
Simon Collart-Dutilleul · Anne E. Haxthausen ·
Thierry Lecomte (Eds.)

LN
CS

 1
32

94

Reliability, Safety,
and Security
of Railway Systems
Modelling, Analysis, Verification,
and Certification

4th International Conference, RSSRail 2022
Paris, France, June 1–2, 2022
Proceedings

Lecture Notes in Computer Science 13294

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0002-4029-7051
https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Simon Collart-Dutilleul · Anne E. Haxthausen ·
Thierry Lecomte (Eds.)

Reliability, Safety,
and Security
of Railway Systems
Modelling, Analysis, Verification,
and Certification

4th International Conference, RSSRail 2022
Paris, France, June 1–2, 2022
Proceedings

Editors
Simon Collart-Dutilleul
Université Gustave Eiffel
Villeneuve d’Ascq, France

Thierry Lecomte
ClearSy
Aix en Provence, France

Anne E. Haxthausen
Technical University of Denmark
Lyngby, Denmark

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-05813-4 ISBN 978-3-031-05814-1 (eBook)
https://doi.org/10.1007/978-3-031-05814-1

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-8977-4827
https://orcid.org/0000-0001-7349-8872
https://doi.org/10.1007/978-3-031-05814-1

Preface

This volume contains papers presented at the fifth international conference on Relia-
bility, Safety and Security of Railway Systems: Modelling, Analysis, Verification and
Certification (RSSRail 2022) We are pleased to propose a mainly physical meeting dur-
ing June 1–2, 2022, organized by University Gustave Eiffel in the UIC (The Worldwide
Railway Organization) building in Paris. The conference is back in Paris after its first
loop: The series of conferences started in Paris in 2016 and continued in 2017 in Pistoia.
In 2019, the conference took place in Lille and the 2021, edition was a special issue of
the journal Formal Aspects of Computing. In 2022 we were back to where we started,
after a long period of pandemic, filled with expectations for a fruitful physical event
fostering networking activities and an informal but fundamental sharing of knowledge.

Developing the complex railway systems of the future faces a number of challenges:

– To improve and demonstrate railway system safety, security and reliability
– To reduce production costs, time to market, and running costs
– To increase system capacity and reduce carbon emissions

In the context of current digital transformations, we require integrated environments
and methods that support different abstraction levels and different views, including:

– System architecture
– Safety analysis
– Security analysis
– Verification tools and methods

The RSSRail 2022 conference brought together researchers and engineers interested
in building critical railway application and systems, as a working conference in which
research advances are discussed and evaluated by both researchers and engineers, focus-
ing on their potential to be industrially deployed, keeping in mind the current digital
transformation. Bringing together researchers, developers and stakeholders, working on
reliability, safety and security of railway systems, to leads to contribute to a range of
key objectives. A key goal is the development of advanced methods and tools that will
ensure that rail systemmeet the requirements imposed both by standards and in building
the arguments for compliance. The conference covered topics related to all aspects of
reliability, safety and security engineering for railway systems and networks including:

– Safety in development process and safety management
– Integrated approaches to safety and security
– System safety analysis
– Formal modelling and verification techniques
– System reliability
– Validation according to the standards

vi Preface

– Safety and security argumentation
– Fault and intrusion modelling and analysis
– Evaluation of system capacity, energy consumption, cost and their interplay
– Tool and model integration, tool-chains
– Domain specific language and modelling frameworks
– Model reuse for reliability, safety, and security
– Modelling for maintenance strategy engineering

The fifth occurrence of RSSRail attracted 31 submissions from 16 countries. 16
papers were selected after a rigorous review process in which every paper received
at least three reviews from committee members or from subreviewers of committee
members.

Two prominent researchers working on railway engineering, Frédéric Henon from
UIC (France) and JulietteMarais fromUniversityGustave Eiffel (France). Kindly agreed
to deliver keynote talks. The corresponding abstracts of these keynotes are included in
the current volume.

We would like to thank all the committee members and the additional reviewers for
all their efforts. We are indebted to the Gustave Eiffel University for their involvement in
the planning and organization of this event, particularly for administrative tasks which
the evolving pandemic context made even more complex. We would like to mention
the precious advice from Tom Anderson, Joan Atkinson and Alexander Romanovsky.
Thanks to the UIC, for kindly providing us preferential access to their conference hall.
We are very grateful to Ronan Nugent from Springer for supporting the publication of
these proceedings in theLNCS series. Butmost of all, our thanks go to all the contributors
and those who attended the conference for making this conference a success and great
new start after the interruption due to the pandemic.

Simon Collart-Dutilleul
Thierry Leconte

Anne Haxthausen

Organization

Conference Chairs

Anne E. Haxthausen Technical University of Denmark, Denmark
Simon Collart-Dutilleul University Gustave Eiffel, France
Thierry Lecomte Clearsy, France

Local Organization Chairs

Simon Collart-Dutilleul University Gustave Eiffel, France
Philippe Bon University Gustave Eiffel, France
Nathalie Boticchio University Gustave Eiffel, France

Web Designers

Sébastien Martinez University Gustave Eiffel, France
Dalay Israel de Almeida Pereira University Gustave Eiffel, France

Steering Committee

Anne Haxthausen Technical University of Denmark, Denmark
Alessandro Fantechi University of Florence, Italy
Alexander Romanovski The Formal Route Ltd., UK
Mario Gleirscher University of Bremen, Germany
Simon Collart-Dutilleul

(President)
University Gustave Eiffel, France

Thierry Lecomte Clearsy, France

Program Committee

Abderrahim Ait Wakrime University Mohammed V, FSR, Morocco
Alessandro Fantechi University of Florence, Italy
Alexander Romanovski The Formal Route Ltd., UK
Alexei Iliasov The Formal Route Ltd., UK
Barbara Gallina Mälardalen University, Sweden
Bas Luttik Eindhoven University of Technology, Netherlands
Carlo Becheri Alstom, Italy
Christophe Ponsard Cetic, Belgium

viii Organization

Elena Troubitsyna KTH Royal Institute of Technology, Sweden
Etienne Prun Clearsy, France
Francesco Flammini Linnaeus University, Sweden
Frank Golatowski Univ. of Rostock, Germany
Hironobu Kuruma Hitachi, Japan
Jan Peleska Verified Systems Int., Germany
Jens Braband Siemens, Germany
Kenji Taguchi CAV Technologies, Japan
Klaus Reichl Thales, Austria
Laurent Voisin Systerel, France
Mariëlle Stoelinga Univ. of Twente, Netherlands
Mario Gleirscher University of Bremen, Germany
Maurice ter Beek ISTI, CNR, Pisa, Italy
Michael Leuschel University of Düsseldorf, Germany
Nadia Chouchani IRT Railenium, France
Philippe Bon University Gustave Eiffel, France
Sana Debbech IRT Railenium, France
Stefano Tonetta FBK-irst, Italy

Additional Reviewers

Michael Nast University of Rostock, Germany
Benjamin Rother University of Rostock, Germany
Marco Papini University of Florence, Italy
Mark Bouwman Eindhoven University of Technology, Netherlands
Daisuke Shimbara Hitachi, Japan
Stefano Marrone University of Naples Federico II, Italy
Usman Sanwal Mälardalen University, Sweden
Bob Janssen Siemens, Netherlands

Organization ix

Sponsors

Clearsy

University Gustave Eiffel

DTU

IRT Railenium

EPSF

The Formal Route Ltd.

Abstracts of Keynotes

New Methods for Safety Demonstration in the Frame
of Railway System

Frédéric Henon

International Union of Railways, Paris, France
henon@uic.org

Abstract. The main research priorities for the future of rail are 1. new
techs, 2. mass transit systems, 3. digital transformation, 4. safety as a
whole. These imply long-term disruptive technologies, where new chal-
lenges regarding safety demonstrations will arise. These challenges must
be tackled today, as it is highly expected that intermediate but actual and
near future digital/innovative solutions, come into the railway system,
delivering opportunities of safety tools or loops.

The 4th Industrial Revolution

The new and innovative systems, especially the ones that are using artificial intelligence
and/or complex digital systems, thanks to the 4th industrial revolution, will increasingly
need intensive collaborations between the proposers of new solutions, and the supervi-
sory authorities who are responsible for authorizing the placing on the market, that is
the very end objective to achieve.

The fourth industrial revolution will have an impact on three different areas:

– global or integrated mobility systems,
– long-term disruptive railway technologies,
– methods regarding safety demonstrations.

Future is Today

Some of today’s short-term solutions for railways (somehow, some necessary pre-4th
revolution achievements), are driven by long term research activities, such as these on
automated systems, autonomous trains, hyperloop, etc. For instance, the 5G specifica-
tions for rail, geolocalization systems, video computing, etc., are on the path of targeted
integrated systems.

The different techniques involved, such as AI, solve problems, but remain rather
opaque about how they actually solve them. Interoperability is therefore an essential
question. That is why authorization to place AI on the market, particularly for safety
cases, will be granted only if the human-machine system as a whole is considered, and
thus if the role of human experts remains central.

xiv F. Henon

Thus, the new paradigm for railway engineers and safety engineers is not future, but
already actual and real.

One the other hand, end-users are expecting these intermediate digital and innovative
solutions, to be brought quickly as new “safety loops” or “safety barriers”, in the railway
system, that will deserve the global performance of the system.

These new opportunities, for the whole business, are making this safety challenge,
for operators but also for the regulatory bodies worldwide, to be tackled today.

New Relationships are Necessary

“Authorization” processes for these future systems will be modified considerably, as the
regulating bodies in the railway system will have to evolve with these new technologies.
These new issues have already been identified and are related particularly to the risk
assessment methods and the definition of the safety requirements.

The future scope of use-cases involves a range of unquantifiable different situations
(different lines, operational situations, etc.). The answermay be a combination of several
elements of proof for the new systems, to likely make that these guarantees will become
sufficient:

– A formal demonstration of the software involved in the safety functions,
– Tests on the operational network or in rail test centers,
– Digital simulations in conjunction with physical tests to guarantee that the imple-
mented tests are representative,

– Live monitoring & control,
– etc.

Science on Safety

The field of safety science is uncertain and controversial. There is no consensus on how
to answer the question “what is the purpose of the science of safety”?

There is not even a single paradigmon the science of safety, thatmakes it indisputable
scientific discipline.

A profound crisis of professional identity affects the scientific community as a group
of researchers and safety professionals.

This is the time where the safety must be considered as safety as a service (SaaS),
and considered in the globality and the completeness of the system.

Satellite-Based Train Localization for Safety Critical
Applications. The Challenges of Performance Demo

and Certification

Juliette Marais

Université Gustave Eiffel, France
juliette.marais@univ-eiffel.fr

Abstract. GNSS (Global Navigation Satellite System) is recognized as
a game changer for ERTMS. The use of this equipment, handled in the
pocket of millions of people every day, for safe railway localization nec-
essarily puts several challenges before us! What is nominal performance
and what is the real performance encountered in a railway environment?
The presentation will highlight the remaining challenges and highlight
ongoing and future to reach performance demonstration and certification.

Presentation

Almost everybody has today aGNSS (GlobalNavigation Satellite System) receiver in his
pocket. But how many of us know how it works? GNSS are satellite-based localisation
systems. They are composed of satellites, in orbit at 20 000 km from earth and controlled
from the ground, that continuously broadcast navigation signals. The receiver is the doing
the rest of the job: it computes the time of propagation of available signals and extract the
satellite-to-receiver distance, called pseudo range. A trilateration principle, meaning the
reception of at least 4 signals, result in a 3D position, in an absolute coordinate system.
This cost-effective chip offers absolute continuous position, all over the globe, without
any frontier, with quite good accuracy (meters).

After first explorative research projects, GNSS has finally be recognized as a game
changer for ERTMS. Through the adoption of the own-initiative procedure 2019/2191
(INI) in July 2021, the European Parliament highlights the need to take advantage of
the potential cost savings that GNSS offers in railway signalling. Indeed, GNSS may
be used to increase the capacity of the railway network by allowing the development of
future train operations such as moving block or virtual coupling.

Did you already try to close your eyes and let you guided by your GNSS receiver?
Would you try? In an urban environment, you may have already experienced some large
errors, or unavailability. This is caused by the surrounding environment and a result of
the GNSS principle! As long as wemeasure the time of propagation, GNSS performance
is sensitive to the different path the signal will follow to reach the receiver.

In land transport environment, so in a railway environment, GNSS performance is
suffering from masking effects, multipath or reflected signals and interferences. These

xvi J. Marais

effects can be seen as random or almost, as they depend on the very close surrounding
of the antenna.

For non-safety critical applications (cargo tracking, digital freight…), where require-
ments can be relaxed, COTS receivers already travel with trains andwagons over Europe.
For safety-critical applications such as signalling, performance have to be enhanced and
ensured, before being demonstrated and certified.

During the talk, these issues will be highlighted: how can we mitigate local effects?
How to protect against unacceptable performance, causing failures? Some answers are
developed or investigated in Eu R&D projects: development of detection techniques;
mapping of GNSS reception quality along railway lines; error modelling; integrity mon-
itoring concepts (integrity being the measure of trust placed in the position provided),
multi-sensor fusion solutions…

GNSS-based solutions should ensure fail-safe train location and location integrity.
For example, this allows a reduction in trackside location equipment such as the replace-
ment of physical balises (beacons) with virtual ones, or to compute a continuous and
accurate train position. However, the use of GNSS requires current railway regulations
and operations to be adapted.

To complexify the process, GNSS satellites are moving around the earth and what
happens at 10h will not happen or happen differently at 15h because of the satellite
configuration.

The demonstration and certification of GNSS-based solutions will need new solu-
tions and tools in order to consider parameters among which: propagation conditions,
time, geometry (of both satellites and surrounding environment), analysis of rare events
consequences. Can experimentation help for this performance quantification? How can
we reach zero-on-site testing and what are the test bed to be developed? These are some
of the topics that will be addressed.

Contents

Safe Interlocking

Compositional Verification of Railway Interlockings: Comparison of Two
Methods . 3

Alessandro Fantechi, Gloria Gori, Anne E. Haxthausen,
and Christophe Limbrée

Safety Invariant Verification that Meets Engineers’ Expectations 20
Alexei Iliasov, Linas Laibinis, Dominic Taylor, Ilya Lopatkin,
and Alexander Romanovsky

Innovation in Traffic Management

Formalization and Processing of Data Requirements for the Development
of Next Generation Railway Traffic Management Systems 35

Airy Magnien, Gabriele Cecchetti, Anna Lina Ruscelli, Paul Hyde,
Jin Liu, and Stefan Wegele

Acceleration Techniques for Symbolic Simulation of Railway Timetables 46
Rebecca Haehn, Erika Ábrahám, and Niklas Kotowski

Optimal Railway Routing Using Virtual Subsections . 63
Tom Peham, Judith Przigoda, Nils Przigoda, and Robert Wille

Safety and New Technologies

Verification of Multiple Models of a Safety-Critical Motor Controller
in Railway Systems . 83

José Proença, Sina Borrami, Jorge Sanchez de Nova, David Pereira,
and Giann Spilere Nandi

Learning to Learn HVAC Failures: Layering ML Experiments
in the Absence of Ground Truth . 95

Carlos E. Budde, Duncan Jansen, Inka Locht, and Mariëlle Stoelinga

Safety

Enhancing Autonomous Train Safety Through A Priori-Map Based
Perception . 115

Ankur Mahtani, Nadia Chouchani, Maxime Herbreteau, and Denis Rafin

xviii Contents

Assigning Safe Executed Systems to Meanings . 130
Lilian Burdy, David Deharbe, and Denis Sabatier

Generating and Verifying Configuration Data with OVADO 143
Frédéric Badeau, Julien Chappelin, and Joris Lamare

The 4SECURail Formal Methods Demonstrator . 149
Franco Mazzanti and Dimitri Belli

ATO

Formal Design and Validation of an Automatic Train Operation Control
System . 169

Arturo Amendola, Lorenzo Barruffo, Marco Bozzano,
Alessandro Cimatti, Salvatore De Simone, Eugenio Fedeli,
Artem Gabbasov, Domenico Ernesto Garrubba, Massimiliano Girardi,
Diana Serra, Roberto Tiella, and Gianni Zampedri

Investigating Human Error Within GoA-2 Metro Lines . 179
Josh Hunter and John McDermid

A Vision of Intelligent Train Control . 192
Francesco Flammini, Lorenzo De Donato, Alessandro Fantechi,
and Valeria Vittorini

Safe and Secured Telecom for Railway

Analysis of Safety-Critical Communication Protocols for On-Premise
SIL4 Cloud in Railways . 211

Benjamin Rother, Frank Golatowski, Zeeshan Ansar, Don Kuzhiyelil,
Stefan Resch, Reinhard Hametner, and Prashant Pathak

TASC: Transparent, Agnostic, Secure Channel for CBTC Under Failure
or Cyberattack . 221

Utku Tefek, Ertem Esiner, Lin Wei, and Yih-Chun Hu

Author Index . 239

Safe Interlocking

Compositional Verification of Railway
Interlockings: Comparison of Two

Methods

Alessandro Fantechi1, Gloria Gori1(B), Anne E. Haxthausen2,
and Christophe Limbrée3

1 University of Florence, Firenze, Italy
gloria.gori@unifi.it

2 DTU Compute, Technical University of Denmark, Lyngby, Denmark
3 Belgian Railway Infrastructure Manager, Brussels, Belgium

Abstract. Formal verification of safety of interlocking systems and of
their configuration on a specific track layout is conceptually an easy task
for model checking. Systems that control large railway networks, how-
ever, are challenging due to state space explosion problems. A possible
way out is to adopt a compositional approach that allows safety of a large
system to be deduced from the formal verification of parts in which the
system has been properly decomposed. Two different approaches have
been proposed in this regard, differing for the decomposition assump-
tions and for the adopted compositional verification techniques. In this
paper we compare the two approaches, discussing the differences, but also
showing how the different concepts behind them are essentially equiva-
lent, hence producing comparable benefits.

Keywords: Compositional verification · Model checking railway ·
Railway interlocking systems

1 Introduction

Railway signalling is one of the domains in which formal methods have been
applied in industry with multiple success stories since decades. In particular,
interlocking systems, that control the train movements inside a railway network,
called for a direct application of model checking, since required safety properties
can be conveniently expressed in temporal logic. These systems need to be con-
figured with application data that are closely related to the network layout in
terms of tracks, points, signals, etc. Formal verification aims to verify both the
generic algorithms for safe allocation of routes to trains, and the specific config-
uration for the network at hand, given by the application data. However, due to
the high number of variables involved, automatic verification of sufficiently large
networks typically incurs in combinatorial state space explosion [9].

State space explosion in model checking has been addressed by several tech-
niques, e.g., adopting abstraction techniques, that preserve the validity of model
c© Springer Nature Switzerland AG 2022
S. Collart-Dutilleul et al. (Eds.): RSSRail 2022, LNCS 13294, pp. 3–19, 2022.
https://doi.org/10.1007/978-3-031-05814-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05814-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-05814-1_1

4 A. Fantechi et al.

checking results: the abstraction technique to be chosen typically depends on
the nature of the system. Indeed, interlocking systems typically exhibit a high
degree of locality : if we consider a typical safety property desired for an inter-
locking system, e.g., that the same track element shall not be reserved by more
than one train at a time, it is likely that this property is not influenced by a
train moving on a distant, or parallel, track element. Locality of a safety prop-
erty can be exploited for verification purposes, so limiting the state space on
which to verify it, by abstracting away the said “movement of distant trains”.
This principle has been exploited in [26] to define domain-oriented optimisation
of the variable ordering in a BDD-based verification. Locality has been used also
for model slicing, as suggested in [9,13,14], where only the portion of the model
that has influence on the property to be verified (cone of influence) is considered:
this allows for a more efficient verification of the single property, at the price of
repeating the slicing and the verification for every property, and of separately
checking that this abstraction preserves property satisfaction.

Locality also enables the adoption of a compositional approach that sepa-
rately verifies portions of a network layout that are shown to be rather inde-
pendent by the said locality principle. The residual dependency between the
portions needs however to be properly addressed.

In [8,10,18,19] a compositional verification approach based on dividing the
network layout into two (or more) portions has been proposed. Extra track
sections and signals are added at the border between two portions in order to
abstract in one portion the behaviour of the other one.

A different approach [15–17] has addressed the same issue by resorting to
the criteria for functional decomposition of interlocking systems as defined by
Belgian railways; these criteria address the control of large networks by dividing
the layout into subnetworks, each possibly controlled by separate interlocking
systems. The cited study has considered the very same criteria as efficient as
well as a basis for a compositional verification approach.

We were therefore interested in comparing the two compositional approaches.
Indeed, they appear at a first glance quite different both for the definition of pos-
sible decomposition procedure and for the formal verification machinery adopted.
The comparison presented in this paper shows in the end, instead, a high degree
of similarity, that strengthens the confidence on the actual applicability of com-
positionality to attack formal verification of interlocking systems of large net-
works.

The paper is structured as follows: Sect. 2 introduces some necessary termi-
nology for interlocking systems. With reference to the two different approaches,
Sect. 3 describes “normal” formal verification of interlocking systems, while com-
positional reasoning is introduced in Sect. 4. Section 5 compares the two composi-
tional approaches and discusses the differences. Section 6 introduces a case study,
that has been useful to compare the methods, and which shows the advantages
of the compositional methods. A related work section (Sect. 7) and a concluding
section (Sect. 8) follow.

Compositional Verification of Railway IXL: A Comparison 5

2 Background

In this section we briefly introduce the main notions of interlocking systems: we
restrict to assumptions consistent with the European ETCS Level 2 resignalling
program, for which we refer to [24,25] for a more detailed introduction, and to
Belgian signalling principles. Different terminology and assumptions are often
used as well, as can be found in most of the literature on interlocking systems
cited in this paper. We also take a simplified view, that is sufficient for our
discussion, although ignoring some details of real systems.

A railway network consists of a number of track and track-side elements of
different types, of which we limit to consider linear sections, points, and sig-
nals. Figure 1 shows an example railway network layout, introducing the graphic
representation of these elements:

– A linear section, identified with a magenta box in Fig. 1, is a track section
with up to two neighbours: one in the up end, and one in the down end. For
simplicity, in the following examples and figures, the up (down) direction is
assumed to be the left-to-right (right-to-left) direction.

– A point, identified with a red box in Fig. 1, can have up to three neighbours:
one at the stem, one at the plus end, and one at the minus end. The stem and
plus ends form the straight (main) path, and the stem and minus ends form
the branching (siding) path. A point can be switched between two positions:
PLUS and MINUS, selecting the main or siding paths, respectively.

– Linear sections and points are collectively called (train detection) sections,
as they are provided with train detection equipment used by the interlocking
system to detect the presence of trains.

– Along each linear section, up to two signals (one for each direction) can be
installed. Two signals, one for the up direction and one for the down direction,
are indicated in Fig. 1 using two green boxes. A signal can only be seen in
one direction and has two aspects (OPEN or CLOSED). In ETCS Level 2,
signals are actually virtual and their aspect is communicated to the onboard
computer via a radio network.

– A route, identified with a blue arrow in Fig. 1, is a path from a source signal
to a destination signal in the given railway network.

– By setting a route we denote the process of allocating the resources – i.e.,
sections, points, and signals – for the route, and then locking it exclusively
for only one train when the resources are allocated. When the train has left
all the sections of the allocated route, the route is free again, to be allocated
to another train.

Further examples of network layouts are deferred to Sect. 5.
Typical safety properties required of an interlocking system can be reduced

to the following generic safety conditions:

1. No collisions: Two trains must never occupy the same track section at the
same time.

6 A. Fantechi et al.

Fig. 1. Railway network: track and track-side elements. (Color figure online)

2. No derailments: A point must not be switched, while being occupied by a
train.

All required safety properties are expressed as generic conditions leading to
specific conditions for each specific case of a network. The No collisions property
is enforced by a mutually exclusive allocation of a route to a train asking for
it. Notice that considering such typical safety properties, a route defines the
maximal subset of elements whose status affects the safety property, that is, no
element outside a route, or, at most, two conflicting routes, can affect a safety
property for that route(s).

In this paper we focus on No collisions and No derailments safety properties.
Other properties, e.g., liveness, can be proven using both methods.

3 Formal Verification by Model Checking

Interlocking systems called for a direct application of model checking, since
required safety properties can be conveniently expressed in temporal logic. The
verification process based on model checking can be represented as in Fig. 2,
where dashed boxes represent artefacts related to a specific network topology:
typically, from the network layout a control table (aka interlocking table or appli-
cation data) is derived, that contains information about routes, their sections,
points and signals, their conditions for safe allocation, and their conflicts with
other routes. From this data, a behavioural model in the form of a transition
system is derived, according to realistic assumptions and principles of train move-
ments, that also follow specific national regulations.

The two derivation steps of a model from the network layout can be auto-
mated, but the generation of the control table may ask for a manual intervention
of signalling engineers to take into account specific physical constraints or other
peculiarities [11].

The network layout guides the instantiation of generic safety properties as
well. As usual, the model checker verifies whether the properties are satisfied by
the model, returning a diagnostic counterexample in the case they are not.

Compositional Verification of Railway IXL: A Comparison 7

Fig. 2. Monolithic verification process.

In this paper we consider two verification approaches that implement, with
a few differences, the process of Fig. 2.

3.1 The RobustRailS Method

The RobustRailS verification method [22–25] is based on a combination of formal
methods and a domain-specific language (DSL) to express network diagrams
and interlocking tables. A tool is provided by the RobustRailS environment to
transform the DSL description into the transition system model and the required
safety properties given as Linear Temporal Logic (LTL) formulae.

The RobustRailS tools can be used to verify the design of an interlocking
system in the following steps:

1. A DSL specification of the configuration data (a network layout and its cor-
responding interlocking table) is constructed in the following order:
(a) first the network layout,
(b) and then the interlocking table (this is either done manually or generated

automatically from the network layout).
2. The static checker [12] verifies whether the configuration data is statically

well-formed according to the static semantics [24] of the DSL.
3. The generators instantiate a generic behavioural model and generic safety

properties with the well-formed configuration data to generate the model
input of the model checker and the safety properties.

4. The generated model instance is then checked against the generated proper-
ties by the bounded model checker, performing a k-induction proof.

8 A. Fantechi et al.

The static checking in step (2) is intended to catch errors in the network layout
and interlocking table, while the model checking in step (4) is intended to catch
safety violations in the control algorithm of the instantiated model.

The tool chain associated with the method has been implemented using the
RT-Tester framework [20,21].

3.2 The Louvain Method

The Louvain verification method [3] exploits a set of tools to automatically
verify safety properties on a railway interlocking system model generated from
the application data. The Louvain verification process can be described on the
basis of Fig. 2 and consists of the following steps:

1. Generate a model of the interlocking based on its application data.
2. Generate a model of the train and the safety properties applicable to a specific

network layout from the description of the topology of the network.
3. Combine the models of the interlocking with two instances of the train in a

SMV model and verify the properties with nuXmv.

4 Compositional Verification

Figure 3 represents a generic compositional verification method, in which a com-
plex network layout is divided into two or more subnetworks/components, and
the previous process is applied to each of them, including control table gener-
ation, model generation, safety properties instantiation and model checking. A
formal proof allows to extend the model checking results obtained on the subnet-
works to the whole network: typically, if all the subnetworks satisfy the related
safety properties, then the full network satisfies its own ones.

Within both the RobustRailS and the Louvain methods a compositional app-
roach that instantiates the process of Fig. 3 has been developed.

4.1 The RobustRailS Compositional Method

In [8,10,18,19] a method for performing compositional verification in connection
with RobustRailS has been developed. It provides a general definition of allowed
network cuts that divide a network into multiple subnetworks. Using such a
network cut the compositional verification is done in the following steps:

1. Cut the network N into n subnetworks N1, . . . , Nn, applying allowed network
cuts.

2. For i = 1, . . . , n, use the RobustRailS tools verification steps described above
to create a model mi and properties φi and verify that mi satisfies φi.

Compositional Verification of Railway IXL: A Comparison 9

Fig. 3. Compositional verification process.

The identification of the points where to cut a network is manual1, while a
tool has been developed to generate the two subnetwork descriptions from the
whole network and the identified cut points. Note that an interlocking system
controlling a subnetwork (e.g. a station) is connected to the rest of the railway
network by means of incoming/outcoming tracks, which are not under the control
of the interlocking. The RobustRailS method assumes that a subnetwork includes
at each of its connections with the outside a border section and a pair of signals:
an exit signal which is not controlled by the interlocking, since the authority to
exit the subnetwork area is not a responsibility of the interlocking, and an entry
signal under the control of the interlocking. In the RobustRailS compositional
method, a cut needs to add border track segment and signals in order to maintain
the previously mentioned assumptions for the subnetworks as well (as shown in
Fig. 4a, 4b). Under these assumptions, it is demonstrated that proving (by model
checking) safety of both subnetworks implies the safety of the full network [10].
The “Proof” box in Fig. 3 is therefore in this case an a priori proof.

1 The automatization of cut placements for RobustRailS tool is currently an under-
going activity.

10 A. Fantechi et al.

4.2 The Louvain Compositional Method

A compositional verification process has been introduced in the Louvain method
as well [15,17]. The peculiar aspects of the Louvain compositional method can
be summarised as:

1. The decomposition of a network into subnetworks is guided by five different
decomposition patterns, inspired by the already adopted practice in Belgian
railways to divide the interlocking logic for a large station in several zones;

2. These patterns basically define mutual exclusion interface variables that must
be exchanged between the subnetworks in order to control the access from
one to the other;

3. A specific tool, named Component retriever, takes the network topology, gen-
erates the components based on the said decomposition patterns, and specifies
their interfaces and binding properties (contracts). Those specifications are
expressed in the OCRA input language (Othello) [5];

4. Compositional verification is obtained by an assume-guarantee approach, sup-
ported by the OCRA framework [4]: the tool checks i) whether the contracts
concerning bounded subnetworks (two by two) are coherent with the safety
properties that their composite shall satisfy, and ii) that the exposed con-
tracts of each subnetwork are satisfied by their implementation (model in
SMV), according to the contracts-refinement proof system for component-
based systems proposed in [6].

5. In a third verification step, safety properties are verified on the SMV model
representing each subnetwork with the NuXmv model checker (Sect. 3.2).

The “Proof” box in Fig. 3 in this case refers to the contract verification by
OCRA, while the component verification activities are run employing nuXmv,
taking advantage of k-liveness and ic3 algorithms [2,7] in order to verify LTL
properties on the components.

5 Comparison of the Two Methods

To discuss the details of each compositional method we refer to a simple example
station shown in Fig. 4.

Both methods decompose the station into two components (A and B, respec-
tively left and right) with a similar cut. The two models differ in the way the
interactions between the components are managed. On one hand, RobustRailS
adds linear sections and signals to abstract the other part of the network. On
the other hand, Louvain retrieves and uses mutual exclusion variables (called
BSP variables) already defined in the interlockings in order to define binding
properties between subnetworks.

Let us consider the simple network of Fig. 4a, where the drawing represents
the network layout in terms of tracks, points and signals. Two tracks converge
from the left on a single track (up direction), and symmetrically from the right
(down direction).

Compositional Verification of Railway IXL: A Comparison 11

Fig. 4. Cut methods.

The coloured arrows represent the routes that make possible to reach the
central track t1 from the left and the right. Obviously, routes rA1 and rA2 are
in conflict with routes rB1 and rB2 to gain access to the central track. The
No-collision property reads as “No two trains can enter track t1 together” and
t1 is actually a shared resource with mutually exclusive access by the trains.
The interlocking system guarantees the property by granting only one of the
conflicting routes to be allocated to a train, and communicating this to the trains
by means of signals at the beginning of the routes (SrA1, SrA2, SrB1, SrB2 for
rA1, rA2, rB1, rB2 respectively).

When applying a decomposition that cuts the network into two symmetri-
cal halves A and B, the two halves are managed as if they were controlled by
two different interlocking systems. Hence, mutual exclusion on t1 is distributed
among the two halves.

The definition of cut2 given by the RobustRailS method includes t1 in both
subnetworks and adds the signals AA and AB to A and B subnetworks, respec-
tively (Fig. 4b); focusing on A, the extra signal adds a route rB from AA to SA,

2 Note that the operated cut is the one defined in [19], which slightly differs from the
single cut defined in [10], since the t1 section is present in both subnetworks. The
compositionality proof of [10] covers this case as well.

12 A. Fantechi et al.

that abstracts all the previously incoming routes in down direction in the full
network, namely rB1 and rB2. The same holds symmetrically for B.

The Louvain method instead addresses the problem by recurring to a mecha-
nism already adopted for communication between interlocking systems control-
ling shared tracks, that is, interface variables. In Fig. 4c it can be seen that two
interface variables BSP A and BSP B exist: the former communicates to the
B half the reservation of t1 as seen from A, and vice versa for the latter.

In the RobustRailS method, in order to open signal SrA1 in the A sub-
network, the route rA1 (from SrA1 to SB) should successfully go through the
states ALLOCATING and LOCKED, which is not possible if the conflicting
route rB from AA to SA (that abstracts rB1 and rB2) is in one of the states
ALLOCATING, LOCKED or OCCUPIED. This means that if SrA1 is OPEN,
AA is CLOSED (as AA being OPEN would require that the conflicting route
rB is LOCKED). This is guaranteed by model checking the A subnetwork. The
same occurs symmetrically for the subnetwork B.

In the Louvain method, the two halves have each a copy of the BSP variables.
The contract between the two halves is that whenever the A half allocates a route
to t1 (such as rA1), opening the corresponding signal SrA1, the output variable
BSP A is false and the input variable BSP B is true (B is not allowing a train to
t1), and vice versa for the half B. Each subnetwork is then individually checked to
guarantee this property. The proper implementation of the shared BSP variables
in each subnetwork (model) prevents train collisions on the shared track t1.

We can therefore observe that in the RobustRailS method, the added signals
AA and AB play the role of the variables BSP A and BSP B of the Louvain
method, respectively.

We can conclude therefore that the two methods are equivalent for the con-
sidered cut3. Similar arguments can be used to show that this holds also for the
other four decomposition patterns considered by the Louvain method. We claim
that different decomposition patterns, addressed by the RobustRailS method,
that have not been considered by the Louvain one, could be expressed by means
of interface variables and contracts according to the latter by properly mimicking
the added RobustRailS signals with interface mutual exclusion variables.

The two verification methods are different in the sense that while the Lou-
vain one builds on the adoption of established compositional model checking
techniques and tools, applied to the specific problem, the RobustRailS approach
has been tailored in its very definition to the specific problem, hence it is a
domain dependent solution: this is apparent in the fact that in the former con-
tracts are established for each interface between two components, while in the
latter the interface models are built by adding extra railway elements.

6 Case Study: La Louvière-Sud

We develop further our comparison by applying the two methods on a common
case study, with the main aim to confirm the advantages of compositionality in
3 The formal equivalence of the two presented methods is out of scope of this paper.

Compositional Verification of Railway IXL: A Comparison 13

both frameworks. Our case study concerns a real railway network: a portion of La
Louvière-Sud in Belgium, which was already decomposed into three subnetworks,
namely LVR1, LVR7 and LVR9 represented in Fig. 54.

Fig. 5. La Louvière-Sud: topology of the verified components.

LVR1 and LVR9 are small and have a limited number of routes (18), so
it is expected that for both methods they can be verified without recurring
to decomposition. On the other hand, LVR7, the Piéton station represented in
Fig. 6, has three main line platforms, a marshalling yard with two tracks, and
contains many routes. So we will investigate how a decomposition of LVR7 can
help the verification.

In the following subsection we describe how LVR7 can be decomposed using
the two methods.

Fig. 6. Piéton station scheme represented according to the RobustRailS conventions:
sections (plain label), points (red label) and signals (bold label). In particular the
scheme includes the pair of signals at the borders. (Color figure online)

4 The models are available at https://github.com/gorigloria/compositionalverification
models.

https://github.com/gorigloria/compositionalverificationmodels
https://github.com/gorigloria/compositionalverificationmodels

14 A. Fantechi et al.

Fig. 7. RobustRailS method: decomposition of Piéton station into two parts.

Fig. 8. Louvain method: decomposition of Piéton station into two parts.

6.1 Decomposition of LVR7 - Piéton station

Figure 6 shows the Piéton station scheme represented according to the Robust-
RailS conventions.

Figure 7 and Fig. 8 show the two subnetworks, obtained using the two decom-
position methods. Note that they are slightly different. In the RobustRailS
model, the signals added to abstract respectively the right (the left) compo-
nent are AIX542, AI543, AIY544 (AI542, AIX543, AI544). Figure 8 shows the
decomposition according to the Louvain method, that was part of the work for
the Christophe Limbrée’s PhD thesis [17]. Note that only one kind of interface
variable appears, out of the five kinds identified in the Louvain method [17]. The
cut is, in fact, managed using the BSI mutual exclusion variables. The network
modelled with the Louvain method relies on extensions of track-side equipment
previously described in Sect. 2: in particular, the network has points with more
than one branch and it uses sectioning points, i.e., points with an associated
signal (see points 36M and 14M in Fig. 8). These extensions have been modelled
with the RobustRailS methods as follows:

– Points with more than one branch have been splitted into multiple points;
– Sectioning points have been modelled as follows: 1) sectioning points have

been treated as simple points; 2) an additional linear section has been placed
adjacent to each sectioning point; 3) two signals, one for each direction, have
been added to the additional linear section.

Compositional Verification of Railway IXL: A Comparison 15

Another difference between the two methods is on the definition of routes. In the
RobustRailS framework, every route starts at a signal and ends at the following
one. This implies that no intermediate signal in the same travel direction is
crossed in any given route. In the Louvain model, a route starts at a signal and
ends on the destination track segment without crossing intermediate signals.

In the following subsections we report the experimentation results. The
experiments were executed on a server with the following system specifications:
Intel(R) Xeon(R) CPU E5-1650 @ 3.6 GHz, 125 GB RAM, and running Linux
4.4.0-47.x86 64 kernel. The execution time was limited to 1 day in order to fit
with typically industrially acceptable times.

6.2 Verification Results Using the RobustRailS Method

We have applied the RobustRailS method on LVR7 and its decomposed subnet-
works as well as on LVR1 and LVR9. The RobustRailS control table generator
allows for two options, one of which enforces the so-called flank protection, in
which points and signals not belonging to the route are properly set in order to
avoid hostile train movements into the route at an incident point. Table 1 reports
the results when flank protection is chosen for all the modelled components. It
can be seen that all networks were verifiable and that the time for verifying both
LVR7A and LVR7B is around three times faster than that for LVR7, while the
max needed memory usage (2083 MB) is around a third.

Table 1. Verification of the models for LVR1, LVR9, and LVR7 and LVR7’s decom-
posed networks LVR7A and LVR7B using the RobustRailS tools.

ID Name Routes Time (s) Memory (MB)

LVR7 Piéton 48 2387 5467

LVR7A Piéton - Left 30 670 2083

LVR7B Piéton - Right 18 108 846

LVR1 Leval - Binche 18 38 413

LVR9 La Louvière-Sud - Haine-St-Pierre 18 33 415

6.3 Verification Results Using the Louvain Method

Table 2 contains the verification metrics obtained by the OCRA/nuXmv tools
for all the networks, with the same server used for RobustRailS experiments.
The models of LVR1, LVR9, LVR7A and LVR7B were, as expected, verifiable,
but the verification of the monolithic model of Piéton (LVR7) had to be stopped
after one day, which is the maximal time considered to be feasible. The sum of
the verification times of the models of the two decomposed networks is 23.210 s
∼ 6.5 h, which shows that the decomposition not only made the verification
feasible, but also fast (compared to more than one day). We highlight the small
amount of memory occupied by the verification tasks.

16 A. Fantechi et al.

Table 2. Verification of the models for LVR1, LVR9 and LVR7 and LVR7’s decomposed
networks LVR7A and LVR7B using the Louvain method.

ID Name Routes Time (s) Memory (MB)

OCRA nuXmv Total

LVR7 Piéton 48 Not feasible −
LVR7A Piéton - Left 30 15673 1997 17670 152

LVR7B Piéton - Right 18 4791 749 5540 125

LVR1 Leval - Binche 18 287 245 532 48

LVR9 La Louvière-Sud - Haine-St-Pierre 18 3407 59 3466 81

6.4 Discussion

The shown performance figures are not meant to support an efficiency compari-
son between the two methods: indeed the actual verification performance depends
on many factors that differ in the two methods. However, the figures on models
LVR7, LVR7A and LVR7B clearly show the advantages given by compositional
verification in both methods. Moreover, one interesting thing can be observed
if we compare the verification times for all the networks: while the ones by the
Louvain tools is generally 15–50 times longer than those by the RobustRailS tools,
the time for the LVR9 component is of the order of 100 times longer. This can be
explained by the fact that LVR9 is a simple junction that has few routes and a low
internal complexity, but that connects with different components through several
interfaces: the Louvain method requires to separately check the component w.r.t.
all contracts related to the interfaces; the RobustRailS method takes the proof of
compliance between components as granted once for all – when the added border
sections and signals comply with the standard format (compliance assured by the
static analysis engine included in RT-Tester).

Another main difference between the two methods is on the decomposition
technique. On one hand, cuts are manually applied to a network for the Robust-
RailS method. On the other hand, Louvain method exploits automatic decompo-
sition starting from the existing description of the network layout, which in turn
is automatically generated from their application data. The automatic decompo-
sition performed by Louvain method requires a couple of minutes, hence it can
be neglected. The manual decomposition performed by RobustRailS method
requires more time, but it is limited and feasible as the number of rules for cuts
is low. Furthermore, for RobustRailS method, the implementation of automatic
cuts is currently in progress.

7 Related Work

We have already reported in the introduction how locality exhibited by inter-
locking systems has been exploited in different approaches aimed to optimise
verification by model checking of large station layouts [1,9,13,14,26]. Still, in

Compositional Verification of Railway IXL: A Comparison 17

those approaches the verification process considers the full interlocking system
defined over the full station layout.

The two approaches discussed in this paper are, at the best of our knowl-
edge, the only ones that address verification of interlocking of large networks by
decomposing the layout in smaller components and formally deduce safety of the
whole from the safety verification of the parts.

Regarding a comparison of different formal verification methods of interlock-
ing systems, not addressing compositionality, we can cite [11].

8 Conclusions

We have compared two different compositional approaches to address state space
explosion in formal verification of railway interlocking systems: the RobustRailS
compositional method and the Louvain compositional method. We made a com-
parison of methodological elements at a conceptual level rather than comparing
concrete performance metrics of the two methods as they use different verifi-
cation tools. The comparison revealed that different concepts behind the two
methods are essentially equivalent when it comes to the division of the network
of an interlocking system into two networks and the creation of interlocking
models for these and their interfaces. However, the two methods are different
in the sense that while the Louvain one builds on the adoption of established
compositional model checking techniques and tools, applied to the specific prob-
lem, the RobustRailS approach has been tailored in its very definition to the
specific problem, hence it is a domain dependent solution: this is apparent in
the fact that in the former contracts are established for each interface between
two components, while in the latter the interfaces are built by adding extra rail-
way elements. A major difference between the two verification methods is also
the amount of generated proof obligations: in both approaches, one must per-
form component verification (prove safety of the interlocking models for the two
decomposed networks), however, for the Louvain compositional method there are
additional verification obligations: the verification of the contracts, i.e. the veri-
fication that each component satisfies all contracts related to its interfaces. For
the RobustRailS compositional method the soundness of the component verifica-
tion has been proved a priori (once-and-for-all). A case study demonstrated that
both methods had great benefits in terms of addressing state space explosion.

A further comparison of the RobustRailS method with the Louvain one could
be done by extending the reasoning shown in this paper to the other four kinds
of interface variable adopted in [17]. This extension is straightforward, due to
the similarity of the different cases, but the detailed study is left to future work.

As a final remark, we observe that verification of interlocking systems in the
end boils down to mutual exclusion verification. Operating a cut in the network
typically distributes the mutual exclusion mechanisms over two or even more
components, whether such decomposition is physical, to exploit the advantages
of distributed computing, or logical, to remain in the low ends of the exponential
state space explosion in verification. To this respect, the presented reasonings

18 A. Fantechi et al.

may reveal useful in other domains where some notion of distributed mutual
exclusion may help verification of large systems.

Acknowledgement. The authors wish to thank Jan Peleska and Linh H. Vu with
whom Anne Haxthausen developed the RobustRailS verification method and tools,
and Hugo D. Macedo, who collaborated in the initial work of Anne Haxthausen and
Alessandro Fantechi on the RobustRailS compositional approach.

References

1. Bonacchi, A., Fantechi, A., Bacherini, S., Tempestini, M.: Validation process for
railway interlocking systems. Sci. Comput. Program. 128, 2–21 (2016)

2. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

3. Busard, S., Cappart, Q., Limbrée, C., Pecheur, C., Schaus, P.: Verification of rail-
way interlocking systems. In: Proceedings of the ESSS 2015, Oslo, Norway, 22 June
2015. EPTCS, vol. 184, pp. 19–31. Open Publishing Association (2015)

4. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: a tool for checking the refinement of
temporal contracts. In: 28th IEEE/ACM International Conference on Automated
Software Engineering, Silicon Valley, CA, USA, 11–15 November 2013, pp. 702–
705. IEEE (2013)

5. Cimatti, A., Tonetta, S.: A property-based proof system for contract-based design.
In: 38th Euromicro Conference on Software Engineering and Advanced Applica-
tions, pp. 21–28. IEEE (2012)

6. Cimatti, A., Tonetta, S.: Contracts-refinement proof system for component-based
embedded systems. Sci. Comput. Program. 97, 333–348 (2015)

7. Claessen, K., Sörensson, N.: A liveness checking algorithm that counts. In: For-
mal Methods in Computer-Aided Design, FMCAD 2012, Cambridge, UK, 22–25
October 2012, pp. 52–59. IEEE (2012)

8. Fantechi, A., Haxthausen, A.E., Macedo, H.D.: Compositional verification of inter-
locking systems for large stations. In: Cimatti, A., Sirjani, M. (eds.) SEFM 2017.
LNCS, vol. 10469, pp. 236–252. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66197-1 15

9. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2010, pp.
107–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14261-
1 11

10. Haxthausen, A.E., Fantechi, A.: Compositional verification of railway interlocking
systems. Submitted for publication (2021)

11. Haxthausen, A.E., Nguyen, H.N., Roggenbach, M.: Comparing formal verifica-
tion approaches of interlocking systems. In: Lecomte, T., Pinger, R., Romanovsky,
A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 160–177. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-33951-1 12

12. Haxthausen, A.E., Østergaard, P.H.: On the use of static checking in the verifi-
cation of interlocking systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016.
LNCS, vol. 9953, pp. 266–278. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47169-3 19

https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-319-66197-1_15
https://doi.org/10.1007/978-3-319-66197-1_15
https://doi.org/10.1007/978-3-642-14261-1_11
https://doi.org/10.1007/978-3-642-14261-1_11
https://doi.org/10.1007/978-3-319-33951-1_12
https://doi.org/10.1007/978-3-319-47169-3_19
https://doi.org/10.1007/978-3-319-47169-3_19

Compositional Verification of Railway IXL: A Comparison 19

13. James, P., Möller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Tre-
harne, H.: Decomposing scheme plans to manage verification complexity. In:
FORMS/FORMAT 2014, pp. 210–220. Institute for Traffic Safety and Automa-
tion Engineering, Technische Univ. Braunschweig (2014)

14. James, P., et al.: Verification of solid state interlocking programs. In: Counsell,
S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 253–268. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-05032-4 19

15. Limbrée, C., Cappart, Q., Pecheur, C., Tonetta, S.: Verification of railway inter-
locking - compositional approach with OCRA. In: Lecomte, T., Pinger, R.,
Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 134–149. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33951-1 10

16. Limbrée, C., Pecheur, C.: A framework for the formal verification of networks of
railway interlockings - application to the belgian railway. Electron. Commun. Eur.
Assoc. Softw. Sci. Technol. 76 (2018)

17. Limbrée, C.: Formal verification of railway interlocking systems. Ph.D. thesis, UCL
Louvain (2019)

18. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional verification of multi-
station interlocking systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9953, pp. 279–293. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47169-3 20

19. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional model checking of
interlocking systems for lines with multiple stations. In: Barrett, C., Davies, M.,
Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 146–162. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57288-8 11

20. Peleska, J.: Industrial-strength model-based testing - state of the art and current
challenges. In: 8th Workshop on Model-Based Testing, Rome, Italy, vol. 111, pp.
3–28. Open Publishing Association (2013)

21. Verified Systems International GmbH: RT-Tester Model-Based Test Case and Test
Data Generator - RTT-MBT - User Manual (2013). http://www.verified.de

22. Vu, L.H., Haxthausen, A.E., Peleska, J.: A Domain-Specific Language for Rail-
way Interlocking Systems. In: FORMS/FORMAT 2014. pp. 200–209. Institute for
Traffic Safety and Automation Engineering, Technische Universität Braunschweig
(2014)

23. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-specific language for
generic interlocking models and their properties. In: Fantechi, A., Lecomte, T.,
Romanovsky, A. (eds.) RSSRail 2017. LNCS, vol. 10598, pp. 99–115. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68499-4 7

24. Vu, L.H.: Formal development and verification of railway control systems - in the
context of ERTMS/ETCS level 2. Ph.D. thesis, Technical University of Denmark,
DTU Compute (2015)

25. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modelling and verification of inter-
locking systems featuring sequential release. Sci. Comput. Program. 133, Part 2,
91–115 (2017)

26. Winter, K.: Optimising ordering strategies for symbolic model checking of railway
interlockings. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7610, pp.
246–260. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34032-
1 24

https://doi.org/10.1007/978-3-319-05032-4_19
https://doi.org/10.1007/978-3-319-33951-1_10
https://doi.org/10.1007/978-3-319-47169-3_20
https://doi.org/10.1007/978-3-319-47169-3_20
https://doi.org/10.1007/978-3-319-57288-8_11
http://www.verified.de
https://doi.org/10.1007/978-3-319-68499-4_7
https://doi.org/10.1007/978-3-642-34032-1_24
https://doi.org/10.1007/978-3-642-34032-1_24

Safety Invariant Verification that Meets
Engineers’ Expectations

Alexei Iliasov1, Linas Laibinis2(B), Dominic Taylor3, Ilya Lopatkin1,
and Alexander Romanovsky1,4

1 The Formal Route Ltd., London, UK
2 Institute of Computer Science, Vilnius University, Vilnius, Lithuania

linas.laibinis@mif.vu.lt
3 Systra Scott Lister, London, UK

4 Newcastle University, Newcastle upon Tyne, UK

Abstract. This industrial experience report discusses the problems we
have been facing while using our formal verification technology, called
SafeCap, in a substantial number of live signalling projects in UK main-
line rail, and the solutions we are now developing to counter these
problems. Symbolic execution and safety invariant verification are well-
understood subjects and yet their application to real life high assurance
systems requires going a few steps beyond the conventional practice. In
engineering practice it is not sufficient to simply know that a safety prop-
erty fails: one needs to know why and hence where and what exactly fails.
It is also crucial to positively demonstrate that no safety failure is omit-
ted from consideration. In this industrial report we show how to derive
a list of all potential errors by transforming a safety invariant predi-
cate using information from the constructed state transition system. The
identified possible errors are verified by an automated symbolic prover,
while a report generator presents findings in an engineer-friendly format
to guide subsequent rework steps. The scalability and the efficiency of
the proposed mechanism (which is now fully integrated in the SafeCap
technology) have been demonstrated in several live signalling projects.

1 Introduction

There is a growing number of railway signalling companies that use verification
techniques based on formal proofs for demonstrating and assuring system safety.
The automated technologies, including AtelierB [1,2], Ovado/Rodin [3], Prover
[4] and Spark Ada [5], formally verify that a system satisfies a collection of iden-
tified safety properties. These tools report violations found during verification to
the signalling engineers, who use that information to guide the rework process.

One of the earliest forms of computer-based interlocking was the Solid State
Interlocking (SSI) [6], developed in the UK in the 1980s through an agreement
between British Rail and two signalling supply companies, Westinghouse and
GEC General Signal. SSI is the predominant technology used for computer-
based interlockings on UK mainline railways. It also has applications overseas,
including in India, Australia, New Zealand, France and Belgium.
c© Springer Nature Switzerland AG 2022
S. Collart-Dutilleul et al. (Eds.): RSSRail 2022, LNCS 13294, pp. 20–31, 2022.
https://doi.org/10.1007/978-3-031-05814-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05814-1_2&domain=pdf
https://doi.org/10.1007/978-3-031-05814-1_2

Safety Invariant Verification that Meets Engineers’ Expectations 21

In the last two years we have been applying a modern verification technology
called SafeCap as part of a number of industrial signalling projects to verify the
safety of SSI designs. Safety verification of 30 mainline interlockings, developed
by different suppliers and design offices, has been successfully conducted for our
industrial partners [7].

SafeCap was originally developed as an open toolkit for modelling railway
capacity and verifying railway network safety in a number of public projects led
by Newcastle University [8]. In the last 5 years the tool has been fully redesigned
to deliver scalable and fully-automated verification of industrial interlockings
[7,9]. The resulting toolset has been proven in commercial applications through
the verification of signalling projects that use SSI, and successor technologies.
The two distinguishing features of SSI SafeCap are a fully automated verifica-
tion process and complete hiding of formalisation details. As a result, engineers
receive diagnostics reports describing the found safety problems in terms familiar
to them, i.e., by explicitly referring to the applicable railway layouts (schemas)
and SSI data.

Our approach to proving safety of signalling data is based on expressing
signalling principles as a collection of predicates constituting safety invariants,
translating the source data (the schema and SSI data) into a formal model – a
state transition system, and then generating and discharging proof obligations
(i.e. verification conjectures) to establish that every system transition maintains
the predefined safety invariants. At the basic level, the output is a list of names
of violated signalling safety principles. This is clearly inadequate and hence we
provide further detail about the identified violations in two ways:

– a particular transition leading to a failed proof obligation is used to define
the source code location of a potential error;

– the state of an undischarged proof obligation is used to report the probable
cause of proof failure and thus indicate the actual cause of an error in the
source data.

The second way is a heuristic and is not guaranteed to succeed in producing
a useful commentary. In particular, it cannot, in general, identify all errors in
the sense of an error as understood by engineers, i.e., as a specific mistake in
the source data. Such a rift between the tool output and engineers’ expectations
could not be bridged without changing the underlying approach to verification
of a safety invariant.

Our initial industrial projects have highlighted deficiencies of the conven-
tional safety invariant verification procedure, most critically, that a single ver-
ification pass cannot produce the list of all possible errors due to masking of
unreported errors by reported ones. In particular, safety invariant verification
relies on the conditions of an invariant to be fulfilled in an initial system state;
with any other violation detected, this is no longer the case and verification
becomes potentially unsound.

The setting can be made sound again by “patching” a safety invariant to
exclude a detected violation (by explicitly provisioning for an exception to the

22 A. Iliasov et al.

set of safety rules), but in practice such an approach is untenable due to unwieldy
safety predicates arising from an applied patching routine. It also makes verifi-
cation a sequential process or, alternatively, requires a new safety critical proof
scheduling component.

It is our belief that a more promising approach is an automatic safety invari-
ant verification procedure that constructs proof obligations in a different way.
The procedure is designed in such a manner that every constructed proof obliga-
tion aligns exactly with one potential engineering error in the source data. Thus,
with the same technique, we give a formal definition of an engineering error and
a method to produce all their instances for a given system.1

2 Reporting Safety Invariant Violations

2.1 Establishing System Correctness

The central question in the verification of signalling correctness is what consti-
tutes a safe signalling design. Certain basic principles are universally accepted,
for instance, the absence of train collisions and derailment. However, it is almost
hopeless to verify the absence of such hazards in the strictest possible sense, not
least because there are many real-world limitations [7]. Moreover, interlockings,
by themselves, provide only one level of protection against driver errors through
the provision of overlaps and control of signal aspects. This is an area where
there is significant variation in practice across different geographic regions and
times. Interlockings also do little to protect against equipment failures, but are
themselves designed to be resilient to such failures.

For these reasons, correctness is established not against the basic principles
but rather against the lower level signalling principles (that are expected to ade-
quately address foundational safety principles) and designed to enforce railway
operation with an acceptable level of risk and failures. Such principles are care-
fully designed by domain experts, documented in standards [10–12], can vary
between regions, and do change over time. At the time of writing this paper, the
SSI SafeCap is capable to verify about 60 formalised signalling safety principles.

2.2 The Running Example

In the following we shall use a simple, but real-life, case of a signalling safety
principle to illustrate our approach. The principle states that

For every set route, it holds that all sub routes of the route that are within
the interlocking control area are locked.

1 It is a somewhat circular argument: we do cover all engineering errors but only
because we get to define what they mean formally; we are guided by our prior
practical experience to choose the right level of granularity for the definition of an
engineering error to match engineers’ expectations.

Safety Invariant Verification that Meets Engineers’ Expectations 23

In other words, when setting a route, all the sub routes of the route path
must be commanded locked or detected locked. In the mathematical notation we
employ, which is a combination of first order logic and set theory (based upon
the B-Method mathematical notation [13]), the rule can be formally expressed
as the following safety invariant:

route subrouteset[route s \ route s’p] ∩ SubRoute.ixl ⊆ subroute l , (1)

where route subrouteset is a constant defined by a signalling plan document (a
formalised data set describing a geographical interlocking area), stating which
sub routes comprise the path of a route; SubRoute.ixl is a signalling plan constant
defining the current interlocking sub routes; route s and route s’p are the current
and previous states of a model variable recording the route locking status (i.e.,
r ∈ route s implies that route r is currently locked). Finally, f [s] denotes the
relational image of f (that must be a set of a pairs) over given set s.

2.3 Symbolic Verification of Signalling Safety Principles

For the purposes of verification, each signalling principle is rendered as an induc-
tive safety invariant – a system property that must hold when a system boots
up and must be maintained (or, equivalently, reestablished) after any possible
update to a new system state. Verification is then understood as the problem
of checking that any safety invariant is respected by every state update. Techni-
cally this is done be generating conjectures of the form “if an invariant holds in
a previous state and a state update happens, is it true that the invariant holds
for the new state?”. Formally, such a conjecture (also called a proof obligation
(PO)) is represented as a logical sequent consisting of a number of hypotheses
(H) and a goal (G), denoted as H � G.

In general, a schematic proof obligation for the preservation of a safety invari-
ant (for a state transition j ∈ J) takes the following form:

M(c) ∧ A(c, v) ∧ I(c, v) ∧ Pj(c, v) ∧ Qj(c, v, v′) ⇒ I(c, v′), (2)

where M(c) and A(c, v) are constants and constraints from the formalised sig-
nalling plan, defined over constants c and model state (variables) v, a state tran-
sition is characterised by a pre-condition predicate Pj(c, v) and a post-condition
Qj(c, v, v′) relating a next state v′ to the current state v and constants c, J rep-
resents the set of all such state transitions, and I(c, v) stands for the invariant
property to be preserved.

The number of such proof conjectures is m ∗ n, where m is the number of
safety invariant predicates (67 defined so far) and n is the number of possible
state updates (for the industrial projects we have carried out, this value varies
between 4000 and 140000 with the mean value of 17641). This is a small num-
ber when contrasted against the number of potentially reachable states2. As
2 Somewhere in the region of 22000, where 2000 is the typical number of Boolean

model variables in an electronic interlocking; there are also a couple of hundreds of
bit vectors and integers.

24 A. Iliasov et al.

the number of safety invariant predicates is fixed for all projects, the complex-
ity measured in the number of conjectures grows linearly with the interlocking
complexity.

When a prover fails to discharge (i.e., to complete automated proof of) a proof
obligation derived from a safety invariant, we presume that a safety invariant is
violated3. Clearly this alone is not sufficient since a typical interlocking data has
thousands lines of code. However, a failed proof obligation itself can be traced,
via the associated state transition, to the data source code and, more precisely,
to one or more control flow threads of the verified data. This gives us an initial
error localisation in terms of the available signalling data.

Such a localisation alone is still not enough since many errors result in hun-
dreds of failed proof obligations with often distinct control flow traces. Therefore,
ascertaining the actual cause of each failed proof obligation is extremely labo-
rious; in cases of hundreds or thousands of failed proof obligations it becomes
simply impracticable.

Previously, we have processed every failed proof obligation at the report
generation stage in order to identify its likely cause. This processing is more
involved than simply looking at an open goal, i.e., a current proving conjecture
that the prover failed to discharge. First, there can be a number of open goals
(in fact, there can be hundreds of open goals arising from prover attempts to
simplify the goal hypotheses by splitting internal disjunctions). Second, an open
goal could be stated in terms that are of no relationship (i.e., having no common
free identifiers) to the original transition and safety invariant predicate (e.g., due
a translation into a logical expression suitable for subsequent treatment with an
SMT solver).

One technique that we have employed to overcome this shortcoming was
automatic backtracking of a failed subgoal to find a state most amenable to
reporting. The backtracking acts on an open goal and reverts the attempted proof
steps in a search of a goal predicate matching one of the predefined expression
templates. Such a technique brings no guarantee of arriving at a satisfactory
result, however, in our applications it was reasonably successful.

Knowing the identified causes of failed proof obligations allowed us to collate
identical errors and produce usable reports. The compression factor here was
quite significant: there could be between 10 to 50 failed proof obligations for
every reported violation.

2.4 The Running Example, Continued

The formal definition of our running example safety principle, as given in (1),
is a typical set-theoretic statement of a safety predicate; however, any arising
failed goals are difficult to backtrack and analyse. Expression route subrouteset
[route s \ route s’p] relates all the routes being set to all of their sub routes,

3 Here we ‘presume’, since we cannot know for sure because the logic we rely on is
undecidable. Thus a failed conjecture could mean a false positive – a risk we are
prepared to accept.

Safety Invariant Verification that Meets Engineers’ Expectations 25

therefore, when a proof of (1) fails, all we can hope to know is that one or more
of the routes being set is not locking of one or more sub routes. However, we can
rewrite this property into an equivalent (predicate) one:

∀r ∈ Route
r ∈ route s \ route s’p
⇒
∀sr ∈ SubRoute

sr ∈ route subrouteset[{r}] ∩ SubRoute.ixl
⇒
sr ∈ subroute l

In the rewritten proof obligation, expression route s \ route s’p becomes
replaced by a constant set of routes involved in a deterministic state transi-
tion. This allows the prover to eliminate the outer quantifier and introduce a
free identifier with constraint r = R1 ∨ r = R2 ∨ The proof then proceeds by
analysing cases of this disjunction. This, in turn, allows the prover to infer that
route subrouteset[{r}] is a constant set, and to continue in the same manner for
the inner quantifier. The advantage of the predicate form above is the ability,
in most cases, to identify a specific combination of route r and sub route sr that
give rise to a violation for a considered proof obligation.

3 Positive Demonstration of the Absence of Violations

Decoding the proof state to infer an error has proven to be insufficient for finding
all its causes and all the circumstances of its occurrence. It is possible for a failed
proof obligation to reveal one error and, at the same time, mask the presence
of another. Logically, nothing wrong happens here: analysis of a violated safety
invariant, involving the backtracking process, reveals one likely cause of the
violation.

Yet reporting all such causes associated with specific source data errors is
one of the principal requirements for an automated safety verification process.
Hence, to continue the running example, if some route were missing the locking
of two (or more) sub routes on its path, a failed proof obligation would be able
to point to only one of them.

The simplest solution would be to fix all the identified problems and re-run
the verification process, which would reveal previously masked errors. Unfortu-
nately, this is not a practical scenario for the following reasons: 1) changes to the
signalling data can take months and conducting multiple re-verification cycles
might be impossible due to delivery constraints; 2) generic signalling principles
can, at times and subject to risk assessment, be deliberately violated to meet
site-specific operational needs; 3) we cannot rule out the presence of false posi-
tives, partly due to the complexity and constant evolution of real-life signalling
data, and partly due to automated theorem proving being undecidable. A false
positive can turn from being a benign issue to a critical one when it masks
another error.

26 A. Iliasov et al.

To rule out the masking of one error by another, we approach safety invariant
verification from a slightly different perspective. Instead of a verification process
as such, we focus initially on the enumeration of all potential non-trivial errors.
This is achieved by altering the method of proof obligation generation, aiming
to obtain a dedicated proof obligation for each non-trivial potential error. In the
following sections we define the meaning of a non-trivial potential error via a
process that constructs bespoke proof obligations for each state transition.

