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Thermochemical Conversion of Cellulose 
and Hemicellulose 

Anh Quynh Nguyen and Ly Thi Phi Trinh 

Abstract Thermochemical conversion process is an important and potential route 
to transform biomass feedstocks into powers, fuels, and a variety of chemical plat-
forms. The chapter describes general characteristics of thermochemical processes 
of biomass including combustion, pyrolysis, liquefaction, and gasification, with the 
focus on the thermal decomposition of individual biomass components such as cellu-
lose and hemicellulose. Thermochemical processes occur at a wide range of temper-
atures and pressures with or without catalysts, in which cellulose and hemicellu-
lose undergo serial primary and secondary reactions to form a variety of product 
types and yields. Primary reactions of cellulose and hemicellulose are associated 
with the dehydration and depolymerization process to smaller fragments, monosac-
charides units, and volatiles which further decompose to low molecular weight 
compounds at severe conditions of temperature, times, pressures, and catalysts. 
Thermochemical decomposition of cellulose and hemicellulose typically produces 
various fuel sources including bio-char, bio-oil, bio-crude, and syngas, along with 
diverse substances such as anhydrosugars (levoglucosan, mannosan, galactosan), 
furans (furfural, 5-hydroxymethylfurfural), organic acids (acetic acid, formic acid, 
levulinic acid), ketones, and aldehydes. Cellulose and hemicellulose are the most 
abundant constituents in lignocellulosic biomass. Understanding the mechanism of 
thermochemical conversion of cellulose and hemicellulose leads to the choice of 
suitable biomass feedstocks and the transformation process for targeted production.
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6.1 Introduction 

Thermochemical conversion processing is the use of heat to decompose and trans-
form biomass feedstocks into power, fuels, and chemical products. Thermochemical 
processing occurs at high temperatures from several hundred to 1000 °C or even 
higher. Therefore, thermochemical processes take place in a short time, in seconds 
or minutes, compared to hours or days for biochemical processing. Thermochemical 
processes can be classified into combustion, pyrolysis, gasification, and liquefaction. 
Biomass combustion has long been used to supply heat and power in the industry. 
Combustion is the complete oxidation of all organic matters in biomass using suffi-
cient oxygen, while gasification of biomass is performed by partial oxidation of 
solid biomass feedstocks to produce a mixture of gases at high temperatures using a 
controlled amount of oxygen. Pyrolysis is the thermal decomposition of biomass into 
bio-char, bio-oil, and syngas in the absence of oxygen. Liquefaction produces liquid 
fuels and various chemical platforms from biomass that occurs at mild temperatures 
in the presence of pressurized water or solvent (Buendia-Kandia et al. 2020; Robert 
and Kaige 2017). Each process has its own characteristics and uses different reaction 
conditions, such as temperature, heating rate, residence time, pressure, purge gas 
flow rate, and catalyst. The yield and composition of the product depend not only on 
the operating parameters but also on the physicochemical properties of biomass feed-
stock. Lignocellulosic biomass is mainly composed of cellulose, hemicelluloses, and 
lignin. Cellulose is rigid and dense because of its highly ordered structure. Hemicel-
luloses are heterogeneous polymers of hexose and pentose sugars and are less stable 
than cellulose. Lignin is much more difficult to completely decompose as compared 
to cellulose and hemicellulose due to its complex aromatic structure. These compo-
nents that vary from one biomass to another are able to make interactions with 
each other during thermochemical processes, thus resulting in diverse products with 
different yields and qualities (Patel et al. 2020). For a better understanding of the 
mechanism of thermochemical biomass conversion, the processing of the individual 
components such as cellulose and hemicellulose have been widely performed and 
investigated. Understanding the decomposition mechanism of each biomass compo-
nent can provide important information for the effective transformation of biomass 
into target products, such as energy, power, or chemical products. In this chapter, we 
discuss the characteristics and behaviors of thermochemical conversion processes 
of cellulose and hemicellulose including combustion, pyrolysis, liquefaction, and 
gasification, and their main products (Fig. 6.1).
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Fig. 6.1 General behaviors of thermochemical conversion technologies and their main products. 
Dotted line: conversion of hemicellulose; solid line: conversion of cellulose 

6.2 Cellulose 

Cellulose is the most abundant organic polymer on earth, which is an important struc-
tural component of the plant cell wall (Börjesson and Westman 2015). Cellulose is a 
linear homo-polysaccharide composed of D-glucose monomers linked together by β-
1,4 glycosidic bonds. The degree of polymerization of cellulose depends on its source 
and ranges from several hundred to over ten thousand. Structurally, cellulose is made 
up of highly ordered crystalline regions and amorphous parts (Amenaghawon et al. 
2021; Collard and Blin 2014; Hendriks and Zeeman 2009). These crystalline regions 
give mechanical stability, hydrophobicity, and chemical recalcitrance to cellulose 
microfibrils. These microfibrils are arranged and bound to biomass matrices such 
as hemicellulose and lignin to form bundles or macrofibrils. In addition, multiple 
hydroxyl groups in the cellulose can form intermolecular hydrogen bonds among 
different cellulose chains or intramolecular hydrogen bonds within the polymer itself. 
The high crystallinity and high degree of hydrogen bonds in the cellulose microfibrils 
give cellulose fibers strength and stiffness (Börjesson and Westman 2015; Pinkert  
et al. 2009). 

