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Abstract. Motor controllers, such as the ones used in signalling sys-
tems, include critical embedded software. Alstom is a company that pro-
duces such embedded systems, which must follow complex certification
processes that require formal modelling and analysis. The formal analy-
sis of these real-time systems have to balance between including enough
details to be useful and abstracting away enough details to be verifiable.

This paper describes our work in the context of the European VALU3S
project to integrate the analysis of such systems with the Uppaal model
checker during the development cycle, involving both developers from
Alstom and academic partners. We use special Excel tables to config-
ure the underlying Uppaal models and requirements, bridging these two
stakeholders. We follow Software Product Line Engineering principles,
e.g., allowing features to be turned on and off and periodicities to be
changed, and verify different properties for each of such configuration.
We automate the instantiation and verification in Uppaal of a set of
selected configurations via an open-source prototype tool named Uppex.
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1 Introduction

In railway systems, motor controllers play a crucial and safety-critical role
in point switch machines. Guaranteeing its correct design and development
is a challenging but essential task to avoid catastrophic accidents that could
cause severe damage to the environment and property, or even result in the
loss of human lives. Most state of the art approaches address this safety con-
cerns using formal modelling and verification, including abstract interpreta-
tion [15] and Event B [1,7], to enforce compliance with certification processes
and railway-specific safety standards, such as EN-50126 [10], EN-50128 [11], and
EN-50129 [12]. In these systems, safety means that faults are detected with very
high probability, leading to a fallback state.
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The design of motor controllers is usually performed by multidisciplinary
teams composed of experts in hardware, embedded software, and verification.
Guaranteeing that all stakeholders with different backgrounds have the same
understanding of the critical aspects of the system development can be challeng-
ing. We model the behaviour of a railway motor controller using the Uppaal model
checker [8], in the context of the European project VALU3S (https://valu3s.eu).
This paper reports on how we integrate and automate the formal verification of
this controller during its development by the rail manufacturer Alstom, while
improving the trade-off between fine-grained details in the formal models and its
verifiability, and efficiently involving all team members in this process.

Our use-case uses a controller with software components that interact with
a dashboard and a circuit board (Fig. 1). Intermediate components are used to
poll the circuit, to add and verify CRC error codes, etc. We compiled a set
of safety requirements for the controller’s software to be verified using model
checking. However, when trying to build a network of automata to model the
controller with enough details to cover all requirements, we concluded that it
generated a state-space too large to be feasible when model-checking. For exam-
ple, the requirement “the controller component should take less than 100ms to
send a given command to the circuit” should not need to consider all combina-
tions of states involving the sending of messages to the dashboard. Similarly, the
requirement “if the controller component receives an error message it should go
to a fallback state and the dashboard should be informed within 100ms” should
not need to consider the mechanisms to interact with the circuit.

This lead to a family of formal models with different parameters and levels
of detail, each targetting different requirements. This lead us to 3 challenges:
C1: maintain the model, to kept it up-to-date with the system under devel-
opment; C2: manage variability, as too many models with commonalities are
needed; and C3: improve the collaboration between developers and mod-
ellers of the formal specifications.

Our approach uses a high-level representation of the configurations of the
family of formal models for real-time systems. This representation consists of
Microsoft Excel spreadsheets with parameters and requirements to be used in
the formal models, read by our prototype tool Uppex that automatically gener-
ates and verifies the full family of models and requirements. These spreadsheets
include, for example, the time-bounds of certain components, the size of buffers,
and the initial values of certain variables. Furthermore, these values vary accord-
ing to the set of active features; for example, by activating a feature named
SelfTesting, a variable named TSelfTest is set to 200, otherwise it is set to 0. A
special table compiles a set of configurations, each listing its active features. For
example, a given configuration could activate SelfTesting, deactivate unrelated
monitoring features, and activate its associated requirements.

Organisation of the Paper. Section 2 describes the motor controller use-case
and its requirements, formalised in Sect. 3 using the Uppaal model checker.
Section 4 describes how we configure and verify many variations of a Uppaal
model. Section 5 summarises what we have learned during this process and the
plans for future developments, and Sect. 6 concludes this paper.

https://valu3s.eu
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Fig. 1. Architecture of the motor controller system under verification

2 Use-Case: Motor Controller

Our running use-case consists of a motor controller, or controller for short, run-
ning in a resource constraint device with a Real Time OS. This controller is
connected both to a physical circuit and to a dashboard, as depicted in Fig. 1.
The circuit includes a DC motor that is being controlled, receives simple com-
mands from the controller to turn left, turn right, or to stop, and sends back a
status report, including the information of whether the limit of a rotation has
been reached or if a problem has been found. The dashboard sends instructions
to the controller, including commands to be sent to the circuit, which in turn
informs the dashboard of internal state updates.

