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15Interaction of the Microbiota 
and the Enteric Nervous System 
During Development

Jaime Pei Pei Foong

Abstract

The gastrointestinal tract contains the enteric 
nervous system within its walls and a large 
community of microbial symbionts (microbi-
ota) in its lumen. In recent years, studies have 
shown that these two systems that lie adjacent 
to each other interact. This review will sum-
marize new data using mouse models demon-
strating the concurrent development of the 
enteric nervous system and microbiota during 
key pre- and postnatal stages. It will also dis-
cuss the possible roles that microbiota play on 
influencing enteric nervous system develop-
ment and implications of antibiotic exposure 
during developmental windows.
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The gastrointestinal tract is home to several hun-
dred species of microbes collectively referred to 
as the microbiota. In humans, the colon harbours 
the largest microbial population (1014 bacterial 

cells) compared to the upper gut and the rest of 
the body. Although the symbiotic relationship 
between the host and intestinal microbiota devel-
oped over millions of years, we have only recently 
begun to understand its importance to the overall 
well-being of the host, instead of being regarded 
merely as pathogens. The luminal microbiota lie 
near the enteric nervous system (ENS) embedded 
in the gut wall; many studies in recent years have 
shown that there is crosstalk between microbiota 
and the ENS [4, 5, 8, 25, 26, 28, 32, 39, 45, 57]; 
however, when this interaction begins in life and 
the health implications of its disruption during 
critical developmental windows is a new research 
frontier.

15.1	� The ENS and Microbiota 
Develop Concurrently

Mice have been pivotal for studying the physio-
logical significance of ENS-microbiota interac-
tions. Almost 99% of mouse genes are shared 
with humans and microbiota of mice and humans 
have many core similarities [11, 30]. Furthermore, 
the mouse is the best-studied model for the ana-
tomical and functional development of the ENS. 
This enables us to create a detailed timeline for 
key developmental milestones which show the 
concurrent maturation of the ENS and microbiota 
within the gut (Fig. 15.1). Thus, in this chapter, I 
will be focusing on gut research conducted using 
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Fig. 15.1  Developmental timeline for the mouse colon. 
This timeline summarizes and simplifies the developmen-
tal milestones for ENS and microbiota development dur-

ing embryogenesis (E0.5–E18.5), early postnatal (P0–P10) 
period, post-weaning period (P21–P49) and adulthood

the murine model which has revealed three key 
developmental windows broadly referred to as 
embryogenesis, early postnatal and post weaning 
periods.

Embryogenesis  Substantial development of the 
ENS begins and occurs during embryogenesis 
[21, 22, 50, 55]. The ENS mainly derives from 
the neural crest and during embryogenesis, a 
complex array of molecular and cellular mecha-
nisms orchestrates the migration of neural crest 
cells to and within the developing gastrointestinal 
tract, proliferation of these precursors and differ-
entiation into neuron and glial subtypes [24, 43]. 
The mature ENS comprises a large variety of 
enteric neuronal and glial subtypes which are dif-
ferentiated by various properties, including sub-
type specific function, electrophysiology, 
neurochemical coding and morphology [16–18]. 
But, each of these identifying properties seems to 
have a staggered appearance during develop-
ment, and when each neuronal/glial subtype has 
completed the collection of their unique proper-
ties remains unclear [21, 53]. Furthermore, 
enteric cells can express certain properties such 
as morphology and neurochemistry only tran-
siently during development. It was only discov-
ered in the last decade that young enteric neurons 
are electrically active early during embryogene-
sis long before coordinated neurally mediated gut 
motility has commenced. These embryonic neu-
rons have begun to form functional connections 

with each other through neurotransmitters such 
as acetylcholine and 5-hydroxytryptamine 
(5-HT) and their early communication is postu-
lated to affect the survival of later born enteric 
neurons [14, 19, 20, 23, 37].

Opposed to the decades of dedicated research 
which gave rise to a generally unified understand-
ing of ENS development. There has been intense 
debate over 100  years about whether the foetal 
environment is sterile and whether there are 
microbiota transferred from mother to foetus in 
utero [48]. Some studies report that in normal 
pregnancies, the placenta, amniotic fluid and first 
stool of the infant (meconium) contains microor-
ganisms that are not harmful to the foetus, thus 
raising the possibility that the foetus may have 
already encountered bacteria [1, 27, 31]. 
Nonetheless, the vast majority of research indi-
cates that a foetus normally develops in a sterile 
environment, notably a recent heroic study exam-
ined placenta samples from 537 women to dem-
onstrate that there are indeed no bacteria in 
healthy placenta [7, 48]. Yet, this was immedi-
ately challenged by another study identifying 
viable bacteria from murine and foetal tissues 
[59]. Hence, this issue remains contentious and 
an area of active research.