6.3 Hemicellulose 

Hemicellulose is a heterogeneous and complex polymer of different sub-constituents 
such as pentoses (xylose and arabinose), hexoses (glucose, mannose, galac-
tose), hexuronic acids (4-O-methyl-D-glucuronic acid, D-glucuronic acid, and D-
galacturonic acid), acetyl groups, and small amounts of L-rhamnose and L-fucose
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(Patel et al. 2020; Zhou et al. 2018). Hemicellulose accounts for 15–30% of ligno-
cellulosic biomass compositions (Wang et al. 2021). Compared to cellulose, hemi-
cellulose has a lower molecular mass and degree of polymerization. Unlike cellu-
lose, hemicellulose is made up of amorphous regions and branched, making it less 
stable and more prone to decomposition than cellulose (Amenaghawon et al. 2021; 
Laureano-Perez et al. 2005). Hemicellulose is cross-linked with cellulose and lignin 
to strengthen the plant cell wall structure. The types and compositions of hemicellu-
lose vary according to their source. Xylan is the predominant hemicellulose in hard-
wood and herbaceous biomass, while mannan is found mainly in softwood (Carrier 
et al. 2011; Zhou et al. 2016). Xylan usually consists of a backbone of β -(1–4)-linked 
xylose monomers which might attach side chains containing 4-O-methyl-glucuronic 
acid, glucuronic acid, arabinose, galactose, and glucose (Ebringerovμ et al. 2005). 
Mannan is composed of a backbone of β-(1–4)-linked mannose units or β-(1–4)-
linked mannose and glucose (glucomannan) with/without galactose-containing side 
chains (Amenaghawon et al. 2021; Zhou et al. 2016) (Table 6.1). 

6.4 Combustion 

Combustion is the most feasible and conventional way to utilize biomass as a renew-
able energy source by cleaving the chemical bonds of fuel and generating a series 
of reactions in the presence of air or oxygen under the heat. To evaluate combustion 
performance, it is important to recognize the chemical composition and physical 
characteristics of biomass. Thermogravimetric analysis (TGA) is typically used to 
investigate thermal decomposition characteristics of solid materials based on weight 
change at the determined heating rate as a function of time or temperature. The struc-
ture and chemical composition of lignocellulosic fibers (cellulose, hemicellulose, and 
lignin) greatly influence their thermal degradation, and the differential thermal anal-
ysis is an effective method to investigate the thermal behavior of the biomass (Chen 
et al. 2017; Jiang et al. 2017; Sefain et al. 1985). 

6.4.1 Combustion of Cellulose 

TGA analysis showed that the combustion of pure cellulose showed only one peak, 
which could be explained by the occurrence of only the combustion of the volatile 
fraction of cellulose (Boukaous et al. 2018). Combustion kinetics can be gained by 
using a multi-Gaussian-distributed activation energy model and density-functional 
theory (Wang et al. 2021; Yu et al.  2021). For combustion of cellulose, reactive 
force field molecular dynamics (ReaxFF-MD) simulations were applied to study 
the thermal decomposition of amorphous and partially crystalline cellulose (i.e., 
microfibrils). By following the complete transformation of cellulose into low molec-
ular weight products, scientists found the decomposition begins with glycosidic bond
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cleavage. Particularly, the crystallinity has no appreciable effects on the mechanism 
or kinetics of chain scission (which is generated by glycosidic bond cleavage occurs 
during cellulose decomposition), the evolution of the molecular weight distribution, 
or the low molecular weight products (Paajanen et al. 2021).

Stochastic reactive molecular dynamics (RMD) simulations were used to identify 
and analyze the primary thermal decomposition reactions of an isolated cellulose 
molecule at a range of temperatures from 1400 to 2200 K (1127–1927 °C), and the 
results suggest that the decomposition occurs primarily through random cleavage of 
the (1–4)-glycosidic bonds by an activation energy of (171 ± 2) kJ.mol-1(Paajanen 
and Vaari 2017). When cellulose is combusted at temperatures above 300 °C, levoglu-
cosan (1,6-anhydro-β-D-glucopyranose) is the most abundant monosaccharide anhy-
dride that was released. Levoglucosan is considered as a molecular marker for the 
combustion of cellulose (Kuo et al. 2008; Li et al.  2019; Ruan et al. 2020; Segato  
et al. 2021). 

Cellulose combustion typically releases carbon monoxide and carbon dioxide. 
The mechanism of carbon monoxide release in cellulose combustion was investigated 
by using molecular dynamics (MD) simulations together with ReaxxFF to analyze 
reactions of cellobiose oxidation at different temperatures. Basically, this approach 
uses molecular dynamics simulations equipped with a reactive force field to study 
the formation of cellobiose from the cellulose oxidation process. The production of 
carbon monoxide is highly dependent on the abundance of formyl and carboxyl 
groups, which are formed through cellobiose decomposition. Elevated tempera-
tures cause more carbon monoxide to be released. Subsequently, the formed carbon 
monoxide is oxidized into carbon dioxide, where reaction steps for the formation 
and decomposition of the carboxyl group are involved. The simulation results help 
to identify critical reaction steps and lead to the development of a method to reduce the 
concentration of free radicals, which then allows the formation of carbon monoxide 
to be reduced (Barzegar et al. 2020; Hao et al. 2020; Luo et al. 2018). 

6.4.2 Recent Applications of Cellulose Combustion 

A new synthetic method known as combustion synthesis (CS) has emerged and gained 
considerable research attention due to it being fast and economic and involving 
simple synthesis steps. Using a thin cellulose paper, the technique called “Cellu-
lose Assisted Combustion Synthesis” (CACS) or “Impregnated Layer Combustion 
Synthesis” (ILCS) has been applied for the synthesis of electrode materials, metal 
oxides, ceramics, catalysts, plus other products (Kumar 2019). Cellulose-based mate-
rials with their excellent film-forming properties, mechanical properties, and flame-
retardancy, have found application in the battery industry. In this process, cellulose 
was prepared in a membrane, with excellent infiltration of the electrolyte and flame-
retardant performance, namely DOPO–Cinnamoyl Cellulose (DCC), then assembled 
into a lithium-ion battery. The corresponding battery characterization was then tested 
for its cycle and rate stability. The test results showed excellent characteristics and
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enhanced battery performance making the cellulose-based composite materials a 
very promising separator for high power applications, which broadens their uses in 
the field of energy storage devices (Liu et al. 2021). 