We focus on the behaviour of the software part of the controller, and on its
formal verification via model-checking of timed-behaviour. This is complemen-
tary to other analysis and tests performed by other stakeholders involved in the
same use-case, e.g., to inject faults in hardware and to generate batches of tests
with enough coverage. We expect our underlying formalizations and tools to also
benefit, directly or after repurposed, the other stakeholders in this use-case.

This paper includes behavioural details only of the core controller component,
and the full Uppaal models are not publicly available since they are intellectual
property of Alstom.1 We believe that these descriptions, supported by our open-
source prototype tool, are rich enough to convey our approach and its benefits.

Safety-Critical Behaviour. Hazard analysis for the controller has been per-
formed to justify the desired criticality levels. This analysis guided the architec-
ture of the software components deployed on the controller board. Most compo-
nents are replicated and executed in two diversified processing units available in
the selected board, to detect when their behaviour diverges. Also, CRC codes
are applied to incoming and outgoing packages to ensure message consistency.

The replicated components are: a core controller, a monitor to check if the
state of the controllers are consistent, a decoder to compare incoming messages
against their CRC error code and against the messages from the neighbour
decoder, a buffer to store messages to be sent to the dashboard, an encoder
to add CRC codes to messages to be sent to the dashboard, and a reader of
messages received from the circuit. Non-replicated components are: a sched-
uler to start runtime self-tests, a simulator of the dashboard, a simulator of
the circuit, and a fault-injector to cause some components to fail. The simulators
exist only on the formal models, to mimic the environment, while capturing the

1 These can be made available to the reviewers if needed.
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Fig. 2. General behaviour of the controller component

minimum information required to perform formal analysis, represented as pre-
defined sequences of messages to be sent.

The behaviour of the core controller task is depicted in Fig. 2. The controller
performs some initialisation in Check-HW, tests the interaction with the circuit
in Self-Test, and can trigger the rotation of the motor to the left or to the right.
At any moment, it can receive an error and go to a Fall-back state.

Parameterised Requirements. Following the hazard analysis, we compiled
a set of requirements to be verified using model checking based on Uppaal.
The most relevant ones are listed in Table 1. Requirements follow some syn-
tactic structure to tighten the gap between formal and informal requirements,
following the EARS approach [17]. For example, the 3rd requirement reads “In
Conf3, when controller1 fails the controller2 shall go to a fallback state within
100ms.” Configurations specify the parameters of the model when validating
the requirement. This covers both general parameters of the system, such as the
time to decode messages and the frequency of operation of monitors, and the
scenario consisting of the messages sent by the dashboard, by the circuit, and by
the fault-injector. In our example Conf3 defines a scenario where the dashboard
sends a start and a left command after 20ms and 100ms, respectively, and
the fault-injector causes controller1 to fail after 120ms.

Table 1. Some functional and non-functional requirements for the motor controller
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When formalising requirements (c.f. Table 1) using the temporal logic sup-
ported by Uppaal, the notions of state, component, and expected observation
followed in a relatively straightforward manner. Specifying the triggers often
required manually enriching the model with new variables, since the logic does
not express events. Specifying configurations were the most complex operations,
and the core challenge addressed by this paper and our prototype tool. Tradition-
ally for each configuration a new model would have to be specified, fine-tuning
values of variables spread throughout the model, often deactivating some com-
ponents to simplify the model-checking of more complex properties. Maintaining
a collection of such models, in a context where neither the system specification
nor the full set of requirements are fixed, quickly becomes infeasible. We provide
support to specify all configurations and properties in a single Excel file, and to
automatically use these with a single annotated Uppaal model.

3 Formal Specification in Uppaal

Uppaal [8] is a well-known model-checker for real-time systems, successfully used
in many industrial applications and in the context of embedded systems [5].
Systems are specified as a set of timed-automata that interact both by using
synchronisation on actions and by using shared variables. In a nutshell, each
timed-automaton is a state machine whose edges are labelled by a guard and an
update over shared variables, and by an optional action name used to synchronise
with neighbour automata. Special variables named clocks capture the time that
has passed since they were last reset, and are incremented automatically by the
rules that guide the automata evolution.

The topology of the timed automata network used in the specification of
our use-case is depicted in Fig. 3, one for each task mentioned in Sect. 2. This
topology is built iteratively by both developers and formal modellers, during the
development of the system. Each node depicts the timed-automaton of a com-
ponent, and arrows depict interactions between nodes: denote synchronous
interactions that block until both automata can trigger the associated action;

and denote synchronous interactions that do not block the sender – the
former requires the receiver to be always ready and the latter discards data if the
receiver is not ready; and denotes asynchronous communication by atomic
writes and reads to a shared variable.