Early Postnatal Period  In an earlier book chap-
ter [12], I discussed the emerging research on the 
postnatal development of the murine ENS. The 
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first ten days of life (postnatal day, P0–10) in the 
mouse, which represents the early postnatal 
period, is a critical time for ENS development. 
The motility patterns of the colon and its main 
underlying neuronal circuitry within the myen-
teric plexus are still maturing [52]. Significant 
numbers of myenteric neurons are still being 
born (exiting the cell cycle), acquiring their neu-
rochemistry and undergoing substantial matura-
tion in their morphology and electrophysiological 
properties [3, 13, 14, 34, 49, 54]. Little is known 
about the maturation of the other division of the 
ENS, the submucous plexus, but, what we do 
know is that submucosal neurons are still devel-
oping, and that they tend to differentiate later 
than myenteric neurons [35, 38, 49, 54].

Early postnatal life is the critical period for 
colonization and establishment of microbiota. At 
birth, the intestines of infants are rapidly colo-
nized by bacteria from their immediate environ-
ment which is the mother’s vagina or skin, 
depending on the mode of delivery [42]. Like 
humans born of natural birth, the microbiome of 
the newborn mouse colon has a similar composi-
tion to that of their mother’s vagina. An initial 
bloom of Streptococcus occurs after birth and is 
replaced by Lactobacillus after postnatal day (P) 
3 [46]. Then, many other environmental factors 
contribute to the development of microbiota, 
including whether babies are fed breast milk or 
formula [42].

Post-weaning Period  The post-weaning period 
is defined as the period during and immediately 
after weaning. Mice have a shorter and more 
accelerated early life compared to humans, and 
adolescence or puberty can begin in mice as early 
as postnatal day (P) 18–28, when juvenile mice 
are weaned from the female dam [11, 36]. The 
vital components of the ENS would have been 
acquired during embryogenesis and early postna-
tal life. Post-weaning development is likely to 
involve continued formation of synapses in the 
enteric network that commenced in earlier stages 
and fine-tuning of the circuit connections that 
underpin maturation of gastrointestinal func-
tions. Indeed, the electrophysiological properties 

and synaptic profile of enteric neurons, particu-
larly those that are characteristic of the intrinsic 
sensory neurons of the circuitry, are still imma-
ture at P10 [13]. We have recently shown that 
between pre-weaning and post-weaning periods, 
there is significant maturation in the somata size 
of enteric neurons and numbers of synaptophy-
sin+ varicosities closely apposed to their cell 
bodies. The architecture of the enteric plexi is 
still maturing as the ganglia containing neurons 
and glia are stretched further apart during devel-
opment. While there is no appreciable change in 
neurochemistry of myenteric neurons, substantial 
maturation in submucosal neurochemistry still 
occurs during the post-weaning period [47]. 
Further, Schwann cell-derived enteric neurons in 
the distal parts of the gastrointestinal tract, and 
S100β  +  glia that are found in the intestinal 
mucosa are all still developing during the post-
weaning period [28, 54].

In humans, major shifts in microbiota occur 
during and after weaning, due to the transition 
from mother’s milk to solid food [30]. 
Unsurprisingly, in mice, we observe significant 
increases in abundance and communities of 
microbiota between P10 and P42–49 (6-weeks of 
age) [26].

15.2	� Role of Microbiota 
on the Developing ENS

Although the ENS and microbiota develop con-
currently within the gastrointestinal tract espe-
cially during the early postnatal period, the 
crosstalk between the two systems and how the 
microbiota contributes to the development of the 
ENS remains unclear. A study using germfree 
mice showed that the ENS in the small intestine 
of these mice is abnormal at P3 [5]. Whether dis-
ruption to the developing ENS is due to the lack 
of microbiota is unclear as other systems are sig-
nificantly perturbed in germ-free mice [58]. 
Moreover, as the germfree mice were only exam-
ined at P3, thus it may be possible that the ENS 
has been disrupted earlier during embryogenesis. 
Recent work from my group shows that oral 
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administration of the antibiotic, vancomycin, to 
neonatal mice daily from birth to P10 disrupts 
their colonic microbiota (dysbiosis), motility, 
myenteric neurochemistry and activity [25]. 
While this supports the view that microbiota is 
important in supporting ENS development, the 
possibility that the antibiotic itself could have 
toxic effects directly on the ENS cannot be 
excluded.