Cellulose combustion can also be applied in making Ni–MgO catalysts with cellu-
lose paper being impregnated with Mg(NO3)2, Ni(NO3)2, glycine solutions, and their 
different combinations. It was established that the combustion mechanism changes 
as a function of the impregnated media composition, and after combusting, the 
resulting materials had a highly porous, sponge-like microstructure (Danghyan et al. 
2020). Using a single-step nitrate-cellulose combustion synthesis, a novel method 
was proposed to produce MnO/carbon composites, in which the MnO nanoparticles 
were embedded into a porous carbon matrix, that resulted in a MnO/carbon composite 
with enhanced cycling performance and capacity retention, as it had potential to be 
an anode alternative for high-performance lithium-ion battery (Zhu et al. 2016). 

To have a deep understanding of the mechanism, scientists developed a novel 
model for the combustion of reactive solutions impregnated into a cellulose carrier, 
which were shown to be effective in the synthesis of metallic oxides with a nanoscale 
microstructure, that made the cellulose-assisted combustion materials suitable for 
catalyst applications. Basically, the model involved three reactions: (1) combustion 
of the carrier matrix, (2) an endothermic reaction related to the decomposition or gasi-
fication of the synthesis reaction precursors, and (3) the exothermic oxide synthesis 
reaction. The results indicated that manipulation of the cellulose burning reaction 
was the most favorable to increase the reaction yield of the composite materials 
(Lennon et al. 2011). 

6.4.3 Combustion of Hemicellulose 

Hemicellulose combustion occurs via a two-step process: (1) Reduced degree of 
polymerization in the first step; and (2) Decomposed into volatiles and char in the 
second step. The ignition temperature is the temperature at which the combustion 
reaction begins, while the final temperature indicates the end of the combustion 
reaction, which is essential to ensure the perfect design of the combustor and avoid 
unburned solid fuel at the outlet of the reactor. In the first step, hemicellulose requires 
the lowest ignition temperature and also gains the lowest final temperature. However, 
in the second step, the ignition and final temperature of hemicellulose are higher 
than those required for the other components and just only lower than that of lignin. 
TGA characteristic curves showed the presence of three peaks, two of them were 
completely overlapped and could be explained by the heterogeneity of hemicellulose, 
which is mainly constituted of xylose along with small parts of glucuronic acid and 
other sugars (Boukaous et al. 2018). Through the process, mannosan and galactosan 
are considered as molecular markers for the combustion of hemicellulose (Kuo et al. 
2008; Li et al.  2019; Ruan et al. 2020; Segato et al.  2021).
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6.5 Pyrolysis 

Pyrolysis is the thermochemical conversion process of biomass feedstock in the 
absence of oxygen to break down the large complex polymers present in the biomass 
into smaller fragments and molecules. The pyrolysis process is initiated by the evapo-
ration of water, followed by primary decomposition and secondary reactions. Primary 
decomposition consists of three pathways including char formation, depolymeriza-
tion, and fragmentation (Collard and Blin 2014; Lu et al.  2011; Van de Velden et al. 
2010; Wooten et al. 2003). The charring process involves the formation of aromatic 
polycyclic structures of chars in which benzene rings are formed, combined, and 
rearranged (Cho et al. 2010; McGrath et al. 2003). Depolymerization breaks down 
the linkages in the biomass polymers, resulting in a decrease in the degree of polymer-
ization of the chains and releasing volatile compounds (Azeez et al. 2011; Madhua 
et al. 2020). Fragmentation occurs in the linkage of the polymers even within the 
monomer units, leading to the formation of small condensable organic compounds 
and incondensable gases (Collard and Blin 2014; Kostetskyy and Broadbelt 2020). 
Secondary reactions include cracking or recombination (Chen et al. 2019a). Cracking 
reactions involve the breaking of chemical bonds within the unstable and volatile 
compounds, which results in the formation of lower molecular weight molecules 
(Collard and Blin 2014; Neves et al. 2011). In contrast, released volatile compounds 
can be recombined together to yield higher molecular weight molecules (Orcid et al. 
2017; Wei et al. 2006). The products of pyrolysis are divided into three groups 
including carbon-rich solids (char), liquid products of condensable vapors (tars and 
oils), and non-condensable species (Abhijeet et al. 2020; Patel et al. 2020; Robert and 
Kaige 2017). The yield of each fraction depends on the heating rate and residence 
time. The slow heating rates and long residence times favor the production of solid 
char, while high heating rates and short residence times facilitate the production of 
vapor products. It is considered as slow pyrolysis when the heating rate is below 
10 °C/s, fast pyrolysis when it is higher than 100 °C/s, and flash pyrolysis when 
the process is performed at higher than 500 °C/s. Biomass pyrolysis has been used 
for centuries and continually improved since it provides many benefits and serves 
as a sustainable means of producing biofuels, biochemicals, and other commodities 
(Amenaghawon et al. 2021; Robert and Kaige 2017). 

6.5.1 Slow Pyrolysis 

Slow pyrolysis is the oldest form of biomass pyrolysis that usually occurs over a 
long period of time using slow heating rates to produce charcoal or bio-char as 
the main product. Lower heating rates and long residence times facilitate the re-
polymerization reactions of the biomass constituents, which may generate a poly-
cyclic carbon structure and maximize the yield of solid bio-char. Most of the slow 
pyrolysis literature focused primarily on the production of carbon-rich solids, thus



116 A. Q. Nguyen and L. T. P. Trinh

the process is called carbonization (Gabhane et al. 2020). Carbonization is carried 
out over a wide temperature range from 300 to 900 °C. 

