to fuse spatial, frequency
and text feature for MFND.

Different from above approaches, we focus on visual instances that appear in
the image and represent the multi-media post as a unified graph, where various
semantic connections between multi-modal elements can be effectively captured
for MFND.
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Fig. 2. The overall architecture of our model. In the multi-modal graph, the green and
yellow solid circles denote textual nodes and visual nodes respectively. An intra-modal
edge (dotted line) connects two nodes in the same modality, and an inter-modal edge
(solid line) links two nodes in different modalities.

3 Methodology

Given a multi-modal news that includes a textual sentence X and image I asso-
ciated with the text, our model aims to learn a comprehensive multi-modal
representation by jointly considering semantic interactions of intra- and inter-
modality for MFND. As shown in Fig. 2, it principally consists of instance rep-
resentation, multi-modal graph construction, dynamic intra- and inter-modality
fusion. As what follows, this section is dedicated to introducing them elaborately.

3.1 Instance Representation

Text Encoder. Due to the capability of giving different representations for the
same word in different contexts, we employ the recent contextualized representa-
tions from BERT [6] as our text encoder. Given a sentence X = {x1, x2, . . . , xn},
where n denotes the number of words in the text, we obtain the transformed
feature as T = {t1, t2, . . . , tn}, where ti ∈ R

dw and dw is the dimension of word
embedding.

Image Encoder. Previous researches show that visual contents can provide
complementary clues in MFND [4,7,14,15,18]. Different from these methods,
we extract the visual instances to model the high-level semantics of images.
More concretely, given an image I, we apply the object detection model Mask
R-CNN [2] which is pre-trained on the COCO dataset [10] to identify the objects
in images. In most cases, only the salient objects are related to the event men-
tioned in a sentence. As a result, we consider the top k objects with the highest
classification probabilities, denoting as O = {o1, o2, . . . , ok}, where oi ∈ R

dv and
dv is the dimension of the image embedding.

3.2 Multi-modal Graph Construction

In this section, we describe how we formulate the multi-modal news into a graph
G = (V, E), where V denotes the nodes and E is a set of undirected edges.
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In general, we construct two kinds of nodes via different strategies in the node
set V. First, we treat all words as independent textual nodes (i.e., vt1 , . . . , vt11)
so as to fully exploit textual information. Taking Fig. 2 as an example, the
multi-modal graph includes totally eleven textual nodes, each of which repre-
sents a word in the input sentence. Second, the detected top k objects of image
are regarded as independent visual nodes to express instance-level visual infor-
mation. Revisiting the example in Fig. 2, we select three objects of the image
(i.e., vo1 , vo2 , vo3) and they are included into the multi-modal graph as the visual
nodes.

Unlike other MFND works, we establish the intra-modal and inter-modal
semantic connections at the multi-modal representation stage. Specifically, we
also consider two kinds of edges in the edge set E. First, any two nodes within
the same modality are connected by an intra-modal edge. In Fig. 2, all visual
nodes are connected to each other, as well as all textual nodes. Second, as the
description of news is narrated an event consisting of multiple noun phrases [19],
we consider these phrases as textual instances and employ the Stanford parser
toolkit to identify all noun phrases in the input sentence, then these nodes and
visual nodes are connected with an inter-modal edge1. Back to Fig. 2, only
textual nodes vt1 , vt2 , vt7 and vt11 are connected with visual nodes by inter-modal
edges. It follows that we directly build the cross-modal semantic connections
between noun phrases and visual objects which are essential for identifying the
truthfulness of the sample, and explicitly alleviate the alignment among many
function words such as a, while with any visual object.

3.3 Dynamic Inter-modality and Intra-modality Fusion

As illustrated in Fig. 2, before inputting the graph into the dynamic fusion layer,
we introduce an embedding layer to obtain the initial node states. Specifically, we
employ two MLP with ReLu active function to project different representations
from two modalities onto the same dimension d. As a result, for each textual
node vti and visual node voj , we define their initial state as S

(0)
ti ∈ R

d and
S
(0)
oj ∈ R

d respectively.
After embedding layer, we stack L fusion layers to encode the above-

mentioned multi-modal graph. Inspired by the success of Transformer [13], we
conduct dynamic intra- and inter-modality fusion based on multi-head atten-
tion, to model the intra- and inter-relationships of different nodes. Particularly,
considering that visual nodes and textual nodes are two types of semantic units,
we apply similar operations but with different parameters to model their state
update process respectively inspired by studies [3,16]. Concretely, in the l-th
fusion layer, both updates of textual node states S

(l)
t = {S

(l)
ti } and visual node

states S(l)
o = {S

(l)
oj } mainly involve the following steps:

1 If no noun is detected for a sentence, all textual and visual nodes are connected with
fully connection.
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Intra-modality Fusion. We employ Multi-Head Attention [13] (MHA) to gen-
erate the contextual representation of each node by collecting the message from
its neighbors of the same modality. Specifically, the contextual representations
H

(l)
t of all textual nodes are calculated as follows:

H
(l)
t = MHA(S(l−1)

t ,S
(l−1)
t ,S

(l−1)
t ) (1)

Similarly, we generate the contextual representations H
(l)
o of all visual nodes as:

H(l)
o = MHA(S(l−1)

o ,S(l−1)
o ,S(l−1)

o ) (2)

where we omit the descriptions of layer normalization and residual connection
for simplicity.

Inter-modality Fusion. We apply a gating mechanism to gather the semantic
interactions of the cross-modal neighbors of node, which not only filters irrele-
vant information adaptively but also captures the high-level interactions between
visual and textual information better. Concretely, we generate the representation
H

(l)
ti→oj of a text node vti in the following way:

H
(l)
ti→oj = H

(l)
ti +

∑

i∈N(vti)
Gi→j � H(l)

oj (3)

Gi→j = σ
(
W

(l)
1 H

(l)
ti + W

(l)
2 H(l)

oj

)
(4)

where N (vti) is the set of neighboring visual nodes of vti , � is an element-wise
operation, and σ is sigmoid function. The W

(l)
1 and W

(l)
2 are parameter matrices.

Similarly, we produce the representation H
(l)
oj→ti of a visual node voj as

follows:

H
(l)
oj→ti = H(l)

oj +
∑

i∈N(voj )
Gj→i � H

(l)
ti (5)

Gj→i = σ
(
W

(l)
3 H(l)

oj + W
(l)
4 H

(l)
ti

)
(6)

where N (voj ) is the set of neighboring textual nodes of voj , and W
(l)
3 and W

(l)
4

are parameter matrices.
After that, we adopt position-wise feed forward networks FFN(·) [13] to gen-

erate the textual node states S
(l)
t and visual node states S(l)

o :

S
(l)
t = FFN(H(l)

t→o) (7)

S(l)
o = FFN(H(l)

o→t) (8)

where H
(l)
t→o = {H

(l)
ti→oj} and H

(l)
o→t = {H

(l)
oj→ti} denote the above updated rep-

resentations of all textual nodes and visual nodes respectively.
Finally, we concatenate the output of the two representations to obtain the

final multi-modal feature representation:

Mf = concat(S(l)
t ,S(l)

o ) (9)
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3.4 Fake News Detector

We take the multi-modal representation Mf as input, and obtain the probability
of a tweet being fake based on the proposed model:

ŷi = softmax(WfMf + b) (10)

where Wf and b are parameters of the fully connected layer. Then the cross-
entropy is leveraged to measure the classification loss as follows:

L = −
N∑

i=1

[yi ∗ log (ŷi) + (1 − yi) ∗ log (1 − ŷi)] (11)

where N is the number of posts, yi is the ground-truth label of the ith post.

4 Experiment

4.1 Experimental Setup

Dataset. We conduct experiments on two public real-world datasets, Twit-
ter [11] and Weibo [4], respectively. The Twitter dataset consists of tweets con-
tain texts, attached images and social context information. In this work, we
focus on text and image information. Therefore, following previous work [15],
we reserve the tweets both contain texts and images and remove the others.
After that, 512 images are shared by the remaining data in Twitter dataset.
The Weibo dataset is collected from the Xinhua News Agency and we follow the
preprocessing steps in [4]. We keep the same data split scheme as the benchmark
on these two datasets.

Implementation Details. The max length of the text is 25 on Twitter and
160 on Weibo. We set dw = 768, dv = 2048 and d = 512. The head number H in
MHA is set as 4 and the layer number of multi-modal graph fusion L is 2. The
parameters of Mask R-CNN and BERT are frozen when training on Twitter
dataset due to overfitting, but not on Weibo dataset. The BERT model used
on Twitter dataset is multilingual cased BERT-based model and the one used
on Weibo dataset is Chinese BERT-based model. Our model is trained for 100
epochs with a learning rate of 1e−4, drop out rate of 0.5 and the mini-batch
size is set to 128. Our algorithms are implemented on Pytorch deep learning
framework and are trained with Adam [8] optimizer. For a fair comparison, we
adopt official Accuracy scores as the main evaluation metrics and report the fine-
grained Precision, Recall, and F1 scores yielded on Twitter and Weibo datasets.

Baselines. We compare our model with two types of baseline models: single-
modal and multi-modal models, including (1) Textual: we use a pre-trained
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Table 1. Performance comparison between the proposed model and the baselines on
test sets of Twitter and Weibo (the best values are highlighted in bold).

Dataset Method Accuracy Fake news Real news

Precision Recall F1 Precision Recall F1

Twitter Visual 0.621 0.783 0.536 0.636 0.430 0.631 0.511

Textual 0.633 0.656 0.762 0.705 0.587 0.459 0.515

EANN 0.648 0.810 0.498 0.617 0.584 0.759 0.660

att-RNN 0.664 0.749 0.615 0.676 0.589 0.728 0.651

MCAN 0.741 0.728 0.733 0.730 0.705 0.726 0.715

MVAE 0.745 0.801 0.719 0.758 0.689 0.777 0.730

SAFE 0.766 0.777 0.795 0.786 0.752 0.731 0.742

DIIF (ours) 0.783 0.810 0.803 0.806 0.758 0.786 0.772

Weibo Visual 0.716 0.702 0.718 0.710 0.713 0.726 0.719

SAFE 0.763 0.833 0.659 0.736 0.717 0.868 0.785

att-RNN 0.772 0.854 0.656 0.742 0.720 0.889 0.795

EANN 0.782 0.827 0.697 0.756 0.752 0.863 0.804

MVAE 0.824 0.854 0.769 0.809 0.802 0.875 0.837

MCAN 0.872 0.883 0.872 0.877 0.862 0.878 0.870

Textual 0.876 0.885 0.871 0.878 0.865 0.878 0.871

DIIF (ours) 0.890 0.912 0.894 0.903 0.905 0.879 0.892

BERT [6] to obtain the representation of the given piece of news and a fully con-
nected layer to make classifications. (2) Visual: Following [17], we employs a con-
volutional neural network to learn the feature representation. (3) att-RNN [4]:
att-RNN uses an attention mechanism to combine textual, visual and social con-
tent information. To make a fair comparison, we remove the component process-
ing social context information. (4) EANN [14]: EANN is composed of the multi-
modal feature extractor, the fake news detection, and the event discriminator.
For fairness of the comparison, we conduct experiments with a simplified version
of EANN that removes the event discriminator. (5) MVAE [7]: MVAE learns
multi-modal representations of text and image using a variational autoencoder
along with a binary classifier. (6) SAFE [18]: SAFE is a similarity-aware multi-
modal method for fake news detection, which investigates their relationships to
obtain the multi-modal representation. (7) MCAN [15]: MCAN develops mul-
tiple co-attention layers to fuse text, spatial domain, and frequency domain for
MFND. To make a fair comparison, we remove the frequency domain information
in our experiments.

4.2 Result and Discussion

Comparison with Existing Models. Our proposed model is referred to as
DIIF (Dynamic Intra- and Inter-modality Fusion) for convenience. As shown in
Table 1, it is impressive to see that the proposed DIIF nearly outperforms all the
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baselines over all metrics across two datasets. Besides, there are some interesting
observations.

On one hand, there are many similar trends on the two datasets. Apparently,
single-modal approaches mostly perform much worse than multi-modal joint
methods, which indicates that fusing visual and linguistic features improves
model performance, but it is not always relevant. As illustrated in Table 1,
the performance of Textual method performs better than other multi-modal
approaches on Weibo dataset. Although their effectiveness, it is worth noting
that our proposed DIIF beats all baselines in accuracy, which demonstrates
that our strategy of multi-modal representation and fusion is indeed better than
others.

On the other hand, there are also some differences on the two datasets.
Fine-tuning BERT on Weibo datasets performs much better than on Twitter
dataset so as to Textual approach gets better performance on Weibo dataset,
as exhibited in Table 1. The reason is that the average length of each sentence
on Weibo dataset is about 10 times longer than that on Twitter dataset, which
probably makes BERT perform better on Weibo dataset. In addition, more than
70% of tweets on Twitter dataset are related to a single event, probably leading
to the overfitting on Twitter dataset. But Weibo dataset has no such imbalanced
issue. This is also the reason why we fine-tuned BERT on Weibo dataset but
not on Twitter dataset.

Twitter Weibo
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0.85

0.9

A
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DIIF w/o Ins.
DIIF w/o Intra.
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Fig. 3. Ablation analysis of DIIF. Fig. 4. Results of our proposed model
on different numbers of objects.

Ablation Analysis. To investigate the importance of each component in our
DIIF, we perform comparison between the full DIIF and its ablated approaches:

• DIIF w/o Ins., a variant of our approach, which replaces the visual instances
guidance with region-aware methods as the same as MCAN.

• DIIF w/o Intra., a variant of our approach, which removes the intra-
modality semantic correlations of visual nodes.

• DIIF w/o Inter., a variant of our approach, which removes the inter-
modality relations between vision and language.
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As shown in Fig. 3, we can see that all the components in DIIF make
important contributions to the final results on both two datasets. Specifically,
compared with DIIF w/o Obj., DIIF adopts visual objects as nodes rather
than the averagely segmented regions, and obtains better performance on both
datasets, which shows the importance of objects-aware visual guidance. In addi-
tion, DIIF outperforms DIIF w/o Intra. which lacks the intra-modal inter-
actions of visual contents, indicating that the effectiveness of intra-modal cor-
relations among visual semantic units. Furthermore, DIIF w/o Inter. brings
in a significant performance degradation, which demonstrates that it is vital to
exploit the semantic interactions between different modalities. Besides, on Weibo
dataset, the performance of DIIF does not drop significantly on Twitter dataset
when removing any of the components. This also benefits from the balanced data
distribution on Weibo dataset and the stability of fine-tuned BERT.

Parameter Sensitivity. As mentioned before, we choose the top k detected
objects as visual instances according to the detection possibility of each object
in an image. Figure 4 shows the results of our model with different number of
selected objects. As can be noted, the two datasets show a similar trend that
the accuracy firstly increases and then decreases with the changes of the selected
objects, and we achieve the best performance when setting the number of objects
to 3. Performance degradation is the greatest when we select only the most
prominent object. The reason is that including both salient object and contex-
tual regions can favor the learning of better visual feature representations. For
example, in Fig. 2, the “trophy” object in image is small, however, it is useful
to recognize the “Oscar” as an award name so as to connect each other. Mean-
while, too many visual objects may bring noise into the prediction of entities.
However, even if given 5 visual objects, the performance is only decreased little.
The main reason is that our graph-based fusion module can filter out irrelevant
visual information to a certain extent.

Case Study. To further verify the effectiveness of our model, we compare and
analyze the prediction results of Textual, Visual, MCAN, and DIIF methods
for some fake news. As shown in Fig. 5, all these cases are fake news, and only our
DIIF model predict all of them correctly. For the first sample, it is incorrectly
identified as true news since the Visual method is only based on the visual
signal. Thus, the Visual method recognize it wrongly and others are right. For
the second sample, as only considering textual modality, the Textual method
give a wrong prediction. However, it is obvious that the associated image was
fake. For the last sample, all methods predict wrongly except DIIF. Neither the
image or the text along can prove it is fake news, but we infer that it is prob-
ably a fake news from the mismatched image and textual contents. Compared
with MCAN, our DIIF model can capture fine-grained semantic relationships
between different modalities, which is beneficial for us to detect multi-modal
fake news.
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Meet The Woman Who 
Has Given Birth To 14 
Children From 14 
Different Fathers!

A group of dolphins 
brought a dog that fell 
into a canal to safe 
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Fig. 5. Prediction results for some cases obtained from various methods, where the
wrong prediction are marked red. (Color figure online)

5 Conclusion

In this work, we proposed a novel instance-guided multi-modal graph fusion
method for MFND, which exploits intra- and inter-modality relationships simul-
taneously between multimodal semantic units. Without introducing any extra
information, experiment results on two benchmark datasets demonstrated the
superiority of our model. In the future, we plan to incorporate more external
knowledge such as social context and common sense, to enrich the multi-modal
graphs for MFND.
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Abstract. Question answering over knowledge graph has attracted increasing
attention. Though the previous algorithms have achieved competitive perfor-
mance, they fail to solve problems like humans resulting in the bottleneck of
reasoning. However, it is difficult for machines to simulate the question answer-
ing process of humans. In order to address this challenge, we propose a novel
Cognitive Knowledge Graph Reasoning (CKGR) model based on the cognitive
architecture for complex question answering. The CKGR processes information
hierarchically with a three-level framework. To fully analyze the question, the
first level is proposed to transform the question into features according to dif-
ferent aspects. Then, the relative knowledge graph (KG) regions are activated to
simulate the human unconscious thinking process by a memory mapping module.
Finally, the CKGR goes deeper to infer the correct answer over KG considering
the both semantic and logical parsing of the questions. The CKGR successfully
narrows the gap between humans and machines. Extensive experiments on three
real-world datasets demonstrate that the proposed method achieves better per-
formance compared with the state-of-the-art methods and provides the reasoning
score to find the reasonable path for the answer.

Keywords: Question answering · Cognitive knowledge graph · Knowledge
reasoning

1 Introduction

With the improvement in building large-scale knowledge graphs (KGs), question answer-
ing over knowledge graphs (KGQA) has emerged as a hot topic in artificial intelligence
over the last few years. The early researches of KGQAmainly focus on simple questions
where only a single triple in KG is involved. The performance of answering simple ques-
tions is competitive [1, 2], and thus increasing researchers have begun to pay attention
to complex questions. Complex questions usually have multiple topic entities, relations,
and some constraints, so that they consist of many different situations. In order to solve
complex questions, there are two kinds of methods: semantic parsing (SP) methods [3,
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4] and information retrieval (IR) methods [5–7]. SP methods can give interpretable rea-
soning results due to the symbolic logic form. However, the logic forms are not easy
to design, which is the choke point of improving the method performance. IR methods
learn the representations of questions and entities by using end-to-end models which are
easier to train, but the predicted results are less interpretable.

The abovemethods face obvious bottlenecks because they fail to think like humans to
solve problems. In this paper, we simulate human cognitive processes to enablemachines
to solve QA task in a natural way. Cognition refers to the mental processes involved in
acquiring knowledge and processing information [8]. The cognitive processes works
together to integrate the new knowledge using existing knowledge and create an inter-
pretation of the world. QA task is a proper situation that introduces human cognition
to improve the decision-making level of machines. It involves the ability to understand
through natural language questions and make decisions by retrieving information from
knowledge stored in memory [9, 10]. The questions are transformed into several features
that the brain can understand. They are subsequently input to the human brain estab-
lishing relationships between features and knowledge to activate relative brain regions.
Finally, the brain generates behavior by making use of declarative knowledge and work-
ing memory to perform reasoning and synthesis to make decisions [11]. Overall, the
cognitive process for QA happens naturally to synthesize question information, inte-
grate it with prior knowledge and reason over the memory to get accurate answers.
Implementation of human intelligence for QA task helps to improve the accuracy and
interpretability of the model. Therefore, the promising methods should simulate the
human cognitive processes to answer questions.

In this paper, we propose a novel cognitive knowledge graph reasoning (CKGR)
method for complex question answering, which is a hierarchical information processing
mechanism to simulate human thinking. The mechanism is equipped with a three-level
framework as shown in Fig. 1. For answering a complex question, people will first
try to understand the questions by extracting useful question features. This process is
simulated by the first level that transforms a given question into a series of features from
different aspects instead of using a simple pre-trained language model in previous work
[12–14]. The second level is designed for memory mapping to simulate the activation
process of the brain region. The extracted features and knowledge stored in KG are in
different spaces so that a semantic aware module is proposed to integrate the language
space and graph space into the same space. To find answers in KG, people would locate
some regions where likely exists answers. This process is even ignored by the latest
methods such as teacher-studentmethod ofNSM[7] and link prediction ofEmbedKGQA
[13]. Most question answers may not be far from the topic entities in KG, so different
hop neighbors of the topic entities are activated for different scores. And the entities
whose relations are relevant to the question relations are also activated. Finally, the third
level conducts a deep reasoning process. A more expressive representation of question
improves the reasoning results. So the questions are analyzed from both logical parsing
and semantic parsing aspects, and are used to find the correct answers over KG. The
main contributions are summarized as follows:

• The CKGR is proposed to integrate the human cognitive process in QA area, which
simulates human thinking with a hierarchical information processing mechanism.
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• The CKGR consists of a three-level framework including question feature extraction,
memory mapping, and answer reasoning. The extracted question features are mapped
to the KG for activating relevant regions. The final reasoning process uses more
expressive question representations from both semantic and logical parsing.

• We evaluate CKGR through extensive experiments on multiple datasets. The results
show that CKGR achieves better performance than the state-of-the-art baselines.

Question

Answer

Answer
Reasoning

Memory
Mapping

Question
Feature

Extraction

……

Entity 1 Score
Entity 2 Score

Entity N Score

Semantic Parsing

Logical Parsing

ActivationTopic entities

Relation

……Entity
Recognition

Entity
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Relation
Extraction

Question
Type

Semantic
Parsing

Fig. 1. The three-level framework of the CKGR for QA task based on human cognitive process.

2 Related Work

Complex Question Answering over KG. In recent years, many works have been
devoted to complex question answering based on the knowledge graph. They can be
divided into two groups: information retrieval (IR) methods and semantic parsing (SP)
methods. IR methods capture the information contained in questions to learn represen-
tations and rank entities in KG to get final answers. Key-Value Memory Network [5]
allows encoding prior knowledge in the key and value memories using knowledge bases.
VRN [6] adopts an end-to-end variational learning method to jointly recognize the topic
entity and learn reasoning graph embedding. EmbedKGQA [13] uses pre-trained entity
embeddings to perform multi-hop KGQA over sparse KGs, which regards QA task as
link prediction. NSM [7] is proposed to adopt a novel teacher-student approach to allevi-
ate the issue of spurious reasoning. MULTIQUE [3] is an SP method, which uses simple
queries to map a complex question to a complex query pattern. However, there are few
models to simulate human cognitive processes to solve problems, which helps to reduce
the bottlenecks of the previous methods.

Human Cognitive Processes. Cognition [9, 10] is a term referring to the mental action
of acquiring knowledge and comprehension. There are many cognitive processes rel-
evant to QA task including learning, memory, language, reasoning, decision making,
etc. When answering questions, people would integrate the above cognitive processes
to synthesize question information, incorporate it into prior knowledge, and reason over
a certain memory to get accurate answers. In order to have artificial computational
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system processes that act like humans, researchers have proposed many cognitive archi-
tectures, such as ACT-R [15] and Soar [16]. They all try to construct the structures of
the human mind by combining cognitive science and artificial intelligence (AI). Imple-
menting aspects of human intelligence in computers is one of the practical goals of
AI. Cognition has been introduced into visual reasoning to narrow the gap between
humans and machines [17]. However, limited researchers attempt to introduce cognitive
processes into QA task, which may help improve the performance of QA and provide
interpretability justifying the answers. In this work, we propose a three-level framework
simulating human thinking with a hierarchical information processing mechanism for
QA task.

3 Methodology
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Fig. 2. The overall architecture of CKGR model.

To simulate the human cognitive process for the QA task, we propose a hierarchical
information processing mechanism with a three-level framework as shown in Fig. 2.
The first level aims to transform the question into several features. The second level
attempts to activate relative KG regions. The recognized entities and extracted relations
in questions are denoted as topic entities and question relations, and the entities and
relations in KG are denoted as graph entities and graph relations in the following steps.
The third level generates reasoning over KG to find correct answers.

3.1 Question Feature Extraction

When people answer questions, they will first try to understand the questions by extract-
ing several features from the questions. This process is crucial since useful features are
helpful to find the answers in the brain while useless features hamper the answering
process. Thus, we design the first level of CKGR to transform a given natural language
question into a series of features which we believe are important for QA tasks. Cer-
tainly, the proposed CKGR is a general framework that allows the addition of more
useful features for QA tasks in future work.
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Entity Recognition: The entity recognition module presented in this paper uses the
spaCy library [18]. Spacy not only achieves Entity Recognition but also provides
integrated word vectors e, which may not be realized both by other NLP tools.

Relation Extraction: The question relations may not be determined by topic entities.
For example, the questions “what is the nationality of Obama” and “what is the nation-
ality of Newton” both concern about the relation “nationality”. The entities “Obama”
and “Newton” provide useless information for relation extraction. Hence, we mask the
entities recognized by the above step in the questions, such as “what is the nationality
of <NE>”. The masked question is then input to spaCy to get the predicted question
relation representation r.

Entity Position: The entity position in the question is another useful feature that is
adopted for logical parsing of the question. Each position in question is assigned a
position embedding which will be learned by the end-to-end network.

Semantic Parsing: The semantic information of text has been well explored by some
natural language processing, like Bert and GloVe. In this paper, we adopt RoBERTa
[19] as the semantic parsing, which is a robustly optimized Bert pretraining approach to
obtain the question semantic embedding qs.

Question Type: The dependency parse of a sentence denotes its grammatical structure,
which reflects the question type information. The questions are analyzed by dependency
parsing and each word would get its dependency labels by spaCy. Each dependency
label is assigned a dependency vector which is randomly initialized and will be learned
by the whole algorithms. We use LSTM to encode the dependency parse of the question,
and the last hidden state is considered to be the question type representation qt.

The above features extract information from different aspect of questions, and thus
they will be useful for memory mapping and question answering.

3.2 Memory Mapping

After acquiring question features, people will map them to the relative knowledge. Then
people will activate the surrounding brain regions of relative knowledge unconsciously,
since these areas likely include correct answers. This process is generalized as the sec-
ond level Memory Mapping. It consists of two modules: semantic aware module that
establishes relationships between questions and KG, and region activation module that
activates relative graph entities.

Semantic Aware Module: The representations learned from the language model and
graphmodel are in different spaces. Thus, it is improper to directly calculate the similarity
between the topic entity and all graph entities. The question information is also crucial
for entity linking, since it provides semantic meaning to find the corresponding graph
entity more accurately. So we propose a semantic aware module to get the topic entities
and most relevant graph relations to question relation. The graph entity embedding E
and relation embedding R are first mapped to the language space:

Ẽ = σ(EW1), R̃ = σ(RW2), (1)
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where Ẽ and R̃ are the mapped graph entity and relation embeddings in language space.
W1 andW2 are parameter matrices, σ denotes ReLU function. Such operators transform
the embeddings from graph space to language space. Then the question semantic infor-
mation is considered to calculate the topic entity distribution pt and question relation
distribution pr by the following equations:

pt = softmax
(
(qs � e)ẼT

)
, pr = softmax

(
(qs � r)R̃T

)
, (2)

where e and r are the topic entity vector and question relation vector. The recognized
results would be more accurate since the distributions are incorporated with the question
semantic information.

Region Activation Module: This module simulates the process of the brain solving the
problem to activate relativememory regions.Graph entities are activated in consideration
of two aspectswith the activation scores. First,most answersmaynot be far from the topic
entities in KG so that the neighbors of the topic entities should be activated with basic
scores. However, the fact that graph entities in which hop of topic entities are essential
to question are not determined, and thus it needs adjustable parameters to learn. For a
given question, the basic scores sb are defined as follows:

sb =
3∑

j=1

λjptAj, (3)

where Aj denotes the j-hop adjacency matrix, λj is a learnable parameter. Here, we only
activate the neighbors of topic entity within 3-hop neighbors.

Second, those graph entities whose graph relations are similar to the question rela-
tions should also be activated with mapping scores, since these entities are likely to be
the answers. The mapping scores sm are defined as follows:

sm = prHT, (4)

whereH ∈ R
NE×NR is an incidence matrix, NE and NR are the numbers of graph entities

and relations respectively. Hij is set to be 1 if the i-th graph entity is connected with j-th
graph relation. Overall, the activation scores sa are obtained based on basic score and
mapping score, which help to perform reasoning to find the final answers.

sa = sb + sm. (5)

3.3 Answer Reasoning

The more accurate reasoning process is based on the more expressive representations
of questions and graph entities. Thus, we fully analyze the questions from both logi-
cal parsing and semantic parsing aspects. And the graph entity embedding can change
dynamically in terms of different questions, since the aggregation process incorporates
the question information. The answer is finally obtained via a reasoning module.
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Logical Parsing Module: Question contains two aspects of information: semantic
information and logical information. The semantic question embedding is obtained by
the previous step. Here, we analyze the question from logical aspects. The entity posi-
tion and question type are typical logical features. The absolute entity position is used
to model how the entity position influences other words at different positions, thus the
integrated information combined by question type is defined as follows:

ql = 1∣∣Np
∣∣σ

⎛
⎝ ∑

p∈Np

k∑
i=1

(([
xi; xp;qt

])
W3

)
⎞
⎠ i /∈ Np, (6)

whereNp is the set of the entity position numbers, qt is the question type representation,
xp is the position vector of entity, xi is the vector of position i, k is the maximum length
of the question,W3 is a parameter matrix. Finally, we get the more expressive question
representation based on logical parsing and semantic parsing:

q = FFN
([
qs;ql

])
, (7)

where FFN(·) is a feed forward neural networks.

Reasoning Module: Once the question representations are obtained, we can use them
to find the answers in KG. The graph entity embedding at k-th reasoning step is learned
from not only its graph entity neighbors and relation neighbors but also the question
information:

h(k) =
∑

(h,r,t)∈Nh

p(k−1)
t ·

(
q �

(
r(k−1)Wr + t(k−1)Wt

))
, (8)

where Nh is the set of triples whose head entity is h, p(k−1)
t is the answer probability

of tail entity t at (k − 1)-th reasoning step, r(k−1) and t(k−1) are the embeddings of r
and t at (k − 1)-th step, Wr and Wt are parameter matrices. The learned embedding is
able to capture relation and entity information in KG, and can be different for different
questions, which is more powerful for answering the specific questions. The reasoning
score is calculated as follows:

sr = wE(k)T , (9)

where E(k) is the updated graph entity embedding matrix whose row vector is the entity
embedding learnedbyEq. (8) at k-th step,w is a parametermatrix. The answer probability
of graph entities at k-th reasoning step is obtained as follows:

p(k) = softmax(sr + βsa), (10)

where β ∈ (0,1) is a hyper-parameter, p(0) is set to be pt according to Eq. (2). The answer
probability involves a preliminary reasoning process to find a relative regions and a
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deeper reasoning process to find the final answers, that is similar to the human cognitive
process for question answer.

The loss function is to minimize the following binary cross entropy loss:

L = − 1

NE

∑
i

(
yi · log

(
p(n)
i

)
+ (1 − yi) · log

(
1 − p(n)

i

))
, (11)

where p(n) denotes the final answer probability of graph entities, yi denotes the label for
the i-th graph entity.

4 Experiments

4.1 Datasets

MetaQA [6] is a largescale movie domain dataset, which contains more than 400k
questions generated by several templates. The KG of MetaQA includes 43k entities, 9
relations, and 135k triples.

WebQSP [20] has a smaller scale of questions containing 4737 questions that can
be answered by the Freebase knowledge graph. The KG dataset includes 1.8 million
entities, 572 relations, and 5.7 million triples.

CWQ [21] is an extended dataset of WebQSP. Some constraints are added to the
questions that require up to 4-hops of reasoning over KG.

The detailed statistics of all used datasets are shown in Table 1.

