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Abstract. The need for high-quality standard interfaces is widely rec-
ognized as a mandatory step to reduce procurement costs and create
safely operating complex railway infrastructures. That is why European
initiatives like EULYNX have been set up precisely with the purpose of
supporting standard interfaces development. The exploitation of formal
methods during the phase of standardization plays an essential role in
raising the quality of the generated specifications. 4SECURail is a recent
project that aims to precisely show, with a structured evaluation (known
as the formal methods demonstrator), how formal methods might help
to improve the quality of a specific signalling interface selected as case
study. This paper describes the experience gained with the experiment.
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1 Introduction

The railway infrastructure is constituted by a large, heterogeneous, and dis-
tributed system with components that are on board, trackside, centralized, cross-
ing regional and national borders, managed by different authorities, and devel-
oped by different providers. Not surprisingly, the current trend is to standardize
the requirements of the various system components together with their interfaces
(see, e.g., the EULYNX and the ERTMS initiatives1). Standardization, indeed,
is expected to increase the market competition with the additional benefits of
reducing both vendor lock-in effect and long-term life-cycle costs. However, the
defined standard interfaces for the various system components must be precise
and correct to produce the desired effects. They must not suffer from ambigu-
ities in their interpretation and must not give rise to compatibility problems.
In this respect, the Shift2Rail Joint Undertaking2 aims to foster research and
innovation in the railway sector by promoting the application of rigorous formal
verification techniques to the standard interface development process.

1 https://eulynx.eu, https://www.ertms.net/.
2 https://shift2rail.org/.
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Performing a formal analysis of a signalling standard is a very different - in
the process adopted, the models generated, the tools used, the results expected
- and more difficult task than performing a verification of a specific product
design. In the case of the signalling standard, we are likely to have a more generic
specification with many parameters and options, and its description is expected
to be at a higher level, not forcing any unnecessary implementation detail. This
is quite different from the case of a specific product design, where parameters and
options can be somewhat constrained and where certain implementation choices
can be deemed acceptable. So, while in the case of a specific product we might
have the goal of validating the specification, e.g., with respect to its safety and
functional requirements, in the case of a generic, abstract signalling standard,
our goals cannot go further than a partial formal analysis of its properties, built
on the definition of some specific scenarios. In doing that, we might need to
abstract some aspects not needed for the verification of the intended properties
and possibly make specific implementation choices. This does not mean at all
that the partial formal analysis is not useful. In very simple terms, while the
use of formal methods within the development process has the goal of ensuring
that the final product satisfies the stated requirements, the use of formal methods
within the system requirements specification phase has the goal of improving the
confidence that the specification itself - usually expressed in natural language -
is precisely what needed.

In line with the Shift2Rail philosophy, the 4SECURail project3 aims to
observe the possible approaches, benefits, limits, and costs of introducing formal
methods in the system requirements definition process. This is done with the set
up of a structured evaluation (a.k.a. the demonstrator), consisting in applying
state-of-the-art tools and methodologies with the purpose to collect meaningful
information and data on one of the possible paths that could be followed to
associate a system requirements definition (or a standard interface) with a for-
mal base. Notice, however, that it is not a purpose of the project the definition
or the proposal of an overall methodology for the analysis of the requirements
in the railway sector; the specific choices and the approaches exemplified with
the demonstrator are simply those that have been considered the most fitting
with respect to our specific case study, to our background, and to the project
timelines. The project activity plan involves three steps:

1. Selection of a railway signalling case study and its initial specification
expressed in natural language [1].

2. Derivation of semi-formal and formal models from the initial requirements
specification and conduction of the formal analysis using all the generated
evidence and artifacts to improve the initial specification [2–5].

3. Performing a quantitative analysis of the costs and benefits derived by the
introduction of formal methods in the requirements definition process, lever-
aging the data collected during the demonstrator process [6].