Temperature plays the most important role in the production of bio-char by slow 
pyrolysis. The processing temperature determines the structural and physicochemical 
properties of bio-char such as surface area, pore structure, surface functional groups 
and elemental composition (Tag et al. 2016). It was found that high pyrolysis temper-
ature resulted in increased specific surface area, pore-volume, and carbon content of 
bio-char but reduced bio-char yield, nitrogen, oxygen, and hydrogen content (Chat-
terjee et al. 2020; Dhar et al. 2020; Ferraro et al. 2021; Moradi-Choghamarani et al. 
2019; Salam et al. 2020). Bio-char with a high specific surface area, large pore size, 
and elevated carbon content have potential applications in pollution remediation, soil 
fertility improvement, and carbon sequestration (Agnieszka et al. 2020; Tag et al. 
2016). 

Torrefaction is another type of slow pyrolysis which is performed at mild tempera-
tures between 200 and 300 °C in the absence of oxygen to produce torrefied biomass 
(Boateng, 2020). During the torrefaction process, water and volatile compounds 
in the biomass feedstock are released resulting in the formation of a dark solid 
material (torrefied biomass) that exhibits higher energy density and greater homo-
geneity compared to the original feedstock (Amenaghawon et al. 2021). Currently, 
torrefaction has been investigated intensively and is gaining a high capability to be 
implemented at an industrial production scale. 

6.5.1.1 Torrefaction of Cellulose 

Previous studies mainly investigated the effects of torrefaction pretreatment on the 
chemical structure and pyrolysis behaviors of whole biomass, while a few studies 
focused on the structural transformation of cellulose. The reaction temperature signif-
icantly affects the distribution of the products from cellulose pyrolysis. The torrefac-
tion of cellulose slowly occurred at 200 °C to produce solid char as the main product, 
along with a small amount of bio-oil, but no gaseous products were generated at 
below 250 °C. As the temperature was increased, the yield of bio-char decreased 
while bio-oil production was elevated (Zhang et al. 2021).  The formation of an inter-
mediate product called “active cellulose” or anhydrocellulose was reported during 
the processing below 300 °C (Paajanen and Vaari 2017). Active cellulose is obtained 
from partial depolymerization of the cellulose, whereas anhydrocellulose is formed 
after the dehydration reactions. For application, cellulose can be directly used for the 
production of hydrocarbon-rich bio-oil using integrated microwave torrefaction and 
ZSM-5 catalyst, but the results are not equal in comparison to those from biomass 
(Bu et al. 2021; Shen and Gu 2009; Zhou et al. 2020). Significant influences of metal 
salts, such as chlorides (CaCl2, ZnCl2, MgCl2, and Al2O3), hydroxides (Ca(OH)2 
and Mg(OH)2), and acetates (Ca(CH3COO)2) on the torrefaction of cellulose, indi-
cated that the conversion mechanism of torrefaction process needed to be intently 
considered before scaling up to the industrial application (Atienza-Martínez et al. 
2017; Tancredi et al. 2017; Zhao et al. 2020; Zhou et al. 2020).
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6.5.1.2 Torrefaction of Hemicellulose 

According to the TGA profile, the thermal decomposition of hemicellulose occurs 
at a temperature range of 200–350 °C (Collard and Blin 2014; Zhou et al. 2016). 
The lower thermal stability of hemicellulose compared to cellulose is attributed to 
its amorphous structure and its lower degree of polymerization. Therefore, hemicel-
lulose requires lower temperature and activation energy for thermal decomposition 
(Chen et al. 2019b; Negi et al.  2020; Zhou et al. 2016). The structural changes 
in hemicellulose after torrefaction, even disappeared at higher torrefaction temper-
atures (250–300 °C), probably is caused by the removal of hydroxyls in hemi-
cellulose resulting in the generation of carboxyl and conjugated ketone, based on 
two-dimensional perturbation correlation analysis using Fourier transform infrared 
spectroscopy (Chen et al. 2015; Wang et al. 2016a). After torrefaction, oxygen 
content decreases significantly, leading to the increase of a high heating value. The 
results obtained from analyzing two-dimensional perturbation correlation based on 
diffuse reflectance infrared Fourier transform spectroscopy showed that the dehy-
dration of hydroxyls and the dissociation of branches were the main reactions at low 
torrefaction temperature, but when the temperature was increased, the depolymeriza-
tion of hemicellulose and the fragmentation of monosaccharide residues occurred. 
Via the activation energy model, the results showed that hemicellulose torrefaction 
process enhanced the activation energy but decreased the yields of torrefied prod-
ucts (Cahyanti et al. 2021; Wang et al. 2016b). The torrefaction process strongly 
affects the degradation of hemicellulose, that leads to the increase of carbon content, 
decreased H/C and O/C ratios, increased mass energy density, higher heating value, 
better grindability, higher hydrophobicity, and resistance to biodegradation (Niu et al. 
2019; Zheng et al. 2021). 

6.5.2 Fast Pyrolysis 

In contrast to slow pyrolysis, fast pyrolysis involves the use of a high heating rate, 
short residence time (<2 s), and rapid vapor cooling to obtain bio-oil, mixed gases, 
and solid char (Pawar et al. 2020). During the fast pyrolysis process, rapid decom-
position of the biomass occurs with the formation of vapors and aerosols, which are 
condensed after quenching to recover a darkish brown liquid known as bio-oil. Slow 
pyrolysis gives high solid yields with low liquid yields, while fast pyrolysis gives 
high liquid yields with low solid yields (Amenaghawon et al. 2021). Fast pyrolysis is 
the most popular technique for the production of liquid fuels and various commodity 
chemicals. 