Table 1. Statistics of the three datasets

Dataset Train Valid Test

MetaQA 1-hop 96,106 9,992 9,947

MetaQA 2-hop 118,980 14,872 14,872

MetaQA 3-hop 114,196 14,274 14,274

WebQSP 2,848 250 1,639

CWQ 27,639 3,519 3,531

4.2 Baselines

We compare the CKGR with the following baselines to demonstrate the effectiveness of
the proposed method.
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KV-MemNN [5] stores the knowledge in the key and value memories to retrieve the
answers.
VRN [6] is an end-to-end variational learning method to handle multi-hop reasoning.
GraftNet [12] adopts a graph convolution network to find answers on the subgraph.
PullNet [14] adopts an iterative process to construct a subgraph by a graph CNN. After
that, a similar graph CNN is used to conduct reasoning over the subgraph.
EmbedKGQA [13] regards the QA task as a link prediction task.
MULTIQUE [3] utilizes simple queries each targeting a specific KB to construct query
patterns for complex questions.
NSM [7] uses a teacher-student approach to alleviate the issue of spurious reasoning.

4.3 Experimental Setup

We adopt the widely used metric Hits@1 and F1 to evaluate the proposed method. To
achieve optimal performance of CKGR, the parameters are determined by a grid search
during the training. The parameter ranges are manually specified as follows: learning
rate among (0.0005, 0.001, 0.005), embedding size among (50, 80, 100), batch size
among (20, 80, 120), β among (0.001, 0.01, 0.1, 1). We use early stopping according to
Hits@1 for different datasets in the validation set to determine the optimal parameters
to avoid overfitting. The learning rate and β are set to 0.0005 and 0.001 for all datasets.
Embedding size and batch size are set to 80, 80 forMetaQA, and 50, 20 for other datasets.
The reasoning step is set to 4 for CWQand 3 for other datasets. All results are the average
of 10 runs.

4.4 Results

Table 2. Experimental results of Hits@1 on three datasets

Models MetaQA WebQSP CWQ

1-hop 2-hop 3-hop

KV-MemNN 96.20 82.70 48.90 46.70 21.10

VRN 97.50 89.90 62.50 – –

GraftNet 97.00 94.80 77.70 66.40 32.80

PullNet 97.00 99.90 91.40 68.10 45.90

EmbedKGQA 97.50 98.80 94.80 66.60 –

MULTIQUE – – – 69.80 41.20

NSM 97.30 99.90 98.90 74.30 48.80

CKGR 98.02 99.98 99.16 76.28 50.50

Experimental results of Hits@1 for different methods are shown in Table 2. Here
we use Hits@1 to compare with the baselines, since many baselines only use Hits@1
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in their papers [5, 6, 13, 14]. The results of baselines are implemented according to
the illustration reported in their papers. For the MetaQA dataset, our method achieves
better performance than other baselines. Though the performances of 1-hop, 2-hop, and
3-hop datasets already reach 97.50%, 99.90%, and 98.90%, CKGR still improves the
performance to 98.02%, 99.98%, and 99.16%, respectively. Compared with theMetaQA
dataset, WebQSP and CWQ have less QA training set, where the questions have more
constraints, and KG has more relations and triples, which makes the task more difficult.
CKGR also outperforms the above baselines on WebQSP and CWQ. The performance
improvement strongly indicates that the three-level frameworkof ourmethod is beneficial
to the QA task.

Region Activation Evaluation: To evaluate whether the graph entities activated by
CKGR are in the correct hop of topic entities, we take theMetaQA dataset as an example.
Figure 3 shows the learnable parameters λ of different hops of topic entities in Eq. (3)
for MetaQA dataset. For different hops datasets, the weights of the corresponding hop
neighbors of topic entity are the largest. Thus, the CKGR automatically learns which hop
of topic entities are essential to questions, which endows the model human intelligence
due to the simulation of human cognitive processes.

Ablation Study: In order to get a better understanding of the contributions of each
model component to the proposed model, we further compare CKGR with its variants:
(1) CKGR-sb is CKGR without activating the neighbors of the topic entities with basic
scores; (2) CKGR-sm is CKGR without considering the similarity between the graph
relations of entities and the question relations; (3) CKGR-ql is CKGR without using
logical parsing module; (4) CKGR-s is CKGR without using semantic aware module,
but directly calculates the similarity between the topic entity and graph entities, the
question relation and graph relations. The results of Hits@1 and F1 are reported in
Table 3. We can conclude that 1) the performance of CKGR-s is the worst of the four
variants, which indicates that integrating the language space and graph space into the
same space plays a more important role in QA task. 2) CKGR-sb underperforms CKGR,
which indicates basic scores help to improve reasoning accuracy since they activate the
neighbors of the topic entities to give the preliminary knowledge. Mapping scores give
a greater performance improvement by comparing CKGR to CKGR-sm, because they
utilize the question information to calculate similarity. It proves that taking advantages
of more question information improves the reasoning results. 3) CKGR-ql performs
better than two memory mapping variants for MetaQA while worse for WebQSP and
CWQ. Because the questions of WebQSP and CW have more constraints, they cannot
be well analyzed only based on semantic parsing. The logical parsing provides different
aspect information which benefits more for complex questions. Above all, each model
component is useful for QA task.

4.5 Case Study

In this section, we provide a case study in MetaQA 3-hop as an example to illustrate the
effectiveness of the CKGR. Given the question “who are the directors that the actors in
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Fig. 3. The learnable parameters λ of each hop on different MetaQA datasets.

Table 3. Ablation study of CKGR (Hits@1/F1)

Models MetaQA WebQSP CWQ

1-hop 2-hop 3-hop

CKGR 98.02/99.79 99.98/99.81 99.16/89.06 76.28/68.90 50.50/45.34

CKGR-sb 97.24/99.05 99.41/99.08 98.65/88.38 75.75/68.12 49.63/44.70

CKGR-sm 97.11/98.90 99.32/98.95 98.52/88.09 75.52/67.77 49.42/44.41

CKGR-ql 97.32/99.33 99.55/99.29 98.73/88.56 75.34/67.55 49.28/44.21

CKGR-s 96.96/98.54 98.94/98.51 98.37/87.86 74.77/67.34 48.73/44.02

their movies also appear in the movie Finding Amanda”, the activating and reasoning
process is shown in Fig. 4. The blue and red circles denote the topic entity and final
answer. The deeper color of the orange circle, the higher the activation level obtained
by the region activation module. For this question, the model prefers to give the instruc-
tion signals to activate the names of people and movies, and thus relevant people and
movies get higher activation levels, which is consistent with the human cognitive pro-
cess of finding the answer. The purple scores are the similarities between the graph
relations and the question relation. It can be seen that the graph relation “directed_by”
and “starred_actors” have higher scores since this question involved the information
of “director” and “actors”. The green scores are the answer probabilities. The red lines
denote the reasoning paths for the final answer. The CKGR finds the correct answer with
the reasonable path (Finding Amanda, starred_actors, Brittany Snow), (Prom Night,
starred_actors, Brittany Snow) and (PromNight, directed_by, Paul Lynch). The example
gives the reasonable path in KG to the correct answer, which benefits the QA task.
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Fig. 4. A case example of activating and reasoning process for a given question “who are the
directors that the actors in their movies also appear in the movie Finding Amanda”.

5 Conclusion

In this paper, we propose a novel CKGR model for complex question answering, which
introduces the human cognition concept into KGQA. The CKGR adopts a three-level
framework to process information hierarchically, including question feature extraction,
memory mapping, and answer reasoning. The extracted question features are utilized to
gradually activate relevant KG regions. The questions are analyzed from both semantic
parsing and logical parsing. Finally, the topic entities and encoded questions are inte-
grated to find the correct answers over KG. The results show that CKGR achieves better
performance than previous methods on real-world datasets. In addition, the ablation
study verifies the contributions of each model component. The case study proves that
CKGR can provide the activating and reasoning processes to find the path for the answer.
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Abstract. In recent years, end-to-end triples extraction based on multi-
task learning has achieved promising performance. The existing methods
typically use the same sentence representation generated by pretrained
language models to address different subtasks. They are either hard to
capture the subtask-specific features, or hard to make deep associations
among different subtasks. In this paper, we propose a Separate then
Constrain Network (SCN) that contains two main layers, i.e., separation
layer and constraint layer. Specifically, separation layer first transfers
the sentence representation into three different subtask spaces, respec-
tively. Then, constraint layer further refines all sentence representations
by simulating the inherent dependencies among three parts of a triple. In
addition, to alleviate the negative impact of the error entity prediction
on relation classification, we design a simple but effective way, called
Entity-Derivate Checker. On three public datasets, SCN shows signifi-
cant improvement over existing methods.

Keywords: Triples extraction · Joint model · Hierarchical network

1 Introduction

Extracting triples from the unstructured text is an essential issue for automatic
construction of knowledge graph, where the facts contained in the text will be
reorganized in the form of 〈head, relation, tail〉.

Some works [23,25,26] take a pipeline approach, training a named entity
recognition (NER) model to extract entities and a relation extraction (RE) model
to classify relations between each pair of those entities. Such an approach makes
the task easy to deal with, and each model may be more flexible. However, due
to the complete separation of NER and RE, it tends to suffer from the error
propagation problem, resulting in poor performance. Recently, to mitigate the
above issue, some researchers try to bring the two subtasks closer together, and
propose the joint methods [12,22,24]. Different from pipelined methods, these
methods use a single model to extract entities and relations simultaneously.

Multi-task learning is one popular idea for end-to-end triples extraction
[7,13,15]. This family of models essentially builds multiple related subtasks
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13280, pp. 535–547, 2022.
https://doi.org/10.1007/978-3-031-05933-9_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05933-9_42&domain=pdf
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Fig. 1. A Comparison of existing methods and our method. (a): The existing methods.
(b): Our method.

and optimizes them together through parameter sharing. In recent years, the
paradigm of pretrained language models (PLMs) is thriving. There have also
been some works trying to introduce PLMs into this task [7,13]. As shown in
Fig. 1(a), these methods simply treat PLMs as the shared module, and different
subtasks extract their own required features from the same sentence representa-
tion generated PLMs. Thanks to a large amount of linguistic knowledge encoded
by PLMs from pretrained corpus, such approaches have achieved the promising
results. Unfortunately, they still generally suffer from two major drawbacks.

First, it is hard to capture task-specific features. These methods directly use
the same sentence representation to address all different subtasks. However, the
representation generated by PLMs is mixed and messy, it contains all informa-
tion required for each subtask. During the training process, in order to reduce
the overall loss, the model tends to capture the common features shared by
all subtasks from the sentence embedding. At the extreme, features learned for
one subtask may conflict with those for another subtask, which will confuse the
training process.

Second, it is hard to make deep associations among different subtasks. It is
widely recognized that a well-designed multi-tasks combination architecture is
beneficial to integrate the information of different subtasks, and thus one task can
provide more complementary information for another task [5]. However, PLMs
aim to learn the more universal representation of language by jointly conditioning
on both left and right context of each word, which are not specifically designed
for triples extraction. In other words, the architecture of PLMs (transformer)
is more inclined to capture the co-occurrence pattern between different words
in the sentence, rather than the correlation among different subtasks of triples
extraction.

To address the problem mentioned above, we propose a Separate then
Constraint Network (SCN) for joint entities-relations extraction. As shown in
Fig. 1(b), compared with the existing methods, we decompose the whole task into
three subtasks. Besides, our model has two special parts, i.e., separation layer and
constraint layer. Specifically, the sentence embedding encoded by PLMs is trans-
ferred into three feature spaces by separation layer, which ensures each subtask
can be addressed in different spaces. Then, considering the inherent dependen-
cies among head entity, relation, and tail entity in a triple, in constraint layer,
different subtask spaces interact and help each other.
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In addition, we argue that if a span is an entity, then most spans that share
several consecutive words are not entities. Thus, we design a simple but effective
way, called Entity-Derivate Checker, to further improve the quality of extracted
triples. Specifically, the credibility of several consecutive words as an entity is
re-verified, and the candidate triples containing low-confidence entities will be
screened more rigorously. Therefore, the negative impact of the error entity pre-
diction on relation classification can be alleviated.

In summary, SCN can offer several distinct advantages:

– SCN decomposes entities-relations extraction task into three subtasks and
encourages to address the different subtasks in different feature spaces by
separation layer, which helps to capture the subtask-specific features.

– SCN cleverly utilizes constraint layer to model the complex dependency pat-
tern among different parts of a triple, which helps to make the deep association
among different subtasks.

– SCN introduces a simple but effective way, called Entity-Derivate Checker,
which helps to further improve the quality of extracted triples.

– We evaluate SCN on three benchmark datasets. The experiment results show
that SCN can achieve better performance over the state-of-the-art methods.

2 Related Work

These existing joint methods can be grouped into two categories, i.e., structured
prediction and multi-task learning. Structured prediction approaches [12,17] cast
NER and RE into one unified framework, which can be formulated in various ways.
For example, NayakN et al. [17] propose a representation scheme, where all gold
triples in a text are reorganized into a target sequence. In addition, multiple spe-
cific markers are inserted into the sequence to separate different components in one
triple and distinguish different triples. Therefore, the decoder generates one word
at a time like machine translation models, thus all triples can be found. Multi-task
learning [1,7,15] essentially builds multiple separate models and optimizes them
together through parameter sharing. For example, Miva et al. [15] use a sequence
tagging model for NER and a tree-based LSTM model for RE. The two models
share one LSTM layer for contextualized word representations.

There are two challenges in entities and relations extraction task: (1) Over-
lapping entities that have nested structures are common. Think of the sen-
tence “Ford’s Chicago plant employs 4,000 workers”, where both “Chicago”
and “Chicago plant” are entities. (2) Overlapping relations which share the
same entities in the sentence are common. Consider this sentence: “Jackie was
born in Washington, the capital city of America.”, it contains two triples,
i.e., 〈Jackie,Birth in,Washington〉 and 〈Washington,Capital of,America〉.
These two triples are overlapping, because they share the same entity
“Washington”. Meeting the above difficult situations, researchers have made
some efforts. For example, Li et al. [12] formulate entities and relations as a multi-
turn question answering problem and generates questions by relation-specific
templates. It is worth emphasizing that our model proposed in this work allow
for the above two challenges.
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3 Model

Fig. 2. An illustration of the proposed model SCN.

3.1 Sentence Embedding

Same as the existing methods, given a sentence X with n words [x1, x2, ..., xn],
a pre-trained BERT [6] model first is used to map each word xi into a low-
dimensional contextual vector mi . Thus, the sentence X can be encoded as a
2-D matrix M ∈ R

n×de .

M = (m1,m2, · · ·mn ) , (1)

3.2 Separation Layer

As shown in Fig. 2, different from the existing methods, we decompose the
entities-relations extraction into three subtasks, i.e., head entity detection, tail
entity detection, and relation classification for head-tail entity pairs. Considering
that using a single sentence representation for three different tasks may cause
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feature confusion, where information extracted for one subtask may coincide with
those for other subtasks, thus confusing the learning model. We adopt the gate
mechanism to map the sentence representation into three different information
spaces, belong to heads, relations, and tails, respectively.

Taking the head information space as an example. The gate mechanism con-
sists of two steps. In first step, a trainable vector fh ∈ R

de is initialized, and
then it is concatenated with word embedding mi together as the input of a full
connected layer, finally a vector of weights si ∈ R

de can be obtained:

si = σ(W [mi ;fh ] + b), (2)

where W ∈ R
de×2de and b ∈ R

de are the parameters of the fully connected layer.
σ denotes the sigmoid function, which makes each dimension value of vector si
between 0 and 1. In second step, word embedding mi and fh are fused together
through the corresponding weight vector si , thus the sentence representation
matrix M can be transformed into another matrix within head information
space, denoted as H ∈ R

n×de :

hi = si ◦ mi + (1 − si) ◦ fh , (3)

H = (h1,h2, · · ·hn ) , (4)

where “◦” refers to the element-wise product between two vectors with the same
shape. Suppose [∗]k indexes the kth dimension value of vector ∗, then the larger
[si]k means that the kth abstract feature of mi is more informative in head
information space. Vividly, the vector fh act as a beacon, which can guide the
model to pick out the important features from the sentence representation.

Similarly, with the help of the other two trainable vectors, we can obtain the
unique representations of one sentence in relation and tail information spaces,
denoted as R ∈ R

n×de and T ∈ R
n×de , respectively. Thus separation layer can

be understood as a high level representation of one query “which features are
informative or crucial for three different subtasks, respectively?”.

3.3 Constraint Layer

There is the complex constraint pattern among head, relation, and tail informa-
tion spaces. For example, given the head “Paris” and the relation “Located in”,
the type of tail will be restricted to geographic location. As shown in Fig. 2,
the constraint pattern can be grouped into three categories, including head con-
straint, relation constrain, and tail constraint. In other words, any two informa-
tion spaces will have a natural restriction on the third information space.

Taking the head constraint as an example, as shown in Fig. 2, matrices R and
T are regraded together as queries, matrix H is treated as both keys and values,
then the representation of the sentence in head information space is updated,
denoted as ̂H.

Q = mean pooling(R,T ), K = V = H, (5)
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̂H = multihead att(Q,K,V ), (6)

where Q ∈ R
n×de , ̂H ∈ R

n×de , the function multihead att() means the comput-
ing process of the multi-head attention [21]. Similarly, through relation constraint
and tail constraint, we can obtain the new representations ̂R and ̂T , respectively.

In attention mechanism, for each query, its result is a weighted sum of the
values, where the weight assigned to each value is determined by the relevance
of the query with all the keys. Vividly, the above attention acts as the glue,
it allows different information spaces to make associations, and thus forming a
stronger attraction among head, relation, and tail in a gold triple.

To promote a deeper interaction among different information spaces, we imi-
tate Transformer [21] to stack the constraint network N layers. The output
matrices of the previous layer are aggregated to generate those of the next layer.
In addition, the position-wise feedforward neural network (FFNN), the residual
connection, and layer normalization are also used to compute the output of the
l-th layer.

Hl = LayerNorm(Hl−1 + FFNN( ̂Hl)), (7)

where Hl−1 is the output of the (l − 1)th constraint layer, ̂Hl is got by Eq. 5
and Eq. 6. Therefore, we can obtain the unique representations of the sentence
in three information spaces, denoted as Hl , Rl and T l ∈ R

n×de , respectively.
Thus constraint layer can be understood as a high level representation of another
query “How do different subtasks help and influence each other?”.

3.4 Subtask Modules

Head Entity Detection. Let Eh denote a pre-defined head entity types set.
Given a sentence X = [x1, x2, ..., xn], we first collect all spans length up to L,
namely S = {[xi, ..., xj ] : 1 ≤ i ≤ j ≤ n}. Then, for each span s ∈ S, its repre-
sentation is fed into a softmax classifier to predict the probability distribution
of head entity types eh ∈ Eh ∩ {none} : Ph (eh|s), where none represents the
corresponding span is not a head entity. Finally, we can get a head entity set,
denoted Ehead = {(s, eh) : s ∈ S, eh ∈ Eh}. Especially, our approach follows the
popular way to construct the span representation, more details refer to SpERT
[7]. In addition, it is worth emphasizing that our approach uses the matrix Hl

obtained by constraint layer as the input to construct the span representation,
while other methods use the matrix M generated by PLMs as the input.

Tail Entity Detection. Let Et denote a pre-defined tail entity types set. Like
head entity detection, taking the matrix T l as the input to construct span rep-
resentation, a tail entity set can be got, denoted Etail = {(s, et) : s ∈ S, et ∈ Et}.

Relation Classification. Let R be a set of pre-defined relation types. Following
the existing work [7], for each entity pair (he, te), drawn from Ehead × Etail, a
vector representation can be constructed from the matrix Rl , then a sigmoid
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classifier takes it as input to predict the probability distribution of the relation
type r ∈ R : Pr (r|he, te). The high scores in r indicates that the corresponding
relations may be holden between he and te. Given a threshold α, any triple with
a score ≥α is considered correct. As a result, a triple set can be got, denoted
T = {(h, r, t) : h ∈ Ehead, t ∈ Etail, r ∈ R}.

3.5 Training and Inference

Our model is trained jointly based on multi-task learning strategy, where the
losses of different subtasks are added together. Specifically, the head and tail
entity detection adopt the cross-entropy loss, and the relation classification uses
the binary cross-entropy loss.

Lh = −
∑

si∈S

logPh (e∗
h|si) , Lt = −

∑

sj∈S

logPt (e∗
t |sj) , (8)

Lr = −
∑

si,sj∈S,si �=sj

logPr (r∗|si, sj) , L = λhLh + λtLt + λrLr, (9)

where e∗
h and e∗

t represent the gold head and tail entity type of si and sj ,
respectively. r∗ represents the gold relation type of span pair (si, sj). λh, λt and
λr are three learnable weights, more details refer to [9].

Entity-Derivate Checker. In inference, each span is processed independently,
and some spans that are not entities may be mixed in set Ehead (or Etail), which
will have a negative impact on the quality of the extracted triples. Thus, we
introduce the concept derived samples and design a simple but effective rule,
called Entity-Derivate Checker, to verify the credibility of each extracted entity.
And then, those entities with low confidence will be marked and the involved
candidate triples will be screened more rigorously.

Table 1. An example of derived samples

The United States President Joseph Robinette Biden will visit
the Apple Inc founded by Steven Paul Jobs.

Derived Samples Joseph Robinette truncation

President Joseph Robinette offset

President Joseph Robinette Biden will expansion

...

Derived samples are slightly changed from the original sample, and they
share several consecutive words. As shown in Table 1, for entity “Joseph Robi-
nette Biden”, its derived samples can be generated through offset, truncation
or expansion. Obviously, a derived sample is essentially a span, and it has been
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identified whether it is a head (or tail) entity. Obviously, some potential con-
nections exist between a gold entity and its derived samples. Simply put, if a
span is an entity, then most of its derived samples cannot be entities. Therefore,
we can compute a confidence score for each extracted entity by evaluating the
prediction results of the corresponding derived samples.

Suppose span si has been recognized as an entity, and Dsi is the correspond-
ing derived sample set, in which t spans are also identified as entities. Thus, the
confidence score that the span si is an entity can be computed by |Dsi |−t

|Dsi | . The
higher the score, the higher the credibility that span si can be detected as an
entity. Given a threshold η, the entity with a score ≤η will be marked as the
dispute entity and added to set Êhead (or Êtail).

In order to further ensure the quality of the extracted triples, the entity pair
containing the dispute entity will be more rigorously screened. Specifically, if
si ∈ Êhead or sj ∈ Êtail, then a larger threshold β(>α) is adopted to determine
the relations between the two entities.

4 Experiments

4.1 Datasets and Implementation

Our approach is evaluated on three public datasets CoNLL04 [19], ADE [8], and
SciERC [13]. These three datasets not only list the triples included in each sen-
tence, but also provide the entity type. Table 2 shows the data statistics of each
dataset. Specifically, CoNLL04 and SciERC datasets are collected from news
articles and AI paper abstracts, respectively. The ADE dataset is constructed
from medical reports that describe the adverse effects arising from drug use. We
follow previous work and use the same preprocessing procedure and splits for all
datasets, more details refer to [7].

Table 2. The statistics of the datasets.

Data #Ent Types #Rel Types #Sentences

Train Test

CoNLL04 4 5 1153 288

SciERC 6 7 2136 551

ADE 2 1 4272(10-fold)

F1 measure is used to evaluate the performance of SCN, and the average
score of 5 runs is reported. For NER, the detection results of head and tail
entities are merged together, and a predicted entity is considered correct if its
span boundaries and entity type all match the ground truth. For RE, there are
two evaluation metrics [25]: (1) Rel, a predicted relation is considered as correct
if the span boundaries of head and tail entities are correct, and the relation type
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Table 3. Performance comparison on the three datasets. SCN outperforms the state-of-
the-art in both entities and relations extraction. (micro : †,macro : ‡, not stated : ∗).

Data Model Ent Rel Rel+

CoNLL04 Global Optimization [23]† 85.60 - 67.80

Multi-turn QA [12]† 87.80 - 68.90

Table-filing [16]∗ 80.70 - 61.00

Hierarchical Attention [4]∗ 86.51 - 62.32

Multi-head + AT [1]‡ 83.61 - 61.95

Multi-head [2]‡ 83.09 - 62.04

Relation-Metric [20]‡ 84.57 - 62.68

Biaffine Attention [18]‡ 86.20 - 64.40

SpERT [7]† 88.94 - 71.47

SpERT [7]‡ 86.25 - 72.87

SCN† 89.66 73.81 73.71

SCN‡ 87.18 74.72 74.63

ADE GNN + Global features [11]‡ 79.50 - 63.40

BiLSTM + SDP [10]‡ 84.60 - 71.40

Multi-head [2]‡ 86.40 - 74.58

Multi-head + AT [1]‡ 86.73 - 75.52

Relation-Metric [20]‡ 87.11 - 77.29

SpERT [7]‡ 89.28 - 78.84

SCN‡ 89.87 79.80 79.80

SciERC SciIE [13]† 64.20 39.30 -

DyGIE [14]† 65.20 41.60 -

DyGIE++ [22]† 67.50 48.40 -

PRUE [25]† 68.90 50.10 36.80

SCN† 69.91 50.72 39.21

is correct; (2) Rel+: in addition to what is required in Rel, the types of head and
tail also must be correct.

We compare SCN with several state-of-the-art methods, among which
PRUE [25] and SpERT [7] are the most promising methods, and they all
rely on PLMs as the core. In addition, to evaluate the impact of each part of our
model, we also compare SCN with its several variants. Specifically, SCN ner re
follows the conventional way that decomposing triples extraction into both NER
and RE, then in constraint layer, two different subtask spaces interact with each
other. SCN separate and SCN constraint remove separation layer and constraint
layer from SCN, respectively.

We specifically tune our model on CoNLL04, and the same hyperparameters
are used for the other two datasets. The pre-trained model bert-base-cased [6]
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is used as the default sentence encoder. For a fair comparison, scibert-scivocab-
cased [3] (fine-tuned on a large corpus of scientific papers) is adopted on SciERC.
In addition, we only consider spans up to L = 10 words. Compared with the
boundaries of the original sample, the left and right sides of the derived samples
are shifted by up to 3 words. We stack the constraint network six layers, i.e., N =
6. According to the gird search in {0.4, 0.5, 0.6, 0.7}, {0.6, 0.65, 0.7, 0.75, 0.8}, and
{0.85, 0.9, 0.95}, the special thresholds α, β and η are set to 0.5, 0.75, and 0.9,
respectively.

4.2 Main Results

Table 3 reports the results of our model against other baseline methods on all
datasets. It can be seen that SCN consistently outperforms all the baselines in
terms of F1-score. Especially, our NER performance is increased by 0.93, 0.59
and 1.01 absolute F1 points over the previous best methods in three datasets
respectively. Besides, we also observe significant performance increases in the
RE task (Rel+), which is 1.76, 0.96, and 2.41 absolute F1 points, respectively.
This clearly demonstrates the superiority of our method.

4.3 Ablation Study

We design several additional experiments to understand the effectiveness of sev-
eral settings in our approach. Table 4 lists the experiment results.

Table 4. The ablation experiment results under different settings

CoNLL04 ADE SciERC

Ent Rel Rel+ Ent Rel Rel+ Ent Rel Rel+

SCN ner re 86.27 73.42 73.38 89.30 78.86 78.86 68.92 50.01 38.23

SCN separate 86.01 73.29 73.21 89.05 78.00 78.00 67.91 49.11 37.50

SCN constraint 86.18 73.35 73.30 89.19 78.50 78.50 68.49 49.86 37.99

SCN 87.18 74.72 74.63 89.87 79.80 79.80 69.91 50.72 39.21

Instead of the conventional way that decomposing triples extraction into both
NER and RE, our approach further disassembles NER into two more detailed
subtasks, i.e., head entity detection and tail entity detection. To investigate
the effect of the above modification, we compare SCN with the variant model
SCN ner re. From the Table , we can see that SCN can achieve better perfor-
mance. This indicates that our strategy that designing a corresponding subtask
for each part of a triple might be more suitable for triples extraction.

Separation layer and Constraint layer are two main parts of our network.
In order to investigate their effect, we compare SCN with its variants, i.e.,
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SCN separate and SCN constraint. We can observe that neither of the two vari-
ants can achieve prediction results comparable to SCN. In some metrics, they
even perform worse than baselines. This indicates that Separation layer and Con-
straint layer are indispensable, and only when the two work together, our model
can achieve the best performance. From the perspective of multi-task learning,
the two parts help to obtain a balance of commonality (features shared by all
subtasks) and individuality (task-specific features).

Fig. 3. Performance comparison on CoNLL04 under different thresholds

In addition, we also investigate the effect of Entity-Derivate Checker. Figure 3
shows the performance of SCN under different relation thresholds, i.e., α and
β. Obviously, our strategy (red bar) can get a higher Precision, but it does not
leads to a drastic reduction in Recall, finally F1 is the highest. The above result
demonstrates that Entity-Derivate Checker can alleviate the negative impact of
the error entity prediction on relation classification, and then helps our approach
achieve better overall performance.

5 Conclusion

In this paper, we decompose triples extraction into three subtasks, i.e., head
entity detection, tail entity detection and relation classification. Correspond-
ingly, a novel hierarchical network (SCN) is proposed, where different subtasks
are addressed in respective feature spaces. In addition, we introduce the con-
straint network to aggregate the information of different subtasks, which is con-
sistent with capturing the inherent constraint pattern among heads, relations,
and tails. Finally, we design a simple but effective way to further ensure the qual-
ity of triples. The experimental results on three public datasets demonstrate the
efficacy of our approach.
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Abstract. Drug-Target Interaction (DTI) prediction usually devotes to
accurately identify the potential binding targets on proteins so as to guide
the drug development. However, the sparse imbalance of known drug-
target pairs remains a challenge for high-quality representation learning
of drugs and targets, interfering with accurate prediction. The labeled
drug-target pairs are far less than the missed since the obtained DTIs
are recorded with pathogenic proteins and sophisticated bio-experiments.
Therefore, we propose a deep learning paradigm via Heterogeneous
graph data Augmentation and node Similarity (HAS) to solve the
sparse imbalanced problem on drug-target interaction prediction. Het-
erogeneous graph data augmentation is devised to generate multi-view
augmented graphs through a heterogeneous neighbors sampling strat-
egy. Then the consistency across different graph structures is captured
using graph contrastive optimization. Node similarity is calculated on the
heterogeneous entity association matrices, aiming to integrate similarity
information and heterogeneous attribute gain for drug-target interaction
prediction. Extensive experiments show that HAS offers superior perfor-
mance in sparse imbalanced scenarios compared state-of-the-art meth-
ods. Ablation studies prove the effectiveness of heterogeneous graph data
augmentation and node similarity.

Keywords: Sparse imbalanced DTI prediction · Heterogeneous graph
data augmentation · Graph contrastive optimization · Node similarity

1 Introduction

Drug-Target Interaction prediction plays an essential role in the drug discov-
ery process [1]. And it often leads to the next stages of pharmacological in
vitro experiments [2]. The growing clinical demands pose the challenges to drug
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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screening based on traditional experiments. The emergence of machine learning
has brought a new boom in computer-aided drug design which reduces the time-
consuming and expensive bio-experiments [3]. Some computational approaches
for DTI prediction were proposed in supervised learning view, such as apply-
ing deep learning techniques to extract chemical features from known struc-
ture data [4–6] or analyze the potential correlation among labeled drug-target
pairs [7,8]. Several studies attempted to perform the semi-supervised tasks with
known and unknown drug-target pairs, including modeling the tripartite rela-
tions of drug-target-disease [9], constructing the heterogeneous information net-
works and leveraging the diverse biological entity properties to alleviate the
negative impact of missed DTI labels [10,11]. Although the efforts have been
made on respective tasks, the supervised learning methods rely on the both
chemical structure data and labels, and the semi-supervised learning methods
are based on the hypothesis of balanced positive and negative samples (i.e., the
known drug-target pairs are treated as positive samples, while the unknown
interacting pairs are regarded as negative samples), neglecting the realistic issue
that positive samples are far less than negative samples. Drug discovery usu-
ally builds on the pathogenic proteins [12]. Pharmaceutical researchers screen
the candidate drugs that change the proteins bioactivity. Only if the changes of
proteins bioactivity meet the clinical and research needs, can DTIs be recorded.
Large number of DTIs are missed and the obtainable DTI labels are limited
by the amount of discovered pathogenic proteins. Furthermore, the real-world
drug-target interactions far exceed the recorded, causing the observed DTIs are
extra sparse compared with the whole drug-target pairs space. The sparse imbal-
anced interacting drug-target pairs are insufficient to learn high-quality feature
representations for drugs and targets which leads to inaccurate prediction.