3.1 Synthesising a Focused Safety Invariant

Most of the attributes of SSI objects have two states (e.g., a route is set or unset,
a sub route is locked or free, and so on). In line with the set theory underpinning
our formalisation, such attributes are modelled as set membership tests for an
object stored in the model variable corresponding to the attribute. For instance,
the fact that some sub route UAA-AB is locked is expressed as UAA-AB ∈
subroute l; the same sub route being free is, conversely, UAA-AB /∈ subroute l.

In our formalisation, a state transition is represented as a pair of predicates
Pre(c, v) and Post(c, v, v′). In a general case, that is all we can say. However,
in the case of a state transition derived from the signalling data, the restrictions
of the SSI language allow us to make stronger assumptions. First, since SSI is a
fully deterministic language, transition postconditions are limited to conjunction
of equalities of the form v′ = v ∪ E1 \ E2, where E1 and E2 are constant sets
of the values to be added or removed. Second, the predicate language of SSI is
also quite limited and, as a result, its translation yields a precondition that is
conjunction of just few forms of clauses:

– membership clause v ∈ S, v /∈ S or v ⊆ S;
– equality clause f(v) = c, v = c, v �= c, . . . ;
– disjunctive clauses;
– quantifiers, implications and other forms arising from the SSI axiomatisation.

By looking at a postcondition, it is possible to deduce, via simple pattern
matching, sets of objects that are being added or removed from the corresponding
set variables (i.e., constant sets E1 and E2). That is, from the predicate of a
postcondition, we can unfailingly infer, e.g., which sub routes are locked or freed
and so on. Another way to look at this is representing a resulting before-after
predicate S(c, v, v′) as a deterministic assignment of a form v := v∪A\B, where
A and B are constant sets.

We shall describe various model variables of interest as indexed set Zi. For
instance, Z0 could describe the model variable subroute l, Z1 – track o, and so on.
The description of a variable is different from the variable itself – it characterises
variable values (states) in relation to the precondition and the postcondition of
a given state transition.

Safety Invariant Verification that Meets Engineers’ Expectations 27

In particular, the postcondition part of the variable description contains the
added and removed value sets of Zi, referred as Z+

i and Z−
i . There is a simple

relationship between Zi and its variable counterpart vi:

vi = vi ∪ Z+
i \ Z−

i . (3)

Identifier vi stands for the value of vi in a state a transition occurs. For the
moment, we only know that it must satisfy the safety invariant. In our running
example, for postcondition subroute l’ = subroute l’ ∪ {UAA-AB} \ {UAA-BA},
we have Z+

i = {UAA-AB} and Z−
i = {UAA-BA}.

Next, let us consider a transition precondition. The situation is less certain
here as we can rely only on the first two precondition clause forms presented
above (i.e., membership and equality) to deduce the precondition part of the
current state variable description. Since we have to leave some clauses out, our
knowledge of the previous state is generally incomplete.

Let us examine in more detail the first (membership) clause case. For every
model variable, one can once again build two sets: values tested to be in a model
variable and values tested to be not in it. These sets define Zi as consisting of
two components: for added, Z

+

i , and removed, Z
−
i , values. This allows us to

relate these two sets to the previous (with respect to a considered transition)
state of a model variable vi:

vi = xi ∪ Z
+

i \ Z
−
i , (4)

where xi is some previous (unknown) variable vi state. Putting (3) and (4)
together, we have the following:

vi = xi ∪ (Z
+

i ∪ Z+
i \ Z−

i) \ (Z
−
i ∪ Z−

i \ Z+
i).

Intuitively, Z
+

i ∪ Z+
i \ Z−

i is a set of objects that are known to be added
(locked or set), while Z

−
i ∪ Z−

i \ Z+
i is the known set of removed (unlocked,

freed) objects.

3.2 Computing Potential Errors

Using model variable descriptions inferred for a state transition, we can trans-
form a safety invariant predicate into a program computing the set of proof
obligations. These new kinds of proof obligations are generally more numerous
but also individually simpler. This is due to the fact that most invariant state-
ments are written in a predicate form with quantifiers to facilitate reporting (via
introduction of bound variables that may provide the error context) and such
quantifiers can be eliminated, in the majority of cases, using the information con-
tained in the description of model variables. The end result is a proof obligation
with fewer or no quantifiers, with the previously bound variables instantiated to
their constant values.

Each such derived proof obligation is a test for the presence of exactly one
engineering error. A unique name generated for a proof obligation is the name of

28 A. Iliasov et al.

a corresponding potential error. Conversely, a proof obligation is the definition
of a potential engineering error. All the proof obligations that can be derived
for a given SSI source code and a safety invariant define the set of all potential
engineering errors in a given interlocking.

It is quite possible to get an absolutely overwhelming number of proof obli-
gations (e.g., hundreds of millions). The balance at play here is the granularity
of errors. At one extreme we can declare a violation of a safety invariant to be
exactly one error. Another extreme is to deduce every unique combination of
schema entities that may give rise to this error and regard such a combination
as an error. The practical solution is to control the degree of error granularity for
each individual safety invariant predicate and, where necessary, prohibit more
complex transformations involving deeply nested quantifiers.

We require the technique to be sound – it is fine to list errors that cannot
possibly arise (and, we hope, will be filtered out by the prover), however it is
not acceptable to omit errors that can potentially arise. The soundness proof is
the subject for a future publication.

To refer to an identified error, we need to give it a name. As a starting point,
the name of an error is taken as a combination of a safety invariant predicate
(referenced by its label) and a (uniquely named) state transition. For instance,
inv1/transition5. This level of error granularity identifies both principle vio-
lated and source code location.

When we drill down into what can go wrong for a specific transition
with respect to a given invariant, we might discover that the original coarse-
grained error name is refined (split) into a number of more specific errors:
inv1/transition5/a/b/.../goal. Here a and b are some schema objects.
Another addition here is a goal predicate – for inv1/transition5/a/b/...
to uniquely refer to an identified error, such an error needs to be associated with
its distinct proof obligation. To summarise, an error name is a combination of

– invariant,
– transition,
– identifying schema entities, and
– verification goal.

The identifying schema entities are automatically added to a proof obligation
name (remember that a proof obligation is a concrete definition of an error) when
a derived program computes its proof obligations.

Let us consider again the example invariant of sub route locking on route
setting:

∀r ∈ Route
r ∈ route s \ route s’p
⇒ . . .

Predicate r ∈ route s \ route s’p filters out the routes not commanded in the
current state transition. Let some Zp describe model variable route s, then Z+

p

and Z−
p correspond to the sets of routes being set and unset respectively. We

Safety Invariant Verification that Meets Engineers’ Expectations 29

can now reformulate the invariant, for the particular state transition and without
any loss of precision, as

∀p ∈ Z+
p \ Z−

p ⇒ . . .

Crucially, set Z+
p \ Z−

p is known (i.e., can be calculated exactly) from the
description of route s, which allows us to soundly replace the external quan-
tification with iteration. We shall employ a distinct syntax to define programs
that compute focused proof obligations. For instance, the fragment above can
be translated into the following imperative notation:

WITH p FROM Z+
p \ Z−

p GOAL (∀sr ∈ SubRoute . . .).

Here p is iterated over a set of values (derived from a given transition) and,
for each value of p, the program constructs a dedicated proof obligation, as
defined by the GOAL clause. The derived error names then would take form of,
for instance, inv1/<transition name>/R123/<goal>.

The improvement over the base case is that any found violation can be readily
attributed to some route pi even without analysing the proof state.

We can continue in the same manner, now focusing on the inner universal
quantifier. This would deliver an extra level of refinement (granularity) reflected
in an error name at the price of producing one proof obligation for each sub
route of a route.

WITH p FROM Z+
p \ Z−

p

WITH sr FROM route subrouteset[{r}] ∩ SubRoute.ixl
GOAL sr ∈ subroute l .

The key point here is that set route subrouteset[{r}] ∩ SubRoute.ixl is known
at this point (as the p value was already computed) so we can once again replace
quantification with an iteration over a new, smaller goal.

We apply this constructed program to achieve two goals: to compute the list
of all possible errors, and to compute proof obligations for all such errors. By
iterating over all the combinations of state transitions and invariant predicates,
we obtain the overall list of errors and their proof obligations.

There is one further potential refinement of the described procedure: we can
use the variable description to deduce the cases where there is a definite error
even before attempting a proof. This saves us from relying on the prover to fail
to prove such cases or can be used to cross check the prover itself.

4 Discussion and Conclusions

The process outlined in the paper extends the employed safety invariant tech-
nique to produce error names and proof obligations at a finer level of granularity.
Previously, a failed proof obligation could indicate one or more errors, while with
the new approach a failed proof obligation is exactly one error.

30 A. Iliasov et al.

On one extreme, the proposed process can filter out all proof obligations for a
given invariant. On another, it can inflate their number by orders of magnitude.
On the balance, the conducted experiments and initial application of the new
approach in the life signalling projects show a significant but manageable (about
ten fold) increase of the number of proof obligations. These proof obligations are
individually much simpler and hence the overall proof time increase is generally
between 2 and 5 times more than before the transformation is applied. It is an
acceptable price to pay for increased assurance in the verification process.

We do not expect to see a bigger number of false positives arising from the
transformation procedure itself. Indeed, the resultant proof obligations are sim-
ply instances of original proof obligations with some proof steps already applied
to them at the stage of proof obligation generation. Experimental results so far
confirm this hypothesis. It is difficult to give a non-empirical argument as to
how provability is affected since symbolic proof in real life is resource limited
(in time and memory domains) and mathematical equivalence between original
and new proof obligations would not automatically entail equivalent (up to the
transformation relation) set of false positives.

The proof of soundness of the applied transformation would require show-
ing that every possible transformation applied to a safety principle predicate
is a case of a valid proof step. We intend to formalise the described predicate
transformation and the extraction of constant sets from symbolic transitions in
the Why3 framework (benefiting from the existing work on an embedding of B
mathematical notation in Why3) and carry out the formal proof of soundness.

The proposed improved verification process builds upon an already indus-
trially successful application of formal methods in the railway domain. Using
SafeCap, we routinely verify interlocking with hundreds of routes where the
control logic is defined using several thousand variables (Boolean, integer and
categorical). We have seen cases of 24 deep nestings of conditional operators and
blocks of codes with nearly 200 conditional statements.

The verification process is completely automatic: due to the sheer scale of a
system under verification it is impracticable to require manual intervention at
any stage of the process. Needless to say that such systems cannot be verified to
any level of assurance via simulation, testing or state space exploration (model
checking) techniques.

In our experiments with the new approach the number of proof obligations is
much higher: a typical interlocking verification results in between 20K and 100K
proof obligations (derived from about 60 safety invariant predicates). This is
after application of all the known reduction techniques to a constructed symbolic
state transition system. The proof takes longer, however, it is still comfortably
under 2–4 min for most complex projects, whilst for the majority of the projects
it takes less than 10 s.

We expect this effort to contribute to substantial improvement of the Safe-
Cap diagnostics reports, ensuring that the tool is fit for purpose and to even-
tual safety certification of our automated verification process as an alternative
to manual checking. Moreover, the one-to-one mapping between “engineering”

Safety Invariant Verification that Meets Engineers’ Expectations 31

errors (deficiencies in the source data) and failed proof obligations permits a
fairly straightforward implementation of a tracking of historic improvements in
data.

References

1. Clearsy: AtelierB: The industrial tool to efficiently deploy the B method. https://
www.atelierb.eu/en/

2. Butler, M., et al.: The first twenty-five years of industrial use of the B-method. In:
ter Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 189–209.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2 8

3. Fredj, M., Leger, S., Feliachi, A., Ordioni, J.: OVADO - enhancing data validation
for safety-critical railway systems. In: Fantechi, A., Lecomte, T., Romanovsky, A.B.
(eds.) RSSRail 2017. LNCS, vol. 10598, pp. 87–98. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68499-4 6

4. Borälv, A.: Interlocking design automation using prover trident. In: Havelund, K.,
Peleska, J., Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 653–656.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95582-7 39

5. Brosgol, B.M., Dross, C., Moy, Y.: Tutorial: a practical introduction to formal
development and verification of high-assurance software with SPARK. In: 2019
IEEE Cybersecurity Development, SecDev 2019, Tysons Corner, VA, USA, 23–
25 September 2019, pp. 1–2. IEEE (2019). https://doi.org/10.1109/SecDev.2019.
00012

6. Stratton, D.H: Solid State Interlocking, 1st edn. IRSE Booklet, 28. Institution of
Railway Signal Engineers (IRSE), p. 20 (1988)

7. Iliasov, A., Taylor, D., Laibinis, L., Romanovsky, A.B.: Formal verification of rail-
way interlocking and its safety case. In: Proceedings of Safety-Critical Systems
Symposium (SSS 2022), Bristol, UK, 8–10 February 2022. Safety-Critical Systems
Club, UK (2022)

8. Iliasov, A., Lopatkin, I., Romanovsky, A.: The SafeCap platform for modelling rail-
way safety and capacity. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFE-
COMP 2013. LNCS, vol. 8153, pp. 130–137. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40793-2 12

9. Iliasov, A., Taylor, D., Laibinis, L., Romanovsky, A.: Practical verification of
railway signalling programs. IEEE Trans. Dependable Secure Comput. 13 (2022,
preprints). https://doi.org/10.1109/TDSC.2022.3141555

10. Commission Implementing Regulation (EU) No 402/2013 of 30 April 2013 on the
common safety method for risk evaluation and assessment and repealing: Regula-
tion (EC) No 352/2009, Official Journal of the European Union. https://www.orr.
gov.uk/media/10711

11. Office of Rail and Road: Common Safety Method for Risk Evaluation and Assess-
ment, Guidance on the application of Commission Regulation (EU) 402/2013,
September 2018. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX
%3A32013R0402

12. Interlocking Principles (Former Railway Group Standard GK/RT0060): Network
Rail Company Standard NR/L2/SIG/30009/GKRT0060, Issue 2, 07 March 2015

13. Abrial, J.R.: The B-Book. Cambridge University Press, Cambridge (1996)

https://www.atelierb.eu/en/
https://www.atelierb.eu/en/
https://doi.org/10.1007/978-3-030-58298-2_8
https://doi.org/10.1007/978-3-319-68499-4_6
https://doi.org/10.1007/978-3-319-68499-4_6
https://doi.org/10.1007/978-3-319-95582-7_39
https://doi.org/10.1109/SecDev.2019.00012
https://doi.org/10.1109/SecDev.2019.00012
https://doi.org/10.1007/978-3-642-40793-2_12
https://doi.org/10.1007/978-3-642-40793-2_12
https://doi.org/10.1109/TDSC.2022.3141555
https://www.orr.gov.uk/media/10711
https://www.orr.gov.uk/media/10711
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013R0402
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013R0402

Innovation in Traffic Management

Formalization and Processing of Data
Requirements for the Development
of Next Generation Railway Traffic

Management Systems

Airy Magnien1(B) , Gabriele Cecchetti2 , Anna Lina Ruscelli2 ,
Paul Hyde3 , Jin Liu3 , and Stefan Wegele4

1 SNCF and UIC, Paris, France
airy.magnien@sncf.fr

2 Scuola Superiore Sant’Anna, Pisa, Italy
{g.cecchetti,a.ruscelli}@santannapisa.it

3 School of Engineering, Newcastle University, Newcastle upon Tyne, UK
{paul.hyde,jin.liu}@newcastle.ac.uk

4 Siemens, Munich, Germany
stefan.wegele@siemens.com

Abstract. Railway Traffic Management Systems (TMSs) handle data
from multiple railway subsystems, including Rail Business Services (such
as interlocking, RBC, maintenance service, etc.) and external services
(such as passenger information systems, weather forecast, etc.). In turn,
the data from these subsystems are described in several models or ontolo-
gies contributed by various organizations or projects which are in a
process of converging or federation. The challenge of the Shift2Rail
OPTIMA project, which is implementing a communication platform
for virtual testing of new applications for railway TMS, is to allow the
exchange of data between different services or users and to support new
traffic management applications, enabling access to a large number of
disparate data sources. In this paper, the core activities of the OPTIMA
project related to the formulation and standardization of a common data
model are described. A new Common Data Model is developed based on
standardized data structures to enable the seamless exchange of large
amounts of data between different and heterogeneous sources and con-
sumers of data, that contributes to the building of next generation of
a more effective and efficient railway TMS suitable to offer precise and
real-time traffic information to railway operators and other end users.

Keywords: Railway Traffic Management System · Common Data
Model · Model transformation · Context-free grammar

Supported by H2020 Shift2Rail OPTIMA project G.A. 881777.

c© Springer Nature Switzerland AG 2022
S. Collart-Dutilleul et al. (Eds.): RSSRail 2022, LNCS 13294, pp. 35–45, 2022.
https://doi.org/10.1007/978-3-031-05814-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05814-1_3&domain=pdf
http://orcid.org/0000-0003-3583-2029
http://orcid.org/0000-0002-0910-6739
http://orcid.org/0000-0003-1995-048X
http://orcid.org/0000-0001-5817-0107
http://orcid.org/0000-0002-3808-5957
https://doi.org/10.1007/978-3-031-05814-1_3

36 A. Magnien et al.

1 Introduction

Railway Traffic Management Systems (TMSs) are used in Operation Control
Centers to monitor and manage Railway Business Services like traffic manage-
ment, maintenance and energy systems, and external services like the Passenger
Information Systems. However, since current legacy TMSs are lacking in stan-
dardized communication interfaces with internal and external services and in
interoperable data structures, the interoperability with different TMSs and the
upgrade of these systems is difficult. Next generation TMSs aim to overcome
these limitations and take advantage of the capability to access multiple dis-
parate data sources in order to better optimize operational solutions, as well as
increase the integration between system.

The European Commission promotes the design and implementation of inno-
vative solutions suitable to outline an European railway transport mode more
competitive, sustainable, interoperable, and efficient through the Shift2Rail
(S2R) Joint Undertaking, set under the H2020 program that aims to specify
and design railways systems based on standardised frameworks and a Common
Data Model (CDM).

2 OPTIMA Project

One of the challenges of TD2.9 of Innovation Programme 2 in S2R Multi-Annual
Action Plan [1,2] is to develop a Technological Demonstrator providing seamless
data exchange to support future TMSs which enables the integration of status
information from different services. The H2020 S2R OPTIMA (cOmmunication
Platform for TraffIc ManAgement demonstrator) project [8], started in Decem-
ber of 2019, is strictly linked to TD2.9 as it aims to implement and validate a
demonstrator of a communication platform for the testing and validation of novel
industry solutions for next generation TMSs. The components of the communica-
tion platform developed by OPTIMA are conceived to ensure seamless access to
persistent data from heterogeneous data sources with automated data exchange
process, real time availability and configurable quality of service (QoS) levels
for services [3,7]. The Integration Layer (IL) is the core component providing
the functionalities of a middleware between the sources and consumers of data,
and Traffic Control and Management Applications, hosted in the Applications
Framework that provides a uniform deployment environment in which to deploy
various TMS services into virtual machines or containers with a plug-and-play
approach. The seamless exchange of data is ensured by the use of standard-
ized and interoperable data structures and processes based on the definition of
a CDM. Finally, in the Operations Center, newly designed Operator Worksta-
tions (OWs) enable operators to access the available data in IL via associated
TMS applications. The OPTIMA demonstrator will be validated by connecting
external prototypes from the S2R complementary projects X2RAIL-4 [10] and
FINE-2 [4].

Formalization and Processing of Data Requirements for Next Railway TMSs 37

3 Railway System Modelling: State of Play

3.1 Shared Models

LinX4Rail [6], an ongoing Shift2Rail project, aims at the federation, and, ulti-
mately, convergence of railway system models into a “Common Data Model”.
LinX4Rail developments rest on models that are provided by various entities for
different purposes.

An example would be “signal”, an term that is already present in four models.
EULYNX and RSM decided to couple two classes, the EULYNX class taking care
of signalling design aspects, while the RSM class takes care of its localisation on
the network. IFC Rail provides additional information about signal structure and
components, while X2RAIL-4 focuses on signal state and related data exchange.

Under such conditions, overlaps and mismatches are unavoidable. Model con-
vergence requires, inter alia:

– harmonized semantics (Work Package 2), using ontologies;
– linking of models generally published in UML (Work Package 3);
– formalizing a shared railway system architecture and dealing with its gover-

nance (Work Package 5).

The current so-called “candidate models”, expected to become parts of the
model federation, are listed in the Table 1.

Table 1. Candidate models for federation.

Model Purpose Owner Used
technologies

RSM Multi-purpose rail
system model

UIC UML

EULYNX DataPrep Signalling assets
(material or immaterial)

EULYNX UML

IFC Rail Railway infrastructure
assets (all subsystems,
mostly material)

buildingSMART
Intl

EXPRESS,
UML, OWL

TRANSMODEL Multi-modal passenger
traffic management and
related assets

CEN UML

X2RAIL-4 Data exchange model
for operational
purposes, incl. ATO

X2RAIL-4
consortium

JSON schema,
Protobuf

All the models above are shared between project participants at least. With
the exception of X2RAIL-4, all have been published by their owners at different
stages of completion, using various licenses.

38 A. Magnien et al.

3.2 Platform-Specific Model: X2Rail-4

Amongst the models listed above, the X2RAIL-4 model has a special status
due to its distinct purpose and the formats adopted (JSON and Protobuf). The
X2Rail4-model was developed during several Shift2Rail projects dedicated to
TMSs starting in 2015 and reached its current version in the X2Rail-4 project,
therefore the model name. The TMS as a central controlling instance requires
data from almost all railway domains, including the infrastructure, interlocking,
energy system, timetables, etc. To allow evolutionary extension of TMS with new
functionalities, a common data architecture (data model) and common communi-
cation architecture (Application Programming Interface - API for data access)
were specified. This communication platform is used as a common backbone
for several demonstrators developed by the complementary projects including
Automatic Train Operation (ATO), Decision Support System, Connected Driver
Advisory System, etc. [10]. The data model developed in X2Rail-4 is specially
adapted for usage in this X2Rail-4-communication platform (called Integration
Layer). It supports two serialisation formats, namely a human-readable format
(JSON) and a binary format (Protobuf), which can be used interchangeably via
API.

4 OPTIMA: From Requirements to Model

The initial intent of OPTIMA project was to rely on the “Common Data Model”
prepared by Linx4Rail as the basis for deriving a platform-specific model, to be
used by the IL. However, calendar constraints made such derivation difficult.
Moreover, software applicable to the tasks had already been developed, using
models prepared under other closed or running Shift2Rail projects. A pragmatic
decision was made, which is to use the X2RAIL-4 model:

– the link between OPTIMA and the LinX4Rail CDM is preserved, even though
indirectly (via X2Rail-4);

– the existing developments are preserved, but
– X2Rail-4 model evolution requires close cooperation between owner and user

(here, OPTIMA) without creating undue dependencies.

While a cooperation agreement set the scene for that cooperation to happen,
technical challenges remained.

4.1 Challenges of Model Evolution

The X2Rail-4 model is the basis for application developments using the IL. Such
applications have been developed (implying backward compatibility of model
changes) or are under development (implying openness to changes) in different
projects, OPTIMA being one of them. The challenge is therefore to become able
to extend an evolving model with requirements that are themselves evolving,
avoiding cross-dependencies to the largest extent possible.

Formalization and Processing of Data Requirements for Next Railway TMSs 39

4.2 Previous Works

Model-to-Model transformation was extensively explored [5], requirements-to-
model, much less so. The authors acknowledge that published solutions have
potentially been overlooked. The most commonly investigated model-to-model
transformation path is from natural text requirements to UML. The absence of
any well-established, shared terminologies or ontologies in the railway field that
are precisely defined, well-documented, and widely used, is a significant issue in
terms of establishing data models.

5 Formalizing Data Requirements

In general, data requirements1 are formulated in human-readable documents,
and OPTIMA is no exception. Usage of requirement management tools is still
uncommon, in international railway projects, although some project partners
may be familiar with such tools. In this regard, the railway world does not seem
to belong to the 17.8% of survey respondents having “strong knowledge” of using
requirements management tools, but definitely to the 69% using a “systematic
methodology” for collecting requirements [9].

Natural Language Processing can be excluded from the solutions, lacking
comprehensive, published, and widely used domain ontologies2. As a matter of
fact, Ontorail.org is the place where the ontology extractions from Linx4Rail
candidate models are assembled, but the linkage of the extracted ontologies has
just started.

Experience with some modelling endeavours in international projects (such
as IFC Rail) showed that the set up of UML models would include two phases:

– domain requirement expression by domain experts, usually organized as col-
lections of tables (with columns “objects”, “description”, “illustration”...);

– UML formalization by tandems, or teams, grouping domain experts and UML
modelling experts.

Domain representation is time-consuming mainly because of the temptation
of being complete and the resolution of overlaps, to ensure consistency and non-
redundancy of the complete set of requirements.

UML formalization is time-consuming because it requires participants to
understand some of the expertise or concerns of the other side (domain vs. mod-
elling), which is no small effort, and because modelling choices have to be made.
Additionally some domain knowledge is based on accepted practice and histor-
ical conventions, therefore certain domain concepts are sometimes expressed in
requirements with contextual assumptions as to the meaning of terms.

1 In our context, “data requirements” is the term commonly used for “information
requirements”, as metadata, context, etc. also need to be established.

2 ifcOWL is one such initiative, but extension of ifcOWL to the scope of IFC Rail is
pending. See https://technical.buildingsmart.org/standards/ifc/ifc-formats/ifcowl/.

http://ontorail.org/
https://technical.buildingsmart.org/standards/ifc/ifc-formats/ifcowl/

40 A. Magnien et al.

Our goal was to find a deterministic solution to a simplified problem:

– requirements should be expressed in a formal, prescribed way, also dealing
with semantic uncertainties;

– requirements should extend an existing model, not alter it;
– all transformations are done by code, using requirements and transformation

options persisted in text files.

5.1 Minimal Requirements... for Requirements

Domain experts would spontaneously describe material or immaterial assets as
“systems” composed of “objects” having “features” or “properties”, a description
that naturally evokes object-oriented modelling. Such views however collide with
another valid world representation that would consider data exchange, resulting
in bundling “data” into nested “data sets”, i.e. coherent pieces of knowledge for
a purpose.

In our case, we would only expect the domain expert to identify single objects
and single object features, which is our “atomic” level. Formalizing the drill-
down process, from general requirements to atomic ones, exceeds the scope of
OPTIMA; it is however part of the parallel Linx4Rail3 project.

Features are defined and described in the context of the object they char-
acterize, which is restrictive: ontology properties for instance are classes, and
LinkML allows to define “slots” (equivalent to our “features”) to be defined
separately from classes and shared by several classes4.

This restriction is certainly old-fashioned, but simplifies the expression of
requirements, at the cost of possible repetitions. Object features may be under-
stood as attributes (or fields in a document), or references to other objects (or
documents).

Fig. 1. Requirements sheet (excerpt)

Using spreadsheets for input is common practice, and unlikely to deter
domain experts. An excerpt of the used spreadsheet is shown in Fig. 1. Each
requirement is self-contained, and is expressed in a single row. While the actual
requirements viewing and editing environment is MS Excel, the work does not
require more than CSV capabilities. System views are outside the scope of the
formalisation approach adopted, however, it does not preclude them:
3 https://projects.shift2rail.org/s2r ipx n.aspx?p=LINX4RAIL.
4 Link Modeling Language, see https://github.com/linkml/linkml.

https://projects.shift2rail.org/s2r_ipx_n.aspx?p=LINX4RAIL
https://github.com/linkml/linkml

Formalization and Processing of Data Requirements for Next Railway TMSs 41

– users may use multiple sheets and files to sort requirements, but the processor
will ignore this sorting;

– by design, model extension will not break the input model structure and will
respect the system (or documentation) breakdown that was initially intended.

5.2 Supporting Grammar

Some consideration was given to the data structure used to capture the require-
ments, particularly the grammar used, for instance, increasing the number of
columns to accommodate finely tuned requirements would lead to “sparse matri-
ces”, the kind that is not easily edited, let alone reviewed. For example, an enu-
merated feature has a list of values, while a numeric feature has a unit, so two
filled columns should be able to express both cases, instead of four columns with
two irrelevant ones.

A pragmatic solution consisted of setting up a short context-free grammar,
formalized in EBNF5. The purpose of the grammar is twofold with regard to
current and potential future work:

– now: specification for the ad-hoc CSV parser;
– later: open the possibility of using an off-the-shelf parser, the grammar being

one of its inputs.

The somewhat simplified grammar is shown below (many units are miss-
ing...). W3C conventions are used.

s t a r t : := requirement (’#CR#LF’ requirement) ∗
requirement : := ob j e c t d e c l a r a t i o n | enum dec larat ion |

f e a t u r e d e c l a r a t i o n
ob j e c t d e c l a r a t i o n : := object name ’ ; ; ; ’ (’∗ ’ s up e r c l a s s) ?

’ ; ; ; ; ’
enum dec larat ion : := enum name ’ ; ; ; ’ ’enum ’ ’ ; ’ enum values

’ ; ; ; ’
f e a t u r e d e c l a r a t i o n : := object name ’ ; ’ f e a t u r e d e s c r i p t i o n
sup e r c l a s s : := object name
object name : := i d e n t i f i e r
i d e n t i f i e r : := [A−Za−z] [A−Za−z0−9]∗
f e a t u r e d e s c r i p t i o n : := feature name ’ ; ’ i n f o ’ ; ’

f e a t u r e d e t a i l s ’ ; ’ au thor i ty ’ ; ’ t ime dependency
feature name : := i d e n t i f i e r
i n f o : := text
t ex t : := charac t e r ∗
cha rac t e r : := [A−Za−z0 −9 ,] | space
space : := [#x9#xA#xD#x20]
type : := numeric type | nonnumeric type
f e a t u r e d e t a i l s : := ’ opt iona l ’ ? (’ s o r t ed ’? ’ l i s t o f ’) ? (

numeric type ’ ; ’ un i t | (nonnumeric type |
o b j e c t r e f e r e n c e) ’ ; ’ | ’ enum ’ ’ ; ’ enum values |
enum reference ’ ; ’)

5 Extended Backus-Naur Form.

42 A. Magnien et al.

numeric type : := ’ int ’ | ’ f l o a t ’
nonnumeric type : := ’ s t r ’ | ’ boolean ’
un i t : := ’ counter ’ | ’ d imens ion l e s s ’ | ’ kg ’ | ’m’ | ’ s ’ |

’ Ce l s iu s ’
enum name : := i d e n t i f i e r
enum values : := enum value (’ , ’ enum value) ∗
enum value : := i d e n t i f i e r
enum reference : := ’∗ ’ (module name ’ . ’) ? enum name
ob j e c t r e f e r e n c e : := ’∗ ’ (module name ’ . ’) ? (type |

object name)
module name : := i d e n t i f i e r
author i ty : := p r i o r i t y ’ ; ’ source ’ ; ’ i s d e f i n edby
p r i o r i t y : := d i g i t | ’ sk ip ’ t ex t ?
source : := text
i s d e f i n edby : := text
d i g i t : := [0 −9]
t ime dependency : := ’ Sta t i c ’ | ’ Qua s i s t a t i c ’ | ’Dynamic ’

Requirements may also express abstract datatypes (such as text or numeric),
associations (using ‘*’ as a prefix), and multiplicities (using “list of”). Exact mul-
tiplicities (lower and higher bound) and concrete datatypes (e.g. those defined
in JSON) are left for later stage processing. Therefore, domain experts should
not expend effort on such details, while semantics often remain unattended.

5.3 Semantics

A realistic design goal for UML class diagram-based models is to embed seman-
tics in the model itself. This has been consistently achieved, for instance by
EULYNX DataPrep, RSM, or TRANSMODEL, by extensive use of UML notes
pertaining to diagrams, classes, attributes, or associations. Notes are, as far as
possible, brought to the surface of the class diagrams, and in any case remain
accessible when the diagrams are published in XML or other text formats.

To enable these high standards to be achieved, there should be a strong focus
on the robustness, accuracy, completeness, and specificity, of the requirements
formalisation by the domain experts from the beginning of the process.

Each data requirement (object, feature, enumeration...) is identified by a
name (object name, feature name...) or a short phrase that should be expres-
sive, unambiguous, and familiar to experts, as much as possible, unique across
the whole set of requirements. These names will be used as identifiers after
transformation (e.g. camel-casing).

Names alone are not sufficient to define the semantics of requirements, given
the many-to-many relationship between names (labels) and the concepts they
denote. An “info” key was introduced at an early stage in the JSON schema of the
X2RAIL-4 model: an “info” column was provided accordingly in the input sheets,
which is relevant to each single requirement and is intended for the specific defini-
tion and full explanation of the feature. Expected values are one sentence or two,
without conditionals. Since one sentence is helpful, but not a reference, we rec-
ommend to point to a public, freely accessible resource. In the RDFS framework,

Formalization and Processing of Data Requirements for Next Railway TMSs 43

the annotation property rdfs:isDefinedBy is dedicated to such purposes. How-
ever, isDefinedBy may point to any resource. In our context, we need the resource
to be public and published, preferrably in the shape of a URI. Moreover, annota-
tion properties are ignored by reasoners. Consequently, a “hasPublicDefinition”
key was introduced, in line with object property ontorail:hasPublicDefinition.

5.4 Authorities

The authority defining the terms of the requirement have been separated from
the authority that expresses the requirement. Two columns remain associated
with the requiring authority:

– a priority level, the meaning of which is somewhat ambiguous: priority of
requirement in view of model extension, or priority with respect to data
exchange, e.g. in case of channel saturation. In the context of OPTIMA,
the second meaning applies;

– a source, that ensures traceability of the requirement and, indirectly, identifies
the authority expressing the requirement.

6 Transformation and Integration

Formalized requirements are intended to extend the source model (here:
X2RAIL-4), leaving the existing parts unchanged. We expect extensions to be
ignored by those applications that do not require them. However, the extended
model must in any case conform the original JSON schema. Processing require-
ments takes four steps:

informal requirements → formal requirements → pre-processing → processing
→ post-processing.

6.1 Pre-processing

The pre-processing step of model transformation is partly automated. The auto-
mated part consists of:

– check the completeness of each single requirement, especially with respect to
units or dangling references;

– suggest structures and properties matching objects and features formulated
in the requirements;

– check whether features are static or dynamic, in view of expressing the time-
dependency of feature values in JSON;

– express multiplicities using the JSON schema conventions.

The manual part of pre-processing then consists of:

– dealing with the warnings and errors provided by the pre-processing execution
log,

– assigning requirements to existing JSON modules, and
– indicate the matching JSON structs and enums, when possible.

44 A. Magnien et al.

6.2 Processing and Post-processing

Both the processing and post-processing steps are fully automated, the output of
the processing is the set of extended JSON modules, and post-processing checks
JSON schema conformity. The salient features of the processing are:

– offering the choice to instantiate object features 1) as attributes, or 2) as
references to a reified attribute, 3) possibly reversing the dependency direction
(observer pattern);

– replacing subclassing (not supported by JSON) by having the subclass refer-
ring to the superclass, rather than inheriting its attributes;

– using the observer pattern to express “dynamic” attributes (having time-
dependent values). In this case, the preferred solution is to pair the Foo class
with a FooState class, which holds the dynamic attributes, a single timestamp,
and a reference to Foo.

7 Conclusions and Further Works

Shift2Rail OPTIMA project deals with the design and validation of a demon-
strator of a communication platform to test new TM applications. Requirement
elicitation and transformation of the requirements into a data model is a part of
the OPTIMA project. The requirement formalization and transformation toolset
was developed in response to the complexity of the data model required for TMSs
and the project timescales (as well as reducing the time for future work). There
has already been interest from other projects and interested parties in both the
formalization and toolsets (demonstrating the relevance of this work), which are
intended to be shared under some sort of open source license

Since requirements were processed in a particular context (setting up a train
management system) by knowledgeable experts, some formalization aspects were
omitted, such as or process mining, or allocation of requirements to project
phases. Such aspects would generally deserve more attention.

By further experimenting with model extension and combination, either using
the proposed, semi-automated methodology or more creative, whiteboard-based
methods, we are confident that OPTIMA will achieve its particular goal, i.e.
running a TMS demonstrator. The somewhat unexpected bonus is however a
contribution to building the CDM, which is one of the main goals pursued by
the European Commission and could be of utility to the railway industry.

References

1. SJG Board: Shift2rail joint undertaking multi-annual action plan (2015). https://
shift2rail.org/wp-content/uploads/2013/07/S2R-JU-GB Decision-N-15-2015-
MAAP.pdf

2. SJG Board: Shift2rail joint undertaking multi-annual action plan (2019). https://
shift2rail.org/wp-content/uploads/2020/09/MAAP-Part-A-and-B.pdf. https://
doi.org/10.2881/314331

https://shift2rail.org/wp-content/uploads/2013/07/S2R-JU-GB_Decision-N-15-2015-MAAP.pdf
https://shift2rail.org/wp-content/uploads/2013/07/S2R-JU-GB_Decision-N-15-2015-MAAP.pdf
https://shift2rail.org/wp-content/uploads/2013/07/S2R-JU-GB_Decision-N-15-2015-MAAP.pdf
https://shift2rail.org/wp-content/uploads/2020/09/MAAP-Part-A-and-B.pdf
https://shift2rail.org/wp-content/uploads/2020/09/MAAP-Part-A-and-B.pdf
https://doi.org/10.2881/314331
https://doi.org/10.2881/314331

Formalization and Processing of Data Requirements for Next Railway TMSs 45

3. Cecchetti, G., et al.: Communication platform concept for virtual testing of novel
applications for railway traffic management systems. In: Proceedings of 24th
Euro Working Group on Transportation Meeting (EWGT 2021) - Transportation
Research Procedia (2022)

4. FINE-2: Furthering Improvements in Integrated Mobility Management (I2M),
Noise and Vibration, and Energy in Shift2Rail, December 2019. https://projects.
shift2rail.org/s2r ipcc n.aspx?p=fine-2

5. Jakumeit, E., et al.: A survey and comparison of transformation tools
based on the transformation tool contest. Sci. Comput. Program. 85, 41–
99 (2014). https://doi.org/10.1016/j.scico.2013.10.009. https://www.sciencedirect.
com/science/article/pii/S0167642313002803. Special issue on Experimental Soft-
ware Engineering in the Cloud (ESEiC)

6. LinX4Rail: System architecture and Conceptual Data Model for railway, com-
mon data dictionary and global system modelling specifications, December 2019.
https://projects.shift2rail.org/s2r ipx n.aspx?p=LINX4RAIL

7. Liu, J., Ulianov, C., Hyde, P., Ruscelli, A.L., Cecchetti, G.: Novel approach for
validation of innovative modules for railway traffic management systems in a
virtual environment. In: Proceedings of the Institution of Mechanical Engineers,
Part F: Journal of Rail and Rapid Transit, August 2021. https://doi.org/10.1177/
09544097211041879

8. OPTIMA: cOmmunication Platform for TraffIc ManAgement demonstrator,
December 2019. https://projects.shift2rail.org/s2r ip2 n.aspx?p=S2R OPTIMA

9. Salih Dawood, O., Sahraoui, A.E.K.: From requirements engineering to UML using
natural language processing - survey study. Eur. J. Ind. Eng. 2(1), 44–50 (2017).
https://doi.org/10.24018/ejers.2017.2.1.236. https://hal.laas.fr/hal-01703317

10. X2Rail-4: Advanced signalling and automation system - completion of activities for
enhanced automation systems, train integrity, traffic management evolution and
smart object controllers, December 2019. https://projects.shift2rail.org/s2r ip2 n.
aspx?p=X2RAIL-4

https://projects.shift2rail.org/s2r_ipcc_n.aspx?p=fine-2
https://projects.shift2rail.org/s2r_ipcc_n.aspx?p=fine-2
https://doi.org/10.1016/j.scico.2013.10.009
https://www.sciencedirect.com/science/article/pii/S0167642313002803
https://www.sciencedirect.com/science/article/pii/S0167642313002803
https://projects.shift2rail.org/s2r_ipx_n.aspx?p=LINX4RAIL
https://doi.org/10.1177/09544097211041879
https://doi.org/10.1177/09544097211041879
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=S2R_OPTIMA
https://doi.org/10.24018/ejers.2017.2.1.236
https://hal.laas.fr/hal-01703317
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-4
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-4

Acceleration Techniques for Symbolic
Simulation of Railway Timetables

Rebecca Haehn(B), Erika Ábrahám, and Niklas Kotowski

RWTH Aachen University, Aachen, Germany
{haehn,abraham}@cs.rwth-aachen.de, niklas.kotowski@rwth-aachen.de

Abstract. In this paper, we improve the scalability of an exact symbolic
simulation method to compute the impact of stochastic delays in railway
systems. We present transformation rules that allow minimizing the size
of the system state representation (which train is where with which prob-
ability), without losing exactness. Based on these transformation rules,
we propose two different approaches to decrease the simulation effort and
thus the running time of the symbolic simulation method. One approach
iteratively applies our transformation rules to the state representation,
while the other encodes transformation steps logically and uses satisfi-
ability checking tools to determine which rule combination leads to the
strongest possible reduction. We evaluate the proposed improvements
on realistic case studies and discuss further possible speed-up techniques
that approximate the results.

Keywords: Simulation · Railway timetables · Delay propagation

1 Introduction

Railway systems play an important role in satisfying the increasing need for
environmentally friendly transportation. However, it is not possible to increase
the railway infrastructure’s capacity according to the increased demand. Though
the network structure can be extended, places where local conditions do not
allow to build additional tracks become a bottleneck, such that the total network
capacity cannot further increase. In addition to this, construction work to extend
the infrastructure where this is possible is expensive and often protracted. This
makes it necessary to optimally exploit the capacity of the existing infrastructure.

The problem that arises with increasing capacity utilization is delay propaga-
tion. If a network infrastructure element is highly utilized according to the train
timetable then even a few slightly delayed trains might cause full exploitation,
blocking other trains that want to use the element, which might again propagate
their delays to further trains. Thus we can distinguish between secondary delays
that are caused by other delays, and primary delays that have other sources.

This research is funded by the German Research Council (DFG) - Research Training
Group UnRAVeL (RTG 2236).

c© Springer Nature Switzerland AG 2022
S. Collart-Dutilleul et al. (Eds.): RSSRail 2022, LNCS 13294, pp. 46–62, 2022.
https://doi.org/10.1007/978-3-031-05814-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05814-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-05814-1_4

Acceleration Techniques for Symbolic Simulation of Railway Timetables 47

Simulation allows to estimate the relation between primary and secondary
delays. The most commonly used simulation approach is Monte Carlo simulation.
It requires input probability distributions that model primary delays, allowing
to iteratively sample primary delay values and simulate the network to compute
the induced secondary delays. A statistical analysis of the results allows to draw
conclusions about the stochastic properties of interest.

Several commercial software products implement Monte Carlo simulation.
There are for example the systems RailSys [4,17] and OpenTrack [3,15], which
apply synchronous simulation (i.e., all train rides are simulated simultaneously
in a single run). Alternatively, the train rides could also be simulated sequentially
one after another, starting with the trains with highest priority, in a so-called
asynchronous simulation. This is the case in the system MOSES/WiZug [18],
which is applied specifically for rail freight transportation. A combination of
synchronous and asynchronous simulation is used in the system LUKS [1,14].

Unlike Monte Carlo simulation, the approach in [8] computes delay propaga-
tions using an analytical procedure. This approach is implemented in the system
OnTime [2,11]. Another synchronous approach is our previous work [12], with
the ability to simulate all possible primary delay configurations simultaneously,
in contrast to the sequential simulation of individual primary delay configura-
tions in Monte Carlo simulation. Thereby certain sets of possible primary delay
configurations are represented abstractly in so-called symbolic representations,
offering the chance to share simulation effort if the same computations need to
be carried out for all contained configurations. This last approach is to the best
of our knowledge the only one that can compute exact probability distributions
for the train delays under consideration of stochastic dependencies. Though our
symbolic representation allows a major reduction of the computational effort to
get exact answers (compared to simulating each possible primary delay configu-
ration independently), it is computationally still quite expensive, restricting its
applicability to smaller networks and shorter time horizons. In this paper, we
propose and evaluate methods to accelerate this symbolic simulation approach
in order to achieve better scalability.

Outline. After providing some preliminaries and explaining our symbolic sim-
ulation method from [12] in Sect. 2, we present our novel reduction method in
Sect. 3. We evaluate our reduction experimentally in Sect. 4 and draw some con-
clusion in Sect. 5.

2 Symbolic Simulation

In the following we abstract as much as possible from the details of the symbolic
simulation presented in [12]. We only mention here the information needed to
understand the acceleration approaches presented in this paper. First, we intro-
duce primary delays. Then we proceed with recalling the symbolic representation
for primary delay scenarios. Last, we give an overview over the symbolic simu-
lation algorithm itself, before moving on to the acceleration approaches in the
next section.

48 R. Haehn et al.

2.1 Primary Delays

A railway system is a pair, composed of

� an infrastructure network consisting of infrastructure elements and
� a timetable specifying how trains traverse through this network.

A train that drives later than stated in the timetable is delayed. There are two
types of delays. Primary delays are caused by technical problems or external
influences, while secondary delays of a train are caused by other trains fully
occupying the capacity of its next needed infrastructure element. In the following
we use N to denote the set of non-negative integers (including zero).

We model primary delays as discrete random variables p with sample space
N. We denote the probability that p has the value v ∈ N as P(p = v) ∈ [0, 1] ⊆ R

and its support as D(p) = {v ∈ N | P(p = v) > 0}. Note that (
∑

v∈D(p) P(p =
v)) = 1. In the following we will only consider random variables with finite
support (modeling finitely many possible primary delay values).

In [12], we introduced stochastically independent random variables, one for
each timetable train i and each infrastructure element x that i uses; their random
values represent the number of time units the delay of the train i increases at x
without the cause being another train’s delay. For the sake of simplicity, here we
only consider primary delays at start, represented by one random variable pi for
each train i = 1, . . . , n, forming the set P = {p1, p2, . . . , pn}. The presented
method can be extended to consider additional primary delays during train rides
in a straightforward way.

2.2 Scenarios

A primary delay value combination (PDC) is a sequence (v1, . . . , vn) ∈ N
n of

initial primary delay values with vi ∈ D(pi) from the support of pi for i =
1, . . . , n. In a Monte Carlo simulation, each run corresponds to one PDC. In
contrast, our symbolic simulation algorithm presented in [12] receives the set of
discrete random variables P with their respective primary delay distributions as
input and computes the corresponding secondary delay distributions as output,
in one run. To achieve this, sets of PDCs are grouped together and represented
symbolically by so-called scenarios.

Definition 1. A scenario S : P → 2N \ {∅} is a function, where S(p) ⊆ D(p)
for all p ∈ P . The scenario S represents the PDCs from repr(S) = S(p1)× . . .×
S(pn). We call S minimal if it represents a single PDC (i.e., if |repr(S)| = 1),
and maximal (denoted Smax) if it represents all PDCs. Let S be the set of all
scenarios.

Let S, S′∈ S. We say that S refines S′ (written S � S′) iff repr(S) ⊆ repr(S′);
we also say S′ contains S. Equivalence S ≡ S′ requires mutual refinement (i.e.,
repr(S) = repr(S′)). We call S and S′ compatible iff repr(S) ∩ repr(S′) 	= ∅,
and incompatible otherwise. For compatible S and S′ we define the scenario
S∩̂S′ : P → 2N \ {∅}, p
→ S(p) ∩ S′(p) to represent their common PDCs.

Acceleration Techniques for Symbolic Simulation of Railway Timetables 49

In our examples we use for a scenario S : P → 2N \ {∅} the notation
{(p0, S(p0)), (p1, S(p1)), . . . , (pn, S(pn))} and silently skip tuples (pi,D(pi)) for
i ∈ {1, . . . , n} (i.e. the values of not listed random variables are not restricted).

Example 1. Let P = {p0, p1}, with D(p0) = {0, 1, 2} and D(p1) = {0, 1}. The
scenario S = {(p0, {0})} contains the minimal scenarios {(p0, {0}), (p1, {0})} and
{(p0, {0}), (p1, {1})}. S is incompatible with {(p0, {1, 2})} and compatible with
{(p1, {0})}.

2.3 Algorithm

The above defined scenarios are used to symbolically represent for each train,
when it resides where under which PDCs. More formally, a train instance (TI)
is a tuple (x, i, t, S) consisting of an infrastructure element x, a train id i, a time
value t and a scenario S; it encodes that train i is currently (say at time point t′)
at x and plans to move to the next infrastructure element on its scheduled path
at time t under all PDCs represented by S. If t < t′ then the train already wanted
to move on in the past, but the capacities did not allow this yet. The difference
between t (or t′, if t < t′) and train i’s arrival time at the next infrastructure
element according to the timetable is this instance’s current delay.

We say that (x, i, t, S) represents a PDC v if S represents v. The probability
of a train instance (x, i, t, S) is the sum of the probabilities of its represented
PDCs, computable as Πn

i=1(
∑

vi∈S(pi)
P(pi = vi)).

For every time point in a timetable, for each train i we store a set of instances
such that each PDC is represented by exactly one of them. From these, for each
PDC we can uniquely determine the position of train i (namely the infrastructure
element x of the instance (x, i, t, S) that represents the PDC). More importantly,
we have all information we need to compute (e.g., the probability distributions
for the current delay of train i). Furthermore, the stochastic contexts enable also
combined information for the different trains, such that we can also compute
probabilities for certain railway system states, for example that a set of trains
are at the same time at a given infrastructure element.

In the symbolic simulation algorithm from [12], we iteratively compute for
each time point in a timetable all currently possible states of the railway system
in the form of a set of train instances for each train. We only explain the general
concept of the algorithm needed to understand the modifications suggested in
this paper. Therefore, we depict a slightly modified representation of the algo-
rithm in Algorithm 1. The changes were made for better understandability of
the parts relevant for our modifications and do no change the functionality.

Algorithm 1 first establishes the initial state of the railway system in line 2.
Then iteratively for each relevant time point (i.e., each time point where some
train plans to move to its next infrastructure element (those are collected during
the simulation)), the state of the railway system is updated (lines 3–11). This is
done for each infrastructure element separately (line 5). First all train instances
that plan to move to the respective infrastructure element at the current time
are collected in line 6. There pre(x) is the set of all infrastructure elements

50 R. Haehn et al.

Algorithm 1. Symbolic simulation from [12] (slightly modified representation)

1: procedure Simulate()
2: Initialize(); // initial state of the railway system
3: while times �= ∅ do
4: t ← times.getSmallest(); times ← times \ {t}; // current time value
5: for each infrastructure element x do
6: req ← {(y, i, t′, S) | y ∈ pre(x), t′ ≤ t}; // TIs planning to move to x
7: occ ← Occupation(x, t); // partition PDCs according to x’s utilization
8: while req �= ∅ do
9: r ← req.getHighestPrioritized(); req ← req \ {r};

10: S ← Available(occ, r); // scenarios where r can move to x
11: Update(x, r, t,S); // update TIs; cap updated accordingly (line 10)

from where x can be reached directly, without having to travel over another
infrastructure element. Then its used capacity at the time is determined, see
line 7. At last, the train instances are updated, one after another, starting with
the train instance with the highest priority (line 9). A train instances’ priority
here depends on the corresponding trains’ type (e.g., freight train, high-speed
train) and its planned arrival time at the infrastructure element. In line 10
it is determined in which scenarios the respective train instance can move to
the infrastructure element as planned. Afterwards the train instance is updated
accordingly in line 11.

When a train instance is updated, it is split into multiple instances in case
it can only move to its next infrastructure element in some of the PDCs rep-
resented by its scenario S (i.e., when in a proper subset of repr(S) the infras-
tructure element is fully occupied). Thus during the execution of this symbolic
simulation algorithm the number of train instances increases. This is to a cer-
tain extent unavoidable, in order to represent the possible states of the railway
system exactly. However, additional train instances are created due to the way
in which the algorithm works currently. We explain this with an example for the
execution of the three methods Occupation, Available and Update. Pseu-
docode for these methods is left out of this paper, as the relevant functionalities
become clear from the example.

Example 2. Let t = 10 and D(p) = {0, 5, 10} for all p ∈ P . Assume we update
infrastructure element x with capacity 2,

� train instances (x, 1, 12, {(p1, {5})}) and (x, 2, 12, {(p2, {5})}) and
� req = {(y, 3, 10, {(p3, {0})})} with y ∈ pre(x).

Occupation(x, t) is executed first and partitions the set of all PDCs (i.e.,
D(p1) × . . . D(pn)) into scenarios, where for each scenario holds that every train
instance currently at x either represents every PDC represented by this scenario
or none of them. Therefore, Occupation(x, t) starts with {(Smax, 0)}, iterates
over these train instances and partitions its current set of scenarios further if
the condition is not satisfied. Additionally, for each scenario the number of train

Acceleration Techniques for Symbolic Simulation of Railway Timetables 51

instances currently at x that represent all PDCs of it are counted. This results
in the following set of tuples:

occ = {({(p1, {5}), (p2, {5})}, 2),
({(p1, {5}), (p2, {0, 10})}, 1),
({(p1, {0, 10}), (p2, {5})}, 1),
({(p1, {0, 10}), (p2, {0, 10})}, 0)}.

Available(occ, r) with r = (y, 3, 10, {(p3, {0})}) is executed next, to compute
the scenarios in which x has available capacity for r to move there. For each tuple
(S, c) in occ with c strictly smaller than the capacity of x and S compatible with
the scenario {(p3, {0})} of r, r can move to x in the scenario S∩̂{(p3, {0})}. In
this example the resulting set of scenarios is the following:

S = {{(p1, {5}), (p2, {0, 10}), (p3, {0})},

{(p1, {0, 10}), (p2, {5}), (p3, {0})},

{(p1, {0, 10}), (p2, {0, 10}), (p3, {0})}}.

In case req contains further elements, occ has to be updated accordingly.
Update(x, t, r,S) is executed last. There the train instance (y, 3, 10, {(p3, {0})})
is replaced by the following train instances for the current time step:

(y, 3, 10, {(p1, {5}), (p2, {5}), (p3, {0})}),
(x, 3, 12, {(p1, {5}), (p2, {0, 10}), (p3, {0})}),
(x, 3, 12, {(p1, {0, 10}), (p2, {5}), (p3, {0})}),
(x, 3, 12, {(p1, {0, 10}), (p2, {0, 10}), (p3, {0})}).

The time value in the last three instances is the current time value 10 plus the
time train 3 occupies x according to the timetable, here 2.

In the example above, the train’s behaviour varies for different scenarios, in
some it can move to its next infrastructure element, in some it can not. Thus
at least two train instances are needed to represent the possible behaviour of
the train. In this particular case at least three instances are needed, since each
scenario (as defined in Definition 1) is syntactically restricted to represent a set of
PDCs that can be expressed as a cross product. However, four are not necessary,
for example the last two could be replaced by the following instance:

(x, 3, 12, {(p1, {0, 10}), (p3, {0})}).

This brings us to the main part of this paper, where we present different tech-
niques to reduce the number of train instances.

3 Reduction

As we have seen, our symbolic representation is not unique (i.e., two syntactically
different sets of TIs might represent the same information). To reduce the number

52 R. Haehn et al.

of train instances, we want to replace some set of train instances T1 by another
set T2 with smaller cardinality |T2| < |T1|, but such that the represented PDCs
remain the same (i.e., repr(T1) = repr(T2)). We make the following observations:

1. Each train has a unique train id, thus two TIs with different train ids cannot
be merged and represented by a single train instance.

2. Similarly, each TI has a fixed infrastructure element, therefore, we are neither
able to merge TIs with the same train id but different infrastructure elements.

3. The same argument holds for the time points when the train plans to move to
its next infrastructure element, if these time points lie in the future. However,
train instances with current or past time values could be combined, even
if the time values are not equal: they will move on as soon as their next
infrastructure element is available and thus the exact time values have no
impact on their future.

Using these observations, we call two TI sets T1 and T2 equivalent at time t′,
written T1 ≡t′ T2, iff for each infrastructure element x0 and each train i0:

⋃

(x0,i0,t,S)∈T1∧t≤t′
repr(S) =

⋃

(x0,i0,t,S)∈T2∧t≤t′
repr(S)

∧ ∀t′′ > t′.
⋃

(x0,i0,t,S)∈T1∧t=t′′
repr(S) =

⋃

(x0,i0,t,S)∈T2∧t=t′′
repr(S) .

That means, two TI sets are equivalent if they represent the same trains at the
same infrastructure elements that want to move on at the same time (either now
if t ≤ t′ or in the future if t > t′) under consideration of the same primary delays.

In the following we discuss possibilities to reduce a set of TIs to another,
equivalent set that contains fewer train instances, by identifying a subset that
we can reduce.

TI-reduce: Let T1 = {(x, i, t1, S1), . . . , (x, i, t�, S�)} and T2 = {(x, i, t′1, S
′
1), . . . ,

(x, i, t′k, S′
k)} be two sets of TIs and t a current time point such that

[

(
∧�

j=1
tj ≤ t) ∧ (

∧k

j=1
t′j ≤ t)

]

∨
[

(
∧�

j=1
tj = t1) ∧ (

∧k

j=1
t′j = t1)

]

∧

∪�
j=1repr(Sj) = ∪k

j=1repr(S
′
j).

Then for all TI sets T we have that T ∪ T1 ≡t T ∪ T2.

3.1 Transformation Rules

We consider first how to replace two TIs with scenarios S1, S2 ∈ S by a single
one with a scenario S ∈ S that represents the same PDCs. As illustrated in
Example 2 in Sect. 2.3, this is possible only if the two scenarios agree on all but
one random variable, formalized by the following transformation rule:

Acceleration Techniques for Symbolic Simulation of Railway Timetables 53

Merge: For all TIs (x, i, t1, S1) and (x, i, t2, S2) and time point t, if either t1 = t2
or t1 ≤ t ∧ t2 ≤ t and

∃ p ∈ P. ∀p′ ∈ P\{p}. S1(p′) = S2(p′)

then for all TI sets T and S = {(p, S1(p) ∪ S2(p)) | p ∈ P} we have that T ∪
{(x, i, t1, S1), (x, i, t2, S2)} ≡t T ∪ {(x, i, t1, S)}.

The two suitable TIs are replaced by one whose scenario assigns to each
random variable the union of the assignments from both original scenarios. This
rule can be applied repeatedly to replace multiple scenarios and not just two.
However, it is not always sufficient to only apply this rule to achieve a minimal
set of scenarios.

Example 3. Let P = {p1, p2, p3} with D(p) = {0, 1, 2} for all p ∈ P . Assume
the following set of four pairwise incompatible scenarios:

S = {{(p1, {0}), (p2, {1}), (p3, {1})},

{(p1, {0, 1}), (p2, {0, 1}), (p3, {2})},

{(p1, {1}), (p2, {1}), (p3, {0})},

{(p1, {0}), (p2, {2}), (p3, {1, 2})}}.
The Merge rule can not be applied to the scenarios in this set. It is possible
though to represent the respective PDCs with just three scenarios:

S ′ = {{(p1, {0, 1}), (p2, {0}), (p3, {2})},

{(p1, {1}), (p2, {1}), (p3, {0, 2})},

{(p1, {0}), (p2, {1, 2}), (p3, {1, 2})}}.
Starting with a set of minimal scenarios (each representing exactly one PDC)

the Merge rule, applied in a certain order, is sufficient to achieve a minimal set
of scenarios. Thus by applying the Merge rule in combination with a rule that
allows to split a scenario into two, a minimal set of scenarios can be reached.

Split: Assume a TI (x, i, t, S) and p ∈ P such that |S(p)| ≥ 2. Let S(p) =
D1 ∪ D2 with D1 	= ∅, D2 	= ∅, D1 ∩ D2 = ∅, and Si with Si(p′) = S(p′) for all
p′ ∈ P \ {p} and S(p) = Di for i = 1, 2. Then for each TI set T and time point
t′ we have that T ∪ {(x, i, t, S)} ≡t′ T ∪ {(x, i, t, S1), (x, i, t, S2)}.

Splitting temporarily increases the number of TIs, but this is unavoidable
to reach a minimal representation. We will use a special combination of Split

and Merge that does not yet decrease the representation size but might enable
further Merge steps by shifting a part of the represented PDCs from one TI
into another. This shift is possible if the scenarios in two TIs differ only for two
random variables p and p′, and to one of these random variables, say p′, the
second scenario assigns strictly more values D′

2 than the first D′
1 � D′

2. In this
case, we can first split the second TI in the dimension p′ into the common part
D′

1 and the rest D′
2 \ D′

1. Now, the first TI and the first half of the second one
differ only for one variable and we can merge them.

54 R. Haehn et al.

Merge:
p1

p2 0 1

0

1

Split:
p1

p2 0 1

0

1

Shift:
p1

p2 0 1

0

1

Fig. 1. Illustration of the transformation rules

Shift: Assume p, p′ ∈ P and two TIs (x, i, t1, S1) and (x, i, t2, S2) whose sce-
narios differ only for p and p′, with S1(p′) � S2(p′). We define S′

1 differ-
ing from S1 only for p with S′

1(p) = S1(p) ∪ S2(p) and S′
2 differing from S2

only for p′ with S′
2(p

′) = S2(p′) \ S1(p′). Let t be a time point, such that
either t1 = t2 or t1 ≤ t ∧ t2 ≤ t. Then for all TI sets T we have that
T ∪ {(x, i, t1, S1), (x, i, t2, S2)} ≡t T ∪ {(x, i, t1, S

′
1), (x, i, t2, S

′
2})}.

We illustrate all three rules for some examples in Fig. 1. There we restrict
the scenario representations to two variables p1, p2 ∈ P with D(p) = {0, 1} for
i ∈ {1, 2}, as the assignments for all others need to be identical to apply each
of the rules anyway. Each field in the matrix corresponds to one PDC, which is
represented by the scenario that contains the respective field. Note that due to
the form how scenarios are defined, each scenario has the form of a box. The
scenarios before the transformation are denoted by dotted lines, the ones after
the transformation by solid lines.

It is easy to see that our transformation rules preserve the set of represented
PDCs and that they do not introduce any double representations of PDCs. It is
also easy to see that a minimal representation can always be reached by applying
a finite sequence of our three rules: if we know a minimal representation then we
can just split all TIs down to minimal TIs and then merge them to achieve the
known minimal representation. However, normally the minimal representations
are not known, thus we need some heuristics in which order to apply these rules
to have good chances to get small (and optimally even minimal) representations
with little computational effort. It should be kept in mind though that our
intention is to improve the scalability of the symbolic simulation in [12]. Thus
slowing down the computations by protracted minimization of the number of
train instances would be counterproductive.

3.2 Iterative Approach

Our first heuristic given in Algorithm2 iteratively applies the Merge and Shift

rules from the previous section to a given set of scenarios. We do not apply
the Split rule alone, in order to assure that the representation size does not
increase. This has the consequence that the proposed iterative approach does not
guarantee optimal results. However, it might still lead to an overall improvement
of the simulation algorithm’s running time.

In each step one of the rules is applied to one pair of TIs. The selection of the
rule and the TI pair can follow any criteria, but we need to prevent applying the

Acceleration Techniques for Symbolic Simulation of Railway Timetables 55

Shift rule in endless loops to ensure termination. In the extrem case, we can
apply only the Merge rule, omitting the grey parts of Algorithm2. The rules
are applied until there is no further suitable pair (lines 3–6).

Algorithm 2. Iterative Reduction Algorithm

1: procedure IterativeReduction(S)
2: let set R ← ∅;
3: while (S1, S2) ∈ S2 could be merged or shifted do
4: if (S1, S2) can be merged then R ← {Merge(S1, S2)};
5: else R ← {Shift(S1, S2)};

6: S ← (S \ {S1, S2}) ∪ R; // replace scenarios

7: return S;

3.3 Bounded Model Checking Approach

The iterative approach uses a heuristic to determine the rule applications and
it does not provide any optimality guarantees. Our second approach aims to
find the smallest representation achievable by a bounded number of rule appli-
cations. To identify a rule sequence whose application leads to such a smallest
representation, we apply the technique of bounded model checking (BMC) [6,9].
First, for each train and infrastructure element, we group the scenarios of the
corresponding TIs into sets, each set collecting the scenarios from the TIs that
share the same planned time for the next movement. For each of the resulting
scenario sets of size m, we encode that the application of at most k rules leads
to a set with less than m scenarios by a propositional logic formula. We solve
the corresponding satisfiability checking problem (SAT) [7] using the SAT solver
MiniSat [5,10]. If the formula is unsatisfiable then no scenario set of size less
than m can be achieved with at most k reduction steps. Otherwise, if the for-
mula is satisfiable then the satisfying assignment encodes which sequence of at
most k rules we need to apply to which scenarios in order to achieve a scenario
set of size m′ < m. We remember this solution and check the same formula but
targeting less than m′ scenarios in order to find the minimum.