Recently, bio-oil produced through the fast pyrolysis process has attracted consid-
erable attention since it provides potential uses as renewable biofuels source, biofuel 
additives, and as a precursor for the production of specialty chemicals (Patel et al. 
2020). The quality and yield of bio-oil produced by fast pyrolysis are affected by 
not only processing conditions but also the chemical composition of the biomass
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feedstock. Many studies have shown that the optimum temperatures for obtaining 
high liquid yields were between 450 and 550 °C, and bio-oil yields varied according 
to the type of biomass used. It was reported that biomass feedstocks with moisture 
content less than 10% and particle size of 2–3 mm were the primary requirements 
for achieving a high heating rate and heat transfer during fast pyrolysis (Pandey et al. 
2015). 

Moreover, the pyrolysis reactor must be designed and controlled to heat up the 
biomass rapidly and cool the vapor phase to make it condense to form the bio-oil 
products in seconds (Robert and Kaige 2017). Several configurations of reactors are 
used for pyrolysis including bubbling fluidized bed, circulating fluidized bed, conical 
spouted bed, ablative reactor, rotating cone, vacuum pyrolysis reactor, entrained flow 
reactor, wire mesh reactor, and auger (twin screw) reactor. The fluidized bed is the 
most widely used pyrolysis reactor because it is simple to design, construct, and 
operate. Moreover, it is proven to exhibit a high heat transfer rate, good tempera-
ture control, temperature uniformity, and large heat storage capacity (Boateng 2020; 
Pandey et al. 2015). A circulating fluidized bed reactor is similar to a bubbling 
fluidized bed except for the velocity of the gas used to fluidize the bed. In the circu-
lating fluidized beds, the gas velocity is set high enough to transport char and heat 
carrier particles (e.g., sands) to the second combustor. The sand stream is reheated 
through the char combustion process and then recirculated to the fluidized bed to 
heat up the biomass feedstock. Circulating fluidized bed reactors have been used for 
obtaining a high yield of bio-oil from sugarcane bagasse (78%) (Treedet and Sunti-
varakorn 2018), sawdust, giant Miscanthus, and empty fruit bunch (60%) at pilot 
scale (Park et al. 2019). Another technology is the rotating cone reactor in which 
biomass feedstock and hot sand are fed near the bottom of a cone at the same time. 
The centrifugal forces generated by the rotation of the cone enable the particles to 
move upwards without the need for large volumes of carrier gas. Hot sand is then 
recycled back to the rotating cone reactor. The Biomass Technology Group (BTG) 
has commercialized this reactor that converts biomass feedstock into bio-oil as the 
main product in just 2 s. It has been reported that a conical spouted bed reactor is 
suitable for the fast pyrolysis to obtain high bio-oil yields from rice husk (70%) 
(Alvarez et al. 2014) and eucalyptus waste (75.4%) (Maider Amutio et al. 2015). 
The outstanding features of the spouted bed reactor include high heating and mass 
transfer rates, short residence time, and continuous char removal, which accelerate 
de-volatilization reactions and minimize the cracking of these components (Alvarez 
et al. 2014; Amutio et al. 2012). 

6.5.3 Flash Pyrolysis 

Efforts have been carried out to increase the heating rate and minimize the residence 
time of the vapor phase to improve the production yield of bio-oil from biomass 
pyrolysis. High bio-oil yields of 75–80% can be achieved by flash pyrolysis occurring 
at high temperatures (>800 °C) using very high heating rates (>1000 °C/s) and
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very short residence times (<0.5 s) (Pawar et al. 2020). Feedstock particle size less 
than 0.2 mm is a primary requirement to achieve such a high heating rate and heat 
transfer rate (Amenaghawon et al. 2021; Balat et al. 2009; Dada et al. 2021). Rotating 
cone and conical spouted bed reactors are considered good configurations for the 
flash pyrolysis process due to their high heat transfer rates and short residence time 
(Amutio et al. 2012; Papari and Hawboldt 2015). 

6.5.4 Pyrolysis of Cellulose 

TGA is the most common analytical method used to study the mechanism of polymer 
degradation. TGA of cellulose showed that the cellulose is thermally degraded at a 
temperature range of 300–400 °C with the highest decomposition rate between 330 
and 370 °C (Collard and Blin 2014; Zhou et al. 2016). The reaction temperature 
significantly affects the distribution of the products from cellulose pyrolysis. Bio-oil 
yield increased with increasing temperatures and was maximized at 450–500 °C. 
Further increase in the temperature resulted in a gradual decrease in the yield of 
tar and bio-oil. In contrast, the conversion of cellulose into gaseous products was 
dominant at above 600 °C and the yield of syngas including CO, CO2, CH4, and H2 

significantly increased with increasing temperatures (Zhang et al. 2021). 
Pyrolysis of cellulose produces several products classified into three groups: 