To sum up, we propose a deep learning paradigm by integrating
Heterogeneous Data Augmentation and Node Similarity for sparse imbalanced
DTI prediction, named as HAS. Especially, we present a heterogeneous graph
data augmentation module to generate multi-view augmented graphs on con-
structed heterogeneous graph involving the node types of drug and target.
Differentiate from the recent studies of contrastive learning on homogeneous
graph [13,14], a heterogeneous contrastive learning strategy is designed to cap-
ture the agreement between different graph structures. Based on the general
assumption that drugs with higher similarity are more likely to have common
linked target [3], node similarity is calculated on the heterogeneous entity asso-
ciated matrices. So far, the intrinsic topological structure information and node
similarity information from different attribute spaces are acquired to supplement
the sparse supervised signal. The main works are summarized as follows:

– We formalize the sparse imbalance problem on drug-target interaction pre-
diction, and present a novel deep learning method via heterogeneous graph
data augmentation and node similarity to solve.

– Heterogeneous graph data augmentation is designed to capture intrinsic
and universal structure patterns between multi-view augmented graphs. The
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similarity information and heterogeneous attribute information are incorpo-
rated to strengthen the features of drugs and targets.

– Empirical studies on the real-world datasets demonstrate that HAS has sig-
nificant improvement in sparse imbalanced DTIs scenario compared with the
state-of-the-art methods.

2 Related Work

DTI prediction has attracted much attention in recent years. Numerous studies
are dedicated to reducing the search space of drug candidates and facilitating
drug discovery process [15]. And the related methods can be mainly divided into
three aspects: bio-feature extraction, pairwise similarity discovery and bioinfor-
matics network mining.

Bio-feature extraction takes chemical structure data as the input of deep
learning framework to extract the main features of drugs and targets respec-
tively, and finally fusing the features of both to predict DTI. For example, the
works DeepDTA [4] designs deep learning models to predict the binding affinity
(one type of DTI) using sequential data of drugs and proteins. DeepConv-DTI [5]
ensembles local residue patterns of proteins. Graph neural network (GNN) is
reported as a powerful tool in graph embedding tasks [16], a computational
approaches named GraphDTA [6] is proposed to capture molecular topologi-
cal features of drugs with GNN to improve the prediction performance. Such
methods inevitably rely on known drug-target pairs and structure data.

Pairwise similarity discovery mainly measures the similarity between multiple
drug-target pairs, which is used as the interaction information. MATT DTI [17]
introduce multi-head attention mechanism to obtain the similarity information
of different drug-target pairs. Chen et al. [8] present to utilize a transformer-
based decoder that extract interaction features substructure pairs of drugs and
proteins. These methods have great effort by incorporating the similarity infor-
mation into interaction prediction, but the complex network relations are uncon-
sidered, e.g. drug-drug.

Bioinformatics network mining aims at using graph representation learning
methods to predict drug-target interactions on the heterogeneous network. The
work NeoDTI [10] constructs heterogeneous network with drug, target, disease,
etc. and predict drug-target interactions in graph reconstruction way. Multi-
DTI [11] maps all the heterogeneous biological entities to common feature space,
so the space distances between nodes are regarded as prediction scores of DTI.
EEG DTI [18] applies graph neural network to learn embedding vectors of drugs
and targets for DTI prediction. However, these studies make the number of
positive and negative samples approximate the balanced, ignoring the realistic
problem that the known drug-target interactions are sparse in the whole drug-
target pairs space. HAS focuses on the sparse imbalanced DTI prediction that
belongs to an urgent real-world issue. Heterogeneous graph data augmentation
and node similarity are proposed from topology-level and node-level to alleviate
the negative impact brought by sparse known drug-target pairs.
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Fig. 1. Illustration of the proposed HAS. (a) The upper half is heterogeneous infor-
mation network including drugs and targets. The bolded red edges represent the drug-
target interactions, the blue and yellow edges show drug-drug interactions and target-
target interactions, respectively. The lower half depicts heterogeneous relations about
drug and target. (b) Heterogeneous graph data augmentation module first generates
multi-view augmented graphs through heterogeneous neighbors sampling, then encodes
subgraph structure and learns the nodes features, finally maximizes the agreement of
same node from different views via contrastive learning. (c) Node similarity informa-
tion is calculated on the heterogeneous associated matrices. The learned features of
drugs and targets on the origin graph are learned using the aggregate function. Next
two types of features are fused as final feature representation to predict the DTI prob-
ability. (color figure online)

3 Sparse Imbalanced DTI Prediction

The final goal is to predict interactions between drugs and targets, so hetero-
geneous information network with only drug and target nodes is defined as
HG = {D,T ,E ,R}, where D and T denote sets of drugs and targets. E and R are
sets of edges and edge types, which are associated with relational matrices, drug-
drug matrix MD D, drug-target matrix MD T , target-target matrix MT T . For
matrix element m(i,j) ∈ {0, 1}, if m(i,j) = 1, existing e(i,j) ∈ E .

Given the heterogeneous graph HG, the known edges between drugs and
targets are far less than the unknown drug-target interaction edges since only
DTIs meeting the clinical needs will be recorded. The final DTI prediction can
be cast as an edge classification task via learning the prediction function F{ · }
under the sparse imbalanced condition, which is formulated as follows:

ŷ = F{(di, tj),HG|di ∈ D, tj ∈ T , E+
D T << E−

D T } (1)
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where ŷ represents the predicted interaction probability between drug di and tj ,
E+

D T denotes set of known DTIs and E−
D T is set of unknown DTIs. The symbol

‘�’ indicates the |E+
D T | is much less than |E−

D T |.

4 Heterogeneous Graph Data Augmentation and Node
Similarity

The framework of HAS is shown in Fig. 1. Heterogeneous graph data augmenta-
tion module adopts the graph contrastive learning to capture the intrinsic graph
structure pattern from different augmented views. Node similarity module is
devised to incorporate similarity information between nodes and heterogeneous
attribute information for DTI prediction.

4.1 Heterogeneous Graph Data Augmentation

Mining the inherent pattern of heterogeneous graph suitably is beneficial for its
representation learning.

Multi-view Graph Augmentation. Different from the recent works of graph
contrastive learning that build generators on homogeneous graph, HAS focuses
on generating augmented graphs on the heterogeneous graph including various
node types. Besides, the imbalanced distribution of multi-typed edges causes
the number of neighboring nodes varies from each node. Overall, the multi-view
generator is designed through a heterogeneous neighbors sampling strategy, the
sampled drugs and targets are derived by random walk with restart. This way of
augmented graph generation can avoid the imbalanced problem that edges with
heterogeneous types and establishing message propagation with high-order nodes
as far as possible. The implementation process takes drug nodes as example:

1. Taking current drug node d0 as starting point of random walk with restart,
the iterative walk is performed to its neighboring node which is either drug
or target, and the next step could be itself with probability π. The walk will
stop until set Γd0 about d0 successfully collects nodes with fixed number.

2. According to the node set Γd0 , walking path and their related edges on the
original graph, a random heterogeneous subgraph Gd0 is generated. Gd0 is
regarded as an augmented version in a view with the core node d0. Repeat
the above process twice to obtain two augmented graphs G(1)

d0
, G(2)

d0
.

Similarly, if the target node t0 is used as the ‘hub’ node, the generated aug-
mented graphs are denotes as G(1)

t0 , G(2)
t0 .

Heterogeneous Subgraph Encoding. The researches of heterogeneous graph
learning [19,20] analyze the inherent heterogeneity that the features of different
types of nodes may fall in different feature space. In this paper, we consider
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that drugs and targets are heterogeneous on the sampled subgraphs, a hetero-
geneous graph neural network is adopted to aggregate the neighboring attribute
with different types. Since different types of nodes contribute differently to its
embedding, and so do the different nodes with the same type, we employ atten-
tion mechanism in GNN layers to weight the aggregated neighbors messages for
each node. First the embeddings of nodes are initialized. Then for each drug node
di, the attention coefficients are calculated with its neighboring drug nodes:

α
(l)
(di,dj)

=
exp{LeakyReLU(a(l)T

D [h(l)
i ⊕ h(l)

j ])}
∑

k∈ND(i) exp{LeakyReLU(a(l)T

D [h(l)
i ⊕ h(l)

k ])}
(2)

where α
(l)
(di,dj)

is the attention coefficient between drug di and it neighboring
drug dj , l denotes the current layer of heterogeneous graph neural network,
LeakyReLU(·) is the nonlinear activation function, h(l)

i and h(l)
j represent the

hidden feature vectors of di and dj at l − th layer. aT
D is transposed attention

vector between drug nodes, ⊕ defines the concatenation of two vectors and ND(i)
defines the set for di with drug type neighbors. If the neighbors are target nodes,
the heterogeneous attention scores are computed as follows:

β
(l)
(di,tj)

=
exp{LeakyReLU(c(l)

T

D [h(l)
i ⊕ W(l)

D p(l)
j ])}

∑

k∈NT (i) exp{LeakyReLU(c(l)
T

D [h(l)
i ⊕ W(l)

D p(l)
k ])}

(3)

where β
(l)
(di,tj)

defines the computed heterogeneous attention score between drug
di and tj at l − th layer. cT

D and NT (i) denote the transposed attention vector
and the set for di with target type neighbors, respectively. p(l)

j and W(l)
D are the

learned hidden feature of target and the feature mapping matrix from target
space to drug space. Finally, the feature aggregation in a grouping way is per-
formed to update the ‘hub’ drug node feature according calculated homogeneous
and heterogeneous attention coefficients:

h(l+1)i = ReLU((
∑

dj∈ND(i)
α
(l)
(di,dj)

h(l)
j +

∑

tj∈NT(i)
β
(l)
(di,tj)

W(l)
D p(l)

j )W(l)+b(l)) (4)

where ReLU(·) is a nonlinear activation function, W(l) and b(l) define the learn-
able feature transformation matrix and bias vector. After L-layer graph neural
network, the drug feature representation h(1)

i of di is obtained in subgraph G(1)
d0

,

as well as h(2)
i in G(2)

d0
. Analogously, the learned representation of any target node

ti is calculated in two views of data augmentation as p(1)
i , p(2)

i .

Graph Contrastive Optimization. By this, the nodes features of drugs and
targets are learned containing the multi-view subgraph structure information.
The recent studies use contrastive learning [21] to optimize the self-supervised
learning task that maximize the agreement between positive samples. In order to
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discover the universal graph topological feature between two augmented graphs,
we devise the optimizer in a graph contrastive learning manner. The features
under different views of the same node are defined as the positive pairs and the
features under different views of different nodes are defined as the negative pairs.
For example, (h(1)

i , h(2)
i ) of drug di is regarded as positive pair, (h(1)

i , h(2)
j ) of

drug di and dj is regarded as negative pair. Then, the contrastive loss LD related
to drug is calculated as follows:

LD =
∑

di∈D
− log

exp(sim(h(1)
i ,h(2)

i )/τ)
∑

dj∈D,i �=j exp(sim(h(1)
i ,h(2)

j )/τ)
(5)

where sim(·) is the cosine similarity function and τ defines the temperature
parameter. Similarly, the contrastive loss about target can be obtained as LT .

4.2 Node Similarity

Based on the general assumption that drugs with high similarity may share com-
mon interactions with the same target, we incorporate drug-drug, target-target
similarity information to enrich the feature of drugs and targets. The direct asso-
ciated biological entities can be viewed as heterogeneous attributes, so we calcu-
late the node similarity on the associated matrices. The chemical structures of
drugs are comprised of SMILES strings, a cheminformatics tool named RDKit
is used to convert SMILES strings to morgan fingerprints that are expressed
as binary vectors. Each entry demonstrates the presence or absence of certain
chemical substructure. Then the substructure feature matrix MD sub of all drugs
can be acquired. Given the biological association matrices MD sid for drug-side
effect, MD dis for drug-disease, MT dis for target-disease, and drug substruc-
ture matrix MD sub, the principal components analysis algorithm is employed to
tackle the negligible vector sparsity and high-dimensional issues. Next the sim-
ilarities of drug-drug or target-target are calculated by the Jaccard similarity
measure. After that, similarity matrices from different heterogeneous attribute
spaces can be obtained: ZD sid in side effect space, ZD dis in disease space,
ZD sub in substructure space and a target similarity matrix ZT dis in disease
space. The protein structure consists of amino acids sequence. Considering the
co-occurrence of local functional fragments in different protein, we choose the
Smith-Waterman score measure as the similarity calculation means between pro-
teins. The protein substructure similarity matrix is denoted as ZT sub. Finally,
the respective similarity matrices are fused:

ZD
sim = ZD sid ⊕ ZD dis ⊕ ZD sub, ZT

sim = ZT dis ⊕ ZT sub (6)

ZD
sim and ZT

sim are the fused similarity matrices of drug and target and the row
vector contains the similarity and heterogeneous attribute information.

4.3 DTI Prediction Task and Optimization

Here we aim to perform the DTI prediction on the original graph HG. Duo to the
existing heterogeneity on HG, a node feature aggregation function with attention
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Algorithm 1. Sparse Imbalanced DTI prediction based on HAS.
Input: Graph HG= {D, T , E ,R}, Matrices MD sid,MD dis,MD sub,MT dis,MT sub

Output: Predicted drug-target interaction probability ŷ
1: Generate multi-view augmented graphs G(1)

di
, G(2)

di
, G(1)

tj
, G(2)

tj

2: Heterogeneous attention subgraph encoding using Equation (2)(3)(4)
3: Maximize the agreement of positive pairs from different views using Equation (5)
4: Get node similarity information and heterogeneous attribute information via sim-

ilarity computing on the matrices MD sid, MD dis, MD sub, MT dis, MT sub

5: Apply weighted aggregation function (7) and feature fusing function (8) to learn
node embeddings on HG

6: Predict the interaction probability using Equation (9)

weights is applied to feature learning on augmented graphs similarly:

hHG
i = AGGHG

j∈ND(i),k∈NT (j){h
HG
j ,pHG

k , αHG
(di,dj)

, βHG
(di,tk)

} (7)

where AGG{·} denotes the weighted node aggregation function, αHG
(di,dj)

is the

attention score between drug di and drug dj on the original graph, βHG
(di,tk)

is
the attention score between drug di and target tk. Analogously, the target nodes
features on the original graph can be acquired using function AGG{·}. For the
purpose of taking full advantage of known drug-target interaction information
and similarity information, we utilize a multi-layer fusion function to fuse the
learned nodes features on HG and the computed similarity features:

hfinal
i = FCΘ(hHG

i ⊕ zD
i ), pfinal

j = FCΘ(pHG
j ⊕ zT

j ) (8)

where hfinal
i and pfinal

j denote the final features of drug di and target tj . FCΘ(·)
is the multi-layer fusion function and Θ is set of trainable parameters. zD

i and zT
j

represent the similarity vectors of drug di and target tj . The final layer predicts
the probability via calculating the inner product of vectors:

ŷ(di,tj) = Sigmoid(hfinal
i � pfinal

j ) (9)

where ŷ(di,tj) denotes the predicted probability between drug di and target tj ,
� and Sigmoid(·) represent the dot product measure and sigmoid nonlinear
function. As the final DTI prediction task is treated as edge classification, we
adopt the cross-entropy loss to fit prediction score and the label value:

Lpre = −
∑

(di,tj)∈E+
D T

log(ŷ(di,tj)) −
∑

(di,tk)∈E−
D T

log(1 − ŷ(di,tk)) (10)

To complete the whole optimization task that the DTI prediction under
sparse imbalance condition, we combine the loss of both data augmentation
and DTI prediction together, which is defined as follows:

L= Lpre + ξ1(LD + LT ) + ξ2||Θ||22 (11)

||Θ||22 is the L2-norm term that prevents training overfitting. ξ1 and ξ2 are hyper-
parameters that control the loss of data augmentation and the L2-norm term.
Algorithm 1 shows the DTI prediction procedure of our proposed framework.
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5 Experiments

To evaluate the effectiveness of the proposed method and discuss the reasons,
we conduct extensive experiments with different sparsity settings.

5.1 Datasets and Experiment Setup

Experiments are conducted on the constructed drug-target network and associ-
ated matrices following Luo et al. [22], where drug-drug interactions and drug-
target interactions are extracted from DrugBank (Version 3), protein-protein
interactions are extracted from HPRD database Release 9. Others are that asso-
ciated disease data from Comparative Toxicogenomics Database, related side
effect data from SIDER database Version 2. The SMILES strings for drugs and
amino acid sequences for proteins are obtained following Zhou [13]. The details
of heterogeneous entities are summarized in Table 1.

Table 1. The statistics of datasets

Entity type Numbers Relation type Numbers Sparse ratio

Drug 708 Drug-target 1923 0.00179

Target 1512 Drug-drug 10036

Disease 5603 Drug-disease 199214

Side effect 4192 Drug-side effect 80164

Target-target 7363

Target-disease 1596745

The compared baselines cover the recent state-of-art methods and traditional
deep learning-based models, which all perform drug-target interaction prediction
on heterogeneous biological networks. DTINet (2017) combines the unsupervised
feature learning from heterogeneous biological network and matrix completion
for DTI prediction. NeoDTI (2019) tends to train the model by reconstruct-
ing the edge on the heterogeneous graph. MultiDTI (2021) maps the biological
entities into vector space aiming to minimize the distance between the entities
features. In addition, we consider Graph Attention Network (GAT) and Deep
Neural Network (DNN) algorithms as contrast group.

Experiments were conducted on Inspur heterogeneous cluster GPU:12 *32 G
Tesla V100 s, memory 640 G DDR2. We deploy the HAS framework with Pytorch
and DGL. About the training process of model, we use Adam optimizer with the
learning rate of 0.005. The dimension of the initialized features is set as 128, the
restart probability π and the temperature parameter τ are set as 0.8 and 0.07,
respectively. The final task is denoted as edge classification, we evaluate the DTI
prediction performance using Area Under the Receiver Operating Characteristic
Curve (AUROC) and Area Under the Precision-Recall Curve (AUPRC).
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5.2 Results Discussion

Comparison with Baselines in Different Sparse Ratios. We examine
the DTI prediction performance of HAS under sparse imbalanced condition. To
further explore its robustness, the positive-negative ratio is adjusted to simulate
different sparse DTIs scenarios. The 10-fold cross-validation is implemented on
all positive samples and randomly negative samples that are selected according
to sparse ratio. We split 90% positive and negative samples in each fold dataset
for training, 10% for test purposes.

In addition to simulate the realistic issue that the known DTIs are far less
than unknown DTIs, we also consider the experimental setup of baselines and
design the experiment with balanced positive-negative samples. Table 2 shows
the result comparison with baselines. 1:10 is that the negative samples are 10
times to positive samples, 1:all represents all negative samples are used. Partic-
ularly, we have the following observations:

Table 2. Performance comparison with baselines in different sparsity setting

Method AUPRC AUROC

1:1 1:10 1:30 1:50 1:100 1:all 1:1 1:10 1:30 1:50 1:100 1:all

DNN 0.765 0.691 0.645 0.582 0.441 0.326 0.776 0.755 0.712 0.646 0.597 0.535

GAT 0.873 0.800 0.724 0.612 0.533 0.405 0.825 0.801 0.761 0.723 0.662 0.496

DTINet 0.932 0.865 0.816 0.757 0.671 0.507 0.914 0.873 0.845 0.789 0.692 0.522

NeoDTI NA 0.874 0.835 0.784 0.726 0.602 NA 0.943 0.890 0.839 0.790 0.662

MultiDTI 0.947 0.921 0.878 0.837 0.782 0.656 0.961 0.891 0.866 0.818 0.730 0.633

HAS 0.938 0.931 0.906 0.865 0.817 0.706 0.945 0.926 0.911 0.874 0.832 0.715

Improv. NA 1.10% 3.19% 3.35% 4.48% 7.62% NA NA 2.36% 4.17% 5.32% 8.01%

(1) The sparse imbalanced interactions between drugs and targets limit efficient
prediction performance. We can see that all the models perform well on the bal-
anced DTI prediction. However, with the negative sample increases, the results
show a significant decreasing trend. When the negative pairs are sampled to
100 times, model performance drops more than 15%. Until all negative pairs are
joined, the metrics drop dramatically again by nearly 15% compared with 1:100
sparse scenario. It confirms the aforementioned statement that a large number of
missed drug-target pairs have negative impact on learning high-quality features
representation for drugs and targets. Because the rare drug-target interactions
cause the weak supervised signals on heterogeneous graph, message propagation
between nodes is less to represent graph structure.
(2) HAS expresses the superior improvement. We find that the improvements
of HAS mainly come from the sparse imbalanced DTIs scenarios. For exam-
ple, a 3.35% gain (AUPRC) and 4.17% gain (AUROC) over MultiDTI when
the negative pairs are sampled up to 50 times. Furthermore, HAS significantly
outperforms alternative approaches by 7.62% (AUPRC) and 8.01% (AUROC).



558 R. Wang et al.

We conclude that HAS is less affected by negative effect of sparse imbalanced
drug-target interactions than the compared baselines. It may be that HAS could
capture the intrinsic and universal graph structure feature from topology level as
well as similarity information between nodes from node level. All above are used
to enhance feature learning when a large amounts of DTIs are missed. MultiDTI
achieve the best on the balanced DTI prediction as it adopts a oversampling
strategy that oversamples the positive samples by 10 times and under-samples
the negative samples. NeoDTI tends to perform DTI prediction under sparse
condition, we use ‘NA’ to label it in Table 2.

Benefits of Heterogeneous Graph Data Augmentation. Heterogeneous
graph data augmentation module is proposed to learn the intrinsic graph
patterns. We examine the effectiveness of the module in sparse imbalanced
DTIs scenarios. The results are shown in Fig. 2(a) and Fig. 2(b), where ‘Non-
augmentation’ means without using heterogeneous graph data augmentation.
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(a) Comparison in AUPRC.

1:10 1:30 1:50 1:100 1:all
0.6

0.7

0.8

0.9

1.0

A
U

R
O

C

Ratio

HAS
Non-augmentation

(b) Comparison in AUROC.

Fig. 2. Effectiveness of heterogeneous graph data augmentation.

As expected, the prediction performance of the model without data augmen-
tation drops significantly compared to the overall HAS. Specifically, a clear trend
is emerging that the sparser the DTIs data is, the better the data augmentation
performs. We observe quite significant drop in AUPRC and AUROC if all the
negative drug-target pairs are used. It illustrates that the heterogeneous graph
data augmentation contributes more to performance improvements under sparse
imbalanced DTIs condition. The augmented graphs encompass the multi-view
graph structure information and the contrastive learning optimizes the associa-
tion between augmented graphs to capture the universal graph structure, which
can be used to supplement the missed interactions information.
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Benefits of Node Similarity. To test the effectiveness of node similarity
information with sparse known drug-target pairs, we first simulate three dif-
ferent sparse imbalanced scenarios as shown in Fig. 3(a) (1:10), Fig. 3(b) (1:50)
and Fig. 3(c) (1:100). The experiments between node similarity (HAS) and non-
similarity (non-s) are conducted. Besides, only using drug similarity (non-ds)
and only using target similarity (non-ts) are set so as to explore the importance
of drug similarity information and target similarity information for DTI predic-
tion. The results indicate average 4% drop (AUPRC) and 3% drop (AUROC)
without using node similarity information. This verifies that the joined similarity
information provide positive impact with sparse known drug-target pairs. And
diverse attribute information from heterogeneous entities can better characterize
the latent properties of drugs and targets. In addition, we can find that both
drug nodes similarity and target nodes similarity can make a contribution, which
can be used to enrich the learned features.
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Fig. 3. Effectiveness of node similarity.

Performance Comparison with Different Layers. Considering that GNN
with various layers have differences in node feature learning, we perform multi-
combination of heterogeneous layers in order to seek the most beneficial setting
for the DTI prediction. The experimental results can be seen in Table 3. The
performance of HAS achieve the best if setting 2 layers for augmented graphs
and origin graph. The setting of 2 layers on the augmented graphs outperforms
the setting of 3 layers. It may be smaller size of node data on subgraphs, the
aggregation of 2-hop neighboring nodes covers enough drugs and targets. The
stacking of aggregated layers will no longer perform significantly better.
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Table 3. HAS performance with different layers.

Augmented graph Origin graph AUPRC AUROC

Layer = 2 Layer = 1 0.880 0.898

Layer = 2 0.931 0.926

Layer = 3 0.922 0.919

Layer = 3 Layer = 1 0.911 0.923

Layer = 2 0.920 0.923

Layer = 3 0.908 0.917

6 Conclusion

In this work, we formulate the sparse imbalance problem on drug-target inter-
action prediction and analyze the reason. Especially, we propose a deep learning
framework HAS to solve it via heterogeneous graph data augmentation and node
similarity. Heterogeneous graph data augmentation pursues to capture the intrin-
sic graph structure pattern from different augmented versions. Node similarity
information is incorporated for DTI prediction. Experimental results show that
HAS outperforms the baselines in various sparse imbalanced DTIs scenarios.
Ablation studies verify the effectiveness of proposed heterogeneous graph data
augmentation and node similarity to alleviate the sparse imbalance issue.

The complicate bio-experiments in drug discovery cause that the real labeled
drug data is less accessible. The future work will explore and construct the other
heterogeneous biological networks to strengthen generalization of model. And the
impact of augmented graphs scale will be further investigated.
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Abstract. Answering question according to knowledge base (i.e.
KBQA) has attracted extensive attention recently. Information retrieval
is one of the mainstream methods for the KBQA task that first finds
the topic entity in the question via entity linking systems, and then
selects the most related entities as answers from the subgraph (nodes in
it are called candidate answers) of topic entity on the knowledge base
(KB). However, existing methods generally separately perform reasoning
over every candidate answer by considering the semantic relationships
between question and the features extracted from KB, breaking away
from the graphical structure of the KB and suffering from long-term
dependency problem of entities. To address that, we propose a structure-
aware reasoning method, which enables to exploit the graphical struc-
ture of entities on KB via Graph Convolutional Network and capture
deep semantic relationships between question and candidate answers.
Our method reasons about the correct answer by jointly considering
information of all candidate answers, and focusing on important com-
ponents in the question and on KB . We conduct experiments on the
WebQuestions dataset, and the results demonstrate the effectiveness of
our proposed method.

Keywords: Question answering · Knowledge base · Graph
convolutional network

1 Introduction

Knowledge base question answering (KBQA) task aims to answer natural lan-
guage question based on a knowledge base (KB) automatically. For example,
given “Where is Mali located?” as the input question and Freebase [4] as the
KB, entities Africa and West Africa from Freebase comprise the answers. Gen-
erally, the solutions of KBQA can be divided into semantic parsing based (SP-
based) and information retrieval based (IR-based) methods. This work focus on
IR-based methods, which directly retrieve and rank answers from KB according
to the semantic information in the question [19]. The general process is to select
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13280, pp. 562–573, 2022.
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a set of entities from KB as candidate answers and then use a reasoning module
to rank them. The crucial step is how to rank these candidate answers.

Historically, researches perform reasoning by representing question and can-
didate answer independently [5,6,12], whereas the relatedness between the ques-
tion and candidate answer is neglected. Recently, researchers start putting more
emphasis on the mutual attention between the question and candidate answers
[8,13,28], which helps learn adequate question representation and adjust the
question-answer weight for better reasoning. They generally perform reasoning
separately over every candidate answer considering the extracted aspects infor-
mation including answer path, answer context and answer type from KB, which
contain entity information and neighborhood information at most. We call this
strategy local reasoning, and observe that the semantic relationship between
question and candidate answer is inadequate, as models omit the structural
information on KB, and suffer from long-term dependency problem of entities.

To address the above issue, we propose a Structure-aware Reasoning method
based on Graph Convolutional Network (SRGCN), which performs a local rea-
soning and a global reasoning over the subgraph of the topic entity on KB. The
subgraph, called reason graph, is constructed with all candidate answers as nodes
and relations between them as edges, which retains the structural information on
KB. Our global reasoning module performs reasoning about a candidate answer
by taking into account information from multiple entities in the reason graph
via Graph Convolutional Network (GCN) [18]. The GCN can jointly assess the
suitability of all candidate answers, capturing deep semantic information from
KB. Moreover, we introduce the personalized PageRank method [14] to extract
more related entities to the question as candidate answers, aiming to alleviate
the noise problem of the k-hop subgraph and decrease the computational cost.

The contributions of our work are as follows:

(1) We propose a Structure-aware Reasoning method (SRGCN) for KBQA task
based on the global reasoning module and local reasoning module to handle
the inadequacy problem of semantic relationship between the question and
KB.

(2) We present a global reasoning module to exploit the graphical structure of
the KB and share the information between candidate answers, which can
jointly assess the suitability of all candidate answers.

(3) We demonstrate our proposed method on the WebQuestions dataset [3],
outperforming the state-of-the-art methods.

2 Related Works

There are two popular categories for researches on KBQA. For SP-based method,
recent works parse questions into logical forms by utilizing predefined rules or
templates [1,15] or focusing more on neural networks [17,20,21,31]. The for-
mer limits the scalability and coverage for wise-open domains, and the latter
suffers from poor efficiency due to the heavily querying on KB. Some works
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[11,32] model semantic parsing as an question to logical form machine transla-
tion problem by employing neural Sequence-to-Sequence models, which have a
weak-coupling with KB and hardly exploit structure and semantic constraints.

The IR-based methods first extract candidate answers from KB according
to the given question, and then map the question and candidate answers into
a semantic space. The similarity between question and a candidate answer is
used to measure the probability that the candidate answer is the correct answer.
Bordes et al. [5] encode a subgraph for every candidate answer to predict cor-
rect answers. Dong et al. [12] calculate the similarity for the question-candidate
answer pair by using multi-column convolutional neural networks. Xu et al. [30]
introduce a multi-channel convolutional neural network to compute the seman-
tic similarity for the question-candidate relation pair so that the answers can be
obtained with the optimal relation. Recent approaches [8,13] analysis the seman-
tic relationship between question and candidate answers via attention mecha-
nism. Such approaches extract the features of a candidate answer out of the KB,
and conduct reasoning over candidate answers by calculating the similarity of
each question-candidate answer pair respectively, as a result that the structural
information from KB is lost and information between candidate answers can not
interact with each other.

Therefore, we propose a global reasoning strategy to alleviate the above prob-
lem. It learns representations for every node in the graph with all candidate
answers as nodes, which enables to jointly consider information of surrounding
entities by Graph Convolutional Networks (GCN). By stacking multiple layers,
the model can gather information from nodes further away. Kipf and Welling [18]
introduced GCN to arbitrarily connected undirected graphs. Marcheggiani et al.
[23] employed GCN for natural language processing for the first time. Recent
studies based on GCN have established that GCN is applied successfully for
question answering task [10,25,29] and reading comprehension task [7].

3 Methods

3.1 Task Setup

In the KBQA task, we define the knowledge base as a multi-relational graph
K = (V, E). Here V is the set of nodes that denotes entities or properties from
KB; E is the set of edges that connect nodes in V, corresponding to relation types
in the KB. Each entity or property or relation type has a textual description
(a sequence of words) in KB, which constitutes the label of a node or an edge.
Given a natural language question q, the goal is to find a set of nodes Y ⊆ V
that can answer the question.