In this paper, we introduce the first two steps of the above process, focusing
on the presentation of the methodological approach followed in our demonstrator
3 https://4SECURail.eu (November 2019–November 2021).

https://4SECURail.eu
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activity, without entering into the details of the formal analysis that has been
conducted. The approach adopted for the quantitative cost/benefits analysis
(partly still in progress) is not the subject of this paper. The rest of the paper
is structured as follows: In Sect. 2, we give details about the case study that
has been the object of the experimentation; in Sect. 3, we present the approach
adopted by the demonstrator. In Sect. 4, we briefly describe some related studies,
and in Sect. 5, we summarize the results of the experience, and we give insights
for future research advancements in the field.

2 The 4SECURail Case Study

The transit of a train from an area supervised by a Radio Block Centre (RBC) to
an adjacent area supervised by another RBC occurs during the so-called RBC-
RBC handover phase and requires the exchange of information between RBCs
according to a specific protocol. This exchange of information is supported by the
communication layer specified within the UNISIG SUBSET-039 [7] and UNISIG
SUBSET-98 [8]. Figure 1 summarizes the overall structure of the UNISIG stan-
dards supporting the handover of a train.

 ETCS/ERTMS 

FIS for RBC/RBC Handover

RBC-RBC 
Safe Communication Interface

EuroRadio FIS

Safe Functional  Module

SAI Sublayer

ER Safety Layer

Communication  Functional  Module

RBC Handover Transaction

RBC/RBC Communication Supervision
* Handling of Creation/Deletion of 
        Safe Communication lines
* Exchange of NRBC messages

* Support of concurrent RBC/RBC 
Handover Transactions

*  Protection against Delay, 
Re-sequencing,

Deletion, Repetition

* Protection against Corruption, 
Masquerade, Insertion

* Interface towards the EuroRadio OSI levels

UNISIG Subset  026

UNISIG  Subset 039 

UNISIG Subset 098

UNISIG Subset  037

4SECURail
Case Study

CSL

SAI

ER
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Fig. 1. Overall structure of the 4SECURail case study

The 4SECURail case study focuses on two main sub-components of the com-
munication layers, supporting the RBC-RBC handover communications. The
considered components are the Communication Supervision Layer (CSL) of the
SUBSET-039 and the Safe Application Intermediate Sub-Layer (SAI) of the
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SUBSET-098. These two components are the main actors that support the cre-
ation/deletion of safe communication lines and protect the transmission of mes-
sages exchanged on such lines. In particular, the CSL is responsible for requesting
the activation - and in case of failure, the re-establishment - of the communica-
tion line for continuously controlling its liveliness and for forwarding the RBC
handover transaction messages on the active line. The SAI is responsible for
ensuring the absence of excessive delays, repetitions, losses, or reordering of
messages during their transmissions. This is achieved by adding sequence num-
bers and time-related information to the RBC messages. The two sides of the
communication line are configured one as initiator and the other as called.

With respect to the SUBSET-98, the 4SECURail case study does not include,
for obvious time and budget constraints, the EuroRadio Safety Layer (ER),
which is responsible for preventing corruption, masquerading and insertion issues
during the communications, nor the lower Communication Functional Module
(CFM) interface. With respect to the SUBSET-039, the 4SECURail case study
does not include the description of the activation of multiple, concurrent RBC-
RBC handover transactions when trains move from a zone supervised by an
RBC to another one. From the point of view of the CSL, the RBC messages
are forwarded to/from the other RBC side without the knowledge of the specific
content or session to which they belong. The official initial requirements spec-
ification document describing the case study and the rationale for its choice is
publicly available as project Deliverable D2.3 [1].

3 The Requirements Analysis Process

The formal analysis of the natural language system specification that describes
the case study passes through an intermediate step consisting in designing SysML
models of the various components. The choice of introducing this intermediate
step is motivated by two main reasons. Firstly, the semi-formal modelling of sys-
tem components is in line with the current trend adopted by the EULYNX
initiative, which has selected SysML as accompanying semi-formal notation.
And secondly, it is felt natural for a signalling standard to be complemented
as far as possible by widely known graphical notations. However, the latter may
be a source of troubles, mainly because SysML/UML, despite all the current
attempts [9–14], still lacks a recognized, clear, and rigorous semantics. To over-
come this problem, we have opted to use an extremely simple subset of the
SysML instructions, whose semantics is considered stable and well-defined. The
subset used is not the largest subset with the necessary characteristics, but it
is just the smallest subset needed to model our case study. Extensions to this
subset are definitely possible, but more investigations are needed, and this issue
is out of our project goals.