There are only a couple of studies from other 
groups that have examined the role of microbiota 
in ENS development, and they studied later 
stages of postnatal development. Microbiota dys-
biosis has been shown to impair gut neuromuscu-
lar function in 3-week-old male mice [4]. Another 
study showed that gut microbiota controls the 
influx of enteric glial cells into the lamina propria 
of the small intestine by comparing adult germ-
free mice with those raised in a specific pathogen-
free environment [28]. More recently, we exposed 
mice to vancomycin during the post-weaning 
period and showed that the significant shifts in 
microbiota communities were accompanied by 
disruptions to neurochemistry and function of 
myenteric and submucosal neurons leading to 
dysmotility in mice [26]. Interestingly, compared 
to our work with the same antibiotic exposed in a 
different developmental window [25], we found 
that the impact of vancomycin appeared to be 
greater when administered during the early post-
natal compared to the post-weaning period.

There is very little understanding of the mech-
anisms in which microbiota influences ENS 
development. Work on the adult ENS has shown 
that microbes signal to the ENS by modifying 
5-HT metabolism and signalling from the mucosa 
[8, 51, 57]. Although our work on neonatal mice 
ENS seems to be in agreement to the adult stud-
ies by showing antibiotic-induced perturbation in 
the mucosal levels of the 5-HT metabolite, 
5-HIAA [25], more studies investigating how the 
microbes signal to the developing ENS via 5-HT 
or other processes is warranted. Adult studies 
have also revealed other mechanisms by which 
microbiota signal to the ENS, including toll-like 
receptors, microvesicles, transcription and neuro-
trophic factors, various microbial metabolites 
and mediators released from enteroendocrine 

cells and immune system that could serve roles in 
the developing microbiota-ENS crosstalk [15]. 
Further, while collective studies so far have sup-
ported the view that microbiota plays important 
roles mediating ENS development, the possibil-
ity that antibiotics can have direct toxic effects on 
the ENS cannot be excluded [10].

15.3	� Implications of Antibiotic 
Exposure During Critical 
Developmental Windows

Antibiotics were developed and used as medi-
cines around the 1940s, and they soon earned the 
title of “miracle cure” by effectively treating 
infections, thereby leading to a dramatic decrease 
in death rates and serious illnesses. Although 
antibiotics are necessary in many circumstances, 
they are not harmless and may have negative 
health consequences especially when used during 
critical developmental windows.

Healthy pregnancies are accompanied by 
increased numbers of bacteria and dramatic 
changes in gut microbiota composition from the 
first to the third trimester, which can persist till at 
least one month after delivery [29, 44]. Several 
antibiotics are considered safe for use during 
pregnancy, and they account for 80% of all pre-
scribed medication to pregnant women [33]. 
Recent startling findings show that maternal 
exposure to antibiotics, even before pregnancy, is 
associated with an increased risk of childhood 
hospitalized infections, including gastroenteritis 
[40]. Moreover, maternal antibiotics have been 
linked to childhood obesity [41, 44]. More 
recently, maternal microbiota and their metabo-
lites have been shown to significantly impact the 
development of the foetal brain [56]. However, 
the impact of maternal antibiotics during preg-
nancy on the growing foetus, especially its ENS, 
is massively understudied.

Infants and young children have the highest 
antibiotic exposures globally [2]. Exposure to 
antibiotics early in life has been linked to 
increased susceptibility to several diseases such 
as functional gastrointestinal disorders, obesity, 
metabolic dysfunction and allergies later in life 
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[6, 9, 42]. Yet, the lasting impact of early life anti-
biotic exposure on host physiology, and how anti-
biotics given during critical developmental 
windows may predispose the host to gastrointes-
tinal disorders is currently unknown.

15.4	� Conclusions and Future 
Directions

The gastrointestinal tract is an organ where mul-
tiple systems coexist, and it is not a coincidence 
that the microbiota and ENS develop concur-
rently. Future studies should aim to provide 
mechanistic insights into the crosstalk between 
the microbiota and ENS during various develop-
mental windows. Antibiotics are important drugs 
especially for their life-saving qualities. 
Identifying how antibiotic usage during critical 
developmental windows affects the host would 
advance antibiotic therapy by revealing preventa-
tive measures against its unwanted side effects 
and improve the short- and long-term health and 
well-being of our next generation.
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