We apply a topic entity predictor [8] to find the best topic entity of q that
links the question to KB. For instance, the topic entity of the question “Where
is Mali located” is Mali. All nodes related to the topic entity within k-hop are
regarded as candidate answers Y. Then, the model predicts a score S(q, y), y ∈ Y,
determining whether y is a correct answer or not. The architecture of our method
is shown in Fig. 1.
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Fig. 1. Overall architecture of our proposed Structure-aware Reasoning method
(SRGCN) for KB-QA task. q: input question, y: an candidate answer for q. In the
reason graph, the red node is the topic entity; blue nodes represent candidate answers
for q; gray nodes are irrelevant candidate answers filtered out by PageRank. � denotes
inner product. (color figure online)

3.2 Reason Graph Generation

Many candidate answers in Y can be irrelevant to the question, resulting in intro-
ducing unnecessary reasoning and overfitting. In response, we further extract a
subset from Y to select more related entities to the question, which can prune
the candidate answer set. We apply the Personalized PageRank (PPR) method
[14] around the topic entity to compute the probability that a candidate answer
is the answer to the question. The edge-weights around each candidate answer
entity are weighed based on the label of the corresponding edge, as a result that
edges more relevant to the question receive higher weights.

Specifically, we use a pre-trained word embedding matrix Ew ∈ R
|Vw|×dv to

map each relation r = {o1, o2, ..., o|r|} into word embeddings {o1,o2, ...,o|r|},
and then apply average operation to compute a relation vector vr. Here oi
denotes the i-th word in r; |Vw| denotes the number of words in vocabulary;
dv denotes the embedding dimension. Similarly, we get the question vector vq of
q = {wi|i ∈ [1, |q|]}, where wi is the i-th word in the question. The edge weight
is calculated via cosine similarity between the question and relation. Each can-
didate answer has a PPR score after running PPR, and the top-|Ȳ| candidate
answers are extracted to generate a novel candidate answer set Ȳ, Ȳ ⊆ Y, where
|Ȳ| denotes the number of extracted candidate answers.

A reason graph G = (Ȳ , R̄) is defined for a question, consisting of candidate
answers with high probability as nodes and relations between them as edges if
exist in KB. The edge-weight is denoted as a weight matrix Aw, which shows the
relevance between the question and relation. We compute the relevance matrix
ρ of question representation vq and relation representations vr as:

ρij = cos(vq, vr
ij) (1)
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where ρij denotes the relevance score of the relation between i-th and j-th node
and question. cos(·) represents cosine similarity. If there is no relation between
i-th and j-th node, we set ρij to 0. The weight matrix Aw can be obtained
according to the relevance matrix, followed by L1 normalization and self loops,
which can be formulated as:

Aw = ‖ ρ2/Nr ‖1, Aw ∈ R
|Ȳ|×|Ȳ|. (2)

where Nr denotes the number of relations in G.
The nodes in G correspond to the candidate answers. In order to represent

them, three answer aspects (i.e. answer type, answer relation and answer context)
information [12] are taken into account for each node y, y ∈ Ȳ. Answer type (yt)
represents the type of the candidate answer entity. Answer relation (yr) denotes
a relation path from topic entity to y, and y′

r is a set of relations from yr.
Answer context is a set of surrounding entities of y from G. We look up the
word embedding matrix Ew to map each aspect into word embeddings (et, er,
ec, e′

r), where e′
r denotes the average of relation embeddings in y′

r. Then the first
three are fed into three bidirectional long short-term memory (BiLSTM, [2])
networks to produce hidden state vectors (ht, hr, hc). Following [8], we apply a
key-value memory network [24] to store answer aspects information, and obtain
key representations of nodes as follows:

Hkt = ft(ht);Hkr = fr([hr; e′
r]);H

kc = fc(hc)
Hk = [Hkt ;Hkr ;Hkc ] (3)

where f denotes linear projection. Similarly, we get value representations Hv =
[Hvt ;Hvr ;Hvc ] for a node, Hk,Hv ∈ R

3×|Ȳ|×d. d denotes the dimensionality of
BiLSTM hidden state. [; ] denotes column-wise concatenation.

3.3 Answer Prediction

Given a reason graph G = (Ȳ, R̄) contains the candidate answer set, our goal
is to reason about the answer, producing a score for each candidate answer via
global and local reasoning respectively.

Global Reasoning. In order to capture deep semantic relationships between
the question and KB, we propose a global reasoning mechanism to jointly assess
the suitability of all candidate answers via Graph Convolutional Network (GCN)
[18]. Given the answer aspect representation of nodes in G and an weight adja-
cency matrix Aw describing the graph structure R̄ as the input to the GCN,
the goal is to learn how to combine these representations and output the feature
representation.

In our case, each node y ∈ Ȳ is represented by the concatenation of the
corresponding question, answer aspects and entity type representations, i.e.
uy = [Hq;Hk

y ;h′
ty ], where h′

ty is the entity type embedding of node. Such a com-
bination ensures that each candidate answer depends on question. To represent
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the question q, we fed the word embeddings vq into a BiLSTM net, which enables
to integrate forward and backward contextual information into text embeddings,
and obtain hq ∈ R

|q|×d. Furtherly, a self-attention is applied over all words of
question to get the question representation:

Hq = BiLSTM([hq(softmax((hq)Thq)), hq]),Hq ∈ R
d (4)

where the softmax function is applied over the last dimension of the input tensor.
We initialize the hidden states for the i-th node via: U

(0)
i = ui. At the l-th

layer, the i-th node representation is updated by:

U
(l)
i = RELU

⎛
⎝

E∑
j=1

Aij
wWlU

(l−1)
j + bl

⎞
⎠ , U

(l)
i ∈ R

dG (5)

where dG is the dimension of hidden state in GCN, Wl is a weight matrix, and
bl is a bias term. We stack such networks for L layers and obtain representations
of all nodes Û = {Û1, Û2, ..., Û|Ȳ|}. After obtaining the output feature Û from
the GCN, we obtain the normalized representation by linear transformation and
a residual connection as:

O = LayerNorm(Û + f(u)), O ∈ R
|Ȳ|×dG (6)

where f is a full-connected layer. u denotes the initial representation of nodes.
We pass the normalized representation of nodes through a multi-layer perceptron
(MLP) to predict the probability S1(q, y) that node y is the answer to q.

Local Reasoning. We use a mutual attention module to embed the answer
information into the question representation, and focus on important aspects
by the guidance of question. As a result, model can put emphasis on important
components of question and answer aspects. The process is formulated as:

μ = softmax(max|Ȳ|(hqT {Attadd(Hq,Hkx) · Hvx}x∈{t,r,c}))
Ĥq = μhq, Ĥq ∈ R

d

ω = softmax(max|q|(Hkhq)T )T

Ĥk = ωHk, Ĥk ∈ R
|Ȳ|×d

(7)

where μ, ω denote the aspect-aware attention and question-aware attention,
respectively. Attadd(p1, p2) = softmax(tanh([pT1 , p2]W1)W2), with W1 ∈ R

2d×d

and W2 ∈ R
d×1 being trainable weights. {·} indicates concatenation. max|Ȳ|(·)

and max|q|(·) denote max -pooling over candidate answer dimension and question
word dimension, respectively. Finally, a score function is used to predict the
probability that each node y ∈ Y is an answer to q: S2(q, y) = ĤqT · Hk.

Moreover, we apply a Gated Recurrent Unit (GRU) [9] and batch normal-
ization (BatchNorm) [16] to enhance the question vector as follows:

H̄q = GRU(Ĥq, Attadd(Ĥq, Ĥk) · Hv)
Hq

n = BatchNorm(Ĥq, H̄q)
(8)

where Hq
n ∈ R

d. The probability that a node is the answer to q is calculated via:
S3(q, y) = HqT

n · Ĥk, where Ĥk is derived by Eq. (7).
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Table 1. Average F1 scores of models on WebQ test set. The bests are in bold.

Method Average F1 (%)

SP-based Sempre [3] 35.7

STAGG [31] 52.5

QUINT [1] 51.0

NFF [15] 49.6

SeMat Model [22] 52.0

IR-based Subgraph + C2 [5] 39.2

MCCNN [30] 47.1

C-ATT [13] 42.9

BAMnet [8] 51.8

LMKB-QA [28] 52.7

Ours SRGCN 53.0

SRGCN w/gold topic entity 56.6

3.4 Learning

The answer predictor’s parameters are comprised of weights from the question
and candidate answer embeddings, GCN, MLP, mutual attention module and
GRU. These are trained end-to-end. We adopt the sampling strategy following
[8] and use a triplet-based loss function as follows:

L =
∑
(Ȳ)

[1 + S1(q, y′) − S1(q, y)]++

∑
(Ȳ)

[1 + S2(q, y′) − S2(q, y)]+ +
∑
(Ȳ)

[1 + S3(q, y′) − S3(q, y)]+
(9)

where y and y′ denote positive and negative answer respectively. [·]+ is equivalent
to max[·, 0]. S1(·) is the predicted score of a candidate answer computed by global
reasoning, and S2(·), S3(·) are computed by local reasoning.

At testing time, we rank the scores of the candidate answers S3(q, y) to select
the optimal answer to the question, and a hyper-parameter θ is used to handle
questions with multiple answers. The candidate answers whose scores are close
to the highest score within θ constitute the answer set.

4 Experiments

4.1 Experimental Setup

We evaluate our proposed method on the WebQuestions (WebQ) [3] dataset,
which is split into 3,023 training examples, 755 validation examples, and
2,032 testing examples. Freebase [4] is used as the knowledge base. We adopt
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(a) Trends of training loss. (b) Trends of validation loss.

Fig. 2. Trends of loss during training.

(a) Use topic entity predictor. (b) Use gold topic entity.

Fig. 3. Comparison with BAMnet on WebQ test set.

precision@1 (P@1), precision, recall and average F1 score as the evaluation met-
rics [3,5].

We implement our method in PyTorch [26]. We employ Adam optimizer
with the initial learning rate as 0.001 to train our model on a TITAN RTX 24G
GPU. GloVe [27] is used as word embedding matrix Ew with dimensions set to
dv = 300. The dimensions of hidden state vectors in BiLSTM, GCN, MLP are
set as 128, 150 and 128, respectively. The number of GCN layers is set to L = 2.
The dropout rates on the word embedding layer, question encoder side, candidate
answer encoder side and GCN side are 0.3, 0.3, 0.2 and 0.1, respectively. The
threshold θ is set to 0.62. The number of candidate answers is set to |Ȳ| = 200.

4.2 Comparison with State-of-the-Arts

Table 1 shows the performance of our method (SRGCN) and previous state-
of-the-art methods. We can observe that SRGCN consistently outperforms all
SP-based methods and IR-based methods. Specifically, compared with BAMnet
[8] and C-ATT [13], which are the most close works to SRGCN, SRGCN out-
performs them by a margin of 1.2% and 10.1% in terms of average F1 score. To
compare the performance of BAMnet and SRGCN, we re-implement BAMnet
in our environment and report the training process in Fig. 2 and detail results
in Fig. 3, showing that our model has quicker convergence rapidity and achieves



570 L. Ma et al.

Table 2. Test results of ablation study. The bests are in bold.

Method P@1 Precision Recall Average F1

SRGCN 52.8 52.4 63.8 53.0

w/o global reasoning 51.0 51.8 62.2 52.2

w/o entity type in node 52.1 51.5 61.6 51.9

w/o question-aware attention 52.8 53.3 55.3 50.5

w/o aspect-aware attention 51.4 51.6 60.0 51.3

better performance. As the previous best SP-based method, STAGG [31] relies
on careful hand-drafted rules and features. But SRGCN outperforms it by 0.5%
with very few manually rules. Note that the model in [28] relies on the pre-trained
BERT base model, SRGCN still remains competitive with it. When testing with
the gold topic entity, SRGCN achieves an F1 score of 56.6%, which shows the
pure performance of our proposed structure-aware reasoning method.

4.3 Ablation Study

Table 2 shows the results of ablation experiments on WebQ test set where impor-
tant components are removed one at a time. The first row indicates the perfor-
mance of our proposed SRGCN method. The results in the ‘w/o global reasoning’
row only use local reasoning module, as a result that the average F1 score drops
by 0.8 points. This indicates that information of surrounding entities for a can-
didate answer contributes to reason about the answers. The third row (‘w/o
entity type in node’) indicates that global reasoning module removes entity type
embedding from initial node embedding. We found that the average F1 score of
it is lower than when removing the whole global reasoning module. This means
global reasoning module without entity type as a feature is limited in its ability
to capture the semantic relationship between question and node (i.e. candidate
answer). The last two rows (‘w/o question-aware attention’ and ‘w/o aspect-
aware attention’) represent the results without using question-aware attention
and aspect-aware attention mechanism in the mutual attention module, respec-
tively. Results show that these modules are crucial as well.

We apply a PageRank method to prune the original candidate answer set
Sect. (3.2). We use the overall recall of answers among the candidate answers
as the metric to compare the results under different conditions on WebQ test
set. When the nodes from the subgraph of topic entity within 2-hop on KB are
selected as the candidate answer set, it achieves a overall recall of 86.9%. After
using PageRank to prune the subgraph, we select the top-200 related nodes as
candidate answers. The overall recall is improved by 0.7% with less nodes, which
enables to decrease the computational cost. If we directly truncate the subgraph
and take the top-200 candidate answers, the overall recall decreases by 14%.
We also investigate the effect of the layer number L of GCNs. The F1 scores of
L = 1, L = 2, L = 3 are 51.6%, 53.0% and 51.8%, respectively.



Structure-Aware Reasoning for Knowledge Base Question Answering 571

Table 3. Case study. Four examples from the test set of WebQ. We use ellipsis due to
space constraints.

Question BAMnet SRGCN Ground truth

Who is the
president of
Peru now?

Ollanta Humala, César
Villanueva, Juan Jiménez
Mayor, Simón Boĺıvar

Ollanta Humala Ollanta Humala

What team will
Michael Vick
play for in
2011?

United States
Penitentiary,
Leavenworth

Philadelphia Eagles Philadelphia Eagles

When was
Michael Jordan
at his best?

1995−96 NBA season,
1997−98 NBA season,
1984−85 NBA season,

1995−96 NBA season 1995−96 NBA season

Who is the
current leader
of France 2010?

Nicolas Sarkozy, Serge
Dassault, Lionel Jospin,

Nicolas Sarkozy Nicolas Sarkozy

4.4 Case Study

To demonstrate our model’s capability, we show several typical examples from
WebQ test set in Table 3. In the first case, SRGCN accurately answer the ques-
tion with a time constraint now, while BAMnet predicts other wrong answers.
For instance, Simón Boĺıvar was the president of Peru from 1824 to 1827. As for
the second case, there are entity type and time constraints (i.e. team, in 2011 ),
but BAMnet predicts a prison United States Penitentiary, Leavenworth, which
can not match the entity type constraint. Our method can successfully handle it.
As for the third case, the argmax constraint (at his best) is expressed by a phrase,
which makes it difficult to capture the deep semantic information. Seasons with
lower points than the correct answer are also selected as answers by BAMnet.
However, the predicted answer of SRGCN is the same as ground truth. In the last
case, models are expected to understand the semantic of learder and handle a
time constraint. Except for the ground truth, BAMnet also predicts many wrong
answers. For example, Serge Dassault was a Senator, and Serge Dassault was the
Prime Minister of France from 1997 to 2002. Results of these cases demonstrate
that our method performs well on capture deep semantic information between
question and candidate answers, especially for complex questions.

5 Conclusions

We presented SRGCN, a structure-aware reasoning method for the KBQA task.
SRGCN enables to jointly assess the suitability of all candidate answers by a
global reasoning mechanism based on graph convolutional network, and capture
deep semantic relationship between the question and KB using a local reasoning
mechanism based on mutual attention. Extensive experiments on WebQuestions
dataset showed SRGCN’s improvements over existing approaches on KBQA task.
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Abstract. Humans like to express their opinions and crave the opin-
ions of others. Mining and detecting opinions from various sources are
beneficial to individuals, organisations, and even governments. One such
organisation is news media, where a general norm is not to showcase
opinions from their side. Anchors are the face of the digital media, and
it is required for them not to be opinionated. However, at times, they
diverge from the accepted norm and insert their opinions into otherwise
straightforward news reports, either purposefully or unintentionally. This
is primarily seen in debates as it requires the anchors to be spontaneous,
thus making them vulnerable to add their opinions. The consequence of
such mishappening might lead to biased news or even supporting a cer-
tain agenda at the worst. To this end, we propose a novel task of anchors’
opinion detection in debates. We curate code-mixed news debates and
develop the ODIN dataset. A total of 2054 anchors’ utterances in the
dataset are marked as opinionated or non-opinionated. Lastly, we pro-
pose DetONADe – an interactive attention-based framework for classifying
anchors’ utterances and obtain the best weighted-F1 score of 0.703. A
thorough analysis and evaluation show many interesting patterns in the
dataset and predictions.

Keywords: Anchors’ opinion · Opinion detection · Code-mixed
conversations

1 Introduction

News bulletins play a significant role in educating, informing, spreading aware-
ness, and influencing the masses about important current affairs. Recent esti-
mates show that the Indian news channels are broadcast over 161 million TV
households, and more than 200 million internet users [5]. This puts a lot of
responsibility on the news channels as they are the primary source of the masses’
knowledge about current affairs.

Common citizens expect their news to be free of opinions and only based
on facts. However, in recent years, we have seen countless instances where
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Table 1. An annotated snippet of a dialog (debate) in ODIN. For brevity, we do not
show the full conversation. Anchor’s opinion spans are highlighted in blue. [A]: Anchor’s
utterance, whereas, [Sj]: j th speaker’s utterance.

Utterance Opinion

[S1] · · ·
[A] “Nahi aap aap party ke prvakta ke taur par baithe hai ya political

analyst vkhyatigat roop se baithe hai?” (Are you representing yourself as a

party representative or a political analyst?)

No

[S2] “maine aapse kya kaha sabko is laxman rekha ka samman karna

chahiye yeh nirdesh sab par prabhavi roop se lagu hoga” (What did I say

to you? We all have to respect the rule, this rule will be implemented

effectively)

−

[A] “aap thodi na teh karenge jo aapko apmaanjanak lag jaye kuch

maine puch liya meri nazar main nahi hai <name> <name> <name>

<name> <name> <name> aap abhi lage huye hai brashtachaar ke

bhism pitamah doordanth apradhiyo ke sanghrakshan karta <name>

avedh sarkar ke kamjoor mukhiya tanashah aap log abhi bhi lage huye

hai aap log sudhar hi nahi rahe hai <name> itna samjha rahe aapko”

(You won’t decide even if you feel that something is disrespectful, if it is

not in my eyes <name> sir <name> sir <name> sir <name> sir <name>

sir <name> you are also involved in corruption. You are still not

understanding, <name> is trying so hard to make you understand)

Yes

[S3] · · · −
[A] “ to ab jail bhejiyega na aapko bhi fayda milega unko jail bhejiyega ab

agar woh aisa kuch kahe jail bhejiyega unko” (Send him to jail you will

also profit from it. Send him to jail if he says something like this again.)

Yes

[S3] “pehle sun lijiye to” (Listen to me first) −
[A] “ sab ek doosre ko jail bhejiyega sab mile huye hai aapne koi kasar

thodi na chhodi hai aap logo ne kya kuch kaha hai <name> ji yeh to ab

aapko bhi fayda milega unko jail bhejiyega” (Send each other to jail. You

all are in a cohoots. You have’nt left any stone unturned, you people have

said too much, <name> sir, now you will also get the benefit, send them to

jail)

Yes

[S1] · · ·

reporters/news anchors either purposefully or unintentionally insert their opin-
ions into otherwise straightforward news articles, thus earning the tags of biased
news or biased reporting. They do so by blurring the line between fact-based
news reporting and edited-agenda based news reporting. As a consequence, read-
ers and viewers often get confused or get exposed to the targeted viewpoints of
others. This practice is even more prevalent in live news reporting or during
news debates wherein the content on display is unstructured and somewhat
spontaneous compared to written news articles that get processed by many peo-
ple, including editors, content managers, etc., making the reporter vulnerable
to voice out their opinions. To this end, we propose a novel task of anchor’s
opinion detection in code-mixed conversations. The objective of the task is
to identify the anchor’s utterance when they posit their own opinion in between.
Table 1 shows one such instance where the anchor appends their opinion in a
news debate. The highlighted blue text signifies the opinionated spans.

Such utterances should not be presented by an anchor, as the reporter is
the face of the news media, and news media is supposed to be unbiased and
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unopinionated. To help and cater to the news anchors and media in promoting
unbiased and unopinionated news, our work aims to help organisations detect
opinionated utterances. To this end, we first curate ODIN (Opinion Detection
In News) – a dataset developed by transcribing different code-mixed Hinglish
news debates from several mainstream national news channels and annotating
the utterances of the debate as opinionated/unopinionated. Then, we propose
DetONADe (Detecting Opinion in News Anchor Delivery) to detect utterances
as opinionated and benchmark the task. We also present a detailed analysis of
the dataset and necessary evaluation of the obtained results.

In summary, we make the following contributions:

1. We explore opinion detection in a code-mixed (Hinglish) dialogue environ-
ment, a novel task which, to the best of our knowledge, has never been
attempted before.

2. We curate a new dataset, ODIN, by transcribing various Hinglish news
debates from three national news channels and annotating these captioned
utterances as opinionated/unopinionated.

3. We perform extensive analysis of ODIN and provide interesting insights.
4. We benchmark ODIN using DetONADe and report the necessary results and

error analyses.

The source codes and datasets are available at https://github.com/LCS2-IIITD/
ODIN-PAKDD.

2 Related Work

Opinion expression is an integral part of opinion mining, and it was first defined
as either Direct Subjective Expression (DSEs) or Expressive Subjective Expres-
sions (ESEs) [16]. Following this definition, a fine-grained opinion Mining corpus,
namely Multi-Perspective Question Answering (MPQA) was curated for anno-
tating expressions as opinion. Apart from already present datasets, researchers
also explored social media, blogs and news articles as opinion mining from het-
erogeneous information sources can be of great use for individuals, organisa-
tions or governments. Ku et al. [8] dealt with the task of opinion extraction,
summarisation and tracking on news and blogs corpora, and a lexicon-based
feature modelling technique was proposed to extract opinions from documents.
Support Vector Machines (SVM) and Decision Trees (C5) were used to pre-
dict the results. Breck et al. [2] proposed a Conditional Random Fields (CRF)
based model where identifying opinion expression was assumed as a sequence
labelling task and achieved expression-level performance within 5% of human
inter-annotator agreement. Raina [13] proposed an opinion mining model that
leveraged common-sense knowledge from ConceptNet and SenticNet to perform
sentiment analysis in news articles, achieving an F1-score of 59% and 66% for
positive and negative sentences, respectively. Recently, researchers explored deep
learning for opinion detection [6,17].

The scope of this task has always been limited to English language and
monolingual settings. There has not been any significant research work on opin-
ion detection in code-mix or Indic languages. But code-mixing is an increasingly

https://github.com/LCS2-IIITD/ODIN-PAKDD
https://github.com/LCS2-IIITD/ODIN-PAKDD
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common occurrence in today’s multilingual society and poses a considerable
challenge in various NLP based downstream tasks. Accordingly, there have been
some helpful developments in the field of code-mix in the form of sentiment anal-
ysis task, humour, sarcasm and hate-speech detection. A dual encoder based
model for Sentiment Analysis on code-mixed data was proposed wherein the
network consisted of two parallel BiLSTMs, namely the collective and the spe-
cific encoder [10]. This model particularly generated sub-word level embeddings
with the help of Convolutional Neural Networks (CNNs) to capture the grammar
of code-mixed words. Recently, pretrained monolingual and cross-lingual deep
learning models were also leveraged for detection of hate-speech and sarcasm on
code-mixed data [12] wherein they used fine-tuned RoBERTa and ULMFit for
English and Hindi data streams, respectively. For cross-lingual setting, XLM-
RoBERTa was fine-tuned on transliterated Hindi to Devanagri text.

The works mentioned above do leverage code-mix text for common down-
stream tasks. However, no research has been done on opinion detection on code-
mix text in sequential data streams. Most opinion detection and sentiment anal-
ysis studies have focused on news articles, blogs and movie reviews. In online
news articles, every piece is reviewed by multiple people, and thus the scope of
opinions is limited compared to news coverage on live media sources. Moreover,
biased and opinionated live news anchoring can significantly impact our society
and go against the essence of free and fair news reporting. Therefore, we aim to
detect opinions amongst news anchors. We focus on code-mix news anchoring
mainly in live video debates through national news channels that stick to a mix
of Hindi and English language (Hinglish) for news distribution. Moreover, our
deep learning model not only leverages context but does so in a sequential man-
ner, thus focusing on the text and the utterances before a statement to classify
the text as accurately and robustly as possible.

3 Dataset

In this section, we lay out the details of the dataset development process. First,
we extract debate videos from three popular Indian Hindi news Youtube’s chan-
nels – ABP News1, Aaj Tak2, and Zee News3. Subsequently, the collected videos
were processed to extract the romanized Hinglish code-mixed utterances. Each
utterance is uttered either by the anchor or by the invited speakers. To ensure
sanity, we do not identify the utterances with the speaker’s name; instead, we
assign ids (A for the anchor, and {S1, S2, · · · , Sn} for the invited speakers) to
each utterance. Next, we annotate the anchor’s utterances as opinionated4 or
non-opinionated depending upon the dialog conversation. A high-level dataset
development process is outlined in Fig. 1.

1 https://www.youtube.com/c/abpnews.
2 https://www.youtube.com/c/aajtak.
3 https://www.youtube.com/c/zeenews.
4 A personal sentiment, which describes the anchor’s feeling on the topic [11].

https://www.youtube.com/c/abpnews
https://www.youtube.com/c/aajtak
https://www.youtube.com/c/zeenews
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Table 2. Dataset statistics of ODIN.

Features Value

Number of dialog (debate) videos 46

Average length of the videos 33 mins

Number of utterances 4490

Number of anchor utterances 2054

Number of opinionated anchor utterances 597

Number of tokens 261811

Number of unique tokens (vocabulary) 20023

Average number of utterances per dialog 97.6

Maximum number of utterances in a dialog 233

Average number of words per utterance 58

Maximum number of words in an utterance 1192

Fig. 1. Dataset annotation pipeline.

Prepossessing. We collect 46 debate5 videos for two broad topics as religious
and political. Initially, we obtain transcriptions of these videos using the Google
Speech Recognition6 tool. The obtained output had many missing words, possi-
bly due to the background noise or due to the code-mixed nature of the conversa-
tion; therefore, we manually add the missing words to complete the utterances.
Furthermore, we observe many spelling mistakes in English words – ‘laiv ’ for
‘live’, ‘ophis’ for ‘office’, ‘daunalod ’ for ‘download ’, etc. To fix these spelling
mistakes, we try mapping words in the English dictionary to the words in ques-
tion based on word similarity. We use phonological similarity to achieve this. We
employ Libindic’s Soundex library7 to obtain the correct mapping.

Annotation. Each debate has a series of utterances – some of them were uttered
by the anchor and others by the invited speakers. We employ two annotators
to annotate the anchor’s utterances as opinionated or non-opinionated. Since
the objective of the current work is to identify opinions of anchors, we do not
annotate speaker’s utterances. Both annotators read the utterances of the debate
and annotate the whole data. To check the inter-rater agreement, we compute
Cohen’s κ value of 0.88. Subsequently, we perform a consolidated step to include
only those annotations where both annotators agree on the opinionated label –
5 Henceforth, we will use debate, dialogue, and conversation interchangeably to signify

a sequence of utterances.
6 https://pypi.org/project/SpeechRecognition/.
7 https://libindic.org/Soundex.

https://pypi.org/project/SpeechRecognition/
https://libindic.org/Soundex
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Fig. 2. Top 10 most occurring words in opinionated anchor utterances.

(a) Politics (b) Religion

Fig. 3. Topic-wise top 10 most occurring words in opinionated anchor utterances.

we treat disagreement as non-opinionated. Table 1 shows an annotated dialog.
For brevity, we show only a snippet of the dialog. There are three speakers and
one anchor debating over a topic. Out of all utterances in the dialog, we show
the annotated anchor’s utterances as opinionated and non-opinionated.

Statistics. A detailed statistic of ODIN is listed in Table 2. There are total 46
debate videos with an average length of ∼33 mins. In total, there are 4490 utter-
ances – 2054 anchor utterances and 2436 other speakers utterances. Out of 2054
anchor utterances, 597 of them are opinionated, accounting for approximately
30% of the utterances.

Dataset Insights. We analyze the dataset to gain insight of the inherent pattern
in opinionated utterances. Apart from various topic-related terms such as BJP8,
Congress(see footnote 8), Islam, etc., corresponding to the political and religious
topics, we observe opinionated words like ‘bilkul ’ (certainly), ‘matlab’ (means),
‘theek ’ (ok), etc., have a significant presence in opinionated utterances. We depict
a bar graph of the top-10 most frequent words in opinionated utterances in Fig. 2.
Moreover, to comprehend whether the frequent words are opinion specific or not,

8 BJP and Congress are two major political parties in India.



580 S. Sadhwani et al.

we also plot the ratio to see the distribution of these words in opinionated v/s
all the utterances. In Figs. 3a and 3b, we observe the most frequent words in a
topic-wise segregated form.

Fig. 4. Time-wise distribution of anchor opinionated utterances. This signifies that an
anchor is more conscious about expressing their opinions at the start of the debate and
as the debate goes by they get more spontaneous and less conscious.

We observe cases where two or more speakers are involved in a heated
exchange without a concrete outcome. In such scenarios, the anchor tries to
calm them down, and while doing so, the anchor often slide their own opinions
on the subject matter. Cases like these involve the anchor repeatedly calling the
name of the speakers – we observe that ∼ 33% of the opinionated utterances
have a single word (or name) spoken multiple times. One such example is shown
in the anchor’s second utterance in Table 1. We also find out that anchors tend
to ask more questions in an opinionated utterance – on average, 1.45 question
words are present in an opinionated utterance, whereas, only 0.9 question words
are there in a non-opinionated utterance.

On careful analysis, we observe that an anchor is relatively more likely to
express personal opinion at the later stage of the debate rather than at the
beginning of the debate. We plot the distribution of the opinionated utterances
on the time scale in Fig. 4. As we can see that only 78 utterances are opinionated
during the first 20% of the debate duration, which increases to 157 during 20–
40%, 126 during 40–60%, 99 during 60–80%, and 137 during 80–100% of the
debate duration.This signifies that an anchor is more conscious about expressing
their opinions at the start of the debate and as the debate goes by they get more
spontaneous and less conscious.

4 Proposed Benchmark Model

In this section, we describe our proposed benchmark model, DetONADe that we
adopt for the anchor opinion detection task. Since the number of the opinionated
anchor utterances are significantly few compared to the total number of utter-
ances in the dataset, we adopt an instance-based modeling for the detection.
For each anchor’s utterance ut, we create an instance that contains all previous
utterances (u1, u2, · · · , ut−1) of the dialog as context and the target utterance



Detecting Anchors’ Opinion in Hinglish News Delivery 581

ut as the last utterance of an instance. For each instance, we aim to classify the
target utterance as opinionated or non-opinionated. We hypothesize that the
fixed context will provide appropriate clue about the debate and, at the same
time, restrict the model not to overwhelm itself in comprehending the desired
context rather than focusing on the opinion discovery. A high-level architecture
diagram for the anchor’s opinion detection task is depicted in Fig. 5.

Fig. 5. The proposed DetONADe architecture for the anchor opinion detection.

We feed each instance one-by-one to DetONADe as input. Since code-mixed
texts are susceptible to the spelling variations and various other kinds of noise,
representations learned at the sub-word level often counter such variation quite
efficiently. Recent literature shows that a wide range of character and sub-
word level code-mixed representation models outperform word-level represen-
tation models for numerous tasks. Some of them are HIT [14], CS-ELMO [1],
CNN LSTM [7], etc. We employ HIT (Hierarchically attentive Transformer),
the most recent and robust representation learning method for code-mixed text
among them, to capture the semantic and syntactical features of the debate. It
encodes the code-mixed utterance in the embedding space where the semantic
difference among various spelling variations of the same word is minimal.