The dashboard, circuit, and fault-injector components are parameterised by
a scenario, i.e., a sequence of actions with timestamps. The dashboard sends
commands to the encoders, the circuit sends reports to the readers describing if
there are errors and if the motor reached a limit, and the fault-injector sends
messages that cause some components to go to a faulty state with no behaviour.
Furthermore, the circuit reports errors for a predefined time-window during the
self-test phase, and the controllers validate that an error is indeed reported.

The behaviour of the components involved is expressed using Uppaal’s notion
of timed automata. We depict the automata of the controller’s behaviour in
Fig. 4. All the 5 states of Fig. 2 appear in this automata, extended with extra
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Fig. 3. Topology of the network of communicating timed-automata of the use-case

details. The arrows pointing to and from the Controllers in Fig. 3 appear in this
diagram either as channels in the labels, represented by names prefixed with
‘?’ or ‘ !’, or as shared variables such as limit, which is read to detect if the
motor reached its target position. The non-blocking behaviour of the error and
fail channels is captured by including an extra transition labelled by this channel
in every node where time can pass.

Uppaal supports imperative code using a C-like language inside a global
Declarations block, accessible by all automata in the network. These variables and
functions can be used by the expressions in the timed-automata. For example,
the concrete actions (e.g., goLeft), time-bounds ((e.g., TLeft[id][max])), shared
variables (e.g., limit), and channel names (e.g., action) are declared in this block.

4 Parameterisation and Verification with Uppex

In order to cope with the multiple configurations of Uppaal’s models, we devel-
oped Uppex to provide a mechanism based on annotations to customise many
aspects, including channels, shared variables, data types, time-bounds, and
requirements. Uppex is an open-source tool that uses the workflow depicted in
Fig. 5: it reads both an Excel file with the configurations and an Uppaal file with
annotations, and it creates a new Uppaal model for each configuration found.
Either one of the new models is used to replace the original Uppaal file, or they
are verified by Uppaal and a report is produced. Uppex is developed in Scala,
uses the Apache POI libraries for Microsoft documents [13], and is available at
https://cister-labs.github.io/uppex.

4.1 Annotating Uppaal Models

Declarations in the input Uppaal model are annotated with special blocks start-
ing with “// @Name”, which act as hooks that Uppex uses to inject and update
the values that configure the model. XML blocks from “<Name>” until “</Name>”
also act as hooks for annotations, which we use to inject and update the prop-
erties being verified in the <queries> block. We call these @-annotations and
xml-annotations, respectively.

https://cister-labs.github.io/uppex
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Fig. 4. Specification in Uppaal of the a controllers’ timed-automata with identifier id

Fig. 5. Uppex workflow: updating and verifying models based on configuration tables

Each annotation can be defined in the Excel file in a sheet named with the same
name (c.f. Fig. 6). The first line of these sheets describe the pattern used to pro-
duce code that will be injected for each line of the table, followed by a table with
a header of names in row 2 and their values below. E.g., in the @TimeBounds table
(Fig. 6), row 4 injects the line “const int TCheck[Ids][Intrv] = {{4,4},{6,6}};...”
to the Uppaal code in the corresponding block. The first column acts as unique
identifier: if multiple lines are found, the last one prevails. The column named
Features associates feature names that must be active, otherwise the line is dis-
carded. In our example, when the feature SelfTesting is active the variable for
SelfTest is set to 200, otherwise it is set to 0. The <queries> table on the top-left
of Fig. 6 depicts some of the requirements from Table 1.

4.2 Verifying Multiple Configurations

Using Uppex it is possible to specify a list of configurations, each regarded
as a set of features that can be active or not. These feature selection guides
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Fig. 6. Special Excel tables: @-annotation, xml-annotation, and configurations

which rows from annotation should be included. The list of configurations is
specified in an Excel sheet named @Configurations, such as the one in the bot-
tom of Fig. 6. In this example the configuration SelfTest includes the features
ReadCircuit, SelfTesting, and StartWithSelfTest, among others, and not the fea-
ture SyncMon nor Heartbeats. Hence, when selecting the SelfTest configuration,
the SelfTesting will be active, triggering the last row visible in the @TimeBounds

table to be used to define the SelfTest variable. When selecting instead the
configuration JustHeartBeat, the SelfTesting feature will not be active, thus the
previous row will be used instead. Similarly, the selected features will also influ-
ence which queries will be used during verification.

Uppex can be used as a command line tool to modify the annotated blocks
of an Uppaal model according to a given configuration, or to verify one or
all configurations. For example, the command “java -jar uppex.jar -runAll

motorController.xlsx” will verify all configurations in the given Excel file using
the Uppaal model with the same name, producing a report such as the one in
Table 2. This report states that 3 properties of configuration SelfTest passed
and the verification timed-out while verifying the 4th property. This property
would pass using a slighly larger timeout when calling Uppex. We write ellipsis
‘...’ to omit parts of the report. Configurations Monitor and JustHeartBeat also
passed and failed some properties.