anhydrosugars, low molecular weight (LMW) compounds, and furans. Anhydro-
sugars are formed by transglycosylation reactions (Junior et al. 2020). Levoglucosan 
(LG) is the most abundant anhydrosugar (up to 80% in relative peak area) from 
cellulose pyrolysis (Collard and Blin 2014; Junior et al. 2020; Yang et al. 2020a). 
The yield of levoglucosan is affected by processing temperatures, residence times, 
and the degree of polymerization of the cellulose chains (Wang et al. 2020a; Yang 
et al. 2020a). The subsequent decomposition of LG produces LMW compounds, 
such as 1-pentene-3,4-dione, acetaldehyde, 2,3-dihydroxypropanal, and propanedi-
aldehyde from C −O bond breaking reactions (Zhang et al. 2012). The levoglu-
cosan vaporized above 500 °C contributes mainly to gaseous and liquid streams 
rather than solid char formation (Banyasz et al. 2001; Basu  2013). Other anhydro-
sugars were found in much smaller proportions than LG, such as levoglucosenone, 
1,4:3,6-dianhydro-α-D-glucopyranose, 2,3-anhydro-D-mannosan, and 1,6-anhydro-
β-D-glucofuranose. LMW compounds from cellulose pyrolysis include glycoalde-
hyde, pyruvaldehyde, hydroxyacetone, and glyceraldehyde (Patwardhan et al. 2011; 
Yang et al. 2020a). Organic acids such as formic acid, acetic acid, and propionic 
acid also were detected among the LMW pyrolytic products (Patwardhan et al. 
2011; Wamg et al.  2012, 2020b). Furans are formed by open-ring reactions and 
dehydration from the glucopyranose structure (Junior et al. 2020). The yields of 
furans (5-hydroxymethyl furfural, furfural, 2-furan methanol, 3-furan methanol, and 
5-methyl furfural) varied with operating conditions. It is noted that the furan ring 
is very stable, but its side groups (methyl or oxygenated groups) are less stable and 
are readily cleaved or rearranged with increasing temperatures. Decomposition of
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furans led to an increase in the formation of low molecular weight compounds and 
gaseous species. 5-Hydroxymethyl furfural (5-HMF) and furfural, the attractive plat-
form chemicals, were found to be the most abundant furans (Patwardhan et al. 2011; 
Yang et al. 2020a). In a previous study, the furans content reached the highest value, 
about 35% (in relative peak area), and changed little with increasing temperature. 
It is proven that the thermal degradation of pentose sugars (xylose and arabinose) 
tends to yield furfural, whereas the processing of hexose sugars (glucose, mannose, 
and galactose) tends to produce 5-HMF (Zhou et al. 2016). Further decomposition 
of 5-HMF via fast pyrolysis at 600 °C was performed and resulted in the release of 
72.8% furfural. This evidence demonstrated the presence of furfural as a predomi-
nant secondary product of cellulose pyrolysis reported in the literature (Collard and 
Blin 2014; Wang et al. 2012). 

6.5.5 Pyrolysis of Hemicellulose 

According to the TGA profiles, the entire thermal degradation of hemicellulose could 
take place in three steps. The first step includes the dehydration and cleavage of the 
side chains of hemicellulose with slight mass loss. The dissociation of side chains in 
xylan occurs readily due to its relatively low energy of activation (Dai et al. 2021). 
Acetic acid was reported as the major product in xylan pyrolysis which was formed by 
the cleavage of acetyl groups attached to the backbone of xylan (Zhou et al. 2016). 
The main pyrolysis, which occurs in the second step, is responsible for the most 
mass loss through a sequence of reactions such as dehydration, decarboxylation, and 
decarbonylation. Finally, in the third step, further decomposition of hemicellulose 
occurs to release volatiles from the residue resulting in a slight mass loss (Collard 
and Blin 2014; Peng and Wu 2010). 

Xylan is the most abundant hemicellulose in nature. Xylan is typically used 
as a model compound for understanding the mechanism of hemicellulose pyrol-
ysis. Pyrolysis of xylan typically yields 20–30% char, 10–20% non-condensable 
gas species, and 40–60% bio-oil (Zhou et al. 2018). The non-condensable gaseous 
products include H2, CO,  CO2, and light hydrocarbons such as CH4, C2H6, and 
C3H8. Bio-oil mainly includes acids (acetic acid and formic acid), furans (furfural), 
anhydrosugars (anhydroxylose and dianhydroxylose), aldehydes, ketones, and minor 
aromatic compounds (Zhou et al. 2016, 2018). 

Hemicellulose is composed of heterogeneous and diverse monomers. Pyrol-
ysis of hemicellulose generates more complicated and various product distributions 
compared to cellulose pyrolysis. Hemicellulose pyrolytic products are mainly cate-
gorized into two groups including light oxygenated compounds and furans. Light 
oxygenated compounds mainly include glycoaldehyde, acetaldehyde, 1-hydroxy-2-
propanone, 4-hydroxy-5,6-di-hydro-(2 H)-pyran-2-one, and 1-hydroxy-2-butanone, 
among which glycoaldehyde is detected as the most abundant compound (Werner 
et al. 2014). Furfural is widely reported as a major furan in hemicellulose pyrolysis 
(Zhou et al. 2018). Furfural is derived from thermal degradation of pentose units or by
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secondary decomposition of 5-hydroxymethyl furfural (5-HMF) (Usino et al. 2020). 
Hemicellulose rich in acetyl groups attached to its backbone yields more acetic acid 
as a major product (Wang et al. 2015). Furans and acetic acid contents decrease with 
increasing temperatures (Wang et al. 2015). 

6.6 Liquefaction 

Liquefaction (hydrothermal liquefaction) is a process responsible for the conversion 
of lignocellulosic biomass into bio-liquid and/or crude oil-like products at tempera-
tures of 280–370 °C and pressures of 10–25 MPa in the absence of oxygen (Khati-
wada et al. 2021; Yang et al. 2020a). This technology has much attraction to produce 
renewable fuels due to its low operating temperatures and fast reaction rates, and 
the use of wet feedstocks without the need for an energy-intensive drying process 
(Amarasekara and Reyes 2020; Khatiwada et al. 2021; Song et al. 2020). There are 
two types of liquefaction, which include aqueous liquefaction (using water) and non-
aqueous liquefaction (using organic solvents such as methanol, ethanol, isopropanol, 
phenol, and others). The aqueous liquefaction is typically carried out in subcritical 
water and requires catalysts such as Brønsted or Lewis acids and metal oxides such as 
MnO, CaO, CeZrOx, Raney Ni-NaOH, Na2CO3, Fe-zeolite, Na2CO3-Fe. Aqueous 
liquefaction generally gives higher quality and quantity of bio-oil compared to non-
aqueous liquefaction (Amarasekara and Reyes 2020; Feng et al. 2018; Song et al. 
2020; Yang et al. 2020a). 