We obtain representation for each utterance in an instance and feed them
through a biLSTM layer for sequence learning. The biLSTM layer captures the
cross-sentence relationships across the utterances by exploiting the conversation
dynamics of the dialog and subsequently learns latent representations

−→
hi for each

utterance ui. Next, we apply the multi-headed self-attention mechanism [15] to
identify the importance of contextual utterances considering the target utterance
ut. To this end, we treat the target utterance ht as the instance-level context
vector μs and compute the interactions between the context vector and every
utterance in the dialog through an interactive attention mechanism. The intu-
ition is to obtain an abstract view of the instance that should help in exploiting
the dialog dynamics corresponding to the target utterance in a better way. Sub-
sequently, we accumulate the attention weights through a weighted summation
and obtain the final vector as v.
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ĥi = tanh(hi); αi =
exp (ĥi

T
μs)

∑
j exp (ĥj

T
μs)

; v =
∑

i

αiĥi

Finally, we feed the vector v to the softmax classifier for classifying the target
utterance as opinionated or non-opinionated.

Table 3. Experimental results for anchor opinion detection.

Model Opinion Non-opinion Weighted

F1 Rec Pre F1 Rec Pre F1 Rec Pre

ML-BERT 0.503 0.580 0.447 0.756 0.712 0.806 0.686 0.675 0.707

Indic-BERT 0.500 0.630 0.458 0.723 0.669 0.819 0.657 0.647 0.724

XLM 0.424 0.468 0.468 0.759 0.758 0.787 0.669 0.675 0.700

DetONADe 0.510 0.555 0.471 0.778 0.752 0.806 0.703 0.692 0.715

5 Experiments and Results

In this section, we report our experimental results and error analysis.

Baselines. Since opinion mining in code-mixed conversations is relatively unex-
plored arena, we include various code-mixed representation learning-based sys-
tem as our baselines. In particular, we employ multi-lingual BERT (mBERT) [4],
XLM-RoBERTa [3], and IndicBERT [9] based embedding models to extract
the utterance representation. Subsequently, we fine-tune each of these systems
through a biLSTM layer followed by a linear layer with softmax classification.

Experiment Setup. Since ODIN is skewed towards the non-opinionated anchor’s
utterance, we perform oversampling at the instance-level for the opinionated
utterances and obtain the equal number of opinionated and non-opinionated
instance. For experiments, we perform 3-fold cross-validation and report the
average for each case. Note that the oversampling is performed only for the
training set in each fold. All experiments are performed on a 12GB K80 Tesla
GPU server.

For creating an instance, we vary the size of context from 1 to 7 and observe
the best performance with context 5, i.e., 〈(ut−5, ut−4, ut−3, ut−2, ut−1), ut〉 as
an instance. Furthermore, during experiments, we face a subtle challenge in
obtaining the utterance representation for lengthy utterance (number of tokens
> 512), since most of the pre-trained language models (PLM) do not comprehend
sentences more than 512 tokens. In such cases, a typical solution is to clip the
utterance at index 512. However, in this work, we exploit an alternative without
omitting the content. We split the lengthier utterances into k chunks of 512
tokens. Subsequently, we obtain representations for each of these k chunks and
consolidate them by taking an average of the k representations.
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Table 4. Token-level confusion matrix. We show performance w.r.t. a few critical words
in anchors’ utterances.

Words TP FN TN FP

Congress 33 19 85 34

Bjp 18 11 46 15

Modi 24 16 77 27

Gandhi 33 18 63 37

Bilkul 14 15 45 20

Hindu 14 10 50 20

Muslim 6 4 14 6

Question-based (kyu, kya, kab, kaha, kaun, kitne, kaise) 70 47 235 102

Results and Comparative Study. We report the results of DetONADe along
with other baselines in Table 3. For each case, we compute the weighted-F1
scores. Moreover, we report the class-wise precision, recall, and F1 for the opin-
ionated and non-opinionated cases as well. We observe that DetONADe records
the best weighted F1-score of 0.703 in comparison with 0.686 weighted F1-score
of the best baseline, ML-BERT. Among all baselines, Indic-BERT has the least
score at 0.657 weighted F1-score.

We further observe the class-wise performance of all systems. For the opin-
ion class, DetONADe yields 0.510 F1-score, whereas, it obtains F1-score of 0.778
for the non-opinionated class. Similar to the weighted case, we obtain inferior
results for all baselines in both classes. Another observation is that the perfor-
mance for the non-opinionated class, irrespective of the model, is better than the
opinionated class. We relate this to the complex nature of the anchor opinion
detection task, where it is extremely challenging to comprehend the intended
opinion especially in a conversational setup.

Error Analysis. In this section, we both quantitatively and qualitatively anal-
yse of the results obtained from DetONADe. As we observe in Table 3, a relatively
lower F1-score for the opinionated class suggests a significant number of false
positives and false negatives. Moreover, we also observe a relatively higher false
positives than the false negatives, thus reporting an inferior precision score. This
could be due to presence of a few words which are highly inclined towards one
class of utterance, as depicted in Fig. 2.

Therefore, in Table 4, we investigate the words that were prevalent in the
dataset, and their distribution in the results we obtained. We observe that utter-
ances with reference to the two major Indian political parties (viz. ‘congress’
and ‘bjp’) caused more false positives than false negatives. On the other hand,
question-based utterances (ones that usually start with words like ‘kyu’ (why),
‘kya’ (what), ‘kab’ (when), ‘kaha’ (where), ‘kitne’ (how many), ‘kaise’ (how))
have a very high false negative rate as compared to the false positive. For other
words like ‘modi’ and ‘gandhi’ (who are political figures) proportionally have
similar false positive and negative values. We also observe similar trends for the
words representing two major religions in India, e.g., ‘hindu’, ‘muslim’, etc.
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In Table 5, we report two mis-classified instances – one for the false posi-
tive, while another for the false negative. We speculate that, in the first case,
DetONADe focuses too much on the contextual utterances and due to the presence
of allegations in the second utterance of the instance, it classifies the instance
as opinionated rather than non-opinionated. On the other hand, in the second
example, a small portion of the target utterance (i.e., ‘tabhi yeh haal hai’) sug-
gests an opinion, which the model could not comprehend as the opinionated
instance. Moreover, we observe a few mis-classified examples that are at the
opposite end of the spectrum – one requires context to get a sense of opinion
whereas, for others, context is creating noise in the model. Such observation also
signifies the subtleness of the proposed task.

Table 5. Examples of test instances which were wrongly predicted by DetONADe.

Debate Gold Predicted

Instance# 1 Context [A] “Aapko kya lagta hai <name1> nahi toh <name2>?”

(What do you think, if it is not sonia then it is rahul?)

[S5] “jeet haar ek vishe hai aaj jeet ke bhi log haar ja rahe

hai kyu aap main wahi bata raha hun aapki baat ka jawaab de

raha hun jeet haar ek vishe hai aaj log jeet ke bhi haar jaate

hai bjp mla kharid leti hai” (Winning and losing is one

topic, today, even after winning people are losing. I am

answering to your question only. Winning and losing is one

topic, today, even after winning people are losing, bjp buys

mlas (Member of the Legislative Assembly).)

[A] “nahi nahi aapko kya lagta hai <name1> ya <name2>

aapko kya lagta hai <name1> <name1> ke baad ab

<name2>” (No no what do you think? <name1> or

<name2>, what do you think? Will it be <name2> after

<name1>?)

[S5] “isliye toh loktantr ka loktantr ka ki hatya kar di hai

lekin ab sawaal yeh paida hota hai ki woh chahe rahul ho

chahe sonia ho koi varshit neta ya jo bhi log congress ke

bhavishay mein us kursi ko sambhalenge woh vishe abhi baad

mein aata hai” (This is the reason for the death of

democracy. The question is be it rahul or sonia or some

other politician or anyone who will lead and take the

responsiblity of that position in congress in the future, this

topic is of future.)

Target [A] “<name1> ke <name1> ke baad ab laut ke party

<name2> pe aayegi” (Will the party fallback to <name2>

after <name1> leaves?)

No Yes

2 Context [A] “<name> thik thik <name> <name> <name>”

(<name> fine. fine. <name>, <name>, <name>)

[S1] “Ji” (Yes.)

[A] “Ji Ji toh main supreme court ko argue kar raha hun

aapko supreme court pe bharosa nahi hai aapko air chief

marshal par bharosa nahi hai thik hai <name> thik” (Yes,

Yes, I am arguing the supreme court. Don’t you trust the

supreme court? Don’t you trust the air chief marshal? Ok

<name>)

[S6] “apna jo opposition hai woh weak hai the congress was

weak” (Our opposition is weak. Congress was weak.)

Target [A] “ sir yeh weak hai tabhi yeh haal hai chaliye thik hai

<name> main aapke paas aa raha hun <name> kya kya

rafal ko thik kya rafal ko bofors banane ki koshish ho rahi hai

kya yeh rafal ko bofors banane ki koshish hai kya <name>”

(Sir, it is weak that’s why the conditions are like this.

Anyway, <name> I am coming over to you. Is this an

attempt to make Rafael deal like Bofors scam?)

Yes No
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6 Conclusion and Future Work

In this work, we proposed a novel task of anchor’s opinion detection in code-
mixed conversations. To this end, we curated ODIN, a first of its kind dataset
by transcribing various debate videos from mainstream Indian news channels.
We performed extensive analyses on ODIN, and reported interesting findings.
Furthermore, we benchmark the ODIN dataset using DetONADe – an interactive
attention-based framework on top to several pretrained code-mixed representa-
tion models. Moreover, we conducted error analysis on the outputs of DetONADe.
In future work, we plan to extend the dataset with more opinionated samples
as well as other varieties of debates. We also wish to explore the multi-modality
for the opinion detection.
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Abstract. Social emotion classification is to predict the distribution of
readers’ emotions evoked by a document (e.g., news article). Previous
work has shown that both semantic and topical information can help
improve classification performance. However, many existing topic-based
neural models represent the topical feature of document with only topic
probabilities, ignoring the fine-grained semantic feature of terms in each
topic. Moreover, traditional RNN-based semantic networks often face
the disadvantage of slow training. In this paper, we propose a hybrid
semantic-topic co-encoding network. It contains a semantics-driven topic
encoder to compose topic embeddings, and also utilizes a forward self-
attention network to exploit document semantics. Finally, the semantic
and topical features of the document are adaptively integrated through a
gate layer, which generates the document representation for social emo-
tion classification. Experimental results on three public datasets show
that the proposed model outperforms the state-of-the-art approaches in
terms of higher accuracy and average Pearson correlation coefficient.
Moreover, the proposed model runs fast and with better explainability.

Keywords: Sentiment analysis · Social emotion classification · Topic
model · Self-attention

1 Introduction

Social emotion classification is to predict the emotion distribution evoked by
an article among numerous readers. Nowadays, many online news websites and
social media allow people to express their emotion reactions after reading an
article. With the popularity of the Internet, the production and spread of news
and reader responses have become much faster than before. Social emotion clas-
sification has thus become very valuable in many applications like the analysis
of public opinions [8], recommendation system [20], etc.
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The methods for social emotion classification can mainly be divided into three
categories, i.e., word-based, document topic-based and document semantics-
based models. Word-based models utilize the word-level features (e.g., emotion
dictionary) and focus on modeling the direct relations between words and social
emotions [1,6]. For example, Katz et al. [6] have proposed the SWAT system to
calculate the emotion valence of a given headline based on the manually created
emotion dictionary. Because of treating each word separately, these models can-
not distinguish between different emotions expressed by a same word in various
context. To solve this problem, document topic-based methods try to explore
topic-level features [13,14] such as the co-occurrence of topics and emotions.
The topic is defined as the probability distribution of a set of words, which is the
same as in the Latent Dirichlet Allocation (LDA) topic model [2]. These methods
usually build a latent topic model with emotional layer to jointly capture the
generative process of words, topics and emotions. For example, Rao et al. [14]
have presented the affective topic model to design an emotional layer into the
LDA. However, both word-based and document topic-based models follow the
assumption of bag-of-words, so they have not considered the word-ordering infor-
mation and the text semantics. Afterwards, due to the powerful ability of neural
networks to learn semantic features, many document semantics-based models
have been proposed for social emotion classification [10,22]. Convolutional neu-
ral networks (CNN) or recurrent neural networks (RNN) are often adopted as
the semantic encoder to generate the vector representation of a document. For
example, Zhao et al. [22] have used both the bidirectional long short-term mem-
ory (BiLSTM) network and the CNN to learn the word-ordering feature and the
local n-gram feature.

However, many document semantics-based models ignore the document topic
feature that has been shown to be effective for social emotion classification in
previous work. Thus, to simultaneously utilize the topical and semantic infor-
mation, Li et al. [9] have developed a hybrid neural network that can learn
the topic-level feature from the pre-trained topic model (i.e., BTM [3]). Wang
et al. [19] have proposed the Gated DR-G-T model that includes a recursive
neural network for learning semantics. It also leverages the topical information
extracted by the LDA topic model. Nevertheless, there are still two problems
to solve: (1) Many existing neural network models only use the probabilities of
topics to represent the document topical information, ignoring the fine-grained
semantic feature of terms in each topic; (2) although recursive or recurrent neural
networks are helpful for extracting semantics, they are usually slow to train.

To address the above problems, we attempt to utilize the semantic feature
of terms in each topic to compose the topic embedding and then generate the
document topic vector based on the topic probabilities. We also design a light
forward self-attention network with fewer parameters and high computational
efficiency for learning document semantics.

Specifically, in this paper, we propose a hybrid semantic-topic co-encoding
network (STN) for social emotion classification. In the STN, we present a
semantics-driven topic encoder that can generate the semantics-aware topic
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Fig. 1. The overall framework of the proposed STN. The left part is the forward
self-attention network (FSAN). The right part is the semantics-driven topic encoder
(SDTE). K denotes the number of topics. V is the length of the vocabulary. The top
terms with highest probabilities in each topic are regarded as the representative terms
of the topic.

embedding by using the feature of terms in each topic. For semantic encoding,
we design a forward self-attention network with high computational efficiency, to
learn context information and compose the document semantic vector. Finally,
the document semantic vector and the document topic vector are integrated
through a gate layer, which outputs the document representation used for emo-
tion prediction. Experimental results on three public datasets reveal that the
proposed STN outperforms the state-of-the-art methods in terms of higher accu-
racy and higher average Pearson correlation. It also runs fast and with better
explainability.

2 The Proposed Model

The overall framework of our proposed STN is presented in Fig. 1. It contains
three components: a semantic encoder based on forward self-attention network,
a semantics-driven topic encoder and a gate layer for the fusion of the semantic
vector and the topic vector.
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2.1 Forward Self-Attention Network

We design a forward self-attention network (FSAN) for semantics encoding. It
consists of two layers: the forward self-attention layer and the word-level atten-
tion layer.

The forward self-attention layer is used to learn the context information and
generate a context-aware vector for each word [18]. Specifically, each word is first
transformed into the hidden state:

hi = tanh(W(h)xi + b(h)) (1)

where xi ∈ R
dw is the word embedding, and hi ∈ R

dh is the hidden state. The
alignment scores between words are calculated through the multi-dimensional
self-attention mechanism [16]:

f(hi, hj) = ELU(W(s)hi + U(s)hj + b(s)) + Mij (2)

where W(s), U(s) ∈ R
dh×dh and b(s) ∈ R

dh are parameters to be trained. ELU
denotes the activation function [4]. Since the vanilla self-attention considers no
positional information, Eq. (2) also includes a positional mask Mij , which is
defined as follows:

Mij =

{
0, i ≥ j

−∞, i < j
(3)

There exists an attention score between the j-th word wj and the i-th word wi

only if wj appears before wi. As a result, the forward positional information is
encoded into the alignment scores f(hi, hj).

Based on alignment scores, the context-aware vector of wi is composed as
follows:

aij =
exp(f(hi, hj))∑N

j′=1 exp(f(hi, hj′))
, zi =

N∑
j=1

aij � hj (4)

where � denotes the point-wise product and N represents the length of doc-
ument. zi ∈ R

dh is the context-aware vector that captures the context-based
semantic feature of wi.

As not all words are equally important to document semantic representa-
tion, the word-level attention layer contains an attention mechanism to compress
context-aware vectors of all words into the document vector. Similar to [21], the
alignment function is:

f(zi) = qT tanh(W(w)zi + b(w)) + b (5)

where q ∈ R
dh×1 is randomly initialized and updated with network training.

Thus, the document semantic vector vd ∈ R
dh is composed as follows:

ai =
exp(f(zi))∑N

j′=1 exp(f(zj′))
, vd =

N∑
i=1

ai � zi (6)
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Fig. 2. The structure comparison of the traditional PrTE (a) and our SDTE (b).

2.2 Semantics-Driven Topic Encoder

We propose a novel semantics-driven topic encoder (SDTE) for topic encoding.
As presented in the right part of Fig. 1, a LDA model is pre-trained to infer
topics. θ ∈ R

K represents the topic probability distribution of the document, and
ϕ = [ϕ1, ϕ2, . . . , ϕK ] represents the topic-term distributions. K is the number
of topics.

In previous work, the document topical information is then encoded through
a probability-based topic encoder (PrTE) [19], where the document topic vector
is transformed from only the topic probabilities θ with a fully connected layer.
The fine-grained feature of terms in each topic is not considered. As Fig. 2 shows,
our SDTE is very different from the PrTE. It composes the topic embedding for
each topic by using the word embeddings of representative terms in the topic.
The word embedding captures the semantic feature of the term [12]. Then the
topic vector of the document is generated based on both the topic embeddings
and the topic probabilities θ.

Specifically, we first build a word embedding matrix for each topic using the
top L words in ϕk, k ∈ [1,K], i.e.,

X(k) = [x(k)
1 ,x(k)

2 , . . . ,x(k)
L ] (7)

The top L words are regarded as the representative terms in each topic.
Afterwards, we develop a multi-channel topic attention layer to compose the
topic embedding from X(k), k ∈ [1,K]. One channel corresponds to one topic.
For each channel, the alignment function is defined as follows:

f(x(k)
i , q(k)) = q(k)ELU(W(t)x(k)

i + b(t)) (8)

where q(k) ∈ R
dw denotes the query vector of the k-th topic. It is randomly

initialized and updated with network training. The alignment function assigns
larger weight scores to the words that are more representative in the topic. Notice
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that W(t) and b(t) are shared by all channels, while q(k) is untied because we
argue that different topics may have different properties1. Then, we obtain the
topic embedding of the k-th topic using:

a
(k)
i =

exp(f(x(k)
i , q(k)))∑L

i′=1 exp(f(x(k)
i′ , q(k)))

, tk =
L∑

i=1

a
(k)
i � x(k)

i (9)

Based on the topic embedding of each topic, we calculate the document topic
vector vt as follows:

vt = Tθ (10)

where T = [t1, t2, ..., tK ] ∈ R
dw×K is the topic embedding matrix, and θ ∈ R

K is
the topic probability distribution of the document. vt is a semantics-aware topic
vector, which is generated from not only the document topic probabilities θ but
also the fine-grained semantic feature of the representative terms in each topic.

2.3 Gate Layer

We apply a gate layer to compose the final document representation by integrat-
ing the document semantic vector and the document topic vector. The transition
functions are as follows:

g = σ(W(f)vd + U(f)vt + b(f)) (11)
vf = g � vd + (1 − g) � vt (12)

where σ denotes the sigmoid activation function. W(f), U(f) and b(f) are train-
able parameters. g ∈ R

dh is the gate vector to control the importance weights
of semantic information and topical information.

3 Experiments

3.1 Datasets

We evaluate the effectiveness of our model on three public datasets.

SinaNews. It contains 5,258 Chinese news articles collected from the Sina News
website [9]. Each sample includes the reader votes over 6 emotion labels (i.e.,
anger, touch, sadness, amusement, curiosity and surprise). 3,109 articles are used
as training set, and 2,149 articles are used as testing set.

SemEval. It is provided in SemEval-2007 task 14, and contains 1,250 English
news headlines [17]. Each headline is scored from 0 to 100 over 6 emotions
(i.e., anger, disgust, fear, joy, sadness and surprise). 1,000 headlines are used as
training set, and 246 headlines are used as testing set. Notice that 4 samples
without scores are removed.

1 For example, the representative terms may be related to “sadness” in some topics,
and may be related to “happiness” in some other topics.
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ISEAR. This is a single label English dataset [15]. It has 7,666 instances, each
of which is a textual description of the situation that can evoke one of the seven
emotions (i.e., joy, fear, anger, sadness, disgust, shame, and guilt). 60% of the
dataset is used for training, and the rest is used for testing.

The splitting method for each of the three datasets is the same as the previous
work.

3.2 Experimental Settings

Tokenization. We use jieba2 on the Chinese dataset (SinaNews) and NLTK3

on the English dataset (SemEval, ISEAR).

Word Embedding. For SinaNews, we pre-train a Word2vec model (dw = 100)
over the large-scale Chinese Wikipedia corpus4. For SemEval and ISEAR, we use
the public English Word2vec model provided by Google5 (dw = 300). dh = dw
in our experiments.

Topic Encoder. For each dataset, the vocabulary is built based on the training
set with removal of stop words and words occurring no more than three times.
L is set to 50, 50, 100 on SinaNews, ISEAR and SemEval, respectively.

Training. We use Adam optimizer [7] with a learning rate of 0.003, and the
batch size is 20. All weight matrices are initialized by Glorot Initialization [5],
and the biases are initialized to zero. All models are implemented with PyTorch6

and run on single Nvidia GTX 1080Ti graphic card.

3.3 Evaluation Metrics

Following previous work, we adopt Acc@1 and Pearson’s r as our metrics. Acc@1
represents the accuracy of top-ranked emotion. Pearson’s r denotes the Pearson
correlation between the predicted emotion distribution and the gold distribution.
The Acc@1 is computed as follows:

Acc@1 =

∑
d∈Dtest

Id

|Dtest| , Id =

{
1, if ŷtop = ytop

0, otherwise

The Pearson correlation is computed as follows:

r =

∑
Dtest

r′(ŷ,y)
|Dtest| , r′(ŷ,y) =

cov(ŷ,y)√
var(ŷ)var(y)

,

where ŷtop is the predicted top-ranked emotion, ytop is the gold top-ranked emo-
tion, and |Dtest| means the size of the testing set. cov denotes the covariance.
2 https://github.com/fxsjy/jieba.
3 https://www.nltk.org/.
4 https://dumps.wikimedia.org/.
5 https://code.google.com/archive/p/word2vec/.
6 https://pytorch.org/.

https://github.com/fxsjy/jieba
https://www.nltk.org/
https://dumps.wikimedia.org/
https://code.google.com/archive/p/word2vec/
https://pytorch.org/
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Table 1. Classification performance on the three datasets. The first group is baseline
methods. The second group includes our proposed STN and its variants. We report
mean results of our experiments over five runs (p < 0.05, paired t-test).

Models SinaNews ISEAR SemEval

Acc@1 Pearson’s r Acc@1 Pearson’s r Acc@1 Pearson’s r

SWAT [6] 0.3897 0.40 0.2629 0.21 0.3699 −
CSTM [13] 0.4074 0.43 0.2823 0.19 − −
ETM [1] 0.5419 0.49 0.4879 0.35 0.3544 −
WMCM [11] − − − − 0.4171 −
1-HNN-BTM [9] − − 0.5121 0.40 − −
AttBiLSTM [23] 0.6295 0.6814 0.5965 0.5595 0.4783 0.4515

Gated DR-G-T [19] 0.6520 0.7123 0.6044 0.5726 0.5032 0.4866

FSAN 0.6537 0.7144 0.6142 0.5835 0.5016 0.4871

STN(PrTE) 0.6565 0.7237 0.6167 0.5872 0.5236 0.4938

STN 0.6624 0.7273 0.6209 0.5902 0.5285 0.5031

3.4 Comparison Models

SWAT [6] is the best-performed system in SemEval-2007 task 14. It predicts
the emotion scores of a document based on a word-emotion mapping dictionary.

ETM [1] is a document topic-based method that adds an emotional layer
into the LDA and jointly models emotions and topics.

CSTM [13] tries to explicitly distinguish context-independent topics from
both a background theme and a contextual theme.

WMCM [11] introduces the concept of “emotional concentration” to com-
pute the weight of the document for each emotion. It also uses a topic model
and infers the social emotions with the Bayesian theory.

1-HNN-BTM [9] builds a fee dforward neural network that exploits the
topic feature from BTM [3].

AttBiLSTM [23] is a bidirectional long short-term memory network with
attention, which has been widely used as a document semantic encoder.

Gated DR-G-T [19] learns the document semantics with a recursive neural
network. A multilayer perceptron is used to encode topical information.

We also compare our STN with two variants to further validate the effective-
ness of the semantics-driven topic encoder (SDTE).

• FSAN: only use the output of the forward self-attention network for emotion
prediction. Topical information is not considered in FSAN.

• STN(PrET): replace the SDTE in the STN with a probability-based topic
encoder (shown in Fig. 2(a)).

3.5 Results and Analysis

Classification Performance: Table 1 shows the comparison on classification
results of different methods. It can be seen that our STN performs the best on all
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Table 2. The comparison of time efficiency for different neural models on SinaNews.
Params represents the number of parameters. Time (s)/epoch means average training
time (second) per epoch.

Models Params Time (s)/epoch Acc@1 Pearson’s r

AttBiLSTM 0.16 m 97 0.6295 0.6814

Gated DR-G-T 0.20 m 2969 0.6520 0.7123

FSAN 0.04 m 66 0.6537 0.7144

STN (proposed) 0.07 m 67 0.6624 0.7273

the three datasets. Compared with the strongest baseline model Gated DR-G-T,
the STN improves the system performance about 1.04% (Acc@1), 1.5% (Pear-
son’s r) on SinaNews, 1.65% (Acc@1), 1.76% (Pearson’s r) on ISEAR and 2.53%
(Acc@1), 1.65% (Pearson’s r) on SemEval. The reason may be that our STN
successfully learns more effective semantic feature and the fine-grained topical
feature through the forward self-attention network (FSAN) and the semantics-
driven topic encoder (SDTE). The detailed analysis is as follows.

Comparing the topic-emotion model, i.e., CSTM, ETM and WMCM, with
the word-emotion model SWAT, we can find the great superiority of those topic-
emotion models, which indicates the topic-level features are helpful to improve
the performance of social emotion classification. In the comparison of AttBiL-
STM and the other baseline models, we observe that AttBiLSTM shows com-
petitive performance, although it does not consider topical information. This
means AttBiLSTM has strong ability to learn document semantics and the
semantic information is also important for social emotion classification. Fur-
thermore, when comparing FSAN with AttBiLSTM, we can observe that FSAN
performs much better. This indicates that the self-attention can capture more
useful semantic features because of its flexibility in learning long-term depen-
dencies in between words.

It is also necessary to compare our STN with its two variants, i.e., FSAN
and STN(PrTE), for verifying the effectiveness of SDTE. The better results
of STN than FSAN show that the topical information learned by SDTE can
help improve the classification performance. This trend can also be seen in the
comparison of STN(PrTE) and FSAN. Moreover, STN(PrTE) uses a traditional
probability-based topic encoder to extract topic features. It performs worse than
STN, which reveals the superiority of SDTE than PrTE. The SDTE successfully
generates a semantics-aware topic vector for the document, which considers the
fine-grained semantic feature of the representative terms in each topic.

Computation Time Comparison: Taking SinaNews as an example, Table 2
presents the time consumption of our STN and several strong neural models. We
can see that our STN runs about 44 times faster than the best baseline model
Gated DR-G-T and with very few parameters. It is also more time efficient and
more than 2 times lighter than the widely-used AttBiLSTM.
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Table 3. The comparison of top 10 terms in topic 2 and 12 learned by LDA and
the multi-channel topic attention in our STN. The terms that are more likely to be
representative in other topics are marked in blue.

#2 LDA missing youtube taliban ’s new ipods ring porn study napping

STN Microsoft australia toyota samsung nascar roma ps3 youtube thailand venezuela

#12 LDA ’s bid lead wait u.s. gets resume iran iraqi india

STN Obama spanish india iran african smith japanese itunes iraqi vista

Bad weather

FSAN

Our STN

The average value of the gate: 0.54

slows S.Korean search for Russian ship

Sadness

Sadness

Sadness (label)

Israel admits

FSAN

Our STN

using phosphorous shells in Lebanon 

Disgust

Sadness

Sadness (label)

killed bombing deadline victims astronauttopic 29

Topic probability distribution

sample sentence#1 emotion

sample sentence#2

The average value of the gate: 0.49

emotion

Fig. 3. Case study with two test sample from SemEval. The hot map visualizes the
attention weight of each word in the word-level attention layer.

3.6 Visualization and Case Study

In this section, we demonstrate the explainability of our STN from two aspects:
what the multi-channel topic attention in STN learns, and how the document
topic feature helps the STN to achieve better classification performance.

For the first aspect, we visualize the top-10 terms with the largest attention
weights in multi-channel topic attention. Table 3 shows the top-10 terms of two
sample topics from SemEval. For comparison, it also presents the top-10 terms
learned by LDA. We find that most of the terms learned by STN are about
company or country name like “microsoft”, “toyota”, while LDA learns many
words, such as “missing”, “new”, that are more likely to be representative in
other topics. It indicates that the multi-channel topic attention in STN is helpful
for extracting representative terms in the topic. As a result, the topic embedding
can contain effective topical information.

For the second aspect, we conduct case study with two test samples from
SemEval for our STN and the FSAN. Figure 3 visualizes the word-level atten-
tion, the gate weight (the average value of the vector g) in Eq. (11) and the
document topic distribution θ. The emotion of Sample#1 is easy to predict



A Hybrid Semantic-Topic Co-encoding Network 597

based on semantic information, because there are many words expressing emo-
tions. The FSAN gives large attention weights to “ship” and “search”. Our STN
gives large attention weights to “bad”, “slows” and “search”. These words are
all important emotional words, and the two models both predict the correct
emotion. The gate layer in STN also learns a large weight (i.e., 0.54) for seman-
tic vector. As for Sample#2, it is hard to predict the correct emotion based
on only semantics, because there is no word expressing any emotion. In this
case, the FSAN outputs a wrong label disgust, but our STN still reaches the
right result by exploiting topical information. As Fig. 3 shows, the topic with
the largest probability in Sample#2 is topic 29, where the top 5 words (such
as “killed”, “bombing”) are much related to sadness. Meanwhile, the gate layer
assigns a small weight (i.e., 0.49) to semantic information, which allows the final
document representation contains more topical information and helps the model
output the correct emotion sadness.

4 Conclusion

In this paper, we have proposed a novel semantic-topic co-encoding network
model (STN) that can effectively learn the document representation for social
emotion classification. The STN constructs a forward self-attention network for
semantic encoding and a semantics-driven topic encoder for representing topics
from the semantic feature of terms in each topic. The document semantic vector
and the document topic vector are fused through a gate layer, which composes
the final document representation. Experiment results on three public datasets
have validated that our STN can improve the state-of-the-art classification per-
formance. It is also time efficient and with better explainability. In the future,
we would like to study how to exploit more features such as common sense
knowledge graph for social emotion classification.
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Abstract. Federated Learning (FL) aims to train machine learning
models by decentralized data without direct data sharing. Nevertheless,
the heterogeneity of data across FL participants has significantly pre-
vented federated models from competitive performance. In this paper,
we consider this issue as the consequence of knowledge forgetting, since
the local update process in FL may result in catastrophic forgetting of
the knowledge learned from other participants. Motivated by the recent
advance in incremental learning techniques, we address this issue by over-
coming the sever knowledge forgetting caused by data isolation. We pro-
pose a novel method called FedKL (Federated Learning with Knowledge
Lock), in which knowledge distillation techniques are employed to main-
tain the previously learned knowledge. Our extensive experiment results
demonstrate that FedKL achieves superior performance than prior meth-
ods, with over 3.4% and 3.5% accuracy improvements on CIFAR-10
and CIFAR-100 respectively, compared with the popular FL algorithm
FedAvg. Furthermore, we also explore the benefits of introducing shared
exemplars (a fraction of local data) to FedKL. In the experiments, we
select and share 10 samples per class for FedKL and the baseline meth-
ods. As a result, FedKL obtains 2.56% accuracy increase on CIFAR-10,
instead of the marginal improvements on prior methods (less than 1.5%

Keywords: Federated learning · Incremental learning · Catastrophic
forgetting

1 Introduction

Federated learning (FL) techniques [31] offer a safe and efficient solution for
multi-party collaborations, by which participants are able to collaboratively
train a global model without exposing private data [20]. The underlying idea
is to aggregate the local updates of model parameters, instead of a direct data
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sharing [10,20]. Federated learning breaks the barriers of data cooperation. It
works well under the ideal assumption that the training data are independent
identically distributed (iid) across the participants.