In the modelling and analysis of the case study, a few choices have been
made. In particular, the requirements of the SAI component allow two alternative
options in modelling the safe connection initialization phase: One option is based
on the “Triple Time Stamping (TTS)” approach, while the other is based on the
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“Execution Cycle (EC) Defence Technique” approach. Our modelling takes into
account the EC option which, at a first glance, seemed less dependent by real-
time aspects.

The overall approach followed during the modelling and analysis process is
incremental and iterative. About 53 versions of the system have been generated,
each one widening the set of requirements of the case study modelled, and each
one passing through the steps of semi-formal and formal modelling and analysis.
During this iterative process, four kinds of artefacts have been generated and
kept aligned:

1. A more abstract, semi-formal UML state machine design of the components
under analysis.

2. A more detailed executable version of the same UML state machines.
3. A set of formal models derived from the executable UML state machine.
4. A natural language rewriting of the requirements based on the designed and

analysed models.

Figure 2 depicts the relationship between these artefacts, whose detailed
description is given in the following subsections. The activity of generating and
elaborating most of the shown artefacts (currently) requires a human problem
understanding and solving activity. The only part that can be mechanically auto-
mated (partly achieved within the project) is the generation of the formal models
starting from the UML executable models.

Natural Language
 Requirements revision

Formal modelling 
and analysis

Abstract modelling

Executable modelling

D2.3
Initial Natural Language

Requirements

modelling and analysis

Abstract, Semiformal 
SysML/UML 

Designs

Detailed, Executable 
SysML/UML 

Designs

Formal Models
+

Formal Properties

Natural Language
 Requirements, Assumptions, 

Guarantees

Fig. 2. The 4SECURail demonstrator generated artefacts

3.1 Semi-formal Designs

The first step in trying to associate an operational model to our input require-
ments specification consists in drawing an abstract design of the state machine
describing the various components, putting the accent of the control flow rela-
tion between the most relevant system states, the events that trigger the corre-
sponding state transitions, and the communication events occurring among such
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SAI_DISCONNECT.indication /

- [receive timer expired ] /
SAI.SAI_DISCONNECT.request;

RBC.RBC_User_Disconnect_indication

- /
SAI.SAI_CONNECT.request;

start connection timer;

/
RBC.RBC_User_Connect_indication;

start send and receive timer;

NOCOMMS
Disconnected

- [ connection 
timer expired ] /

NOCOMMS
Connecting

NOCOMMS
Waiting

SAI_DISCONNECT.indication /
RBC.RBC_User_disconnect_indication

R1

R2

R3

R4

R6

R5

R7 - [send timer expired ]  /
SAI.SAI_DATA.request(lifesign,nodata) 

RBC_User_Data.request(userdata) /
SAI.SAI_DATA_request (Rbadata,userdata) 

R8

R9SAI_DATA_indication(msgtype,userdata) 
[msgtype != lifesign] /

RBC.RBC_User_Data_indication(userdata) ;
restart receive timer;

R10 SAI_DATA_indication(msgtype,userdata) 
[msgtype = lifesign] /
restart receive timer ;

R11

Initiator CSL

COMMS
Connected

Fig. 3. The Initiator CSL (ICSL) abstract design

components. Figure 3 shows an example of such abstract/semi-formal design.
The corresponding designs of the two sides of the modelled CSL and SAI com-
ponents can be found in Appendix B of Deliverable 2.5 [4].