6.6.1 Liquefaction of Cellulose 

Under thermochemical liquefaction, cellulose is mainly hydrolyzed into monosac-
charides and further to acids, aldehydes, ketones, and other products. Cellulose 
is decomposed into soluble sugars (cellobiose, lactose, and glucose) as primary 
products in subcritical water at 200–300 °C. Soluble sugars subsequently undergo 
secondary reactions of isomerization, dehydration, and retro-aldol condensation to 
form D-erythrose, glycolaldehyde, and furfural, which are further degraded to smaller 
species. A significant decrease in soluble products was observed with increasing 
reaction times because the sugars were readily degraded to carboxylic acids, ketone, 
and aldehydes (Gagic et al. 2018; Wang et al. 2020a). These products then can be 
upgraded to liquid fuels, platform biochemicals, and commodity chemicals such as 
ethanol, liquid alkanes, 5-hydroxymethylfurfural (5-HMF), furfural, and acetic acid. 
The results obtained in several studies showed that cellulose could be liquefied with 
high efficiency (Li et al. 2020; Peng et al. 2018; Wang et al. 2020b; Xu et al.  2019). 

Catalyst is one of the key factors that affect the quantity and quality of liquefaction 
products. In addition to acidic, alkali, and metal catalysts, glycol organosolv and 
supercritical ethanol (with 2,2,6,6-Tetramethylpiperidinooxy-TEMPO) processes
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have recently received much attention, due to their environmental benefits, low 
viscosity, and high solubility (Jasiukaitytė-Grojzdek et al. 2021; Liu et al. 2020; 
Sun et al. 2020a). Hydrothermal liquefaction with metallic-Fe catalyst is still the 
most effective process for producing water-soluble fraction, thereby enhancing the 
hydrocarbon yield (Hirano et al. 2020). 

Cellulose liquefaction shows great promise for using cellulose as a supporting 
substrate or template material in photothermal plastic due to its renewability, degrad-
ability, abundant availability, and low cost. In fact, cellulose composite materials 
have been successfully developed and applied in various fields such as antibacterial 
compounds, UV shielding, catalysis, flame retardant, fluorescence, metal ion adsorp-
tion, and supercapacitor (Sun et al. 2021b; Zimmermann et al. 2021). In liquefaction 
technology, solvent is one of the key factors. Water, low-carbon alcohols, supercrit-
ical fluids, and hydrocarbon-based solvents such as n-alkanes are often employed in 
cellulose liquefaction (Li et al. 2021). 

The increasing trends of using biomass as an alternative to fossil fuels lead to 
the formation of the biorefinery concept, which now utilizes a range of biomass 
and known conversion technologies to produce green chemicals and polymers 
without impacting food and feed security. Among them, biopolyols and polyurethane 
obtained by direct conversion of separated cellulose or lignocellulosic biomass 
through liquefaction technology were listed among the “Top 10” platform chem-
icals in a report prepared by the Pacific Northwest National Laboratory (PNNL) 
and the National Renewable Energy Laboratory (NREL) (Ge et al. 2018). Interest-
ingly, polyurethane foams were produced via cellulose liquefaction in the presence 
of crude glycerol, which indicated that cellulose could be a good alternative material 
to produce polyurethane (Ge et al. 2018; Kosmela et al. 2018). 

6.6.2 Liquefaction of Hemicellulose 

Due to its heterogeneous and complex structure, the product profile of hydrothermal 
liquefaction of hemicellulose is complicated and includes a variety of chemicals 
such as oligosaccharides, monosaccharides, furfural, glyceraldehyde, acetic acid, 
lactic acid, plus others (Ghimire et al. 2021; Song et al. 2020; Yang et al. 2020a). 
Hemicellulose decomposition in subcritical water at below 220 °C yielded monosac-
charide sugars, mainly xylose and 4-O-methylglucuronic acid, which were further 
degraded into small molecule products such as furfural, formic acid, and acetic acid 
at temperatures higher than 220 °C. Xylan usually is used as a model compound in 
many studies. Xylan liquefaction resulted in different product distributions through 
hydrolysis and oxidation reactions depending on operating conditions. Hydrolysis 
occurs via the depolymerization of xylan to soluble sugars, while oxidation promotes 
the formation of organic acids. The released organic acids subsequently catalyze the 
degradation of the hydrolyzed products into small molecules. Catalysts are typically 
used in liquefaction. The presence of a high concentration of oxidizing agent (H2O2) 
and/or pressurization facilitates strong oxidative reaction and/or acidic hydrolysis,
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yielding xylo-oligosaccharides, xylose, arabinose, glucose, acetic acid, and their 
decomposition compounds, which include furans and organic acids (Phaiboonsilpa 
et al. 2020; Zhou et al. 2016). In the presence of ethylene glycol, xylan was decom-
posed and transferred to the liquid phase, with the average molecular weight of 
xylan significantly decreasing after liquefaction. The products from the liquefac-
tion of xylan in ethylene glycol are ethylene glycol derivatives, alcohols, aldehydes, 
ketones, some acids, and their esters (Wang et al. 2016a). 

6.7 Gasification 

Gasification is a thermochemical conversion process that involves complex reac-
tions, pressure changes, and heat and mass transfer. In general, gasification is used to 
convert solid fuels (coal or biomass) into value-added products or to release heat for 
heating and power generation at high temperatures without combustion. Gasifica-
tion requires oxygen, air, and steam to convert carbonaceous materials into gaseous 
fuels. Fixed bed and fluidized bed gasifiers are common technologies. Basically, 
gasification consists of four steps: (1) Drying or dehydration, in which evaporation 
of moisture occurs under 150 °C; (2) Pyrolysis, in which devolatilization occurs 
at a temperature range of 150–700 °C; (3) Combustion, in which fuel constituents 
oxidize and exothermic reactions occur in the temperature range of 700–1500 °C; 
and (4) Reduction, in which endothermic reactions occur in the temperature range 
of 800–1100 °C (Ong et al. 2019; Soomro et al. 2018; Yang et al. 2020a; Yu et al.  
2018). 