However, in most application scenarios, participants have widely varying data
volumes and class distributions, which is usually called non-iid or statistical
heterogeneity [30,34]. It turns out that the heterogeneously distributed data
often negatively affect the convergence of federated training and the accuracy
of federated models will inevitably decrease [34]. We consider this issue from
the perspective that due to the data heterogeneity, it is very easy for local
training to forget the knowledge learned from other participants. In this work,
we believe that the bottleneck in solving the non-iid problem lies in overcoming
the forgetfulness of the global knowledge.

We are inspired by incremental learning approaches [12,16,22], whose key
objective is to maintain the previously learned knowledge while learning from
newly accessed data. We identify the inner similarity between incremental learn-
ing and federated learning that the catastrophic knowledge forgetting is due to
the unavailability of the entire dataset. Actually, the primary difference just lies
in that this unavailability is due to “temporal causes” in incremental learning
since in this scenario the old data cannot be reused once new data comes, while it
is due to “spatial causes” in federated learning since the training data is spatially
decentralized.

Thus, this similarity motivates us to explore the effectiveness of transferring
incremental learning strategies into federated learning. We improve the knowl-
edge maintaining approaches in incremental learning and propose a novel scheme,
named Knowledge Lock, in which we decouple the training objective into a clas-
sification and a knowledge maintaining term. In the classification term, the local
training is supervised by the original label of the data with a softmax-cross-
entropy loss applied. In the knowledge maintaining term, the locally unavail-
able classes are supervised by the distillation [8] of the global model with logic
regression loss. Further, we also explore the effect of partially data sharing on
our method and the baseline algorithms. Our proposed exemplar selection algo-
rithm (see Algorithm 2) has been empirically proved to be able to yield significant
accuracy improvements on Knowledge Lock.

We conduct a series of experiments to evaluate our method FedKL (Fedrated
Learning with Knowledge Lock) and compare it with the prior algorithms.
As reported in Sect. 4, FedKL outperforms the existing algorithms, includ-
ing FedAvg [20], FedProx [15], and SCAFFOLD [11] on both VGG [27] and
ResNet [7] architectures. Notably, compared with FedAvg [20], FedKL achieves
3.46% and 3.51% higher accuracy with VGG-16 [27] network on CIFAR-10 and
CIFAR-100 [14], respectively. Moreover, FedKL shows more powerful adapta-
tion of partially data sharing, with 2.56% and 2.11% accuracy improvements on
CIFAR-10 and CIFAR-100 [14] respectively.
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2 Related Work

Federated learning’s potential in reliable data cooperation has led to a rapidly
growing interest on its performance with heterogeneously distributed data. We
categorize the existing solutions to the data heterogeneity as parameter-oriented
and output-oriented methods. For the former, people try to cope with the hetero-
geneity by constraining the model parameters. For example, FedProx [15] adds
a regularization term of Euclidean distance between the parameters of the local
and global model to constrain the local gradient decent. SCAFFOLD [11] also
modifies the loss of local back propagation, introducing additional parameters
to track the local updates. These methods have obtained considerable improve-
ments on the accuracy, convergence, or communication efficiency of federated
models. We re-implement FedProx [15] and SCAFFOLD [11] as competitive
baselines for comparison in Sect. 4.

For the output-oriented methods, the constraint is directly applied to model
outputs, i.e., they encourage the local models to yield similar outputs as
the global model or other stronger teacher models. There have been several
attempts of employing knowledge distillation techniques [8] in federated learning
tasks [18,19]. However, these methods fail to achieve as competitive performance
as the parameter-oriented approaches when data is massively distributed and
extremely heterogeneous [20]. This is possibly because these methods ignore the
locally unknown classes and apply the same distillation loss to each class. Meta
learning strategies are also reported in federated learning methods to enhance
the robustness [3]. However, it is also difficult to deal with more challenging
federated learning scenarios due to the lack of consideration in the difference of
classes.

Notably, in relatively low privacy-sensitivity cases, partially data sharing
serves as another effective approach to overcome the data heterogeneity [35]. For
example, some of them attempt to modify the data distributions by sharing partial
local data [29,33], which can also be improved by data augmentation [2,25]. How-
ever, as they randomly choose the samples to be shared, it is neither sufficiently
privacy-efficient nor communication-efficient. Instead, we propose an efficient data
sharing strategy (see Algorithm 2), in which by sharing only a very small fraction
of data we can obtain satisfactory performance improvements.

Moreover, there are also federated learning research works turning to sys-
tem design [4,5,13,23] or personalized regularization [6,9], with a focus on the
trade-off between local and global models. Some methods [1,17] design a flexible
network for the participants, part of which is trained collaboratively while the
others are trained locally. Also, Multi-task Learning [24,28] and Transfer Learn-
ing [21] approaches are employed in federated algorithms in order to enhance
the adaption of local training.

Recently, incremental learning, also known as lifelong learning, has been
applied to overcome the effects of data heterogeneity. Shoham et al. [26] presents
FedCurv algorithm based on Elastic Weight Consolidation. In FedCurv, partic-
ipants additionally upload the diagonal of the Fisher information matrix, which
indicates critical local knowledge. A penalty term is added to the loss function
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in order to force the local models to converge to a common optimum. However,
even with bandwidth optimization tricks, the communication budget in FedCurv
is three times higher than that in FedAvg. Yoon et al. [32] develop the Federated
Weighted Inter-client Transfer (FedWeIT) method, in which nodes exploit the
task-adaptive parameters from other nodes through an attention mask.

3 Federated Learning with Knowledge Lock

3.1 Overview

One of the toughest issues in training federated classifiers is that the complete
training data is not available due to its decentralized distribution over differ-
ent devices. In particular, it has been widely studied that the heterogeneity of
training data over devices often incurs considerable decrease in predictive perfor-
mance and difficulty in optimization. In classification tasks, such heterogeneity
is often reflected in imbalanced class distribution [15,28]. Typically, it is a more
awkward scenario in which the training samples on each device only belong to
partial classes of the entire dataset, i.e., given a complete dataset with m classes,
each of the k device only has samples in mk classes, where mk < m. In other
words, there are “unknown” classes in each device during federated training. In
this paper, we focus on this scenario and propose our method, Fed-KL, which
is inspired by class-incremental learning approaches, to address the issues of
training data’s heterogeneity.

Given a dataset D = {(xi, yi)}n
i=1 which distributes across k devices, the goal

of federated learning is to train a shared model f : Rd → R
m, where xi ∈ R

d

is the training data and yi ∈ R denotes its label. Specifically, in a classification
task, the model f(·) can be denoted by a representation encoder g(·) followed
by a fully-connected layer with m units, where m is the number of total classes.

To fully exploit the data on each device without directly sharing them, the
most commonly used federated learning methods such as FedAvg [20] train mod-
els in a manner of multiple rounds update-aggregation. In each round, the par-
ticipants (devices) train the shared global model on their local data for a certain
number of epochs in the update step, and the trained local models are then aggre-
gated to a new global model in the aggregation step. Typically, in FedAvg [20],
the networks are aggregated by straightforward parameter average, i.e., given
the local networks f1, f2, . . . , fk with parameters Θ1, Θ2, . . . , Θk respectively,
the parameters of the global network is calculated by

Θ ← 1
k

k∑

j=1

Θj (1)

Unfortunately, despite their ability to fuse the knowledge learned from dif-
ferent participants, the existing FL methods still suffer from the statistical het-
erogeneity of the training date across the participants, which prevents the feder-
ated models from comparable performance as centralized training. We consider
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Algorithm 1: Local Update Process of FedKL
Input: Training samples {(xi, yi)}nk

i=1

Input: Global model f with parameters Θ
Input: Unknown classes M ′, weight of distillation loss λ

1 for i ← 1 to nk do
2 for m ∈ M ′ do
3 δm

i ← Sigmoid(fm
Θ (xi));

4 end

5 end
6 Lclf ← 1

nk

∑nk
i=1 SoftmaxCrossEntropy(fΘ(xi), yi);

7 Ldis ← − 1
nk|M′|

∑nk
i=1

∑
m∈M′

[δm
i log(Sigmoid(fm

Θ (xi))) + (1 − δm
i )log(1 − Sigmoid(fm

Θ (xi)))];
8 Θ ← argminΘ(Lclf + λLdis);

the issue of data heterogeneity from the aspect of knowledge forgetting, which
resembles the theme of incremental learning, online learning, or lifelong learn-
ing [14,22]. Specifically, we believe that the considerable gap of performance
between centralized training and federated training is due to, or partially due
to, the participants’ forgetting of knowledge learned from others while train-
ing on their local data. Therefore, in this paper, the knowledge maintaining is
regarded as an essential theme and serves as the primary strategy of our proposed
method, FedKL.

3.2 FedKL with Distillation

A very simple but effective way to overcome catastrophic knowledge forgetting is
to apply knowledge distillation [8], with the assumption that the output probabil-
ities of a neural network are able to represent the knowledge it has learnt [14,22].
We follow this key discovery and further propose a novel algorithm, FedKL-Dist
(Federated Learning with Knowledge Lock - Distillation), which adds a distil-
lation loss term beside of the classification loss to “lock” the knowledge learned
from other participants.

Formally, in general, a federated classifier is locally trained by the loss

Lclf =
1
nk

nk∑

i=1

SoftmaxCrossEntropy(fΘ(xi), yi), (2)

where nk denotes the number of training samples on the k-th device (partici-
pant) and f(·) denotes the network with parameters Θ. This fundamental clas-
sification loss forces the network to predict xi to be as close to its target yi as
possible. However, it may incur significant knowledge forgetting if only adopt-
ing such a classification loss. For example, as we supposed in Sect. 3.1, there are
always “unknown classes” (the classes of which the samples do not appear on the
local device). Thus, the network tends to predict all the training samples to the
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probability of zero on these classes, which will consequently result in poor pre-
dictive performance on such “unknown classes”.

Therefore, to constrain the forgetting, we further apply a distillation loss on
the locally unknown classes. Supposing that there are M ′ of the total M classes
are unknown on a device, we firstly calculate the Sigmoid1 probabilities on the
M ′ classes of all the locally available samples. Formally, we have

δm
i = Sigmoid(fm

Θ (xi)), (3)

where δm
i denotes the i-th sample’s probability of the m-th unknown class pre-

dicted by the global model fΘ(·). Then, the distillation loss is defined as

Ldis = − 1
nk|M ′|

nk∑

i=1

∑

m∈M ′
[δm

i log(S(fm
Θ (xi))) + (1 − δm

i )log(1 − S(fm
Θ (xi)))] ,

(4)
where S(·) denotes the Sigmoid function.

Intuitively, Ldis encourages the local optimization to maintain the probabil-
ities on the unknown classes, instead of forcing them to zero, whilst a similar
strategy also appears in several incremental learning algorithms and has been
empirically proved to effectively prevent knowledge forgetting [14].

The local update process has been summarized in Algorithm 1. Moreover,
considering the trade-off between the classification loss Lclf and the distillation
loss Ldis, we introduce a new hyper-parameter λ and the total loss of local
updates can be formulated as

L = Lclf + λLdis. (5)

We have searched the parameter λ and find that setting it to around M ′/M
leads to better performance.

3.3 Improve FedKL by Class Exemplars

Algorithm 2: Class Exemplar Selection
Input: Training samples from one class {xi}nc

i=1

Input: Number of exemplars required L
Input: Representation model g(·)

1 γ = 1
nc

∑nc

i=1 g(xi)/‖g(xi)‖;
2 for l ← 1 to L do
3 pl ← argmaxx∈X < γ, g(xi)/‖g(xi)‖ >;
4 X ← {xi|xi ∈ X , xi �= pl};
5 end
6 P ← {p1, . . . , pL};

Another popular strategy of overcoming knowledge forgetting to re-train the
model with representative exemplars [22]. Specifically, in incremental learning
1 Sigmoid(x) = 1/(1 + e−x).
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methods [14,22], in order to maintain the previously learned knowledge, people
try to store some representative samples as exemplars and then train the models
with a combination of new data and these exemplars. Similarly, it is also very
popular in federated learning to partially share the local data, which improves
the performance at the cost of a slice of privacy. Nevertheless, the sharing of
small amounts of data is not able to bring about sufficient improvement on the
performance, while sharing a large amount of data may violate the basic rules
of federated learning.

Therefore, for the efficiency and the least privacy cost, it is crucial to select
the most representative samples as exemplars. In this paper, we choose the exam-
ples by their representation. Formally, given a global model f(·) with a encoder
g(·), the normalized representation of each sample can be calculated by

γi =
g(xi)

‖g(xi)‖2 . (6)

We suppose that the most representative sample is the one being nearest to
the averaged representation, which can be formulated as

p = argmaxx∈X < γ, g(xi)/‖g(xi)‖2 >, (7)

where γ = 1/nk

∑nk

i=1 γi denotes the average of the nk representations and X is
the dataset of the nk training samples. As we describe in Algorithm2, we can
select the most L representative samples as exemplars for each class, where L
depends on the privacy constraint. Note that for a specific class, we randomly
choose participants to share exemplars if L is less than the number of participants
who have this class of samples.

Warming up Epochs. Notably, for a higher accuracy, the encoder g(·) should
be a well-trained model. For example, in practical training, we can at first train
the model with Algorithm 1 for some epochs and then use the trained model as
g(·), after which we continue training the model with both local data and the
shared exemplars.

4 Experiments

4.1 Experiment Settings

Datasets. We evaluate our method an the baselines on image classification
datasets, including:

– MNIST handwritten digit database2, containing 60k images for train-
ing and 10k for evaluation, drawn from ten classes.

– CIFAR-10 and CIFAR-100 [14], the colored images drawn from 10 and
100 classes, respectively. Both CIFAR-10 and CIFAR-100 have 50k
training images and 10k evaluation images.

2 http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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We split the complete dataset to 100 parts in order to analogue the 100
participants in federated learning. As we introduce in Sect. 3.1, each participant
only accesses partial classes. Specifically, on each device (participant), there are
at least two and at most Mmax classes, where intuitively a higher Mmax means
a lower heterogeneity. Since we do not study the unbalancedness in this paper,
all the participants have a similar number of local samples in our experiments.

Neural Network Architectures. As the prior works did [11,15,20], we use
convolutional neural networks (CNNs) as base models to evaluate our method
and the baselines. Specifically, the 16-layer VGG network [27] and the 18-layer
ResNet [7] are employed.

Baselines. In our experiments, we mainly compare our method with the fol-
lowing federated learning algorithms:

– Federated Averaging [20]. Federated Averaging (FedAvg) algorithm is
the most commonly used prototype in federated learning, with simply
the classification loss in local update steps.

– FedProx [15]. FedProx is one of the most competitive federated learn-
ing method, with an additional term of loss function μ/2‖Θ − Θt‖2
that constrains the optimization on heterogeneous data3.

– SCAFFOLD [11]. SCAFFOLD is another competitive federated learn-
ing method which tackles the heterogeneity issues with the concentra-
tion on “client-drift”, where the classification loss is modified to track
the optimization path.

– Centralized training. Centralized training serves as the upper bound
of federated learning performance, where the model is directly trained
on the entire dataset.

Note that the strategies adopted in both FedProx and SCAFFOLD can also
be regarded as methods to get over knowledge forgetting. However, the primary
difference between our method and these two algorithms lies in that FedKL
directly constrains the model outputs, while FedProx and SCAFFOLD focus on
constraining the parameter updates. Therefore, it is valuable to compare the
output-based method (FedKL) with such parameter-based approaches (FedProx
and SCAFFOLD) on their capacity in maintaining knowledge.

4.2 Predictive Accuracy

In this section, we explore the test accuracy of our method FedKL and the
baselines on the image classification datasets introduced in Sect. 4.1. For a com-
prehensive comparison, we explore their performance under and 100-split data
partitioning, which is summarized in Table 1. We set Mmax = 2 for all the
3 Θ denotes the parameters of the model and Θt denotes the parameters at the t-th

round.
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Table 1. Test accuracy (%) under 100-split data partitioning with Mmax = 2. We
report the average results and standard deviations of five times repeated experiments
with different random seeds. The best results for each network architecture are bolded.

Network Dataset MNIST CIFAR-10 CIFAR-100

Vgg-16 Centralized (upper bound) 99.13 ± 0.08 91.09 ± 0.47 72.79 ± 0.32

FedAvg 94.38 ± 1.71 57.21 ± 0.31 24.11 ± 0.44

SCAFFOLD 94.31 ± 0.54 58.31 ± 1.02 23.12 ± 0.11

FedProx - μ = 0.01 94.37 ± 1.12 59.25 ± 3.08 25.38 ± 0.72

FedProx - μ = 0.001 92.12 ± 0.75 58.69 ± 0.73 25.93 ± 0.34

FedKL - λ = 0.01 (ours) 96.12± 0.31 60.67± 0.75 27.23 ± 0.47

FedKL - λ = 0.02 (ours) 95.57 ± 0.61 59.96 ± 0.23 27.62± 0.51

Res-18 Centralized (upper bound) 99.57 ± 0.14 94.35 ± 0.27 74.28 ± 0.45

FedAvg 94.81 ± 0.40 59.27 ± 0.76 25.32 ± 0.72

SCAFFOLD 95.17 ± 0.38 60.34 ± 0.85 24.97 ± 0.49

FedProx - μ = 0.01 95.08 ± 0.19 60.45 ± 0.42 26.10 ± 0.61

FedProx - μ = 0.001 93.11 ± 0.70 61.16 ± 0.22 26.14 ± 0.24

FedKL - λ = 0.01 (ours) 96.97± 0.17 62.77± 0.54 28.17 ± 0.41

FedKL - λ = 0.02 (ours) 96.29 ± 0.72 62.50 ± 0.32 28.77± 0.1

three datasets to simulate a highly heterogeneous data distribution. Moreover,
as there are important hyper-parameters that may affect the performance (μ in
FedProx and λ in FedKL), we test their accuracy under two parameter settings
respectively.

As reported in Table 1, our method outperforms the baselines with both
Vgg-16 [27] and ResNet-18 [7] network architectures. Notably, the accuracy gap
between FedKL and centralized training is decreased to 2.60% on MNIST with
ResNet-18 adopted. On CIFAR-10 and CIFAR-100, FedKL achieves the accuracy
of over 62% and 28%, respectively, which significantly outperforms the prior
methods.

4.3 Effect of Class Exemplars

Further, we explore the effect of the partially data sharing algorithm we proposed
(see Algorithm 2). For direct comparison, we use the same data partitioning
settings as Sect. 4.2, i.e., k = 100, Mmax = 2, and add 10 (one for CIFAR-100)
globally shared samples per class selected by Algorithm 2.

As summarized in Table 2, a total number of 100 shared samples lead to
about 1% and 3% accuracy increase on MNIST and CIFAR-10, respectively (10
samples from each of the 10 classes). Moreover, it also indicates that the exem-
plar sharing algorithm performs better on FedKL than other baseline methods.
For example, on CIFAR-100 with Vgg-16 architecture, sample sharing brings
about 2.11% accuracy improvement on FedKL, while it is only 1.23% on FedAvg.
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Fig. 1. Performance under different number of shared exemplars in each class.

Furthermore, to fully examine the effect of data sharing, we evaluate its per-
formance with different number of exemplars. As displayed in Fig. 1, the par-
tially data sharing significantly benefits our method and the baseline algorithms,
which demonstrates the potential of exemplar sharing in the cases of low privacy-
sensitivity.

Table 2. Test accuracy (%) with class exemplars adopted. The datasets are divided
into 100 parts with Mmax = 2 and the number of shared exemplars in each class is
ten for MNIST, CIFAR-10 and one for CIFAR-100. We report the average results and
standard deviations of five times repeated experiments with different random seeds.
The best results for each network architecture are bolded.

Network Dataset MNIST CIFAR-10 CIFAR-100

Vgg-16 Centralized (upper bound) 99.13 ± 0.08 91.09 ± 0.47 72.79 ± 0.32

FedAvg 94.89 ± 0.32 58.14 ± 0.50 25.34 ± 0.72

SCAFFOLD 94.75 ± 0.48 59.85 ± 0.85 24.61 ± 0.49

FedProx - μ = 0.01 94.83 ± 0.93 60.59 ± 0.84 26.29 ± 0.57

FedProx - μ = 0.001 92.87 ± 0.36 60.26 ± 0.42 27.42 ± 0.82

FedKL - λ = 0.01 (ours) 96.84± 0.45 63.23± 0.66 29.35 ± 0.35

FedKL - λ = 0.02 (ours) 96.21 ± 0.36 62.10 ± 0.49 29.73± 0.24

Res-18 Centralized (upper bound) 99.57 ± 0.14 94.15 ± 0.27 74.98 ± 0.45

FedAvg 95.34 ± 0.19 60.64 ± 0.12 26.35 ± 0.72

SCAFFOLD 95.83 ± 0.20 61.80 ± 0.12 26.13 ± 0.56

FedProx - μ = 0.01 95.76 ± 0.26 61.88 ± 0.34 27.19 ± 0.61

FedProx - μ = 0.001 93.89 ± 0.61 62.12 ± 0.75 27.83 ± 0.47

FedKL - λ = 0.01 (ours) 98.30± 0.13 65.17± 0.21 30.63 ± 0.14

FedKL - λ = 0.02 (ours) 97.46 ± 0.34 64.63 ± 0.32 30.94± 0.30
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5 Conclusion

A major challenge in federal learning is overcoming the impact of heterogeneous
data distributions on model accuracy and convergence. To tackle this problem,
our proposed FedKL maintain the global knowledge by introducing knowledge
distillation techniques. FedKL can be applied to any CNN techniques to increase
its decentralized learning performance. Furthermore, we explore the benefits of
introducing shared exemplars (a fraction of local data) to FedKL. Comprehen-
sive experiments demonstrate the effectiveness of our proposal compared to the
existing algorithms.
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Abstract. Federated learning allows multiple clients to train a global
model without data exchanging. But in real world, the global model is
not suitable for all clients because they may hold heterogenous data and
have personalized and individual demands, which will directly weaken
the motivation of them to participate in federated learning. To make
each client benefits from federated learning, researchers propose to train
personalized models from global model using local data. However, the
lack of raw data in the model retraining process will lead to the challenge
of forgetting, which can deprive the personalized model of the benefits
gained from federated learning. In extreme cases (e.g., the client lacks
certain classes of data), the ability to recognize the lacked data may
even be completely forgotten. To this end, we propose a local adaptation
method to overcome forgetting, which add the generator synthetic data
to local adaptation to realize model updating incrementally. We test our
method on real-world datasets, and the results show that when adopting
the proposed method on local adaptation, the clients can get flexible
adaption ability to new data as well as keep the original recognition
capability of the global model even in extreme cases.

Keywords: Federated learning · Local adaptation · Incremental
learning · Knowledge distillation

1 Introduction

Data is an important resource to drive machine learning. With the extensive use
of intelligent devices (such as mobile phones, intelligent vehicles, and wearables),
there are a lot of data stored on these edge devices. Traditional machine learning
needs to aggregate data to the central server to complete the model training,
which is impossible or undesirable from a data privacy or limited transmission
bandwidth point of view. Federated learning, as a decentralized approach, allows
clients to complete global model training without exchanging data [1]. In feder-
ated learning, clients only need to use local data to train the current global
model, and the central server aggregates the update results (such as model
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parameters or gradients) of the clients to complete a round of global model
update.

As an attractive approach to fully use the large amount of data to improve
the intelligence of applications, federated learning also faces challenges brought
by heterogeneities of both data and clients. First, clients often hold heterogenous
data due to they collect their data independently. For clients with insufficient
data to train the model, they will harvest the global model in the federated
learning process. However, for clients with sufficient data, it is controversial
whether they can benefit from federated learning [2]. Yu et al. [3] point out that
some clients can not benefit from federated learning due to the global model is
not as accurate as the local model trained only with their own data, which will
eventually decrease their motivation to participate in federated learning. Second,
clients usually have personalized and individual demands, which are hard to be
met by a single global model. For example, since the global model is always
not trained across all the clients, a client who owned specified data may not be
selected at any round at all [4], to whom the global model is not suitable. In
addition, some clients may continuously receive new or even new classes of data
(for example, a roadside unit in an intelligent transportation system may receive
new traffic data showing an accident caused by a new type of event), which the
global model cannot recognize.

To make each client benefit from federated learning, researchers propose to
use personalization techniques, so that each client can get a separate personalized
model eventually. The work in this field can be divided into two categories. One
is to modify the federated learning process for personalization, mainly including
federated multi-task learning [5] and federated meta-learning [6]. The other is
local adaptation, in which, the local data is adopted to retraining the global
model by the methods of transfer learning, domain adaptation, and fine-tuning
[7].

The advantage of local adaptation is that it can be integrated into the training
process of federated learning naturally. However, the existing local adaptation
methods are usually the extension of transfer learning in non-federated learning
scenarios. Proposing a local adaptation method according to the characteristic
of federated learning is an area received increasing attention [8]. We note that
the global model has excellent generalization performance under the training of
all client data. However, some abilities of it may lose in local adaptation if the
client does not hold all classes of data, which is common for clients due to limited
memory.

How to preserve the performance of the global model during local adaptation
is a key problem, which is similar to the problem faced in incremental learning.
The purpose of incremental learning is to overcoming catastrophic forgetting [9]
in machine learning, which requires a model to continuously learn new knowledge
from new samples without forgetting the old knowledge. The process of model
adaptation can be regarded as incremental learning to realize learning local
data without forgetting the knowledge of the global model. In order to apply
incremental learning to local adaptation in federated learning, we have to deal
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with the following challenges: (1) For privacy reasons, the raw data for training
the global model is unavailable; (2) This process needs to be integrated into the
federated learning process; (3) Considering the heterogeneity of client computing
power, we should reduce the computing cost as much as possible. Due to these
challenges, most incremental learning methods are difficult to extend to local
adaptation.

To this end, we propose a new local adaptation method, which does not
need to change the process of federated learning, so that can be integrated into
existing federated learning methods naturally. The key idea of our method is
allowing clients to use the synthetic data (generated by the generator trained in
the central server) for local adaptation to overcome the catastrophic forgetting
problem. In addition, we add variable weights to deal with the challenge of
imbalance in the number of different classes of local data. To the best of our
knowledge, it is the first work to focus on the catastrophic forgetting challenge
of local adaptation in federated learning.

The contributions of this paper are summarized as follows.

– We propose a local adaptation method to overcome forgetting, which trains
a generator in the central server by using the global model and adds the
synthetic data in the process of model adaptation to maintain the benefits
gained from federated learning.

– We test our method on real-world datasets. And the results show that our
method can bring the personalized model both flexible adaption ability to new
data and original recognition capability of the global model even in extreme
cases.

2 Related Work

Personalization Techniques for Federated Learning. Chen et al. [10] pro-
posed FedHealth, which implements data aggregation through federated learn-
ing, and then trains personalized model through transfer learning. Arivazhagan
et al. [11] proposed FedPer, in FedPer, the model is divided into the base layers
and the personalization layers. They proposed to train the base layers through
federated learning, and the client retraining its own personalization layer. Fallah
et al. [6] proposed federated meta-learning, which corresponds the global and
personalization model training process to meta-learning and meta-testing.

Incremental Learning Using Synthetic Data. Using synthetic data is an
important way to realize incremental learning. Shin et al. [12] proposed train
a generator while training the model and use the synthetic data to replay the
knowledge of old class data. Yin et al. [13] proposed get synthetic data by model
deepInversion for incremental learning. Although their work avoid training a
generator in the process of model training, their method is hard to deal with the
challenges of federated learning, because the client needs powerful computing
power if the synthesis data process is completed on the client, and need to take
on huge communication traffic if it is completed on the central server.
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Training Generator Without Data. Goodfellow et al. [14] proposed to use
adversarial neural network to train the generator, but their method needs data
to train the discriminator at the same time. Some work focus on training a
generator directly from the classification model without raw data [15]. The main
idea of these work is to treat the classification model as a fixed discriminator
and let the generator generate images that can be judged as a certain class of
images with high confidence.

Our method belongs to local adaptation. Different from the related work,
our work focus on overcoming the catastrophic forgetting problem of local adap-
tation in federated learning. This is similar to the idea of incremental learning.
Considering the lack of raw data for clients, inspired by [13] and [15], we pro-
pose to train generator in central server. And the clients use the generator to
synthesize data to replay the knowledge of global model.

3 Overcoming Forgetting in Local Adaptation
of Federated Learning Model

We consider a federated network consisting of N clients, and each client k has
their private data xk. We use federated learning to train the global model w
without exchanging data. But a single model can not meet the needs of all
clients. Therefore, some clients need to use the global model to further adapt
locally. We consider such clients, who have personalized requirements but do not
have all classes of data recognized by the global model (this setting is common
in some work of federated learning [1]). Their personalized model may lose the
ability to identify missed classes of data due to catastrophic forgetting. Moreover,
this problem will be difficult to solve because it cannot obtain the information
of other clients’ data. Our goal is to propose a local adaptation method that can
overcome forgetting.

3.1 Overview of Our Method Framework

As shown in Fig. 1, which consists of a cloud server and multiple clients, clients
hold heterogeneous data and have personalized and individual demands.

The whole process can be divided into three steps, the first step is federated
learning. Our local adaptation method does not need to change the federated
learning process, so it can be integrated into various federated learning methods.
Here we use the FedAvg [1], in which a small number of clients are randomly
selected to participate in each round of training, the selected client will receive
the current global model w and update it with local data, then upload the
gradient, and the central server will aggregate the update to complete a round
of training. The global model is not suitable for all clients due to non-iid data
distribution and personalized demands. Therefore, the following local adaptation
steps are needed. The second step is completed on the central server. After
federated learning, the global model is used as a fixed discriminator to train a
generator G. The generator G and global model w are then sent to all clients.
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The third step is done in the clients on demand, they use local data and synthetic
data generated by generator to train personalized models. Next we will introduce
the details of generator training and local adaptation.
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3.2 Generator Training

If it is impossible to get raw data, training a generator and add the synthetic
data to the training process is an important way to realize incremental learning.
It can be extended to federated learning by adding generator synthetic data
to local adaptation. But the traditional generator training needs data to train
the discriminator, which is difficult to accomplish on a central server because of
privacy. We notice that some work focus on training the generator in distributed
data by federated learning [16]. However, these techniques would bring a large
additional cost for clients.

Some work proved it is possible to get data from a trained model and using
them training a new model without raw data [13–15]. Yoo et al. [15] take the
trained model as a fixed discriminator to train the generator. Inspire by this
work, we try to use the trained global model as a fixed discriminator to train
the generator.

Our purpose is to train a generator G that outputs x̂i with input
(
yi, zi

)
,

where zi is noise and yi is the label of x̂i that is represented as a one-hot vector, i
means index. We hope that x̂i can be used to replay the knowledge of the global
model. To this end, we need to treat the global model as a fixed discriminator
and train an decoder D at the same time. The decoder is designed to make the
synthetic data more diverse and it will not be used in local adaptation. The
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objective function is as

l(B) =
∑

x̂i∈B

(
lcls(yi, x̂i) + aldec(zi, x̂i)

)
+ bldiv(B), (1)

where B is a batch of sampled variables, a and b are used to adjust the balance
between loss items.