We can observe that no details are given at this step on how some abstract
feature is implemented (let us consider, for example, the case of timers or the
specific calculations being performed as the effect of a transition). These kinds
of designs, however, are already useful as a reference and base documentation
for the revision (or confirmation) of the overall structure of the natural language
requirements describing the various system components. This initial step has
already allowed us to clarify duplications and ambiguities in the initial require-
ments document. Appendix B of Deliverable 2.2 [3] of the 4SECURail project
shows some of the annotations made to the initial requirements in the early
stages of the design. As the modelling process evolves and becomes more formal
this kind of design is updated to continue reflecting the actual structure of the
system.

3.2 Executable UML Designs

The next step towards a formal model is the completion of the abstract design
by providing an implementation of all the informally specified aspects. This
means to precisely define all the needed local variables of the various components
and clearly describe how they are manipulated within the effects of the various
transitions. This also means providing a way to model a reasonable temporal flow
since the overall system behaviour depends on several time-dependent aspects.
Moreover, in order to generate a closed executable system, it is necessary to
build parts of the environment capable of receiving data from our modelled
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components and stimulate them with appropriate events. In our specific case,
we need three kinds of environment components: two components modelling
the possible behaviour of the RBC users, and a component modelling the ER
that allows the two SAI components to communicate. We also added a Timer
component that allows all the components to proceed still in an asynchronous
way, but relatively at the same speed. Figure 4 shows the resulting structure
of the whole system. All the added environment and timer components can
be designed in UML to facilitate the system encoding into the selected formal
notations.

RBC_User_1 RBC_User_2

I_SAI C_SAI

initiator side called side

C_CSLI_CSL

EuroRadio/CFM levels

envenv

env

T
i

m
e
r

Fig. 4. The complete executable system structure

Figure 5 shows an example of executable state UML design corresponding to
the abstract version of the component shown in Fig. 3.

3.3 Formal Modelling

The desirable approach for passing from a SysML/UML executable design (pos-
sibly generated with commercial tools like PTC, Yakindu, Rhapsody, Cameo
Modeling Tool (once Magic Draw), SPARX-EA, Papyrus) to a set of formal
models is to use available translation tools. During the initial phases of the
project, we experimented with the SPARX-EA tool for the design of the exe-
cutable SysML models. Still, no translation tool was found to be available, and
an effort to build it was beyond the project effort and outside the project goals.
Moreover, linking such translation tools to a specific commercial SysML design
tool was considered not desirable. Our solution has been to make a first manual
translation of the executable SysML design into the design notation accepted by
the UMC tool of the in-house developed KandISTI [15] framework. The UMC
notation for specifying a collection of interacting state machines is, in fact, a sim-
ple textual, user-friendly encoding of the state machines that allows an almost
direct translation of the case study with minimal effort. A fragment of the UMC
notation for the state machine depicted in Fig. 5 is shown in Fig. 6.

UMC allows to explore the possible system evolutions and verify branching
time properties on it. This framework has been chosen as first target because
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SAI_DISCONNECT.indication /

icsl_tick [receiveTimer = max_receiveTimer] / 
        Timer.ok_icsl;
  SAI.SAI_DISCONNECT.request;
  receiveTimer := 0;
  sendTimer := 0;
  RBC.RBC_User_Disconnect_indication

- /
  SAI.SAI_CONNECT.request;
  connectTimer := 0;

 RBC.RBC_User_Connect_indication;
 connectTimer := max_connectTimer; 
 receiveTimer := 0;
 sendTimer := max_sendTimer

NOCOMMS
Disconnected

icsl_tick  [connectTimer = 
                max_connectTimer ] /
Timer.ok_icsl

NOCOMMS
Connecting

NOCOMMS
Waiting

SAI_DISCONNECT.indication /
  RBC.
     RBC_User_disconnect_indication;
  receiveTimer := 0;
  sendTimer := 0;

R1

R2

R3

R4R6

R5

R7
icsl_tick [(receiveTimer < max_receiveTimer)

   and (sendTimer = max_sendTimer)] /
  Timer.ok_icsl;
  sendTimer := 0;
  receiveTimer := receiveTimer+1
  SAI.SAI_DATA.request(Lifesign,nodata) 

RBC_User_Data.request(userdata) /
  SAI.SAI_DATA_request (RBCdata,userdata) ;
  sendTimer := 0