In the following we use [x..y] to denote intervals in N and write x for [1..x].
For better understandability, we use equivalence ↔ and implication → in the
depicted formulae. In the implementation we add auxiliary variables and trans-
form the formulae to conjunctive normal form (CNF), which MiniSat expects
as input.

Assume the initial set of scenarios S = {S1, . . . , Sm′} with P = {p1, . . . , pn},
and let K be the upper bound on the number of rule applications. Since splits
increase the number of scenarios, we extend the scenario set with some auxiliary
“empty” scenarios Sm′+1, . . . , Sm to be able to store split results.1 For each
1 Worst-case, to reach an optimal result, m needs to be greater or equal to the number

of PDCs represented by the input scenario.

56 R. Haehn et al.

scenario in this extended set, we encode k+1 instances (for the initial value and
the values after each transformation step), to which we refer as Sk,i for k ∈ [0..K]
and i ∈ m.

We use Boolean variables av,d
k,i for k ∈ K, i ∈ m, v ∈ n and d ∈ D(pv) to

encode whether after k rule applications it holds that d ∈ Si(pv). By ϕe(k, i) :=
∧

v∈n

∧
d∈D(pv)

¬av,d
k,i we encode that the kth instance of scenario i is “empty”.

We encode the initial set of scenarios S as:

I0 :=
∧

i∈m

∧

v∈n

∧

d∈D(pv)

ν(i, v, d), with ν(i, v, d) :=

{
av,d
0,i , if i≤m′ ∧ d ∈ Si(pv)

¬av,d
0,i , else.

To encode the set of scenarios after the kth rule application, we encode the
transformation rules for two arbitrary scenarios with i, j ∈ m, k < K. The
respective formulae consist of two parts each, one encoding whether the rule can
be applied to the scenarios and the other encoding what the result would be.
For the Merge rule this is relatively straight forward:

ϕ
Merge

(k, i, j) :=
(∨

v∈n

∧

v′∈n\{v}

∧

d∈D(pv′)

(av′,d
k,i ↔ av′,d

k,j)
) }

condition

∧ ϕe(k+1, j) ∧
∧

v∈n

∧

d∈D(pv)

(av,d
k+1,i ↔ (av,d

k,i ∨ av,d
k,j))

}
result

Note that the (k +1)th instance of scenario j is removed (“emptied”) by setting
all corresponding variables to false. Note furthermore that we do not exclude
the possibility to merge two “empty” scenarios (we could easily do so, but it
is not needed for correctness or completeness). To encode the Split rule, we
need cardinality constraints to restrict the number of variables in a set that are
assigned true.

Definition 2. A cardinality constraint ϕ∼x(B) for a set of Boolean variables B,
with ∼ ∈ {<,≤,=,≥, >} and x ∈ N, is a propositional logic formula, such that
for all assignments α : B′ → {true, false} with B ⊆ B′ it holds that α |= ϕ∼x(B)
iff |{b ∈ B | α(b) = true}| ∼ x.

In our implementation we use for these constraints encodings presented in
[16,19]. The Split rule for splitting a scenario Sk,i into two scenarios Sk+1,i and
Sk+1,j is then encoded as follows:

ϕ
Split

(k, i, j) :=
(∨

v∈n

ϕ≥2({av,d
k,i | d ∈ D(pv)})

)
∧ ϕe(k, j) }condition

∧
(∨

v∈n

[(∨

d∈D(pv)

av,d
k+1,i

)
∧

(∨

d∈D(pv)

av,d
k+1,j

)
∧

∧

v′∈n\{v}
(av,d

k,i ↔ av,d
k+1,i) ∧ (av,d

k,i ↔ av,d
k+1,j)

∧
∧

d∈D(pv)

(av,d
k,i ↔ (av,d

k+1,i ∨ av,d
k+1,j)) ∧ (¬av,d

k+1,i ∨ ¬av,d
k+1,j)

])

Acceleration Techniques for Symbolic Simulation of Railway Timetables 57

The first line encodes the enabling condition that |Sk,i(p)| ≥ 2 at least for one
p ∈ P , and that Sk,j is “empty”. The next two lines encode possible results. The
second line encodes that both resulting scenarios are non-empty, and assign the
same sets as the original one for all but one random variable pv. The third line
finally ensures that the value domain Sk,i(pv) of pv before the transformation is
the disjoint union of the domains in the resulting scenarios. We do not consider
the Shift rule here, as it can be composed from a split and a merge, but in our
implementation we do use also this rule (see Sect. 4).

To model the choice of rule applications, we define Boolean variables mergei,j
k

and spliti,jk for k ∈ [0..(K−1)], i ∈ m and j ∈ m\{i}, which are assigned true,
if the respective rule is applied to the ith and jth scenario in step k. We define
sk,i :=

∨
j∈m\{i}(mergei,j

k ∨ mergej,i
k ∨ spliti,jk ∨ splitj,ik) for k ∈ [0..(K−1)] and

i ∈ m, to encode that the ith scenario is used in the kth rule application. We
will also use splitk := {spliti,jk | i ∈ m ∧ j ∈ m\{i}}, and analogously for Merge.
Now we are ready to encode a transformation step:

T (k, k+1) :=
∧

i∈m

(
¬sk,i →

(∧

v∈n

∧

d∈D(pv)

av,d
k,i ↔ av,d

k+1,i

))
∧ ϕ≤1(mergek∪splitk)

∧
∧

i∈m

∧

j∈m\{i}

(
mergei,j

k → ϕ
Merge

(k, i, j)
)
∧

(
spliti,jk → ϕ

Split
(k, i, j)

)

Last, we encode the desired size of the resulting set of scenarios. Therefore,
we define E := {Ei | i ∈ m}, where each proposition Ei encodes whether the
ith scenario is “empty” at the end of the reduction sequence. The final BMC
encoding then looks as follows:

�M�K,m,c := I0 ∧
K−1∧

k=0

T (k, k+1) ∧
∧

i∈m

(Ei ↔ ϕe(K, i)) ∧ ϕ≥c(E)

Note that this approach in general does not guarantee optimal results, only
for suitable values for K, m and c. Let d be the number of PDCs represented by
the scenarios in S, assume m = d and K = d. To reach an optimal result we let
MiniSat solve �M�K,m,c for increasing values for c. Let c′ be the largest value for
c for which the formula is still satisfiable. Then m − c′ is the size of the optimal
result. The satisfying assignment found by MiniSat for the respective instance
can be transformed to an optimal set of scenarios. In our implementation we
also consider different values, as we abandon optimality for speed-up.

For the same reason, we could also only consider the Merge rule here, by
leaving out the grey parts in T (k, k+1). Further attempts to reduce the solv-
ing times of MiniSat for our encoding include symmetry breaking by removing
redundant constraints and additional constraints to guide the search or terminate
it faster. The latter could for example be achieved by adding cardinality con-
strains for “empty” scenarios in all steps and propagating the scenarios without
rule applications, if the desired size is reached for some k < K already. We imple-
mented some of these improvements and use an accordingly modified encoding
for the experimental evaluation.

58 R. Haehn et al.

Table 1. Running times in seconds

input
version [12] IR IRS BR BRS BSplit Ball

1h 72 1.71 1.75 1.83 1.73 1.74 1.73 1.89
night 2h 112 14.54 5.83 6.12 5.89 5.78 5.80 5.81

3h 143 23.05 11.88 11.98 11.65 11.64 11.79 11.58
1h 281 5.95 5.71 5.24 5.19 5.24 5.16 5.31

morning 2h 427 13.16 12.23 11.53 11.52 11.51 11.62 11.58
3h 550 51.56 20.52 21.01 20.65 20.40 20.60 21.01
1h 264 6.29 5.56 5.49 5.64 5.52 5.67 5.51

day 2h 394 19.22 15.27 14.11 14.14 14.18 14.29 14.10
3h 529 78.71 39.97 36.78 37.07 38.11 36.95 37.49

4 Experimental Evaluation

Our implementation of the above presented reduction approaches in C++ is
available at [13]. We have run the experimental evaluation on a computer with a
3.60 GHz × 8 Intel Core i7 CPU and 32 GB of RAM. As input we used a part of
the real-world railway infrastructure network in Germany that has been gener-
ated from confidential XML data, provided by DB Netz AG (German Railways).
As we want to examine the impact of our proposed reduction approaches, we use
the same infrastructure network for all experiments and only vary the considered
time interval and the infrastructure utilization. The latter varies naturally in the
course of a day, at night less trains drive, as opposed to rush-hours.

The input infrastructure network we use here has 2646 stations and junctions
and 5622 tracks connecting them. We consider time intervals of different length,
distributed over a day. The time intervals start at 12:00 am (night), 06:00 am
(morning), and 12:00 pm (day). Time was as in [12] modeled in the unit of
minutes with a day being modeled by [0; 1440] with 0 representing 12:00 am.
The different executable timetables we considered are based on the DB data,
but slightly modified in order to match the network’s level of detail as in [12].
The number of trains in those timetables is given in Table 1 in the input column,
the last value in each cell.

For the symbolic simulation algorithm itself we use here the version described
in Section “Experimental Results” of [12], also with the there specified parameter
values. This symbolic simulation algorithm we then extend with our reduction
approaches. We consider six different versions:

� iterative: using Merge (IR) or Merge + Shift (IRS)
� bounded model checking: using Merge (BR); Merge + Shift (BRS);

Merge + Split (BSplit) or Merge + Shift + Split (Ball)

The symbolic simulation algorithm in combination with each of these versions
(applied in each time step) is then compared with the one without reduction.

Acceleration Techniques for Symbolic Simulation of Railway Timetables 59

We depict the total running times of the different versions in Table 1, marking
the shortest running times in grey. Except for the smallest inputs, where the
reduction apparently causes too much overhead, all reduction approaches bring
remarkable speed-ups for the longer time horizons. The best running time was
for the given inputs never achieved by an approach using only the Merge rule.
However, in general the differences between the different versions are relatively
minor.

Table 2. Running time improvement and share of reduction in %

input night morning day
1h 2h 3h 1h 2h 3h 1h 2h 3h

Improvement −1.3 60.2 49.8 13.3 12.5 60.4 12.7 26.7 53.3
Share of reduction
in BRS

11.9 14.9 16.2 19.1 25.0 27.8 17.0 20.5 19.7

The highest improvements of the running time were about 60% as shown
in the first row of Table 2, where the changes of the running time from the
original symbolic simulation to the fastest version with reduction are presented.
A promising observation is that the improvements for the longest time interval
of 3 hours were about 50% to 60% for all three daytimes. This is the case due to
the continued reduced computational effort after reducing the number of train
instances and thereby the interruption of the propagation of unnecessarily many
train instances.

The second row in Table 2 shows the percentage of the running time that was
spent on identifying and applying reductions for the approach BRS ; the values
for the other approaches are very similar. The differences between the relative
times spent on reduction are way smaller than the ones of the running time
improvements. The time spent with reducing the state’s representation varies
from 11.9 to 27.8% of the total running time. While these two values correspond
to the smallest, respectively largest improvement in the running time, there is
no obvious correlation observable in general. For example for the morning input
the share of the reduction increases from 1h to 2h time-frame, but the running
time improvement slightly decreases. Still, the time spent on reducing the state’s
representation pays off, especially for inputs with longer time intervals.

This can be explained by the way the symbolic simulation works. Assume
there are three train instances of one train at some time point during the simu-
lation that could be represented by one train instance instead. Without reduc-
tion, the computations within the symbolic simulation are performed with three
train instances as input rather than one. This is not only more time consuming
but also more likely leading to even more train instances (e.g., if these train
instances are split again even just in two train instances each, there would be six
train instances instead of two). So the difference between the numbers of train
instances increased even further.

60 R. Haehn et al.

To illustrate this effect, we visualize the number of train instances over time
for the input timetable ‘day‘ both for the 2 and the 3 hour time interval in Fig. 2.
The figure shows that the number of instances indeed increases a lot towards the
end of the simulated time interval of 3 hours without reduction. With reduction,
the number of train instances even decreases in total. This happens when train
instances representing a train being delayed initially eventually catch up with the
punctual or less delayed instances of the same train. That is possible by driving
faster and halting shorter than planned, where this is feasible. This observation
speaks for the robustness of the input timetable, where it is apparently possible
to make up for delays.

750 800

1,000

1,500

2,000

2,500

3,000

time in minutes

nu
m
be

r
of

in
st
an

ce
s

2h

[12]
BRS

750 800 850 900

1,000

1,500

2,000

2,500

3,000

time in minutes

3h

[12]
BRS

Fig. 2. Number of train instances over time for input timetable ‘day’

As shown in the second row of Table 2, the time spent with reducing the
current state’s representation is a significant share of the total running time.
Still, the reduction approaches greatly improve the symbolic simulation’s running
times making an important step towards scalability. The various approaches we
proposed in this paper did not have significant differences as is, at least on the
inputs we examined.

5 Conclusion

In this paper we presented several reduction approaches to speed up the sym-
bolic simulation algorithm introduced in [12]. The experimental results show
that reduction in general improved the running time of the symbolic simulation.
However, the differences between the different approaches were insignificant on
the used examples. We expected a more significant difference, though this might
still be the case on larger inputs (i.e., inputs for a longer time interval).

We intend to work on further improvements of the scalability of the sym-
bolic simulation approach, for example by examining further heuristics for find-
ing reduction sequences, or developing an SMT encoding to identify optimal

Acceleration Techniques for Symbolic Simulation of Railway Timetables 61

solutions as fixed-points (instead of the result of a sequence of reduction steps).
Alternatively, it could be interesting to compute an over-approximation (“con-
servative” approximation) of the simulation results and refine it in a CEGAR
(counterexample-guided abstraction refinement) framework. Also the paralleliza-
tion of the symbolic algorithm would be an option.

Another area we are working on is the visualization of the obtained results, to
make them more easily accessible for human users and help identify problematic
issues in given timetables.

References

1. LUKS (2021). https://www.via-con.de/en/development/luks/. Accessed 28 Apr
2021

2. OnTime (2021). https://www.trafit.ch/en/ontime. Accessed 28 Apr 2021
3. OpenTrack Railway Technology (2021). http://www.opentrack.ch/opentrack/

opentrack e/opentrack e.html. Accessed 28 Apr 2021
4. RailSys (2021). https://www.rmcon-int.de/railsys-en/. Accessed 28 Apr 2021
5. MiniSat (2021). https://github.com/niklasso/minisat. Accessed 8 Nov 2021
6. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model

checking. Adv. Comput. 58, 117–148 (2003)
7. Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS

Press (2009)
8. Büker, T., Seybold, B.: Stochastic modelling of delay propagation in large networks.

J. Rail Transp. Plan. Manag. 2(1), 34–50 (2012). https://doi.org/10.1016/j.jrtpm.
2012.10.001

9. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Formal Methods Syst. Des. 19(1), 7–34 (2001)

10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

11. Franke, B., Seybold, B., Büker, T., Graffagnino, T., Labermeier, H.: Ontime -
network-wide analysis of timetable stability. In: 5th International Seminar on Rail-
way Operations Modelling and Analysis, May 2013

12. Haehn, R., Ábrahám, E., Nießen, N.: Symbolic simulation of railway timetables
under consideration of stochastic dependencies. In: Abate, A., Marin, A. (eds.)
QEST 2021. LNCS, vol. 12846, pp. 257–275. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-85172-9 14

13. Haehn, R., Kotowski, N., Ábrahám, E.: Symbolic simulation for railway timetables,
December 2021. https://doi.org/10.5281/zenodo.5750431

14. Janecek, D., Weymann, F.: Luks - analysis of lines and junctions. In: Proceedings of
the 12th World Conference on Transport Research (WCTR 2010), Lisbon, Portugal
(2010)

15. Nash, A., Huerlimann, D.: Railroad simulation using OpenTrack. Computers in
Railways IX, pp. 45–54 (2004). https://doi.org/10.2495/CR040051

16. Nguyen, V., Mai, S.T.: A new method to encode the at-most-one constraint into
SAT. In: Proceedings of the Sixth International Symposium on Information and
Communication Technology, SoICT 2015, pp. 46–53. Association for Computing
Machinery, New York (2015). https://doi.org/10.1145/2833258.2833293

https://www.via-con.de/en/development/luks/
https://www.trafit.ch/en/ontime
http://www.opentrack.ch/opentrack/opentrack_e/opentrack_e.html
http://www.opentrack.ch/opentrack/opentrack_e/opentrack_e.html
https://www.rmcon-int.de/railsys-en/
https://github.com/niklasso/minisat
https://doi.org/10.1016/j.jrtpm.2012.10.001
https://doi.org/10.1016/j.jrtpm.2012.10.001
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-030-85172-9_14
https://doi.org/10.1007/978-3-030-85172-9_14
https://doi.org/10.5281/zenodo.5750431
https://doi.org/10.2495/CR040051
https://doi.org/10.1145/2833258.2833293

62 R. Haehn et al.

17. Radtke, A., Bendfeldt, J.: Handling of railway operation problems with RailSys. In:
Proceedings of the 5th World Congress on Rail Research (WCRR 2001), Cologne,
Germany (2001)

18. Schneider, W., Nießen, N., Oetting, A.: MOSES/WiZug: strategic modelling and
simulation tool for rail freight transportation. In: Proceedings of the European
Transport Conference, Straßbourg (2003)

19. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005). https://doi.org/10.1007/11564751 73

https://doi.org/10.1007/11564751_73

Optimal Railway Routing
Using Virtual Subsections

Tom Peham1(B), Judith Przigoda2, Nils Przigoda2, and Robert Wille1,3

1 Chair for Design Automation, Technical University of Munich, Munich, Germany
{tom.peham,robert.wille}@tum.de

2 Siemens Mobility GmbH, Braunschweig, Germany
{judith.przigoda,nils.przigoda}@siemens.com

3 Software Competence Center Hagenberg GmbH (SCCH), Hagenberg, Austria

Abstract. The design of railway systems has become a non-trivial task
which more and more demands for efficient design automation meth-
ods. Modern railway systems based on standards such as the European
Train Control System (ETCS) Level 3, the Chinese Train Control System
(CTCS) Level 3+/4, or the Indian Train Protection and Warning System
(TPWS) introduce new concepts such as virtual subsections which allow
for a much higher degree of freedom and provide significant potential
for increasing the efficiency in today’s railway schedules. At the same
time, this substantially increases the complexity of determining efficient
solutions. The current state of the art addresses this complexity by dis-
cretizing the problem. In this work, we show that this, however, leads to
substantial problems, namely infeasible configurations, rounding errors,
and oversimplifications, that either harm the efficiency of the solving pro-
cess or yield results which are significantly off from the actual optimum.
Motivated by that, we propose an alternative design automation method
that avoids discretization at all, overcomes the resulting problems, and
additionally allows to solve the problem magnitudes faster than before.

1 Introduction

Railways are an important part of today’s infrastructure, whether it is for deliv-
ering goods and resources or as a part of the public traffic system. They prove to
be an environmentally friendly alternative to air traffic, road transport, and ship
traffic. It is therefore vital to increase the usage of railways in the future – a goal
which a huge number of societies has made one of their top priorities recently.
But expanding railway infrastructures is costly, difficult, and time-consuming.
The alternative is to increase the efficiency of existing railway infrastructure by
increasing its throughput.

This can be achieved by putting more trains on the tracks. But to ensure
the safe operation of them, railway networks are divided into blocks. A block
can only be occupied by one train at any given time, thus, preventing collisions.
To register trains moving in and out of blocks Trackside Train Detection (TTD)

c© Springer Nature Switzerland AG 2022
S. Collart-Dutilleul et al. (Eds.): RSSRail 2022, LNCS 13294, pp. 63–79, 2022.
https://doi.org/10.1007/978-3-031-05814-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05814-1_5&domain=pdf
https://doi.org/10.1007/978-3-031-05814-1_5

64 T. Peham et al.

hardware, e.g., axle-counters, are employed. The blocks connected by TTD hard-
ware are often also called TTDs and we will follow this convention in this paper.
A consequence of the resulting block signaling is that the throughput of a railway
network is limited by the size of the blocks. Until a train has completely left a
TTD, no other trains can enter the TTD. It is therefore sensible to decrease the
size of TTDs in order to increase throughput. This entails installing new TTD
hardware which requires maintenance and is not flexible when new layouts are
required.

A solution to this problem is provided by the introduction of so-called Virtual
Subsections (VSS). They are specified in modern railway traffic management
systems such as the European Train Control System (ETCS) Level 3 [1,2] by
the European Railway Traffic Management System (ERTMS) [3,4], the Chinese
Train Control System (CTCS) Level 3+/4 [5], or the Indian Train Protection
and Warning System (TPWS) [6]. VSS essentially are blocks, just as TTDs.
But in contrast to TTDs, these blocks do not require hardware. Instead, the
occupation of a VSS is tracked by a radio control center which exchanges position
information with trains in the network. Because these blocks are purely virtual,
layouts are easy to adapt if changing schedules or demands necessitate it.

However, the implementation and utilization of such schemes and, hence, of
virtual subsections, is just at the beginning. In fact, researchers started formal-
izing the underlying concepts (using, e.g., iUML-B [7,8], Electrum [9], SysML/
KAOS [10], Event-B [11,12], or SPIN [13]), conducted corresponding case stud-
ies [14,15], or even presented first simulations [16,17]. But the main task, namely
designing corresponding railway routings that exploit the extended degree of
freedom provided by VSS in order to improve the travel times, remained an
endeavor mostly tackled by manual labor thus far. Obviously, such a state of
the art is not sufficient in order to address the upcoming challenges in extending
the throughput of today’s railway systems and, hence, automatic methods for
railway routing using virtual subsections are urgently needed1.

To the best of our knowledge, our previous approach recently introduced
in [25] constitutes the first solution that generates (optimal) railway routings
while, at the same time, using virtual subsections in order to minimize the sum
of the travel times. To this end, we formulated the problem in terms of a satis-
fiability problem and, afterwards, used corresponding SAT solvers to determine
a solution. This, however, requires a discretization of the problem which, on
the one hand, makes the problem manageable for the solving engine, but also
frequently leads to infeasible configurations, rounding errors, and oversimplifi-

1 Please note that, due to the long history of railway systems, approaches for routing
trains through networks are of course not new and research into determining optimal
schedules and verifying their correctness with respect to block signaling constraints
has been conducted for a long time (see, e.g., [18–24]). Such solutions are inadequate
when dealing with VSS because these approaches assume a fixed block layout to
begin with. Simply partitioning the network into many VSS is also not practical
because that puts a lot of workload on the radio control center communicating VSS
occupations with the trains on the network. Solutions taking virtual subsections
under consideration hardly exist.

Optimal Railway Routing Using Virtual Subsections 65

cations. Hence, while providing a first solution towards design automation for
modern railway routing, this approach still has severe shortcomings (something
which is discussed and illustrated in more detail later in Sect. 3).

In this work, we propose an alternative solution for the railway routing prob-
lem using virtual subsections that overcomes these drawbacks. To this end, an
A*-based search scheme is proposed which works without discretization but still
is capable of efficiently determining optimal railway routings. Experiments con-
firm that the proposed scheme spares the user the need to determine a proper
discrete formulation, generates results of much higher precision, and additionally
is orders of magnitudes faster than the currently available solution.

The remainder of this paper is structured as follows: Sect. 2 briefly reviews the
railway routing problem with VSS and Sect. 3 discusses the shortcomings of the
currently available solution – motivating our work. Afterwards, the proposed
solution is described in Sect. 4. Experimental evidence for the efficacy of the
proposed solutions and comparisons to the state of the art is presented in Sect. 5.
Section 6 concludes this paper.

2 Railway Routing in ETCS Level 3

This section briefly reviews and illustrates the considered problem as well as
the used notation. We start with the concept of a rail network which can be
modeled as an undirected edge-labeled graph G = (V,E,L), where the edges E
describe track sections that are connected via vertices V . The vertices v ∈ V
represent Trackside Train Detection (TTD) hardware like axle-counters (also
called TDD points). The blocks separated by this hardware are often called
TTDs themselves and we follow this convention in this work, i.e., we refer to
edges E of G as TTDs2. Finally, every TTD e ∈ E has a label L(e) = le defining
the length le of this TDD.

Example 1. Figure 1 shows an example of a railway network with 4 TDD points
and, hence, 7 TDDs labelled e1, e2, . . . , e7. The lengths le for all TDDs e ∈ E
are given by the labels annotated onto the respective blocks in Fig. 1.

To properly define train positions and train movements, we use the following
terms: A TTD interval is a triple (e, a, b) with e ∈ E and 0 ≤ a < b ≤ le.
A range is a sequence of TDD intervals ((e1, a1, b1), . . . , (en, an, bn)) such that,
for all 1 ≤ i < n, ei is connected to ei+1 via a TTD point in G and, for
all 1 < i < n, ai = 0 and bi = lei . The length of a range rg is given by
lrg =

∑n
i=1(bi − ai) = (b1 − a1) +

∑n−1
i=2 lei + (bn − an). Then, a train tr is

described by the tuple tr = (ltr , str , start tr , dest tr), where ltr is the length of the
train, str its maximum speed, start tr its start position, and dest tr its destination
position. A position p of a train tr is a range such that lp = ltr . Intuitively a
train’s position is the part of the track in the network that the train is standing
on. The set of trains is denoted as Tr .
2 We implicitly assumed here that the entire rail network being modelled is covered

by TTDs. This is a reasonable assumption for modern rail network, however.

66 T. Peham et al.

tr1

str1 = 240 km/h

600m

tr1tr2

str2 = 192 km/h

300m
tr2tr3

str3 = 120 km/h

300m

tr3

e1
le1=500 m

e2
le2=1000 m

e3
le3=le6 =1000 m

e4
le4=500 m

e5
le5=800 m

e6 e7

le7=800 m

Fig. 1. Example network

Example 2. The railway network shown in Fig. 1 is used by three trains: The
train denoted tr1 occupies a part of TTD e2, i.e., its position is described by
the range containing a single TTD interval ((e2, 200 m, 800 m)). The position
of tr2 is ((e1, 100 m, 400 m)). The position of tr3 is ((e6, 650 m, 950 m)). Note
that the length of the positions is the same as the lengths of the trains. The
respective maximum speeds str1 , str2 , str3 are given above the trains in Fig. 1.
The start positions are depicted by the trains with solid lines and the destination
positions are depicted by trains with dashed lines. Train tr1 has destination
position ((e5, 200 m, 800 m)), tr2 has destination position ((e7, 500 m, 800 m)),
and tr3 has destination position ((e1, 0 m, 300 m)).

The movement m of a train tr is described by a range such that ltr ≤ lm ≤
ltr + str . Intuitively, a single movement is described by the parts of the track
in the network the train moves over in one Because of that, a movement of a
train is at least as long as the train itself (even if a train stands still in one
time step, it still covers the part of the network its standing on). Furthermore,
a movement covers the train’s position before and after the movement. The
direction of a movement is implicitly given by the sequence of TTD intervals.
Then, a route Rtr of a train tr can be described by a sequence of movements
(m1, . . . ,mn) such that m1 starts at start tr and mn ends at end tr . The travel
time |Rtr | = n of Rtr is the number of time steps it takes for train tr to reach
its goal. The problem considered in this work is to determine routes of all trains
tr ∈ Tr in the given railway network G such that, e.g., the sum of travel times
of all trains is minimal.

Note that there might be additional constraints on movements and routes
imposed by the underlying railway network. Because TTD points may represent
hardware such as switches, a train might not be able to move from one edge to
another even if they are connected via a TTD point. In Fig. 1, for example, trains
cannot move from e3 to e6. Also trains can of course not just change directions
during a route.

Example 3. Consider again the layout and specification of trains given in Fig. 1.
Figure 2 shows example movements for all trains in the network if we assume a
time step of 15 s. The movement m1 of train tr1 is given by the range consisting
of two TTD intervals m1 = ((e2, 200 m, 100 m), (e6, 0 m, 600 m)). Similarly

Optimal Railway Routing Using Virtual Subsections 67

tr1tr1tr2 tr2

tr3

e1

e2

e3 e4 e5

e6

e7

m2 m1 m3

Fig. 2. Train movement

the movement m2 is given by the range consisting of two TTD intervals m2 =
((e1, 100 m, 500 m), (e2, 0 m, 400 m)). Train tr3 remains at the same position.
This is still considered to be a movement which is simply the position of the
train (therefore, m3 is set to ((e6, 650 m, 950 m))). Note that the lengths of the
movements might be smaller than the length of the respective train.

Solving this problem for a single train is relatively simple (as reviewed later in
Sect. 4.1). However, determining the fastest routes becomes significantly harder if
multiple trains need to be considered because, then, collisions have to be avoided.
More precisely, there are two types of collisions: (1) a move collision occurs if
two movements overlap and (2) a TTD collision occurs if two movements contain
the same TTD and no move collision occurs. Two routes R1 and R2 are then in
collision if any of its movements are in collision.

Example 4. Consider again the movements depicted in Fig. 2. A move collision
occurs between movements m1 and m2 since both movements overlap on the
range ((e2, 20 m, 40 m)). A TTD collision occurs between movements m1 and
m3 since both movements contain a TTD interval on TTD e6.

Collisions substantially harden the railway routing problem and frequently
lead to solutions with overly long travel times. Thus far, move collisions have
been avoided by re-routing trains until no more move collisions occur. But using
modern railway systems such as ETCS Level 3, CTCS Level 3+/4, or TPWS,
TTD collision can also be resolved by introducing virtual subsections, i.e., VSS.
Recall that a TTD collision only occurs when two trains occupy the same TTD,
but would not occur if there would be a TTD point between the two trains. VSS
basically introduces such (virtual) TDD points and, by this, can help resolving
these TTD collisions without the need to re-route trains3.

Based on all that, the railway routing problem considered in this work can
be succinctly described as: Given a railway network G = (V,E,L) as well as a
3 Note that, for our purposes, blocks defined by TTDs and blocks defined by VSS are

indistinguishable. We can therefore interpret a VSS layout of a railway network G
as a graph G′ that is obtained from G by splitting TTDs into VSS. This partitioned
graph then simply defines a new railway network. There are in general an infinite
number of VSS layouts for a given railway network. We will see in Sect. 4 how to
handle this search space.

68 T. Peham et al.

t1:

tr1tr2

tr3

e1
e2 e3 e4 e5

e6 e7

Insertion of
VSS Point

t2:

tr1tr2

tr3

e1
e2

e3 e4 e5

e6 e7

Insertion of
VSS Point

t3:

tr1tr2

tr3

e1 e2 e3 e4 e5

e6 e7

t4:

tr1tr2

tr3

e1 e2 e3 e4 e5

e6 e7

t5:

tr1tr2tr3

e1 e2 e3 e4 e5

e6 e7

t6:

tr1

tr2

tr3

e1 e2 e3 e4 e5

e6 e7

Fig. 3. Possible routes for Example 5

set of trains Tr with start and destination positions, determine a VSS layout
G′ = (V ′, E′, L′) and a set of routes {Rtr | tr ∈ Tr} on G′ such that the objective∑

tr∈Tr |Rtr | (i.e., the sum of travel times) is minimized.

Example 5. Let’s consider the layout specified in Fig. 1 again and assume time
steps of 15 s as in Example 3. Possible routes for the three trains are shown in
Fig. 3. Train tr1 reaches its destination in time step t3, trains tr2 and tr3 reach
their destinations in time step 6. The sum of travel times is therefore 15 time
steps, i.e., 225 s. In time steps t1 and t2, a TTD collision occurs between tr1 and
tr2. These are repaired by introducing a VSS in TTD e2 and e3. Without these
VSS, tr2 would have to wait until tr1 has left e2 completely before it can enter.
This would delay the route of tr2 and tr3 (because it has to wait until tr2 has
left e2) by one time step. Hence, the introduced VSS indeed improved the train
movements.

3 Motivation: The Problem of Discretization

Virtual subsections as introduced above provide a huge degree of freedom that
allow for a more efficient railway routing. At the same time, they make the task of
determining the best possible routes substantially harder. Because TTDs can be
split up into VSS at arbitrary positions in the network, the resulting VSS layouts
can be very complex. Techniques to solve the routing problem while simultane-
ously generating VSS layouts are still in its infancy. An existing solution tackling
this problem is proposed in [25] where the problem is defined as a satisfiability
problem and handed over to a reasoning engine. In that work, we model the
search space of VSS layouts by discretizing the network. This is needed to model
the possible positions of the trains on the network. While there are in theory an
infinite number of positions, the discretization narrows this search space down
such that it can be modelled using a finite number of Boolean variables.

Optimal Railway Routing Using Virtual Subsections 69

To this end, a spatial resolution rs is defined. Every TTD is then split into
segments of length rs. That is, with a spatial resolution of rs = 100 m, a TTD
of length 1 km would be split into 10 smaller segments. Such a discretized TTD
can then no longer give rise to arbitrarily many VSS, rather VSS can only be
composed of these segments.

Discretizing the network like this does not only simplify the search space for
VSS layouts, but also the train movements. Similarly to VSS, train positions are
described by the segments that are occupied by a train. For example, the trains
in Fig. 4 occupy one and two segments, respectively. The trains might actually be
much shorter than rs but they are still considered to occupy an entire segment.
Train speeds are therefore defined in terms of segments traversed per time step,
i.e., a train tr with speed str has a discretized speed of str · rt

rs
, where rt is the

so-called temporal resolution, the duration of one time step. For example, with
rt = 10 s and rs = 100 m a train with a speed of 200 km/h would have discrete
speed of about 5.556.

Although this discretization yields a smaller search space, it also causes sev-
eral problems.

– Infeasible configurations: Because train movement is described in terms of
segments traversed per time step, the choice of temporal resolution depends
on the spatial resolution. A fine temporal resolution combined with a coarse
spatial resolution can lead to situations where trains can seemingly not move
at all or move faster than they should be able to.

– Rounding Errors: An improper discretization can lead to incorrect solutions.
Because the simulation proceeds in discrete steps, train speeds can only be
integral values. Therefore sub-optimal routes may be found when speeds are
rounded down; or impossible solutions may be found when speeds are rounded
up. Even if constraints are added enforcing that resolutions must be chosen
such that train speeds can be modelled accurately, this constraint becomes
harder and harder to satisfy the more trains are to be considered.

– Oversimplifications: Imposing a spatial resolution leads to difficulties when
finer details of the network should be accurately portrayed. This can be mit-
igated by choosing different resolutions for different parts of the network but
opting to do this again increases the complexity of the network.

In addition to these issues the approach from [25] also requires the definition
of the maximum number of time steps the trains can take to ensure a finite
search space. All of the above combined makes it very hard for a designer to
choose correct configurations in order to obtain a good solution. Controlling for
all issues at the same time is highly non-trivial or might even be infeasible. It is
also difficult to judge the quality of a found solution. Infeasible configurations and
oversimplifications can lead to solutions that are better than what is possible in
reality, whereas rounding errors lead to solutions that are worse than the “real”
optimum.

Example 6. Consider the simple layout shown in Fig. 4 consisting of a single
TTD with a length of 10 km and 2 trains tr1 and tr2 moving from left to right

70 T. Peham et al.

10 km

rs

Necessary VSS point Potential VSS point

Segment

tr1

str1 = 200 km
h

430m

tr2

str2 = 180 km
h

250m

Fig. 4. Discretizing space

with maximal speeds of 200 km/h and 180 km/h as well as lengths of 430 m
and 250 m, respectively. Now, the following problems may emerge when trying
to choose proper values for rs and rt.

Choosing rt = 10 s and rs = 1000 m leads to tr1 having a discretized speed
of 0.556. If we round down, then tr1 would not be able to move at all. If we
round up, tr1 takes 10 time steps to reach the other end of the track. Converting
this speed back to real units gives a speed of 360 km/h which does not remotely
reflect the actual speed of tr1.

Choosing rt = 10 s and rs = 100 m leads to discretized speeds 5.556 and 5 for
tr1 and tr2, respectively. Here, speeds are rounded down and, thus, tr1 is treated
as having an actual speed of 180 km/h. It is easy to see that, with the chosen
temporal resolution, the optimal number of time steps for tr1 to reach the right
end of the TTD is 18 time steps. But with the rounded speed, the best solution
that can be found takes 20 time steps. Moreover, since both trains are treated
as having the same speed, more VSS have to be placed than necessary. Since the
lengths of the trains are not multiples of 100 m, they take up more space of the
network than necessary. More specifically, tr1 would occupy 5 segments at any
time step. This prevents tr2 from moving as close to tr1 as possible, yielding a
suboptimal route for tr2.

All these problems may be avoided by choosing rt = 10 s and rs = 5 m. Then,
the trains have discretized speeds of 100 and 111 respectively, thus avoiding the
impact of rounding errors as much as possible. But this would partition the TTD
into 2000 segments, an unreasonably fine grained discretization.

These examples show that the problems described above already occur in very
simple scenarios. Motivated by that, this work proposes an alternative approach
that overcomes these problems by avoiding discretizing the network at all – while
still being able to determine optimal railways routings.

4 Proposed Solution

This section describes the proposed alternative solution to the optimal railway
routing problem described above. Its main approach rests on an A*-based search

Optimal Railway Routing Using Virtual Subsections 71

scheme which is described first. Afterwards, we explicitly describe how virtual
subsections are utilized to resolve collisions. Using both, A* and the extended
degree of freedom through those VSS eventually allow to generate optimal rail-
way layouts.

4.1 Main Approach Based on A* Search

A* Search is a state-space search algorithm. That is, the search space is defined
over states s ∈ S (with S being the set of all possible states) and transitions
between them. Starting from an initial state, the goal is to determine a route
towards a goal state within that search space which satisfies a certain goal condi-
tion. By dedicated functions, the total costs of the current state are tracked while
the remaining costs towards the goal state are estimated. By this, A* Search tra-
verses through the search space – ideally only expanding towards states with the
lowest cost and, by this, avoiding traversing parts of the search space that lead
to no or overly expensive solutions.

In order to solve the problem reviewed in Sect. 2, we use the main concept
of A* Search as a basis. More precisely, given a set of trains Tr , we model a
state s ∈ S at time step t as the set of positions of all trains, i.e., s = {posttrtr |
tr ∈ Tr}, where ttr is the time step at which train tr has reached its destination
or t if tr has not reached its destination yet. Two states s and s′ are then
connected if all trains can make a movement from their position in s to their
position in s′ within one time step and without causing any collisions. The
initial state is then sinit = {start0tr | tr ∈ Tr} and the goal states are defined by
sgoal = {dest ttrtr | tr ∈ Tr}.

Because trains do not move in discrete steps, there is an enormous number of
successors for each state. While this is true in principle, most of these positions
are redundant. The only branching points in the network are at TTD points. It
is therefore superfluous to consider every possible position a train might have
within a TTD and consider only movements that transport a train as far as
possible within a TTD.

Example 7. Let’s consider the start positions in Fig. 1 as an example for an
initial state sinit . The successor states of sinit are derived by considering all
possible combinations of movements the three trains in this example can make.
As discussed previously, only those movements are considered that move the
trains as far as possible within one TTD. In this example, there are 6 potential
successor states si, 1 ≤ i ≤ 6, as shown in Fig. 5.

However, states s3 and s6 are not valid, because the movements of tr1 and
tr3 are in collision (as indicated by E in Fig. 5). Similarly, s4 and s5 are not valid,
because tr1 and tr2 are in collision. Therefore, sinit has only two real successor
states, namely s1 and s2.

Recursively or iteratively searching through all possible states eventually
would lead to several goal states. Out of those, we are then interested in the one
with the smallest costs. These are provided by means of a function g(s) which

72 T. Peham et al.

s1:

tr1tr2

tr3

e1 e2 e3 e4 e5

e6 e7

s2:

tr1tr2

tr3

e1 e2 e3 e4 e5

e6 e7

s3:

tr1tr2

tr3

e1 e2 e3 e4 e5

e6 e7

s4:

tr1tr2

tr3

e1 e2
e3 e4 e5

e6 e7

s5:

tr1tr2

tr3

e1 e2
e3 e4 e5

e6 e7

s6:

tr1tr2

tr3

e1 e2
e3 e4 e5

e6 e7

Fig. 5. A* search

gives, for a state s, the costs up to this state. In our case, the costs are defined
by the sum of total travel times4, i.e., for state s = {posttrtr | tr ∈ Tr} we have
g(s) =

∑
tr∈Tr ttr .

However, to avoid expanding towards non-promising states (i.e., states that
will not lead to a goal state or only through substantially longer paths), a heuris-
tic function h(s) is additionally employed. This heuristic function assigns to each
state s an estimation of the costs from s towards a goal state. If we knew the
distances dstr from the position of each train tr in state s to its destination posi-
tion dest tr , those costs can be estimated by h(s) =

∑
tr∈Tr

ds
tr

str
. These distances

can easily be obtained for a train tr by precomputing a lookup table of distances
from each TTD to the destination of tr via breadth-first search. To get the true
distance from this lookup table, the offset of the train within the TTD has to
be subtracted. Overall, this leads to a total costs of a state s ∈ S defined as
f(s) = g(s) + h(s).

An important property of A* Search is that an optimal solution is guaranteed
to be found if the heuristic function is admissible. A heuristic function is admis-
sible if the heuristic function never overestimates the true cost to a goal state.
It is easy to see that the heuristic function defined for our problem is admissible
since trains can never arrive at their respective destinations faster than if they
were traveling with maximum speed for the entire route.

Example 8. Consider again the example in Fig. 5. There are two possible suc-
cessors of sinit , s1, and s2. In s2, all trains are closer to their goal than in s1.
Therefore, the estimated sum of travel times is smaller in s2 and, hence, s2 would
be expanded next by the search.

4 Note that the cost function can, of course, accordingly be adjusted if the focus is
put on other aspects such as the overall travel time.

Optimal Railway Routing Using Virtual Subsections 73

tr1tr2 e1 e2

m2 m1

Insertion of
VSS Point

Fig. 6. Resolving TTD collisions with VSS

4.2 Resolving Collisions with VSS

Using A* Search as proposed above, we are looking for a path in the search space
from the initial state sinit to one of the goal states sgoal with the smallest costs.
But, thus far, possible paths are severely restricted since states are connected
only if trains can reach them without causing any collisions. Using VSS, however,
many collisions can be prevented – likely leading to faster routes. Recall from
Sect. 2 that there are two types of collisions: move collisions and TTD collisions.
Let’s consider TTD collision first because resolving them is conceptually easier.
A TTD collision occurs when two movements contain the same TTD but are not
in a move collision. This kind of collision can be resolved by splitting the TTD
into two separate VSS.

Example 9. Consider the situation in Fig. 6 involving two trains moving on a
straight track. Movements m1 and m2 are in a TTD collision on TTD e2. By
splitting e2 into two VSS at the point shown in the figure, the TTD collision is
resolved.

For move collisions, we can identify three different cases:

– A head-on-collision occurs when two movements go in opposite directions in
a TTD.

– An overlap collision occurs when two movements go in the same direction in
a TTD that is not the start of either movement.

– A rear-end-collision occurs when the end of a movement collides with the
start of another movement.

Head-on-collisions and overlap collisions can not be resolved. In these two cases,
corresponding states cannot be connected and, hence, the A* Search needs to
determine alternative routes. But rear-end-collisions can be resolved: If move-
ment m1 rear-end-collides with movement m2, then a new movement m′

1 can
be obtained by truncating m1 in such a way that no collision with m2 occurs
anymore. The movements m′

1 and m2 are then in a TTD collision. But as we
have seen previously, these can be resolved.

Example 10. The three different types of movement collisions are depicted in
Fig. 7. Figure 7a is an example of a head-on-collision. It is apparent that this
situation cannot be rectified by introducing further VSS.

74 T. Peham et al.

tr2tr2tr1 tr1e1 e2e3

e4

m1
m2

(a) Head-on-collision

tr1

tr2e1 e2

e3

m2

m1

(b) Overlap collision

tr1tr2 e1 e2

m2 m1
m2

Insertion of
VSS Point

(c) Rear-end-collision

Fig. 7. Move collision cases

Figure 7b is an example of an overlap collision. As it was in the case of a
head-on-collision, the collision cannot be resolved by splitting TTDs into VSS.
The conflict can only be avoided if one of the trains waits with their movement,
possibly leading to a longer route.

Figure 7c is an example of a rear-end-collision. Movement m1 and m2 are in
collision on TTD e2. But by moving tr2 with movement m′

2 instead of m2 the
collision is avoided.

5 Experiments

The A*-based approach as described above has been implemented in C++ and
was subjected to several benchmarks to evaluate its performance. Additionally,
we also considered the solution described in [25] in order to compare the proposed
solution to the current state of the art. Both implementations are part of the
DA-ETCS toolkit available at https://iic.jku.at/eda/research/etcs/. All those
experiments have been conducted on an Intel(R) Core(TM) i7-7700K machine

https://iic.jku.at/eda/research/etcs/

Optimal Railway Routing Using Virtual Subsections 75

using a 4.20 GHz processor with 32 GB of main memory running Ubuntu 18.04.4.
In this section, the obtained results are summarized and discussed.

As benchmarks, we considered the railway layouts and tasks which have been
used in the evaluations in [25] (namely, Running Example, Simple Example, Com-
plex Example, and Nordlandsbanen) as well as further instances of representative
use cases (namely, Bottleneck, Bidirectional, and Train Station). Here, Bottle-
neck refers to a track layout where all trains have to be funneled through a
single TTD before their paths diverge again, while Bidirectional refers to a lay-
out where trains are moving in both directions on a main track with occasional
sidings to pass each other. Finally, Train Station refers to a track layout with
several interconnected and branching paths for the trains to reach their goals. All
these benchmarks represent frequent use cases that usually have many potential
collisions to be avoided through the use of virtual subsections.

The obtained results are shown in Table 1. Here, for each considered bench-
mark, the generated results for both methods (as indicated in the first column)
are provided in the respective lines of the table. As described in Sect. 3, the app-
roach from [25] always needs a configuration in terms of the spatial resolution rs
and the maximum number of time steps tmax in order to generate a discrete
formulation; these values are provided in the second and third column. After-
wards, the respectively obtained results are presented, i.e., the number blocks
(both, TDDs and VSS combined), the number of Time Steps until all trains
have reached their goal, and the sum of travel times of all trains

∑
t (the actual

optimization objective which has been optimized). Finally, the required runtime
is provided (note that, in case of the approach from [25], only the solving time
is listed, even though also the runtime for generating the discrete formulation
often is substantial).

The obtained results clearly confirm the shortcomings of the previously pro-
posed approach as discussed in Sect. 3 and show how the approach proposed in
this work addresses them. More precisely:

First, since the approach from [25] always requires a discrete formulation,
the designers are urged to provide a configuration in terms of spatial resolu-
tion rs and maximal number of timesteps tmax . This frequently pushes him/her
to trade-off between accuracy (demanding a finer resolution) and performance
(demanding a coarser resolution). These values require prior knowledge about
the benchmark like an estimation of the time steps a solution might have. If no
proper estimation can be made, multiple configurations have to be tried such
that a satisfactory solution can be obtained in an iterative fashion (which is
why, we present several configurations in Table 1). In contrast to all that, the
proposed approach does not require a configuration and does not rely on a dis-
crete formulation, which is why all these problems do not occur here.

76 T. Peham et al.

Second, the precision of the approach from [25] highly depends on the respec-
tively chosen configuration (and, hence, discretization). This explains the huge
differences in the obtained results. In the worst case, choosing an improper con-
figuration may yield a formulation out of which no solution can be generated
at all. This is the case in the two instances marked Unsatisfiable where the
maximum number of time steps is too small to allow a solution to be found
with the given discretization (although the optimum from the A* Search shows
that a solution indeed is possible). But even if solutions are determined, they
are often significantly off and, hence, imprecise compared to the actual opti-
mal value (obtained by the A* Search without discretization). All this basically
confirms the discussions from Sect. 3 about the shortcomings of the discretiza-
tion and shows that the A* Search proposed in this work nicely addresses these
problems.

Finally, the runtime performance of both approaches confirms what could be
expected. The coarser the resolution and, hence, discretization of the approach
from [25], the better its runtime. In order to get precise results, however, this
frequently leads to timeouts (in our evaluations of 1 h). In contrast, the proposed
method’s main drawback is an increased memory requirement – in particular in
cases where the A* Search expansion leads to a huge number of possible states
to consider (as in the case of the last instance in Table 1). These cases, however,
usually also cannot be handled by the approach from [25] (at least, not with
proper precision) and most likely constitute instances, where optimal railway
routing probably reaches its limits due to the underlying complexity (in the
worst case, both methods exhibit exponential time or space complexity). In all
other cases, the A* Search clearly outperforms the state of the art and often
yields magnitudes of better runtime – in particular compared to instances with
proper precision.

Optimal Railway Routing Using Virtual Subsections 77

Table 1. Obtained results

Method Configuration TTD/VSS Time steps
∑

t Runtime [s]
rs [m] tmax

Running Example (with 4 trains an total travel length of 7 km)
Approach from [25] 500 11 5 7 23 0.1
A* Search – 9 7 21 <0.1
Simple Example (with 4 trains and total travel length of 27 km)
Approach from [25] 500 20 14 15 53 29.2
A* Search – 26 15 50 <0.1
Complex Example (with 6 trains and total travel length of 148 km)
Approach from [25] 1000 18 25 16 71 124.9
A* Search – 42 14 58 138.3
Nordlandsbanen (with 3 trains and total travel length of 819.6 km)
Approach from [25] 1000 140 – – – >3600
A* Search – 519 135 286 45.713
Bottleneck (with 4 trains and total travel length of 10 km)
Approach from [25] 1000 20 13 18 60 0.6

500 20 13 18 60 2.3
100 20 16 15 54 84.9
50 20 16 15 54 777.9
50 15 16 15 54 866.5

A* Search – 39 15 50 <0.1
Bottleneck (with 10 trains and total travel length of 2.6 km)
Approach from [25] 1000 20 Unsatisfiable 1185.9

1000 30 – – – >3600
100 15 – – – >3600

A* Search – 30 12 65 11.1
Bottleneck (with 12 trains and total travel length of 3 km)
Approach from [25] 1000 20 Unsatisfiable 1275.1
A* Search – 34 15 92 371.0
Bidirectional (with 6 trains and total travel length of 14.6 km)
Approach from [25] 1000 30 16 30 124 50.6

500 30 18 21 112 698.2
100 30 – – – >3600
100 23 – – – >3600

A* Search – 53 22 105 1.6
Train Station (with 6 trains and total travel length of 7.1 km)
Approach from [25] 1000 30 19 9 39 1.1

500 30 19 9 39 1.1
100 30 31 21 114 64.1
50 30 31 22 117 1381.3

A* Search – 58 22 110 17.7
Train Station (with 8 trains and total travel length of 7.3 km)
Approach from [25] 1000 30 21 11 59 9.6

500 30 21 11 59 9.6
100 30 – – – >3600
100 23 33 23 159 564.1

A* Search – Out of Memory –

78 T. Peham et al.

6 Conclusion

In this work, we considered the automatic generation of optimal railway rout-
ings for modern railway systems such as the ETCS Level 3, CTCS Level 3+/4,
or TPWS, which allow for virtual subsections. To this end, we first analyzed
the major shortcomings, namely infeasible configurations, rounding errors, and
oversimplifications, of the current state of the art which are mainly caused by
discretization. We proposed an approach which addresses all these problems and,
at the same time, even led to substantial runtime improvements (reaching several
orders of magnitudes). Experiments and detailed comparisons confirmed these
benefits.

Acknowledgments. This work has partially been supported by the BMK, BMDW,
and the State of Upper Austria in the frame of the COMET program (managed by the
FFG).

References

1. Pachl, J.: Besonderheiten ausländischer Eisenbahnbetriebsverfahren (2019)
2. Pachl, J.: Railway Signalling Principles, Braunschweig, June 2020
3. Set of specifications 1/2/3. https://www.era.europa.eu/content/ccs-tsi-annex-

mandatory-specifications. Accessed 18 Sept 2020
4. Stanley, P.: Institution of railway signal engineers. In: ETCS for Engineers (2011)
5. Yang, Z.: Application and development of CTCs. In: UIC ERTMS World Confer-

ence, vol. 12 (2016)
6. Rail Analysis India: Implementation of ETCs and TPWs system over Indian rail-

way network. Rail Analysis India (2019)
7. Dghaym, D., Poppleton, M., Snook, C.: Diagram-led formal modelling using iUML-

B for hybrid ERTMS level 3. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K.
(eds.) ABZ 2018. LNCS, vol. 10817, pp. 338–352. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-91271-4 23

8. Dghaym, D., Dalvandi, S., Poppleton, M., Snook, C.: Formalising the hybrid
ERTMS level 3 specification in iUML-B and Event-B. Int. J. Softw. Tools Technol.
Transfer 22, 297–313 (2020)

9. Cunha, A., Macedo, N.: Validating the hybrid ERTMS/ETCS level 3 concept with
electrum. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018.
LNCS, vol. 10817, pp. 307–321. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-91271-4 21

10. Tueno Fotso, S.J., Frappier, M., Laleau, R., Mammar, A.: Modeling the hybrid
ERTMS/ETCS level 3 standard using a formal requirements engineering approach.
In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol.
10817, pp. 262–276. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
91271-4 18

11. Abrial, J.-R.: The ABZ-2018 case study with Event-B. In: Butler, M., Raschke, A.,
Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 322–337. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-91271-4 22

https://www.era.europa.eu/content/ccs-tsi-annex-mandatory-specifications
https://www.era.europa.eu/content/ccs-tsi-annex-mandatory-specifications
https://doi.org/10.1007/978-3-319-91271-4_23
https://doi.org/10.1007/978-3-319-91271-4_23
https://doi.org/10.1007/978-3-319-91271-4_21
https://doi.org/10.1007/978-3-319-91271-4_21
https://doi.org/10.1007/978-3-319-91271-4_18
https://doi.org/10.1007/978-3-319-91271-4_18
https://doi.org/10.1007/978-3-319-91271-4_22

Optimal Railway Routing Using Virtual Subsections 79

12. Mammar, A., Frappier, M., Tueno Fotso, S.J., Laleau, R.: An Event-B model of
the hybrid ERTMS/ETCS level 3 standard. In: Butler, M., Raschke, A., Hoang,
T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 353–366. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91271-4 24

13. Arcaini, P., Ježek, P., Kofroň, J.: Modelling the hybrid ERTMS/ETCS level 3 case
study in Spin. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ
2018. LNCS, vol. 10817, pp. 277–291. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-91271-4 19

14. Hoang, T.S., Butler, M., Reichl, K.: The hybrid ERTMS/ETCS level 3 case study.
In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol.
10817, pp. 251–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
91271-4 17

15. Hansen, D., et al.: Using a formal B model at runtime in a demonstration of the
ETCS hybrid level 3 concept with real trains. In: Butler, M., Raschke, A., Hoang,
T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 292–306. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91271-4 20

16. Jansen, J., Quaglietta, E., Bartholomeus, M., Pot, A., Goverde, R.: ETCS hybrid
level 3: a simulation-based impact assessment for the Dutch railway network. 20
May 2019

17. Gill, D.: ETCS level 3 for metro-type mainline operation. In: Aspect (2017)
18. Ghoseiri, K., Szidarovszky, F., Asgharpour, M.J.: A multi-objective train schedul-

ing model and solution. Transp. Res. Part B: Methodol. 38(10), 927–952 (2004)
19. Cai, X., Goh, C.: A fast heuristic for the train scheduling problem. Comput. Oper.

Res. 21(5), 499–510 (1994)
20. Zhou, X., Zhong, M.: Bicriteria train scheduling for high-speed passenger railroad

planning applications. Eur. J. Ope. Res. 167(3), 752–771 (2005). Multicriteria
Scheduling

21. Liebchen, C.: The first optimized railway timetable in practice. Transp. Sci. 42(4),
420–435 (2008)

22. Lusby, R., Larsen, J., Ryan, D., Ehrgott, M.: Routing trains through railway junc-
tions: a new set-packing approach. Transp. Sci. 45(2), 228–245 (2011)

23. Goossens, J.-W., van Hoesel, S., Kroon, L.: On solving multi-type railway line
planning problems. Eur. J. Oper. Res. 168(2), 403–424 (2006). Feature Cluster
on Mathematical Finance and Risk Management. https://www.sciencedirect.com/
science/article/pii/S0377221704003169

24. Garrisi, G., Cervelló-Pastor, C.: Train-scheduling optimization model for railway
networks with multiplatform stations. Sustainability 12(1), 257 (2020)

25. Wille, R., Peham, T., Przigoda, J., Przigoda, N.: Towards automatic design and
verification for level 3 of the European train control system. In: Design, Automation
and Test in Europe (DATE) (2021)

https://doi.org/10.1007/978-3-319-91271-4_24
https://doi.org/10.1007/978-3-319-91271-4_19
https://doi.org/10.1007/978-3-319-91271-4_19
https://doi.org/10.1007/978-3-319-91271-4_17
https://doi.org/10.1007/978-3-319-91271-4_17
https://doi.org/10.1007/978-3-319-91271-4_20
https://www.sciencedirect.com/science/article/pii/S0377221704003169
https://www.sciencedirect.com/science/article/pii/S0377221704003169

Safety and New Technologies

Verification of Multiple Models
of a Safety-Critical Motor Controller

in Railway Systems

José Proença1(B) , Sina Borrami2 , Jorge Sanchez de Nova2,
David Pereira1 , and Giann Spilere Nandi1

1 CISTER, Polytechnic Institute of Porto, Porto, Portugal
{pro,drp,giann}@isep.ipp.pt
2 Alstom, Stockholm, Sweden

{sina.borrami,jorge.sanchez-de-nova}@alstomgroup.com

Abstract. Motor controllers, such as the ones used in signalling sys-
tems, include critical embedded software. Alstom is a company that pro-
duces such embedded systems, which must follow complex certification
processes that require formal modelling and analysis. The formal analy-
sis of these real-time systems have to balance between including enough
details to be useful and abstracting away enough details to be verifiable.

This paper describes our work in the context of the European VALU3S
project to integrate the analysis of such systems with the Uppaal model
checker during the development cycle, involving both developers from
Alstom and academic partners. We use special Excel tables to config-
ure the underlying Uppaal models and requirements, bridging these two
stakeholders. We follow Software Product Line Engineering principles,
e.g., allowing features to be turned on and off and periodicities to be
changed, and verify different properties for each of such configuration.
We automate the instantiation and verification in Uppaal of a set of
selected configurations via an open-source prototype tool named Uppex.

Keywords: Verification · Variability · Railway · Real-time automata

1 Introduction

In railway systems, motor controllers play a crucial and safety-critical role
in point switch machines. Guaranteeing its correct design and development
is a challenging but essential task to avoid catastrophic accidents that could
cause severe damage to the environment and property, or even result in the
loss of human lives. Most state of the art approaches address this safety con-
cerns using formal modelling and verification, including abstract interpreta-
tion [15] and Event B [1,7], to enforce compliance with certification processes
and railway-specific safety standards, such as EN-50126 [10], EN-50128 [11], and
EN-50129 [12]. In these systems, safety means that faults are detected with very
high probability, leading to a fallback state.
c© Springer Nature Switzerland AG 2022
S. Collart-Dutilleul et al. (Eds.): RSSRail 2022, LNCS 13294, pp. 83–94, 2022.
https://doi.org/10.1007/978-3-031-05814-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05814-1_6&domain=pdf
http://orcid.org/0000-0003-0971-8919
http://orcid.org/0000-0003-1737-6509
http://orcid.org/0000-0002-7561-6649
http://orcid.org/0000-0002-3206-0599
https://doi.org/10.1007/978-3-031-05814-1_6

84 J. Proença et al.

The design of motor controllers is usually performed by multidisciplinary
teams composed of experts in hardware, embedded software, and verification.
Guaranteeing that all stakeholders with different backgrounds have the same
understanding of the critical aspects of the system development can be challeng-
ing. We model the behaviour of a railway motor controller using the Uppaal model
checker [8], in the context of the European project VALU3S (https://valu3s.eu).
This paper reports on how we integrate and automate the formal verification of
this controller during its development by the rail manufacturer Alstom, while
improving the trade-off between fine-grained details in the formal models and its
verifiability, and efficiently involving all team members in this process.

Our use-case uses a controller with software components that interact with
a dashboard and a circuit board (Fig. 1). Intermediate components are used to
poll the circuit, to add and verify CRC error codes, etc. We compiled a set
of safety requirements for the controller’s software to be verified using model
checking. However, when trying to build a network of automata to model the
controller with enough details to cover all requirements, we concluded that it
generated a state-space too large to be feasible when model-checking. For exam-
ple, the requirement “the controller component should take less than 100ms to
send a given command to the circuit” should not need to consider all combina-
tions of states involving the sending of messages to the dashboard. Similarly, the
requirement “if the controller component receives an error message it should go
to a fallback state and the dashboard should be informed within 100ms” should
not need to consider the mechanisms to interact with the circuit.

This lead to a family of formal models with different parameters and levels
of detail, each targetting different requirements. This lead us to 3 challenges:
C1: maintain the model, to kept it up-to-date with the system under devel-
opment; C2: manage variability, as too many models with commonalities are
needed; and C3: improve the collaboration between developers and mod-
ellers of the formal specifications.

Our approach uses a high-level representation of the configurations of the
family of formal models for real-time systems. This representation consists of
Microsoft Excel spreadsheets with parameters and requirements to be used in
the formal models, read by our prototype tool Uppex that automatically gener-
ates and verifies the full family of models and requirements. These spreadsheets
include, for example, the time-bounds of certain components, the size of buffers,
and the initial values of certain variables. Furthermore, these values vary accord-
ing to the set of active features; for example, by activating a feature named
SelfTesting, a variable named TSelfTest is set to 200, otherwise it is set to 0. A
special table compiles a set of configurations, each listing its active features. For
example, a given configuration could activate SelfTesting, deactivate unrelated
monitoring features, and activate its associated requirements.

Organisation of the Paper. Section 2 describes the motor controller use-case
and its requirements, formalised in Sect. 3 using the Uppaal model checker.
Section 4 describes how we configure and verify many variations of a Uppaal
model. Section 5 summarises what we have learned during this process and the
plans for future developments, and Sect. 6 concludes this paper.

https://valu3s.eu

Verification of Multiple Models of a Safety-Critical Motor Controller 85

Fig. 1. Architecture of the motor controller system under verification

2 Use-Case: Motor Controller

Our running use-case consists of a motor controller, or controller for short, run-
ning in a resource constraint device with a Real Time OS. This controller is
connected both to a physical circuit and to a dashboard, as depicted in Fig. 1.
The circuit includes a DC motor that is being controlled, receives simple com-
mands from the controller to turn left, turn right, or to stop, and sends back a
status report, including the information of whether the limit of a rotation has
been reached or if a problem has been found. The dashboard sends instructions
to the controller, including commands to be sent to the circuit, which in turn
informs the dashboard of internal state updates.

We focus on the behaviour of the software part of the controller, and on its
formal verification via model-checking of timed-behaviour. This is complemen-
tary to other analysis and tests performed by other stakeholders involved in the
same use-case, e.g., to inject faults in hardware and to generate batches of tests
with enough coverage. We expect our underlying formalizations and tools to also
benefit, directly or after repurposed, the other stakeholders in this use-case.

This paper includes behavioural details only of the core controller component,
and the full Uppaal models are not publicly available since they are intellectual
property of Alstom.1 We believe that these descriptions, supported by our open-
source prototype tool, are rich enough to convey our approach and its benefits.

Safety-Critical Behaviour. Hazard analysis for the controller has been per-
formed to justify the desired criticality levels. This analysis guided the architec-
ture of the software components deployed on the controller board. Most compo-
nents are replicated and executed in two diversified processing units available in
the selected board, to detect when their behaviour diverges. Also, CRC codes
are applied to incoming and outgoing packages to ensure message consistency.