The loss lcls is obtained by calculating the cross-entropy between yi and
yT

(
x̂i

)
(the output of global model under input x̂i), as shown in (2). The main

idea of it is to treat the classification model as a fixed discriminator. Because
the classification model is fully trained by data, if the synthetic data is close to
the raw data, the classification model will judge it as a certain class with high
confidence, that is, the output will be close to the one-hot vector.

lcls(yi, x̂i) =
∑

i

Hcross

(
yi, yT

(
x̂i

))
(2)

If we optimize G only for lcls, the synthetic data is likely to lack diversity. In
this case, The personalized model may only retain part of the knowledge in the
global model. To avoid it, we added ldec and ldiv. ldec is calculated as

ldec(zi, x̂i) = ‖zi − D(x̂i)‖22, (3)

where D(x̂i) is the decoder’s output of synthetic data x̂i, ‖·‖22 is the Euclidean
distance. Optimizing D for ldec, the decoder will restore the synthetic data to
zi. The generator will embed the information of zi in the synthetic data x̂i so
that the decoder can recover successfully.

ldiv is calculated as

ldiv(B) = exp

(

− ∑

(y1,z1)∈B

∑

(y2,z2)∈B
‖ z1 − z2 ‖22 · ‖ (x̂1, x̂2)‖1

)

, (4)

where ‖·‖1 is Manhattan distance. Equation (4) calculates the distance between
G

(
y1, z1

)
and G

(
y2, z2

)
and is multiplied with

∥
∥z1 − z2

∥
∥2

2
. The exponential

function makes ldiv to produce a positive value. ldiv increases the distance
between synthetic data to bring diversity.

3.3 Local Adaptation

Our local adaptation approach is shown in Fig. 2. First, we initialize the output
layer of the global model as the initial parameters of personalized model, and
then use the local data and the synthetic data generated by generator to fine-
tuning.

Soft labels contain more information than hard labels, so we use knowledge
distillation [17] to get soft labels and realize knowledge transfer. The synthetic
data will input to the global model and the personalized model, and the output
of the global model will be used as soft labels to train the personalized model.
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If the personalized model has more output nodes than the global model (need
to learn new classes of data), a certain number of zeros need to be added to
the soft labels to match the new output vector. The soft labels will make the
personalized model tend to have the same output as the global model in training,
thus transferring the knowledge of the global model to the personalized model.
The loss as (5), where t is the category of synthetic data, nt is the amount of
synthetic data in class t, Lt is the loss of synthetic data of class t, x̂ is synthetic
data, yS(x̂i

t) is the personalized model’s output of input x̂i
t, yT (x̂i

t) is the global
model’s output of x̂i

t.

Lt =
1
nt

∑

i

Hcross

(
yS

(
x̂i

t

)
, yT

(
x̂i

t

))
(5)

Considering that the client may have an unbalanced amount of data for each
category, we design a variable weight to weight the synthetic data according to
the category. The calculation definition of the weight is as

Lgen =
1
C

C∑

t=1

1
eλmt

Lt, (6)

where mt is the amount of local data in class t, C is the number of different
classes, λ is the weight coefficient. For a certain class of t, the weight will decrease
with the increase of mt. When λ increases, the weight will decrease under the
same mt, the effect of local data on model training will increase. When λ set to
0, all synthetic data have the same weight. We can flexibly adjust λ according
to the demand of client.

Inspired by [18], in which using new classes of data for knowledge distillation
to overcome forgetting, we add local data into the process of knowledge distilla-
tion to realize knowledge transfer. The local data will input to the global model
and the personalized model. Different from synthetic data, the local data may
be divided into a certain class with high confidence through the global model.
And the output will be close to the one-hot vector. To get soft labels with more
information, we use (7) to replace the activation function of the global model
output layer. When E = 1, (7) is equivalent to softmax activation function. The
larger E is, the farther away the soft label will be from the one-hot vector. a,
j are the node of the output layer, za is the input of the activation function of
the output layer node a, and ya is the output of the output layer node a. We
use (7) to calculate the softened global model output yT (xk) of local data xk,
and use (8) to calculate Ls, where m is the amount of local data, yS(xk) is the
personalized model output of local data.

ya =
e

za
E

∑C
j=1e

zj
E

(7)

Ls =
1
m

∑

i

Hcross(yS(xi
k), yT (xi

k)) (8)
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The objective function of local adaptation is as

LLA =αLgen + (1 − α)Lnew(yS(xk), yk) + βLs, (9)

where Lnew is the cross-entropy between the personalized model output yS(xk)
and the labels yk of the local data xk. α and β is used to adjust the weight
of synthetic data and local data. When α set to 0, the synthetic data does not
participate in training.

4 Experiment

Here we introduce some details of our experiment.

Datasets: We use the following datasets in experiment.

– MNIST: MNIST is a commonly used dataset, which consists of 60000 training
images and 10000 testing images. The images are handwritten digits with
28 × 28 pixel divided into 10 classes (from numbers 0 to 9).

– SVHN [19]: SVHN consists of 73257 training images and 26032 testing images.
These images come from the number in the street view photo with the size
of 3 × 32 × 32 and are divided into 10 classes (from numbers 0 to 9).

Model: In the following experiments, we use Lenet-5 for MNIST and ResNet-14
[20] for SVHN.

Default Parameter Settings: We set α to 0.8, β to 0.5, E to 2, λ to 0.002 in
all experiments if there is no explanation (we will test the influence of different
parameters on the accuracy later).

Other Settings: In the federated learning phase, we simulate 10 clients and
train a global model that can identify 8 classes of data (from numbers 0 to 7).
We take 2000 images as the testing set.

Comparison Algorithms: We investigate advanced incremental learning
methods and extend some methods that can be extended to federated learn-
ing local adaptation for comparison.

– LwF: LwF is the incremental learning method proposed by Li et al. [18]. We
input the local data into the global model, and the output is added to the
training as a soft label to realize LwF (it is equivalent to α = 0).

– inFTsiw: inFTsiw is the incremental learning method proposed by Belouadah
et al. [21]. We implement inFTsiw in federated learning local adaptation
through the following steps. Firstly, the output layer weight of the global
model is standardized and stored, then the global model is initialized and
fine-tuning. Finally, the output layer weight of the model is standardized
and the node weight corresponding to the missed classes is replaced with the
stored one to obtain the personalized model.

– Global model: the model trained by federated learning.
– FT: retraining the output layer of the global model with local data.
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Some terms: Here we defining some terms that appear below.

– Missed classes: the classes of data that can be identified by the global model
and lacking in clients.

– New classes: the classes of data that can not be identified by the global model
in clients.

– Old classes: all classes except for the new classes.

Clients: We set 5 clients that need local adaptation. Table 1 shows the missed
classes and new classes of each client. For MNIST, we build their local dataset
by divide 2000 images and remove the classes that are not in Table 1. For SVHN,
we use the same method to build local dataset but divide 6000 images.

Table 1. Data category of each client.

Client 1 2 3 4 5

Missed classes 0,1,2 3,4,5 4,5,6,7 0,1,2 0,1,2

New classes 8,9 8,9 8,9 8 9

4.1 Accuracy Comparison

To study the accuracy of our method, we use the local data of 5 clients to
train the personalized model. The test set here consists of new classes and the
class can be recognized by the global model. Table 2 shows the accuracy of the
personalized model trained by our method and competitive algorithms. The
addition of synthetic data allows our method to achieve the highest accuracy on
each dataset and each client.

Table 2. Accuracy (%) of the personalized model trained by different methods.

Client 1 2 3 4 5

MNIST Our Method 94.4 93.58 92.15 95.22 96.09

Global Model 78.73 78.73 78.73 78.73 78.73

LwF 89.21 83.70 82.43 87.53 82.12

inFTsiw 89.05 81.00 82.64 85.44 88.26

FT 66.13 64.40 57.97 64.59 64.23

SVHN Our Method 84.93 83.96 82.43 87.57 87.38

Global Model 75.01 75.01 75.01 75.01 75.01

LwF 74.49 70.77 75.18 82.38 77.63

inFTsiw 79.56 77.03 74.46 82.77 83.59

FT 66.60 67.43 54.59 63.31 66.85
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4.2 The Performance of Overcome Forgetting

We further investigate the performance of our method to overcome forgetting.
Table 3 shows the recognition accuracy of personalized models trained by

our method on different clients for different classes of data. It can be seen that
although some classes of data are missing from the local dataset of the client,
our method can make the personalized model maintain the recognition ability
of these data in the global model (take client 3 for an example, although client
3 lacks classes 4, 5, 6, and 7 data, our method can retain the ability to identify
these data in the process of local adaptation).

Table 3. Average accuracy (%) of each class of the personalized model trained by our
method on 5 clients.

Dataset MNIST SVHN

Client 1 2 3 4 5 1 2 3 4 5

Missed classes 96.6 92.71 93.09 97.59 96.34 80.37 85.33 84.15 92.20 77.29

Old classes 97.27 98.36 99.5 96.79 97.83 92.44 92.55 93.66 93.32 92.96

New classes 83.9 82.93 86.98 80.21 86.60 73.00 60.42 52.99 50.72 82.68

To further investigate the performance of our method, we test the recogni-
tion accuracy of the personalized model trained by our method in client 1 for
various classes of data and compare it with the global model and the local model
trained only with local data. The local model we train for the SVHN is a simple
convolutional neural network, including two convolution layers and three full
connection layers, because the quantity of samples of local dataset is not enough
to train the complex Resnet-14 model.

As shown in Table 4, it can be seen that the global model cannot meet the
personalized needs of the client because it cannot recognize new classes of data
(numbers 8 and 9), while the local model cannot achieve high recognition accu-
racy because of the small amount of data, and cannot recognize missed classes
of data due to the lack of these classes of data (numbers 0, 1 and 2). The per-
sonalized model trained by our method can retain a certain identification ability
of the global model for missed classes and identify locally owned new classes of
data to meet the personalized needs of the client. Moreover, Comparing LwF
and inFTsiw, our method can achieve higher average accuracy.

4.3 Influence of Different Parameters on the Accuracy

We further investigate the impact of different parameters on the accuracy. Table 5
shows the accuracy under different parameters.

α is used to adjust the balance between real data and synthetic data. When
α is set to 0, synthetic data does not participate in training, and when set to
1, local data does not participate in training. Because the soft label does not
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Table 4. The accuracy of each class of the personalized model trained by our method
in client 1.

Class 0 1 2 3 4 5 6 7 8 9

MNIST Our Method 98.85 98.71 92.23 97.58 97.68 97.76 97.19 96.09 78.12 89.69

Global Model 99.42 99.57 99.08 98.06 98.61 98.32 96.62 97.56 0 0

Local Model 0 0 0 93.71 95.85 96.08 95.50 90.73 89.58 95.36

LwF 88.57 74.36 75.80 98.55 98.61 95.53 98.31 96.59 78.13 87.63

inFTsiw 97.14 62.39 98.17 91.79 95.85 93.85 94.94 76.10 86.78 93.30

SVHN Our Method 69.56 84.12 87.41 93.22 92.46 94.73 86.18 95.59 68.84 77.16

Global Model 93.47 94.70 95.69 94.06 93.96 92.98 92.10 93.08 0 0

Local Model 0 0 0 76.69 86.43 80.11 77.63 86.79 72.46 70.86

LwF 3.62 67.99 68.21 88.98 93.67 92.40 86.84 98.11 64.49 80.31

inFTsiw 92.03 53.70 72.19 88.98 77.39 91.81 84.87 86.79 65.94 81.89

contain the information of new class data, it can be seen that the recognition
accuracy of the model for new class data will decrease with the increase of α or
β. λ set to 0 means that the weight of all synthetic data are 1. Under this setting,
synthetic data has the same weight under all classes no matter they are or not
missed, which leads to lower accuracies of both the missed and the new classes.
λ set to ∞ means that the weight of synthetic data corresponding to the data
class owned by the client is 0. It can be seen that when the local data owned
by client perform uneven distribution across classes, adding variable weights to
the synthesis data can improve the average accuracy to a certain extent (take λ
equaling 0.002 for an example).

Table 5. Influence of different parameters.

α β λ

0.5 0.8 0.9 0.1 0.5 0.9 0 0.002 ∞
Missed classes 87.38 96.60 95.69 91.81 96.60 96.49 94.86 96.60 92.27

New classes 84.73 83.90 75.12 82.1 83.90 66.31 70.43 83.90 80.05

All classes 91.99 94.40 92.6 92.46 94.40 91.11 91.51 94.40 92.62

4.4 Synthetic Data

Figure 3 shows the synthetic data and raw data of MNIST and SVHN. Synthetic
data can be divided into a certain class with high confidence by the global model,
which can be used to replay the knowledge of the global model. It is observed
that although the generator synthesizes recognizable images for MNIST data
(mainly because they have a simple background), there is a big gap between
the synthetic data and raw data of SVHN, which are with complex backgrounds
(e.g., the guideboard or the number plate). That is to say, these synthetic data
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do not contain the private information of the client (such as the writing habits
of a certain client), which can avoid privacy problems.

Fig. 3. (a) Synthetic data of MNIST (left) and SVHN (right). (b) Raw data of MNIST
(left) and SVHN (right).

5 Conclusion

Our work focus on the catastrophic forgetting challenge of local adaptation in
federated learning and propose a local adaptation method to solve this problem.
Experimental results show that the proposed method can bring the personal-
ized model both flexible adaption ability to new data and original recognition
capability of the global model even in extreme cases.
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Abstract. Learning a Directed Acyclic Graph (DAG) structure from
observational data plays an essential role in causal inference and machine
learning. A recent advance in the area is that the DAG learning problem
was formulated as a continuous optimization problem and this provides a
new research line for leveraging powerful neural networks for DAG learn-
ing. Although several DAG learning algorithms using neural networks
(called neural DAG learning) have been proposed, they still face some
serious challenges, leading to unsatisfactory performance. To tackle this
issue, in this paper, we combine ideas from local DAG learning and neural
DAG learning techniques and propose a new Skeleton-Neural DAG (SN-
DAG) structure learning algorithm. The SN-DAG algorithm first learns
the structure skeleton of each variable using a local learning algorithm
to initialize the weighted adjacency matrix, then employ multilayer per-
ceptrons to optimize the weighted adjacency matrix for learning a DAG
structure, and finally it corrects wrong edges in the learnt DAG using
the learnt skeleton and v-structure identifying techniques. By conduct-
ing experiments on both synthetic and real datasets, experimental results
validate the SN-DAG algorithm compared to traditional DAG learning
algorithms and neural DAG learning methods.

Keywords: Directed acyclic graph · Neural DAG structure learning ·
Local structure learning

1 Introduction

DAG structure learning plays an important role in causal inference [21,26]
and machine learning [27,30]. It remains a critical challenge in both areas to
develop new methods for learning DAG structures. During the last decades,
many approaches to learning DAG structures have been proposed which are
mainly categorized into two classes: constraint-based and score-based methods
[4,6,7]. Constraint-based methods (e.g. Peter-Clark (PC) algorithm [25]) learn a
DAG structure using conditional independence tests, while score-based methods
(e.g. Greedy Equivalence Search (GES) algorithm [4]) employ a score function to
learn a best DAG structure. Both approaches formulate the DAG learning prob-
lem as a combinatorial optimization problem and require various local heuristics
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13280, pp. 626–638, 2022.
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to search over the combinatorial space of all possible DAGs with the acyclicity
constraint. However, this search space is always intractable when the number of
nodes in a DAG becomes large. Recently, Zheng et al. proposed NOTEARS [31],
a score-based method that formulates the DAG learning problem as a continuous
optimization problem. Instead of using traditionally greedy search methods, this
new approach can leverage continuous optimization methods to learn a DAG
through optimizing a weighted adjacency matrix. Importantly, inspired by it,
subsequent work links neural networks with DAG learning. Although several
neural DAG learning methods have been proposed [28,32], those existing algo-
rithms still face serious challenges. For instance, those algorithms always learn
an adjacency matrix with entries with non zero values, whereas it is difficult
to find a proper threshold to identify edges from the estimated entries in the
matrix. In addition, for each variable, they set all of the remaining variables to
their potential parents, resulting in the neural DAG learning algorithms intro-
ducing many extra edges before learning starts. Due to those issues, existing
neural DAG learning methods always learn an inaccurate DAG structure with
many extra edges and reversing edges, leading to an unsatisfactory performance.

In addition to learning a global DAG structure, many local DAG learning
algorithms also have been proposed to learn a local structure around a given
target variable. A local structure often refers to the parents and children of a
variable in a DAG. Existing local learning approaches mainly employ conditional
independence tests and can guarantee their correctness under certain assump-
tions. Moreover, they can be scaled to high-dimensional data.

Thus a question naturally arises: can we use the idea of local DAG learning
to improve neural DAG learning algorithms? In this paper, we present a new
algorithm for DAG structure learning, called Skeleton-Neural DAG learning (SN-
DAG). The algorithm combines ideas from local DAG learning and neural DAG
learning techniques in a principled and effective way. First, our SN-DAG algo-
rithm learns the local structure skeleton of each variable in a dataset respectively
and constructs a global DAG skeleton using the learnt local skeletons. Second,
it uses the global DAG skeleton to initialize the weighted adjacency matrix,
then employs neural networks, i.e. multilayer perceptrons (MLP), to optimize
the weighted adjacency matrix for estimating a DAG structure. Third, SN-DAG
employs the global DAG skeleton to correct extra edges in the DAG learnt at
the second step and further corrects reverse edges in the DAG updated using
v-structure identifying techniques.

The remaining paper is organized as follows. Section 2 briefly reviews exist-
ing work for DAG learning. Section 3 presents details of our proposed method.
Section 4 gives experiment results, and Sect. 5 concludes our work.

2 Related Work

In this section, we briefly review works related to DAG learning. In the past
decades, many DAG learning methods have been proposed, and they have for-
mulated the DAG learning problem as a combinatorial optimization problem [4]
and continuous optimization problem [31].
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In the combinatorial optimization problem, DAG learning methods are sub-
divided into two types, score-based and constraint-based approaches [8]. Score-
based algorithms such as GES [4], GIES [9], bnlearn [15,23], generally use a
score to measure the goodness of fit of different graphs over data, and then use a
search procedure to find the best graph [3]. In contrast, constraint-based meth-
ods, such as PC [25] and FCI [26], adopt conditional independence (CI) tests to
first assess whether there is an edge between two variables and then orient edge
directions [6]. As the search space of DAGs is combinatorial and exponential
with the number of variables, existing global DAG learning methods face scala-
bility issues [5]. To improve the efficiency of DAG learning, local-to-global DAG
learning methods were proposed which contain two steps: skeleton learning and
edge orientation. In the skeleton learning step, the local-to-global approach first
learns the local DAG skeleton of each variable in a dataset independently, then
constructs the global DAG skeleton (i.e. the undirected graph) using the learnt
local DAG skeletons. Here, the local DAG skeleton usually refers to the parent-
child (PC) set or the Markov Blanket (MB) set [21] of a variable in a DAG. The
representative local DAG skeleton learning algorithms include PC-simple [13],
HITON-PC [1], GSMB [16], and BAMB [14]. In the edge orientation step, edges
are oriented in the global DAG skeleton using CI tests or score functions. Based
on these MB or PC learning algorithms, several local-to-global DAG learning
methods were proposed, such as GSBN [16] and GGSL [7].

To avoid the combinatorial constraint, NOTEARS [31] transfers DAG learn-
ing problem to a continuous optimization problem. The authors formulate the
acyclic constraint as a smooth term and solve the problem using gradient-based
numerical methods. In that NOTEARS is specially designed for linear cases,
much subsequent work extends it with different types of neural networks to
adapt to nonlinear cases. DAG-GNN [28] reconstructs data using variational
auto-encoder and takes Evidence Lower Bound (ELBO) loss as its loss function.
GAE [19] abandons the variational part in DAG-GNN, takes graph auto-encoder
as its generative model and adopts least square loss. SAM [11] constructs its
generative model and optimizes an f-gan loss [20] using generative adversar-
ial network. Leveraging dependency among variable reconstruction residuals,
DARING [10] adds residual independence constraint in an adversarial way to
reduce reverse edges. Different from previous methods, aiming at leveraging all
the parameters of the neural network in representing the weighted adjacency
matrix, GraN-DAG [12] uses path products of the weights of its MLP generative
model to represent the matrix coefficients. MaskedNN [17] follows GraN-DAG
but applies the Gumbel-softmax approach to deal with the threshold problem.
To get rid of the problem that GraN-DAG is dependent on the depth of the
neural network, NOTEARS-MLP [32] indicates its weighted adjacency matrix
by exploiting the weights of the first layer of MLP and proves the validity.

Existing neural DAG learning approaches have tried different types of neu-
ral network models, loss functions and representations of adjacency matrix to
improve their performance, but still face many problems. Our method focuses
on addressing extra edges and reverse edges that exist in the DAG learnt by
neural DAG learning approaches and their poor performance in linear cases.
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Fig. 1. Overview of the SN-DAG algorithm.

3 Proposed Method

In this section, we give details of the proposed SN-DAG algorithm. As shown in
Fig. 1, SN-DAG consists of three learning phases as follows. At Phase 1, SN-DAG
first learns the local skeleton (i.e. parents and children (PC)) of each variable
and store corresponding separation sets of each pair of variables using an existing
local learning algorithm, then obtains an initial skeleton S using the learnt local
skeletons. A local skeleton of a variable is an undirected graph structure of the
variable without distinguishing parents from children, while a separation set
is a set of variables that makes two given variables conditionally independent
and is key to identifying v-structures in a DAG skeleton. At Phase 2, SN-DAG
first initializes the weighted adjacency matrix and generative model using the
local skeletons learnt in the previous phase, then employs a neural network,
i.e. multilayer perceptrons, to optimize the generative model with an acyclic
constraint to learn the DAG structure. At Phase 3, SN-DAG first leverages the
skeleton S achieved at Phase 1 to prune extra edges in the learnt DAG, then
corrects reversed edges with the v-structure identifying techniques. The SN-DAG
algorithm is described in Algorithm 1.

3.1 Identifying Skeleton Using Local Learning (Steps 1 to 8)

Existing DAG learning approaches with neural networks, such as DAG-GNN
[28] and NOTEARS-MLP [32], are built on the assumption that each variable
is generated by its parents. For each variable, these methods first construct a
generative model based on the functional causal model, and then leverage neural
networks to optimize generative models to make the learnt DAG fit the observed
data well. These methods encode a DAG using a weighted adjacency matrix A
learnt by these generative models, where each column represents the coefficients
in the functional causal model.
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In general, these methods initialize the weighted adjacency matrix with spec-
ified values, that is, the values of the diagonal elements and other elements of the
adjacency matrix being set to 0 and 1, respectively. In other words, a variable
considers all other variables as its candidate parents. However, this initialization
method often leads to the adjacency matrix corresponding to a complete graph.
Given a directed acyclic graph with d nodes, for each variable, there are at most
d−1 potential parents. That is to say, there are at most d(d−1) potential edges,
but the number of edges in the true graph is much smaller than those poten-
tial edges, especially in a graph with a large number of variables. This leads to
that existing methods not only remain many error edges but also remove many
correct edges in the process of DAG learning using neural networks.

To tackle this issue, we aim to initialize the weighted adjacency matrix using
a relatively accurate initial skeleton, where several error edges are removed but
the potentially correct edges are well retained. If there exists an edge between
variables Xi and Xj in the learnt local skeleton, then the values of Aij and Aji

are set to 1 in the weighted adjacency matrix. In this way, the generated model
can focus on the potential correct edges for reducing error edges.

To achieve this goal, a relatively accurate skeleton of each variable is needed
to initialize the weighted adjacency matrix. At Phase 1, from Steps 1 to 5, by
employing a well-established PC (parent and child) learning algorithm, called
HITON-PC [1] (any state-of-the-art PC learning algorithm can be used here),
SN-DAG learns the PC set (local skeleton) of each variable in a dataset, respec-
tively store the sepset sets for each pair of variables. Then from Steps 6 to 8, it
constructs the initial skeleton of a DAG S by the learnt local skeleton of each
variable and set Sij = 1 if Xi is in the PC set of Xj .

3.2 Learning a DAG Using Generative Model (Steps 9 to 15)

Given a data matrix X ∈ Rn×d with n samples and d variables, the relationships
between variables in a DAG G and its corresponding weighted adjacency matrix
A ∈ Rd×d are as follows. In A, if the absolute value of the element Aij (i, j =
1, ..., d) is bigger than a given threshold value, then there is a directed edge from
variable Xi to variable Xj in G. We can obtain the DAG by learning the weighted
adjacency matrix A. Assuming that the values of a variable are generated based
on its parents as in [31], the data generating procedure can be described as a
functional causal model (FCM) as follows:

Xj = fj(XPa(j;g)) + εj , j = 1, 2, ..., d (1)

where fj is a mapping function and εj is an additive noise.
In this paper, in Step 9, MLP generative models [32] are employed to estimate

true generative processes f = (f1, f2, . . . , fd) and used to generate reconstructed
data as follows:

X̂j = MLPj(X, θj) = σ(W (h)
j σ( · · · W

(2)
j σ(W (1)

j X))), j = 1, 2, . . . , d (2)
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Algorithm 1. SN-DAG
Input: Data matrix X ∈ Rn×d; Threshold T > 0.
Output: Binary adjacency matrix A ∈ Rd×d.

/*Phase 1: Get initial skeleton */
1: Set all the variables adjacent in G and initialize A and S to all zeros.
2: for i from 1 to d do
3: Find PC of Xi, note it as PCi, set Sij = 1
4: Get sepset Sep between Xi and Xj , record sepset(i, j) = sepset(j, i) = Sep.
5: end for
6: for each pair (Sij , Sji) in S that Sij �= Sji do

/*Set Xi and Xj not adjacent in the graph. */
7: Set Sij = Sji = 0
8: end for

/*Phase 2: Optimize generative model */
9: Create an MLP generative model as (2).

10: for each Sij = 0 in S do
11: Set the weight of the i-th column of the first layer of MLPj to zero.
12: end for
13: Generate ̂X = MLP (X, θ)

14: Compute F (X; θ) = L(X; θ) + λh(A(θ)) + ρ
2
|h(A(θ))|2 + c

∑d
j=1 ||A(θ)

(1)
j ||1,1.

15: Minimize F by updating θ, λ and ρ using augmented lagrangian method.
/*Phase 3: Prune and fix */

16: Set Aij = 1 if [A(θ)]ij = ||ith − column(A
(1)
j )||2 > T .

17: Find intersection of A and S.
/*Find v-structures */

18: for each triplet(i, j, k) in G that Aij + Aji = 1 and Ajk + Akj = 1 do
19: if Aik = Aki = 0 and Xj /∈ sepset(i, k) then
20: Set Aij = Akj = 1 and Aji = Ajk = 0(*)
21: end if
22: if h(A) = eA�A − d �= 0 then
23: Undo (*)
24: end if
25: end for
26: return A

where W
(k)
j is the weight of the k-th layer in MLPj and θj = (W (1)

j , . . . ,W
(h)
j ).

The weighted adjacency matrix A(θ) implied by the generative model can be
constructed as [32]:

[A(θ)]ij = ||ith − column(W (1)
j )||2, i, j = 1, ..., d (3)

where θ = θ1, . . . , θd. W
(1)
j is the weight matrix between input X and the first

hidden layer of MLPj and its i-th column represents weights between Xi and
MLPj . Thus, X̂j is independent of Xi if the i-th column of W

(1)
j are all zeros.

As we discussed in Sect. 3.1, the initialization values of the weighted adja-
cency matrix A will affect the quality of the DAG. Therefore, to obtain a
high-quality DAG, we initialize A using the skeleton learnt at Phase 1. If the
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edge between Xi and Xj does not exist in the learnt initial skeleton, we set
[A(θ)]ij = 0. To achieve this, from Steps 10 to 12, we set weights in the i-th
column of W

(1)
j to zeros according to Eq. (3).

We use these generative models to generate constructed data X̂ =
(X̂1, . . . , X̂d) and minimize the least square loss between original samples X

and reconstructed ones ̂X to optimize these generative models as follows:

L(X; θ) =
1
n

||X − ̂X||2F (4)

It means the least square loss between original data and reconstructed data. To
ensure acyclicity, we adopt the acyclic constraint proposed in NOTEARS [31]:

h(A) = eA�A − d = 0 (5)

where � is Hadamard product. It is proved in NOTEARS that h(A) = 0 if and
only if the graph G is acyclic. The optimization problem is then converted to:

min
θ

1
n

||X−X̂||2F + c
∑d

j=1
||W (1)

j ||1,1

s.t. h(A(θ)) = 0
(6)

From Steps 13 to 15, we solve (6) with augmented lagrangian method [31].

3.3 Correcting the Learnt DAG (Steps 16 to 25)

Once the weighted adjacency matrix A is learnt, we get the learnt DAG. However,
compared to the initial skeleton S learnt at Phase 1, we observe that although we
initialize A using the local skeleton to reduce extra edges at Phase 2, the learnt
DAG G still often contains extra edges. This further validates that it is hard to
select a suitable threshold for determining which variables have an edge between
them at Phase 2. To reduce extra edges, from Steps 16 to 17, we propose a simple
but effective strategy that only the edges in the learnt DAG are kept if they are
the intersection of the learnt DAG and the skeleton S. With the strategy, the
number of extra edges in the learnt DAG is reduced to a low level.

Consider a triplet (X,Y,Z), X and Y , Y and Z are adjacent while X and
Z are not, v-structure, which is of the form X → Y ← Z, plays a key role in the
orientation phase of constraint-based methods. For constraint-based methods, it
is the only one that can be oriented among the potential structures. If X and
Z are dependent but conditionally independent given Y , X ← Y ← Z, X →
Y → Z and X ← Y → Z all fit the situation but if X and Z are independent
but conditionally dependent given Y , only v-structure fits the situation. Thus,
v-structure is the only one can be directly identified among the structures.

To correct reverse edges, from Steps 18 to 25, we employ v-structure iden-
tifying techniques and the stored sepsets learnt at Phase 1. Given the updated
DAG, if a triplet (Xi, Xj , Xk) exists in the DAG satisfying that Xi and Xj ,
Xj and Xk are adjacent while Xi and Xk are not, SN-DAG employs v-structure
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identifying techniques and the stored sepsets learnt at Phase 1 to determine
whether the triplet (Xi, Xj , Xk) is a v-structure. If the triplet is a v-structure,
but the edge directions in the DAG are different from the v-structure, we correct
the directions in the triplet and keep the whole DAG acyclicity at the same time.

Meanwhile, in the following, we analyze why many reverse edges appear in
the DAG learnt by neural networks. In practice, local uncertainties cannot be
eliminated since a joint distribution allows its corresponding FCM to represent
either Xi → Xj or Xj → Xi [8], leading to that many reverse edges often exist
in the DAG learnt at Phase 2. Furthermore, the outputs of neural network based
approaches are largely affected by the initialization of the weights. For example,
given a DAG with two variables Xi and Xj , the ground truth is Xi → Xj

and their relationship is described as Xj = mXi + ε, ε ∼ N(0, 1) and Xi

obeys a uniform distribution from 0 to n. After applying min-max normalization,
we compute least square losses for doing linear regression with Xj = aXi + b
(Xi → Xj) and Xi = cXj + d (Xj → Xi). The losses are referred to as loss-
forward (LF ) and loss-backward (LB), respectively. According to augmented
lagrangian method, the continuous optimization problem is expressed as:

min F = (LB + LF ) + λ|h| +
ρ

2
|h|2 + cLsparse (7)

where λ|h|+ ρ
2 |h|2 is the acyclic constraint term and cLsparse is the sparse term.

To minimize the acyclic constraint term and the sparse term, only either Xi →
Xj or Xj → Xi can be kept. To minimize LB+LF , the optimizer tends to delete
Xj → Xi because LB is usually larger than LF while mistakes may occur if LB is
not much larger than LF . If sample size is 10000, for m = n = 0.1 or m = n = 1,
LB is around 120% larger than LF and the direction is easy to determine. When
m = n = 10, LB is only around 4% larger than LF and the gap between LB and
LF is narrowing with the increase of m and n. Furthermore, if we use neural
network as generators, LF may be larger than LB before optimizing because
existing methods initialize the weights between hidden units randomly, which
means that the optimizer may delete the true edge Xi → Xj to minimize F .