R8

R9
SAI_DATA_indication(msgtype,userdata) 
                 [msgtype != Lifesign] /
  RBC.RBC_User_Data_indication(userdata) ;
  receiveTimer := 0;

R10
SAI_DATA_indication(msgtype,userdata) 
          [msgtype = Lifesign] /
  receiveTimer := 0;

R11

Initiator CSL

COMMS
Connected

  receiveTimer := 0;
  sendTimer := 0;
  connectTimer := 0;

icsl_tick [connectTimer <    
                 max_connectTimer ] /
  Timer.ok_icsl;
  connectTimer := connectTimer +1;

RTa
RTb

icsl_tick /
  Timer.ok_icsl

icsl_tick [(receiveTimer < max_receiveTimer)
and (sendTimer < max_sendTimer)] / 

  Timer.ok_icsl;
  sendTimer := sendTimer +1;
  receiveTimer := receiveTimer+1

RTc

max_receiveTimer: int;
max_sendTimer:    int;
max_connectTimer: int;

Fig. 5. The Initiator CSL executable model

it fits well the need for fast design prototyping. The resulting graph describing
the evolutions of the system can be analysed or saved in the form of Labelled
Transition System (LTS), where the user has the choice to specify which kind
of information should be associated with the LTS edges. This information may
include the UMC transition label, the outgoing events generated by the effects of
a transition, or any other custom flag associated with the firing of the transition.
However, UMC is essentially an academic prototype used mainly for research and
teaching purposes. Therefore, we wanted to take into account also furthermore
industry-ready formal verification frameworks.

The second framework that has been chosen to support the formal analysis of
the system is ProB [16]. Indeed, according to several surveys (see, e.g., [17–19])
B/EventB appears to be one of the most adopted formal methods in railways.
Moreover, ProB has a very user-friendly interface requiring a small effort to be
learnt and powerful verification methods. Last but not least, it is freely available
as an open-source product.

A third framework that has been taken into account is the CADP toolbox
with its LNT language [20,21]. One interesting aspect of this third approach
is that the mathematical representation used for the models is based on pro-
cess algebras, and can exploit the rich theory around LTS for supporting the
verification process (e.g., minimizations, bisimulations, and compositional veri-
fication [22–24]). Another interesting aspect of the CADP framework is that the
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Fig. 6. The ICSL encoding in UMC (fragment)

model structure stands on events, and in particular on communication actions.
The logic used to reason on these models is a very powerful, action-based,
branching-time logic. This creates another point of view from the one supported

   Message Sequence Diagrams
CTLe / LTLe Model Checking

       (state/event based)
...

   Message Sequence Diagrams
UCTL Model Checking  

       (state/event based)
...

MCL Model Checking 
      (event based)

Strong/ Divbranching/ Sharp 
         Minimazations

Powerful scripting language
...

ProB UMC LNT

Fig. 7. Table of verification features
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by ProB, which is more state-oriented. Similarly to ProB, CADP is freely usable
with an academic licence.

Once available the UMC encoding of our model, we can exploit two other
in-house translators to directly translate the UMC model into the ProB and
LNT notations. We omit here the details of the translations, for which we refer
to Appendix A of 4SECURail Deliverable D2.5 [4] and to [27].

The size of a complete (closed) executable model clearly depends on the
complexity of the environment components used to stimulate our communication
layer. In one of the simplest scenarios, the UMC executable model consists of
about 2500 lines, resulting in a ProB model of about 3500 lines and in a LNT
model of about 4000 lines. The modelling and analysis of the case study within
the project have required an effort of about seven person-months.

These methods and tools are not meant to be, in general, “the best ones”
or the “most fitting” the railway sector. Our selected frameworks are just those
“most fitting” the project’s expected efforts and goals. Alternative meaningful
choices, similar in style, might have been mCRL2, nuXmv, Spin, TLA+, HLL.