The replicated components are: a core controller, a monitor to check if the
state of the controllers are consistent, a decoder to compare incoming messages
against their CRC error code and against the messages from the neighbour
decoder, a buffer to store messages to be sent to the dashboard, an encoder
to add CRC codes to messages to be sent to the dashboard, and a reader of
messages received from the circuit. Non-replicated components are: a sched-
uler to start runtime self-tests, a simulator of the dashboard, a simulator of
the circuit, and a fault-injector to cause some components to fail. The simulators
exist only on the formal models, to mimic the environment, while capturing the

1 These can be made available to the reviewers if needed.

86 J. Proença et al.

Fig. 2. General behaviour of the controller component

minimum information required to perform formal analysis, represented as pre-
defined sequences of messages to be sent.

The behaviour of the core controller task is depicted in Fig. 2. The controller
performs some initialisation in Check-HW, tests the interaction with the circuit
in Self-Test, and can trigger the rotation of the motor to the left or to the right.
At any moment, it can receive an error and go to a Fall-back state.

Parameterised Requirements. Following the hazard analysis, we compiled
a set of requirements to be verified using model checking based on Uppaal.
The most relevant ones are listed in Table 1. Requirements follow some syn-
tactic structure to tighten the gap between formal and informal requirements,
following the EARS approach [17]. For example, the 3rd requirement reads “In
Conf3, when controller1 fails the controller2 shall go to a fallback state within
100ms.” Configurations specify the parameters of the model when validating
the requirement. This covers both general parameters of the system, such as the
time to decode messages and the frequency of operation of monitors, and the
scenario consisting of the messages sent by the dashboard, by the circuit, and by
the fault-injector. In our example Conf3 defines a scenario where the dashboard
sends a start and a left command after 20ms and 100ms, respectively, and
the fault-injector causes controller1 to fail after 120ms.

Table 1. Some functional and non-functional requirements for the motor controller

Verification of Multiple Models of a Safety-Critical Motor Controller 87

When formalising requirements (c.f. Table 1) using the temporal logic sup-
ported by Uppaal, the notions of state, component, and expected observation
followed in a relatively straightforward manner. Specifying the triggers often
required manually enriching the model with new variables, since the logic does
not express events. Specifying configurations were the most complex operations,
and the core challenge addressed by this paper and our prototype tool. Tradition-
ally for each configuration a new model would have to be specified, fine-tuning
values of variables spread throughout the model, often deactivating some com-
ponents to simplify the model-checking of more complex properties. Maintaining
a collection of such models, in a context where neither the system specification
nor the full set of requirements are fixed, quickly becomes infeasible. We provide
support to specify all configurations and properties in a single Excel file, and to
automatically use these with a single annotated Uppaal model.

3 Formal Specification in Uppaal

Uppaal [8] is a well-known model-checker for real-time systems, successfully used
in many industrial applications and in the context of embedded systems [5].
Systems are specified as a set of timed-automata that interact both by using
synchronisation on actions and by using shared variables. In a nutshell, each
timed-automaton is a state machine whose edges are labelled by a guard and an
update over shared variables, and by an optional action name used to synchronise
with neighbour automata. Special variables named clocks capture the time that
has passed since they were last reset, and are incremented automatically by the
rules that guide the automata evolution.

The topology of the timed automata network used in the specification of
our use-case is depicted in Fig. 3, one for each task mentioned in Sect. 2. This
topology is built iteratively by both developers and formal modellers, during the
development of the system. Each node depicts the timed-automaton of a com-
ponent, and arrows depict interactions between nodes: denote synchronous
interactions that block until both automata can trigger the associated action;

and denote synchronous interactions that do not block the sender – the
former requires the receiver to be always ready and the latter discards data if the
receiver is not ready; and denotes asynchronous communication by atomic
writes and reads to a shared variable.

The dashboard, circuit, and fault-injector components are parameterised by
a scenario, i.e., a sequence of actions with timestamps. The dashboard sends
commands to the encoders, the circuit sends reports to the readers describing if
there are errors and if the motor reached a limit, and the fault-injector sends
messages that cause some components to go to a faulty state with no behaviour.
Furthermore, the circuit reports errors for a predefined time-window during the
self-test phase, and the controllers validate that an error is indeed reported.

The behaviour of the components involved is expressed using Uppaal’s notion
of timed automata. We depict the automata of the controller’s behaviour in
Fig. 4. All the 5 states of Fig. 2 appear in this automata, extended with extra

88 J. Proença et al.

Fig. 3. Topology of the network of communicating timed-automata of the use-case

details. The arrows pointing to and from the Controllers in Fig. 3 appear in this
diagram either as channels in the labels, represented by names prefixed with
‘?’ or ‘ !’, or as shared variables such as limit, which is read to detect if the
motor reached its target position. The non-blocking behaviour of the error and
fail channels is captured by including an extra transition labelled by this channel
in every node where time can pass.

Uppaal supports imperative code using a C-like language inside a global
Declarations block, accessible by all automata in the network. These variables and
functions can be used by the expressions in the timed-automata. For example,
the concrete actions (e.g., goLeft), time-bounds ((e.g., TLeft[id][max])), shared
variables (e.g., limit), and channel names (e.g., action) are declared in this block.

4 Parameterisation and Verification with Uppex

In order to cope with the multiple configurations of Uppaal’s models, we devel-
oped Uppex to provide a mechanism based on annotations to customise many
aspects, including channels, shared variables, data types, time-bounds, and
requirements. Uppex is an open-source tool that uses the workflow depicted in
Fig. 5: it reads both an Excel file with the configurations and an Uppaal file with
annotations, and it creates a new Uppaal model for each configuration found.
Either one of the new models is used to replace the original Uppaal file, or they
are verified by Uppaal and a report is produced. Uppex is developed in Scala,
uses the Apache POI libraries for Microsoft documents [13], and is available at
https://cister-labs.github.io/uppex.

4.1 Annotating Uppaal Models

Declarations in the input Uppaal model are annotated with special blocks start-
ing with “// @Name”, which act as hooks that Uppex uses to inject and update
the values that configure the model. XML blocks from “<Name>” until “</Name>”
also act as hooks for annotations, which we use to inject and update the prop-
erties being verified in the <queries> block. We call these @-annotations and
xml-annotations, respectively.

https://cister-labs.github.io/uppex

Verification of Multiple Models of a Safety-Critical Motor Controller 89

Fig. 4. Specification in Uppaal of the a controllers’ timed-automata with identifier id

Fig. 5. Uppex workflow: updating and verifying models based on configuration tables

Each annotation can be defined in the Excel file in a sheet named with the same
name (c.f. Fig. 6). The first line of these sheets describe the pattern used to pro-
duce code that will be injected for each line of the table, followed by a table with
a header of names in row 2 and their values below. E.g., in the @TimeBounds table
(Fig. 6), row 4 injects the line “const int TCheck[Ids][Intrv] = {{4,4},{6,6}};...”
to the Uppaal code in the corresponding block. The first column acts as unique
identifier: if multiple lines are found, the last one prevails. The column named
Features associates feature names that must be active, otherwise the line is dis-
carded. In our example, when the feature SelfTesting is active the variable for
SelfTest is set to 200, otherwise it is set to 0. The <queries> table on the top-left
of Fig. 6 depicts some of the requirements from Table 1.

4.2 Verifying Multiple Configurations

Using Uppex it is possible to specify a list of configurations, each regarded
as a set of features that can be active or not. These feature selection guides

90 J. Proença et al.

Fig. 6. Special Excel tables: @-annotation, xml-annotation, and configurations

which rows from annotation should be included. The list of configurations is
specified in an Excel sheet named @Configurations, such as the one in the bot-
tom of Fig. 6. In this example the configuration SelfTest includes the features
ReadCircuit, SelfTesting, and StartWithSelfTest, among others, and not the fea-
ture SyncMon nor Heartbeats. Hence, when selecting the SelfTest configuration,
the SelfTesting will be active, triggering the last row visible in the @TimeBounds

table to be used to define the SelfTest variable. When selecting instead the
configuration JustHeartBeat, the SelfTesting feature will not be active, thus the
previous row will be used instead. Similarly, the selected features will also influ-
ence which queries will be used during verification.

Uppex can be used as a command line tool to modify the annotated blocks
of an Uppaal model according to a given configuration, or to verify one or
all configurations. For example, the command “java -jar uppex.jar -runAll

motorController.xlsx” will verify all configurations in the given Excel file using
the Uppaal model with the same name, producing a report such as the one in
Table 2. This report states that 3 properties of configuration SelfTest passed
and the verification timed-out while verifying the 4th property. This property
would pass using a slighly larger timeout when calling Uppex. We write ellipsis
‘...’ to omit parts of the report. Configurations Monitor and JustHeartBeat also
passed and failed some properties.

Table 2. Report produced when verifying all properties and all configurations

Verification of Multiple Models of a Safety-Critical Motor Controller 91

5 Lessons Learned and Future Work

During the development of the motor controller system at Alstom in collab-
oration with ISEP and other academic partners, we iterated over core design
architectural decisions and agreed upon different synchronisation mechanisms.
Using the model-checking capabilities of Uppaal, we verified different proper-
ties, including the possibility of sending warnings, of buffer overflows, and of
reaching deadlocks (or timelocks). These models are useful both to predict pos-
sible problems and bottlenecks, and to be used in certification processes. Our
configuration-driven approach using Excel spreadsheets emerged as a solution
to the growth in complexity of the underlying formal models, which typically
must remain simple in order to be useful. We were able to find time-bounds that
satisfy our requirements, e.g., the periodicity at which monitors and decoders
check consistency, or the periodicity at which reports should be polled from the
circuit, under different scenarios simulated by the dashboard.

Uppex adds a negligible overhead over the model-checking process, involving
the parsing of the configuration tables and the Uppaal file, and the writing of
an updated set of Uppaal files. In our use-case we use the 16 automata from
Fig. 1 in a file with ∼1.7K lines excluding queries. Our tables currently include
around 25 requirements, 15 configurations, and 135 different entries (including
scenarios, time parameters, data channels, and data constructors). Invoking Java
to produce a concrete instance takes less than 5 s in our 1.4GHz Quad-Core Intel
Core i5 machine.

Related Work. The verification of complex embedded systems has been inves-
tigated, e.g., by Basten et al. [3] who generate Uppaal models (and Petri net
models) using a model-driven approach with the Octopus toolset, focusing on
design-space exploration and schedule optimisation. Gario et al. [14] and Dureja
and Rozier [9] provide an exhaustive analysis of a large air traffic control, in a
joint effort with NASA team of engineers, using 3 concrete models specified in
the OCRA architectural language with SMV component models. They validate
the 3 models using a combination of different techniques based on the property
at hand, and analyse dependencies among properties to avoid the verification
of unnecessary queries. In contrast to these approaches, Uppex allows the man-
ual definition and fine-tuning of models in the host model-checker instead of
using generated models, and provides mechanisms to control the variability of
the models in a way that can be perceived by both tool- and formal-developers.

The variability in Uppex is given as a set of tables that inject code in the
annotated specifications, but it is not reasoned upon. Other approaches, such as
the formal framework by Kim et al. [16] in the context of embedded systems,
can be used to analyse valid configurations based on feature models [4].

92 J. Proença et al.

Future Work. We are pursuing the following two directions of work.

1. Valid Configurations. Currently one can specify any combination of fea-
tures, sometimes leading to incorrect configurations because of missing depen-
dencies or incompatibilities. These restrictions can be captured by a set of con-
straints, usually taking the form of a Feature Model [4] in the context of Soft-
ware Product Lines. One could, for example, make the feature StartWithSelfTest

dependent on SelfTesting, marking any configuration with only the first one as
invalid. Following existing work in this community, we could further exploit these
validity constraints over features, e.g., by considering all configurations that sat-
isfy these constraints, or to aim at finding the best configuration using some cost
function. In the context of this work, the properties validated by Uppaal could
also play a role in the validity of a configuration.

2. Other Backends. Our work targets Uppaal models using a frontend for
developers based on Excel spreadsheets. However, these tables can also be used
with different backends besides Uppaal. For example, to generate configuration
files used in the implementation, or to use a different model-checker for verifica-
tion, such as Imitator [2] for real-time systems, which supports the optimisation
of some parameters, or mCRL2 [6] that supports a temporal logic over events
and can handle very large state-spaces. We are also working on an intermediate
domain specific language that can generate Uppaal models, among other analy-
sis, with a better support to reason over the architectural topology, such as the
one in Fig. 3, which emerges only implicitly in Uppaal.

Uppaal is free to use only for non-commercial purposes. It is currently being
used by academic partners, and our use-case is not being commercialised and is
representative of other ongoing projects. This work may lead to the adoption of
Uppaal in commercial projects of Alstom, or to a different backend supported
by Uppex.

6 Conclusions

This paper presents our approach to formalise the timed-behaviour in Uppaal of
a motor controller system, under development by the Alstom railway company,
in the context of the VALU3S European project. We use parameterised config-
uration tables that adapt a core Uppaal model, facilitating the customisation of
the model so it can better suit different requirements. This paper also describes
how we integrated the usage of model-checking within the development cycle of
a safety-critical system, involving stakeholders with different background, rely-
ing on intelligible tables and architectural topologies. We produced a prototype
open-source tool Uppex to automatise the extraction of parameters and adap-
tation of the formal models, and to verify many configurations on a single run.
In the future we plan to further exploit the validity of configurations and to
experiment with different backends.

Acknowledgments. This work was partially supported by National Funds through
FCT/MCTES (Portuguese Foundation for Science and Technology), within the CIS-

Verification of Multiple Models of a Safety-Critical Motor Controller 93

TER Research Unit (UID/CEC/04234); also by the Norte Portugal Regional Oper-
ational Programme (NORTE 2020) under the Portugal 2020 Partnership Agreement,
through the European Regional Development Fund (ERDF) and also by national funds
through the FCT, within project NORTE-01-0145-FEDER-028550 (REASSURE); also
by COMPETE 2020 under the PT2020 Partnership Agreement, through ERDF, and
by national funds through the FCT, within project POCI-01-0145-FEDER-029946
(DaVinci); also by FCT within project ECSEL/0016/2019 and from the ECSEL Joint
Undertaking (JU) under grant agreement No. 876852 (VALU3S). The JU receives sup-
port from the European Union’s Horizon 2020 research and innovation programme and
Austria, Czech Republic, Germany, Ireland, Italy, Portugal, Spain, Sweden, Turkey.

References

1. Abo, R., Voisin, L.: Formal implementation of data validation for railway safety-
related systems with OVADO. In: Counsell, S., Núñez, M. (eds.) SEFM 2013.
LNCS, vol. 8368, pp. 221–236. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-05032-4_17

2. André, É.: IMITATOR 3: synthesis of timing parameters beyond decidability. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 552–565. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81685-8_26

3. Basten, T., et al.: Model-driven design-space exploration for embedded systems:
the octopus toolset. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol.
6415, pp. 90–105. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
16558-0_10

4. Benavides, D., Segura, S., Ruiz Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010)

5. Bourke, T., Sowmya, A.: Automatically transforming and relating Uppaal models
of embedded systems. In: de Alfaro, L., Palsberg, J. (eds.) EMSOFT 2008, pp.
59–68. ACM (2008)

6. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1_2

7. Comptier, M., Leuschel, M., Mejia, L.-F., Perez, J.M., Mutz, M.: Property-based
modelling and validation of a CBTC zone controller in Event-B. In: Collart-
Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495,
pp. 202–212. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-
6_13

8. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. STTT 17(4), 397–415 (2015)

9. Dureja, R., Rozier, K.Y.: More scalable LTL model checking via discovering design-
space dependencies (D3). In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS,
vol. 10805, pp. 309–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89960-2_17

10. Railway Applications. The Specification and Demonstration of Reliability, Avail-
ability, Maintainability and Safety (RAMS). Generic RAMS Process. Standard
(N), CENELEC, December 2017

11. Railway applications. Communication, signalling and processing systems - Software
for railway control and protection systems. Standard (N), CENELEC, July 2020

12. Railway applications. Communication, signalling and processing systems. Safety
related electronic systems for signalling. Standard (N), CENELEC, November 2018

https://doi.org/10.1007/978-3-319-05032-4_17
https://doi.org/10.1007/978-3-319-05032-4_17
https://doi.org/10.1007/978-3-030-81685-8_26
https://doi.org/10.1007/978-3-642-16558-0_10
https://doi.org/10.1007/978-3-642-16558-0_10
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-18744-6_13
https://doi.org/10.1007/978-3-030-18744-6_13
https://doi.org/10.1007/978-3-319-89960-2_17
https://doi.org/10.1007/978-3-319-89960-2_17

94 J. Proença et al.

13. Apache Software Foundation. Apache POI - the Java API for Microsoft documents
(2021). https://poi.apache.org. Accessed 30 Nov 2021

14. Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., Rozier, K.Y.: Model checking
at scale: automated air traffic control design space exploration. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 3–22. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6_1

15. Kästner, D., Ferdinand, C.: Applying abstract interpretation to verify EN-50128
software safety requirements. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.)
RSSRail 2016. LNCS, vol. 9707, pp. 191–202. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-33951-1_14

16. Kim, J.H., Legay, A., Traonouez, L.-M., Acher, M., Kang, S.: A formal modeling
and analysis framework for software product line of preemptive real-time systems.
In: Ossowski, S. (ed.) SAC 2016, pp. 1562–1565. ACM (2016)

17. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to requirements
syntax (EARS). In: RE 2009, pp. 317–322. IEEE Computer Society (2009)

https://poi.apache.org
https://doi.org/10.1007/978-3-319-41540-6_1
https://doi.org/10.1007/978-3-319-33951-1_14
https://doi.org/10.1007/978-3-319-33951-1_14

Learning to Learn HVAC Failures:
Layering ML Experiments in the Absence

of Ground Truth

Carlos E. Budde1(B) , Duncan Jansen2, Inka Locht3,
and Mariëlle Stoelinga2,4

1 University of Trento, Trento, Italy
carlosesteban.budde@unitn.it

2 University of Twente, Enschede, The Netherlands
3 Dutch Railways (NS), Utrecht, The Netherlands
4 Radboud University, Nijmegen, The Netherlands

Abstract. Passenger comfort systems such as Heating, Ventilation, and
Air-Conditioning units (HVACs) usually lack the data monitoring qual-
ity enjoyed by mission-critical systems in trains. But climate change, in
addition to the high ventilation standards enforced by authorities due to
the COVID pandemic, have increased the importance of HVACs world-
wide. We propose a machine learning (ML) approach to the challenge of
failure detection from incomplete data, consisting of two steps: 1. human-
annotation bootstrapping, on a fraction of temperature data, to detect
ongoing functional loss and build an artificial ground truth (AGT); 2. fail-
ure prediction from digital-data, using the AGT to train an ML model
based on failure diagnose codes to foretell functional loss. We exercise
our approach in trains of Dutch Railways, showing its implementation,
ML-predictive capabilities (the ML model for the AGT can detect HVAC
malfunctions online), limitations (we could not foretell failures from our
digital data), and discussing its application to other assets.

1 Introduction

Heating, Ventilation, and Air-Conditioning units (HVACs) are in charge of air
circulation, filtering, heating, and cooling, not only in smart buildings and houses
but also in every modern transport system, including trains [5]. At the same
time, HVACs traditionally lack the data monitoring quality enjoyed by mission-
critical systems, such as air-compressors for break release [8]. Moreover, climate
change and higher ventilation standards—enforced by authorities to mitigate
airborne diseases—have put HVACs in the foreground [5]. In this scenario where
uninterrupted HVAC operation becomes essential, detecting their (even partial)
malfunctions rapidly gains on importance. However, the need to automate failure
detection is at odds with the reality of sub-optimal data coverage.

This work was partially funded by EU grants 830929 (H2020-CyberSec4Europe), and
952647 (H2020-AssureMOSS), and NWO grant NWA.1160.18.238 (PrimaVera).

c© Springer Nature Switzerland AG 2022
S. Collart-Dutilleul et al. (Eds.): RSSRail 2022, LNCS 13294, pp. 95–111, 2022.
https://doi.org/10.1007/978-3-031-05814-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05814-1_7&domain=pdf
http://orcid.org/0000-0001-8807-1548
http://orcid.org/0000-0001-6793-8165
https://cybersec4europe.eu/
https://assuremoss.eu/en/
https://primavera-project.com
https://doi.org/10.1007/978-3-031-05814-1_7

96 C. E. Budde et al.

As a result, HVAC malfunctions can remain unnoticed for long time periods.
This occurs even with sensorially noticeable functions, provided they are not
used to perceptible levels. Consider a gas compressor used for cooling, damaged
during autumn, whose failure is noticed in summer when it is needed the most.

Silent failures are not rare: Dutch Railways (NS) handles hundreds of ser-
vice requests for HVACs in trains, precisely in the first months of the year with
temperatures above 25 ◦C. Periodic maintenance is the traditional mitigation
technique for such cases, adjusted for the application domain via field-data stud-
ies [4,11]. More modern approaches use physical, failure, and Machine Learning
(ML) models to implement predictive- or condition-based maintenance [2,3,10].

Whichever the underlying model, an ideal failure-prevention system would
deploy self-diagnosis fed by live data streams, that notify a control unit as soon as
threats are detected. Unfortunately this is overall unrealistic because (a) the shelf
life of HVACs can surpass 15 years, so many units used today were manufactured
even before the Internet of Things began; (b) in any case it is not possible to
detect, let alone diagnose every subcomponent and its possible failure causes.

In this scenario, ML can provide smart solutions that build up to a business
case with current assets [1]. This involves processing large amounts of data,
searching for patterns correlated to functional loss. However, this is hindered by
suboptimal data collection, specially if no ground truth is available, namely when
confirmed HVAC failures are not part of the input data.

In this work we propose a simple yet effective supervised ML solution to this
pressing challenge, tested in industry and consisting of two steps:

1. human-annotation bootstrapping, to detect functional loss on a fraction of in-
coach temperature readings, used to build an ML model capable of creating
an artificial ground truth (AGT) for the entire dataset;

2. digital-data failure prediction, that uses the AGT to train an ML model based
on failure diagnose codes, and can be used to foretell functional loss.

We define our approach for both steps, including ML features and data pre-
processing, applied to generic train coaches with two HVACs each. The outcome
of step 1 is a linear and lightweight ML model, pivotal in the construction of
the AGT, that extrapolates a minimal human-annotated input. A by-product
of such interface between steps 1 and 2 is a software program, that can detect
HVAC functional failure online based on temperature readings. Then step 2 uses
an independent (digital) dataset—of HVAC components diagnostics—to train
another ML model on the AGT. We aim to find patterns in the digital data that
can be correlated to later functional loss, thus revealing HVAC silent failures.

1.1 Scientific Approach with Practical Applications

Setting and Challenges. The general goal is to detect and if possible foretell
functional failures of HVACs in trains, when there is no ground truth to mark
such failures. By functional failure we mean that a specific function does not per-
form as needed, e.g. an HVAC should cool down the interior of a coach, but the
temperature remains above the one desired. This goal is particularly challeng-
ing given our choice of a data-driven approach: detection and prediction must

Layering ML Experiments in the Absence of Ground Truth 97

be solely based on a company’s data stream1. Here, the historical information
available for each HVAC are temperature readings and subcomponent diagnose
codes. Both are time series: the former has continuous data; the latter digital
data, i.e. a diagnose code in an HVAC (e.g. “high pressure in valve VA2” or “no
power in compressor”) is either on or off at each point in time.

We define our ML approach in Sects. 2 and 3, demonstrating its applicability
in Sects. 2.3 and 3.3 by means of a study on the rolling stock of NS. Thus we
showcase our work in a real-world scenario, and stress-tests the ML paradigm in
a situation with high-volume but low-information data. Furthermore, the study
with NS shows that our approach can be implemented in large-stock companies
(with standard data streams) by a team of 2–4 computer-technical personnel.

Concrete Objectives:

(O1) Build an ML model, whose input are the historical temperature readings of
all HVACs in a train, that estimates the probability of cooling malfunction
of each such HVAC currently in operation.

(O2) Build an ML model, whose input are the diagnose codes of an HVAC in
operation, that estimates its probability of having a cooling malfunction.

(O3) Extrapolate objective O2 forward in the time series, to estimate the prob-
ability of malfunction before the next scheduled periodic maintenance.

We focus on cooling malfunctions as these are more critical for passenger comfort
(the temperature in a coach raises with more people) and they are more abundant
in our datasets than heating malfunctions. In objective O3 we use the diagnose
codes for prediction, and not the temperature readings, because this dataset is
richer (an HVAC has several components, each with possibly more than one
code) and we expect it to be more likely to show patterns that can be correlated
to silent failures. In contrast, patterns occurring in the temperature readings are
susceptible to be sensed by train personnel, thus not leading to silent failures.

ML Models. The proposed approach involves two supervised ML models, the
second built on top of the results of the first, keeping explainability in mind.

- Supervision: Although default solutions in the absence of a ground truth point
at unsupervised learning, our objectives involve classification and regression,
which require labelled datasets for supervised learning. We label data manually
to overcome this for objective O1: simple rules allow non-experts to detect too-
high temperatures indicative of cooling failures. To make the process manageable
we label small independent data subsets, then extrapolate to the whole time
series, and cross-validate the results; full details are in Sect. 2.

- Layering: In contrast, non-experts cannot interpret how diagnose codes from
subcomponents indicate functional HVAC failure. But these HVACs are the same
units whose malfunctions were labelled for the temperature-based model. Thus
we use the result of the process performed for the temperature-based model, as
labelled dataset on which to train the diagnose-code-based model.

1 Besides being COVID-friendly, this is less cost- and time-consuming (although
arguably less flexible) than mechanical experiments by technicians and engineers.

98 C. E. Budde et al.

- Explainability: On top of suitability and performance, we select ML tech-
niques to reach our objectives with the highest amount of transparency. White-
box approaches like this are key for the acceptance of data-based solutions,
specially in industrial sectors such as railways where processes are traditionally
expert-driven. Objective O1 uses temperature: this is linear data, which partly
motivated our choice of a logistic regression (LR) solution. We use LR also for
Objective O2 and O3, but this can only estimate the likelihood of malfunction
of a set of diagnose codes. It is of additional interest to tell how each individual
code contributes to that estimation: we use decision trees (DT) for this purpose.

Main Results. On the one hand, • our LR model for objective O1 can detect
HVAC failures in real-time. On the other hand, • we could not find evidence
of correlation between our HVAC diagnose codes for objective O2 and O3, and
HVAC cooling malfunctions. As a further result, • our data features (for all ML
models) could be used to study other types of failures and systems.

2 Learning HVAC Failures from Temperature Readings

To reach objective O1 we use the readings of temperature sensors inside train
coaches to detect malfunctioning HVACs. This Sect. 2 introduces our steps for
data preprocessing, and for manual data labelling, to bootstrap the entire work.
We also define the features used for LR, and the training and testing steps. The
Sect. 2 ends showing our empirical studies done in the trains of NS.

2.1 Data Preparation

Input. This step works on continuous-valued data, formatted as a time series
of HVAC temperatures. So for each time point and for each HVAC, the input
indicates the temperature inside of the coach that HVAC is responsible for.

Preprocessing. Temperature values outside the range [−20 ◦C, 60 ◦C] are con-
sidered outliers, and replaced by NaN in data imputation. Moreover, data streams
may have interruptions that appear as missing values in the time series, which
must also be imputed or discarded. If the missing data spans for less than 90 min
we use linear interpolation to fill the gap—this was always the case for our NS
studies—; else we impute by filling with NaN.

Fig. 1. In-coach temperature set by control temp.

Those two steps remove
or replace values that will
later be used for LR. In
addition, the desired tem-
peratures must be com-
puted, since the LR model
of this step will be trained
on human-annotated data,
which must be created by
comparing in-coach (actual) temperatures to set (desired) temperatures.

Layering ML Experiments in the Absence of Ground Truth 99

More in detail, the automatic operation of an HVAC is typically regulated
by a thermostat and a set of rules, that use a control temperature—e.g. from
outside the train—to dictate the temperature desired in-coach: see Fig. 1. These
so-called set temperature values are computed from the (time series of) control
temperature values, using functions defined by the temperature-regulation rules.

Data Labelling. Supervised learning algorithms, such as LR, require labelled
data. One contribution of this work is how to perform these studies on unla-
belled data, i.e. when there is no ground truth indicating the moments in which
an HVAC is malfunctioning. For that, we note that cooling failures can be spot-
ted by (non-expert) human inspection, by comparing the desired and achieved
temperatures inside of the train coaches. Thus we propose a bootstrapping pro-
cess based on a manual labelling of 1–5% of the available data as follows.

Fig. 2. Temperature plots used in the manual-labelling bootstrap process

Humans interpret images better and faster than numeric values, so the tem-
perature time series should be plotted as in Fig. 2. In particular our plots show
two values per HVAC because each coach has two decks, and an HVAC controls
the temperature of both decks in one side of a coach. For instance in coach A1 ,
HVAC V20 controls the temperature of the lower and upper deck of the back side.

These plots of internal temperatures must be time-aligned to the control
temperatures, so it is visually straightforward to match high internal values
with control values. Observing such high values suggests a cooling failure in the
HVAC. For instance in coach B1 , the HVAC V23 shows such positive deviation.

100 C. E. Budde et al.

However, temperature deviations might also be explainable as data anoma-
lies. If false positives are undesired (bringing trains to maintenance is costly)
a conservative approach is suggested, where labels are applied iff other HVACs
show correct performance during the same time period than the offending unit.
For instance in Fig. 2, this is the case for V23 in coach B1 after 15:00. But
from 7:00 to 12:00 both V23 and V22 exhibit oscillatory values that are less easy
to interpret as a malfunction, and thus we omit labelling that time period.

Also periods of HVAC correct operation must be labelled, so the model learns
to tell them apart from potential silent failures. This is the case of both HVACs
in coach A1 , that keep the temperature at their set values despite the high control
temperatures. Thus in our case, a true positive is when the ML model tells an
HVAC is failing, and this coincides with a human hot label. Instead, a true
negative is when the ML model tells an HVAC is operating correctly, and this
coincides with a human healthy label.

Table 1. Manual labels for Fig. 2
The result of such process

are human-generated entries
as in Table 1, which indi-
cate the time periods of func-
tional correct- and incorrect-
operation of an HVAC in a
train. Note that we label HVAC
V22 in coach B1 as healthy in the period when V23 is labelled as hot. This is due
to the low temperatures observed for V22 in that time period, indicating that it
was over-cooling its side of coach B1, in an attempt to compensate for the high
temperatures on the other side.

Practicality vs. Correctness. Human labels can be biased, specially when
coming from images susceptible to interpretation. Our guidelines on when to
label an HVAC as (un-)healthy reduce this bias, but cannot suppress it. More-
over, plots inspection is a time-consuming process that we suggest to perform on
less than 5% of the data. To quantify the resulting subjectivity, N > 1 persons
should label independent data sets following the same rules. Then active learning
can be used to compute the inter-rater reliability: create training data from the
sets labelled by e.g. �N

2 � persons, and then validate the data of the rest [9]. This
allows using metrics such as the area under the receiver operating characteristics
curve, to validate whether the different and independent manual labellings are
consistent. A concrete example of such procedure is shown in Sect. 2.3.

2.2 Machine Learning Experiment

Our feature engineering process defines four data features to perform LR for
objective O1. If data volume is too large because the frequency of the time
series is high, e.g. a data point per second, the averages of a rolling window can
be used. This involves defining the window size and the step used to discretise
the time series. We do this to define four features over a rolling window of N
steps.

Layering ML Experiments in the Absence of Ground Truth 101

Set Point (SP). This feature compares the coach temperature to the set tem-
perature. More specifically, SPc,v,d is the average of the differences between the
in-coach temperature on deck d of coach c in the side corresponding to HVAC v(
TI c,d,v

i

)
, and the desired (set) temperature on that deck of the coach

(
TS c,d

i

)
,

for each time step i in a rolling window of N steps. We use c to indicate both
a coach and its train. We also define a feature SPc,d,v that compares TS c,d

i to
the temperature kept by the HVAC v that is on the opposite side of v in coach
c (this feature is omitted for coaches with a single HVAC):

SPc,d,v =
1
N

N∑

i=1

TI c,d,v
i − TS c,d

i SPc,d,v =
1
N

N∑

i=1

TI c,d,v
i − TS c,d

i .

The sign of SP is informative: for cooling malfunctions only positive values are
relevant. The magnitude of the difference should be positively correlated to the
(cooling) malfunction probability. Similarly, the magnitude and sign of SP are
related to possible compensations of HVAC v for failures in v.

Compensation Behaviour (CB). This feature is a specialisation of SP, that
compares directly the temperature on opposite sides of a coach. CBc,d,v is the
difference between the in-coach temperature of HVAC v and of v, telling the
degree to which v must compensate for the possible lack of cooling of v:

CBc,d,v =
1
N

N∑

i=1

TI c,d,v
i − TI c,d,v

i .

Comparison to Other Coaches (COC). The set-point temperatures among
all coaches in a train should be almost equal. COCc,v compares the average
temperature on both decks of a coach TI c,v

i = 1
2

(
TI c,1,v

i + TI c,2,v
i

)
against the

corresponding median over all other coaches:

COCc,v =
1
N

N∑

i=1

TI c,v
i − median

c′ �=c

(
TI c

′,v
i

)
.

This helps to spot inactivity: if the train is in standby, the HVACs could be inac-
tive and let temperatures raise, but this should happen in all coaches similarly.

Defective Control Sensor (DCS). This feature tries to determine whether
the control sensors in a coach are defective, which would result in an incorrect
set temperature value. DCSc compares the temperature measured by the sensor
TC c of coach c against the median over all other coaches:

DCSc =
1
N

N∑

i=1

TC c
i − median

c′ �=c

(
TC c′

i

)
.

ML Model. These features can be used to train a Logistic Regression classifier.
We choose LR over other ML solutions because temperature data is unidimen-
sional, so a linear classifier should suffice to divide HVAC malfunctions from

102 C. E. Budde et al.

their normal operation. Indeed, linear models can be high-accuracy detectors of
HVAC availability [3,10]. Furthermore LR is known to be computationally fast,
resistant against overfitting, and it can produce probabilistic values (indicating
failure likelihood), as opposed to a binary output (defective/healthy).

After training and assessing this ML model, the features and permutation
importance can be extracted, to determine which features contribute the most to
the generalisation power of the model. As minimal-detection boundary a random
binary feature can be introduced, which contains no information and hence no
detection power. Computing the importance of this random feature helps to
understand the relative importance of the other features.

2.3 Study on Rolling Stock of NS

We used the approach defined above to detect HVAC failures in the historic data
for 2 months of operation (in summer) of 176 double-deck trains of NS.

Data. A sample in this experiment is a 1 h window corresponding to one HVAC,
for which all features were computed. The time step was 30 min. The resulting
class distribution had an imbalance of ratio 5:1 in favour of the healthy-label
class, which we balanced via class weights as is common practice [7].

Assessment. The performance of the resulting LR classifier was measured via
the Receiver Operating Curve (ROC), summarised with the area under the ROC
(AUC); and also with the Precision Recall Curve (PRC), summarised with the
average precision score (PRS). For this we used a 4-repeated stratified 4-folded
cross validator [6]; we also grouped samples per HVAC, to avoid comparisons of
temperature readings (human-labelled vs. ML-predicted) across different units.
For stratification we added an indicator of whether the groups contain samples
of the hot or healthy class, with the resulting distribution 17 (hot) vs. 71.

Main Result. Figure 3 shows how the data samples are automatically labelled
by the resulting LR model. The probability of cooling failure of either of the
HVACs in a coach is indicated by the value of the colour on a bar below the
temperature lines: darker red indicates higher malfunction probability.

Fig. 3. Detection of HVAC malfunctions by LR model from temperature readings

Layering ML Experiments in the Absence of Ground Truth 103

Model Performance. Figure 4a and 4b show respectively the ROC and PRC
for this model. The dashed green lines are the ROC (and PRC) for the splits on
either the test or train data; the solid blue line is their mean. The AUC of the
ROC is 1.00 on average for both test and train sets, denoting an approximately
perfect score of the LR model, to detect both healthy and malfunctioning HVACs.
The PRC points in the same direction, with PRS values of 1.00 and 0.99 on
average resp. for the train and test sets, which further indicates that the model
is not overfitting on the training data.

Fig. 4. Performance of the LR classifier from temperature readings

Inter-rater Reliability Performance. We also computed the ROC and PRC
to validate the human-labelled sets as indicated in Sect. 2.1. There were 191
samples (1% of the data available) distributed randomly and labelled indepen-
dently by two authors of this work. The resulting AUC and PRS values were
0.99 on average for both cases, again denoting an excellent classification and a
negligible bias in the bootstrapping used as artificial ground truth.

Feature Importance. Figure 5 shows the features and permutation importance
of the LR model. The average feature importance (across all splits) is visualized
with horizontal light-blue bars; the blue whiskers are their 95% confidence inter-
vals. Figure 5 shows that features COC1 (Comparison to Other Coaches) and
CB2 (Compensation Behaviour for the upper deck) are consistently ranked as
the most predictive features, in that order. In contrast, DOS1 (Defect Control
Sensor), SP3, and SP4 (Set Point for the complementary sides of the coaches),
are the least useful features. Furthermore, the ranks for train and test sets in
the permutation tests are equal, indicating that the model is not overfitting; and
only features with very similar importance change among ranks.

104 C. E. Budde et al.

Fig. 5. Importance of features used for the LR classifier from temperature readings

3 Learning HVAC Failures from Diagnose Codes

To reach objectives O2 and O3 we use the diagnose codes automatically sent by
the HVACs to the data hub of the company. The intention is to detect malfunc-
tioning HVACs online: with present data only, and also based on past readings.
This section introduces our steps for data preprocessing and automatic labelling,
defines the features used for classification, and explains the training and testing
steps. The section ends with our studies in the trains of NS.

3.1 Data Preparation

Input. This is digital data: a diagnose code (e.g. “high pressure in valve VA2”)
identifies an event triggered by an HVAC component, including its activation
and deactivation time, e.g. x = (id : 333, start : 658210639, end : 658216644).
We format this input data as a time series of codes corresponding to HVAC
components. So for each time point and for each HVAC, we are able to know
whether diagnose code x is on or off.

Preprocessing. Code ids must be chosen or computed s.t. an id matches a type
of symptom, regardless of the unit where it occurred. For example if the label
of a code includes the HVAC or train numbers where it happened, this must
be stripped from the label used as unique id, e.g. by grouping. Diagnose codes
without an id or activation time must be discarded. Instead, missing deactivation
times can be imputed if there is a standard deactivation time of all HVACs, e.g.
when the trains are shut down for the night. We observed missing deactivation
times on less than 1% of the data analysed from NS, for which we inserted the
deactivation time corresponding to the end of the working day.

Data Labelling. We apply the proposed ML layering: use the LR model from
the previous step, to build an artificial ground truth of HVAC malfunctions used
in this step for training and testing. Therefore, unlike the previous step where
the main input was human-generated and covered 1–5% of the data, here the
AGT is automatically generated (via the previous LR model) and covers the
whole dataset. We highlight that this scheme hinges on obtaining high-quality
extrapolations in the previous step, such as those presented in Sect. 2.3.

Layering ML Experiments in the Absence of Ground Truth 105

Technically, this requires to match the discretisation used for the temperature
time series, to that of the diagnose code time series. The work-day window of a
train is too coarse: although an HVAC might be broken, the functional failure is
only noticeable when cooling is needed, e.g. in the afternoon when the outside
temperature rises. Moreover the windows and labels chosen must permit feature
extraction: for the digital input in this step, all features are based on the presence
of codes during the time periods when HVACs fail (or are deemed healthy).

Fig. 6. An example of windows that divide the work day in 5 sections, for which we
show the aggregated probability of HVAC malfunctions coming from the AGT. Periods
that are labelled healthy (green), defect (red), or none (gray), are indicated by
colours in the narrow bar under the windows. (Color figure online)

A generic solution is to split the work day in windows, labelled as healthy or
defect (or none) using the AGT, i.e. the aggregated failure probabilities. This
can be parameterised with thresholds 0 < T� < Th < 1 such that the window
corresponding to an HVAC is healthy if its probability of failure is below T�; if it
is above Th the window is labelled defect; and if the probability falls in [T�, Th]
no label is applied. Further logical conditions include e.g. no healthy labels for
HVACs whose failure probability is above T� at any point of the day.

3.2 Machine Learning Experiment

For objective O2 we define one feature that indicates whether a code is present
during a healthy- or defect-labelled period. For O3 we define three features that
quantify the occurrence of the code in the time before a labelled period. Thus all
features need to match codes to labelled HVAC periods, which we do as follows.

The i-th occurrence of diagnose code x is given by a time interval [xon
i , xoff

i].
Similarly, for an HVAC period p labelled healthy or defect we have [pstart , pend]
(an HVAC period p is implicitly linked to a specific train and coach). We say
that code x is present during period p if there is an occurrence of x in which
these time intervals overlap: ∃ i . [xon

i , xoff
i] ∩ [pstart , pend] �= ∅, as illustrated by

the red segments in Fig. 7.

Code During Period (CDP). This is the Boolean feature used for objec-
tive O2. It determines, for each (time window of each) healthy/defect period p,
whether diagnose code x was present during p:

CDPp,x ≡ ∃ i . (xon
i � pend) ∧ (xoff

i � pstart).

106 C. E. Budde et al.

Fig. 7. Occurrence of diagnose codes during healthy- or defect-labelled periods of an
HVAC. In practice, p is divided into time windows as in Fig. 6. (Color figure online)

Code: Number of Days (CND). This integral feature is used for objective
O3. For a time window equal to the periodic maintenance of the HVACs, T , and
backwards from the end of a period p, it counts the number of days since code
x was last observed, introducing NaN if it was not observed:

CNDp,x = CDPT
p,x ? days

(
pend − maxi{xoff

i | xoff
i � pend − T }

)
: NaN,

where (cc ? tt : ff) is the ternary operator on condition cc, true case tt, and false
case ff , and CDPt

p,x is the CDP feature bounded from below in time by pend − t.

Code: Number of Occurrences (CNO). This feature is similar to CND, but
counts the number of occurrences of code x in the interval [pend − T , pend]:

CNOp,x = CDPT
p,x ? #{xi | xoff

i � pend − T } : NaN.

Code: Cumulative Time (CCT). This floating-point feature counts the total
time that code x was active in the time window [pend − T , pend]:

CCTp,x = CDPT
p,x ?

∑
{xoff

i − xon
i | xoff

i � pend − T } : NaN.

ML Models. These features can be used to train different kinds of classifiers.
For objective O2 we use logistic regression (as with O1), to check whether the
full set of diagnose codes has good detection capabilities of HVAC malfunctions.

However, the components of an HVAC produce different codes, which could
have different importance to predict a general failure. It would be useful to learn
how each code contributes to the failure probability of the whole HVAC. This
is in the best interest of companies, whose data streams already contain these
codes, and thus could implement simple predictive maintenance rules such as
“if codes x and w are seen together, send the HVAC to maintenance within n
days”.

For this purpose we also train a Decision Tree model (DT) for both objec-
tives O2 and O3. Besides learning to estimate malfunctions, DTs can unfold the
estimate to indicate how much each feature contributes to the total probability.

Layering ML Experiments in the Absence of Ground Truth 107

3.3 Study on Rolling Stock of NS

We apply this approach to the same trains used in Sect. 2.3. However, the features
for objectives O2 and O3 are computed from two inputs: the diagnose codes, and
the AGT computed from temperature readings in the previous step.

Data and Assessment for Objective O2. Only periods that contained a
maximum (“outside”) control temperature above 24◦ were used, to ensure that
the HVACs had to cool down the train. On top of that, periods without active
diagnose codes were discarded, since the source of information for CDP (the
feature used for objective O2) is the intersection between diagnose codes and
healthy/defect periods. The resulting data set contained 294 points, distributed
with an imbalance ratio of 2:1 in favour of the healthy class. This data was used
to train an LR model, and also a DT model. These were assessed via the ROC
and PRC, equivalently to what was done for the LR model of the temperature
readings. Data was stratified by grouping samples by HVAC, and adding an
indicator on whether these groups included samples of the healthy class (66% of
the total), defect (20%), or both (14%). Also here we added a random binary
feature with no detection power, to draw the line of useful codes when we build
the ranking based on feature importance.

Data and Assessment for Objective O3. The scheduled maintenance for
the fleet under consideration occurs approximately every 3 months. Therefore
we chose T = 12 weeks, which results in a large dataset on which to compute the
features CND, CNO, CCT defined for this objective. To alleviate computations
we randomly selected 1000 healthy periods, but kept all (625) defect ones: this
reduced the data imbalance without hindering our intention to foretell members
of the defect class. From this set we also filtered out periods with max temper-
ature below 24 ◦C, and which did not coincide with any diagnose code (in their
[pend − T , pend] time window). This resulted in a balanced data set, with 499
members of the healthy class and 496 of the defect class. We used this to train
a DT classifier, but omitted the LR classifier since the data was too sparse and
we expected no further gain w.r.t. DT. Assessment was performed as for the
previous objective: in this case the groups including samples of the healthy class
added up to 61% of the total, and defect was 24%.

Performance of the LR and DT Models for Objective O2. Figures 8a
to 8d show the ROC and PRC curves obtained for the two models trained on
the CDP feature for objective O2. As before, the blue lines are the average of
different splits between train and test sets. The intention was to use the diagnose
codes to detect HVAC failures, i.e. determine which codes occur during functional
loss of these units. The corresponding curves in Fig. 8 show that the correlation
between the features and the defect (or healthy) periods of the HVACs is very
low. The AUC for the ROC of the LR model is 0.6 on average, and the PRS for
the PRC is 0.43. These low values suggest that the codes in our dataset, or the
CDP feature used here, cannot detect HVAC failures in real time. However, the
low values can also be linked to issues with the previous step, e.g. the AGT built
with the LR classifier could be inaccurate. We discuss this further in Sect. 4.2.

108 C. E. Budde et al.

Fig. 8. Performance of ML models from different features of diagnose codes (Color
figure online)

Performance of the DT Models for Objective O3. Figures 8e and 8f show
resp. the ROC and PRC curves for the decision tree model built on features
CND, CNO, and CCT. These use past information, which was expected to help
the DT classifier. However Fig. 8 shows differently, as the resulting ROC and
PRC are 0.5 and 0.48 resp. As above, this suggests that the diagnose codes, or
all features used to interpret them, cannot be faithfully used to detect HVAC
failures for the given dataset used. In that sense it is important to highlight that
our data covered only two (summer) months, which might well be insufficient to
discover the correlations sought. We touch upon this point again in Sect. 4.2.

Feature Importance. The rankings of feature importance (not included here)
are another indicator of the low detection/prediction capacity of the dataset and

Layering ML Experiments in the Absence of Ground Truth 109

features used for objectives O2 and O3. For the LR model, the permutation tests
always place the random feature among the 10 most important codes. For the
DT models of both feature sets (CDP on one side, and {CND, CNO, CCT} on
the other) this does not happen, but the best-ranked code is an HVAC self-test,
which is not expected to have true predictive capability of HVAC failures.

4 Final Discussion and Perspectives

4.1 Temperature Readings to Detect HVAC Failures

The results of the LR classifier in Sect. 2.3 make it clear that it is possible to
identify HVACs with cooling failures based on temperature readings.

We note that the performance of our model could be experiencing a positive
bias, related to the conservative rules applied to manually label hot or healthy
periods. This could have resulted in relatively easy predictions for the NS input,
as we intentionally ignored anomalies, and focused on data with high probability
of coming from a defective (or healthy) HVAC.

To further improve the capabilities and scope of application of this model, one
could use ground-truth labels of HVACs malfunctions (if available), to reduce
any potential bias introduced by our manual annotation process. If that is
not feasible, then manually labelling more data and employing multiple human
annotators—as we show in Sect. 2.3—should also reduce any bias.

Regarding feature rankings, the COC feature (Compare to Other Coaches)
is clearly the most relevant to determine HVAC malfunctions. Its importance
seems nearly high enough to base all predictions on it alone. However there are
scenarios where the SP (Set Point) and DCS (Defect Control Sensor) features
are required, e.g. if the control sensors of the coaches have a manufacturing
failure. Moreover, defects in the outside temperature sensor are interesting on
their own, since they require different maintenance than HVAC systems, and
may cause misbehaviour of any train component that depends on their data.

Other features for this dataset appear less important and could be removed
without deteriorating the quality of the resulting LR model. We note however
that another practical solution to remove features is to count with information
that indicates when the HVAC is actively heating/cooling. In that case it should
be possible to work with the SP features alone.

4.2 Diagnose Codes to Detect and Predict HVAC Failures

The results of Sect. 3.3 show that we could not find strong evidence of
correlation between diagnose codes and HVAC failures, given our limited
dataset and choice of LR and DT classifiers.

Further analysis revealed that no codes are present in 97% of the periods
labelled as healthy by our LR model from the previous step. This could indicate
good data quality, but also no codes are present in 80% of the periods labelled
as defect. In fact, the tables built for the features (of intersections between

110 C. E. Budde et al.

healthy/defect periods and diagnose codes) were very sparse, e.g. 85% of the
total data was purely zeroes for the CDP feature computed for objective O2.

This shows few intersections between HVAC malfunctions and codes in gen-
eral, despite the high accuracy of the LR model that built the AGT. Such lack of
intersections could be explained by a relative absence of codes, that in turn might
have two explanations: the HVACs may be sending more events than the ones
received, with messages being lost in the data stream; or the diagnose system of
the HVACs could have limitations, thus sending less codes than required.

Nevertheless, we highlight that the diagnose codes are designed to identify
specific errors in subcomponents of the HVAC. It may be that, contrary to our
initial hypothesis, the codes in our dataset do not cover failures in components
that can be related to cooling failures in the HVACs. Overfitting is yet another
explanation for this result, since a few samples (i.e. independent cases of broken
HVACs) are trying to be classified with many dimensions (i.e. diagnose codes).
Moreover, the AGT used for this step comes from ML extrapolation of human-
labelled data. However good the accuracy of the resulting LR model, it remains to
be proved that the defect-labelled periods truly correspond to defective HVACs.

4.3 Perspectives

In Sect. 4.1 we indicate two ways to improve the usability of the LR model based
on temperature readings: add ground-truth data regarding HVAC malfunctions;
and add activation data regarding HVAC cooling/heating.

Regarding features and their importance, the outcome of our feature
engineering process—see Sect. 2.2 and 3.2—could be generalised to
other rolling stocks or systems. These features can be used on any train,
or vehicle, or building, whose architecture is similar to those of this study. That
is: having a main unit (train/building), divided in connected adjacent compart-
ments (coaches/rooms), each with an HVAC and one or more temperature sen-
sors. In particular, even though our studies are focused on cooling, the same can
be done for heating, and also for ventilation e.g. using CO2 sensor readings.

Another promising extension would be to use the temperature readings to
foretell a malfunction. For instance, in our rules for manual labelling we disregard
zigzag patterns as those observed in Fig. 3. It could be possible to build an
ML model capable of finding correlations between these (or other) temperature
patterns in time, that serve to estimate a probability of the HVAC failing before
the next scheduled maintenance. For this we foresee the use of neural networks
and frequency analysis, which are more complex (and more opaque, but also
more powerful) than the simple and explainable LR approach followed here.

Regarding the diagnose codes, a first attempt to improve our results should
use a larger dataset, e.g. covering several years. Also, the same features could be
used in other sets of codes, e.g. from other train types, to determine whether it
is the feature engineering process (and not the dataset) that requires revision.

Beyond HVAC cooling failures, diagnose codes are promising to guide the
first steps of maintenance. For this, maintenance data serves as ground-truth to
indicate the cause behind an HVAC failure. Further data analyses would reveal

Layering ML Experiments in the Absence of Ground Truth 111

the preceding diagnose codes, which could be used in future failures to indicate
to technicians where to look first, as a new broken HVAC arrives for repair.

Acknowledgement. The authors thank Nick Oosterhof, who contributed with invalu-
able discussion and feedback that helped to carry out and shape this work.

References

1. Aslansefat, K., Kabir, S., Gheraibia, Y., Papadopoulos, Y.: Dynamic fault tree
analysis: state-of-the-art in modelling, analysis and tools, pp. 73–112. Taylor &
Francis (2020). https://doi.org/10.1201/9780429268922-4

2. Catelani, M., Ciani, L., Guidi, G., Patrizi, G., Galar, D.: Estimate the useful life
for a heating, ventilation, and air conditioning system on a high-speed train using
failure models. ACTA IMEKO 10(3), 100–107 (2021)

3. Daniel, R., et al.: Filtration understanding: FY10 testing results and filtration
model update. Technical report, Pacific Northwest National Laboratory (2011)

4. Hale, P., Arno, R.: Survey of reliability and availability information for power distri-
bution, power generation, and HVAC components for commercial, industrial, and
utility installations. In: IEEE Industrial and Commercial Power Systems Techni-
cal Conference (Cat. No.00CH37053), pp. 31–54 (2000). https://doi.org/10.1109/
ICPS.2000.854354

5. Lin, N., Du, W., Wang, J., Yun, X., Chen, L.: The effect of COVID-19 restrictions
on particulate matter on different modes of transport in China. Environ. Res.
(2021). https://doi.org/10.1016/j.envres.2021.112205

6. Ojala, M., Garriga, G.C.: Permutation tests for studying classifier performance. J.
Mach. Learn. Res. 11, 1833–1863 (2010)

7. Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning
in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

8. Ruijters, E., Guck, D., Drolenga, P., Peters, M., Stoelinga, M.: Maintenance anal-
ysis and optimization via statistical model checking. In: Agha, G., Van Houdt, B.
(eds.) QEST 2016. LNCS, vol. 9826, pp. 331–347. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-43425-4 22

9. Settles, B.: Active Learning. Synthesis Lectures on Artificial Intel-
ligence and Machine Learning (2012). https://doi.org/10.2200/
S00429ED1V01Y201207AIM018

10. Tehrani, M.M., Beauregard, Y., Rioux, M., Kenne, J.P., Ouellet, R.: A predictive
preference model for maintenance of a heating ventilating and air conditioning
system. IFAC 48(3), 130–135 (2015). https://doi.org/10.1016/j.ifacol.2015.06.070

11. Wong, D.: A knowledge-based decision support system in reliability-centered main-
tenance of HVAC systems. Ph.D. thesis, University of Newfoundland (2000)

https://doi.org/10.1201/9780429268922-4
https://doi.org/10.1109/ICPS.2000.854354
https://doi.org/10.1109/ICPS.2000.854354
https://doi.org/10.1016/j.envres.2021.112205
https://doi.org/10.1007/978-3-319-43425-4_22
https://doi.org/10.1007/978-3-319-43425-4_22
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.1016/j.ifacol.2015.06.070

Safety

Enhancing Autonomous Train Safety
Through A Priori-Map Based Perception

Ankur Mahtani1(B) , Nadia Chouchani1 , Maxime Herbreteau2,
and Denis Rafin3

1 FCS Railenium, 180 Rue Joseph-Louis Lagrange, 59300 Famars, France
{ankur.mahtani,nadia.chouchani}@railenium.eu

2 Thales Services Numériques SAS, 290 Allée du Lac, 31670 Labège, France
maxime.herbreteau@thalesgroup.com

3 SpirOps, 8, passage de la bonne graine, 75011 Paris, France
denis.rafin@spirops.com

Abstract. Autonomous driving tends to increase use of perception as a
tool for analyzing the environment before making a decision that could
impact driving. However, recent techniques based on machine learning
do not provide the necessary interpretability to ensure sufficient driving
safety. Combining multiple sources, deterministic or not, allows results
to be cross-referenced and therefore more reliable. In this paper, we pro-
pose a novel methodology that aligns an infrastructure mapping system
and point cloud analysis for railway tracks and catenaries perception to
ensure autonomous train’s safety. By using a deep learning model to rec-
ognize and classify rails with the implicit knowledge of the railway infras-
tructure, we exceed in performance all previous systems of infrastructure:
60.9% in mIoU for tracks segmentation and 9.27 points mMink for points
alignment with ground-truth, at an interesting runtime of 20Hz. More-
over, we propose an embedded solution for automatic monitoring which
avoids hours of maintenance traffic on the railway tracks. This solution
is used as acquisition system feeding map and perception in real-world
data for autonomous trains.

Keywords: Autonomous train · Railway map · Point cloud · 3D
semantic segmentation · Deep learning

1 Introduction

Autonomous trains are safety critical systems and require a robust environment
perception. This task refers to the ability to collect data from the environment,
classify it by their semantic meanings and then extract contextual knowledge;
such as track geometry, obstacle positions and even location of hazardous areas.

This research work is funded by the French program “Investissements d’Avenir” and is
part of the French collaborative project TASV (Train Autonome Service Voyageurs),
with SNCF, Alstom Crespin, Thales, Bosch, and Spirops.

c© Springer Nature Switzerland AG 2022
S. Collart-Dutilleul et al. (Eds.): RSSRail 2022, LNCS 13294, pp. 115–129, 2022.
https://doi.org/10.1007/978-3-031-05814-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05814-1_8&domain=pdf
http://orcid.org/0000-0003-2738-4705
http://orcid.org/0000-0002-2660-1352
https://doi.org/10.1007/978-3-031-05814-1_8

116 A. Mahtani et al.

Indeed, perceiving the surroundings and the near field context are crucial for
safe navigation. The challenge of this paper is to improve the train’s localization
on the track with the additional input of perception. One of the main issues is
rails detection, which correspond to the surface enabling the trains to roll upon
depending on their wheels. It has been an exhaustive research topic, similarly to
road detection in the fields of autonomous cars and advanced driver assistance
systems. However, some challenging scenarios such as long distance detection
or multi-modal computer vision solutions are not fully addressed. Indeed, the
railway environment is non deterministic. For instance, illumination and weather
conditions can influence the detection performance. In fact, the sensing provides
collections of data based on cameras, lidars, radars or other sensors, which are
affected by the outdoor conditions. How to leverage the whole available on-board
data to improve the detection performance?

On one hand, the required data for environment perception can be captured
using embedded sensors or a fusion of them. On the other hand, autonomous
trains hold an on-board mapping system describing the whole railway infras-
tructure to precisely localize themselves and to navigate safely on the tracks.
The railway infrastructure information comprises plans of track constructions,
geographic characteristics such as curves and gradient of lines and other func-
tional network entities such as signs and panels. Does using maps enhance the
performance of perception systems and then the safety of autonomous trains?
Trains autonomy is subject to a SIL 4 (Safety Integrity Level) safety level accord-
ing to the EN 50129 norm in order to ensure train driving safety, compliance
with signaling, localization, transmission of information and speed regulation
[17]. In this paper, we propose a new solution for environment perception based
on the embedded mapping system. The obtained results confirm that the use
of the cartographic information as input to the perception function improves
the performance of detection. These results enhance the environment perception
functions of autonomous trains which can facilitate its certification according to
SIL 4.

The remainder of this paper is structured as follows. Section 2 provides an
overview of related research work. The proposed methodology and solution
are detailed in Sect. 3. Section 4 details the obtained results. The final section
presents conclusions and future work.

2 State of the Art

In this section, we present an overview of the related work and our motivations.

2.1 Infrastructure Modelling

Research and industrial knowledge management initiatives have proposed differ-
ent conceptual models for railway infrastructure. Some have become standards
adopted by several actors in the field.

Enhancing Autonomous Train Safety 117

RailSystemModel. Based on ISO 19148 for Linear Referencing, RailSystemModel
(RSM) is a UML conceptual model that aims to describe the whole objects of the
railway infrastructure [18]. This description is independent of uses, structured
in levels, and open to future developments. Ultimately, it covers all the subsys-
tems of the rail industry, at all stages of design, construction, operation and
maintenance. This model is a description of the railway infrastructure basically
the topology of the tracks. The latter is represented by objects in the Topology
package which are the carriers of other information. This description concerns on
the one hand an operational breakdown of the network infrastructure in the Net-
work package and on the other hand, positioning of these objects on the earth’s
geode through association with concepts from the PositioningSystem package.
The information attached to the topology can be geometric in the context of the
Location package and/or functional in the context of the NetEntity package.

IFC Rail. The Industry Foundation Classes (IFC) standards allow the Building
Information Modelling (BIM) description of an infrastructure [19]. Modelling
efforts, which have mainly focused on civil engineering, building construction
and road infrastructure, have recently turned to the railway. The IFC 4 standard
sees the appearance of a whole section dedicated to the description of railway
infrastructure. Under the new version of the IFC Standard, a paradigm shift on
the high-level model (migration from STEP/Express to UML) brings the BIM
community to look at the models existing in the various fields.

EULYNX. It deals with modelling a format to allow the exchange of signal-
ing information between infrastructure managers and signaling system providers
[20]. The selected format is XML, generated from an UML model which is being
aligned and linked with RSM. It includes a large set of signaling objects (signals,
locks, etc.) and related concepts (routes, needle protection, etc.).

2.2 Perception and Segmentation

The 3D segmentation task can be divided into three types: semantic, instance
and part segmentation. Semantic segmentation aims to predict object class labels
such as catenaries and tracks. Instance segmentation additionally distinguishes
between different instances of the same class labels. Part segmentation aims to
decompose instances further into their different components such as armrests,
legs and backrest of a same chair. Compared to 2D segmentation, 3D segmen-
tation gives a more comprehensive understanding of a scene thanks to 3D data
(e.g. RGB-D, point clouds, projected images, voxels, and mesh) contain richer
geometric, shape, and scale information with less background noise.

Our perception task can be summarized as a 3D semantic segmentation work
for catenaries and railway tracks. Segmentation of 3D scenes is a fundamental
and challenging problem in computer vision. The objective of 3D segmentation is
to build computational techniques that predict the fine-grained labels of objects
in a 3D scene for a wide range of applications such as in autonomous driving.
Using state of the art deep learning models on the SemanticKITTI benchmark

118 A. Mahtani et al.

[3,15] whose labels can be used in our case (persons, traffic lights, vegetation,
etc.), we evaluate models on our railway dataset and then analyze impact of
adding map data as input.

Points convolution semantic segmentation networks procure most accurate
results for catenaries and track diagnosis. Pointwise Multi-Layer Perception
(MLP) networks such as PointNet [5] and PointNet++ [4], graph convolution
based such as Attention-based Graph Convolution Networks (AGCN) [13] or
3DContextNet [12], or voxel based segmentation concepts of 3D semantic seg-
mentation are described in [14].

Point convolution-based methods perform convolution operations directly on
the points and on their neighboring points (like RSNet model [11]): the input
can be a single object from the part region segmentation or a small part of 3D
scene from the Object region segmentation. Points can be arbitrarily sorted in
specific orders [10], through dilated KNN search [9] or with KD-tree like PCNN
[8] to learn local features before points convolutions. (AF)2S3Net [6] consists of
an end-to-end 3D encoder-decoder CNN network that combines the voxel-based
and point-based learning methods into a unified framework. RandLA-Net [1]
introduces a lightweight neural architecture that can process large-scale point
clouds because it only relies on random sampling within the network and hence
requires much lesser memory and computation. The local feature aggregator [1]
obtains successively larger receptive fields by considering local spatial relations
and point features. The entire network contains shared Multi-layered Perceptrons
without relying on graph construction and kernelization and hence is efficient.
KP-FCNN model [7] introduces spatial weighted-convolution on all points of a
neighborhood given (KPConv), reducing the computation cost by the size of the
neighborhood. Furthermore, a deformable version of this convolution operator
was also introduced that learns local shifts to make them adapt to point cloud
geometry. The ease with which the KP-FCNN model can be adapted and iden-
tified by the geometry of the scene is the characteristic that made the model a
viable choice (it also has real-time performance and good compromise in terms
of mean intersection over union on public benchmarks) for the first part of the
proposed 3D semantic segmentation framework introduced in this paper.

3 Methodology

Figure 1 presents the overall architecture of our scientific contributions for the
railways sector community. We develop a fusion-framework that processes per-
ception data of lidar’s sensors and simultaneously geo-localization and map infor-
mation. This paper focuses on pointcloud processing and the fusion with map
data for better railway track segmentation.

Enhancing Autonomous Train Safety 119

Fig. 1. Overall architecture of the combination use of perception and map data for 3D
railway infrastructure semantic segmentation.