Table 2. Report produced when verifying all properties and all configurations
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5 Lessons Learned and Future Work

During the development of the motor controller system at Alstom in collab-
oration with ISEP and other academic partners, we iterated over core design
architectural decisions and agreed upon different synchronisation mechanisms.
Using the model-checking capabilities of Uppaal, we verified different proper-
ties, including the possibility of sending warnings, of buffer overflows, and of
reaching deadlocks (or timelocks). These models are useful both to predict pos-
sible problems and bottlenecks, and to be used in certification processes. Our
configuration-driven approach using Excel spreadsheets emerged as a solution
to the growth in complexity of the underlying formal models, which typically
must remain simple in order to be useful. We were able to find time-bounds that
satisfy our requirements, e.g., the periodicity at which monitors and decoders
check consistency, or the periodicity at which reports should be polled from the
circuit, under different scenarios simulated by the dashboard.

Uppex adds a negligible overhead over the model-checking process, involving
the parsing of the configuration tables and the Uppaal file, and the writing of
an updated set of Uppaal files. In our use-case we use the 16 automata from
Fig. 1 in a file with ∼1.7K lines excluding queries. Our tables currently include
around 25 requirements, 15 configurations, and 135 different entries (including
scenarios, time parameters, data channels, and data constructors). Invoking Java
to produce a concrete instance takes less than 5 s in our 1.4GHz Quad-Core Intel
Core i5 machine.

Related Work. The verification of complex embedded systems has been inves-
tigated, e.g., by Basten et al. [3] who generate Uppaal models (and Petri net
models) using a model-driven approach with the Octopus toolset, focusing on
design-space exploration and schedule optimisation. Gario et al. [14] and Dureja
and Rozier [9] provide an exhaustive analysis of a large air traffic control, in a
joint effort with NASA team of engineers, using 3 concrete models specified in
the OCRA architectural language with SMV component models. They validate
the 3 models using a combination of different techniques based on the property
at hand, and analyse dependencies among properties to avoid the verification
of unnecessary queries. In contrast to these approaches, Uppex allows the man-
ual definition and fine-tuning of models in the host model-checker instead of
using generated models, and provides mechanisms to control the variability of
the models in a way that can be perceived by both tool- and formal-developers.

The variability in Uppex is given as a set of tables that inject code in the
annotated specifications, but it is not reasoned upon. Other approaches, such as
the formal framework by Kim et al. [16] in the context of embedded systems,
can be used to analyse valid configurations based on feature models [4].
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Future Work. We are pursuing the following two directions of work.

1. Valid Configurations. Currently one can specify any combination of fea-
tures, sometimes leading to incorrect configurations because of missing depen-
dencies or incompatibilities. These restrictions can be captured by a set of con-
straints, usually taking the form of a Feature Model [4] in the context of Soft-
ware Product Lines. One could, for example, make the feature StartWithSelfTest

dependent on SelfTesting, marking any configuration with only the first one as
invalid. Following existing work in this community, we could further exploit these
validity constraints over features, e.g., by considering all configurations that sat-
isfy these constraints, or to aim at finding the best configuration using some cost
function. In the context of this work, the properties validated by Uppaal could
also play a role in the validity of a configuration.

2. Other Backends. Our work targets Uppaal models using a frontend for
developers based on Excel spreadsheets. However, these tables can also be used
with different backends besides Uppaal. For example, to generate configuration
files used in the implementation, or to use a different model-checker for verifica-
tion, such as Imitator [2] for real-time systems, which supports the optimisation
of some parameters, or mCRL2 [6] that supports a temporal logic over events
and can handle very large state-spaces. We are also working on an intermediate
domain specific language that can generate Uppaal models, among other analy-
sis, with a better support to reason over the architectural topology, such as the
one in Fig. 3, which emerges only implicitly in Uppaal.

Uppaal is free to use only for non-commercial purposes. It is currently being
used by academic partners, and our use-case is not being commercialised and is
representative of other ongoing projects. This work may lead to the adoption of
Uppaal in commercial projects of Alstom, or to a different backend supported
by Uppex.

6 Conclusions

This paper presents our approach to formalise the timed-behaviour in Uppaal of
a motor controller system, under development by the Alstom railway company,
in the context of the VALU3S European project. We use parameterised config-
uration tables that adapt a core Uppaal model, facilitating the customisation of
the model so it can better suit different requirements. This paper also describes
how we integrated the usage of model-checking within the development cycle of
a safety-critical system, involving stakeholders with different background, rely-
ing on intelligible tables and architectural topologies. We produced a prototype
open-source tool Uppex to automatise the extraction of parameters and adap-
tation of the formal models, and to verify many configurations on a single run.
In the future we plan to further exploit the validity of configurations and to
experiment with different backends.
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