The choice to model and analyse the system with more than one framework
is considered very important for two reasons. Firstly, it allows to take advan-
tage of the multiple verification methods provided by the different frameworks,
e.g., analysis of state invariants with ProB, system and components property-
driven minimizations with CADP, reachability explanations provided in the form
of sequence diagrams with UMC (Fig. 7 shows a table of some of the features
provided by our three frameworks). And secondly, the choice of using different
formal notations allows us to verify the correctness of the mechanical translation
from UML executable design (in UMC) into the other formal notations. All the
three formal versions of the system can indeed be proven to reflect precisely the
same system4.

In Sects. 5.4 and 5.5, Appendix E and F of Deliverable D2.5 [4] are shown the
various way in which all these frameworks have been used to analyse the system
behaviour. Our experimentation shows that the selected formal frameworks can
be used either in a “lightweight” or “advanced” way. In Fig. 7, the verification
features that can be easily exploited without any advanced prior knowledge, and
in an almost “push button” way, are those appearing in black. For example, with
ProB, by just selecting the “Model Check” button (see Fig. 8), it is possible to
analyse the full state-space for deadlocks, invariant violations, and other errors.
Other features, typically those requiring the encoding of properties in temporal
logic formulas, may require a prior non-trivial background on formal methods
and model checking.

While the previous step of designing the UML executable models already
helped to identify and remove ambiguities and unclarities, the static analysis
and the model checking of the formal models have been essential to detect

4 This has been done by comparing the formal semantics (in the form of an LTS) of
the three versions of the system and mechanically proving that they are strongly
equivalent.
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Fig. 8. Model Check GUI of ProB

missing requirements leading to loss events, missing assumptions leading to dead-
locks, and implementation mistakes leading to properties violation expected to
be guaranteed.

3.4 Revised Natural Language Requirements

Pragmatically, we are afraid that a system requirements specification of a stan-
dard interface is doomed to have an official natural language description as well.
One of the goals of the 4SECURail demonstrator process is to show a way to
improve such an initial natural language specification by backing it with formal
models. This improvement has two goals:

1. Guarantee that the specification is based on a rigorous, clear structure, remov-
ing ambiguities and duplications.

2. Improve the confidence that the specification is correct, i.e., capable of inter-
operating with other systems, with neither missing nor inconsistent require-
ments.

The generation of executable, formal models is the mean to achieve these
goals, not the goal itself. Therefore, in our demonstrator process, we also tried
to show a possible way of writing the requirements specification in a manner
strictly tied to the executable, formal models but still in natural language.

The implementation choices that have been made in the construction of the
executable, formal models should not appear in the natural language require-
ments specification, which is supposed to be at a higher level than an executable
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implementation. The abstract semi-formal design of a system, like the one shown
in Fig. 3, appears to be at the correct level of abstraction for this task.

Figure 9 shows a possible example of a rigorous natural language description
of the system resulting from the aligned generations of the various artefacts
produced during the process. It is worth noticing the strict relation between
the requirements describing the system behaviour, the semi-formal design, the
executable design, and the formal models.

Fig. 9. Natural Language requirements for ICSL
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At this level, an important role is played by the “guarantees” that each
component should ensure to the other components making use of it, and the
“assumptions” on the external environment which are supposed to hold. An
example for all: When a connection request is sent from the initiator SAI to the
ER, we should assume that it will always have a reply from ER either through
a connection-confirmation or a disconnect-indication. The formal analysis of the
system, indeed, allows to check if such an assumption is not satisfied by the ER
level, and deadlocks may appear in the behaviour of the SAI component.

4 Related Works

The analysis of still “unstable” requirements has been widely investigated by
Heitmeyer [25,26] with the Software Cost Reduction (SCR) tabular notation
and method. While Avnur [28], differently, has based its analysis on Finite State
Machines. In [29,30], Giannakopoulou, Mavridou et al. have exploited the FRET
requirements elicitation tool for analysing requirements and generating Simulink
models. In [31], Lutz and Ampo have used the Paradigm Plus tool to model
the requirements and verify them with PVS, while Ferrari et al. [32] have used
Simulink for modelling and verification of the system requirements. Another
quite related effort is that one in [33], where Basile et al. have modelled and
analysed part of the UNISIG SUBSET 98 using Uppaal.