3.1 Our Database

Pointcloud Database. Collection of rich annotated dataset of lidar data in the
railway environment is a very meticulous work that can open novel tasks of 3D
detections and segmentations. We used a 64 layers lidar with multiple reflec-
tions to ensure robustness in the acquired points. These points contains depth
data, useful for object localization or object volume measurement. Acquisition
is made manually using 2 synchronized solid-state lidars to combine 550 000
points for each scan, accumulating over one million points per scan. The scans
contains colorized points by RGB camera synchronization (see Fig. 2) and are
geolocated. Acquisition were made in the region Hauts-de-France in France, and
our privileged line of test is between Aulnoye-Aymeries and Busigny stations.
As an example, there are around 300 scans on the Aulnoye-Busigny railway line.
The dataset is annotated for these classes of interest: ground, vegetation, build-
ings, catenaries, catenary poles, railway tracks, infrastructure (tunnels, bridge,
walkways, etc.). Some difficult points to annotate are classified as noise or non-
classified. Each point vector contains these types of data, in addition to 3D
spatial position: reflection intensity, number of deflection and deflection num-
ber, edge of flight line, classification value, RGB colorization of the point. These
different types of data give crucial and rich information which help for pointwise
segmentation. In this work, we do not work with the RGB camera and hence,
with no point colorization data.

120 A. Mahtani et al.

Fig. 2. Combined scan examples of the pointcloud dataset (with colorization informa-
tion) for railway perception.

Map Database. The mapping system provides a topological and geometric
description of the railway network. This system is based on RSM. It is fed by
processed Lidar dataset to have a description of the infrastructure objects, their
absolute positions as well as their types. SNCF-R1 data are also used to supple-
ment these data sets. In the Fig. 3, a track is described using a set of geometric
coordinates in the form of track segments.

Fig. 3. Excerpt from OpenData SNCF

1 https://ressources.data.sncf.com/pages/accueil/.

https://ressources.data.sncf.com/pages/accueil/

Enhancing Autonomous Train Safety 121

3.2 Our Approach

Based on the state of the art deep learning technique for 3D semantic segmen-
tation KP-FCNN [7], we propose a novel architecture of data fusion between
perception data from multiple sensors: lidar, Inertial Measurement Unit (IMU)
and Global Navigation Satellite System (GNSS) sensors added to an embedded
infrastructure map. 3D pointcloud datasets, which are more and more available,
are compulsory for applying our method. Nowadays, SNCF-R the manager of the
French national rail network, is making lidar acquisition campaigns to complete
their infrastructure databases. In a nutshell, laser points are processed through
KP-FCNN model, then predictions are improved by a set of segmentation rules
made upon the infrastructure geometry, explained below. They were specified by
experts of the railway domain. These assumptions led to processes we named the
SegRail method. The lidar scan is synchronized with the IMU and GNSS sensor,
making possible real-time correlation between data. Inertial and geo-localization
data are used to calculate crucial information of train’s run such as train position
for example. This position data is used to request the online map information
upon close and incoming railway infrastructure context data. This map data
is then correlated with prediction’s output of SegRail and allows performance
increase and therefore, safety improvement for autonomous trains. Our approach
is summarized in Fig. 1.

Fig. 4. SegRail method for rail segmentation correction.

122 A. Mahtani et al.

We built a SegRail module based on the following geometry assumptions on
the railway infrastructure tracks:

– The width of the rail is fixed;
– The separation between the rails is constant (1435 mm) for each physical

installation;
– The rail is constant (always visible in front of a train);
– The overall appearance is always consistent (usually no deformation).

These rules are strong high level assumptions and allow the establishment of
rules for optimizing the “perceived” trajectory of the rails in relation to the
ground truth trajectory given by the infrastructure mapping.

Taking into account these geometrical rules, we build the SegRail module pre-
sented in Fig. 4. This module aims to correct 3D rails segmentation by matching
map data with perception data. To do this, we correlate the polyline equations of
the tracks recorded in the map with the polylines predicted by the segmentation
model.

Firstly, we preprocess the input pointcloud by denoising all outliers points
that are too far from threshold planes extracted from map database. These
threshold planes are calculated by linear planes issued from arbitrary limits
around tracks. This step allows to remove all points that are not in the range of
the railway tracks in front of the train. We perform KP-FCNN network in infer-
ence upon the cleaned pointcloud. KP-FCNN network, trained on our dataset
presented in Sect. 3.1, runs in real-time and outputs good results of segmentation
on rails and vegetation labels.

Next step is the data fusion between map data and pointcloud data. It is
composed of three steps (Fig. 4):

– (a) Projection of the pointcloud in a 2D plan x-y
– (b) Lane clustering with K-means on lanes to get best approximated lines

equations
– (c) Lines equations similarity between predicted equations and extracted

polylines of map database

Our map database proposes 2D trajectography modeled by polylines equa-
tions for each geo-localization captured. As polyline fitting requires lane marking
clustering, we study light-weighted clustering techniques. Our first conclusion is
that 2D clustering is simpler and more efficient than 3D clustering, that’s why
we remove the Z coordinate and consider the Z coordinate difference as negligible
for 3D lane detection. We project the 3D point cloud onto x-y plane (a) to con-
duct clustering such as in Fig. 5. Without using the per-point difference obtained
by various differentiable renderers, we cast the learning of 3D point cloud gen-
eration from images containing objects silhouette as a 2D projection matching
problem. According to our preliminary results, we found that the consistency of
points sampled on different silhouette objects affects the performance, since the
2D projections on different silhouette images are from the same generated 3D
point cloud. Although this issue can be alleviated by sampling very dense points

Enhancing Autonomous Train Safety 123

Fig. 5. Prediction output of KP-FCNN model (a), after 2D projection on (x, y) axis.
Color scale reflects confidence score on predictions (the lighter the lower confidence
score).

within each silhouette with many different sampling methods, it would make the
loss calculation more costly.

This 2D projection now allows us to analyze features by region of interests or
pointwise using point neighborhood. As written before, pointwise operations are
computationally heavy and most of the time they cannot run in real-time. Other
factor, traditional clustering methods are bad at closely positioned or elongated
structures such as railway tracks. Then, we apply 2D lane clustering with K-
Means algorithm on line equations (b). The problem with the normal implemen-
tation of K-means clustering is that we need to know how many clusters exist in
the data. This is not available in the case of continuous lane detection. So we get
around that particular problem by comparing the cluster means that we obtain
from the K-means algorithm with the railway dataset. Moreover, experiments
show that usual K-means is better initialized by building parallel structure into
the clustering process. We apply the clustering algorithm inside each group of
line segments (split according to y-axis threshold, see Fig. 6). The basic idea of
clustering line segments is to find the “Average” of all the segments inside a
cluster. In the case of point data, K-Means clustering involves finding clusters
of point data. Thus, the algorithm provides us with the means of the clusters
(centroids). By using K-means algorithm, we simplify the task of non-ending line
equation similarity into local similarity.

Finally, we achieve 3D lane segmentation trajectory interpolation and cor-
rection by similarity with map polylines (c). Once we process the map database
to extract and compute railway tracks equations and clusters, we can plot them
on the same image as our clustered lanes segmentation (see left image of Fig. 7).
We observe a mismatch between the detected geometric points and the drawn
ground truth curves from the map. These imprecisions may be due to sensor

124 A. Mahtani et al.

Fig. 6. Pointwise clustering illustration (b). Red dots are the position of the centroid
and red dotted circles are examples of clusters. (Color figure online)

precision, train vibrations or KP-FCNN low confidence threshold. Our objec-
tive is to reduce as much as possible these imprecisions by combining map
curves equations (which we consider ground-truth) with predicted lanes. We
compute a similarity score and with a threshold, the farthest points are brought
together inside similarity-accepted threshold. We use Minkowski distance calcu-
lation between each points of a cluster of the extracted map and the clustered
pointcloud (c): we are achieving cluster-to-cluster feature comparison. We can
calculate Minkowski distance only in a normed vector space, which means: “in
a space where distances can be represented as a vector that has a length”. Map
database provide vector space and distances between cluster centers which are
normed vector space (absolute value are used). These distances give us a metric
to compare similarity in real-time between ground-truth (a-priori map knowl-
edge) and segmentation predictions such as in Fig. 7. In this figure, we show the
interpolations made with the Minkowski distance calculation. Minkowski gives a
threshold circle of accepted points to correct. We interpolated each point to the
nearest location under the Minkowski threshold. We named that step 2D point
interpolation (c). Figure 7 illustrates an example of results we obtained: right
image shows the corrections made on points after 2D point interpolation.

Enhancing Autonomous Train Safety 125

Fig. 7. Correlation results of map lanes with predicted lanes (c). Left image shows
the predicted lanes before similarity correction with lines equations, and right image
is the output lanes after 2D point interpolation.

4 Results and Analysis

This section describes the results and analysis made in this work.

Experimental Parameters. For this work, we acquired data with a mechani-
cal lidar: Hesai Pandar64 with 64 layers of lasers reflection, embedded in a French
Regional train. Concerning computational capacity, we use a Nvidia Quadro
RTX6000 GPU for training and tests purposes. The number of operations per-
formed during a forward pass of our network depends on the number of points of
the current batch (mostly 15 000 points per batch), and the maximum number
of neighbors of these points. Other hyper-parameters are similar as [7]. We use
6 as number of clusters to segment for the K-Means algorithm. We used Elkan
algorithm to optimize convergence of the K-Means clustering.

Metrics of Performance. For the 3D semantic segmentation task, we use
mean Jaccard or so-called intersection-over-union (mIoU) [3] over the railway
class, i.e.,

mIoU =
1
C

C∑

c=1

TPc

TPc + FPc + FNc
(1)

where TPc, FPc and FNc correspond to the number of true positive, false pos-
itive, and false negative predictions for class c, and C is the number of classes.
This metric indicates the rate of close predicted points to ground-truth.

We use Minkowski distance as a distance metric between railway track points
in map database and predicted railway tracks points. This distance is averaged
(mMink) for all points of the class “railway tracks” of a scan. Minkowski formula
is as follows:

mMink = D(X,Y) =

(
n∑

i=1

|xi − yi|p
)(1/p)

(2)

126 A. Mahtani et al.

Which can be simplified as Euclidean distance formula, because we are using
P = 2 in our 2D application. The mMink metric has no physical unit because
it is calculated upon points vectors. We also compare runtime of inference for
real-time applications. This metric is number of batch inferred per second, one
batch being one scan of the 64 layers lidar.

Table 1. Ablation study on the improvement of 3D lane segmentation on pointclouds.
Mean-Intersection over Union is calculated upon all rails present in each scan. Up
Arrow indicates that higher values are better and down arrow indicates that lower
values are better.

Method Experiment Dataset mIoU(%) ↑ mMink ↓ Runtime (Hz)↑
KP-FCNN Pretrained [7]

(baseline)

KITTI [3] 58.8% – 17.5

KP-FCNN Transfer learning Railway 46.4% – 14

KP-FCNN Trained from scratch Railway 54.3% 35.1732 14

SegRail (base) Preprocessed dataset Railway 60.9% 34.7636 20

SegRail (a) 2D projection Railway 60.9% 21.6333 20

SegRail (b) Unparallel lines

clustering

Railway 60.9% 26.8967 20

SegRail (b+) Parallel lines

clustering

Railway 60.9% 17.1452 20

SegRail (c) Map correlation Railway 60.9% 9.2753 20

Ablation Study. We conducted an ablation study to analyze each step (a), (b)
and (c) of our approach. See Table 1 for quantitative results and Fig. 5(a), 6(b)
and 7(c) for illustration. The experimental results obtained in Table 1 show that
on the railway dataset, we improved KPconv model performances with SegRail
(c) (after line 3 of the table) by 6.6% mIoU and mMink by 25.8979 points.

Finally, we obtained line equations on our test dataset, based on the output
of (c) experiment. They are the mean equations calculated over 300 scans.

Y + Z = 3.91e− 4X2 + 1.86X − 35.38 (3)

Y + Z = 1.87e− 4X2 + 1.88X − 13.08 (4)

Y + Z = 5.01e− 6X2 + 1.90X + 8.69 (5)

Y + Z = −4.28e− 06X2 + 1.90X + 13.19 (6)

Equations (3) and (4) refers to usual left railway tracks when having only 2
tracks and Eqs. (5) and (6) refers to right tracks.

We conducted this ablation study based on previous experiments and contin-
uously added features that improved performance. Our objectives are multiples:
keep the mIoU high and confident on point segmentation prediction, drop the
mMink score to lowest in order to comply with the map database, and keep
runtime high enough for real-time inferences.

Enhancing Autonomous Train Safety 127

Performance on the Railway Dataset. For comparative and extension of
this work purposes, we provide a table of performances on each class of the
railway dataset (Table 3). We evaluate different existing models based on mIoU
and runtime metrics. We trained these models with same hyper-parameters and
same train/test split of the dataset, for fair comparison between models (Table 2).
Table 1 shows that modules (a), (b+) and (c) corrected line predictions and
improved KP-FCNN segmentation.

Table 2. Benchmark of state of the art models on the railway dataset. This benchmark
justifies our choice of KP-FCNN model for the semantic segmentation task.

Model mIoU ↑ Runtime ↑
PointNet++ [4] 25.3% 11.5

RandLA-Net [1] 41.4% 22

Cylinder3D [2] 44% 10

KP-FCNN [7] 54.3% 14

Table 3. IoU results of our implementation from Table 1 for each class of the railway
dataset.

Model mIoU ↑ Tracks Ground Vegetation Building Catenary Pole Infrastructure

SegRail (c) 54.3 60.9 55.7 65.3 41.5 58.8 76.8 21.4

Main results on each class of the railway dataset presented in Table 3 on
the railway dataset show that our implementation is well adapted for railway
tracks and catenaries segmentation as they can be represented in the form of
polylines. However, the model is weak against other forms of objects such as
ground, building and infrastructure which are more likely to closed polygons or
other forms. These results outperform the state of the art. Indeed, our method
tend to accomplish more competitive performances in order to reach SIL 4.

Safety Enhancement. Improving safety is essential for driverless systems,
especially for autonomous trains. This would allow them to avoid accidents which
can be caused by different factors such as derailment. The latter caused 32 deaths
and 19 injuries in 2009, according to the report by Eurostat, the European center
responsible for statistical information [16]. To define an industrial solution for
increasingly secure autonomous trains, we propose a perception approach based
on computer vision through the processing of lidar point clouds and images, com-
bined with on-board mapping system, with the objective of improving derailment
prevention through reliable rails detection. This solution also makes it possible
to ensure a perception of the environment located at the front of the train by
means of sensors in order to detect and monitor the objects of the infrastructure

128 A. Mahtani et al.

and the obstacles located on and near the tracks. Thanks to the consistent detec-
tion results, we also ensure a reliable train localization and correct information
transmission. Achieving these performances ensures that SIL 4 criteria for the
safety of autonomous trains can be reached.

5 Conclusion

The 3D segmentation model developed proved its robustness to the SemanticKI-
TTI dataset and for the railway dataset. We used the network KP-FCNN as a
robust baseline to benchmark our approach, with the SegRail proposed method
which improved KP-FCNN performances by 6.6 points in mIoU on the railway
dataset and by pre-processing data, improved runtime frequency to 20 Hz. In
the same time, to make the model know the a priori railway infrastructure, we
added map data as additional input to confirm predictions of KP-FCNN. By
showing improvements in performance, we proved that map data is a must-
have in autonomous driving systems to ensure high confidence in predictions,
and so, increase safety of the AI-based system. Our approach is expandable to
other use-cases such as level crossing, train stations monitoring that may need
metrological pointwise perception and any other referenced map objects. The
proposed algorithm can be improved by using sensor fusion with a RGB-camera
for example. Technological redundancy between AI-based systems for monitoring
has very high confidence rates and can lead to reliable systems for all inter-actors
of the autonomous train.

References

1. Hu, Q., et al.: RandLA-Net: efficient semantic segmentation of large-scale point
clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11108–11117 (2020)

2. Zhu, X., et al.: Cylindrical and asymmetrical 3D convolution networks for LiDAR
segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2021)

3. Behley, J., et al.: SemanticKITTI: a dataset for semantic scene understanding of
LiDAR sequences. In: IEEE/CVF International Conference on Computer Vision
(ICCV) (2019)

4. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learn-
ing on point sets in a metric space. In: Neural Information Processing Systems
(NeurIPS) (2017)

5. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for
3D classification and segmentation. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2017)

6. Cheng, R., Razani, R., Taghavi, E., Li, E., Liu, B.: (AF)2–S3Net: attentive feature
fusion with adaptive feature selection for sparse semantic segmentation network
(2021)

7. Thomas, H., Qi, C.R., Deschaud, J.-E., Marcotegui, B., Goulette, F., Guibas, L.J.:
KPConv: flexible and deformable convolution for point clouds. In: Proceedings of
the IEEE International Conference on Computer Vision, pp. 6411–6420 (2019)

Enhancing Autonomous Train Safety 129

8. Wang, S., Suo, S., Ma, W, Pokrovsky, A., Urtasun, R.: Deep parametric contin-
uous convolutional neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2589–2597 (2018)

9. Engelmann, F., Kontogianni, T., Leibe, B.: Dilated point convolutions: on the
receptive field size of point convolutions on 3D point clouds. In: International
Conference on Robotics and Automation, vol. 1 (2020)

10. Hua, B., Tran, M., Yeung, S.: Pointwise convolutional neural networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 984–993 (2018)

11. Huang, Q., Wang, W., Neumann, U.: Recurrent slice networks for 3D segmentation
of point clouds. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2626–2635 (2018)

12. Zeng, W., Gevers, T.: 3DContextNet: KD tree guided hierarchical learning of point
clouds using local and global contextual cues. In: Proceedings of the European
Conference on Computer Vision (ECCV) (2018)

13. Xie, Z., Chen, J., Peng, B.: Point clouds learning with attention-based graph con-
volution networks. Neurocomputing 402, 245–255 (2020)

14. He, Y., et al.: Deep learning based 3D segmentation: a survey. arXiv: 2103.05423
(2021)

15. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The
KITTI vision benchmark suite. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3354–3361 (2012)

16. EURO NCAP. EURO NCAP advanced: Autonomous Emergency Braking, Septem-
ber 2013

17. Commission Européene. Norme Européene NF EN 50126 Applications ferroviaires
- Spécification et démonstration de la fiabilité, de la disponibilité, de la mainten-
abilité et de la sécurité, May 2003

18. UIC. Railtopomodel homepage. https://www.railtopomodel.org/en/
19. Eastman, C., Teicholz, P., Sacks, R., Liston, K.: BIM Handbook: A Guide to

Building Information Modeling for Owners, Managers, Designers, Engineers and
Contractors. Wiley, Hoboken (2008)

20. EULYNX Homepage. https://www.eulynx.eu/

http://arxiv.org/abs/2103.05423
https://www.railtopomodel.org/en/
https://www.eulynx.eu/

Assigning Safe Executed Systems
to Meanings

Lilian Burdy(B), David Deharbe, and Denis Sabatier

CLEARSY, Aix-en-Provence, France
{Lilian.Burdy,David.Deharbe,Denis.Sabatier}@clearsy.com

http://www.clearsy.com

Abstract. The B method is a formal method to design software compo-
nents and to prove that they are compliant with some formalized require-
ments, giving a way to build safety-critical programs. However, the cor-
rectness of the obtained programs obviously rely on the correctness of
those formalized software requirements. Using the CLEARSY Safety Plat-
form, a vital processing solution developed by CLEARSY (SIL4 certi-
fied, Certifer 9594/0262) with native B capabilities, we demonstrate here
a method to develop vital software with formal proofs directly attached
to the key system properties. For instance, a train localization system is
proven regarding the property stating that the computed location inter-
val shall always contain the actual train. Such proofs become possible by
combining software variables with variables representing physical entities
and their timed evolution, thanks to the guaranteed time and deadlines of
the CLEARSY Safety Platform. Thus, we avoid the problem of ensuring
the correctness of a complex set of formalized software requirements by
directly ensuring the wanted system properties. Assumptions and proper-
ties for the non-software parts are included in the same B model used to
develop the software on the CLEARSY Safety Platform.

Keywords: Formal modelling · System reliability

1 Introduction

Formal methods with proof support are a mean to specify the expected properties
of a system, to describe the behavior of this system and to verify that the
behavior description satisfies the properties [13].

Formal methods have long been applied in the railways. In particular, the B
method [1] has been used to develop safety-critical software components for more
than 20 years [3] and is still in use nowadays, e.g. in CBTC systems. In such
applications, the goal is to produce a software implementation of a specification
of the intended behaviour, expressed in terms of software entities. So its scope
is completely within the realm of the software. For instance, a requirement for
a train tracking function in a CBTC could be that the software representation
of the position of every train must be continuous.
c© Springer Nature Switzerland AG 2022
S. Collart-Dutilleul et al. (Eds.): RSSRail 2022, LNCS 13294, pp. 130–142, 2022.
https://doi.org/10.1007/978-3-031-05814-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05814-1_9&domain=pdf
https://doi.org/10.1007/978-3-031-05814-1_9

Assigning Safe Executed Systems to Meanings 131

CLEARSY has also been applying the Event-B method [2] to model whole
systems composed of interacting software and physical entities and to prove
system-level properties involving those [6,8,11,12]. Such system-level models and
proofs rely upon assumptions on the different sub-systems (including human
behavior). For example, a system-level requirement for a CBTC could be the
absence of train derailments; its proof would rely on assumption such as the train-
tracking function guarantees that, for every train, the software representation of
its position must cover the track portion it occupies.

Such assumptions involve both real, physical, entities (trains) and software
entities (the representation of the position of trains in the tracking function).
Again, formal methods may be applied to verify such assumptions. One app-
roach, following the system-level approach, is to formalize both physical and
logical entities and their behaviour in a single model and to prove that the
assumed property holds [5,7,10].

In this paper, we present a second approach where assumptions made at
system-level are part of the formal specification of the software and are guaran-
teed to hold on its implementation thanks to the correct-by-construction app-
roach of the B method and by guarantees provided by the underlying executing
platform, namely the CLEARSY Safety Platform1 (CSP).

The CSP is briefly presented in Sect. 2. Next, Sect. 3 presents accompanying
real-time constructs, describes how they are to be used to program real-time
constraints, and justifies the obtained guarantees. Section 4 presents the princi-
ples to apply these constructs to specify and verify system-level timed properties
provides two illustrating examples. Finally, conclusions are drawn in Sect. 5.

2 CLEARSY Safety Platform

CLEARSY has developed and certified the CLEARSY Safety Platform (CSP),
a solution to develop safety critical real-time embedded systems certified up to
SIL4. CSP provides a framework, based on the formal method B, to guarantee
software-level safety properties.

The CLEARSY Safety Platform is made of:

– A software library called CLEARSY Safety Platform library (CSPlib).
– A compatible single board vital computer (72.5 × 45 × 12 mm) based on a

composite safety architecture (CS0).

The hardware consists of two low power 32bits micro-controllers that continu-
ously cross-check. The software library contains a set of routines which help to
address the common challenges of a composite vital computing architecture.

The safety properties of the application are formalized in dedicated speci-
fying modules. The modules also embed the software implementation of their
specification. Thanks to the B method, such implementations can be formally
proved to comply 100% with their specification. The CSP includes a library, also
developed in B, providing the elements to express rich safety properties on soft-
ware execution.
1 https://www.clearsy.com/outils/clearsy-safety-platform/.

https://www.clearsy.com/outils/clearsy-safety-platform/

132 L. Burdy et al.

The CSP IDE provides a fully automatic dual compilation process that gen-
erates a binary executable and uploads it on the CSP platform. This executable
is guaranteed to execute faithfully the developed software or to fall back to a
stable vital state, as soon as the conditions of a safe execution cannot be guar-
anteed. Part of the safety is guaranteed thanks to a replicated execution of the
vital software. Each replica is generated by a different compilation tool chain.

The safety of the CSP has been established and certified (SIL4 level). The
purpose of this paper is not to discuss this safety: the topic here is the B formal
proof of an application program. So, we request the reader to take the CSP safety
for granted, i.e., that any application program developed for the CSP with the
CSP toolkit and according to the requested conditions will always perform as
defined in its B0 code, or a shutdown will ensure the absence of any permissive
output. B0 is the programming language included in the B method, featuring
standard programming constructs: scalar and array variables, IF, CASE, WHILE
constructs, etc.

Figure 1 sketches how the safety is ensured in CSP. Each micro-controller runs
the safety program twice, once for each of two replicas compiled independently.
Replica variables are compared using the CSPLib services. Those services also
provide timing, watchdog and liveness checks, interlocked with the application
replicas in such a way that any disappearance of any part whose timely process-
ing is required leads to shutdown of the affected micro-controller and ensures
the shutdown of the other one. In the safety proof, we demonstrated that any
compiling error, variable upset, clock drift, interrupt failure, ram or flash failure,
etc., even common mode PIC32 instruction processing error all lead to shutdown
before any wrong permissive output can be produced.

Fig. 1. Overview of the CSP safety architecture.

To develop an application program, the user writes the safety part in B0
(automatically replicated by the CSP toolkit) and the conventional parts in C.
Provided that the keys to produce permissive outputs remain “hidden” in the
B0 parts (as requested in the safety conditions), only binaries produced by the
CSP toolkit can upload with read-back check-sums matching the certificate and

Assigning Safe Executed Systems to Meanings 133

run to produce permissive outputs without shutdown. No operating system is
provided: the PIC32 micro-controllers run code either from the flow started at
initialization or started from interrupts.

B0 was chosen as the input programming language firstly to favor the use
of the B method to prove an application program, but also because we easily
developed the B0 to PIC32 assembly independent compiler. One could sketch
the B method as:

– Writing the specifications in B abstract language;
– Writing the program in B0;
– Using the tools from the B theory to prove that the program matches the

specifications.

A B0 program can be written with empty B specifications, leading to no proof.
Our topic in this paper is to present how to write meaningful B specifications
for a CSP application program. In particular, the B proof paradigm is state
based, assuming that operations change variables one at a time and in a one-shot
manner, which does not directly match the PIC32 context where interrupts occur
(as the watchdog services from the CSPLib). The proof scheme in this context is
studied below, leading to the possibility to introduce abstract variables denoting
the state over time of physical objects and ultimately to perform system level
proofs from a software model.

3 CSPLib

CSP comes with a software library, called CSPLib, that provides services to the
end-users so that they can formalize safety properties and implement software.
In this section, only time-related interfaces are described and explained.

3.1 Timing Support

The CSPLib library defines services that shall be used to fulfill the CSP safety-
related application requirements (SRACs) [4], notably methods vitalClock check
Accuracy and watchdogLiveness testDeadline allowing guaranteed time measure-
ment.

The library also provides read access to some state variables:

– v watchdogLiveness clock: guaranteed time from last boot expressed in 125µs
ticks with a specific accuracy;

– v watchdogLiveness watchdogIsAlive: Boolean flag indicating if a default has
been encountered, notably concerning time, forcing outputs to become restric-
tive.

These CSPLib variables are updated automatically using the hardware interrup-
tion mechanism, in particular during the execution of user project operations.

Actually, the variable v watchdogLiveness clock contains a controlled approx-
imation of the real time since start. CSP guarantees that as soon as a fault would

134 L. Burdy et al.

potentially jeopardize the value of its clocks, it is safely shut down. Real time
is measured in 125µs period from last boot, with a guaranteed precision: the
period is between 125µs × (1 − ε) and 125µs × (1 + ε), where ε = 0, 000105.
There is no precise definition of when the clock is started, but it is not a problem
as soon as the clock is used to time-stamp events and these measures are then
compared. So, CSP furnishes a concrete variable v watchdogLiveness clock that
is really implemented and maintained up to date by the CSPLib and that is
effectively guaranteed to store a real clock value at a given accuracy whenever
the CSP is not shutdown.

Note that variable v watchdogLiveness clock shall not be directly used in user
code. Indeed, as code execution is duplicated, and as this variable is updated
during execution, each replica may get different values when reading it. If the
code directly depends on the clock value, the replicas will legitimately exhibit
divergent behavior, which would be detected by the CSP safety mechanisms
and force a shutdown. To avoid this pitfall, the CSPLib library provides the
checkAccuracy service that validates that a clock value is recent enough. With
this function, user code can test the validity and the freshness of a given clock
value.

From such time measurements, the program can measure time differences as
being sufficiently long. However, there is no guarantee that operations are called,
and that an action is scheduled early enough.

Even though the CSP cannot be guaranteed that an action takes place early
enough, it provides a mechanism to guarantee that it cannot be called too late.
The function user watchdogTimer is called whenever the clock is incremented.
The user must define user watchdogTimer and shall insert calls to testDeadline
in user watchdogTimer to test that a designated deadline is not missed. A failed
testDeadline enforces immediately a shutdown in a safe fall back mode.

In summary, the CSPlib provides a mechanism to guarantee that actions
cannot happen after their deadline.

3.2 Proof of Timing Properties

This paragraph describes how the reasoning framework B-method can be used
to prove timing properties of the CSP execution of the designed software.

We have seen that v watchdogLiveness clock evolves with each call of the
reserved operation user watchdogTimer. Such calls happen thanks to underlying
hardware interrupts and may occur at any time, including while executing other
B operations.

Let us consider first that B operations do not take any time so the calls to
user watchdogTimer do not interrupt other B operations.

Also the clock variable is incremented whenever user watchdogTimer is called.
But as user watchdogTimer has no access to this CSPLib variable, this informa-
tion is not available in the proof. Let us suppose nevertheless that we could bring
this fact to the knowledge of proof and discuss about proof of timing properties
in this simplified framework.

Assigning Safe Executed Systems to Meanings 135

Maximum Time. If the user needs to establish that an action A takes place
at the latest Tmax after a source event E, it is enough to specify with B variables
and conditions that the state where E has taken place but not yet action A
does not exist on more previous values of the clock than what corresponds to
Tmax. Since user watchdogTimer increments the clock, thus extending the series
specified as limited, and since only testDeadline can establish the post-condition
that the clock stays below the deadline, the user is then forced by proof to call
testDeadline in user watchdogTimer. Of course, such deadline value must be less
than Tmax from the most recent clock value where the “E without A” state
has occurred. To characterize this deadline variable with respect to the most
recent clock value where this “E without A” state occurred, the user must call
checkAccuracy to establish that the measured clock is before the current clock,
since this is the only function allowing to establish a post-condition between the
clock and a user variable. The proof thus establishes that, if the shutdown did
not take place, action A happened less than Tmax after the event E.

Minimum Time. To ensure a minimal delay Tmin from event E1 to event
E2, it is sufficient to specify that the successive values of clock separating the
two actions correspond to a duration always greater than Tmin. To establish the
correctness, calls to the E2 require to prove that a time measurement (validated
by checkAccuracy as less than clock, and sufficiently fresh) has indeed exceeded a
limit establishing the delay Tmin. To calculate this limit, Tmin must be summed
to a time measurement validated as not too old compared to clock at the time
of E1 (taking into account this precision).

One can therefore specify all the temporal constraints with B and rely on
the proof to guarantee them. It is sufficient to express these constraints with the
states of the B project at each value of the clock variable of CSPLib.

Nevertheless, it remains to eliminate the previous simplifying assumptions.

3.3 Lifting Simplifying Hypotheses

We have so far made the simplifying assumption that the operations were of
zero duration and that calls to user watchdogTimer do not occur in the middle
of other B operations. Of course, this is not true and we informally justify why
this is not an issue.

For any B operation, at any time, at most one replica is executing it, and the
other replica is stopped outside the execution of a B operation (this is guaranteed
by the CSP safety mechanism). We believe that, thanks to this “stable” replica,
the proof is valid despite the interrupt calls. There is also the problem that clock
is incremented together with user watchdogTimer. As we express in the main B
project links between clock and project variables, can calls to user watchdogTimer
from an interrupt raised every 125 µs invalidate the proof?

Example: In a B program, the user sets an output S to permissive during
a long operation, and sets it back to restrictive at the end of the operation. In
the specification, the user defines S(t) for t between 0 and now, proving that S
remains restrictive whatever t is.

136 L. Burdy et al.

Seen from the B proof (between every operation execution), this output is
always restrictive. In this example, we must consider the two replicas r1 and r2.
With r1 executing the operation, an interrupt may occur, the value of r1.S may
be permissive (breaking the invariant). But we have the guarantee, by proof, that
in the stable replica r2, the output r2.S is restrictive. By SRAC, r1.S and r2.S
must be combined to produce the output of the CSP. Since the safe combination
of restrictive and permissive is restrictive, the output S will be restrictive, as
specified.

By defining S(t), the user “seems” to note in the sequence S(t) the value of S
at each time increment. The sequence S(t) is a purely theoretical object, related
to the states of S stable between r1 and r2, always restrictive in our example.
The proof is therefore valid: S(t) is always restrictive.

More generally, the clock variable and the variables that the user can attach
to it (like S(t) in the above example) remain purely abstract in the user’s B
project. When they are linked to implemented variables (like S(t) linked to
S) they refer only to the stable values (r1.S = r2.S) of these variables. We
strongly believe that the safety invariants (i.e., properties that are true whenever
outputs are restrictive) verified by proof are effectively established by the CSP
framework.

Result: in a CSP user B project, the user can specify all the temporal
constraints with B and rely on the proof to guarantee them. To do this,
it is sufficient to express these constraints with respect to the states of
the project at each value of the clock variable of CSPLib. The effective
respect of specified temporal constraints is then guaranteed by proof.

4 Proving Reality

4.1 Guidelines

With B, specifications are written on abstract variables linked to programming
variables by gluing invariants; the proof establishes for each operation that there
is an instance of the specified evolution that corresponds to what the concrete
operation does. For instance:

– Specification: the system receives a sequence of samples s(n), and shall pro-
duce a result which is a certain function F of this sequence. The abstract
variable s(n) represents the sequence, potentially unbounded (no limit of
duration) of samples received since the beginning. The specification requires
that the result is equal to F (s).

– Real B0 program: let’s imagine that to compute F (s), it is sufficient to main-
tain up to date a restricted number of variables v1, ..., vN , updated at each
new sample received. For example, F could be a sliding average or a theoret-
ical Kalman filter.

– Proof: the proof will establish that there exists a sequence s such that the
result produced by the program is F (s). If we have made the necessary links

Assigning Safe Executed Systems to Meanings 137

so that s always corresponds to the received samples, the proof establishes
that the subroutine using v1, ..., vN produces a result strictly equivalent to
F (s). If these links are absent, any result R is suitable, as long as there is a
sequence s such that R = F (s).

This defines the meaning of the refinement link, “satisfying the specification”.
As explained above, the abstract variable that represents the received samples

s(n) must be related to the real inputs received by the B0 program. This link is
done by successive gluing invariants; if one is missing the proof has no longer the
wanted meaning. In the same way it is necessary to make sure that the output
R (specified as equal to F (s)) corresponds to the real output of the B0 program:
this is directly the case when this output is the return parameter of an externally
visible B operation. More generally, one must ensure the correct link between
the abstract variables representing the outputs and these real outputs.

Therefore we can say:

– If the specification indicates what is intended (R = F (s) in our example);
– If the inputs are well represented (s(n) related to the actual inputs in our

example);
– If the outputs are well represented (R linked to the actual output in our

example);
– If the B project is correct (100% proof, rules added OK, project check OK);
– Then the software is guaranteed to be correct with respect to systematic

errors (no bugs). There is no need to review the code or to test the behavior
of the software itself (which does not dispense with testing the environment).

– If it also runs on CSP, if the CSP SRACs and the B-CSP conditions are
satisfied, then the execution is compliant.

Nevertheless, there is no guarantee that the operations are called (the calcu-
lation of R = F (s) in our example) nor how often these calls will take place. In
practice, this limits the abstract variables used for the specification to notions
that can be deduced from the variables of the concrete program.

With the CSP, we now have a notion of time including call guarantees (in
fact shutdown is guaranteed in case of call failure). As we have seen, this makes
it possible to express timing constraints in the B specification, in the form of
conditions on the successive states depending on successive values of clock. We
can thus use abstract real time variables.

4.2 A Simple Example: Safety Flasher

The CSP is delivered with an simple example: the “Safety Flasher” [9]. In this
system, there is only one output S with the following condition: If S(t0) = ON ,
then there is t1 in the interval [t0 − 2s; t0] such that S = OFF on [t1; t1 + 1s].

This requires that the output cannot remain ON for more than one second,
and that there are always OFF (cooling) periods of at least one second between.
Using the previous constraints:

138 L. Burdy et al.

– If this specification is correct (let us assume it is);
– If the inputs are well represented: no input, OK;
– If the output S corresponds to the real output of the program;
– If the B project is correct;
– If the CSP SRACs and the B-CSP conditions are satisfied;
– Then the real output will behave according to this law, or the CSP falls back

to failsafe mode (and then the desired law is still true: the output is OFF).

So, we can now express and prove timing properties on the real outputs.

4.3 Full Example: Train Location and Kinematics

This example is based on on-board localization function of the Rail-Map
project2, funded by ADEME. The objective is to measure the position of a train
on an embedded calculator using the CSP. More precisely, let us suppose that
we want to establish that the position and the real speed of the train were within
the recently calculated intervals. This condition is sufficient, because then with
the minimum/maximum accelerations of the train one can limit its position and
speed during the whole interval between two measurements or two calculations,
or for use within a given time period.

For this, we assume that the program reads inputs periodically, thus defining
a cycle. These inputs can correspond to the reading of beacons, mats, other track
markers, and/or wheel rotation sensors. Of course, these inputs must be safe,
so it must always be possible to detect the presence of faults that make these
inputs unsafe: this is achieved by introducing redundancies, creating composite
or injection-testable inputs on which the program can apply tests (and avoid
the accumulation of failures by ensuring the fallback). So if some checks are
successfully performed, then these inputs correctly denote the evolution of the
train position. To clarify things further, we will assume that the software is made
of a single entry point called periodically: inputs are read, calculations performed
producing the speed and position intervals Icalc as output, all within a single
computation cycle.

We will assume that the knowledge of the guaranteed time between two cycles
is obtained by specifying temporal constraints in B as presented previously:

– Time between 2 cycles less than Tmax;
– Time between 2 cycles greater than Tmin.

To respect Tmax, a deadline must be managed and tested in user watchdogTimer.
The program shall also guarantee Tmin; thanks to checkAccuracy, this is possible.
The B model then contains the property that the time difference between the
present cycle and the previous cycle is between Tmin and Tmax. The entry-point
function realized in B is launched at each cycle by the non-vital layers, but
fallback is guaranteed in case of an incorrect time difference.

2 https://www.ademe.fr/sites/default/files/assets/documents/rail-map.pdf.

https://www.ademe.fr/sites/default/files/assets/documents/rail-map.pdf

Assigning Safe Executed Systems to Meanings 139

We can define, in the B specification, the position and the speed of the
real train for each computation cycle: P (t), V (t). These are abstract func-
tions denoting the real position/velocity for a sequence of instants separated
by Dcycle ∈ [Tmin;Tmax]. More precisely, these instants are also shifted in the
past by the time of propagation in the measurement circuits. This propagation
is necessarily safely bounded on the validated inputs (otherwise an indefinite
buffering would be possible, contradicting the hypothesis of secure inputs after
validation). The evolution of P (t), V (t) is also bounded according to the limits
of acceleration of the train, thanks to a physical model of evolution which can
be directly expressed in the B specification.

On the other hand, if the desired tests have been done, the cycle inputs cor-
rectly denote the movement of the real train during the cycle: we therefore have a
link between these inputs E and the new position/speed of the train, according
to its previous position and speed: Link(E,P (tN), V (tN), P (tN−1), V (tN−1)).
This link can also be expressed in the B specification.

For example, validated inputs can provide a direct safely approximated mea-
sure of the distance traveled between tN−1 and tN . It can then be stated that the
position has progressed by this distance, while the speed has evolved according
to the physical model with this constraint.

To ensure that the desired tests on the inputs are performed, we can also
specify them in B: the proof and the CSP will guarantee their correct execution.

We have thus obtained a physical model of evolution directly represented in
the B model of the software cycle function. The calculated position and speed
intervals are also represented in this model, taking care as before that the corre-
sponding abstract variables are well linked to the real outputs. It then becomes
very easy to express a link indicating that P (tN), V (tN) must belong to the
calculated intervals.

What is the significance of such a specification? Of course there is no div-
ination, even if P (t) and V (t) are supposed to represent the real position and
speed of the train we cannot know this reality. But considering the meaning
of the refinement link “satisfy the specification” recalled above, the proof will
establish that given a real position P (tN) and a real speed V (tN), constrained
only by the modeled physical model and the link with the cycle inputs, P (tN)
and V (tN) are in Icalc. In other words: Icalc (software/logical entity) contains at
least all positions and velocities (physical entities) actually reachable according
to the past, the evolution laws and the inputs. This is exactly what needs to be
shown to ensure that the system is correct.

Note that the fact that Icalc contains only these attainable positions/speeds is
a functional problem of optimization and performance. If we reach this optimum,
then the program exploits all the information it has at its disposal. But this is
generally not achievable, even less provable.

The physical model expressed in B at the abstract level and the physical
link on the validated inputs does not need to be detailed at the abstract level:
one can for example use abstract constant functions. Further down, the software
will have to use calculation functions that respect the laws of these models:

140 L. Burdy et al.

it is at this level that the correspondence with the real physical laws and the
real laws resulting from the validated inputs will have to be established. We
thus have physical laws (defined outside B, which must correspond to reality)
represented in the form of anonymous abstract constants, and computational
functions specified in B as corresponding to these constants. We have to check
(outside B) that these computational functions are strictly compliant with these
physical laws.

In particular, the connection of continuous physical laws with discrete calcu-
lations must be done carefully, so that the actual continuous values are within
valid bounds of the discrete results.

In summary:

– If the inputs are well represented;
– If these inputs have been tested and the model that asserts that their frequent

testing ensures their validity is correct;
– If the physical model of the train evolution (as provided in B specification)

constrained by the validated inputs is correct with respect to the physical
world;

– If Icalc corresponds to the real output of the program;
– If the B project is correct;
– If the CSP SRACs and the B-CSP conditions are satisfied;
– Then Icalc contains the real position/speed of the train at each cycle, or else

the CSP is in fallback (and then no more localization is provided).

As long as the CSP has not shut down, we have valid Icalc bounds for P (tN) and
V (tN), the true position and velocity of the train at time tN whose deviation
from the present can obviously be bounded.

B specification of the CSP program then guarantees by proof the correctness
of the complete collection system. There are indeed “imported” external models:

– The physical evolution model (from the continuous physical model);
– The probabilistic model of failures or disturbances of the capture (represented

by the specification of the tests to be performed on the inputs and by the
laws Link(E,P, V (tN), P, V (tN−1)).

But it is the B CSP model that organizes the proof of the whole.

5 Conclusion

We have seen how it is possible to prove with a B formal proof the correctness
of a system like the train localization example, directly establishing the key
properties like “the computed localization shall contain the actual train”. It
relies on the possibility to express abstract variables denoting actual objects like
the train’s real position and speed, thanks to the guaranteed time and deadlines
provided by the CLEARSY Safety Platform. Using these guaranteed time and
deadlines, the evolution of the actual position and speed can be bounded in
relationship with the validated sensors inputs.

Assigning Safe Executed Systems to Meanings 141

Of course, proving the correctness at system level based on assumptions on
the sub-systems properties with formal proofs is nothing new. But such system
level proofs can easily become uncorrelated to what is actually done in the final
subsystems, in particular in the software parts, because formalized assumptions
must be transferred to the concerned parts in a mostly manual way. With the
method described above, this pitfall disappears as the software formal specifica-
tions are directly included in the global B model and their correctness regarding
the key system properties is proven. In fact, the problem of the correctness
of the software specifications is purely eliminated, thus avoiding the difficulties
that caused so many projects to encounter safety pitfalls, not because of low level
software bugs, but because the utterly complex detailed software specifications
contained the pitfalls from the start.

This method is presented here using the CLEARSY Safety Platform, that
has natively formalized B objects to denote the guaranteed time and deadlines.
Any vital computer platform normally provides such guarantees in some way,
so the method should be adaptable to such random vital platform and, more
generally, to any formal proof system. This remains prospective however, as our
experience here is limited to the CSP and the B method.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings, vol. 1. Cambridge
University Press, Cambridge (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application
of B in a large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999.
LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48119-2 22

4. CLEARSY: CLEARSY Safety Platform – C D720 User manual, v01.02, December
2020

5. Comptier, M., Déharbe, D., Fournier, P., Molinero-Perez, J.: Property-driven soft-
ware analysis. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS,
vol. 11800, pp. 746–750. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30942-8 44

6. Comptier, M., Deharbe, D., Perez, J.M., Mussat, L., Pierre, T., Sabatier, D.: Safety
analysis of a CBTC system: a rigorous approach with Event-B. In: Fantechi, A.,
Lecomte, T., Romanovsky, A. (eds.) RSSRail 2017. LNCS, vol. 10598, pp. 148–159.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68499-4 10

7. Comptier, M., Leuschel, M., Mejia, L.-F., Perez, J.M., Mutz, M.: Property-based
modelling and validation of a CBTC zone controller in Event-B. In: Collart-
Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495,
pp. 202–212. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-
6 13

8. Lecomte, T., Comptier, M., Molinero, J., Sabatier, D.: Ensuring safety with system
level formal modelling. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol.
12478, pp. 393–403. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
61467-6 25

https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/978-3-030-30942-8_44
https://doi.org/10.1007/978-3-030-30942-8_44
https://doi.org/10.1007/978-3-319-68499-4_10
https://doi.org/10.1007/978-3-030-18744-6_13
https://doi.org/10.1007/978-3-030-18744-6_13
https://doi.org/10.1007/978-3-030-61467-6_25
https://doi.org/10.1007/978-3-030-61467-6_25

142 L. Burdy et al.

9. Lecomte, T., Lavaud, B., Sabatier, D., Burdy, L.: A safety flasher developed with
the CLEARSY safety platform. In: ter Beek, M.H., Ničković, D. (eds.) FMICS
2020. LNCS, vol. 12327, pp. 210–227. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-58298-2 9

10. Parillaud, C., Fonteneau, Y., Belmonte, F.: Interlocking formal verification at
alstom signalling. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.)
RSSRail 2019. LNCS, vol. 11495, pp. 215–225. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-18744-6 14

11. Sabatier, D.: Using formal proof and B method at system level for industrial
projects. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS,
vol. 9707, pp. 20–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33951-1 2

12. Sabatier, D., Burdy, L., Requet, A., Guéry, J.: Formal proofs for the NYCT line
7 (flushing) modernization project. In: Derrick, J., et al. (eds.) ABZ 2012. LNCS,
vol. 7316, pp. 369–372. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30885-7 34

13. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice
and experience. ACM Comput. Surv. 41(4), 1–36 (2009)

https://doi.org/10.1007/978-3-030-58298-2_9
https://doi.org/10.1007/978-3-030-58298-2_9
https://doi.org/10.1007/978-3-030-18744-6_14
https://doi.org/10.1007/978-3-030-18744-6_14
https://doi.org/10.1007/978-3-319-33951-1_2
https://doi.org/10.1007/978-3-319-33951-1_2
https://doi.org/10.1007/978-3-642-30885-7_34
https://doi.org/10.1007/978-3-642-30885-7_34

Generating and Verifying Configuration
Data with OVADO

Frédéric Badeau1(B), Julien Chappelin2, and Joris Lamare3

1 Systerel, Aix-en-Provence, France
frederic.badeau@systerel.fr

2 Alstom, Aix-en-Provence, France
julien.chappelin@alstomgroup.com

3 RATP, Paris, France

joris.lamare@ratp.fr

Abstract. This article presents a novel use of OVADO, a data vali-
dation tool for railway systems configuration, and its application in an
industrial setting. We describe how OVADO usage evolved from data val-
idation to generation of equipment configuration data, and report on the
application of this technique in a real industrial context: the deployment
of the OCTYS VTPA system by Alstom on Line 6 of the Paris metro,
operated by RATP. While this new method requires some adaptation
in industrial processes in order to retain compliance with a SIL4 safety
level, it improves translation quality and factorizes data generation and
verification activities.

Keywords: Railway systems · CBTC · Data validation · B language ·
Ovado

1 Introduction

The OVADO1 tool has been used for more than a decade to formally check
whether system configuration data comply with their rules in the context of
railway systems [1]. OVADO is currently deployed in SIL4 processes compliant
with the safety requirements of the CENELEC EN50128 standard [2]. In these
processes, it is considered a T2-class tool since it only helps to verify the system.
This article describes how the OVADO tool has been used, for the first time,
by Systerel to formally generate equipment configuration data derived from the
system configuration data. This innovative use has been applied in a real indus-
trial context, the deployment of the OCTYS VTPA system by Alstom on Line 6
of the Paris metro operated by RATP. The industrial process had to be adapted
in order to remain compliant with a SIL4 safety level of the EN50128 standard.
The OVADO tool is considered a T3-class tool for this new purpose since it now
produces system configuration data.
1 OVADO2

R© is a RATP tool distributed and partly designed by Systerel (see
https://www.ovado.fr).

c© Springer Nature Switzerland AG 2022
S. Collart-Dutilleul et al. (Eds.): RSSRail 2022, LNCS 13294, pp. 143–148, 2022.
https://doi.org/10.1007/978-3-031-05814-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05814-1_10&domain=pdf
https://www.ovado.fr
https://doi.org/10.1007/978-3-031-05814-1_10

144 F. Badeau et al.

2 OVADO Basic Use

The OVADO tool is an evaluation engine that takes as inputs configuration data
and a formal model (in B language) of rules on the data and that verifies whether
or not each rule holds. Figure 1 illustrates the tool’s basic workflow. The tool
consists of two independent tool chains, allowing it to be used in a SIL4 process.
The first chain is developped in Java/Eclipse as an engine evaluating B language
predicates and expressions untill getting to data values. The second chain first
produces a B abstract machine gathering data values and rules modeled as B
properties and then calls the B model-checker ProB to evaluate the rules.

Fig. 1. Basic use of OVADO to check whether data comply with their rules.

OVADO can interface natively with data from XML or Excel files. To inter-
face with other data formats, it is possible to develop specific extension modules.
In this case 2 independent modules must be developed, one for each OVADO
tool chain.

The formal model of the rules is composed of 3 parts: the interface with
input data, intermediate definitions and the rules themselves. The intermediate
definitions permit to develop intermediate abstractions, in order to avoid working
directly with the raw configuration data and they also allow reusable library
functions to be defined.

Then, OVADO can evaluate for each rule if the data respect the rule or not.
To do so, it evaluates the rule as well as each intermediate definition transitively
used till it gets to configuration data values. When a rule is not obeyed, OVADO
produces a list of counterexamples to the rule and helps the user to analyze the
causes of the rule violation.

Generating and Verifying Configuration Data with OVADO 145

3 OVADO Use to Check Railway Systems

To configure railway systems, the data is usually split into two parts: high level
configuration data of the system provided in a user friendly format (e.g. XML
or Excel) and low level configuration data loaded into the different devices of
the system provided in a specific format (e.g. binary data). Low level data is
deduced deterministically from system high level data. Until now, it was pro-
duced by software tools developed specifically for data generation with no safety
requirement as the safety issues were entirely covered by the verification activity.

Data verification with OVADO consists in verifying the data rules issued by
the various stakeholders in charge of the system configuration and verifying the
consistency between the implementation data and the system data from which
it is derived. To achieve this consistency check, the OVADO model includes the
definition of the theoretical computation of the equipment configuration data
from the system data, as well as the equality properties of the latter with the
equipment configuration data produced by the data generation tools. Figure 2
illustrates this use of OVADO.

Fig. 2. A more complete use of OVADO in which the rules on the system data and
the correct construction of the equipment configuration data in relation to the system
data are checked.

4 A New Use of OVADO to Generate Data

Originally, the OVADO tool was only used to evaluate rules on configuration
data, which means computing a Boolean result (TRUE or FALSE) for each eval-
uated rule. However, the tool can evaluate any intermediate expression modeled

146 F. Badeau et al.

from the input data and not only Boolean expressions. Over the years, several
OVADO extension modules have been developed to exploit some of these inter-
mediate expressions, such as the module for displaying counterexamples of rules
and the module for displaying interactively any expression to perform analyses
on data or to debug the model. A data export module has been developed for
this project, so that OVADO can now generate configuration data, as shown in
Fig. 3.

Fig. 3. New use of OVADO to generate equipment configuration data from system
data.

In this solution, the formal model mainly contains the definition of the equip-
ment configuration data computed from the system data. OVADO evaluation
engine can evaluate those data and a new generic extension module has been
developed to export them into an XML file. The equipment configuration data
being defined as a specific binary format in hexadecimal files, a specific tool for
formatting XML data in hexadecimal data has also been developed.

In order to be able to generate data, the system data must respect certain
consistency constraints. Moreover, since the generated data must fill tables, the
constraints of the format of these tables must also be obeyed. For instance, there
should be no overflow of the number of elements and no overflow of the values
of the elements. All these constraints constitute consistency rules that must
be enforced. It was natural to verify these rules by integrating them into the
formal OVADO data generation model. Before generating configuration data, it
is necessary to check those rules in order to guarantee that this data generation
is feasible and conforms to what is expected.

The safety strategy does not rely on producing safe configuration data. It
relies on verifying safely that configuration data produced are correct. This
strategy covers possible errors that may occur at any step of data production:

Generating and Verifying Configuration Data with OVADO 147

evaluation of data inside OVADO, generic export into XML files, translation into
specific binary format or even while copying and delivering data configuration
files. That is why only the first chain of OVADO is used to generate configura-
tion data. However, both OVADO toolchains are still used for the verification
activity.

This new use of OVADO changes its tool class according to the EN50128
standard. Indeed, it goes from being a T2-class tool (tool used for verification
only) to a T3-class tool (tool contributing to the generation of code or data of
the safety critical software).

This innovative approach has several advantages. It raises the quality level
of the data generation solution, as it is now based on a formal model close to the
data specification and on a generic evaluation engine (OVADO). It also reduces
the costs by factoring out common activities between generation and verification.

5 Adaptation of the SIL4 Process

This approach requires to manage the common mode between data generation
and verification in the OVADO model. Indeed, 80% of the OVADO model is ded-
icated to the computation of intermediate data used to produce the theoretical
equipment configuration data. The remaining 20% represent the pure modeling
of the rules.

Mitigation of a common mode error within the model is performed thanks to
a detailed verification activity of the OVADO formal model. In this activity, each
model element is verified independently and traced in auditable records by fill-
ing about fifteen criteria established following the feedback of both Systerel and
RATP OVADO modeling experts. This verification activity has to be done once
for a given OVADO model. When the input documents describing the data and
rules evolve, the OVADO model creation activity and its detailed verification
activity must be reworked, addressing only the differences. For each element of
the OVADO model (rule, intermediate definition or interface with a constant),
examples of verification criteria are: the presence of a natural language specifica-
tion of the element and its completeness and consistency with the formal model,
compliance with naming rules, data type verification, Well-Definedness verifica-
tion, the presence of comments for case-based modeling or for tricky modeling
points, traceability and compliance with the documents specifying the rules and
the data format. There are also several criteria dedicated to the railway domain,
such as consistency between the different references on the track, the consis-
tency of the position of switch points on several tracks or unit consistency for
the physical quantities. The Well-Definedness verification is done by providing
an informal proof. For instance for a given f(x) expression this proof may rely
on f being a function and x being part of the domain of f .

From an industrial point of view, the cost of this detailed verification activity
of the OVADO formal model is estimated at 10 to 15% of the development cost
of the model.

148 F. Badeau et al.

6 Conclusion

To conclude, this article presented how the OVADO tool, that was primary used
to the verification of configuration data of railway systems from a formal model-
ing of the rules on the data, was successfully used, in addition to its primary use
for verification, to generate configuration data of railway equipment. This evo-
lution brought the tool from the EN50128 T2 tool class to the T3 tool class. It
brings advantages in terms of translation quality and factorization of data gen-
eration and verification activities. Finally, this new use of OVADO still complies
with a SIL4 process.

References

1. Abo, R., Voisin, L.: Formal implementation of data validation for railway safety-
related systems with OVADO. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS,
vol. 8368, pp. 221–236. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
05032-4 17

2. CEN: Railway applications-communication, signalling and processing systems-
software for railway control and protection systems (2011)

https://doi.org/10.1007/978-3-319-05032-4_17
https://doi.org/10.1007/978-3-319-05032-4_17

The 4SECURail Formal Methods
Demonstrator

Franco Mazzanti(B) and Dimitri Belli

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”,
Via G. Moruzzi 1, 56124 Pisa, Italy

{franco.mazzanti,dimitri.belli}@isti.cnr.it

Abstract. The need for high-quality standard interfaces is widely rec-
ognized as a mandatory step to reduce procurement costs and create
safely operating complex railway infrastructures. That is why European
initiatives like EULYNX have been set up precisely with the purpose of
supporting standard interfaces development. The exploitation of formal
methods during the phase of standardization plays an essential role in
raising the quality of the generated specifications. 4SECURail is a recent
project that aims to precisely show, with a structured evaluation (known
as the formal methods demonstrator), how formal methods might help
to improve the quality of a specific signalling interface selected as case
study. This paper describes the experience gained with the experiment.

Keywords: Formal verification · Formal methods · System
requirements · Standard interfaces · Railway signalling system

1 Introduction

The railway infrastructure is constituted by a large, heterogeneous, and dis-
tributed system with components that are on board, trackside, centralized, cross-
ing regional and national borders, managed by different authorities, and devel-
oped by different providers. Not surprisingly, the current trend is to standardize
the requirements of the various system components together with their interfaces
(see, e.g., the EULYNX and the ERTMS initiatives1). Standardization, indeed,
is expected to increase the market competition with the additional benefits of
reducing both vendor lock-in effect and long-term life-cycle costs. However, the
defined standard interfaces for the various system components must be precise
and correct to produce the desired effects. They must not suffer from ambigu-
ities in their interpretation and must not give rise to compatibility problems.
In this respect, the Shift2Rail Joint Undertaking2 aims to foster research and
innovation in the railway sector by promoting the application of rigorous formal
verification techniques to the standard interface development process.

1 https://eulynx.eu, https://www.ertms.net/.
2 https://shift2rail.org/.

c© Springer Nature Switzerland AG 2022
S. Collart-Dutilleul et al. (Eds.): RSSRail 2022, LNCS 13294, pp. 149–165, 2022.
https://doi.org/10.1007/978-3-031-05814-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05814-1_11&domain=pdf
http://orcid.org/0000-0003-4562-8777
http://orcid.org/0000-0003-1491-6450
https://eulynx.eu
https://www.ertms.net/
https://shift2rail.org/
https://doi.org/10.1007/978-3-031-05814-1_11

150 F. Mazzanti and D. Belli

Performing a formal analysis of a signalling standard is a very different - in
the process adopted, the models generated, the tools used, the results expected
- and more difficult task than performing a verification of a specific product
design. In the case of the signalling standard, we are likely to have a more generic
specification with many parameters and options, and its description is expected
to be at a higher level, not forcing any unnecessary implementation detail. This
is quite different from the case of a specific product design, where parameters and
options can be somewhat constrained and where certain implementation choices
can be deemed acceptable. So, while in the case of a specific product we might
have the goal of validating the specification, e.g., with respect to its safety and
functional requirements, in the case of a generic, abstract signalling standard,
our goals cannot go further than a partial formal analysis of its properties, built
on the definition of some specific scenarios. In doing that, we might need to
abstract some aspects not needed for the verification of the intended properties
and possibly make specific implementation choices. This does not mean at all
that the partial formal analysis is not useful. In very simple terms, while the
use of formal methods within the development process has the goal of ensuring
that the final product satisfies the stated requirements, the use of formal methods
within the system requirements specification phase has the goal of improving the
confidence that the specification itself - usually expressed in natural language -
is precisely what needed.

In line with the Shift2Rail philosophy, the 4SECURail project3 aims to
observe the possible approaches, benefits, limits, and costs of introducing formal
methods in the system requirements definition process. This is done with the set
up of a structured evaluation (a.k.a. the demonstrator), consisting in applying
state-of-the-art tools and methodologies with the purpose to collect meaningful
information and data on one of the possible paths that could be followed to
associate a system requirements definition (or a standard interface) with a for-
mal base. Notice, however, that it is not a purpose of the project the definition
or the proposal of an overall methodology for the analysis of the requirements
in the railway sector; the specific choices and the approaches exemplified with
the demonstrator are simply those that have been considered the most fitting
with respect to our specific case study, to our background, and to the project
timelines. The project activity plan involves three steps:

1. Selection of a railway signalling case study and its initial specification
expressed in natural language [1].

2. Derivation of semi-formal and formal models from the initial requirements
specification and conduction of the formal analysis using all the generated
evidence and artifacts to improve the initial specification [2–5].

3. Performing a quantitative analysis of the costs and benefits derived by the
introduction of formal methods in the requirements definition process, lever-
aging the data collected during the demonstrator process [6].

In this paper, we introduce the first two steps of the above process, focusing
on the presentation of the methodological approach followed in our demonstrator
3 https://4SECURail.eu (November 2019–November 2021).

https://4SECURail.eu

The 4SECURail Formal Methods Demonstrator 151

activity, without entering into the details of the formal analysis that has been
conducted. The approach adopted for the quantitative cost/benefits analysis
(partly still in progress) is not the subject of this paper. The rest of the paper
is structured as follows: In Sect. 2, we give details about the case study that
has been the object of the experimentation; in Sect. 3, we present the approach
adopted by the demonstrator. In Sect. 4, we briefly describe some related studies,
and in Sect. 5, we summarize the results of the experience, and we give insights
for future research advancements in the field.

2 The 4SECURail Case Study

The transit of a train from an area supervised by a Radio Block Centre (RBC) to
an adjacent area supervised by another RBC occurs during the so-called RBC-
RBC handover phase and requires the exchange of information between RBCs
according to a specific protocol. This exchange of information is supported by the
communication layer specified within the UNISIG SUBSET-039 [7] and UNISIG
SUBSET-98 [8]. Figure 1 summarizes the overall structure of the UNISIG stan-
dards supporting the handover of a train.

 ETCS/ERTMS

FIS for RBC/RBC Handover

RBC-RBC
Safe Communication Interface

EuroRadio FIS

Safe Functional Module

SAI Sublayer

ER Safety Layer

Communication Functional Module

RBC Handover Transaction

RBC/RBC Communication Supervision
* Handling of Creation/Deletion of
 Safe Communication lines
* Exchange of NRBC messages

* Support of concurrent RBC/RBC
Handover Transactions

* Protection against Delay,
Re-sequencing,

Deletion, Repetition

* Protection against Corruption,
Masquerade, Insertion

* Interface towards the EuroRadio OSI levels

UNISIG Subset 026

UNISIG Subset 039

UNISIG Subset 098

UNISIG Subset 037

4SECURail
Case Study

CSL

SAI

ER

RBC
User

Fig. 1. Overall structure of the 4SECURail case study

The 4SECURail case study focuses on two main sub-components of the com-
munication layers, supporting the RBC-RBC handover communications. The
considered components are the Communication Supervision Layer (CSL) of the
SUBSET-039 and the Safe Application Intermediate Sub-Layer (SAI) of the

152 F. Mazzanti and D. Belli

SUBSET-098. These two components are the main actors that support the cre-
ation/deletion of safe communication lines and protect the transmission of mes-
sages exchanged on such lines. In particular, the CSL is responsible for requesting
the activation - and in case of failure, the re-establishment - of the communica-
tion line for continuously controlling its liveliness and for forwarding the RBC
handover transaction messages on the active line. The SAI is responsible for
ensuring the absence of excessive delays, repetitions, losses, or reordering of
messages during their transmissions. This is achieved by adding sequence num-
bers and time-related information to the RBC messages. The two sides of the
communication line are configured one as initiator and the other as called.

With respect to the SUBSET-98, the 4SECURail case study does not include,
for obvious time and budget constraints, the EuroRadio Safety Layer (ER),
which is responsible for preventing corruption, masquerading and insertion issues
during the communications, nor the lower Communication Functional Module
(CFM) interface. With respect to the SUBSET-039, the 4SECURail case study
does not include the description of the activation of multiple, concurrent RBC-
RBC handover transactions when trains move from a zone supervised by an
RBC to another one. From the point of view of the CSL, the RBC messages
are forwarded to/from the other RBC side without the knowledge of the specific
content or session to which they belong. The official initial requirements spec-
ification document describing the case study and the rationale for its choice is
publicly available as project Deliverable D2.3 [1].