4 Experiments

Datasets. We adopt datasets generated from five benchmark Bayesian networks
(BNs) and a real dataset. Each BN is used to generate 5 datasets with 5000
samples to get average results. The number of variables is chosen from 27 to 441
for benchmark BNs.

Comparison Methods. We compare our method with 2 combinatorial opti-
mization methods, Peter-Clark (PC) [25] and GES [4], 4 state-of-the-art continu-
ous optimization algorithms, NOTEARS [31], NOTEARS-MLP [32], DAG-GNN
[28], and ABIC [2]. On the real dataset, we add GOLEM [18], NOCURL [29],
SAM [11], MaskedNN [17], LINGAM [24] and bnlearn [15,23] for comparison.
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Fig. 2. Results on benchmark BNs.

Evaluation Metrics. We choose the following metrics to evaluate the methods:

(1) Structural Hamming Distance (SHD): SHD is the number of error edges
including reverse edges, extra edges and missing edges.

(2) True Positive Rate (TPR): TPR is the proportion of correct edges in the
learnt graph to total edges in the true graph.

(3) False Discovery Rate (FDR): FDR is the proportion of false edges in the
learnt graph to total edges in the true graph.

(4) Reverse Proportion (RP): RP is the proportion of reverse edges to the sum
of true edges and reverse edges in the learnt graph.

In the following figures and tables, (↑) means the higher the better and (↓)
means the lower the better.

4.1 Experiment Results of Benchmark BNs

We select five benchmark BNs to generate data, i.e. alarm, barley, insurance,
mildew, and pigs. The generative mechanism is as follows: If the predefined DAG
is A ∈ Rd×d, then for each Xj , Xj ∼ N(

∑d
i=1 AijXi, 1). If Xi is not a parent

node of Xj , the coefficient of Aij is zero, else it is sampled from (−1,−3/4) or
(1, 5/4) (at a 50 percent rate) and Z ∼ N(0, 1). The average results of TPR,
FDR, SHD and RP are shown in Fig. 2. Note that ABIC failed to get results on
the pigs network and this is why its result is empty there.

From Fig. 2 we can see that:

(1) SN-DAG performs better than other continuous optimization approaches on
all metrics and is competitive to the PC algorithm. Our results on TPR,
FDR and SHD prove that our skeleton is helpful to focus on true edges
and cut extra edges. From RP we can see that the v-structure identifying
technique greatly improves the orientation accuracy of the algorithm.
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(2) DAG-GNN, NOTEARS-MLP perform poorly partly because their genera-
tive models are specially designed for nonlinear cases, ABIC performs better
than them but does not adapt to high-dimensional data, such as “pigs’.

(3) PC outperforms the other algorithms on most tasks as conditional indepen-
dence tests are quite suitable for linear cases while GES is unstable as the
number of nodes increases.

4.2 Experiment Results of Real Data

In Table 1, we compare the algorithms on a real dataset [22] corresponding to a
protein network problem. The dataset consists of n = 7466 observational samples
and its ground truth graph with 11 nodes and 17 edges is provided in [22].

We can conclude from Table 1 that:

(1) SN-DAG outperforms its rivals especially on TPR and RP and performs well
on FDR and SHD. This illustrates that SN-DAG also performs better than
its rivals on real data.

(2) The performance of continuous optimization approaches is comparable to
that of traditional methods in the real setting here, which proves that they
have their inner advantages.

Table 1. Results on real dataset.

Algorithms TPR(↑) FDR(↓) RP(↓) SHD(↓)

SN-DAG 0.588 0.583 0.167 19

NOTEARS 0.412 0.500 0.300 14

GOLEM 0.353 0.727 0.400 23

NOCURL 0.294 0.667 0.375 19

NOTEARS-MLP 0.412 0.720 0.462 22

DAG-GNN 0.294 0.800 0.500 27

SAM 0.235 0.818 0.600 26

MaskedNN 0.294 0.800 0.500 27

ABIC 0.471 0.810 0.500 35

PC 0.412 0.720 0.417 23

GES 0.353 0.824 0.600 30

LINGAM 0.412 0.588 0.417 15

bnlearn 0.235 0.846 0.667 27

4.3 The Effect of v-structure Identifying Technique

In Table 2, we compare the results of SN-DAG before and after applying v-
structure identifying technique and note them as “BeforeV’ and “AfterV’ respec-
tively. The comparison in the table shows that v-structure identifying technique
can effectively reduce reverse edges.
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Table 2. The effect of v-structure identifying technique

Correct Reverse Correct Reverse Correct Reverse

Dataset Alarm Barley Insurance

BeforeV 21.4 15.6 27.8 24.2 17.4 16.4

AfterV 34.2 2.8 43.4 9 23.2 10.4

Dataset Mildew Pigs Cyto

BeforeV 16.8 16.8 231.2 206.8 9 3

AfterV 28.8 4.8 423.2 14.8 10 2

5 Conclusion

In this paper, we propose a new SN-DAG method to deal with the problems
lying in existing continuous optimization approaches for DAG learning. The
experimental results show that our SN-DAG algorithm is robust to adapt to
linear and real settings and it is effective to reduce extra and reverse edges for
learning a more accurate DAG than existing continuous optimization based DAG
learning approaches.
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Abstract. Collaborative learning such as federated learning enables to
train a global prediction model in a distributed way without the need
to share the training data. However, most existing schemes adopt deep
learning models and require all local models to have the same archi-
tecture as the global model, making them unsuitable for applications
using resource- and bandwidth-hungry devices. In this paper, we present
CloREF, a novel rule-based collaborative learning framework, that allows
participating devices to use different local learning models. A rule extrac-
tion method is firstly proposed to bridge the heterogeneity of local learn-
ing models by approximating their decision boundaries. Then a novel
rule fusion and selection mechanism is designed based on evolutionary
optimization to integrate the knowledge learned by all local models.
Experimental results on a number of synthesized and real-world datasets
demonstrate that the rules generated by our rule extraction method can
mimic the behaviors of various learning models with high fidelity (>0.95
in most tests), and CloREF gives comparable and sometimes even better
AUC compared with the best-performing model trained centrally.

Keywords: Collaborative learning · Heterogeneous participants · Rule
extraction · Federated learning · Knowledge fusion

1 Introduction

Although machine learning has made significant breakthroughs in many
domains, existing learning models, especially deep neural networks, rely on the
availability of large amounts of quality training data to achieve satisfactory
performance [12]. However, in various application fields such as healthcare and
finance, regulations and consumer’s concerns hinder the organizations to share
their data with each other, therefore limiting the opportunity to build powerful
predictive models for real-world problem solving.

Federated Learning (FL) has been proposed to address the above
challenge [13]. Unlike traditional centralized learning techniques, FL enables
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13280, pp. 639–651, 2022.
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multiple parties to build a high-performance model under the orchestration of a
central server that aggregates the parameters of locally trained models, thereby
eliminating the need to share local training data. However, a widely accepted
assumption for FL is that local models employ the same architecture as the global
model so as to produce a single global inference model [11]. This brings several
limitations. Firstly, most implementations of federated learning use the deep neu-
ral network model, whose number of parameters to be learned grows significantly
with the increase of network size [9]. This requires all participating devices to have
both high computation capability and large communication bandwidth. However,
in reality both capabilities may be limited and can differ significantly among par-
ticipants. Hence, the global model complexity will be constrained by the most
indigent participant. Secondly, the training data held by different participants can
vary in both size and distribution, making it reasonable for different participants
to apply different types of machine learning models. If all participants have to
train the same model, the finally trained model may not achieve the best perfor-
mance. Moreover, many real-world applications (e.g. IoT and finance) generate
tabular data with low or moderate dimensions, making it unnecessary and even
unsuitable to use complicated and less-interpretable learning models.

In this paper, we propose a novel “Collaborative learning with optimized Rule
Extraction and Fusion” (CloREF) framework, that enables multiple heteroge-
neous participants to build a powerful global learning model without sharing
their training data. Unlike FL, our learning framework allows each participant
to train its own best-performing learning model, without needing to conform to
the same model type or structure. The key idea is to use rules to bridge mul-
tiple heterogeneous learning models. We propose a new rule extraction method
that uses multiple linear models to approximate the decision boundary of each
local model. We further propose a rule fusion method that employs an evolu-
tionary optimization scheme to elect the best rule set by merging the validation
outcomes from multiple participants. Experimental results on both synthesized
and real-world datasets demonstrate that: 1) Our rule extraction method can
approximate complex decision boundaries and mimic the behaviours of a vari-
ety of learning models with fidelity >0.95 in most tests. 2) CloREF achieves
competitive performance comparable and sometimes even better than the best-
performing model trained centrally with the whole training dataset. 3) Compared
with FedAvg, CloREF can significantly reduces the communication cost.

2 Related Work

2.1 Distributed Learning and Federated Learning

Traditional distributed learning models typically focus on distributing the load
of training one model to multiple processing nodes and are not much con-
cerned about privacy issues [16]. Recently, federated learning was introduced
in [13] as a distributed learning model where a loose federation of multiple
participating devices are coordinated by a central server to collaboratively
train a global model. It embodies the principles of focused collection and data
minimization, and mitigates the systemic privacy risks and costs in traditional
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centralized machine learning. The proposed “FedAvg” algorithm has become
the most widely adopted FL baseline where a global model is trained by aggre-
gating the parameters learned by the participants based on stochastic gradient
descent [13].

There are few studies on FL with heterogeneous settings. FedMD [10] was
proposed for a scenario with different private datasets and a shared public
dataset. Each participant incorporates transfer learning to customize its local
model and gains the knowledge of others by leveraging the knowledge distillation
technique. HeteroFL [4] directly selects subsets of the global model parameters
to update the local models. However, this model is restricted to using local neu-
ral network models but with different complexity level. In personalized FL such
as Per-FedAvg [2] and FML [5], an initial global model is firstly trained and then
adapted at each participant using its local data. Our scheme differs from these
works on that it allows participants to build truly heterogeneous learning mod-
els, and knowledge acquired by participants is integrated at the central server
through rule extraction and fusion.

2.2 Rule Extraction

Existing rule extraction techniques can be categorized into whitebox methods
and blackbox methods. Whitebox methods extract rules by directly interpreting
the strengths of connection weights, model architecture, and other parameters
[14]. The main drawback is that they cannot preserve privacy, since both the
internal model architecture and the training data are exposed to others. In addi-
tion, whitebox methods are usually less generic. Blackbox methods, such as
LMENA [8], do not require internal information of the machine learning models.
They extract rules by observing the effect of various inputs on the model out-
puts. However, they can only interpret some local areas of a complex learning
model but cannot mimic its overall behaviors. Unlike existing rule extraction
schemes, we aim to design a method that can approximate the whole decision
boundary generated by a learning model using local linear rules.

3 Overview of CloREF

...

Rule Pool

Download Rules 

Upload Rules 

Central Server

PBIL-based Fusion and 
Selection Strategy

Participant 2 Participant k

Machine Learning 
Model Training Rule Extraction

Classification

Participant 1Participant 1

......

Machine Learning 
Model Training Rule Extraction

ClassificationClassification

Machine Learning 
Model Training Rule Extraction

Classification

Machine Learning 
Model Training Rule Extraction

Classification

Machine Learning 
Model Training Rule Extraction

Classification

Fig. 1. The CloREF framework for privacy-preserving collaborative machine learning.
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We assume that multiple local participants and one central server collaborate
to train a global reference model. Each local participant has a private dataset
to train a local learning model such as Support Vector Machine (SVM), naive
Bayesian classifier (NB), and Multi-Layer Perceptron (MLP). Different local par-
ticipants can use different local learning models. We assume all local learning
models can output prediction probabilities either directly or via probability cali-
bration, e.g. using Platt scaling [15] for SVMs. All participants agree in advance
on a common set of data characteristics and a common learning objective. We
focus on binary classification since multi-class classification can be decomposed
into multiple binary classification problems using transformation techniques.

As illustrated in Fig. 1, each local participant first trains its local model using
its private dataset and extracts a set of rules that can mimic the behaviors of
the trained local model with high fidelity. Then the extracted rules are uploaded
to the central server at which the rules generated by different local models are
fused by selecting the best set of rules to form a global decision boundary. Finally,
the central server disseminates the rules for the global model to each local par-
ticipant. In our learning framework, the local models are mainly used for rule
extraction. Each local participant performs classification directly based on the
set of rules received since the global model is expected to have better perfor-
mance than each local model after fusing the knowledge learned from different
participants. If the training data is updated and new rules are generated at local
participants, the above process can be repeated to update the global model.

4 Local Training and Rule Extraction

The key motivation of our rule extraction method is: we can mimic the behav-
iors of a trained learning model if we can model its decision boundary. In this
section, we present a rule extraction method that can extract rules to mimic the
behaviors of a trained learning model with high fidelity.

4.1 Rule Representation

We propose to use multiple linear models to fit the hypothesis function H(x) of
a trained learning model. Denote the n-dim feature vector by x = [x1, x2, ..., xn].
A rule is defined by a triple L(x): <l(x), ω, c>. Here, l(x) is a linear function
representing a segment of the decision boundary:

l(x) : aTx + b, (1)

where aT = [a1, a2, ..., an] is the coefficient vector, and b is a constant. ω ∈
{1,−1} is a sign used to represent the relationship between the predicted label
and the value of l(x). c is the centroid of the cluster of samples used to fit
l(x). Since multiple rules may be needed to mimic a trained learning model,
c is used to determine which particular rule should be applied to classify a
given test sample. Suppose the set of rules extracted from a trained model is
L(x) = {Li(x)}, i = 1, · · · ,m, where m is the total number of rules. Given a test
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sample xj , the rule used to classify xj , denoted by Lk(xj), is the one that has
the minimum Euclidean distance between xj and the centriod of a rule L(x):

Lk(xj) = arg min
Li(x)∈L(x)

‖xj − ci‖2. (2)

To measure how well L(x) mimics the behaviors of the trained learning model,
we define its fidelity as [7]:

Fid(L(X))=
1

|X|
∑

xj∈X

(
1 − |u(H(xj) − θ) − u(ωlk(xj)|

)
, (3)

where X is the set of training samples, H(xj) is the probability of xj belonging
to the positive class, θ is the threshold on prediction probability where a sample
x with H(x) = θ is considered as it on the decision boundary, and u(·) is the
step function. According to this definition, the higher the fidelity is, the better
the extracted rules mimic the trained learning model.

4.2 Rule Extraction

Figure 2 shows a four-step routine employed for rule extraction.

a) Synthesize Samples b) Cluster c) Fit Linear Models d) Determine 

Fig. 2. The flowchart of rule extraction.

Synthesizing Boundary Samples: Since it is infeasible to model H(x)
directly with a mathematical function, we propose to detect the sketch of the
decision boundary of a trained model using samples. As the training dataset may
not contain enough boundary samples, we design a Particle Swarm Optimization
(PSO) based algorithm to generate synthetic boundary samples.

PSO is a population-based optimisation technique, in which each individ-
ual called a particle learns from both its best historical solution in all previous
generations (pbest) and the best solution from all personal bests (gbest) to itera-
tively converge to an optimal solution. In our algorithm, each particle represents
a candidate boundary sample and its value is randomly initialized in the search
space. Hence, we aim to find particles that satisfy

min
x∈χ

|H(x) − θ| , χ ⊂ R
n, (4)
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Algorithm 1: Synthesizing boundary samples
Input: (NS , NP , NG);
ε – predefined acceptable threshold; α – inertia weight; c1, c2 – acceleration
coefficients;
Output: S – Set of synthesized boundary samples

1 while |S| < NS do
2 randomly initialize population P = {P1, · · · , PNP };
3 for i ← 1 to NP do
4 pbest(i) = |H(Pi) − θ|;
5 gbest = minNP

i=1 pbest(i);
6 for t ← 1 to NG do
7 if gbest < ε then
8 Pk = arg min gbest;
9 S ← S ∪ Pk;

10 break;

11 for i ← 1 to NP do
12 r1, r2 ← rand(0,1);
13 Vi = αVi + c1r1(pbest(i) − Pi) + c2r2(gbest − Pi); /* update velocity

*/
14 Pi = Pi + Vi;
15 if |H(Pi) − θ| < pbest(i) then
16 pbest(i) = |H(Pi) − θ|;
17 if pbest(i) < gbest then
18 gbest = pbest(i);

where χ is the search space of boundary samples. We design our algorithm to
repeatedly execute PSO to generate synthetic boundary samples. As shown in
Algorithm 1, in each execution of PSO, at most one synthetic boundary sample
can be generated. The reason for this design is two-fold: firstly, PSO in each
execution can quickly converge due to both the infinite number of boundary
samples and the only optimization constraint (fitness value); secondly, the gen-
erated synthetic samples will spread over the entire decision boundary instead
of huddling together due to the random initialization of the swarm population
in each execution of PSO (line 2) and the three random parameters (α, r1 and
r2) for velocity update. The time complexity of Algorithm 1 is O(NSNGNP ),
where NS is the required number of synthetic boundary samples and NP and
NG are the number of particles and the maximum number of generations in each
execution of PSO, respectively.

Theoretically, the more boundary samples are synthesized, the higher fidelity
we may obtain. Meanwhile, synthesizing more boundary samples will take more
time. The number of generated boundary samples is initially set to nm where n
is the feature dimension and m is the expected number of rules. If the fidelity of
the generated rules is unsatisfactory, more boundary samples will be synthesized.
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Clustering and Linear Fitting: In this step, the synthetic boundary samples
are firstly divided into groups using k-means, and then the boundary samples
in each group are used to fit a linear model based on the least square method,
as illustrated in Fig. 2 where ellipses represent clusters and solid lines represent
the fitted linear models.

Since it is difficult to choose an appropriate k to ensure the imitative ability
of the generated rules, we use two measures, R2 score [3] and fidelity (Eq. 3), to
control the quality of the fitted linear models. R2 score measures how well the
data aligns with the fitted model.

R2 = 1 − SSres

SStot
= 1 −

∑t
j=1(H(xS

j ) − l(xS
j ))2

∑t
j=1(H(xS

j ) − H(xS))2
, (5)

where SSres represents the sum of squares of residuals with respect to the fitted
values, and SStot represents the sum of squares with respect to the average value.

We employ two thresholds (Tsplit = 0.75 and Tmerge = 0.95) to automatically
split or merge clusters based on R2 scores. If R2 for a cluster is lower than Tsplit,
we use k-means to split it into two clusters, and calculate R2 to check if the two
new clusters need to be further split. For merging, a cluster can be merged with
a neighboring cluster if the merged cluster has a R2 no less than Tmerge.

Determining the Sign ω: Since each l(x) is fitted without using the label
information, a sign ω needs be associated with each l(x) to indicate which side
is positive. To determine ω for a given li(x), a set of synthetic samples called
probing samples is generated subject to the following two constraints: (1) the
probing samples are distributed on the normal line of li(x) that crosses the
centroid of the corresponding cluster used to fit li(x). This is because linear
models may not well fit the corners of the decision boundary. For example,
xP+

a and xP−
a in Fig. 2(d) are located at a corner of the decision boundary, and

using these two samples as probing samples may get incorrect ω. (2) Among all
centroids, the probing sample has the shortest distance to the centroid of li(x)
to void interference from other parts of the decision boundary. For example,
xP+

b2 shouldn’t be used as a probing sample for li(x). Let dmin
i be the minimum

Euclidean distance between the centroid ci of li(x) and other centroids. The
probing samples for li(x) are then generated in a pairwise way by repeating the
following two steps: (1) randomly choose a value β from the range (0, dmin

i /2) as
the distance between the probing sample and ci; (2) generate a pair of probing
samples <xP+,xP−> on the normal line of li(x), where the two samples are
located at different sides of ci. Then the sign ω determined by <xP+,xP−> is
calculated as follows:

ω =

{
1, if (H(xP+) − θ)l(xP+) > 0 and (H(xP−) − θ)l(xP−) > 0
−1, if (H(xP+) − θ)l(xP+) < 0 and (H(xP−) − θ)l(xP−) < 0

(6)

If the values of ω determined by more than 80% of the probing samples are
consistent, this result is accepted; otherwise, the current set of probing samples is
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discarded and a new set of probing samples is formed. If ω cannot be determined
after generating the set of probing samples more than ten times, the current l(x)
is considered seriously deviated from the decision boundary and is discarded.

5 Rule Fusion and Selection

Since rules generated by different participants can be redundant or even con-
tradictory, simply concatenating them into a rule set may not work. To address
this issue, we propose a PBIL-based optimization scheme to select a set of rules
that achieves the best performance. Rules from local participants are pooled
and selected at the server, but the evaluation of the selected rules is done at
participants in a distributed manner since only participants have training data.

PBIL is a stochastic optimisation technique that combines the mechanisms of
a genetic algorithm with simple competitive learning. It is simpler than standard
genetic algorithms, but in many cases has better performance. In our scheme, we
use the Area Under the ROC Curve (AUC) as the fitness value of the binary clas-
sifier as the fitness value of PBIL. Initially, the server merges the rules received
from all participants, shuffles them, and then sends the whole set of rules to all
participants. During the optimization process, only the gene strings instead of
the selected rules needs to be sent to local participants, which can significantly
reduce the amount of communication.

Coding: We encode rule selection using a binary “gene” code, v = [v1, v2, · · · ,
vNR

], NR being the total number of rules. For each bit, vi = 1 stands for the
i-th rule is tentatively chosen; vi = 0 means it is removed.

Population Generation and Evaluation: PBIL keeps a probability vector
π = [π1, π2, · · · , πNR

]. To generate the genes, vi is assigned “1” with probability
πi and “0” with probability 1 − πi. Initially, each πi is set to 0.5. Each time
a new population is generated, the corresponding gene codes are sent to all
participants. Each participant firstly decodes the genes to generate the rule set
to be evaluated. The rule set is then used to classify the local training data
and calculate the AUC values. Finally the calculated AUCs are sent back to
the central server. For each gene in the current generation, the sum of AUCs
received from all participants is used as the fitness value.

Update: The best solution till the current generation vb is used to update the
probability vector as follows:

πt+1 = πt(1 − δ) + δvb, (7)

where δ ∈ (0, 1) is the learning rate. To avoid losing the optimum, current
optimum is reserved into the next generation.

The generation, evaluation and update procedures are repeated until (1) a
given number of generations is reached or, (2) the difference (εP ) of fitness values
of the best solutions between two generations is less than a predefined threshold.
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6 Evaluation

6.1 Experiment Setup

Datasets and Models: We evaluate CloREF on 8 public two-class datasets
provided in KEEL [1] and UCI. The details of these datasets are summarized in
Table 1. Five learning models, i.e., SVM, NB, MLP, logistic regression classifier
(LR), logistic regression classifier fitted via SGD (SGD), are used as local models.
Some models are tested with different configurations, e.g., kernel in SVM, hidden
layers and neurons in MLP. All models are implemented using scikit-learn.

Table 1. Detailed specifications of selected data sets.

Dataset Abbr #neg #pos #attr Dataset Abbr #neg #pos #attr

wisconsin wisc 444 239 9 page-blocks0 pa0 4913 559 10

glass0123 vs 456 glas 163 51 9 vehicle1 vehi1 629 217 18

segment0 se0 1979 329 19 pimaImb pima 500 265 8

yeast1 yea1 1314 514 8 KDDCup99 kdd 396743 97278 41

Methodology and Metrics: For each experiment, 5-fold cross validation is
used. The training dataset is split into sub-datasets with each used as the private
dataset for a participant. To ensure each participant has enough samples to train
its learning model, the number of participants varies according to the size of the
original dataset. We compare CloREF with the following baseline schemes:

– FedAvg [13]: Used as a baseline for FL. Specifically, we implement it using the
homo nn component of FATE 1.6.0 [6].

– FedMD [10]: The state-of-the-art FL algorithm with heterogeneous settings.
For a fair comparison, we use fully connected networks to replace CNN based
on the source-code shared by the authors. Each participant randomly selects
a neural network model from a pre-defined set (given in Table 2) to train.

– Centralized Model: The best-performing learning model centrally trained with
all training data.

– All Rules: CloREF with the rule fusion and selection procedure removed.

We use three metrics to evaluate the implemented learning schemes: fidelity,
accuracy, and AUC. All experiments run on a server with 40 CPU cores and
64 GB RAM. The CPU model is Intel(R) Xeon(R) E5-2630 v4 @ 2.20 GHz.

Parameter Setting: Table 2 gives the setting of key parameters. θ in Eq. (3)
is set to 0.5 as our experimental results show that this generic setting already
leads to satisfactory performance. All other parameters are set with the default
values given by scikit-learn or FATE 1.6.0.
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Table 2. The setting for the key parameters.

Approach Parameter Values

Algorithm 1 θ, NS , NP , NG, ε, NG 0.5, 40×n, 20, 50,0.000001, 500

PBIL population size, δ, εP 20, 0.02, 0.0001

FedAvg max iter, layers, activation function 3000, (20, 20, 20, 1), (relu,

sigmoid)

FedMD max iter, pre-defined neural

networks, activation function

1000, [(20, 20, 1), (10, 10, 10, 1),

(10, 10, 1), (5, 5, 5, 1), (5, 5, 1)],

(relu, sigmoid)

6.2 Results of Rule Extraction

We use fidelity and accuracy to evaluate how well the extracted rules can mimic
the behaviors of the trained learning model. Figure 3 shows the results for three
datasets. The y-axis shows the fidelity. One key observation is the achieved high
fidelity (>0.95 for most of the tests), which means the extracted rules are able
to well mimic the behaviors of different machine learning models.
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Fig. 3. Fidelity of extracted rules.

6.3 Results on Convergence

Fig. 4. Convergence on yeast1: (a) Algorithm 1, (b) PBIL-based rule fusion.

The two iterative computational components, boundary sample generation
(Algorithm 1) and rule fusion & selection, are designed based on PSO and PBIL,
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respectively. Both methods have proven convergence properties. Figure 4 shows
the convergence curves on the yeast1 dataset. For each optimization, we per-
formed it multiple times. Each curve represents one run of the algorithm. It
can be seen that both optimization components can quickly converge due to the
simple optimization objectives.

6.4 Results of Fusion and Selection

Table 3 compares CloREF with three baseline schemes on eight real-world
datasets Due to space limit, we only show the average results of participants
(Participants Average) and the number of participants for each dataset is given
in the round brackets after the dataset name. Values in the round brackets fol-
lowing average AUCs are the corresponding standard deviation. We can observe
that:

– Except for the wisc dataset, the performance of CloREF is better than the
average of individual participants, which means our fusion and selection strat-
egy can effectively fuse the knowledge learned by different participants, allow-
ing each participant to benefit from the knowledge learned by others.

– CloREF outperforms All Rules on most of the datasets, which demonstrates
that our PBIL-based rule fusion and selection strategy can effectively remove
the contradictory rules.

– CloREF gains comparable and sometimes (on yea1 and vhe1 ) even better
AUC than that of Centralized Model. This indicates that its has competitive
performance despite using distributed learning with heterogeneous models.

– All the results of CloREF are better than those of FedMD, which demon-
strates that, in comparison with FedMD, CloREF can achieve competitive
performance without relying on a public shared dataset.

Although CloREF gives better AUC values than FedAvg on all the datasets,
our exploration of network hyperparameters for FedAvg is not exhaustive. The
focus of this comparison study is to show that CloREF can produce competitive
performance with heterogeneous models and low complexity.

6.5 Case Study for i.i.d and Non-i.i.d Datasets

We generate a spiral dataset and split it into four subsets in two ways: (1)
randomly splitting so that the four subsets have similar distributions; and (2)
cross-splitting so that each subset contains a quarter of the whole spiral dataset.
Four different models (MLP (5, 5), SVM (RBF), NB, SVM (POLY)) are built
on these subsets. The decision boundaries generated by local rules and final
fused rule set are shown in Fig. 5, where the accuracy of the corresponding
set of rules on the same test dataset is shown in the lower right corner. The
results demonstrate that our rule fusion and selection strategy can generate
a satisfactory global decision boundary by selecting useful rules and removing
redundant and contradictory rules. These results indicate that, regardless of i.i.d
or non-i.i.d datasets, CloREF can generate competitive global models to achieve
effective collaborative learning.
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Table 3. The average results on eight real-world datasets in full feature space.

Data
Participants

Average All Rules CloREF
Centralized

Model
FedAvg
homo nn

FedMD
fully con

#Rules yea1 (5) 4.0 (±3.08) SGD
AUC 0.673 (±0.01) 0.642 (±0.06) 0.684 (±0.03) 0.677 (±0.05) 0.658 (±0.03) 0.643 (±0.02)

#Rules glas (4) 9.2 (±0.40) SVM (rbf)
AUC 0.882 (±0.01) 0.891 (±0.07) 0.907 (±0.05) 0.923 (±0.09) 0.839 (±0.08) 0.812 (±0.06)

#Rules se0 (14) 13.2 (±2.23) MLP (10,10,10)
AUC 0.923 (±0.05) 0.933 (±0.03) 0.967 (±0.02) 0.992 (±0.00) 0.942 (±0.02) 0.957 (±0.03)

#Rules pima (5) 17.2 (±4.35) SVM (poly)
AUC 0.684 (±0.02) 0.680 (±0.06) 0.705 (±0.04) 0.706 (±0.04) 0.654 (±0.02) 0.634(±0.02)

#Rules veh1 (5) 13.6 (±1.96) MLP(10,10,10)
AUC 0.626 (±0.03) 0.640 (±0.04) 0.673 (±0.05) 0.669 (±0.12) 0.613 (±0.07) 0.576 (±0.04)

#Rules wisc (5) 8.6(±4.18) MLP (10,10)
AUC 0.968 (±0.01) 0.960 (±0.01) 0.964 (±0.01) 0.970 (±0.01) 0.815 (±0.10) 0.952 (±0.01)

#Rules kdd (14) 12.4 (±5.57) SVM (poly)
AUC 0.939 (±0.15) 0.724 (±0.31) 0.984 (±0.01) 0.998 (±0.00) 0.919 (±0.14) 0.955 (±0.03)

#Rules pa0 (19) 25.8 (±3.87) MLP (10,10)
AUC 0.745 (±0.03) 0.705 (±0.07) 0.780 (±0.06) 0.908 (±0.02) 0.778 (±0.04) 0.749 (±0.03)

Fig. 5. Classification boundaries on different sub-datasets: (a)–(d) at participants; (e)
after rule fusion. First row for random splitting and second row for cross-splitting.

6.6 Analysis on Communication Cost

Table 4 compares the communication cost of CloREF and FedAvg measured in
megabytes. The communication cost of CloREF is signficantly lower than that
of FedAvg. This is because: (1) CloREF can converge in a few generations due
to the limited solution space, whereas FedAvg (implemented by FATE) needs a
large number of iterations to converge. (2) one rule only occupies one bit in the
gene code whereas a weight for neuron connection needs 4 bytes.

Table 4. Communication cost of CloREF and FedAvg homo nn (measured in MB).

glas (4) yea1 (5) vehi1 (5) pima (5) wis (5) se0 (14) kdd (14) pa0 (19)

CloREF 0.024 0.012 0.030 0.029 0.013 0.020 0.098 0.030

FedAvg 23.368 23.369 27.489 22.911 23.369 27.946 38.017 23.827
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7 Conclusion

We proposed a rule-based collaborative learning framework that enables multiple
heterogeneous participants to build a global model without sharing their local
data. Being lightweight and interpretable, it gives competitive performance on a
range of benchmarks. As a new attempt in collaborative learning, it has several
limitations. The fidelity of the extracted rules at the participants can be unstable,
and we may need to run the program more than once to extract satisfactory
rules. We intend to investigate using other distance metrics (e.g. the Mahalanobis
distance) to improve the quality of boundary points clustering, which may lead
to local linear models that are stable and perform better.
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