Many more works have been done when starting from UML/SysML designs
instead than from informal requirements. In [34], e.g., Caltais et al. have dis-
cussed the transformation of SysML models into NuSMV. While in [35], Snook
and Butler have discussed the translation into the B notation of designs in the
UML-B profile. Several other studies (e.g., [36]) instead describe the translation
of UML/SysML models in mCRL2. Still, the approach which is the most similar
to ours is the one by Bouwman et al. [37], which has the same goal of enrich-
ing EULYNX interfaces with formal models, that in this case, are encoded in
mCRL2.

5 Conclusions

It is true that sometimes standard tends to prescribe vague goals and prohibi-
tions, that they tend to be continuously revised to fix their weaknesses, and that
implementations have often no strong legal incentive to fully comply with them.
Our effort should be considered as a contribution towards the definition of clear,
rigorous, stable, strongly enforced signalling standard, as required in the railway
domain and as promoted by the Eulynx5 and RCA6 initiatives.

The executable and formal models generated during the analysis of the stan-
dard have the main purpose to provide the standard designer with some feedback
from the analysis of some instantiations of the standardised interface. Surely this

5 https://www.eulynx.eu/index.php.
6 https://public.3.basecamp.com/p/jGh4E3ZdE8T1RtoxvbWLCYss.

https://www.eulynx.eu/index.php
https://public.3.basecamp.com/p/jGh4E3ZdE8T1RtoxvbWLCYss
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is not sufficient to guarantee the generic correctness of the standard for all the
allowed variation points, but it still much better than relying exclusively on a
plain natural language description of the standardised interface for which no
executable model has ever been devised and analysed.

From the point of view of the provider the generated executable UML models
might be useful to shed some light on some aspects that might still be consid-
ered ambiguous in the natural language description of the standard, and to
suggest the structure of a feasible implementation possibly reducing the design
and debugging effort of the proprietary implementation.

The goal of the 4SECURail demonstrator has been the illustration - with
a real experiment - of a possible way in which formal methods, in particular,
can be exploited to improve the quality of system requirement specifications.
The use of formal models is indeed considered important for the analysis of the
interactions inside complex systems of systems, like those typical of the railway
sector.

We have shown how creating an easy-to-understand and communicate exe-
cutable model is an intermediate step that already allows to detect several pos-
sible weaknesses in the initial natural language requirements. However, this step
is also a passage where errors can easily be made, and a formal analysis of exe-
cutable models becomes important to detect and remove them. This can be done
with a “lightweight” use of formal methods, since it does not require particular
advanced background and experience. More advanced properties of the system,
e.g., those related to the expected interoperability properties the system should
guarantee, may require a more advanced knowledge of the formal frameworks
and, therefore, higher costs in terms of effort and learning curve.

Adopting a formal methods diversity approach to analyse an executable
model adds the advantage of having an alternative way to verify the correct-
ness of the generated formal models and allows to exploit a broader range of
verification features. The experience gained with our experimentation allowed
us to confirm the essential importance of relying on an automatic/mechanical
translation of executable models into the formal notations used for formal anal-
ysis. In their absence, we would not have been able to generate 53 releases of
formal design in three different notations. The experimentation conducted within
the 4SECURail project has put in evidence many aspects that deserve deeper
studies. Among these:

– The precise role of SysML/UML as system design notation.
– The way to support the transition from executable designs generated in

industry-ready Model-Based System Engineering frameworks to formal mod-
els.

– The way to support lightweight use of formal methods to make them more
easily adaptable to the existing requirements definition processes.

– The way in which the formal models and the verified properties can be
explained back in a rigorous natural language style.

Another piece of work that is still missing and that we hope to be able
to complete in the near future is a thorough evaluation of the experimented
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approach and of its positioning with respect to the state of art. The project
deliverables, the initial and revised case-study requirements, the UML designs,
the formal models, the (open source) translation tools are all publicly available
in the 4SECURail site and in open access repositories [38,39].
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