3 The Requirements Analysis Process

The formal analysis of the natural language system specification that describes
the case study passes through an intermediate step consisting in designing SysML
models of the various components. The choice of introducing this intermediate
step is motivated by two main reasons. Firstly, the semi-formal modelling of sys-
tem components is in line with the current trend adopted by the EULYNX
initiative, which has selected SysML as accompanying semi-formal notation.
And secondly, it is felt natural for a signalling standard to be complemented
as far as possible by widely known graphical notations. However, the latter may
be a source of troubles, mainly because SysML/UML, despite all the current
attempts [9–14], still lacks a recognized, clear, and rigorous semantics. To over-
come this problem, we have opted to use an extremely simple subset of the
SysML instructions, whose semantics is considered stable and well-defined. The
subset used is not the largest subset with the necessary characteristics, but it
is just the smallest subset needed to model our case study. Extensions to this
subset are definitely possible, but more investigations are needed, and this issue
is out of our project goals.

In the modelling and analysis of the case study, a few choices have been
made. In particular, the requirements of the SAI component allow two alternative
options in modelling the safe connection initialization phase: One option is based
on the “Triple Time Stamping (TTS)” approach, while the other is based on the

The 4SECURail Formal Methods Demonstrator 153

“Execution Cycle (EC) Defence Technique” approach. Our modelling takes into
account the EC option which, at a first glance, seemed less dependent by real-
time aspects.

The overall approach followed during the modelling and analysis process is
incremental and iterative. About 53 versions of the system have been generated,
each one widening the set of requirements of the case study modelled, and each
one passing through the steps of semi-formal and formal modelling and analysis.
During this iterative process, four kinds of artefacts have been generated and
kept aligned:

1. A more abstract, semi-formal UML state machine design of the components
under analysis.

2. A more detailed executable version of the same UML state machines.
3. A set of formal models derived from the executable UML state machine.
4. A natural language rewriting of the requirements based on the designed and

analysed models.

Figure 2 depicts the relationship between these artefacts, whose detailed
description is given in the following subsections. The activity of generating and
elaborating most of the shown artefacts (currently) requires a human problem
understanding and solving activity. The only part that can be mechanically auto-
mated (partly achieved within the project) is the generation of the formal models
starting from the UML executable models.

Natural Language
 Requirements revision

Formal modelling
and analysis

Abstract modelling

Executable modelling

D2.3
Initial Natural Language

Requirements

modelling and analysis

Abstract, Semiformal
SysML/UML

Designs

Detailed, Executable
SysML/UML

Designs

Formal Models
+

Formal Properties

Natural Language
 Requirements, Assumptions,

Guarantees

Fig. 2. The 4SECURail demonstrator generated artefacts

3.1 Semi-formal Designs

The first step in trying to associate an operational model to our input require-
ments specification consists in drawing an abstract design of the state machine
describing the various components, putting the accent of the control flow rela-
tion between the most relevant system states, the events that trigger the corre-
sponding state transitions, and the communication events occurring among such

154 F. Mazzanti and D. Belli

SAI_DISCONNECT.indication /

- [receive timer expired] /
SAI.SAI_DISCONNECT.request;

RBC.RBC_User_Disconnect_indication

- /
SAI.SAI_CONNECT.request;

start connection timer;

/
RBC.RBC_User_Connect_indication;

start send and receive timer;

NOCOMMS
Disconnected

- [connection
timer expired] /

NOCOMMS
Connecting

NOCOMMS
Waiting

SAI_DISCONNECT.indication /
RBC.RBC_User_disconnect_indication

R1

R2

R3

R4

R6

R5

R7 - [send timer expired] /
SAI.SAI_DATA.request(lifesign,nodata)

RBC_User_Data.request(userdata) /
SAI.SAI_DATA_request (Rbadata,userdata)

R8

R9SAI_DATA_indication(msgtype,userdata)
[msgtype != lifesign] /

RBC.RBC_User_Data_indication(userdata) ;
restart receive timer;

R10 SAI_DATA_indication(msgtype,userdata)
[msgtype = lifesign] /
restart receive timer ;

R11

Initiator CSL

COMMS
Connected

Fig. 3. The Initiator CSL (ICSL) abstract design

components. Figure 3 shows an example of such abstract/semi-formal design.
The corresponding designs of the two sides of the modelled CSL and SAI com-
ponents can be found in Appendix B of Deliverable 2.5 [4].

We can observe that no details are given at this step on how some abstract
feature is implemented (let us consider, for example, the case of timers or the
specific calculations being performed as the effect of a transition). These kinds
of designs, however, are already useful as a reference and base documentation
for the revision (or confirmation) of the overall structure of the natural language
requirements describing the various system components. This initial step has
already allowed us to clarify duplications and ambiguities in the initial require-
ments document. Appendix B of Deliverable 2.2 [3] of the 4SECURail project
shows some of the annotations made to the initial requirements in the early
stages of the design. As the modelling process evolves and becomes more formal
this kind of design is updated to continue reflecting the actual structure of the
system.

3.2 Executable UML Designs

The next step towards a formal model is the completion of the abstract design
by providing an implementation of all the informally specified aspects. This
means to precisely define all the needed local variables of the various components
and clearly describe how they are manipulated within the effects of the various
transitions. This also means providing a way to model a reasonable temporal flow
since the overall system behaviour depends on several time-dependent aspects.
Moreover, in order to generate a closed executable system, it is necessary to
build parts of the environment capable of receiving data from our modelled

The 4SECURail Formal Methods Demonstrator 155

components and stimulate them with appropriate events. In our specific case,
we need three kinds of environment components: two components modelling
the possible behaviour of the RBC users, and a component modelling the ER
that allows the two SAI components to communicate. We also added a Timer
component that allows all the components to proceed still in an asynchronous
way, but relatively at the same speed. Figure 4 shows the resulting structure
of the whole system. All the added environment and timer components can
be designed in UML to facilitate the system encoding into the selected formal
notations.

RBC_User_1 RBC_User_2

I_SAI C_SAI

initiator side called side

C_CSLI_CSL

EuroRadio/CFM levels

envenv

env

T
i

m
e
r

Fig. 4. The complete executable system structure

Figure 5 shows an example of executable state UML design corresponding to
the abstract version of the component shown in Fig. 3.

3.3 Formal Modelling

The desirable approach for passing from a SysML/UML executable design (pos-
sibly generated with commercial tools like PTC, Yakindu, Rhapsody, Cameo
Modeling Tool (once Magic Draw), SPARX-EA, Papyrus) to a set of formal
models is to use available translation tools. During the initial phases of the
project, we experimented with the SPARX-EA tool for the design of the exe-
cutable SysML models. Still, no translation tool was found to be available, and
an effort to build it was beyond the project effort and outside the project goals.
Moreover, linking such translation tools to a specific commercial SysML design
tool was considered not desirable. Our solution has been to make a first manual
translation of the executable SysML design into the design notation accepted by
the UMC tool of the in-house developed KandISTI [15] framework. The UMC
notation for specifying a collection of interacting state machines is, in fact, a sim-
ple textual, user-friendly encoding of the state machines that allows an almost
direct translation of the case study with minimal effort. A fragment of the UMC
notation for the state machine depicted in Fig. 5 is shown in Fig. 6.

UMC allows to explore the possible system evolutions and verify branching
time properties on it. This framework has been chosen as first target because

156 F. Mazzanti and D. Belli

SAI_DISCONNECT.indication /

icsl_tick [receiveTimer = max_receiveTimer] /
 Timer.ok_icsl;
 SAI.SAI_DISCONNECT.request;
 receiveTimer := 0;
 sendTimer := 0;
 RBC.RBC_User_Disconnect_indication

- /
 SAI.SAI_CONNECT.request;
 connectTimer := 0;

 RBC.RBC_User_Connect_indication;
 connectTimer := max_connectTimer;
 receiveTimer := 0;
 sendTimer := max_sendTimer

NOCOMMS
Disconnected

icsl_tick [connectTimer =
 max_connectTimer] /
Timer.ok_icsl

NOCOMMS
Connecting

NOCOMMS
Waiting

SAI_DISCONNECT.indication /
 RBC.
 RBC_User_disconnect_indication;
 receiveTimer := 0;
 sendTimer := 0;

R1

R2

R3

R4R6

R5

R7
icsl_tick [(receiveTimer < max_receiveTimer)

 and (sendTimer = max_sendTimer)] /
 Timer.ok_icsl;
 sendTimer := 0;
 receiveTimer := receiveTimer+1
 SAI.SAI_DATA.request(Lifesign,nodata)

RBC_User_Data.request(userdata) /
 SAI.SAI_DATA_request (RBCdata,userdata) ;
 sendTimer := 0

R8

R9
SAI_DATA_indication(msgtype,userdata)
 [msgtype != Lifesign] /
 RBC.RBC_User_Data_indication(userdata) ;
 receiveTimer := 0;

R10
SAI_DATA_indication(msgtype,userdata)
 [msgtype = Lifesign] /
 receiveTimer := 0;

R11

Initiator CSL

COMMS
Connected

 receiveTimer := 0;
 sendTimer := 0;
 connectTimer := 0;

icsl_tick [connectTimer <
 max_connectTimer] /
 Timer.ok_icsl;
 connectTimer := connectTimer +1;

RTa
RTb

icsl_tick /
 Timer.ok_icsl

icsl_tick [(receiveTimer < max_receiveTimer)
and (sendTimer < max_sendTimer)] /

 Timer.ok_icsl;
 sendTimer := sendTimer +1;
 receiveTimer := receiveTimer+1

RTc

max_receiveTimer: int;
max_sendTimer: int;
max_connectTimer: int;

Fig. 5. The Initiator CSL executable model

it fits well the need for fast design prototyping. The resulting graph describing
the evolutions of the system can be analysed or saved in the form of Labelled
Transition System (LTS), where the user has the choice to specify which kind
of information should be associated with the LTS edges. This information may
include the UMC transition label, the outgoing events generated by the effects of
a transition, or any other custom flag associated with the firing of the transition.
However, UMC is essentially an academic prototype used mainly for research and
teaching purposes. Therefore, we wanted to take into account also furthermore
industry-ready formal verification frameworks.

The second framework that has been chosen to support the formal analysis of
the system is ProB [16]. Indeed, according to several surveys (see, e.g., [17–19])
B/EventB appears to be one of the most adopted formal methods in railways.
Moreover, ProB has a very user-friendly interface requiring a small effort to be
learnt and powerful verification methods. Last but not least, it is freely available
as an open-source product.

A third framework that has been taken into account is the CADP toolbox
with its LNT language [20,21]. One interesting aspect of this third approach
is that the mathematical representation used for the models is based on pro-
cess algebras, and can exploit the rich theory around LTS for supporting the
verification process (e.g., minimizations, bisimulations, and compositional veri-
fication [22–24]). Another interesting aspect of the CADP framework is that the

The 4SECURail Formal Methods Demonstrator 157

Fig. 6. The ICSL encoding in UMC (fragment)

model structure stands on events, and in particular on communication actions.
The logic used to reason on these models is a very powerful, action-based,
branching-time logic. This creates another point of view from the one supported

 Message Sequence Diagrams
CTLe / LTLe Model Checking

 (state/event based)
...

 Message Sequence Diagrams
UCTL Model Checking

 (state/event based)
...

MCL Model Checking
 (event based)

Strong/ Divbranching/ Sharp
 Minimazations

Powerful scripting language
...

ProB UMC LNT

Fig. 7. Table of verification features

158 F. Mazzanti and D. Belli

by ProB, which is more state-oriented. Similarly to ProB, CADP is freely usable
with an academic licence.

Once available the UMC encoding of our model, we can exploit two other
in-house translators to directly translate the UMC model into the ProB and
LNT notations. We omit here the details of the translations, for which we refer
to Appendix A of 4SECURail Deliverable D2.5 [4] and to [27].

The size of a complete (closed) executable model clearly depends on the
complexity of the environment components used to stimulate our communication
layer. In one of the simplest scenarios, the UMC executable model consists of
about 2500 lines, resulting in a ProB model of about 3500 lines and in a LNT
model of about 4000 lines. The modelling and analysis of the case study within
the project have required an effort of about seven person-months.

These methods and tools are not meant to be, in general, “the best ones”
or the “most fitting” the railway sector. Our selected frameworks are just those
“most fitting” the project’s expected efforts and goals. Alternative meaningful
choices, similar in style, might have been mCRL2, nuXmv, Spin, TLA+, HLL.

The choice to model and analyse the system with more than one framework
is considered very important for two reasons. Firstly, it allows to take advan-
tage of the multiple verification methods provided by the different frameworks,
e.g., analysis of state invariants with ProB, system and components property-
driven minimizations with CADP, reachability explanations provided in the form
of sequence diagrams with UMC (Fig. 7 shows a table of some of the features
provided by our three frameworks). And secondly, the choice of using different
formal notations allows us to verify the correctness of the mechanical translation
from UML executable design (in UMC) into the other formal notations. All the
three formal versions of the system can indeed be proven to reflect precisely the
same system4.

In Sects. 5.4 and 5.5, Appendix E and F of Deliverable D2.5 [4] are shown the
various way in which all these frameworks have been used to analyse the system
behaviour. Our experimentation shows that the selected formal frameworks can
be used either in a “lightweight” or “advanced” way. In Fig. 7, the verification
features that can be easily exploited without any advanced prior knowledge, and
in an almost “push button” way, are those appearing in black. For example, with
ProB, by just selecting the “Model Check” button (see Fig. 8), it is possible to
analyse the full state-space for deadlocks, invariant violations, and other errors.
Other features, typically those requiring the encoding of properties in temporal
logic formulas, may require a prior non-trivial background on formal methods
and model checking.

While the previous step of designing the UML executable models already
helped to identify and remove ambiguities and unclarities, the static analysis
and the model checking of the formal models have been essential to detect

4 This has been done by comparing the formal semantics (in the form of an LTS) of
the three versions of the system and mechanically proving that they are strongly
equivalent.

The 4SECURail Formal Methods Demonstrator 159

Fig. 8. Model Check GUI of ProB

missing requirements leading to loss events, missing assumptions leading to dead-
locks, and implementation mistakes leading to properties violation expected to
be guaranteed.

3.4 Revised Natural Language Requirements

Pragmatically, we are afraid that a system requirements specification of a stan-
dard interface is doomed to have an official natural language description as well.
One of the goals of the 4SECURail demonstrator process is to show a way to
improve such an initial natural language specification by backing it with formal
models. This improvement has two goals:

1. Guarantee that the specification is based on a rigorous, clear structure, remov-
ing ambiguities and duplications.

2. Improve the confidence that the specification is correct, i.e., capable of inter-
operating with other systems, with neither missing nor inconsistent require-
ments.

The generation of executable, formal models is the mean to achieve these
goals, not the goal itself. Therefore, in our demonstrator process, we also tried
to show a possible way of writing the requirements specification in a manner
strictly tied to the executable, formal models but still in natural language.

The implementation choices that have been made in the construction of the
executable, formal models should not appear in the natural language require-
ments specification, which is supposed to be at a higher level than an executable

160 F. Mazzanti and D. Belli

implementation. The abstract semi-formal design of a system, like the one shown
in Fig. 3, appears to be at the correct level of abstraction for this task.

Figure 9 shows a possible example of a rigorous natural language description
of the system resulting from the aligned generations of the various artefacts
produced during the process. It is worth noticing the strict relation between
the requirements describing the system behaviour, the semi-formal design, the
executable design, and the formal models.

Fig. 9. Natural Language requirements for ICSL

The 4SECURail Formal Methods Demonstrator 161

At this level, an important role is played by the “guarantees” that each
component should ensure to the other components making use of it, and the
“assumptions” on the external environment which are supposed to hold. An
example for all: When a connection request is sent from the initiator SAI to the
ER, we should assume that it will always have a reply from ER either through
a connection-confirmation or a disconnect-indication. The formal analysis of the
system, indeed, allows to check if such an assumption is not satisfied by the ER
level, and deadlocks may appear in the behaviour of the SAI component.

4 Related Works

The analysis of still “unstable” requirements has been widely investigated by
Heitmeyer [25,26] with the Software Cost Reduction (SCR) tabular notation
and method. While Avnur [28], differently, has based its analysis on Finite State
Machines. In [29,30], Giannakopoulou, Mavridou et al. have exploited the FRET
requirements elicitation tool for analysing requirements and generating Simulink
models. In [31], Lutz and Ampo have used the Paradigm Plus tool to model
the requirements and verify them with PVS, while Ferrari et al. [32] have used
Simulink for modelling and verification of the system requirements. Another
quite related effort is that one in [33], where Basile et al. have modelled and
analysed part of the UNISIG SUBSET 98 using Uppaal.

Many more works have been done when starting from UML/SysML designs
instead than from informal requirements. In [34], e.g., Caltais et al. have dis-
cussed the transformation of SysML models into NuSMV. While in [35], Snook
and Butler have discussed the translation into the B notation of designs in the
UML-B profile. Several other studies (e.g., [36]) instead describe the translation
of UML/SysML models in mCRL2. Still, the approach which is the most similar
to ours is the one by Bouwman et al. [37], which has the same goal of enrich-
ing EULYNX interfaces with formal models, that in this case, are encoded in
mCRL2.

5 Conclusions

It is true that sometimes standard tends to prescribe vague goals and prohibi-
tions, that they tend to be continuously revised to fix their weaknesses, and that
implementations have often no strong legal incentive to fully comply with them.
Our effort should be considered as a contribution towards the definition of clear,
rigorous, stable, strongly enforced signalling standard, as required in the railway
domain and as promoted by the Eulynx5 and RCA6 initiatives.

The executable and formal models generated during the analysis of the stan-
dard have the main purpose to provide the standard designer with some feedback
from the analysis of some instantiations of the standardised interface. Surely this

5 https://www.eulynx.eu/index.php.
6 https://public.3.basecamp.com/p/jGh4E3ZdE8T1RtoxvbWLCYss.

https://www.eulynx.eu/index.php
https://public.3.basecamp.com/p/jGh4E3ZdE8T1RtoxvbWLCYss

162 F. Mazzanti and D. Belli

is not sufficient to guarantee the generic correctness of the standard for all the
allowed variation points, but it still much better than relying exclusively on a
plain natural language description of the standardised interface for which no
executable model has ever been devised and analysed.

From the point of view of the provider the generated executable UML models
might be useful to shed some light on some aspects that might still be consid-
ered ambiguous in the natural language description of the standard, and to
suggest the structure of a feasible implementation possibly reducing the design
and debugging effort of the proprietary implementation.

The goal of the 4SECURail demonstrator has been the illustration - with
a real experiment - of a possible way in which formal methods, in particular,
can be exploited to improve the quality of system requirement specifications.
The use of formal models is indeed considered important for the analysis of the
interactions inside complex systems of systems, like those typical of the railway
sector.

We have shown how creating an easy-to-understand and communicate exe-
cutable model is an intermediate step that already allows to detect several pos-
sible weaknesses in the initial natural language requirements. However, this step
is also a passage where errors can easily be made, and a formal analysis of exe-
cutable models becomes important to detect and remove them. This can be done
with a “lightweight” use of formal methods, since it does not require particular
advanced background and experience. More advanced properties of the system,
e.g., those related to the expected interoperability properties the system should
guarantee, may require a more advanced knowledge of the formal frameworks
and, therefore, higher costs in terms of effort and learning curve.

Adopting a formal methods diversity approach to analyse an executable
model adds the advantage of having an alternative way to verify the correct-
ness of the generated formal models and allows to exploit a broader range of
verification features. The experience gained with our experimentation allowed
us to confirm the essential importance of relying on an automatic/mechanical
translation of executable models into the formal notations used for formal anal-
ysis. In their absence, we would not have been able to generate 53 releases of
formal design in three different notations. The experimentation conducted within
the 4SECURail project has put in evidence many aspects that deserve deeper
studies. Among these:

– The precise role of SysML/UML as system design notation.
– The way to support the transition from executable designs generated in

industry-ready Model-Based System Engineering frameworks to formal mod-
els.

– The way to support lightweight use of formal methods to make them more
easily adaptable to the existing requirements definition processes.

– The way in which the formal models and the verified properties can be
explained back in a rigorous natural language style.

Another piece of work that is still missing and that we hope to be able
to complete in the near future is a thorough evaluation of the experimented

The 4SECURail Formal Methods Demonstrator 163

approach and of its positioning with respect to the state of art. The project
deliverables, the initial and revised case-study requirements, the UML designs,
the formal models, the (open source) translation tools are all publicly available
in the 4SECURail site and in open access repositories [38,39].

Acknowledgements. This work has been partially funded by the 4SECURail project.
The 4SECURail project received funding from the Shift2Rail Joint Undertaking under
the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 881775 in the context of the open call S2R-OC-IP2-01-2019, part of the
“Annual Work Plan and Budget 2019”, of the programme H2020-S2RJU-2019. The
content of this paper reflects only the authors’ view and the Shift2Rail Joint Under-
taking is not responsible for any use that may be made of the included information.
We are grateful to the colleagues of the Work Stream 1 of project 4SECURail, and in
particular to Alessandro Fantechi, Stefania Gnesi, Davide Basile, Alessio Ferrari and
Maurice ter Beek, for the comments and suggestions during the project.

References

1. Piattino, A.: 4SECURail deliverable D2.3 “Case study requirements and specifi-
cation”. In: The 4SECURail Work Stream 1 Deliverables, November 2020 (2020).
https://doi.org/10.5281/zenodo.5807738

2. Mazzanti, F., Basile, D.: 4SECURail deliverable D2.1 “Specification of formal
development demonstrator”. In: The 4SECURail Work Stream 1 Deliverables,
November 2020 (2020). https://doi.org/10.5281/zenodo.5807738

3. Mazzanti, F., Basile, D.: 4SECURail deliverable D2.2 “Formal development
Demonstrator prototype, first release”. In: The 4SECURail Work Stream 1 Deliv-
erables, November 2020 (2020). https://doi.org/10.5281/zenodo.5807738

4. Mazzanti, F., Belli, D.: 4SECURail deliverable D2.5 “Formal development demon-
strator prototype, final release”. In: The 4SECURail Work Stream 1 Deliverables,
July 2021 (2021). https://doi.org/10.5281/zenodo.5807738

5. Basile, D., et al.: Designing a demonstrator of formal methods for railways infras-
tructure managers. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol.
12478, pp. 467–485. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
61467-6 30

6. Vaghi, C.: 4SECURail Deliverable D2.6 “Specification of Cost-Benefit Analysis and
learning curves, Final release”. In: The 4SECURail Work Stream 1 Deliverables.
https://doi.org/10.5281/zenodo.5807738

7. UNISIG: SUBSET-039, FIS for the RBC/RBC Handover, 17 December 2015 (Issue
3.2.0)

8. UNISIG: SUBSET-098, RBC/RBC Safe Communication Interface, 21 May 2007
9. OMG: Unified Modelling Language version 2.5.1, December 2015

10. OMG: SysML 1.6 Specification, November 2019
11. OMG: Precise Semantics of UML State Machine version 1.0, May 2019
12. OMG: Action Language for Foundational UML (Alf), version 1.1, July 2017
13. OMG: Semantics of a Foundational Subset for Executable UML Models (fUML),

Version 1.5, May 2020
14. OMG: Precise Semantics of UML Composite Structure (PSCS), Version 1.2

https://doi.org/10.5281/zenodo.5807738
https://doi.org/10.5281/zenodo.5807738
https://doi.org/10.5281/zenodo.5807738
https://doi.org/10.5281/zenodo.5807738
https://doi.org/10.1007/978-3-030-61467-6_30
https://doi.org/10.1007/978-3-030-61467-6_30
https://doi.org/10.5281/zenodo.5807738

164 F. Mazzanti and D. Belli

15. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: States and events in Kan-
dISTI. In: Margaria, T., Graf, S., Larsen, K.G. (eds.) Models, Mindsets, Meta:
The What, the How, and the Why Not? LNCS, vol. 11200, pp. 110–128. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-22348-9 8

16. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Softw. Tools Technol. Transf. (STTT) 10(2), 185–203 (2008)

17. ter Beek, M.H., et al.: Adopting formal methods in an industrial setting: the rail-
ways case. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS,
vol. 11800, pp. 762–772. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30942-8 46

18. Ferrari, A., et al.: Comparing formal tools for system design: a judgment study. In:
IEEE International Conference on Software Engineering (ICSE), June 2020 (2020)

19. Ferrari, A., et al.: Systematic evaluation and usability analysis of formal methods
tools for railway signaling system design. IEEE Trans. Softw. Eng. (2021). https://
doi.org/10.1109/TSE.2021.3124677

20. Champelovier, D., et al.: Reference Manual of the LNT to LOTOS Translator.
https://cadp.inria.fr/publications/Champelovier-Clerc-Garavel-et-al-10.html

21. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. (STTT) 15(2), 89–107 (2013)

22. Garavel, H., Lang, F., Mateescu, R.: Compositional verification of asynchronous
concurrent systems using CADP. Acta Informatica 52(4–5), 337–392 (2015)

23. Lang, F., Mateescu, R., Mazzanti, F.: Sharp congruences adequate with tempo-
ral logics combining weak and strong modalities. In: Biere, A., Parker, D. (eds.)
TACAS 2020. LNCS, vol. 12079, pp. 57–76. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45237-7 4

24. Lang, F., Mateescu, R., Mazzanti, F.: Compositional verification of concurrent
systems by combining bisimulations. Formal Methods Syst. Des. 58(1–2), 83–125
(2021). https://doi.org/10.1007/s10703-021-00360-w

25. Bharadwaj, R., Heitmeyer, C.L.: Model checking complete requirements specifica-
tions using abstraction. Autom. Softw. Eng. 6(1), 37–68 (1999)

26. Heitmeyer, C.L.: Formal methods for specifying, validating, and verifying require-
ments. J. Univ. Comput. Sci. 13(5), 607–618 (2007)

27. Mazzanti, F., Belli, D.: Formal modelling and initial analysis of the 4SECURail
case study. In: Proceedings of 5th Workshop on Models for Formal Analysis of Real
Systems, MARS 2022, EPTCS (2022, to appear)

28. Avnur, A.: A finite state machine model for requirements engineering, IREB
Requirements Engineering Magazine, March 2015 (2015). https://re-magazine.
ireb.org/articles/a-finite-state-machine-model

29. Mavridou, A., et al.: Bridging the gap between requirements and simulink model
analysis. In: REFSQ-2020, Pisa, Italy, 24 March 2020 (2020)

30. Giannakopoulou, D., et al.: Formal requirements elicitation with FRET. In: Joint
Proceedings of REFSQ-2020 Workshops, Pisa, Italy, 24 March 2020 (2020)

31. Lutz, R.R., Ampo, Y.: Experience report: using formal methods for requirements
analysis of critical spacecraft software (1994)

32. Ferrari, A., et al.: The Metrô Rio case study. Sci. Comput. Program. 78(7), 828–842
(2013)

33. Basile, D., Fantechi, A., Rosadi, I.: Formal analysis of the UNISIG safety appli-
cation intermediate sub-layer. In: Lluch Lafuente, A., Mavridou, A. (eds.) FMICS
2021. LNCS, vol. 12863, pp. 174–190. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-85248-1 11

https://doi.org/10.1007/978-3-030-22348-9_8
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1109/TSE.2021.3124677
https://doi.org/10.1109/TSE.2021.3124677
https://cadp.inria.fr/publications/Champelovier-Clerc-Garavel-et-al-10.html
https://doi.org/10.1007/978-3-030-45237-7_4
https://doi.org/10.1007/978-3-030-45237-7_4
https://doi.org/10.1007/s10703-021-00360-w
https://re-magazine.ireb.org/articles/a-finite-state-machine-model
https://re-magazine.ireb.org/articles/a-finite-state-machine-model
https://doi.org/10.1007/978-3-030-85248-1_11
https://doi.org/10.1007/978-3-030-85248-1_11

The 4SECURail Formal Methods Demonstrator 165

34. Caltais, G., Leitner-Fischer, F., Leue, S., Weiser, J.: SysML to NuSMV model
transformation via object-orientation. In: Berger, C., Mousavi, M.R., Wisniewski,
R. (eds.) CyPhy 2016. LNCS, vol. 10107, pp. 31–45. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-51738-4 3

35. Snook, C., Butler, M.: UML-B and Event-B: an integration of languages and tools.
In: The IASTED International Conference on Software Engineering - SE2008, Inns-
bruck, Austria, 12–14 February 2008 (2008)

36. Hvid Hansen, H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J., dos Santos,
O.M.: Automated verification of executable UML models. In: Aichernig, B.K., de
Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 225–250.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 12

37. Bouwman, M., et al.: What is the point: formal analysis and test generation for
a railway standard. In: Proceedings of the 29th European Safety and Reliability
Conference (ESREL) (2020)

38. The 4SECURAil project. https://4securail.eu, https://doi.org/10.5281/zenodo.
5807738

39. Mazzanti, F., Belli, D.: Supplementary material of 4SECURail Workstream 1.
https://doi.org/10.5281/zenodo.4280773

https://doi.org/10.1007/978-3-319-51738-4_3
https://doi.org/10.1007/978-3-642-25271-6_12
https://4securail.eu
https://doi.org/10.5281/zenodo.5807738
https://doi.org/10.5281/zenodo.5807738
https://doi.org/10.5281/zenodo.4280773

ATO

Formal Design and Validation
of an Automatic Train Operation

Control System

Arturo Amendola1, Lorenzo Barruffo1, Marco Bozzano2(B),
Alessandro Cimatti2, Salvatore De Simone1, Eugenio Fedeli1,

Artem Gabbasov2, Domenico Ernesto Garrubba1, Massimiliano Girardi2,
Diana Serra1, Roberto Tiella2, and Gianni Zampedri2

1 Rete Ferroviaria Italiana, Osmannoro, Italy
2 Fondazione Bruno Kessler, Trento, Italy

bozzano@fbk.eu

Abstract. In this paper, we report on the design of a complex control
system, namely the Automatic Train Operation (ATO), which aims at
enhancing the Grade of Automation in train operations (passenger trans-
portation, infrastructure monitoring) in high-speed lines. The develop-
ment of ATO is being conducted as an industrial project, with contribu-
tions from different research teams. The design of the system is complex
in terms of architecture, functionality, safety and reliability requirements
to be fulfilled, and geographical distribution of the development teams.
Formal methods and model-based design are used to master the complex-
ity of the design and of the system integration. Our approach is based on
formal tools for system specification and validation, which support auto-
matic code generation, early design validation, testing and simulation,
and runtime verification. Moreover, we structured the development pro-
cess in different phases and configurations, corresponding to increasing
functionality of the system and different deployment configurations. The
project is at an advanced stage of execution. In this paper, we demon-
strate the effectiveness of the proposed approach and methodology, we
discuss our experience and the lessons learned.

1 Introduction

The steady progress of the Information and Communication Technology and the
limited efficiency of manual drive, which is mainly based on training and human
experience, lead to the need for an automated management and control for rail-
way traffic, which can best perform and react to different operating conditions
or sudden changes. According to the International Association of Public Trans-
port, there are five Grade of Automation (GoA) [8] that go from 0, which means
absence of automation, up to 4, which indicates a fully automated train control
and management without any staff on board.

In this context, Automatic Train Operation (ATO) systems aim to transfer-
ring the responsibility of train management from the driver to an automated
c© Springer Nature Switzerland AG 2022
S. Collart-Dutilleul et al. (Eds.): RSSRail 2022, LNCS 13294, pp. 169–178, 2022.
https://doi.org/10.1007/978-3-031-05814-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05814-1_12&domain=pdf
https://doi.org/10.1007/978-3-031-05814-1_12

170 A. Amendola et al.

control system, optimizing the driving performances due to the characteristics
and conditions of the track, the energy consumption and the passenger com-
fort and quickly reacting to unsafe situations. An additional protection level is
guaranteed by the constant supervision of a vital computer (EVC) which inter-
faces with the infrastructure monitoring system following the ERTMS/ETCS
standard for high-speed railway lines [5]. ETCS, with its direct connection to
the braking system, protects the vehicle from some critical situations such as
violating speed limits or running through places where it is not allowed.

In this paper, we report on the development of an ATO control system,
which is carried out as an industrial project, with contributions from different
research teams throughout the Italian territory (RFI, FBK and the Universities
of Naples, Salerno and Bari, for a total of 4–6 persons per team). The design of
the system is complex in terms of architecture, functionality, safety and reliability
requirements to be fulfilled. In order to master the complexity of the design
and of the system integration, we based our approach on the use of formal
methods and model based-design for system specification and validation, which
support automatic code generation, early design validation, testing, simulation
and runtime verification.

ATO is currently at the stage of a prototype, but it will eventually evolve
into a product. The objective is to have a GoA4 ATO operating on a prototype
light-vehicle, equipped with devices for the infrastructure monitoring, running
on an ERTMS/ETCS Italian high-speed line. This eventually could be the first
step on the way to meet the challenge of adapting the design and control tech-
niques from this prototype domain to applications on the high-speed mainline
railway. The ATO project is at an advanced stage of execution. In this paper,
we demonstrate the effectiveness of our design approach and methodology and
discuss our experience and lessons learned.

The rest of the paper is structured as follows. In Sect. 2 we describe the
ATO system, its architecture and requirements. In Sect. 3 we discuss the design
challenges. In Sect. 4 we present our formal approach to the development and
verification of ATO. In Sect. 5 we discuss the lessons learned. Finally, in Sect. 6
we draw some conclusions and outline directions for future work.

Related Work. For metropolitan railway lines, several approaches have been
proposed to optimize train operation and energy consumption with autonomous
driving [9], by combining high-level and low-level control of the ATO [10] or
dealing also with train load and delays of the line [6]. However, the challenge
of autonomous driving is still open for high-speed lines. Detailed modeling of
high-speed trains is one of the most demanding research issues together with
the development of powerful simulation platforms. Formal methods have been
extensively applied in various industrial domains, including transportation [11],
see e.g. [7] for a recent survey on the application to railway systems.

Formal Design and Validation of an ATO Control System 171

2 The ATO Control System

ATO consists of two cooperating systems: ATO Track Side (TS) and ATO On
Board (OB). ATO-TS collects and forwards data on trains, tracks and timetables
concerning the train journey, while ATO-OB receives such data and uses them
to control and drive the train. ATO can be operated by a remote driver, who
is responsible for activating autonomous driving. The architecture of ATO is
described in Fig. 1. In the rest of this section, we focus on ATO-OB. The Interface
Manager allows ATO to interface with the different modules such as ATO-TS,
ETCS, SMO (Speed Monitoring and Odometry), SCS (Supervision and Control
System) and TIU (Train Interface Unit). The Controller implements the main
finite state machine for the different ATO functional operating modes. Track
Database Manager uses odometry data to localize the train on the line and

Fig. 1. ATO architecture

validates the journey received
from the trackside before
the start of the mission.
Autonomous Driving Func-
tions receives the track and
journey profile data from the
Track Database Manager and
uses them to generate an
optimal speed profile, and
the brake and traction com-
mands to forward to TIU.
The Energy Manager uses the
battery and fuel data and
the traction system status
to monitor the energy level
and evaluate the consumption
needed to achieve the current
mission.

As an example, we consider the nominal scenario with a train stopped at a
charging point. When the train is selected by an ATO-TS remote driver, ATO-
OB verifies that its database version matches with the trackside one and performs
some internal system tests. The remote driver plans the journey profile to be sent
on board, and waits for an acknowledgment. When ETCS mode evolves to full
supervision and other engagement conditions are fulfilled (e.g., ETCS and ATO
are not applying full service or emergency brake, ATO-OB is localized on a
specific Segment Profile sent by trackside, and train direction is forward), the
remote driver can engage ATO-OB enabling autonomous driving. In such drive
mode, the train reaches the final destination of the journey, respecting the related
timetable of the assigned timing points and stopping points. An example of non-
nominal scenario consists in using an autonomous vehicle equipped with ATO
to rescue another vehicle that is blocking a high-speed line, due to a breakdown.

The design of ATO is subject to complex requirements. In order to meet spe-
cific project goals, we had to review and customize the functional and interface

172 A. Amendola et al.

requirements defined by standard UNISIG subset, and add or discard some of
them. For example, we provided train localizing function data on board, moving
it from trackside; we discarded all the requirements related to doors management
since the prototype light-vehicle has none; we added camera requirements to mit-
igate the absence of driver on board and we customized the interface protocol
in order to manage the data for the new functions we added.

3 Challenges

The design of ATO is very challenging, due to the complexity of the system and
of the associated requirements. The ATO system is distributed. It consists of on-
board controller (ATO-OB) and a trackside counterpart (ATO-TS) which, in turn,
are composed of several modules realizing different functions, and connecting to
external systems, such as ETCS. ATO is composed of heterogeneous components,
specifically it includes components that interact directly with the underlying HW,
e.g., those commanding braking or traction of the train. Such components rely on
models of the HW which are inherently continuous (e.g., specified using differen-
tial equations). For this reason, ATO relies on heterogeneous design tools, based
on different specification languages (e.g., Scade, Simulink, C).

The specification of ATO relies on a complex and evolving set of (functional,
safety and performance) requirements, therefore the design process needs to be
robust against changes and adaptations, and support system evolution. More-
over, the architecture of ATO, its control logic and modules must be designed to
match the Safety Integrity Levels (SIL) requirements, according to the EN50128
standard. A Preliminary Hazard Analysis is in progress to assign SIL to the
product. It is expected that different ATO modules will be assigned different
SIL, with the highest levels assigned to the most critical components.

Finally, the design process of ATO must take into account the distribution of
the development teams. This makes system integration a particularly challenging
task, which calls for suitable verification and validation and testing strategies.

4 Formal Design of ATO

The software specification and design of ATO is based on formal methods. The V-
Model, as specified in the CENELEC EN-50128 [2] standard guides the software
development process from the definition of the system requirements to testing,
integration and validation phases. Model-based design takes advantage of co-
design strategies and interdisciplinary effort, favoring cooperation between teams
with skills in different disciplinary sectors.

Given the high assurance requirements of ATO, we based the design on tools
such as ANSYS SCADE Suite1 and Architect2, which offer qualifiable/certified
code generation capabilities and interoperability with other development tools

1 https://www.ansys.com/products/embedded-software/ansys-scade-suite.
2 https://www.ansys.com/products/embedded-software/ansys-scade-architect.

https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.ansys.com/products/embedded-software/ansys-scade-architect

Formal Design and Validation of an ATO Control System 173

Fig. 2. An excerpt of an IBD for ATO-OB (left) and ATO process layers (right)

and platforms. The use of SCADE meets the production standards for SIL 3/4
SW, since it is compliant with the required metrics and constraints. Our app-
roach integrates the capabilities offered by SCADE with other functionality for
verification and validation implemented in our proprietary tool chain based on
the nuXmv model checker [1]. In this section, we discuss how these solutions
address the challenges outlined in Sect. 3.

4.1 Requirements and Architecture

The development of ATO is guided by an evolving set of requirements, and
by a set of operational scenarios specifying some real case missions the system
must fulfill. We grouped requirements by functionality and we identified the
corresponding modules responsible for taking into account the set of assigned
features. We further split requirements into those allocated to ATO-OB and
those allocated to ATO-TS. Requirements have been analyzed to extract a hier-
archical representation of ATO and the corresponding logical architecture. The
architecture has been modeled using SCADE Architect, resulting in several Block
Decision Diagrams (BDD) and Internal Block Diagrams (IBD). As an example,
in Fig. 2 (left) we present (part of) an IBD focusing on a subset of ATO-OB.
Since the design is distributed, it is of utmost importance to design a robust
and stable architecture, in which interfaces between different modules are well
defined and shared with all the involved teams. In this respect, scenarios have
been formalized into sequence diagrams, which strictly refer to the architectural
decomposition, and have then been used to guide the implementation of the
components and to derive test suites to perform unit and integration testing.

The layered architecture of an ATO process is depicted in Fig. 2 (right): (a)
Application Code Layer is a pure C function which computes abstract3 outputs
3 We use the term abstract for protocol-independent data.

174 A. Amendola et al.

Fig. 3. Phased V-Model

from abstract inputs and current internal state. The layer is run at each execu-
tion cycle, (b) Adaptor Layer is in charge to periodically invoke the Application
Code and to route abstract data from/to the layer below, (c) Protocols Layer
handles incoming/outgoing data frames performing encoding/decoding opera-
tions mapping protocol data from/to abstract data, (d) Device Drivers Layer is
in charge to cope with connected devices hiding communication details to the
upper layers, finally (e) the underlying OS Layer provides required services such
as scheduling and access to disks, network and other peripherals.

4.2 Development Process

Development Life-Cycle. The system is developed following a process that can
be described as a phased V-Model (Fig. 3). To face the challenges implied by
the novelty of the project, such as instability of requirements and variability of
components interfaces, the process extends the classical V-Model with aspects
borrowed from the Agile philosophy.

In details, the classical V-model is extended along two dimensions: phases and
configurations. Phases concern functionalities and target a subset of system fea-
tures. In a phase, the V-model is iterated refining requirement analysis, system
architecture, implementation, unit and integration test until stability is reached.
Once the last phase is terminated, the system will undergo a final system testing
activity. Three phases were identified: remote operations, autonomous driving,
and the full ATO system. Orthogonally, a configuration specifies which layers of
the system are involved in the integration testing activities and, consequently,
which running environment tests are run on. We identify three main configura-
tions: (a) Configuration 1 involves the Application Code Layer only. The code is
tested in the simulation/testing environment of SCADE Suite (see next section
for details), (b) Configuration 2 extends Configuration 1 with the Adaptor and
Protocols layers. The code is run on host, introducing asynchronous execution

Formal Design and Validation of an ATO Control System 175

of subsystems and the interaction with services, e.g. logging service. Communi-
cation with devices is simulated, (c) Configuration 3 adds the Device Layer and
the Target OS Layer. Each subsystem is run on the proper target using real
devices. Configuration 3 actually is subdivided in a set of subconfigurations (3a,
3b, etc.) that more and more integrate larger parts of the final physical system.

System Architecture, Component Design and Implementation. The development
process follows the model-based approach, where a machine-readable formal rep-
resentation of a system is built as the main project’s artifact. Such a represen-
tation (model) is the input for all the downstream development activities, most
notably allowing for formal verification of the properties of the system, i.e. model
checking [4], certified source code and documentation generation. In details, the
system architecture is specified in SCADE Architect using the SysML language.
A SysML architectural model typically comprises hierarchical decomposition of
the system, connections, interfaces and data types. SCADE Architect provides
validation tools for early identification of flaws (see Sect. 4.3). Using the model
generator provided by SCADE Architect, for each subcomponent we generate
a skeletal behavioral model written in SCADE Suite language. The majority of
subsystems/components are implemented using the SCADE Suite language. One
subsystem is implemented using MathWorks Symulink and one data-intensive
component is manually written in C. In total, the SW for ATO-OB contains
about 75K lines of code. SCADE Suite comprises a code generator for translat-
ing models into C code which is certified under EN 50128:2011 at T3/SIL 3/4.
The ratio of the C code we automatically generated for ATO-OB using Scade
is about 75% of the whole code (including manually written code, and code
generated by other means). Certification implies that unit/component testing
activities can be performed on models instead of on generated code, reducing
certification times and costs (the reduction is estimated in the order of 50%).

Moreover, to develop the Protocol Layer, we used ASN.1 as the interface
description language, due to its flexibility, widespread use, and extensible format.
In particular, we used ASN.1 to generate an intermediate formal specification to
support component interaction. This approach can accommodate different com-
munication protocols, including ad-hoc protocols described in textual or tabular
form. Given that the protocols are constantly evolving and that the manual
implementation of ASN specifications is time-consuming and error-prone, we
generate them from tabular description for one protocol and from SCADE com-
ponents based on textual description for others.

System Integration. When managing distributed teams and heterogeneous com-
ponents, system integration becomes a highly important task. ATO contains
some modules implemented using the SCADE language natively, while others
are designed in different formats, e.g. Simulink and C. Source code generated
from such models is linked to the rest of the code by means of a SCADE Suite
language feature called ‘external operators’, i.e., operators whose interface is
mapped to the interface of the corresponding external module via some glue
code. We require a test suite associated to each module which must invoke all

176 A. Amendola et al.

its nominal behaviors. Each test is then replicated in the SCADE framework so
that we can mimic the same actions and prove that we obtain the same results
even with the integrated system. Operational scenarios are then used to derive
some integration test cases that are intended to simulate interactions between
components and to prove that ATO behaves as expected. In order to avoid non
regression failures, we followed a continuous-integration approach by designing
a custom framework based on the python package ‘pytest’. Moreover, we rely
on the ‘git’ versioning tool to share the SW development effort among different
teams and to freeze system implementation at specific milestones.

4.3 Verification and Validation

We used multiple and complementary ways to formally verify and validate the
design and implementation of ATO. First, we used SCADE to perform early model

Fig. 4. Our approach to property-based formal
verification

validation. SCADE offers some
checkers that can be used to val-
idate the hierarchical composi-
tion of the architecture, in par-
ticular the compatibility of the
component interfaces, and to
check that sequence diagrams
refer to valid data. This allows
us to guarantee that the formal-
ization of the scenarios is com-
pliant with the architecture,
before moving to the implemen-
tation. Then, we used SCADE
Suite to design, simulate and
test the system by means of scenario validation, i.e. by specifying values on
input ports and checking that the outputs are as expected. We performed this
task starting from component level up to system level. In case of unit testing we
also made use of the model coverage feature, which allows to highlight which (if
any) paths of the model are not stimulated by tests; in this case, we enriched
the test suite in order to reach the highest possible coverage. When scenarios
need to be modified or we want to verify other sets of requirements (for instance
when moving to a subsequent development phase), the same process is replicated,
starting from the architecture up to system integration testing.

The ATO outcomes can be visualized and verified after executing a scenario
by means of logging. A separate component (called ATOLOG) records all the
relevant diagnostic information. It consists of: a server that receives and saves log
packets from the log clients (written in C and Python) of other ATO components;
a log client that provides an API for sending log packets; and various tools for
decoding, analyzing, and visualizing raw binary data collected by the server.
The collected diagnostic information is represented by the messages exchanged
among components, and it can be processed with various tools to verify that the
scenario execution results correspond to the expected behavior.

Formal Design and Validation of an ATO Control System 177

Finally, once system integration is consolidated and all the individual sub-
modules have been validated, we used model checking (MC) techniques to per-
form property-based (runtime) verification. Namely, we used a custom tool-chain
based on the nuXmv model checker [1] and NuRV, an extension of NuXmv
for runtime verification [3], and we implemented a (in-house) translation from
SCADE to nuXmv. Our approach is described in Fig. 4. The system to be veri-
fied is split into one part which is formally modeled in SCADE, hence amenable
to formal verification, and one which is not. In the first case, we used model
checking to automatically verify system-level properties. In the second case, we
used techniques based on Assumption Based Runtime Verification (ABRV) to
automatically generate monitors that can be used as test oracles, see [3]. Inter-
estingly, this process is completely automatic and requires just a small effort to
connect the generated monitors to the rest of the system, before conducting the
tests. In this way, many verifiers can be generated from the properties, while the
effort required for refactoring, when the module interface evolves, is negligible.

5 Lessons Learned

The design of ATO has raised many challenges, due to its inherent complexity,
and the distribution of the development effort. The main problem we had to
address was how to effectively split the work among different teams. Continuous
integration, supported by custom strategies for testing and by versioning tools,
was the natural choice to address the complexity of system integration, along
with ad-hoc strategies to deal with system evolution, e.g. to deal with updates
to the interfaces of the subsystems allocated to external development teams. In
this respect, we were forced to agree with partners not only about the definition
of the high-level interfaces, but also about the precise semantics of individual
fields.

The phased V-model allowed us to progressively design and implement the
functionality of the system in two different respects. First, it enabled us to stream-
line the support for different operational scenarios, concentrating on one scenario
at a time. Second, it enabled us to test the implementation of the integrated sys-
tem on different deployment configurations (using a simulator; on one or more
hosts; on the final OS with the target HW in the loop), making it possible to
progressively release the deployed system on different targets, as soon as the
latter become available in the course of the project.

Finally, we have carried out verification and validation using a mix of strate-
gies and tools, integrating the support given by tools such as Ansys Scade Suite
and Architect, simulators, and our proprietary tool chain for formal verifica-
tion, based on model checking. Particularly effective was our choice to use both
design-time model verification, and custom techniques for runtime monitoring,
in combination with testing. The latter enabled us to cover – via testing – the
verification of system-level properties that were out of reach for model checking,
due to the complexity of the models and the state explosion problem.

178 A. Amendola et al.

Based on our experience, the formal approach proved to be effective and gave
numerous benefits. Indeed, most of the flaws we encountered during system inte-
gration were located in components that had been outsourced, and were designed
and tested using traditional methodologies, without using formal methods.

6 Conclusions and Future Work

In this paper we discussed the design of a complex control system, the Automatic
Train Operation, and we presented a formal methods approach, which guides the
ATO development throughout all the development phases.

Currently, ATO is at the stage of a prototype. We estimate to execute first
chassis dynamometer tests by March 2022 and then field tests by June 2022 on
the Bologna San Donato railway test circuit, the first fully equipped laboratory
in the field throughout Europe. ATO is designed on a single-unit unmanned
prototype light-vehicle which does not require the presence of on board driver,
cabin staff or passengers, with all the implications that such specific design brings.
So far, possible future developments concern the design of an ATO which is able
to control and drive a multiple-unit high-speed train, with passengers on board.

References

1. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

2. CENELEC: EN 50128, Railway applications - Communications, signaling and pro-
cessing systems - Software for railway control and protection systems (2011)

3. Cimatti, A., Tian, C., Tonetta, S.: NuRV: a nuXmv extension for runtime verifica-
tion. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 382–392.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 23

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

5. European Union Agency for railways: ERTMS - Making the railway system work
better for society (2016)

6. Fernández-Rodŕıguez, A., Fernández-Cardador, A., Cucala, A., Domı́nguez, M.,
Gonsalves, T.: Design of robust and energy-efficient ATO speed profiles of
metropolitan lines considering train load variations and delays. IEEE Trans. Intell.
Transp. Syst. 16(4), 2061–2071 (2015)

7. Ferrari, A., ter Beek, M.H.: Formal methods in railways: a systematic mapping
study (2021)

8. International Association of Public Transport: A global bid for automation: UITP
Observatory of Automated Metros confirms sustained growth rates for the coming
years, Belgium

9. Licheng, T., Tao, T., Jing, X., Shuai, S., Tong., L.: Optimization of train speed
curve based on ATO tracking control strategy. In: Chinese Automation Congress
(2017)

10. Su, S., Tang, T., Chen, L., Liu, B.: Energy-efficient train control in urban rail
transit systems. J. Rail Rapid Transit 229(4), 446–454 (2015)

11. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: Formal methods: prac-
tice and experience. ACM Comput. Surv. 41, 19:1–19:36 (2009)

https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-030-32079-9_23

Investigating Human Error Within GoA-2
Metro Lines

Josh Hunter(B) and John McDermid

Assuring Autonomy International Programme, University of York, York, UK
{josh.hunter,john.mcdermid}@york.ac.uk

Abstract. The rail industry is progressing towards higher levels of automation and
autonomy. Other industries, e.g. aviation, have discovered ‘ironies of automation’
where the reduction in workload actually contributes to unsafe events. The rail
industry will not be immune from such issues as reductions in the complexity of
workload often leads to work becoming mundane and routine. Further, without
the need to be constantly reacting to their surroundings, drivers are ill-equipped
to break the monotony to address anomalies which can lead to accidents. Such
problems can arise in the transition from GoA-1 to GoA-2 and should lead to a
rethink of system design, not to place blame on drivers. However, this redesign
needs to consider both human workload and the system itself. The paper is a
preliminary analysis of the challenges of increasing automation and identifies
potential solutions such as reworking the transition by increasing the workload
placed upon the driver within GoA-2 systems, increasing stress but decreasing
monotony by making work non-routine and thus retaining driver attention. This
is a positive trade-off and may be the cheapest and most effective solution, that
isn’t simply the transition to GoA-3.

Keywords: Automation · Human-error ·Monotony

1 Introduction

Within Europe, rail is the safest mode of land transportation. Safety for rail has been
improving for decades, with the annual rate of accidents resulting in a fatality falling by
5% every year. Further, a “major accident” which is defined as an accident where five
or more fatalities occur have become very rare, with only two such accidents happening
since 2018 (European Union Agency for Railways 2020). Not accounting for the 2019
pandemic which will have drastically affected travel for the past 2 years, rail has stayed
relatively stable as a mode of transportation, with the general public using rail a similar
amount each year for the previous five years (Gower 2021). This implies that all railway
innovation within the past decade has either been for safety’s sake, or has adequately
considered safety, as the number of rail trips overall remains roughly constant as seen
in Fig. 1, and the number of major accidents has fallen as seen in Fig. 2. Within the UK,
the number of fatalities totals less than fifty per annum, excluding suicides (Rail Safety
and Standards Board 2020).

© Springer Nature Switzerland AG 2022
S. Collart-Dutilleul et al. (Eds.): RSSRail 2022, LNCS 13294, pp. 179–191, 2022.
https://doi.org/10.1007/978-3-031-05814-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05814-1_13&domain=pdf
http://orcid.org/0000-0002-6828-974X
http://orcid.org/0000-0003-4745-4272
https://doi.org/10.1007/978-3-031-05814-1_13

180 J. Hunter and J. McDermid

Fig. 1. Number of railway journeys within the UK per annum (Gower 2021)

Fig. 2. Number of fatalities on rail within the UK per annum (Rail Safety and Standards Board
2021)

In the UK the most popular mode of transportation is the car. While the rate of acci-
dents has been gradually decreasing over the past decade, total annual fatalities within
the United Kingdom are still in four figures (UK Department for Transport 2020). There
has been long-standing research on the safety of road vehicles, however road vehicles
are inherently less safe than other modes of transportation, they are involved in more
scenarios where accidents can happen, they take non pre-planned routes, get involved
with non-scheduled traffic, and encounter more anomalies in general. In comparison,
things are more planned within rail, so it is easier to account for and manage potentially
hazardous situations. Rolling stock operates on a set path, meaning that it is easier to
account for its surroundings. This is helpful because, whilst there are currently active
programs to introduce autonomy within both rail and road, rail’s more constrained envi-
ronment should lead to its developments being smoother. With a clear path for the future

Investigating Human Error Within GoA-2 Metro Lines 181

of automation being constructed, there are good guidelines for where we should be
looking regarding innovation.

1.1 Context of the Problem

At present, themajority of autonomous systems arewithin their infancy. The rail industry
is no different, with automation being split into four stages, or fourGrades ofAutomation
(GoA), as shownwithin Fig. 3, GoA-0 is simply an unautomated train where movements
are fully under the control of the driver. GoA-1 is essentially limiters that take control
away from the driver, stopping them from speeding, this is known as Automatic Train
Protection (ATP) and has been criticized for the ability to ignore the commands of the
driver (Dave Keevill 2017) could cause reluctance to adopt the systems by the drivers
who are used to having full control. Despite this, GoA-1 is the most common form of
automation seen today (Brandenburger and Naumann 2021).

Fig. 3. Grades of automation (Dave Keevill 2017)

Fig. 4. ATS diagram (The Railway
Technical 2021)

GoA-2 is defined as a locomotive with
ATP and Automatic Train Operation (ATO),
meaning the actual driving and braking of the
train is automated with drivers taking over in
case of disruption such as a tree falling on
the rails or operating specific safety-related
tasks such as door closure. It is worth not-
ing that within GoA-2 and GoA-1 a driver is
still required, and their average day doesn’t
change very much. GoA-2 has been set as a

target for railway companies that are interested in automation (European Union Agency

182 J. Hunter and J. McDermid

for Railways 2020). GoA-3 is the start of what could truly be considered self-sufficient
automation, and GoA-4 is considered fully autonomous, and a goal of railway innova-
tions as defined by the European Union (Shift2Rail EU 2019). In both GoA-3 and 4
ATO and ATP are utilized to ensure safety in basic driving operations. GoA-3 retains an
attendant on-board to operate doors, assist passengers and operate the train in event of
disruption but the bulk of the work is done either by automation or by remote operation
from an off-site driver cabin. GoA-3 allows for Automatic Train Stopping (ATS/Fig. 4);
if a train ahead is involved in an accident, ATS will “kick in” and stop the train from
experiencing the same fate.

Scrutiny Within Automation
It is important to note that rail is such a safe mode of transportation with annual fatalities
in the single or double digits in many countries, that we must treat each fatality with
higher scrutiny than within road travel. When creating automation within cars and other
road-based systems, there is leeway in the fact that accidents happen, the road is not
an intrinsically safe place; accidents can be reduced but they are impossible to avoid
altogether. In contrast, in railways, autonomous systems are expected to act as well as
a human would, or even better, within a given scenario. Although that is hard to define
on a philosophical level, on a quantitative level that would simply mean an autonomous
railway system cannot be declared ready until it can run without incident and if an
incident was to occur, accountability must be traceable within the system to find out
why the incident happened.

Within rail travel we must discuss the possibility of even reducing minor incidents,
while safety is the number one priority, it is also important to ensure that the public are
getting the best possible experience while using an automated system. Thus, as well as
having as few, or fewer, accidents as a human driver, an automated railway would be
expected to achieve at least current levels of punctuality. Thus, automation within the
railway industry requires scrutiny to ensure that the public are getting the best possible
service.

Automation and Perceived Human Error
It is easy to look at the shortcomings of a systemand blame it upon human error.However,
when the human error is correlated with the introduction of a new system component,
it is important to step back and consider whether or not there is an issue with the way
that the new component is injected into the overall system and the assistance given to
the individuals involved to help them to adapt.

Numerous reports have found that the exposure to extended periods of monotonous
work within railways can cause drivers to experience “microsleep” which is defined as
an individual experiencing a high Karolinska Sleepiness Score (KSS) (Åkerstedt and
Gillberg 1989). In contrast, drivers who have the typical varied work schedule found
within GoA-0 experience microsleep “substantially less” and often have lower KSS
scores (Naumann 2016). The monotonous work typically linked with microsleep is
attributed to the work commonly found within GoA-2 (Brandenburger and Naumann
2021). A potential critique of these trials is that they sometimes pushed the drivers to
the limit for a short period of time in regard to monotony, not investigating the long
term effects of minor daily monotony, the tests took place over two time variables, (PRE

Investigating Human Error Within GoA-2 Metro Lines 183

vs POST) the specifics of these variables were not published, however, they supported
the overall point that there is an irony of automation, where during GoA-0, the gradient
at which takeover time increases over the day is small, as seen in Fig. 5, but during
GoA-2 the gradient gets much larger as seen in Fig. 6, but then decreases as Automation
increases.

Being that the topic of monotony within the workplace is an incredibly wide area, it
would be immature to suggest that GoA-2 is the only issue and the removal/reworking
of GoA-2 systems would completely resolve any problems that may be linked, but there
is sufficient evidence to suggest that it is a symptom of a wider problem.

Fig. 5. Takeover time within GoA-0 systems
(Brandenburger and Naumann 2021)

Fig. 6. KSS Score comparing GoA-2 and
GoA-3 systems (Brandenburger and Naumann
2021)

2 Analysis

2.1 Real-World Examples of Problems

The world has slowly been adopting automated locomotives, which means that there
are real-world examples of the potential issues within the different GoA. Several issues
that have been declared as “human error” in that there are no specific issues with the
software, with all computational components working as intended, meaning the drivers
are fully to blame. However, while there are cases where this may be a fair attribution,
there are several examples where extraneous circumstances have been identified:

Incidents Within the London Underground
Jubilee Incident (7 February 2018)
The majority of London Underground stations were converted to allow ATO between
2006 and 2008.When running inATO,movement of the train is controlled automatically.
At stations, the train operator is responsible for opening and closing the passenger doors,
checking in-cab CCTV monitors for potential issues at the platform train interface (e.g.
passengers or objects trapped in closed train doors) and initiating the start of the train.
Between stations, the train operator is expected to monitor the ATO system, remain
vigilant and look out for any obstruction on the track ahead of the train (United Kingdom
Department for Transport 2018a, b). This can be considered as textbook GoA2.

Shortly after 09:00 h on Saturday 1 September 2018, a London Underground train
travelled on the Jubilee line between Finchley Road and West Hampstead stations in

184 J. Hunter and J. McDermid

north-west London with doors open at ten passenger doorways. The train travelled for
56 s and reached a maximum speed of 62 km/h between the two stations. There were
approximately 30 passengers on the train, but no one fell out of it during the journey to
West Hampstead, and there were no reported injuries or damage. After the incident, an
investigation was undertaken and found a probable cause of this accident was the driver
entering a microsleep, with them stating “that he had ‘zoned out’ and made ‘rushed
decisions’ when dealing with the door problems at Finchley Road. These are indicators
that the sudden transition from a lowworkload to highworkload situation, fatigue and/or
low blood sugar levels were probably adversely affecting his capacity to deal with the
stress caused by the unusual situation” (Rail Accident Investigation Branch 2018).

Notting Hill Gate Incident (31 January 2018)
At about 16:00 h on Wednesday 31 January 2018, a passenger became trapped in the
doors of a London Underground train as she attempted to board a west-bound Central
Line service at Notting Hill Gate station while the doors were closing. The train departed
and reached a maximum speed of 35 km/h before the emergency brakes were applied
and the train stopped. The passenger was dragged for approximately 75 m along the
platform, and about 15 m further into the tunnel. She suffered serious injuries and was
taken to hospital, where she was treated for about a month (United Kingdom Depart-
ment for Transport 2018a, b). An investigation following the event found similar results
as Brandenburger stating “Trains running with an active ATO system present a train
operator with relatively low workload (compared to manual operation), and repetitive
actions at stations. Research conducted by the Transport Research Laboratory for RSSB
showed that, under such circumstances, it is possible for people to enter an automatic
mode of responding, associated with faster reaction times but reduced attention and
more errors. Witness evidence suggests that the ATO train operator’s task can require
effort to maintain attention, and that it can result in a reliance on the ATO system.”
(United Kingdom Department for Transport 2018a, b).

Although the outcomes were different, within both the Notting Hill and the Jubilee
Line incidents, the circumstances leading up to the two incidents were identical; the
driver had low blood sugar and found it difficult to focus in the first place, tied up
with the repeated monotonous work leads to microsleeps causing the driver to miss an
important detail and unfortunately, cause an accident.

Further Incidents Taking Place on the London Underground
Numerous similar events have happened on the London Underground throughout the
years since GoA-2 has been introduced, the reasoning behind them have all been similar,
three of the events are listed, however more events do exist:

• Passenger trapped in a closed train door, Tooting Broadway, Northern line, London
Underground, 1 November 2007 (RAIB report 17/2008).

• l Passenger dragged a short distance by a train at Holborn station, 3 February 2014
(RAIB report 22/2014).

• Victoria line of London Underground departed fromWarren Street station with all the
passenger doors open (RAIB 2011).

Investigating Human Error Within GoA-2 Metro Lines 185

Bucharest Metro Line 2019 Incident
The main city centre of Romania’s capital, Bucharest has had full GoA-2 rail infra-
structure since 1995 (Hinojal 2017), however, the transition to a 2015 upgrade of the
software seems to have caused some issues highlighting some problems with GoA-2.
The upgrade saw the rail control system updated from relay-based technology in which
commands were coded on rails to a computer-based system which increased operational
efficiency and capacity while maintaining safety. An objectively positive change, should
it all have worked correctly; however, through a combination of an inexperienced driver,
poor weather and the software not receiving the proper updates on the situation, the
upgrade ultimately led to a train derailing and crashing into a wall.

As an investigation was launched into the issue, it was brought to light that the
onboard software was known to not work within extended icy conditions, with a rep-
resentative of Metrorex, the company that supplied the train involved in the incident
stating:

“The train couldn’t park because of the weather. It had to be parked outside, you
couldn’t park because of the ice. It may have been an incorrect maneuverer by
the driver (…) I don’t know (how experienced the locomotive driver is - ed.), But
all the locomotive mechanics are experienced. I don’t know (how long it will take
them to get the train back in motion - ed.).”

(S, odolescu 2019) (Translated from Romanian)

Real-World Consequence
With the knowledge of past examples, it is reasonable to assume that this is an issue
that we could blame on the “human factor” with drivers simply being unaccustomed to
the software and its limitations. However, this would be premature as following further
investigation it has been deemed a software issue by the Romanian Railway Investigation
Agency (Leidig 2020) due to the ATP present within GoA-2 systems seizing control of
the speed factor within the train due to a glitch caused by the poor weather conditions,
an issue which is categorized as a structural one rather than an issue stemming from
the driver. The lessons to be learned from this incident is both that drivers need more
rigorous training before becoming acquainted with new software and that software must
be ready for the scenarios in which it will be used and any extremes such as weather
that it may encounter. Although GoA-2 serves to minimize the amount of work required
by a driver, a manual override must be possible, and ATP must not have the final say
(Leidig 2020).