6.7.1 Gasification of Cellulose 

Cellulose consists of several hundred to many thousands of β-glycosidic bonds 
linking D-glucose units, which are not stable and tend to cleave at high temperatures. 
It was observed that cellulose began to decompose at 180 °C and the reaction rate 
was much faster with increasing temperature and residence time, leading to sugar 
degradation to carboxylic acids, ketone, and aldehydes. Glucose was completely 
decomposed in 60 s at 300 °C, but only in 0.5 s at 460 °C (Yang et al. 2020a). 
Degradation of levoglucosan, the major volatile intermediate being produced from 
cellulose gasification, was completed at a temperature range of 550–700 °C within 
only 0.11–0.45 s (Fukutome et al. 2017). 

Normally, gasification requires a catalyst to increase efficiency while reducing 
temperature and time. Among these, alkali and alkaline earth metals and Ni-based 
catalysts are commonly used in the gasification process (Ong et al. 2019). Cellulose 
gasification produces the largest amount of H2 in the absence of steam and catalyst, 
but adding the Ni-based catalyst significantly increases the gas yield, particularly for 
H2 production (Hassan et al. 2020). Moreover, nickel-based catalysts were used and
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gained the highest H2 yield from gasification, especially in the presence of SiO2 (Sun 
et al. 2020b; Taylor et al. 2020). To enhance H2 production, scientists have proposed 
using pure cellulose instead of lignocellulosic biomass and also suggested that a 
combination of gasification of cellulose and dark fermentation may give a higher 
hydrogen yield (Hassan et al. 2020). Ca-Fe oxygen carrier is a potential material for 
efficient lignocellulose conversion and hydrogen-enriched syngas production, acting 
as catalysts to promote cellulose decomposition (Tang et al. 2021). CaO sorption 
enhanced the gasification efficiency of biomass for hydrogen-rich syngas production, 
demonstrating its potential as an inexpensive catalyst for the gasification process 
(Mbeugang et al. 2021). In addition, the highest carbon monoxide (CO) concentration 
was found in cellulose gasification compared to those originated from hemicellulose 
and lignin, which may be due to the abundance of C–O compounds in cellulose 
(Hassan et al. 2020). 

Reliance on catalysts is one of the bottlenecks of gasification, so scientists have 
proposed other options, in which physical catalysts (Ce/Fe, Ni, etc.) were not used 
but replaced by a plasma-catalyst system to produce a cleaner syngas. The results 
provided an alternative and cleaner way for gasification, although it still needs to be 
evaluated further (Craven et al. 2020; Zou et al. 2018). Recently, scientists proposed 
a very low temperature gasification system for cellulose (around 50 °C) by using 
glow-discharge plasma. Due to the low temperature, pyrolysis did not occur, but a 
very long retention time (90 h) was required. Interestingly, no tar formation was 
observed, indicating that all of the cellulose was decomposed into gaseous products. 
This achievement demonstrated that clean and complete gasification of cellulose 
and/or hemicellulose could be achieved with plasma technology (Minami et al. 2018). 

6.7.2 Gasification of Hemicellulose 

Xylose and 4-O-methylglucuronic acid were mainly detected in the degradation of 
hemicellulose at a temperature below 220 °C, but low molecule weight products such 
as furfural, formic acid, and acetic acid were observed at higher temperatures (Berthet 
et al. 2016; Hassan et al. 2020). Xylose was completely decomposed in less than 5 s at 
a temperature of 300–450 °C and 25 MPa. The decomposition behavior was similar 
to that of glucose as they have a homoeologous molecule structure, except that xylose 
has one less CH-OH group than glucose. The formation of furfural via dehydration of 
xylose was considered to be analogous to that of dehydration of glucose (Fukutome 
et al. 2015; Hassan et al. 2020; Tang et al. 2021). 

Hydrothermal gasification in either subcritical or supercritical water is an attrac-
tive approach to produce hydrogen from cellulose and hemicellulose, in which 
hydrogen yields from hemicellulose normally were higher than those from cellulose 
(García-Jarana et al. 2020; Okolie et al. 2020). Moreover, the use of hemicellulose 
isolated from biomass not only helps to understand and analyze the catalytic gasifi-
cation characteristics of natural biomass material with high hemicellulose content, 
but also gives a considerable method to produce H2 from only hemicellulose, with
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the highest amount of H2 produced but a lower amount of gasification solid residues 
than the whole biomass used (Gökkaya et al. 2020). 

6.8 Conclusion 

For efficient use of biomass, technologies that employ thermochemical conversions, 
including combustion, pyrolysis, liquefaction, and gasification, have demonstrated 
high efficiencies and improved environmental performance, leading to their recogni-
tion worldwide. Process mechanisms and characteristics of each technology applying 
to cellulose and hemicellulose, which are two main components of biomass, have 
been investigated and the reported results have been helpful in identifying poten-
tial applications and useful products. Before they can be implemented in industrial 
applications, the related technologies need more research and development efforts 
followed by a demonstration at semi-commercial scales. Among the thermochemical 
conversion processes, combustion offers potential direct applications, especially in 
the innovation of new materials, whereas liquefaction may become a new route for 
the production of liquid fuels. Pyrolysis, particularly torrefaction, has been applied 
widely for heat and electricity generation, but the technology required sophisticated 
designs for specific equipment in industrial scales, while gasification often consumes 
extensive energy to reach the required temperatures and pressures. Advances in 
biomass processing such as pretreatments and fractionation as well as in system and 
engineering process design may enhance the effectiveness of biomass thermochem-
ical conversion into fuels and value-added products with better performance and cost 
competitiveness. 
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