Other similar events have taken place within GoA-2 metro systems throughout
Europe’s metro systems, however for the purposes of this paper it would be repeat-
ing points. The topic of modelling responsibility is not an easy one, it’s impossible to
say drivers are faultless, however there is sufficient evidence to suggest that the topic is
not black and white.

2.2 Current Real-World Solutions

Since the failures of GoA-2 that have been presented, several specific solutions have
been applied, often to ensure that the same problem doesn’t happen twice. This is a

186 J. Hunter and J. McDermid

desirable since it increases safety, is relatively cost effective and prevents recurrence of
accidents with the same signature. However, it could be argued that this is not enough
and that the fact these solutions were not implemented ahead of time shows a lack of
critical understanding of the possible pitfalls within different grades of automation. It
is still important to analyse the specific solutions and think of how they can help us to
understand a more widespread and systematic one.

Passenger Report Buttons
In the event that any on-board protocol fails, drivers fail to note any anomalies such as
in the Jubilee Line and Notting Hill Gate Incidents in 2018, passengers may take it upon
themselves to cause a train to stop.

Year by year the number of alarm activations rises, despite the number of passenger
journeys staying relatively stable. Indeed, 2019 actually had a 6% decline in railway
usage compared to 2018 throughout all of Great Britain as shown in Fig. 7 (Gower
2021),meaning the9% increase in emergencyusage is implying either that passengers are
getting more comfortable reporting issues or issues are becoming more commonplace.
However, as discussed previously, the number of major incidents has been on a steady
decline, but this has no real bearing on the usage of an emergency stop. There are reports
of customers typically using the emergency stop button for smaller issues. There have
been reports of passengers with bodily physical difficulties, such as the required use of
a wheelchair using the emergency stop on a train to call for staff in order to assist them
getting off the train, with one passenger telling the BBC “If I can’t get off at my stop
that’s an emergency for me” and the Railways customer service representative declaring
this a legitimate use of the emergency button, stating the company trusts passengers
judgement in using the button (Rob-England 2020).

Fig. 7. (National Rail Delivery Group 2019)

As expected, 2020/21 saw a reduction in the total number of button presses compared
to previous years, due to less people using the railway as shown in Fig. 8. However, the
button presses per million passengers is up drastically. There could be several reasons
behind this, but it is safe to assume that these results are anomalous and do not mean
much for the purposes of reducing incident rates within GoA-2. It is not unreasonable
to assume that, given a non-pandemic time, the alarm activation rate would have stayed
steady (National Rail DeliveryGroup 2021). The purpose of the button is to help alleviate
issues caused within GoA2 systems. At lower grades of automation there would always

Investigating Human Error Within GoA-2 Metro Lines 187

Fig. 8. 2020/21 button usage (National Rail Delivery Group 2021)

be a staff member to help an individual with a wheelchair onto the station, for example,
than within a higher grade of automation.

Aircraft Often Opting to Not Use Autoland Feature
Autoland as a feature has existed since 1937, being created by aircraft pioneers Captain
Carl Crane, George Holloman and Raymond Stout (Larson 2012). However, the practise
of using the feature is still not standard to this day for several reasons.

Software Not Fully Adaptable to All Forms of Weather
Much like the Bucharest 2019 metro incident, there have been cases in the past of
aviation accidents caused partially by poor weather in which overcast clouds caused
an auto-landing plane to crash onto grasslands near the landing zone (German Federal
Bureau of Aircraft Accident Investigation 2011).

Causing Pilot Enjoyment to Dwindle
As shown within the open doorway incident within the London Underground, if a job
becomes routine and unenjoyable there is a risk that the worker will enter a micro-sleep
state while working. This is no different within air transport, with landing being one of
the more difficult parts of the job, it is also the most engaging. Although the process can
be automated, it seems counterintuitive to do so as, much like within rail, removing the
more difficult parts of a pilot’s job while still needing them in case of emergency can
cause brainfog (Brandenburger and Naumann 2021).

Occasionally the Software Fails
Although piloting can theoretically be automated there are scenarios where the automa-
tion fails. Within these scenarios it is important that pilots can undertake the full extent
of their jobs, else disaster may strike as it did within Asiana Airlines Flight 214, a flight
in which crew had become dependent on autopilot to land and had gradually overtime
forgotten their training and how to land at all, leading to several casualties (US National
Transportation Safety Board 2013).

Complacency Within Aviation
Another irony within the working world is one of experience making workers less atten-
tive, ‘the better you get at work the less effort you put in to any given day’ also known
as complacency, a state of ‘self-satisfaction with one’s own performance coupled with
an unawareness of danger, trouble’ (Moray and Inagaki 2000). What all of this means is
that overall as skill increases, less focus is needed to operate at average capacity. There
has been some research into the overlap of complacency and over reliance on automa-
tion (Automation Bias) within aviation in which a link between the two was suggested

188 J. Hunter and J. McDermid

stating that once experts (pilots) found an automated system to be reliable, they became
complacent and allowed for their automation bias to take over (Parasuraman andManzey
2010).

3 Synthesis

Using the knowledge of previous incidents, we now know the typical causes of most
anomalies within GoA-2, so we are able to suggest methodologies to reduce the number
of errors present and, hopefully, a methodology to better facilitate safe innovation within
the rail industry. The key underlying factor with all examples of error in GoA-2 is the
repetitiveness of a driver’s task list combined with any negatives on the day (low blood
sugar, lack of sleep etc.) which can lead to a driver easily getting distracted and switching
to “auto-pilot” mode in which they enact their actions without sufficient thought. There
are numerous ways to avoid this problem.

3.1 Solutions Within the Expansion of GoA-2

If the goal is to eventually get all rail to GoA-4, it is important to consider each step that
will need to be taken in order to get there. If it is decided that GoA-2 is a necessary step
towards total automation, it is important to consider its role. There is discussion to be
had on expanding the definition of GoA-2 to reflect this transitionary period between
the control being mostly in the drivers’ hands in the case of GoA-1 and the system
gainingmore autonomywithinGoA-3. This transitionary period could be used to identify
potential issueswithin further automation, this process of identifying issues and applying
solutions is sometimes called a “band-aid solution” the process of treating the symptoms
of a problem instead of treating the cause. However, this is not necessarily bad if we
think of GoA-2 as a transitionary period, it is important to learn from experience and
ensure that accidents with a similar signature can be avoided within further automation.

The London Underground Jubilee incident, although unfortunate, serves as a perfect
template for an expansion of automation. Currently GoA-2 systems use ATP in order to
ensure trains operate at a safe speed and do not exceed the limits (Dave Keevill 2017).
There is room for discussion whether ATP should include safety precautions related to
doors, just as there is no reason why a locomotive should be allowed to speed, there
is no reason the train should move with open doors. Within GoA-2 the job of opening
and closing doors is a responsibility of the driver. GoA-2 technology is not reactive,
meaning it cannot act autonomously regarding the irregular amount of time it will take
for individuals to board from a platform, it cannot be suggested thatGoA-2 should handle
the opening and closing of doors, a driver will always be required to operate the doors
within a GoA-2 system. However, in the cases where a driver makes a mistake and sets
the train in motion with the doors still open, ATP should act as a backup and close the
doors (or prevent movement) to ensure that incidents similar to that taken place on the
London Underground Jubilee line cannot happen again.

Investigating Human Error Within GoA-2 Metro Lines 189

3.2 Upgrading to GoA-3

GoA-3 typically operates with a Rail Operating Centre (ROC), an off-site location in
which a single driver is responsible for the operation of numerous vehicles. This leads
to both a higher intensity of work per individual and a lower overall number of staff
needed than GoA-2, as each worker can be more specialized and each worker is more
engaged in their job. A less repetitive environment leads to less worker fatigue, which
leads to better work and less accidents, even if it causes a higher amount of stress for
workers (Brandenburger and Naumann 2021).

While it would be simple to state that the most effective solution is simply to increase
automation, that does not necessarily take into consideration the cost and scientific re-
search required into so doing. Currently the usage of GoA 3 and 4 are very limited (UITP
Observatory ofAutomatedMetros 2018) so there is stillmuch roomfor innovation,which
leads to the question of whether or not we are even ready for increased automation; if
we are to assume that the end goal is complete automation of railways then it would be
reasonable to suggest that we should implement GoA-3 as soon as possible, something
which is being discussed around the world already (Miller and Collet 2020). Costs of
GoA-3 are higher initially than within other rail solutions (Zhou 2016) but the staff
reductions could result in a much lower management and training cost, meaning lower
costs in the long run, especially with the ever-increasing cost for labour. This, however,
raises several questions about labour ethics and the discussion to be had with unions,
topics which are out of scope for this discussion.

3.3 Decrease of Automation

If upgrading toGoA-3 is not an option, the reasonable suggestion is to rethink automation
and how it is handled. Within GoA-2 the driver is acting as an assistant to the overall
system, when naturally it seems safer if the roles were to be reversed. A GoA-2 system
cannot detect anomalies, yet it is the one in control of acceleration and braking. There
is an important question to be asked, are we giving control to a system that is not yet
ready, if the driver needs to be within the cabin anyway, why not simply have them
provide train operation? It is possible to put the driver back in control and give them the
more stimulating job of acceleration and braking and simply have the GoA-2 system as a
backup in case of emergency, in order to avoid events such as the Jubilee Incident, as well
as taking advantage of the speed regulation and other features of ATP. Communication
with other rolling stock is also a feature of GoA-2 which provides ATS given an incident
that the driver could not have known about. Drivers within GoA-2 systems have less
responsibility than drivers in GoA-1/unautomated systems, they do not have to maintain
acceleration or pull into stations, it seems only natural to assume that economically this
will mean that the drivers are cheaper. However, this is not the case, costs for a driver who
operates the London Underground, using a GoA-2 system are no lower than drivers in an
unautomated rail (Glassdoor 2021), the drivers still need to be trained for all scenarios
in case the ATO fails.

If there are issues with GoA-2 from both an engineering and an economic standpoint
there is discussion to be had about the definition of GoA-2. Currently a goal of railway
innovation is the normalization of GoA-4 within passenger rails (Shift2Rail EU 2019)

190 J. Hunter and J. McDermid

so it is important to ask if the current iteration of GoA-2 is an inevitable part of that
journey or, if until automation gets to the point where it can run autonomously, it should
take a back-seat and run in a limited capacity.

4 Conclusion

This paper presents a preliminary discussion on the topic of making work easier, with
respect to introduction of automation on the railways. It poses the question of that being
a good thing in the first place and more specifically it discusses the failure rate of work
that is boring against work that is more challenging hence more engaging. Common
beliefs would suggest that easier work will yield better results with less errors, however
evidence suggests that is not the case. Although more research is required into just how
much monotonous tasks within GoA-2 can lead to brainfog/microsleeping and it would
be immature to suggest that the entire scope has been covered, it is safe to say that there
is a link and to simply call each example “Human Error” is incorrect. Current safety
precautions such as placing some responsibility on the consumer through an emergency
button are effective in harm reduction however are more fixing the symptoms rather than
fixing the cause. The most effective overall solution would be to simply increase the
amount of automation and attempt to get to GoA-3 as soon as possible. However, until
that time arrives, it would be useful to re-examine GoA-2’s role in the future of railway
automation. There is an irony of innovation, it is possible that a scientific breakthrough
can happen but cannot be applied yet because the surrounding systems are not yet ready
for it. Within piloting, although automated landing exists it is not commonplace because
if you have a pilot in the cockpit, there is little-to-no reason for them not be the ones to
land. Is this not the same within GoA-2, the driver is in the cab, what purpose is there to
not have them drive? GoA-2 is in a sort of ‘uncanny valley’, meaning the automation is
developed enough that it has surpassed being a novelty and somewhat demands respect;
the train can move autonomously but also it has not developed to the point where it can
be considered autonomous. Just because GoA-2 systems can be implemented doesn’t
necessarily mean they should. Thus, there is a discussion to be had on the overall need
for, and definition of, GoA-2 within rail.

References

European Union Agency for Railways: Railway Safety and Interoperability in the EU. The
Publications Office of the European Union, Luxembourg (2020)

Gower, T.L.: Passenger Rail Usage 2021–22. Office of Rail and Road, London (2021)
Hinojal, J.: Bombardier marks a quarter century of rail control excellence in Bilbao (2017).

Accessed Bombardier Romania: https://rail.bombardier.com/en/about-us/worldwide-presence/
romania/en.html/bombardier/news/2017/bt_20171124_bombardier-marks-a-quarter-century-
of-rail-control-e/en

Leidig, M.: Stuck in the air train to be moved a year after crash (2020). Accessed Ananova news:
https://ananova.news/stuck-in-the-air-train-to-be-moved-a-year-after-crash/

National Rail Delivery Group: Train Delay Incident Chart. National Rail, London (2019)
National Rail Delivery Group: 2020/2021 Passenger Train Delay Incidents. Reference Number

1/951612. National Rail, London (2021)

https://rail.bombardier.com/en/about-us/worldwide-presence/romania/en.html/bombardier/news/2017/bt_20171124_bombardier-marks-a-quarter-century-of-rail-control-e/en
https://ananova.news/stuck-in-the-air-train-to-be-moved-a-year-after-crash/

Investigating Human Error Within GoA-2 Metro Lines 191

Naumann, J.S.: Monotony, fatigue and microsleeps - train driver’ daily routine: a simulator study.
In: 2nd German Workshop on Rail Human Factors, Berlin (2016)

Brandenburger, N., Naumann, A.: Task-Induced Fatigue When Implementing High Grades of
Railway Automation. German Aerospace Center (DLR), Institute of Transportation Systems,
Berlin (2021)

RAIB: Train departed with doors open, Warren Street, Victoria Line, London Underground, 11
July 2011. RAIB, London (2011)

Rail Accident Investigation Branch: Rail Accident Report - Train travelling with doors open on
the Jubilee Line. RAIB, London (2018)

Rail Safety and Standards Board: Railway accidents: casualties by type of accident. Gov.uk,
London (2020)

Rob-England: Train emergency alarm delays rise as more passengers call for help. BBC News,
London (2020)

Miller, S., Collet, C.: World-first: Automatic Train Operation for regional passenger trains to be
tested in Germany. Alstom, Berlin (2020)

Shift2Rail EU: Innovation in the Spotlight: towards unattended mainline train operations (ATO
GoA 4). Shift2Rail, Brussels (2019)

S, odolescu, D.: Investigation in the case of the derailed subway at Berceni Depot. (Petre Dobrescu,
N.R., Interviewer) (2019)

Åkerstedt, T., Gillberg, M.: Subjective and objective sleepiness in the active individual. Swedish
Defence Research Establishment, Stockholm (1989)

UITP Observatory of Automated Metros: World Metro Figures 2018. UITP, Brussels (2018)
UK Department for Transport: Reported road casualties Great Britain, Annual report: 2020.

Department for Transport, London (2020)
United Kingdom Department for Transport: Passenger trapped and dragged at Notting Hill

Gate station, 31 January 2018. Rail Accident Investigation Branch, Department for Transport,
London (2018a)

United Kingdom Department for Transport: Train travelling with doors open on the Jubilee Line.
Rail Accident Investigation Branch, Department for Transport, London (2018b)

Zhou, Y.W.: Survey on Driverless Train Operation for Urban Rail Transit Systems. Urban Rail
Transit, Beijing (2016)

Dave Keevill, P.: Implications of Increasing Grade of Automation. Parsons, Baltimore (2017)
Moray, N., Inagaki, T.: Attention and complacency. Guildford: Theoret. Issues Ergon. Sci. 1,

354–365 (2000)
Parasuraman, R.,Manzey, D.H.: Complacency and bias in human use of automation: an attentional

integration. Hum. Factors Ergon. Soc. 52, 381–410 (2010)
http://www.railway-technical.com/signalling/automatic-train-control.html
https://arc.aiaa.org/doi/abs/10.2514/3.56129?journalCode=jgcd
https://www.bfu-web.de/EN/Publications/Investigation%20Report/2011/Report_11_EX010_

B777_Munic.pdf?__blob=publicationFile
https://www.ntsb.gov/investigations/accidentreports/reports/aar1401.pdf
https://www.glassdoor.co.uk/Salaries/london-train-driver-salary-SRCH_IL.0,6_IM1035_

KO7,19.htm

http://www.railway-technical.com/signalling/automatic-train-control.html
https://arc.aiaa.org/doi/abs/10.2514/3.56129?journalCode=jgcd
https://www.bfu-web.de/EN/Publications/Investigation%20Report/2011/Report_11_EX010_B777_Munic.pdf?__blob=publicationFile
https://www.ntsb.gov/investigations/accidentreports/reports/aar1401.pdf
https://www.glassdoor.co.uk/Salaries/london-train-driver-salary-SRCH_IL.0,6_IM1035_KO7,19.htm

A Vision of Intelligent Train Control

Francesco Flammini1,2(B) , Lorenzo De Donato3 , Alessandro Fantechi4 ,
and Valeria Vittorini3

1 School of Innovation, Design and Engineering, Mälardalen University,
Eskilstuna, Sweden

francesco.flammini@mdu.se
2 Department of Computer Science and Media Technology, Linnaeus University,

Växjö, Sweden
3 Department of Electrical Engineering and Information Technology,

University of Naples Federico II, Naples, Italy
{lorenzo.dedonato,valeria.vittorini}@unina.it

4 Department of Information Engineering, University of Florence, Florence, Italy
alessandro.fantechi@unifi.it

Abstract. The progressive adoption of artificial intelligence and
advanced communication technologies within railway control and
automation has brought up a huge potential in terms of optimisation,
learning and adaptation, due to the so-called “self-x” capabilities; how-
ever, it has also raised several dependability concerns due to the lack of
measurable trust that is needed for certification purposes. In this paper,
we provide a vision of future train control that builds upon existing
automatic train operation, protection, and supervision paradigms. We
will define the basic concepts for autonomous driving in digital railways,
and summarise its feasibility in terms of challenges and opportunities,
including explainability, autonomic computing, and digital twins. Due
to the clear architectural distinction, automatic train protection can act
as a safety envelope for intelligent operation to optimise energy, com-
fort, and capacity, while intelligent protection based on signal recogni-
tion and obstacle detection can improve safety through advanced driving
assistance.

Keywords: Smart railways · Artificial intelligence · Machine learning ·
Trustworthy AI · Autonomous driving · Safety envelope · Certification

1 Introduction

Railway is undergoing a deep technological and organisational transformation
since the beginning of this century. Such evolution was not limited to high speed
trains and has been supported by important advancements of information and
communication technologies, especially regarding train control systems.

In this paper we look at the impact of progressive adoption of artificial intel-
ligence (AI) and advanced communication technologies within train control sys-
tems, with their huge potential in terms of optimisation, learning and adaptation,
c© Springer Nature Switzerland AG 2022
S. Collart-Dutilleul et al. (Eds.): RSSRail 2022, LNCS 13294, pp. 192–208, 2022.
https://doi.org/10.1007/978-3-031-05814-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05814-1_14&domain=pdf
http://orcid.org/0000-0002-2833-7196
http://orcid.org/0000-0003-4484-6318
http://orcid.org/0000-0002-4648-4667
http://orcid.org/0000-0002-0451-9593
https://doi.org/10.1007/978-3-031-05814-1_14

A Vision of Intelligent Train Control 193

together with the related dependability concerns, including the lack of measur-
able trust that is needed for certification purposes. Although AI can be applied to
several functions and subsystems within railways, including monitoring, surveil-
lance and predictive maintenance [2], which can be related to automatic control
and safety of operations, in this paper we specifically focus on intelligent control
for autonomous driving.

The vision of future intelligent train control described in this paper builds
upon existing paradigms for automatic train operation, protection, and super-
vision. In particular, within intelligent railways, automatic train protection can
be considered as a safety envelope for autonomous driving, something that is
missing in other sectors such as automotive [30]. That allows optimising energy,
comfort, and capacity through intelligent train operation. Moving a step further,
we explore the possibility of intelligent train protection based on signal recogni-
tion and obstacle/anomaly detection to improve safety through advanced driving
assistance when other safety technologies are missing or malfunctioning. In order
to investigate autonomous driving in the railway domain, we will first define the
basic concepts and then summarise opportunities, challenges, new paradigms
and technology enablers, including trustworthy/explainable AI, autonomic com-
puting, and digital twins.

The work described in this paper has been developed within Work Package 2
(AI for Rail Safety and Automation) of the RAILS (Roadmaps for A.I. Integra-
tion in the Rail Sector) research project1 [15], funded by the European Union
through the Shift2Rail Joint Undertaking.

The rest of this paper is structured as follows: Sect. 2 provides a brief overview
about modern train control systems; Sect. 3 introduces a vision of intelligent
railways focusing on grades of intelligence for future train control systems; Sect. 4
discusses essential technology enablers for intelligent train control; finally, Sect. 5
draws conclusions and mentions some open challenges.

2 Background on Modern Train Control Systems

In this section we provide a brief overview of modern train control systems,
including basic concepts and some emerging paradigms.

2.1 Basic Definitions About Connected and Autonomous Trains

In order to provide a vision of intelligent train control, it is important
to introduce some basic concepts of intelligent transportation and smart-
railways. “Connected Vehicles” rely on Vehicle-to-Vehicle (V2V) and Vehicle-
to-Infrastructure (V2I) communications (commonly referred to as V2X commu-
nication) to exchange information and automatically achieve a specified goal;
instead, “Autonomous Vehicles (AVs)” are capable of elaborating information
captured by on-board sensors to dynamically adapt to the environment’s changes

1 https://rails-project.eu/.

https://rails-project.eu/

194 F. Flammini et al.

Table 1. Automatic train management functions

Automatic Train
Operation

ATO
Used to automatically drive the train and stop at stations
when needed

Automatic Train
Protection

ATP
Used to automatically protect the train by applying brakes
when needed

Automatic Train
Control

ATC
Both ATP and ATO are in place to ensure full control of
the train

Automatic Train
Supervision

ATS
Used to manage train schedule and coordinate routes along
whole tracks

Table 2. Grade of Automation (GoA) levels

GoA 0 Train operations are manually supervised by the driver, no automation

GoA 1 Train operations are manually supervised by the driver supported by ATP.

GoA 2
Semi-automatic train operation. ATO and ATP systems automatically
manage train operations and protection while supervised by the driver.

GoA 3 Driverless train operation with on-board staff handling possible emergencies.

GoA 4 Unattended train operation, neither the driver nor the staff are required

and safely proceed along a requested journey. These categories are not mutu-
ally exclusive [10]: connected and autonomous solutions may be merged towards
the realisation of future smart/intelligent vehicles. It is possible to distinguish
between “automation” and “autonomy”, with a focus on the role of AI. In refer-
ence [2], the following definition of AI has been given: “AI is the discipline gather-
ing all the aspects that allow an entity to determine how to perform a task and/or
take a decision based on the experience matured by observing samples and/or by
interacting with an environment, possibly competing against or cooperating with
other entities”. Such a definition allows for a clear distinction between what
is attributable to intelligent behaviour and what not. For example, ATO and
ATP (see Table 1) allow trains to automatically or semi-automatically perform
a given task based on pre-specified rules; however, according to the definition
given above, current driverless trains, which are often considered autonomous
rather than automatic, cannot be considered “intelligent” since they miss any
learning and adaptation capabilities. Actually, according to some reputable def-
initions, Autonomy refers to the capability of the system to dynamically adapt
to unexpected scenarios by taking independent decisions [27] based on meth-
ods, procedures, or algorithms that may involve AI-based approaches. Indeed,
“Intelligent Vehicles” can be seen as a special category of AVs that are capable of
taking autonomous decisions, learning from experience, and adapting to changes
in the environment.

ATO, ATP, and ATS are widely adopted, and connected trains are not a
fully new concept [10]. ERTMS/ETCS (i.e., European Rail Traffic Management
System - European Train Control System) and CBTC (i.e., Communication
Based Train Control) systems rely on ATC and V2I communications to increase

A Vision of Intelligent Train Control 195

safety, performance, and reliability. Automation of train operation can be rated
according to five different Grades of Automation (GoA, see Table 2), as defined
by the International Association of Public Transport (UITP).

2.2 The ERTMS/ETCS Railway Standard Specification

ERTMS is an international standard aiming at unifying the European railway
lines by replacing all the different control systems currently deployed, to allow
trains to cross borders without the need to equip them with different systems or
to change locomotive or driver [8]. ERTMS relies on the European Train Control
System which is deemed to ensure that the maximum safe speed and minimum
safe distance are respected [10]. Conventional train control systems are based
on information captured by trackside equipment (such as track circuits or axle
counter); ETCS is specified at four levels of operation (L0 to L3), depending on
the role of the trackside equipment and on the way the information is transmitted
to/from trains. Levels 2 and 3 can be considered as connected train systems.

At Level 2 (L2), track circuits or axle counters are used to detect the occu-
pancy of sections of the track, determining the location of the trains. Then, this
information is sent and processed by the Radio Block Centre (RBC) which sends
to each train a Movement Authority (MA), computed by counting the free sec-
tions in front of the train; the MA specifies the maximum distance the train can
travel and the allowed speed. Hence, the on-board European Vital Computer
(EVC) uses the MA and on-board data (e.g. the braking capability of the train)
to compute the maximum possible speed (i.e., the braking curve or the dynamic
speed profile), triggering an emergency brake whenever this limit is exceeded.
These communications are based on GSM-R (rail dedicated GSM) which allows
a bidirectional communication among trains and RBC. While ETCS-L2 is based
on fixed-block signalling, ETCS-L3 is based on moving-block signalling, where
computation of the MA is performed using the position of the tail of the preced-
ing train rather than the information from the interlocking system. This leads
to a considerable reduction of the distance required to ensure safety between
two consecutive trains, as depicted in Fig. 1, and improves upon Level 2 also by
reducing wayside equipment for detecting track occupancy.

Fig. 1. Communication based moving block principle [10]

196 F. Flammini et al.

2.3 Segregated and Open Railway Environments

When it comes to connected or autonomous trains, it is necessary to make a
clear distinction between “segregated” and “open” railway environments [27].
Segregated environments include the rail lines that are isolated from external
influences (e.g. underground metro lines with platform screen doors). In these
scenarios, moving block based on continuous communication and MA computa-
tion is currently implemented in several automatic metros, as a feature of CBTC
systems [18]. Many metro lines are now equipped with GoA2 and 3 ATO systems,
managing the train running from one station to another automatically adjusting
the train speed with appropriate traction and braking commands allowing for
train automated driving, and they are now moving towards GoA4 ones. Worth
mentioning, in the ATO systems currently deployed as part of CBTC, autonomy
with respect to the global train control is almost null, since the safety-critical
decisions in a CBTC system are centralised in a Zone Controller. Differently, in
open environments, i.e. all the railway market segments (mainline/high speed,
urban/suburban, regional and freight) which are not completely isolated from
external threats, the ATO implementation is still experimental due to the high
interoperability requirements posed by such large, complex interconnected rail-
way networks.

2.4 Automatic Train Operation over ETCS

In the last six years, the challenge of developing and validating a standard ATO
up to GoA3/4 over ETCS (AoE) has been tackled by the Shif2Rail (S2R) Joint
Undertaking (JU) under the H2020 research programme. Specifically, AoE is
addressed by the S2R Innovation Programme 2 (IP2, “Advanced Traffic Man-
agement and Control Systems”) with the objective to extend the existing appli-
cations from segregated (mostly subways) to open environments . The develop-
ment of AoE is considered strategic [7] because great benefits can come from
ATO and ATS in terms of increased system capacity, punctuality, resilience,
flexibility, reduced operating costs and energy consumption. The research and
the innovation solutions developed in IP2 through the projects funded by the
S2R JU have brought important results, leading to the AoE GoA2 specification
(Driver Monitored ATO) whose integration in the Technical Specifications for
Interoperability is expected in 2022 [44]. Two reference test benches have been
set in Belgium and Germany, and several interoperability tests have been per-
formed within the S2R X2RAIL-1 project in 2018 and 2019. Recent and ongoing
S2R projects are updating the AoE GoA2 specifications according to the results
of the tests, and performing the necessary safety assessment; in parallel the
requirements are being developed for ATO up to GoA4 (unattended train oper-
ations) over AoE GoA2 within the S2R IP2 project X2RAIL-4 [46], and further
work on technologies for automation is being carried out (e.g., within the S2R
projects SMART2 [38] and TAURO [40]).

A Vision of Intelligent Train Control 197

2.5 Train Virtual Coupling

The availability of safe information about the position, speed, acceleration and
deceleration of the preceding train, like that used in ETCS Level 3 and in CBTC,
and the possibility of train to train communication, has inspired the Virtual
Coupling concept, based on the idea of multiple trains which run one behind
the other without physical contact, but at a distance comparable to mechanical
coupling [4,41], with consequent high capacity and high flexibility. The concept
inherits some of the principles of car platooning [1], that is being experimented in
the automotive domain and it is currently under study by some S2R IP2 projects
(e.g., see [28,45]). The strict real-time control of the dynamic parameters of
the following train with respect to the parameters of the preceding one should
allow the distance between trains to be minimized, therefore with consequent
high capacity and high flexibility, for example in the forwarding of different
segments of a train to different destinations through “run-time” composition
and decomposition, without stopping the train.

2.6 Certification Challenges for Autonomous Trains

High levels of automation require new technologies and new generation of sensors
such as obstacle detection sensors that are capable of providing artificial per-
ception of the surrounding environment, vehicles and infrastructure, including
shapes and distances. When dealing with safety related functions relying on new
technologies, certification issues against current regulations are of paramount
importance. Two major factors of uncertainties can be i) the opaque nature
of underlying techniques and algorithms and ii) the reliability and accuracy of
sophisticated sensors.

In the context of autonomous trains, it is possible to identify two types of
safety [33]: rule-based safety, which is achieved by means of rules, formalisms, and
protection measures, aiming at defining anticipated responses to foreseeable (i.e.,
known and predictable) situations, and managed safety, which aims at avoiding
or mitigating unexpected (i.e., non predictable) hazardous events. In this paper,
we mention safety envelopes [21,25,36] that are one declination of rule-based
safety: the idea is that autonomous objects, i.e., self-driving trains, should move
within an area, i.e., the safety envelope, that is free from any risk of collisions
and other hazards, which is continuously computed and updated. Any movement
outside the safety envelope should be detected in order to bring the system to a
fail-safe state (e.g., application of emergency braking).

As already mentioned, the separation of concerns between ATP and ATO,
which allows for rating at SIL4 only the former, can be framed in the concept of
safety envelope. Indeed, only the two functions of safety envelope computation
and checking need to be rated at SIL4, leaving the decision of how to optimally
run the train to non safety-related and possibly complex software. Therefore:

– safety envelope computation should be based on sound and certified princi-
ples, that are simpler in railways than in automotive due to the train motion

198 F. Flammini et al.

being constrained by the rails; these principles are enlarged to consider not
only received Movement Authorities as in ETCS, but also any sensor input
that conveys (only) information limiting the safety envelope, such as distance
from leading train in Virtual Coupling;

– safety envelope computation should take into account all the uncertainties
on measures from sensors (speed, position, distance, etc.) that impact safety
of train actions (such as braking distance) on a probabilistic basis, so that
the probability that the computation of producing a too permissive safety
envelope is kept under the limits given by SIL4;

– safety envelope computation software should be formally proven to adhere to
the above principles, by adoption of proper formal verification techniques;

– safety envelope checking is limited to verify at any time that driving com-
mands to actuators do not bring the train outside the current safety envelope;

– safety envelope checking software should be formally proven by model-
checking.

Fig. 2. Intelligent Train Control (ITC)

3 Intelligent Train Control

In this section we address AI applied to train control systems, starting from
traditional ATC concepts and moving towards fully autonomous train driving
in open environments.

A Vision of Intelligent Train Control 199

3.1 Intelligent Train Operation and Protection

Figure 2 provides an overview of the Intelligent Train Control (ITC) concept,
which integrates Intelligent Train Operation (ITO), ATP, and – possibly – Intel-
ligent Train Protection (ITP). The main responsibility of the ATP is to ensure
that the correct dynamic speed profile (also known as “braking curve”) is applied
to avoid collisions, derailments, and keep a safe distance between trains. ATP
needs cooperation between the trackside system (e.g. interlocking – IXL –, plus
RBC in case of ETCS L2) and the onboard system (e.g. EVC , for ETCS L2).
If used in conjunction with ATP, ITO can safely extend the functionalities of
traditional ATO to account for intelligent and adaptive behaviours, in order to
optimise passenger comfort, energy consumption, and line capacity, e.g., through
Virtual Coupling. In fact, just as the ATO, the ITO (i.e., the so-called “doer”)
is protected by the ATP (i.e., the so-called “checker”), following the safety enve-
lope architectural pattern [21]. This allows certification against reference safety
standards [39] using existing/traditional approaches. However, when ATP is not
available, such as in old railways used in developing countries, or when ATP fail-
ures oblige to partial supervision, such as on-sight or staff-responsible operating
modes, ITP could replace ATP by doing something similar to what automotive
driving assistance systems do, i.e., automatically recognise signals and obstacles
using artificial vision, possibly in combination with other sensors like radars and
lidars. That would allow fully autonomous train driving.

As a last option, even if ATP is available and perfectly working, ITP can
be a useful complement to detect events that are not managed by ATP, such as
on-track obstacles different than rolling stock, trespassing, etc. The presence of
those sensors can also aid special manoeuvres such as those needed to enable
Virtual Coupling, by implementing what is know as “adaptive cruise control”
for cars, i.e., keeping a constant and sufficiently short distance from the preced-
ing vehicle. Differently from ATP, ITP uses artificial intelligence and machine
learning in safety-critical applications, and therefore its SIL certification against
international standards can be challenging. Therefore, an ITC implemented via
ITO + ITP, although theoretically possible, does not seem to be practically
viable yet as ad-hoc standards and regulations would be required to quanti-
tatively assess the trustworthiness of AI systems, together with legal, ethical,
robustness, and explainability implications [29].

However, ITP as a low-speed complement or fall-back system to ATP seems
a promising option to improve safety in partial supervision, shunting, or during
procedures such as the Track Ahead Free, where the driver is asked confirma-
tion of no obstacles on the same track circuit the train is occupying during the
ERTMS/ETCS “Start of Mission” scenario [8]. It is worth mentioning that the
use of multiple redundant sensors, based on diverse technologies, together with
explainable AI, might enable certification at higher SILs [12].

Another functionality referred to in Table 1 which is sometimes considered
part of ATC is the ATS: similarly to the envisioned evolution from ATO to
ITO, Intelligent Train Supervision (ITS) can take advantage of machine learn-
ing to efficiently learn and adapt, in order to optimise railway line utilisation and

200 F. Flammini et al.

average throughput, and to promptly respond to disruptions by providing appro-
priate alternative train routing solutions. Similarly to ITO, ITS is not directly
subject to safety-requirements, since safety checking of necessary conditions for
train route formation is guaranteed by the IXL subsystem, which is rated at
SIL4; therefore, the IXL can be considered a safety envelope for the ITS.

3.2 Grades of Intelligence in Train Control

As defined in Sect. 2, “automation” refers to the capability of a system to act
automatically by following some pre-defined rules, therefore, GoA3 or GoA4 lev-
els do not necessarily require AI. Reference [27] proposes another classification
for “autonomous and semi-autonomous levels of automation”; however, an align-
ment of AI with levels of autonomy is missing in those classifications. Therefore,
we introduce here a possible definition of Grades of Intelligence (GoI):

– GoI 1: This level includes all ATC implementations where AI is not used or
it is used for limited functions such as optimisation within ATS. That means
limited or no autonomy is normally possible in open environments.

– GoI 2: This level supports partial autonomy in open environments, by includ-
ing only ITO as an adaptive ATO with energy, capacity and/or comfort opti-
misation capabilities, or only ITP for driving assistance and/or as a low-speed
backup system in case of ATP unavailability or limited supervision.

– GoI 3: This level includes both ITO and ITP, allowing for full autonomy even
in open environments, although with no advanced learning and adaptation
capabilities. For instance, at GoI3, the artificial vision algorithms of ITP can
be trained only once, e.g. to detect on-track obstacles, and never updated.

– GoI 4: This level includes both ITO and ITP, allowing for full autonomy in
all environments, with advanced learning and adaptation capabilities, such
as unsupervised and reinforcement learning. The system is typically fully
connected, dynamically updated, and supported by higher levels of fog/cloud
intelligence by using external AI models for big data analytics, such as those
enabled by digital twins.

At all GoI levels, human driver/supervisor can be required or not, depend-
ing on whether the operating environment is open (e.g., commuter railways,
high speed trains) or segregated (e.g., subways with platform screen doors,
airport shuttles, etc.). At higher GoI levels in open environments, driver-
less/unsupervised trains can only be allowed if the ITP is certified to be trustwor-
thy according to safety requirements of reference international standards. This
might require extending the set of onboard sensors to allow for a full situation
awareness that goes beyond ITP capabilities in signal recognition and obstacle
detection. Remote driving/supervision might be allowed in some cases, if enough
cameras and sensors are installed onboard, and related safety requirements are
fulfilled. GoI4 is the most visionary level and represents the maximum devel-
opment we can expect in the future of ITC. For instance, at GoI4 it would be
possible to leverage digital twins to predict the risk of accidents such as derail-
ments, based on data dynamically collected during system operation in several

A Vision of Intelligent Train Control 201

installations worldwide; therefore, GoI4 has the potential to significantly increase
not only autonomy, but also safety well beyond the level achievable with current
technologies.

Fig. 3. Levels of intelligence in railway control and supervision.

4 Technology Enablers for Intelligent Train Control

In this section we provide a brief overview of relevant paradigms and technologies
enabling ITC. Since a multitude of disciplines and research areas are connected
to ITC, we will focus on those who are mainly connected with AI such as artificial
vision and information fusion, rather than surveying all enabling communication
and networking paradigms such as IoT and 5G (see, e.g., references [5] and [16]).

4.1 Autonomic Computing and Digital Twins in Railways

The vision of ITC provided so far does not address aspects related to where AI is
located and how safety is managed in more general situations. Figure 3 shows an
overview of the distribution of AI at different levels to implement railway control
and supervision. Local autonomy is enabled by edge intelligence, with possible
limitations in terms of computing power and data availability, due to constrained
devices, and advantages in terms of response times and data security, due to
shorter communication links. Fog intelligence represents trackside control where
capacity optimisations such as Virtual Coupling can be orchestrated based on a
larger view such as a whole track. Finally, cloud intelligence includes all aspects
related to the elaboration of big amounts of data, possibly coming from multiple
installations worldwide, with the aim of collecting information and knowledge
to predict failures and make maintenance smarter.

202 F. Flammini et al.

We tried to generalise feedback control loops for autonomous railways by using
the paradigms of autonomic computing (i.e., Monitor, Analyze, Plan, and Exe-
cute over a shared Knowledge, MAPE-K) and Digital Twins [11]. That means
providing common frameworks for structured and systematic approaches to safe
autonomy; in fact, the view of the autonomic manager within digital twins can
be used to represent both intelligent control and supervision mechanisms as well
as safety-envelope checkers. The shared knowledge about the system and its envi-
ronment can be represented with diverse models, including Deep Neural Networks
and/or Dynamic Bayesian Networks, according to the application needs in terms
of predictive power, classification performance, and explainability [12].

Overall, the figure depicts a data-driven view for information fusion and
decision support, possibly in critical situations. In fact, replacing humans in
safety-critical systems based on AI is a challenging and hot open issue. Many
past and even recent accidents prove that humans can be hardly replaced when
it comes to responsibly manage unexpected situations, such as starting to pru-
dently brake when something strange is happening in order to avoid worsening
of possible consequences. That requires a high level of situation awareness that
is hard to implement in autonomous systems: for instance, modern cars can be
equipped with rather precise self-driving systems with pedestrian and obstacle
detection, however those would completely ignore safety-critical situations such
as anomalous vibrations or smoke coming from the engine if that event is not
supposed to be monitored by the system, as it is in most cases.

When an appropriate number of sensors and information sources are avail-
able, safety-related data may be sufficient to autonomously manage most critical
situations. When AI is employed to do that, its trustworthiness must be ensured
in terms of robustness and explainability, as well as compliance to legal and
ethical requirements [17]. Runtime model checking and online process mining
can be used to perform anomaly detection and conformance checking of intelli-
gent/adaptive systems against their specified “normative” behaviour. Depending
on the level of knowledge about the system and the possible threats, the approach
can be fine tuned including automatic process discovery; also, anomaly detection
can be based on classification, clustering or statistical techniques, which means
misbehaviour can be detected even when a threat signature is missing, e.g., when
facing unknown scenarios [11].

4.2 Anomaly and Obstacle Detection, and Signal Recognition

Inspired from the framework for autonomous driving proposed in reference [3],
as well as from the process discussed in reference [27], it is possible to instantiate
the MAPE-K model for autonomic computing to the control loop that intelligent
trains should adopt when taking autonomous decisions, as shown in Fig. 4. First,
data related to the environment through different kinds of sensors (e.g., cameras,
accelerometers), information from other trains or trackside infrastructures (V2X
communication), and internal information coming from onboard sensors are col-
lected. These data, together with the information already stored, constitute the
knowledge of the single train and are then analysed to perceive the environment

A Vision of Intelligent Train Control 203

Fig. 4. MAPE-K loop for Intelligent Train Control

(e.g., obstacles, signals), the health status of the train (e.g., anomalies), and
to identify the appropriate manoeuvres (e.g., acceleration, braking). Hence, the
next activities are planned and set for execution based on these analyses. The
last phase aims at physically actuating the decisions taken in the planning phase.
Notably, the environment and the information from both onboard sensors and
the other vehicles will continuously change, and AI has the potential to play
a central role in this process (especially in the analysis phase), as intelligent
systems are very efficient in detecting changes in data.

Anomaly detection is essential to increase safety, with Machine Learning
(ML) offering several useful approaches. Sensors installed onboard for vehi-
cle health monitoring and predictive maintenance can also be used to detect
or even predict train anomalies in real-time. Anomaly detection mechanisms
(e.g., [20,42]) are thus important enablers for ITC. In case an anomaly is
detected/predicted, the system could warn the train driver or even start an
automatic procedure to get the train to a fail-safe state, depending on the GoA
and the level of confidence in anomaly classification.

Obstacle detection addresses the identification of an object when it is located
within a specific region (or area) of the scene under examination. In order to
take adequate and timely responses, obstacle detection requires real-time oper-
ation as well as high trustworthiness. Furthermore, if we focus on autonomous
trains with onboard obstacle detection, we should consider the possible high speed
of the rolling stock, environmental disturbances especially in open environments
(vibrations, darkness, fog, rain, snow, etc.), and no possibilities to “skip” obsta-
cles other than braking. On the other hand, the trajectory of railway vehicles is
known and deterministic and the area in which obstacles must be detected is nar-
rowed to rail tracks. Studies exist about detection of track obstacles (e.g., [22,47])
and other objects such as switch points (e.g., [48]) using onboard cameras and sen-
sors. Those contribute to a better perception of the environment to enhance situa-
tion awareness. Additional measures are needed to ensure safe braking, including
distance estimation, as obstacles must be recognised from long distances (hun-
dreds of meters or even kilometres [34]). S2R projects including SMART [37] and

204 F. Flammini et al.

SMART2 [38] have addressed those aspects, with the aim of achieving long-range
object and track intrusion detection (OD/TID) by leveraging front and trackside
cameras (e.g., at level crossings), as well as drones [14].

As for signal recognition, a few solutions exist addressing light signals (e.g.,
[23,35]) or fixed signals (e.g., [6]), based on deep learning. Hence, this seems to
be an unexplored field in railways, while signal recognition seems to be better
developed in automotive, hence a technology transfer seems viable in principle.

4.3 Trustworthy and Explainable AI

To enable AI integration in safety-critical railway functions, it is necessary to
demonstrate that intelligent systems can operate safely in all conditions. Safety
certification of AI is still an open issue in all industry sectors. Some steps have
recently been taken, such as the W-shaped development process [9] to properly
assess the usage of neural networks in avionics, as proposed by the European
Union Aviation Safety Agency (EASA) and Deadalean; however, further tech-
niques are required to explain the input-output relationship in black-box AI
approaches. AI applications are non-deterministic and they may be unstable,
i.e., the output of the system may change drastically even with a slight variation
of the input. This also exposes intelligent systems to new threats such as the
so-called adversarial attacks (e.g., [31]). How to establish the cause-effect rela-
tionship between a given input and the produced output of many AI systems is
currently challenging. Therefore, some of the key points established by the High
Level Expert Group on AI of the European Commission [17], including trans-
parency, robustness, and explainability, are not easy to address and represent an
obstacle to high SIL certification of ITP.

In order to mitigate those issues, eXplainable AI (XAI) techniques (e.g.,
LIME [32], SHAP [24], and ELI52) have been developed to generate inter-
pretable models and explanations of ML decisions that can be comprehensible to
humans to improve AI trustworthiness. XAI can be model-agnostic and applied
a-posteriori on ML models, e.g. with LIME [32], or it can be part of system
design (i.e., sort of “design for explainability”), e.g., if probabilistic models can
be used such as Bayesian ones [26]. Amongst others, one Working Group of
the IEEE Computational Intelligence Society Standards Committee (CIS/SC)
is currently developing XAI standards [19].

5 Conclusions

In this paper, we have provided a vision of intelligent train control based on
emerging paradigms and enabling AI technologies. We have shown that in order
to move towards fully autonomous train driving, several steps needs to be taken,
with AI being gradually introduced in train control and supervision systems. In
the near future, AI can only be introduced in safety-critical train control applica-
tions if supervised by human operators and/or by existing high SIL systems such
2 https://eli5.readthedocs.io/.

https://eli5.readthedocs.io/

A Vision of Intelligent Train Control 205

as the ATP. In driverless use, especially in open environments, intelligent train
control must become capable of safely handling hazardous situations through
self-X technologies (self-monitoring, self-diagnosing, self-healing), in order to
enable early warning and situation assessment, considering both onboard and
trackside risk factors. To that aim, we have shown that infrastructure and vehi-
cle health monitoring for anomaly detection, together with obstacle detection
and signal recognition, represent essential technologies to enable safe driverless
ITC in all operating conditions. Future ITC evolution might include coopera-
tive train driving developing from virtual coupling to swarm intelligence and
game-based optimisation [43].

There are many open challenges that need to be tackled in order to enable
a high SIL ITP, including those related to trustworthy and explainable AI.
Together with formal approaches, simulation based techniques (e.g., abstract
functional testing [13]) also need to be extended and adapted to cope with intel-
ligent systems and ensure a sufficient coverage of AI functions.

Acknowledgements. This research has received funding from the Shift2Rail Joint
Undertaking (JU) under grant agreement No 881782 RAILS. The JU receives support
from the European Union’s Horizon 2020 research and innovation program and the
Shift2Rail JU members other than the Union.

References

1. Bergenhem, C., Pettersson, H., Coelingh, E., Englund, C., Shladover, S., Tsugawa,
S.: Overview of platooning systems. In: 19th ITS World Congress, Vienna (2012)

2. Bešinović, N., et al.: Artificial intelligence in railway transport: taxonomy, regula-
tions and applications. IEEE Trans. Intell. Transp. Syst. 1–14 (2021)

3. Braud, T., Ivanchev, J., Deboeser, C., Knoll, A., Eckhoff, D., Sangiovanni-
Vincentelli, A.: AVDM: a hierarchical command-and-control system architecture
for cooperative autonomous vehicles in highways scenario using microscopic simu-
lations. Auton. Agents Multi-Agent Syst. 35(1), 1–30 (2021). https://doi.org/10.
1007/s10458-021-09499-6

4. Di Meo, C., Di Vaio, M., Flammini, F., Nardone, R., Santini, S., Vittorini, V.:
ERTMS/ETCS virtual coupling: proof of concept and numerical analysis. IEEE
Trans. Intell. Transp. Syst. 21(6), 2545–2556 (2020)

5. Dirnfeld, R., Flammini, F., Marrone, S., Nardone, R., Vittorini, V.: Low-power
wide-area networks in intelligent transportation: review and opportunities for
smart-railways. In: 2020 IEEE 23rd International Conference on Intelligent Trans-
portation Systems (ITSC), pp. 1–7 (2020)

6. Etxeberria-Garcia, M., Ezaguirre, F., Plazaola, J., Munoz, U., Zamalloa, M.:
Embedded object detection applying deep neural networks in railway domain. In:
2020 23rd Euromicro Conference on Digital System Design, pp. 565–569. IEEE
(2020)

7. European Rail Research Advisory Council (ERRAC): Rail Strategic Research and
Innovation Agenda - December 2020 (2020)

8. European Railway Agency: ERTMS - System Requirements Specifica-
tion - UNISIG SUBSET-026 (2014). https://www.era.europa.eu/content/set-
specifications-3-etcs-b3-r2-gsm-r-b1 en

https://doi.org/10.1007/s10458-021-09499-6
https://doi.org/10.1007/s10458-021-09499-6
https://www.era.europa.eu/content/set-specifications-3-etcs-b3-r2-gsm-r-b1_en
https://www.era.europa.eu/content/set-specifications-3-etcs-b3-r2-gsm-r-b1_en

206 F. Flammini et al.

9. European Union Aviation Safety Agency (EASA) and Daedalean: Concepts of
Design Assurance for Neural Networks (CoDANN) II. Technical report (2021)

10. Fantechi, A.: Connected or autonomous trains? In: Collart-Dutilleul, S., Lecomte,
T., Romanovsky, A. (eds.) Reliability, Safety, and Security of Railway Sys-
tems. Modelling, Analysis, Verification, and Certification, RSSRail 2019. LNCS,
vol. 11495, pp. 3–19. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
18744-6 1

11. Flammini, F.: Digital twins as run-time predictive models for the resilience of
cyber-physical systems: a conceptual framework. Phil. Trans. R. Soc. A 379(2207),
20200369 (2021)

12. Flammini, F., Marrone, S., Nardone, R., Caporuscio, M., D’Angelo, M.: Safety
integrity through self-adaptation for multi-sensor event detection: methodology
and case-study. Future Gener. Comput. Syst. 112, 965–981 (2020)

13. Flammini, F., Mazzocca, N., Orazzo, A.: Automatic instantiation of abstract tests
on specific configurations for large critical control systems. Softw. Test. Verif.
Reliab. 19(2), 91–110 (2009)

14. Flammini, F., Pragliola, C., Smarra, G.: Railway infrastructure monitoring by
drones. In: 2016 International Conference on Electrical Systems for Aircraft, Rail-
way, Ship Propulsion and Road Vehicles International Transportation Electrifica-
tion Conference (ESARS-ITEC), pp. 1–6 (2016)

15. Flammini, F., Vittorini, V., Lin, Z.: Roadmaps for AI Integration in the Rail
Sector - RAILS (2020). https://ercim-news.ercim.eu/en121/r-i/roadmaps-for-ai-
integration-in-the-rail-sector-rails

16. Fraga-Lamas, P., Fernández-Caramés, T.M., Castedo, L.: Towards the internet of
smart trains: a review on industrial IoT-connected railways. Sensors 17(6), 1457
(2017)

17. High-Level Expert Group on AI: Ethics guidelines for trustworthy AI (2019)
18. IEEE: Vehicular technology society, 1474.1 - standard for communications- based

train control (CBTC) - performance and functional requirements (2004)
19. IEEE CIS/SC: Standard for XAI - eXplainable Artificial Intelligence. https://

development.standards.ieee.org/myproject-web/public/view.html#pardetail/
8923. Accessed 15 Dec 2021

20. Kang, S., Sristi, S., Karachiwala, J., Hu, Y.C.: Detection of anomaly in train
speed for intelligent railway systems. In: 2018 International Conference on Control,
Automation and Diagnosis (ICCAD), pp. 1–6. IEEE (2018)

21. Koopman, P., Wagner, M.: Toward a framework for highly automated vehicle safety
validation. Technical report, SAE Technical Paper (2018)

22. Li, J., Zhou, F., Ye, T.: Real-world railway traffic detection based on faster better
network. IEEE Access 6, 68730–68739 (2018)

23. Liu, W., Wang, Z., Zhou, B., Yang, S., Gong, Z.: Real-time signal light detection
based on yolov5 for railway. In: IOP Conference Series: Earth and Environmental
Science, vol. 769, p. 042069. IOP Publishing (2021)

24. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In:
Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 4768–4777 (2017)

25. Lyu, Y., Pan, Q., Zhao, C., Zhang, Y., Hu, J.: Vision-based UAV collision avoidance
with 2D dynamic safety envelope. IEEE Aerosp. Electron. Syst. Mag. 31(7), 16–26
(2016)

26. Mihaljević, B., Bielza, C., Larrañaga, P.: Bayesian networks for interpretable
machine learning and optimization. Neurocomputing 456, 648–665 (2021)

https://doi.org/10.1007/978-3-030-18744-6_1
https://doi.org/10.1007/978-3-030-18744-6_1
https://ercim-news.ercim.eu/en121/r-i/roadmaps-for-ai-integration-in-the-rail-sector-rails
https://ercim-news.ercim.eu/en121/r-i/roadmaps-for-ai-integration-in-the-rail-sector-rails
https://development.standards.ieee.org/myproject-web/public/view.html#pardetail/8923
https://development.standards.ieee.org/myproject-web/public/view.html#pardetail/8923
https://development.standards.ieee.org/myproject-web/public/view.html#pardetail/8923

A Vision of Intelligent Train Control 207

27. Milburn, D., Erskine, M.: Digital train control: functional safety for AI based sys-
tems. In: International Railway Safety Council Conference 2019, Perth, Australia
(2019)

28. MOVINGRAIL: MOving block and VIrtual coupling New Generations of RAIL
signalling. https://movingrail.eu/. Accessed 15 Dec 2021

29. RAILS: Deliverable D1.3: Application Areas (2021). https://doi.org/10.13140/RG.
2.2.15604.07049, https://rails-project.eu/

30. Rajabli, N., Flammini, F., Nardone, R., Vittorini, V.: Software verification and
validation of safe autonomous cars: a systematic literature review. IEEE Access 9,
4797–4819 (2021)

31. Ren, K., Zheng, T., Qin, Z., Liu, X.: Adversarial attacks and defenses in deep
learning. Engineering 6(3), 346–360 (2020)

32. Ribeiro, M.T., Singh, S., Guestrin, C.: ”Why should i trust you?” Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

33. Richard, P., Boussif, A., Paglia, C.: Rule-based and managed safety: a challenge
for railway autonomous driving systems. In: 31th European Safety and Reliability
Conference (2021)

34. Ristić-Durrant, D., Franke, M., Michels, K.: A review of vision-based on-board
obstacle detection and distance estimation in railways. Sensors 21(10), 3452 (2021)

35. Ritika, S., Mittal, S., Rao, D.: Railway track specific traffic signal selection using
deep learning (2017)

36. Rudolph, A., Voget, S., Mottok, J.: A consistent safety case argumentation for
artificial intelligence in safety related automotive systems. In: ERTS 2018 (2018)

37. SMART: Smart Automation of Rail Transport. http://www.smartrail-automation-
project.net. Accessed 10 Dec 2021

38. SMART2: Advanced integrated obstacle and track intrusion detection system for
smart automation of rail transport. https://smart2rail-project.net. Accessed 15
Dec 2021

39. European Committee for Electrotechnical Standardization, C.: EN 50128:2011 -
Railway applications - Communications, signalling and processing systems - Soft-
ware for railway control and protection systems (2011)

40. TAURO: Technologies for the AUtonomous Rail Operation. https://projects.
shift2rail.org/s2r ipx n.aspx?p=tauro. Accessed 15 Dec 2021

41. UIC: Virtually coupled trains (2002). http://www.railway-energy.org/static/
Virtually coupled trains 86.php. Accessed 15 Dec 2021

42. Wang, C., Liu, J.: An efficient anomaly detection for high-speed train braking
system using broad learning system. IEEE Access 9, 63825–63832 (2021)

43. Wang, Q., Chai, M., Liu, H., Tang, T.: Optimized control of virtual coupling at
junctions: a cooperative game-based approach. Actuators 10(9), 207 (2021)

44. X2Rail-1: Start-up activities for Advanced Signalling and Automation Systems.
https://projects.shift2rail.org/s2r ip2 n.aspx?p=X2RAIL-1. Accessed 15 Dec 2021

45. X2Rail-3: Deliverable D6.1 Virtual Train Coupling System Concept and Applica-
tion Conditions (2020). https://projects.shift2rail.org/s2r ip2 n.aspx?p=X2RAIL-
3. Accessed 15 Dec 2021

46. X2Rail-4: Advanced signalling and automation system. Completion of activi-
ties for enhanced automation systems, train integrity, traffic management evo-
lution and smart object controllers. https://projects.shift2rail.org/s2r ip2 n.aspx?
p=X2RAIL-4. Accessed 15 Dec 2021

https://movingrail.eu/
https://doi.org/10.13140/RG.2.2.15604.07049
https://doi.org/10.13140/RG.2.2.15604.07049
https://rails-project.eu/
http://www.smartrail-automation-project.net
http://www.smartrail-automation-project.net
https://smart2rail-project.net
https://projects.shift2rail.org/s2r_ipx_n.aspx?p=tauro
https://projects.shift2rail.org/s2r_ipx_n.aspx?p=tauro
http://www.railway-energy.org/static/Virtually_coupled_trains_86.php
http://www.railway-energy.org/static/Virtually_coupled_trains_86.php
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-1
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-3
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-3
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-4
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-4

208 F. Flammini et al.

47. Xu, Y., Gao, C., Yuan, L., Tang, S., Wei, G.: Real-time obstacle detection over rails
using deep convolutional neural network. In: 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), pp. 1007–1012. IEEE (2019)

48. Ye, T., Zhang, Z., Zhang, X., Zhou, F.: Autonomous railway traffic object detection
using feature-enhanced single-shot detector. IEEE Access 8, 145182–145193 (2020)

Safe and Secured Telecom for Railway

Analysis of Safety-Critical Communication
Protocols for On-Premise SIL4 Cloud

in Railways

Benjamin Rother1(B), Frank Golatowski1, Zeeshan Ansar2, Don Kuzhiyelil2,
Stefan Resch3, Reinhard Hametner3, and Prashant Pathak4

1 Universität Rostock, 18051 Rostock, Germany
{benjamin.rother,frank.golatowski}@uni-rostock.de
2 SYSGO GmbH, Am Pfaffenstein 8, 55270 Klein-Winterheim, Germany

{zeeshan.ansar,don.kuzhiyelil}@sysgo.com
3 Thales Austria GmbH, Handelskai 92, 1200 Vienna, Austria

{stefan.resch,reinhard.hametner}@thalesgroup.com
4 DB Netz AG, Stresemannstr. 123, 10963 Berlin, Germany

prashant.pathak@deutschebahn.com

Abstract. In this paper, we address the question of howSIL4 railway applications
within on-premise cloud environments can communicate safely with internal and
external systems.

The EN 50159 standard is the railway standard applicable for safety-related
communication. For IT/OT Security IEC 62443 can be considered. Most stan-
dardized protocols developed according to EN 50159 are peer-to-peer protocols
involving two communication partners. To leverage the cloud environment, con-
temporary applications of other domains use a different communication scheme,
namely publish-subscribe, to connect internal and external components and enable
scalability.

Based on this challenge, the goal of this paper is to investigate emerging com-
munication protocols from different domains and their suitability for the railway
system. We will first determine the requirements for the railway communication
infrastructure and applications executed in a SIL4 cloud, i.e., an environment pro-
vided by on-premise data centers utilizing technologies such as virtualization and
with other cloud-like features, such as scalability and flexible usage of resources.
Furthermore, a brief comparison of the potential application-layer communication
protocols from industrial domains with railway-specific safety-critical protocols
will be presented. Finally, we will present a system architecture that demonstrates
how safe communication can be realized by middleware protocols such as DDS
or OPC UA and how they fulfill the previously established requirements for the
railway system.

Keywords: SIL4 · Safety · Railway · SIL4 cloud · Protocols · Safe computing
platform

© Springer Nature Switzerland AG 2022
S. Collart-Dutilleul et al. (Eds.): RSSRail 2022, LNCS 13294, pp. 211–220, 2022.
https://doi.org/10.1007/978-3-031-05814-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05814-1_15&domain=pdf
https://doi.org/10.1007/978-3-031-05814-1_15

212 B. Rother et al.

1 Introduction

1.1 Motivation

As with computation, communication in railway systems is heterogeneous and incor-
porates safe and unsafe communication. An example for unsafe communication is a
command requesting the setting of a route from the automatic train routing system,
e.g., the CTMS1 [15] to the interlocking system. This is not safety-critical, since the
interlocking system guarantees the safe setting of routes.

However, a command from the operator to the interlocking system changing the
state of a switch marked as occupied is safety-critical. This command overrules the
route protection of the interlocking system; thus, the safe execution has to be guaranteed
[4].

For the communication data that is safety relevant, the communication protocol used
on top by the respective safety relevant applications must be compliant to EN 50159.
Errors, such as transmission errors, repetitions, deletions, insertions, re-sequencing, cor-
ruption and delays of messages must be considered. So far most of the used standardized
protocols developed according to EN 50159 are peer-to-peer protocols involving two
communication partners. This is well fitted in the traditional railway architectures that
are hierarchically organized and distributed along the railway network. However, the
question arises as to which communication protocols will be suitable for the on-premise
SIL4 cloud in the future. To answer this question, the first step is to determine the
requirements for the communication infrastructure and to find protocols based on these
requirements. Furthermore, we analyze potential application-layer communication pro-
tocols used in other domains such as industrial or automotive and find their suitability for
railway-specific safety-critical use cases. Finally, we present a system architecture that
demonstrates how safe communication can be realized by middleware protocols such as
DDS and how they fulfill the previously established requirements for the railway system.

1.2 Purpose of Paper

The purpose of this paper is to investigate emerging SIL4 communication protocols
from different domains and their suitability for a cloud-like computing platform for the
railway system. The following points are examined:

1. Identification and understanding of communication requirements of SIL4 cloud
2. Overview of railway-specific safety-critical protocols
3. Brief survey of potential communication protocols and comparison with 2
4. Present a system architecture to show how DDS can be used to meet requirements

2 SIL4 Communication Requirements

2.1 Safe Computing Platform

Deutsche Bahn, as part of the Digitale Schiene Deutschland sector initiative, and other
railways in Europe are aiming to introduce a large degree of digitalization in rail oper-
ation, which will for instance be characterized by highly or fully automated driving, an

1 Capacity and Traffic Management System.

Analysis of Safety-Critical Communication Protocols 213

AI-based disposition of rail traffic in real-time, and fully automated incidence manage-
ment. As a fundament for the future rail system RCA2 and OCORA3 have initiated the
work toward a functional Safe Computing Platform (SCP) architecture for the onboard
and trackside functions as depicted in Fig. 1.A key prerequisite for the envisioned digital-
ization of rail operations is a highly performant IT infrastructure that allows to decouple
the different life cycles of railway applications, middleware and hardware and explic-
itly leverage the latest developments in the IT sector, e.g., virtualization and flexible
communication in the context of safety [5].

Fig. 1. Logical reference architecture of the Safe Computing Platform (SCP) [5]

Following the SCP approach, communication can be categorized in the following
five categories, as depicted in Fig. 2:

1. Communication within one SCP implementation
2. Communication between different SCP implementations in the same cloud environ-

ment
3. Communication between an SCP and other IT systems within an on-premise SIL4

cloud boundary
4. Communicationbetween aSIL4cloud andother IT systemsoutside of the on-premise

SIL4 cloud boundary
5. Communication between an SCP and external Systems (e.g., Point machines in the

field)

The categorization is based on the zoning concept of safety-critical systems for which
there might be different ways to separate them. As illustrated in Fig. 1, functional appli-
cations are decoupled from the underlying SCP and isolated from each other. The com-
munication between two functional applications on the same SCP instance is considered
in the domain of the SCP vendor, meaning that it can be established via platform inde-
pendent (PI) API commands with the SCP as a middleware. The PI API approach allows

2 Reference Control Command and Signalling Architecture.
3 Open Control Command and Signalling On-board Reference Architecture.

214 B. Rother et al.

safety-critical railway applications to run unchanged on different SCP implementations,
hence maintaining application portability. The vendor can decide which communication
protocol to use, as it is hidden behind the PI API. There is the possibility to distribute
redundant applications, executed on the SCP, to different geographical locations, which
will be needed in SIL4 cloud environments. Communication protocols must provide
safety capabilities if safety-critical applications want to exchange data safely with each
other. Nevertheless, important communication connections to other systems in the pri-
vate and external network must be enabled. In today’s railway systems, communication
with external systems, such as object controllers or signalling systems, is enabled by the
RaSTA4 communication protocol.

Fig. 2. Communication categories in the railway domain

2.2 Requirements

The EN 50159 standard defines requirements for communication between safety-
related railway applications. The key properties for safe communication are authenticity,
integrity, timeliness and sequence.

The standard discriminates network architectures in three categories:
Category 1 applies to closed transmission systems with a fixed number of partici-

pants, negligible risk of unauthorized access, and static physical characteristics of the
transmission system during its life cycle. Categories 2 and 3 concern open transmis-
sion systems, which may have a changing set of participants and possibly unknown
participants, which are not part of the railway application and may generate:

• arbitrary communication loads
• changing properties of the transmission media
• changing message routes through the system.

Only in category 3, the open transmission systemmayalso be subject to unauthorized,
malicious access. Based on this categorization, the standard identifies possible threats
and lists measures and methods that protect the safety-related communication against

4 Rail Safe Transport Application.

Analysis of Safety-Critical Communication Protocols 215

these threats. The appropriate measures have to be implemented in an independent layer
above the transmission system according to EN 50128 and EN 50129 [1, 4].

According to the OCORA requirements for the SCP, the following non-exhaustive
list of requirements arise for future communication infrastructures:

• R1: The communication protocol evolves independently from a specific computing
platform realization.

• R2: The computing platform shall support point-to-point, point-to-multipoint and
publish-subscribe communication model to support different application communi-
cation models. Publish-subscribe model helps to achieve location transparency for
applications running on platform(s).

• R3: Safe communication should be applied end-to-end, so that the whole communi-
cation link between remote functional applications can be considered safe.

• R4: Safe communication protocols will be transparent to Functional Applications
• R5: The computing platform provides a communication protocol which is based on
open and standardized specification to achieve interoperability.

3 Railway-Specific Safety-Critical Protocols

RaSTA is a network protocol that is tailored to the specific needs of railway signalling
systemswhich fulfills requirements ofEN50159 e.g.,message integrity,message authen-
ticity, message timeliness, and message sequence for safety-critical communication. In
this case, authenticity is to be understood as a safety property [3].

The protocol supports safe data transmission in networks classified as category 1 or 2
(according to EN 50159). If transmission over a category 3 network is necessary, addi-
tional means of encryption need to be foreseen. This could be within the upper layer
(application layer) or the lower layer (e.g., IPsec).

From experiences of the railway supplier Thales it is clear that the use of the protocol
in a cloud environment is severely restricted. In particular, the reduced flexibility of the
peer-to-peer protocol and limited integration of security functions are highlighted in this
context. Other safe and secure protocols therefore have to be investigated or designed
for suitability in the cloud environment, especially for communication among newly
developed applications specified by RCA.

4 Potential SIL4 Communication Protocols

In the following we present OPC UA5 and DDS6 as potential candidates for such a
multi-point communication since they are widely used in industrial control systems.

5 Open Platform Communication Unified Architecture.
6 Data Distribution Service.

216 B. Rother et al.

4.1 OPC UA

OPC UA supports communication scalability between distributed systems including
reliable data transmission end-to-end. It supports extensible security features including
authentication, authorization, encryption, checksums along with security key manage-
ment. With its flexibility, interoperability and scalability, it can be addressed as refer-
ence standard to meet all the requirements and trends in industry 4.0. OPC UA is an
open standard without dependence on or binding to proprietary technologies or individ-
ual vendors. Hence, all OPC UA communications are independent of the vendors who
implement them, the programming languages used, and the platforms those products run
on. It supports both publish-subscribe over UDP and client/server over TCP communi-
cation patterns. OPC UA over TSN provides deterministic communication via Ethernet
[2]. OPC UA is already used in railways for non-safety-critical communication such as
the collection of diagnostics data from various systems including safety-critical ones
[13].

The specification of OPC UA Safety extends OPC UA to fulfill functional safety
requirements as defined in the IEC 61508 and IEC 61784-3 standards. IEC 61508 is
the basis of many derived standards in functional safety context therefore it should be
considered as feasible to use OPC UA Safety as well in railway domain [14]. The safety
measures such as the assignment of safety IDs to change communication partners at
run-time, cyclic-redundancy check (CRC), codenames, monitoring numbers, watchdog,
diagnostic data and SIL 4 monitors to identify and rectify communication errors, can be
employed as a standard at the safety layer for safe communication over OPC UA [7].
This could limit the certification effort to the correctness of implementation of safety
layer on a functionally safe computing platform.

OPC UA has been developed for machine-to-machine communication and is there-
fore well suited for communication with field elements and external systems in the
context of railway systems, as depicted in Fig. 2. Due to its application-independence,
OPC UA Safety does not pose requirements concerning the length or structure of the
application data [6].

4.2 DDS

The open standard DDS middleware provides a data centric connectivity framework
basedon apublish-subscribemodel for a real-time system.Toprovide the interoperability
between DDS implementations from different vendors, specifications are formulated to
define the wire protocol called RTPS (real-time publish-subscribe). DDS-RTPS enables
seamless interoperability across vendor implementations, programming languages and
platforms. DDS enables modular application development and reliable and real-time
data exchange [9–11].

In order to useDDSmiddleware over standard IP networks for safety-critical applica-
tions, additional safety measures are required to meet the requirements of safety-critical
applications. DDS employs a variety of Quality of Service (QoS) mechanisms to ensure
reliability, system health, security and real-time behavior [9]. These QoS mechanisms
can be used to detect and, in some cases, rectify communication errors such as data cor-
ruption, unintended repetition, incorrect sequence numbers, lost messages and delay. For

Analysis of Safety-Critical Communication Protocols 217

security, DDS employs additional features such as access control, data flow path enforce-
ment and data encryption [12]. These security measures can also handle integrity issues
which may be caused by errors such as message insertion and masquerade.

DDS’s comprehensive QoS and security mechanisms make it a potential candidate
for safe communication in railways.

5 Safe Communication Architecture for Railway Systems

This section describes an example design and architecture for safe communication on
a black channel applicable for safety-critical railway applications deployed on a dis-
tributed SIL4 cloud environment. The safety standard EN50159 allows for black channel
communication, where only the endpoints are considered safety-relevant and the trans-
mission is protected via a safety protocol. This means that only the safety protocol has to
be developed according to EN 50159 and EN 50128 and executed in a safe context. The
safety layer which implements the safety protocol will sit between the application and
the potentially unreliable transport layer. The safety layer will provide safety measures
to detect communication errors such as sequence numbering, timeout, sender/receiver
identification and data consistency checks.

A separation kernel isolates the safety-critical partition from the non-safety-critical
partition, however, applications running inside these partitions are allowed to communi-
cate via inter-partition queuing/sampling ports provided by the separation kernel. Due to
the strong separation provided by a qualified separation kernel, we could limit the certi-
fication efforts to the components in the safety-critical partition and use an unqualified,
off-the-shelf network stack inside a non-safety-critical partition.

Figure 3 shows a system architecture where a communication middleware such as
DDS or OPC UA runs in a separate safe partition with a POSIX runtime along with the
safety-critical railway application and safety component. The TCP/IP stack and Ethernet
driver run inside an unsafe virtualized Linux partition which provides the black channel.
The black channel stack running inside the unsafe Linux partition implements a software
switch that either directly transfers the data bymemory copy to the destination port when
it is located on the same CPU, or calling a socket write using an Ethernet driver when
it’s on a different CPU.

A DDS/OPC UAmiddleware framework running inside the safe partition on a sepa-
ration kernel provides a Modular Open Systems Approach (MOSA) to create a common
data communication framework for railway applications that can communicate across
any data transport while providing fault tolerance, resiliency and security. Based on the
evaluation of a state-of-the-art industrial implementation of DDS such as RTI Connext
[10], this approach allows the systems to distribute the right data from the right rail-
way applications to the right operators. This is achieved in real-time across different
data transports and can additionally be used to enable safety mechanism such as fault
handling and safety measures against performance limitations using QoS mechanisms
[9].

218 B. Rother et al.

Fig. 3. Example of a safe communication system architecture based on DDS/OPC UA and a
separation kernel

6 Evaluation

The proposed safe communication architecture fulfils all requirements R1 to R5,
described in Sect. 2.2, with the integration of potential SIL4 communication protocols.
To compare the safe protocols RaSTA, DDS and OPC UA Safety, key properties of the
protocols are listed inTable 1.With the integration ofDDSandOPCUASafety, the archi-
tecture is able to support different communication patterns, such as publish-subscribe
and peer-to-peer connections (R2). This allows for changing the safety communication
partners at runtime by transparently exchanging data (R4). As a limitation it should be
mentioned that safe multicast is resolved in OPC UA as a point-to-point connection on
the layer below [7].

Both protocols are based on an open standard and have strong international sup-
port (R5). By covering the EN 50159 key properties, they are potential candidates for
the railway sector. With suitable safety measures, which have to be integrated into the
application appropriately, OPC UA and DDS are able to support communications up to
SIL4 (R3). In particular, safe communication between field elements and the safe com-
munication architecture can be achieved with OPC UA Safety using Safety Multicast.
According to [8], OPCUA supports semantic interoperability and large-scale application
scenarios and is therefore suitable for EN 50159 category 1 and 2 networks.

Analysis of Safety-Critical Communication Protocols 219

Table 1. Comparison of safe protocols

RaSTA DDS OPC UA safety

Communication
pattern
PubSub architecture

P2P PubSub,
point-to-multipoint

PubSub,
point-to-multipoint

EN 50159 key
properties
(authenticity,
integrity, timeliness,
sequence)

Supported Supported Supported

Open standard with
strong international
support

No (used in railway
industry)

Yes Yes

Safety features
(excerpt)

• Black channel
principle

• Detection of
communication
errors

• Black channel
principle

• Changing
communication
partner during
runtime

• Detection of
communication
errors

• Black channel
principle

• Changing
communication
partner during
runtime

• Detection of
communication
errors

• Safety Multicast

Security features Limited
(secure code)

Extensive
(authentication,
access control,
cryptography,
logging)

Adequate
(secure channel)

7 Conclusion

In this paper, a brief comparison of the potential application layer communication pro-
tocols from industrial domains with railway-specific safety-critical protocols was pre-
sented. Both OPC UA and DDS protocols have the potential to be used in on-premise
SIL4 cloud for safety-critical communication. Still, RaSTA is applicable for on-premise
SIL4 cloud, but is limited to point-to-point communication. Finally, a safe communica-
tion architecture for railway was presented that shows how safe communication can be
realized through middleware protocols such as DDS and OPC UA and how these fulfil
the requirements previously defined for the railway system.

The investigation for a safety-critical communication protocol is an important subject
in the context of SIL4 cloud environments and needs to be examined further to analyze
protocols differences in terms of their performance under real conditions and how it
affects the safe communication architecture.

220 B. Rother et al.

References

1. CENELEC, “EN50159: Railway applications - Communication, signalling and processing
systems - Safety-related communication in transmission systems”. European Committee for
Electrotechnical Standardization (2010)

2. Drahos, P., Kucera, E., Haffner, O., Klimo, I.: Trends in industrial communication and OPC
UA. In: Cybernetics and Informatics (K&I), Lazy pod Makytou (2018)

3. Heinrich, M., Vieten, J., Arul, T., Katzenbeisser, S.: Security analysis of the RaSTA safety
protocol, pp. 199–204 (2018)

4. Kantz, H., Resch, S., Scherrer, C.: Communication in train control. In: Industrial Communi-
cation Technology Handbook. CRC Press (2017)

5. An Approach for a Generic Safe Computing Platform for Railway Applications. https://git
hub.com/OCORA-Public/. Accessed 28 Jan 2022

6. OPC Foundation: OPC UA for Field Level Communications - A Theory of Operation. (2020)
7. OPC Foundation: OPC UA Specification Part 15 - Safety (2019)
8. Pfrommer, J.: Semantic interoperability at big-data scale with the open62541 OPCUA imple-

mentation. In: Podnar Žarko, I., Broering, A., Soursos, S., Serrano, M. (eds.) Interoperability
and Open-Source Solutions for the Internet of Things, vol. 10218, pp. 173–185. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56877-5_11

9. Madden, M.M., Glaab, P.C.: Distributed simulation using DDS and cloud computing. In:
Proceedings of the 50th Annual Simulation Symposium (ANSS 2017), vol. 3, pp. 1–12.
Society for Computer Simulation International, San Diego (2017)

10. Data Distribution Service (DDS) for Complex Systems|RTI. https://www.rti.com/products/
dds-standard. Accessed 22 Feb 2022

11. OMG, “The Real-time Publish-Subscribe Protocol (RTPS) DDS Interoperability Wire Proto-
col Specification.” September 2018. https://www.omg.org/spec/DDSI-RTPS/2.3/Beta1/PDF.
Accessed 02 Feb 2022

12. Corsaro, A.: A Tale of Two Industrial IoT Standards: DDS and OPC-UA, RTInsights, 15
August 2016. https://www.rtinsights.com/dds-opc-ua-industrial-iot-standards/. Accessed 22
Feb 2022

13. OPC UA Used in Deutsche Bahn Signaling System – OPC Connect. https://opcconnect.opc
foundation.org/2015/06/opc-ua-used-in-deutsche-bahn-signaling-system/. Accessed 22 Feb
2022

14. SYSGO expands safety cert to IEC 61508 and EN 50128, highest level security PikeOS now
available to industrial sector, Embedded.com, 10 January 2011. https://www.embedded.com/
sysgo-expands-safety-cert-to-iec-61508-and-en-50128-highest-level-security-pikeos-now-
available-to-industrial-sector/. Accessed 22 Feb 2022

15. Thaleswill digitizeDeutscheBahn Stuttgart signalling system to substantially improve capac-
ity, punctuality and comfort, Thales Group. https://www.thalesgroup.com/en/group/journa
list/press_release/thales-will-digitize-deutsche-bahn-stuttgart-signalling-system. Accessed
22 Feb 2022

https://github.com/OCORA-Public/
https://doi.org/10.1007/978-3-319-56877-5_11
https://www.rti.com/products/dds-standard
https://www.omg.org/spec/DDSI-RTPS/2.3/Beta1/PDF
https://www.rtinsights.com/dds-opc-ua-industrial-iot-standards/
https://opcconnect.opcfoundation.org/2015/06/opc-ua-used-in-deutsche-bahn-signaling-system/
https://www.embedded.com/sysgo-expands-safety-cert-to-iec-61508-and-en-50128-highest-level-security-pikeos-now-available-to-industrial-sector/
https://www.thalesgroup.com/en/group/journalist/press_release/thales-will-digitize-deutsche-bahn-stuttgart-signalling-system

TASC: Transparent, Agnostic, Secure
Channel for CBTC Under Failure

or Cyberattack

Utku Tefek1(B), Ertem Esiner1, Lin Wei1, and Yih-Chun Hu1,2

1 Advanced Digital Sciences Center, Singapore 1 Create Way, #14-02 Create Tower,
138602, Singapore

{u.tefek,e.esiner,lin.wei}@adsc-create.edu.sg
2 University of Illinois at Urbana Champaign, Champaign, IL, USA

yihchun@illinois.edu

Abstract. Modern railway systems rely on communication-based train
control (CBTC) for traffic management and automation. CBTC provides
the controller with precise, timely updates on the position/speed of trains
and communicates the corresponding control information to the trains.
However, disruptions due to potential component failures and jamming
attacks threaten the communication availability in CBTC. To improve
availability, we propose a countermeasure based on redundant commu-
nications. The proposed Transparent, Agnostic, Secure Communication
(TASC) system sniffs and tunnels the CBTC messages through an alterna-
tive network to their intended receivers. Prior works mitigate the impact
of jamming and failures through hardware modifications to CBTC. In con-
trast, TASC is transparent to the underlying system, causing no interfer-
ence unless signaling is disrupted, and designed to be agnostic to com-
munication protocols above the physical-layer. Unlike commonly adopted
active redundancy via the duplication of components, TASC steps in only
upon signaling disruptions, employing standby redundancy.

Keywords: Availability · CBTC · Communication redundancy ·
Jamming attack

1 Introduction

Railway systems offer an efficient, safe, cost and environment-friendly way
of transporting masses. Modern information and communication technologies
known as communication-based train control (CBTC) in railways enable high
resolution, automated, real-time train state and control information exchange

This work was supported in part by the National Research Foundation (NRF), Prime
Ministers Office, Singapore, under its National Cybersecurity R&D Programme (Award
No. NRF2014NCR-NCR001-031) and administered by the National Cybersecurity
R&D Directorate, and in part by the National Research Foundation, Prime Minis-
ter’s Office, Singapore under its Campus for Research Excellence and Technological
Enterprise (CREATE) programme.

c© Springer Nature Switzerland AG 2022
S. Collart-Dutilleul et al. (Eds.): RSSRail 2022, LNCS 13294, pp. 221–237, 2022.
https://doi.org/10.1007/978-3-031-05814-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05814-1_16&domain=pdf
https://doi.org/10.1007/978-3-031-05814-1_16

222 U. Tefek et al.

between the train and the wayside equipment, which increases the line capac-
ity by safely reducing the train headway [7]. However, as railways become more
reliant on automated systems, they inevitably become vulnerable to hardware
and communication failures and cyberattacks.

Multiple serious incidents due to the disruptions in CBTC have occurred in
recent years. Intermittent signal interference caused loss of communication and
delays on the Circle Line of Singapore metro from 2 November to 9 November
2016. Postmortem analysis of data logs revealed that one of the trains with
faulty signaling hardware emitted erroneous signals, preventing other trains in
its vicinity from communicating with the wayside radio equipment [18]. The
disruption in signaling led to the activation of emergency brakes as a safety
mechanism, causing long and sustained delays. Another incident where the loss
of communication contributed to the collision of two trains caused the injury of
over 30 commuters in the East-West Line of Singapore metro on 15 November
2017 [22]. In March 2019, two subway trains in Hong Kong Tsuen Wan Line have
collided during a trial ride for the newly installed signaling system, reportedly
due to a software glitch [12].

Since the railway systems are critical infrastructure, CBTC has stringent
requirements on the availability and integrity of signaling data exchanged
between the wayside and the trains. Although the safety in railway systems
has been taken very seriously, the security measures are mostly proprietary and
confidential, thus relying on physical isolation and obscurity to limit the attack
surface [19]. However, it is well known that the security of a system should not
depend solely on the secrecy of a given system implementation [15]. Due to the
deep involvement of humans in rail transport and the widespread availability
of software-defined radios, the bar for the attackers to interfere and disrupt the
signaling in the train-to-wayside wireless communication link is low.

Based on our discussions with our industry partner SMRT Corporation Ltd.,
and considering the distinct features of CBTC and further relying on the general
security principles of cyberphysical systems, we adhere to the following design
guidelines.

Transparency: The deployed CBTC systems are expected to operate for
decades because any major modification may be very costly, requiring a re-design
of security mechanisms that are already in place. In this regard, compatibility
and interoperability with the legacy CBTC are indispensable. Unlike existing
solutions, TASC is designed to be an independent system. It can detect failures
with no feedback from the underlying system. Upon failure detection, TASC
sniffs, tunnels and injects packets at desired locations as if the packets were sent
directly by their source.

Agnostic Design: Since most CBTC systems utilize proprietary technolo-
gies rather than commercial off-the-shelf networking equipment, the details of
communication protocols are kept confidential. Any proposed design should be
applicable even with limited information on the existing CBTC system. TASC
performs its functions without any knowledge of the communication protocols
above the physical-layer of the underlying system.

TASC for CBTC Under Failure or Cyberattack 223

Improved Availability: The past incidents have shown that communication
failures may disrupt the CBTC operation and even contribute to accidents
[12,18,22]. Furthermore, CBTC is shown to be vulnerable to jamming attacks,
and the impact of jamming is further amplified if waveguides are deployed as
the CBTC wireless medium [1]. TASC relies on communication redundancy to
improve the availability of communications.

Uncompromised Integrity and Confidentiality: The interconnected digital ele-
ments of CBTC present potential attack surfaces [2]. As a critical cyberphysical
system, CBTC must be guarded against information altering and loss through
proper authentication and integrity checking mechanisms. We designed the
TASC backbone communication to provide message authentication, freshness,
and optionally confidentiality by employing lightweight cryptographic primitives.

2 Related Work

Relying on channel hopping commonly employed in cognitive radio networks [20], a
countermeasure against jamming in CBTC has been proposed in [13]. The authors
proposed the use of frequency hopping spread spectrum (FHSS) not only at the
transmitter-receiver pair but also at the wayside repeaters, which are located at
regular intervals on the waveguide to amplify CBTC signals in some continuous
antenna based implementations of CBTC. Although FHSS repeaters are effective
in mitigating the effect of jamming by amplifying the legitimate signal only, inter-
ference from the legitimate but malfunctioning transmitters may also be amplified.

Improving the resilience of CBTC against component failures has been stud-
ied. Cooperative relaying in CBTC [6,21] eliminates the need for train-AP asso-
ciation and hence reduces the risk of AP failure. However, the communication
chain in a relaying scenario is prone to disruption in the event of a single-node
failure. Inspired by the Coordinated Multi-point (CoMP) technique of LTE, a
train-to-wayside communication system to allow trains to communicate with a
cluster of APs simultaneously was proposed in [23]. Our proposed TASC system
also benefits from redundant APs for train-to-wayside communication. However,
unlike [23], the redundant APs in TASC remain in standby mode, taking over
the functions of primary APs only upon failure. Our redundancy approach is
also known as standby redundancy, which has been employed predominantly in
high reliability, non-repairable systems such as in space exploration and satel-
lites. The likelihood of failure in standby redundancy is much lower, since the
redundant components are shielded from the operational stress (e.g., software
glitches, hardware failures and cyberattacks in CBTC) until they are required
to substitute for a failed component [3].

3 Overview of CBTC and Attack/Failure Model

CBTC requires uninterrupted radio communication between the wayside and
the trains. The trains send their real-time location, speed, and direction to the
wayside over the radio connection. Based on the information aggregated from

224 U. Tefek et al.

all trains on the track, as well as considering other variables such as the trains’
braking capability, the Zone Controller (ZC)1 continuously calculates the max-
imum speed and the distance (collectively referred to as the limit-of-movement
authority or LMA) for each train. LMA data is then shared with the trains
over the same radio connection, for the onboard automatic train control (ATC)
functions to adjust the speed and headway accordingly. This real-time infor-
mation exchange (or signaling) between the train and the wayside ZC enabling
a dynamic headway and speed adjustment is also known as the moving-block
operation and allows driverless trains to operate with a higher density than the
conventional fixed-block operation. The frequency of CBTC messages is about
0.1–0.6 s. If a train fails communicate up-to-date information (i.e., train state
and LMA), timeout occurs and emergency brakes are applied [7].

3.1 Train-to-Wayside Radio Network

The trains communicate with the access points (APs) through a wireless network
known as the train-to-wayside radio network. APs are responsible for relaying
CBTC messages between the ZC and trains. Since the wayside depends on the
trains to obtain the train data and the trains rely on the wayside to get LMA in
a timely manner, the reliability of the train-to-wayside radio network is crucial
for CBTC to function.

As railways are deployed in a variety of environments including subway tun-
nels and viaducts, various wireless network protocols and propagation mediums
have been considered for CBTC signaling over the train-to-wayside radio net-
work [8]. While the deployment of the leaky-waveguides or radiating cables are
costlier than discrete antenna implementations, they provide a more reliable per-
formance thanks to the significantly reduced path-loss attenuation and protection
from interference. A continuous antenna configuration of CBTC is shown in Fig. 1.

Leaky Waveguide

Backbone
Network

Zone
Controller

Access Point

Train

Coupling
Unit

Fig. 1. CBTC system with continuous antennas.

1 Zone Controller, also known as the Wayside Controller, is responsible for controlling
a particular section comprising of multiple access points in the railway network.

TASC for CBTC Under Failure or Cyberattack 225

In continuous antenna configurations, the APs are wired to disjoint segments
of the propagation medium, e.g., the leaky-waveguide as in Fig. 1, through a
coupling unit. The leaky waveguide is deployed along the railway track so that
the train antenna travels a few decimeters above it as the train moves. In discrete
antenna configurations, the wayside is divided into multiple virtual cells, each
of which is served by AP over a wireless interface. The APs are responsible for
converting the signals received over the wired backbone network into wireless
signals and vice versa. In both configurations, the trains communicate with APs
using wireless protocols such as Wi-Fi or the supplier’s proprietary protocols.
These wireless links are the weakest links in the CBTC signaling system since
they are vulnerable to interference from signals in the same frequency band
transmitted by coexisting devices.

3.2 Attack and Failure Model

Communication failures occur despite the built-in redundancy in CBTC sys-
tems at multiple levels, e.g., through the use of multiple radios, antennas, fre-
quencies, and overlapping AP coverage [7,14]. The built-in active redundancy of
train radio equipment and overlapping AP coverage cannot prevent the failures
entirely because the design principles and the software running on each radio
unit is typically the same, causing multiple redundant units to fail simultane-
ously. Furthermore, a failed radio unit may emit interfering signals, acting as a
jammer, which in turn causes the loss of communication between other trains
and APs as had happened in the rogue train incident of Singapore metro [18].

Strong interference caused by a jamming attack may also prevent the receiver
from decoding the legitimate signal and renders any security measure above the
physical-layer (e.g., cryptography and network security) irrelevant. As discussed
in [4], the railway infrastructure is a potentially high-value victim of electromag-
netic jamming attacks. The effect of jamming is further amplified in continuous
antenna configurations. As shown in [1,13], while a jamming signal in free-medium
communication has an impact over a limited range due to natural signal attenua-
tion, jamming in continuous antenna configurations can extend to a much longer
range due to the limited longitudinal attenuation provided by the leaky-waveguide.
Ironically, a seemingly useful feature of reduced signal attenuation in continuous
antenna configurations potentially magnifies the scale of a jamming attack.

In line with the past incidents and demonstrated the risk of signal jamming
attacks, we include the following in our attack/failure model.

i. A train radio or an AP emits unwanted signals in addition to the legitimate
signals, causing interference to other train-AP pairs.

ii. An adversary injects jamming signals to the train-to-wayside radio network.
For instance, the adversary in close proximity to the track, or on-board the
train can transmit jamming signals using a high-gain antenna.

iii. The AP breaks down, fails to relay the LMA to the train and/or train data to
the ZC. The AP failure can be either in a single direction or unidirectional.

226 U. Tefek et al.

Our solution covers the communication failures, e.g., the message is lost or
corrupted as per the attack and failure model, from the point the message leaves
its source, to the point it reaches its destination. If the message is not sent by its
source in the first place (e.g., the train radio equipment or ZC breaks down), an
agnostic design to cover communication failures is unattainable. In such a case,
redundant signaling mechanisms such as track circuits or inductive loop systems
[16] are possible mitigation techniques.

3.3 Alternative Networks for CBTC Signaling

The CBTC signaling systems commissioned during the early 2000s or before
mostly utilized proprietary technologies, because the extent to which wireless
communication would proliferate in the form of Wi-Fi or LTE was not commonly
perceived. Today, even though CBTC signaling converges towards said standards
thanks to their availability, interoperability, high capacity, and low-cost equip-
ment, replacing the proprietary CBTC systems altogether within their life span
of operation is not desirable. Instead, using commercial-off-the-shelf equipment
to provide back-up signaling, and doing so only when anomalies are detected on
the main train-to-wayside radio network could be a viable solution.

Multiple networks already co-exist with the train-to-wayside radio network.
Ubiquitous LTE coverage is increasingly more available in a majority of railways
including underground metro systems for passengers’ use. Besides, supplemen-
tary radio networks such as Terrestrial Trunked Radio (TETRA) are sometimes
deployed to implement critical functions (e.g., emergency communication and
alarms) in railways. For instance, in the Circle Line of Singapore Metro, an LTE
access network is deployed to provide mobile access to commuters, and TETRA
is used for passenger emergency communication, passenger announcement, and
security camera requests along with the train-to-wayside radio network providing
CBTC signaling over waveguides.

4 Transparent, Agnostic, Secure Channel (TASC) System

To improve the train-to-wayside radio network’s resilience, we propose the use of
alternative networks for re-routing the CBTC messages in a transparent, agnos-
tic, and secure (to the desired level in terms of confidentiality, integrity, and avail-
ability) manner. Our proposed TASC system relies on proxy devices, referred to
as TASC devices, attached to communicating CBTC components. TASC devices
monitor traffic in standby mode and relay the CBTC messages through a sub-
stitute channel only when the primary CBTC channel fails. A redundant AP,
referred to as the Slave-AP, is also controlled by the TASC system for standby
AP redundancy.

Our approach resembles performing a relay attack [9], or more closely, a worm-
hole attack [11] which are targeted against ad-hoc networks. In a wormhole attack
the attacker records packets from a location in the network, then (selectively)
tunnels them to another location and replays them into the network, without

TASC for CBTC Under Failure or Cyberattack 227

manipulating or even reading the messages. Similarly, the proxy TASC devices,
agnostic to the underlying CBTC protocols, overhear and tunnel the CBTC
packets using secure communication protocols over alternative channels, render-
ing themselves transparent to the CBTC system. Unlike these attacks, however,
TASC performs this tunneling honestly and reliably. Therefore, it provides a use-
ful service in improving the communication availability.

Figure 2 depicts the TASC system attached to a CBTC train-to-wayside radio
network. The following entities constitute the TASC system: a set of identical
TASC devices for each train, another set of identical TASC devices for each AP,
at least one other TASC device for each ZC, and a slave-AP to be exclusively
used by the TASC system. This slave-AP is identical to those used in the CBTC
network, and the rationale for its use will be explained in Sect. 4.2. As shown for
a single train-to-wayside link in Fig. 2, the first TASC device is deployed near the
train, second near the AP, and third connected to the backbone network, con-
trolling the slave-AP. All TASC devices are interconnected through a backbone
network such as LTE or TETRA.

Fig. 2. TASC system and its connections with a CBTC network. Wireless and wired
interfaces to the CBTC backbone are denoted by 1–5 and A− C respectively.

Each TASC device is equipped with monitoring (sniffing) and injection capa-
bilities compatible with the physical layer protocols of the CBTC system. The
wireless interfaces which the TASC devices can sniff and inject to are denoted
by numbers 1–5, whereas the wired connections are denoted by letters A-C in
Fig. 2. The TASC system is indifferent to train-to-wayside communication pro-
tocols above the physical layer (e.g., interpretation of messages/headers, data
encapsulation/framing, encryption scheme). However, we assume that the TASC
devices are equipped with a mechanism to distinguish between the packets sniffed
from 1 and 2, as well as those from 3 and 4. I.e., the train’s TASC device can

228 U. Tefek et al.

differentiate the signals transmitted from the train and those sniffed from the
waveguide; the AP’s TASC device can differentiate the signals transmitted from
the AP and those sniffed from the waveguide. This function could be procured
without the need or the ability to interpret CBTC messages, for instance by
installing two antennas for TASC devices: one directly wired to the host device
(1 or 4), another as an air interface (2 or 3). Through these interfaces, TASC
passively monitors the CBTC, and activates signaling through the alternative
network only when failures are detected.

4.1 Resilience Against Jamming/Interference

In order to maintain signaling in the case of a jamming attack or interference
from faulty CBTC components, the TASC system detects such events, then re-
routes the CBTC messages exchanged between the train and its associated AP
until the failure is resolved. The idea is to sniff frames from interface 1 and to
tunnel and inject them to interface 4 – and vice versa – upon failure detection.
The system-level details are explained in Fig. 3 through a sequence diagram.
The diagram contains four entities: source, destination, and two TASC devices
deployed as proxies to the source and destination. Since the CBTC signaling
is bidirectional, the train and AP both take the role of source and destination
interchangeably, depending on the direction of transmission.

Without loss of generality, let us consider the train’s transmission to the
AP. During normal CBTC operation, the train’s signal transmitted from the
train radio equipment can be decoded by the AP. The TASC system verifies
the reception of the train signal at the AP side as follows. The AP’s TASC
device continuously receives the train data from the waveguide (interface 3),
then computes and stores its digest. Thus, each TASC device keeps an array
of past data digests. To compute the digest, a second pre-image resistant hash
function [17] with high enough bit security is employed. For instance, we chose
SHA-256 for 128-bit security in our implementation.

Whenever the train’s TASC device sniffs data from the train over interface
1, it computes a digest from the sniffed packet and sends the digest to the
AP’s TASC device through the TASC backbone network. The digest should be
accompanied by an authentication mechanism to deter signal injection attacks.
For example, after generating the digest of the train data, the TASC device
generates a hash-based message authentication code (HMAC)2 of this digest
and sends the digest together with its HMAC to the AP’s TASC device. Thus,
the AP’s TASC device verifies the authenticity and integrity (and freshness) of
the digest. Such authentication and integrity checking mechanism is necessary if
TASC backbone channels are not secure, e.g., the adversary can spoof and inject
packets with random digests, fooling the TASC system into the Error state
despite a functional CBTC. The Verify process is triggered via the receipt of
this current digest from the train’s TASC device. It checks whether this current

2 For 128-bit security, we chose SHA-256 as the digest function of the employed HMAC.
We concatenate a timestamp to the input of HMAC for freshness.

TASC for CBTC Under Failure or Cyberattack 229

digest matches any of those previously received from interface 3. If a certain
number of consecutive digests received from the train’s TASC device cannot be
found among the past digests stored at the AP’s TASC device, Error state is
switched on. The required number of consecutively received packets without a
matching digest, to switch into the Error state should be determined based on
the emergency braking timeout duration of the CBTC system.

The benefits of sending a digest rather than the train data itself are twofold.
The first is the bandwidth savings accrued from sending a digest rather than
the larger data. Second, the CBTC messages are not directly exposed to the
backbone network during orderly CBTC operation (when the Error state is off).

While the Error state is on, instead of the digests, the TASC system re-
routes CBTC data packets, through the TASC backbone network. In particular,
the Sniff process running at the train’s TASC device continuously sniffs packets
from interface 1 and sends them to the AP’s TASC device. Integrity checking
and authentication mechanisms may be needed if the TASC backbone network
is not secure.3 Meanwhile, AP’s TASC device stores the data packets, if any,
received from interface 3. The Inject process is triggered at the AP’s TASC
device when a packet is received from the authenticated TASC device attached
to the train. The Inject process checks whether the received packet matches any
of those already sniffed from 3. If no match is found, the packet is injected to the
AP as a valid wireless frame via interface 4. Otherwise, continuously receiving
matching packets prompts TASC to exit the Error state. The injection rate of all
TASC devices is hardware constrained by the rate of transmissions necessitated
by the underlying CBTC network. The rationale behind this implementation
feature is explained in Sect. 5.

Fig. 3. Jamming/interference resilience.

3 Likewise, HMAC can be sent along with the train data for authentication and
integrity. Encryption may be considered if confidentiality is of concern. We used
128-bit AES for 128-bit security.

230 U. Tefek et al.

In TASC backbone communications, the sniffed messages are expected to pass
through two TASC devices, i.e., proxies of source and destination. To add another
layer of security, one may opt to employ a provenance checking mechanism [5]
at the receiving side of the destination, checking whether the data injected by
the destination TASC had been initiated by the source TASC.

The TASC system relies on the phenomenon of Physical Layer Capture,
which suggests that the received signal with sufficiently higher power than oth-
ers can be successfully decoded even if it collides with other signals on the same
channel. Thus, even if a continuous jamming signal is present and collides with
the CBTC signals, the TASC’ed (tunneled) signal containing this legitimate
frame can still be successfully received by the AP over interface 4 as the TASC
devices can be wired (via RF connectors), or deployed near the CBTC com-
ponents, hence are not subject to coupling and propagation losses, unlike the
adversary and faulty CBTC components.

4.2 Resilience Against AP Failure

The described TASC system with two TASC devices, each of which is attached
to the train and AP, improves the resilience against interference and jamming
attacks to the train-to-wayside radio network. As will be described throughout
the rest of this section, resilience against AP failures to relay the LMA to the
train and/or train data to the ZC can be improved by utilizing another TASC
device, controlling a Slave-AP.

As the train movements are controlled solely by the ZC, the APs do not mod-
ify the train data or LMA. Nevertheless, the APs still perform data link layer
processing, e.g., encapsulation of higher layer data into frames, physical address-
ing, scheduling, and QoS control. The TASC system is agnostic to the data link
layer processing performed by the APs. Therefore, even if the wireless frames
containing train data are successfully received at the bit level from interface 1,
the TASC system is unable to translate these frames into meaningful train data
and send to the ZC over interface A (and vice versa) without any knowledge on
the link-layer protocol. In order to obtain this link layer processing information,
the third TASC device with a Slave-AP is used.

The TASC sequence diagram depicting the AP failure scenario in the train-
to-ZC direction is given in Fig. 4. Here, the TASC system checks whether the AP
is operational by comparing the digests obtained from the wired output signals
of the AP and the Slave-AP (interfaces A and C). If the AP failure is confirmed,
the Substitute process re-routes the Slave-AP signals to the ZC (from interface
C to B).

First, the train sends raw train data to the AP. The signal containing this
raw train data is also decoded at the bit level by the train’s TASC device and
TASC’ed to the ZC’s TASC device over the TASC backbone. As stated above,
authentication and integrity checking may be required for communication over
the TASC backbone. For instance, HMAC should be sent along with the train
data. Encryption can be considered if confidentiality is also desired. The Relay

TASC for CBTC Under Failure or Cyberattack 231

process running on ZC’s TASC relays the raw train data (after authentica-
tion/decryption) to the Slave-AP over interface 5. The AP is expected to convert
the received raw train data into a wired backbone signal to be sent to the ZC.
Upon this conversion and transmission (if successful), the Hash function process
running on AP’s TASC device sniffs the wired signal, generates its digest and
sends the digest to the ZC’s TASC device (with an accompanying authentication
code). The ZC’s TASC device stores the train data digest when received from the
AP’s TASC device. Therefore, ZC’s TASC device possesses the digests of past
train data. The Substitute process is triggered whenever a response is received
from the Slave-AP over interface C. The Substitute process compares the digest
of this response with those received from the AP’s TASC device. If no match
is found for a certain number of times, the Substitute process injects the train
data as received from interface C to the ZC via interface B. Recovery from the
Error state occurs if a certain number of digests received from the AP’s TASC
match the train data from the Slave-AP.

Fig. 4. Train-to-ZC for AP redundancy.

TASC operation for the AP failure scenario in the ZC-to-train direction is
similar to the above, from the other way around. The sequence diagram is given
in Fig. 5, however, its description is omitted due to space constraints.

Fig. 5. ZC-to-train for AP redundancy.

5 Security Discussion of TASC

As with many redundancy mechanisms [10], the introduction of TASC increases
the attack surface of the host cyberphysical system. Here, we briefly discuss
potential attacks to TASC, their consequences, and countermeasures.

232 U. Tefek et al.

We have categorized attacks based on the STRIDE (Spoofing, Tamper-
ing, Repudiation, Information disclosure, Denial-of-service, Elevation of privi-
lege) threat model. Since TASC uses symmetric keys, it does not provide non-
repudiation. TASC is susceptible to information disclosure attacks as much as the
host CBTC network. It can be addressed by encrypting the TASC backbone com-
munication. This leaves us with the following broad class of methods an adversary
may use to attack the TASC system in an attempt to disrupt the CBTC.

i. Spoofing, Tampering: e.g., injecting false data to the TASC backbone.
ii. Denial-of-service: e.g., jamming the TASC backbone.
iii. Elevation of privilege: e.g., compromising the secret keys of TASC or taking

full control of one or more TASC devices.

In i., the false data packets are dropped by the TASC device in order, thanks
to the integrity checking mechanism (i.e., HMAC) used by TASC. ii. may result
in the loss of TASC functionality. Even when TASC functionality is lost, TASC
system does not inject any signals to CBTC, because the injection is triggered
in TASC processes (Verify, Inject and Substitute) only when legitimate packets
are received from other TASC devices (see Sect. 4).

The elevation of privilege as in iii. is not typically considered in theoretical
approaches, but they put the attacker in a very powerful position; hence, their
consequences are of practical importance. By compromising the TASC keys and
devices in iii., the adversary can fool the TASC devices into injecting false data
or jamming signals into the CBTC, or directly command a TASC device to do
so. If the underlying CBTC system has its own integrity checking and authen-
tication mechanisms in place (i.e., EN 50159), false data will not be verified by
the CBTC system. The adversary may also choose to flood the CBTC network
through TASC with the said capabilities. Thanks to the hardware constraints on
the frequency of injected packets (or bits) by TASC devices as mentioned in the
previous section, the effect of jamming by data flooding through TASC is miti-
gated. TASC devices can also employ hardware-based security (e.g., TPM, ARM
TrustZone, or Intel SGX) to mitigate the risks from the elevation of privilege.

6 Prototype for Concept Validation

In this section, we first describe the TASC system prototype and the testbed
environment. Then, the effectiveness of TASC in mitigating component failures
and jamming attacks is demonstrated. The testbed setup is depicted in Fig. 6.
Here, the whole testbed diagram is given in the top figure, and each of the two
areas covered by the red ovals is set up as shown in the photo below. We used
seven computers, each running Kali Linux. The ZC is emulated by a virtual
machine running on a PC. The train, AP, Slave-AP, and their corresponding
three proxy TASC devices are each emulated by a sub-$40 Raspberry Pi 3B+
device (hereby referred to as Pi). For connectivity, we attached external Wi-Fi
adapters to these six Pi’s. We used Alfa 802.11ac ultra-range wireless adapters
(model: AWUS036ACH for their support of coaxial RF connections, and monitor

TASC for CBTC Under Failure or Cyberattack 233

and injection modes) for the AP, train and their two proxy TASC devices; and
used RangePlus wireless USB adapters (model: WUSB 100 ver. 2) for the Slave-
AP and its proxy TASC. We connected the AP and the train to their respective
proxy TASC devices through coaxial cables for protection against jamming and
interference. This RF connection between the AP (or that of the train) to its
TASC device is shown in the photo from the actual testbed in Fig. 6. An RF
connection is not necessary between the Slave-AP and its proxy TASC, because
these devices can be kept in an isolated environment.

The AP and ZC are interconnected through a backbone Ethernet network
representing the CBTC backbone network. The TASC devices are also intercon-
nected through another Ethernet network representing the TASC backbone. In
our setup, we used multi-port Ethernet switches (bottom-right of Fig. 6). In line
with the TASC model, the proxy TASC devices of the AP and slave-AP are
also connected to the CBTC’s Ethernet network. Additionally, an Ethernet con-
nection provides communication between the slave-AP and its proxy TASC. All
backbone communications over Ethernet are managed by TCP/IP, to provide
reliable backbone communications while focusing on the wireless link failures.

We used a modified version of the aircrack-ng software suite (version 1.5.2)
for wireless monitoring and packet injection. Aircrack-ng enables over-the-air
capturing of Wi-Fi frames, the export of captured data for further processing by
third-party tools, as well as injecting Wi-Fi frames with desired content. We also
used OpenSSL cryptography library to implement cryptographic hash, HMAC,
and AES encryption/decryption.

Fig. 6. Testbed diagram (top) and a photo (bottom) depicting the RF connection
between the AP (bottom-left), its proxy TASC device (bottom-middle) and the TASC
backbone consisting of ethernet cables and switch (bottom-right).

234 U. Tefek et al.

We tested the scenarios in our attack model, described in Sect. 3.2. The first
experiment tests accidental and intentional jamming, and the second and third
experiments test the AP failure scenarios. In the first experiment, the Pi’s rep-
resenting the AP and train listen to each other and continuously send wireless
frames to each other in 0.2-s intervals, over 2.4 GHz Wi-Fi. Then, starting from
second 10, we turn on a jamming device for 10 s, and record down the number of
packets received at the AP (train), transmitted by the train (AP) and the AP’s
(train’s) TASC device.

Figure 7 illustrates the results from the average of five trials of the experi-
ment. As shown by the dark blue bars, the communication between the AP and
train was maintained at 5 frames per second before the jamming started. When
jamming started, however, no packets were exchanged between these CBTC
components. Here, the light blue bars in between represent the lost packets. The
TASC activation threshold is set to 20 packets or 4 s. Therefore TASC becomes
active at around the 14th second (orange bars) and the number of legitimate
frames received by the intended receiver climbs back to around 5/s (black dots).
Occasional errors could be due to packet losses during sniffing or injection, or
timing mismatches between different experiments. After the jamming ceases,
the TASC system does not deactivate immediately. Thus, the number of pack-
ets received by the intended receiver briefly climbs up to 10 frames per second.
These packets include both the original packets sent by the AP/train and their
duplicates injected by TASC. This is due to the intentional de-activation delay
of TASC, which is set to 10 successful transmissions or 2 s.

Fig. 7. Experiment on (accidental or intentional) jamming.

The second and third experiments assess the AP failure scenario in train-to-
ZC and ZC-to-train directions, respectively. In the second experiment, the train
continuously generates a wireless frame every 0.2 s and sends it to the AP. Upon
receiving the frame, the AP translates the Wi-Fi frame into an Ethernet packet
and immediately sends it to the ZC. Between the 10th and 20th s, we disable
the AP.

TASC for CBTC Under Failure or Cyberattack 235

Fig. 8. Experiments on AP failure in train-to-ZC and ZC-to-train directions.

As can be seen from the top plot of Fig. 8, no translations (i.e., link layer
processing), hence no transmissions were made by the AP during the failure win-
dow (blue bars). The TASC system, however, continued to obtain the correct
translation from the slave-AP and started injecting the Ethernet packet con-
taining train data to the ZC, after the intentional activation delay was observed
(orange bars starting at the 14th s). As such, the number of packets received by
the ZC (black dots), rose back to around 5 frames per second. After the AP was
up at the 20th second, the total number of packets successfully received per sec-
ond by ZC rose to 10 due to duplicate transmissions by TASC. Then, using the
slave-AP translations as a reference, the TASC system stopped injection upon
the confirmation of 10 correct translations. The third experiment (bottom plot
of Fig. 8) is similar, except that the AP receives LMA data encapsulated as an
Ethernet packet by the ZC, and translates it to Wi-Fi frames instead.

Note that, not all transmitted packets reached their destination, i.e., the
number of received packets per second is slightly below 5 even outside the fail-
ure windows. This is due to the noise or interference from coexisting devices
operating in the same frequency band. Packets from such devices are also sniffed
by TASC, only to be dropped as their source is not authenticated.

7 Conclusion

This paper presents a standby redundancy approach to improve communica-
tion availability in CBTC and similar critical cyberinfrastructure. The proposed
TASC solution sniffs packets from its hosts in the network; and upon failure
detection, it tunnels and injects them to their intended destination. TASC is
transparent to its underlying cyberphysical system, and requires no structural

236 U. Tefek et al.

change on the host system. TASC is also agnostic to the communication pro-
tocols above the physical layer, hence applicable to proprietary systems. The
increase in the attack surface due to the introduction of TASC is limited, thanks
to the cryptographic primitives employed by TASC. TASC prototype detected
communication failures with no direct feedback from its host devices, and reli-
ably tunneled the packets to their destinations under jamming and AP failure.

References

1. Chang, S., Tran, B.A.N., Hu, Y., Jones, D.L.: Jamming with power boost: leaky
waveguide vulnerability in train systems. In: IEEE 21st International Conference
on Parallel and Distributed Systems, pp. 37–43 (2015). https://doi.org/10.1109/
ICPADS.2015.13

2. Chen, B., et al.: Security analysis of urban railway systems: the need for a cyber-
physical perspective. In: Koornneef, F., van Gulijk, C. (eds.) Computer Safety,
Reliability, and Security, vol. 9338, pp. 277–290. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24249-1 24

3. Coit, D.W.: Cold-standby redundancy optimization for nonrepairable systems. IIE
Trans. 33(6), 471–478 (2001). https://doi.org/10.1023/A:1007689912305

4. Deniau, V.: Overview of the European project security of railways in Europe
against Electromagnetic Attacks (SECRET). IEEE Electromagn. Compat. Mag.
3(4), 80–85 (2014). https://doi.org/10.1109/MEMC.2014.7023203

5. Esiner, E., Mashima, D., Chen, B., Kalbarczyk, Z., Nicol, D.: F-Pro: a fast and
flexible provenance-aware message authentication scheme for smart grid. In: IEEE
SmartGridComm, pp. 1–7 (2019). https://doi.org/10.1109/SmartGridComm.2019.
8909712

6. Farooq, J., Bro, L., Karstensen, R.T., Soler, J.: A multi-radio, multi-hop ad-hoc
radio communication network for communications-based train control (CBTC). In:
IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1–7 (2017). https://
doi.org/10.1109/VTCFall.2017.8288281

7. Farooq, J., Soler, J.: Radio communication for communications-based train control
(CBTC): a tutorial and survey. IEEE Commun. Surv. Tutor. 19(3), 1377–1402
(2017). https://doi.org/10.1109/COMST.2017.2661384

8. Fitzmaurice, M.: Wayside communications: CBTC data communications subsys-
tems. IEEE Veh. Technol. Mag. 8(3), 73–80 (2013). https://doi.org/10.1109/MVT.
2013.2269191

9. Francis, L., Hancke, G., Mayes, K., Markantonakis, K.: Practical NFC peer-to-
peer relay attack using mobile phones. In: Ors Yalcin, S.B. (ed.) Radio Frequency
Identification: Security and Privacy Issues, RFIDSec 2010. LNCS, vol. 6370, pp.
35–49. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16822-2 4

10. Ge, M., Kim, H.K., Kim, D.S.: Evaluating security and availability of multiple
redundancy designs when applying security patches. In: 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops (DSN-
W), pp. 53–60 (2017). https://doi.org/10.1109/DSN-W.2017.37

11. Hu, Y.C., Perrig, A., Johnson, D.B.: Packet leashes: a defense against wormhole
attacks in wireless networks. In: IEEE INFOCOM, vol. 3, pp. 1976–1986, March
2003. https://doi.org/10.1109/INFCOM.2003.1209219

12. Huang, C.: Hong Kong MTR train crash blamed on Thales signalling system linked
to Joo Koon collision, March 2018. https://bit.ly/2ukEueR. Accessed 21 Mar 2018

https://doi.org/10.1109/ICPADS.2015.13
https://doi.org/10.1109/ICPADS.2015.13
https://doi.org/10.1007/978-3-319-24249-1_24
https://doi.org/10.1007/978-3-319-24249-1_24
https://doi.org/10.1023/A:1007689912305
https://doi.org/10.1109/MEMC.2014.7023203
https://doi.org/10.1109/SmartGridComm.2019.8909712
https://doi.org/10.1109/SmartGridComm.2019.8909712
https://doi.org/10.1109/VTCFall.2017.8288281
https://doi.org/10.1109/VTCFall.2017.8288281
https://doi.org/10.1109/COMST.2017.2661384
https://doi.org/10.1109/MVT.2013.2269191
https://doi.org/10.1109/MVT.2013.2269191
https://doi.org/10.1007/978-3-642-16822-2_4
https://doi.org/10.1109/DSN-W.2017.37
https://doi.org/10.1109/INFCOM.2003.1209219
https://bit.ly/2ukEueR

TASC for CBTC Under Failure or Cyberattack 237

13. Lakshminarayana, S., et al.: Signal jamming attacks against communication-based
train control: attack impact and countermeasure. In: Proceedings of the 11th ACM
Conference on Security and Privacy in Wireless and Mobile Networks, pp. 160–171.
WiSec, ACM, New York (2018). https://doi.org/10.1145/3212480.3212500

14. Liu, Y., Wu, Y., Kalbarczyk, Z.: Smart maintenance via dynamic fault tree anal-
ysis: a case study on Singapore MRT system. In: 47th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN), pp. 511–518,
June 2017. https://doi.org/10.1109/DSN.2017.50

15. Mercuri, R.T., Neumann, P.G.: Security by obscurity. Commun. ACM 46(11), 160
(2003)

16. Pascoe, R.D., Eichorn, T.N.: What is communication-based train control? IEEE
Veh. Technol. Mag. 4(4), 16–21 (2009). https://doi.org/10.1109/MVT.2009.934665

17. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: definitions, impli-
cations, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In: Roy, B., Meier, W. (eds.) Fast Software Encryption, vol.
3017, pp. 371–388. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-25937-4 24

18. Sim, D.: How the circle line rogue train was caught with data (2016). https://blog.
data.gov.sg/how-we-caught-the-circle-line-rogue-train-with-data-79405c86ab6a.
Accessed 23 Feb 2022

19. Taylor, J.M., Sharif, H.R.: Security challenges and methods for protecting critical
infrastructure cyber-physical systems. In: MoWNeT, pp. 1–6, May 2017. https://
doi.org/10.1109/MoWNet.2017.8045959

20. Tefek, U., Lim, T.J.: Channel-hopping on multiple channels for full rendezvous
diversity in cognitive radio networks. In: IEEE GLOBECOM, pp. 4714–4719,
December 2014. https://doi.org/10.1109/GLOCOM.2014.7037552

21. Tefek, U., Esiner, E.: Coverage analysis of cooperative relaying for urban trans-
portation systems in tunnels. In: IEEE International Conference on Commu-
nications (ICC), pp. 1–6. IEEE (2020). https://doi.org/10.1109/ICC40277.2020.
9148695

22. The Land Transport Authority: Executive summary of investigation report into
train collision at Joo Koon station westbound platform on 15 November 2017,
December 2017. https://tinyurl.com/tp8j3bv. Accessed 10 Mar 2020

23. Zhu, L., Yu, F.R., Ning, B., Tang, T.: Design and performance enhancements in
communication-based train control systems with coordinated multipoint transmis-
sion and reception. IEEE Trans. Intell. Transp. Syst. 15(3), 1258–1272 (2014).
https://doi.org/10.1109/TITS.2014.2298409

https://doi.org/10.1145/3212480.3212500
https://doi.org/10.1109/DSN.2017.50
https://doi.org/10.1109/MVT.2009.934665
https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1007/978-3-540-25937-4_24
https://blog.data.gov.sg/how-we-caught-the-circle-line-rogue-train-with-data-79405c86ab6a
https://blog.data.gov.sg/how-we-caught-the-circle-line-rogue-train-with-data-79405c86ab6a
https://doi.org/10.1109/MoWNet.2017.8045959
https://doi.org/10.1109/MoWNet.2017.8045959
https://doi.org/10.1109/GLOCOM.2014.7037552
https://doi.org/10.1109/ICC40277.2020.9148695
https://doi.org/10.1109/ICC40277.2020.9148695
https://tinyurl.com/tp8j3bv
https://doi.org/10.1109/TITS.2014.2298409

Author Index

Ábrahám, Erika 46
Amendola, Arturo 169
Ansar, Zeeshan 211

Badeau, Frédéric 143
Barruffo, Lorenzo 169
Belli, Dimitri 149
Borrami, Sina 83
Bozzano, Marco 169
Budde, Carlos E. 95
Burdy, Lilian 130

Cecchetti, Gabriele 35
Chappelin, Julien 143
Chouchani, Nadia 115
Cimatti, Alessandro 169

De Donato, Lorenzo 192
De Simone, Salvatore 169
Deharbe, David 130

Esiner, Ertem 221

Fantechi, Alessandro 3, 192
Fedeli, Eugenio 169
Flammini, Francesco 192

Gabbasov, Artem 169
Garrubba, Domenico Ernesto 169
Girardi, Massimiliano 169
Golatowski, Frank 211
Gori, Gloria 3

Haehn, Rebecca 46
Hametner, Reinhard 211
Haxthausen, Anne E. 3
Herbreteau, Maxime 115
Hu, Yih-Chun 221
Hunter, Josh 179
Hyde, Paul 35

Iliasov, Alexei 20

Jansen, Duncan 95

Kotowski, Niklas 46
Kuzhiyelil, Don 211

Laibinis, Linas 20
Lamare, Joris 143
Limbrée, Christophe 3
Liu, Jin 35
Locht, Inka 95
Lopatkin, Ilya 20

Magnien, Airy 35
Mahtani, Ankur 115
Mazzanti, Franco 149
McDermid, John 179

Nandi, Giann Spilere 83

Pathak, Prashant 211
Peham, Tom 63
Pereira, David 83
Proença, José 83
Przigoda, Judith 63
Przigoda, Nils 63

Rafin, Denis 115
Resch, Stefan 211
Romanovsky, Alexander 20
Rother, Benjamin 211
Ruscelli, Anna Lina 35

Sabatier, Denis 130
Sanchez de Nova, Jorge 83
Serra, Diana 169
Stoelinga, Mariëlle 95

Taylor, Dominic 20
Tefek, Utku 221
Tiella, Roberto 169

Vittorini, Valeria 192

Wegele, Stefan 35
Wei, Lin 221
Wille, Robert 63

Zampedri, Gianni 169

	 Preface
	 Organization
	Abstracts of Keynotes
	 New Methods for Safety Demonstration in the Frame of Railway System
	 Satellite-Based Train Localization for Safety Critical Applications. The Challenges of Performance Demo and Certification
	 Contents

	Safe Interlocking
	Compositional Verification of Railway Interlockings: Comparison of Two Methods
	1 Introduction
	2 Background
	3 Formal Verification by Model Checking
	3.1 The RobustRailS Method
	3.2 The Louvain Method

	4 Compositional Verification
	4.1 The RobustRailS Compositional Method
	4.2 The Louvain Compositional Method

	5 Comparison of the Two Methods
	6 Case Study: La Louvière-Sud
	6.1 Decomposition of LVR7 - Piéton station
	6.2 Verification Results Using the RobustRailS Method
	6.3 Verification Results Using the Louvain Method
	6.4 Discussion

	7 Related Work
	8 Conclusions
	References

	Safety Invariant Verification that Meets Engineers' Expectations
	1 Introduction
	2 Reporting Safety Invariant Violations
	2.1 Establishing System Correctness
	2.2 The Running Example
	2.3 Symbolic Verification of Signalling Safety Principles
	2.4 The Running Example, Continued

	3 Positive Demonstration of the Absence of Violations
	3.1 Synthesising a Focused Safety Invariant
	3.2 Computing Potential Errors

	4 Discussion and Conclusions
	References

	Innovation in Traffic Management
	Formalization and Processing of Data Requirements for the Development of Next Generation Railway Traffic Management Systems
	1 Introduction
	2 OPTIMA Project
	3 Railway System Modelling: State of Play
	3.1 Shared Models
	3.2 Platform-Specific Model: X2Rail-4

	4 OPTIMA: From Requirements to Model
	4.1 Challenges of Model Evolution
	4.2 Previous Works

	5 Formalizing Data Requirements
	5.1 Minimal Requirements... for Requirements
	5.2 Supporting Grammar
	5.3 Semantics
	5.4 Authorities

	6 Transformation and Integration
	6.1 Pre-processing
	6.2 Processing and Post-processing

	7 Conclusions and Further Works
	References

	Acceleration Techniques for Symbolic Simulation of Railway Timetables
	1 Introduction
	2 Symbolic Simulation
	2.1 Primary Delays
	2.2 Scenarios
	2.3 Algorithm

	3 Reduction
	3.1 Transformation Rules
	3.2 Iterative Approach
	3.3 Bounded Model Checking Approach

	4 Experimental Evaluation
	5 Conclusion
	References

	Optimal Railway Routingpg Using Virtual Subsections
	1 Introduction
	2 Railway Routing in ETCS Level 3
	3 Motivation: The Problem of Discretization
	4 Proposed Solution
	4.1 Main Approach Based on A* Search
	4.2 Resolving Collisions with VSS

	5 Experiments
	6 Conclusion
	References

	Safety and New Technologies
	Verification of Multiple Models of a Safety-Critical Motor Controller in Railway Systems
	1 Introduction
	2 Use-Case: Motor Controller
	3 Formal Specification in Uppaal
	4 Parameterisation and Verification with Uppex
	4.1 Annotating Uppaal Models
	4.2 Verifying Multiple Configurations

	5 Lessons Learned and Future Work
	6 Conclusions
	References

	Learning to Learn HVAC Failures: Layering ML Experiments in the Absence of Ground Truth
	1 Introduction
	1.1 Scientific Approach with Practical Applications

	2 Learning HVAC Failures from Temperature Readings
	2.1 Data Preparation
	2.2 Machine Learning Experiment
	2.3 Study on Rolling Stock of NS

	3 Learning HVAC Failures from Diagnose Codes
	3.1 Data Preparation
	3.2 Machine Learning Experiment
	3.3 Study on Rolling Stock of NS

	4 Final Discussion and Perspectives
	4.1 Temperature Readings to Detect HVAC Failures
	4.2 Diagnose Codes to Detect and Predict HVAC Failures
	4.3 Perspectives

	References

	Safety
	Enhancing Autonomous Train Safety Through A Priori-Map Based Perception
	1 Introduction
	2 State of the Art
	2.1 Infrastructure Modelling
	2.2 Perception and Segmentation

	3 Methodology
	3.1 Our Database
	3.2 Our Approach

	4 Results and Analysis
	5 Conclusion
	References

	Assigning Safe Executed Systems to Meanings
	1 Introduction
	2 CLEARSY Safety Platform
	3 CSPLib
	3.1 Timing Support
	3.2 Proof of Timing Properties
	3.3 Lifting Simplifying Hypotheses

	4 Proving Reality
	4.1 Guidelines
	4.2 A Simple Example: Safety Flasher
	4.3 Full Example: Train Location and Kinematics

	5 Conclusion
	References

	Generating and Verifying Configuration Data with OVADO
	1 Introduction
	2 OVADO Basic Use
	3 OVADO Use to Check Railway Systems
	4 A New Use of OVADO to Generate Data
	5 Adaptation of the SIL4 Process
	6 Conclusion
	References

	The 4SECURail Formal Methods Demonstrator
	1 Introduction
	2 The 4SECURail Case Study
	3 The Requirements Analysis Process
	3.1 Semi-formal Designs
	3.2 Executable UML Designs
	3.3 Formal Modelling
	3.4 Revised Natural Language Requirements

	4 Related Works
	5 Conclusions
	References

	ATO
	Formal Design and Validation of an Automatic Train Operation Control System
	1 Introduction
	2 The ATO Control System
	3 Challenges
	4 Formal Design of ATO
	4.1 Requirements and Architecture
	4.2 Development Process
	4.3 Verification and Validation

	5 Lessons Learned
	6 Conclusions and Future Work
	References

	Investigating Human Error Within GoA-2 Metro Lines
	1 Introduction
	1.1 Context of the Problem

	2 Analysis
	2.1 Real-World Examples of Problems
	2.2 Current Real-World Solutions

	3 Synthesis
	3.1 Solutions Within the Expansion of GoA-2
	3.2 Upgrading to GoA-3
	3.3 Decrease of Automation

	4 Conclusion
	References

	A Vision of Intelligent Train Control
	1 Introduction
	2 Background on Modern Train Control Systems
	2.1 Basic Definitions About Connected and Autonomous Trains
	2.2 The ERTMS/ETCS Railway Standard Specification
	2.3 Segregated and Open Railway Environments
	2.4 Automatic Train Operation over ETCS
	2.5 Train Virtual Coupling
	2.6 Certification Challenges for Autonomous Trains

	3 Intelligent Train Control
	3.1 Intelligent Train Operation and Protection
	3.2 Grades of Intelligence in Train Control

	4 Technology Enablers for Intelligent Train Control
	4.1 Autonomic Computing and Digital Twins in Railways
	4.2 Anomaly and Obstacle Detection, and Signal Recognition
	4.3 Trustworthy and Explainable AI

	5 Conclusions
	References

	Safe and Secured Telecom for Railway
	Analysis of Safety-Critical Communication Protocols for On-Premise SIL4 Cloud in Railways
	1 Introduction
	1.1 Motivation
	1.2 Purpose of Paper

	2 SIL4 Communication Requirements
	2.1 Safe Computing Platform
	2.2 Requirements

	3 Railway-Specific Safety-Critical Protocols
	4 Potential SIL4 Communication Protocols
	4.1 OPC UA
	4.2 DDS

	5 Safe Communication Architecture for Railway Systems
	6 Evaluation
	7 Conclusion
	References

	TASC: Transparent, Agnostic, Secure Channel for CBTC Under Failure or Cyberattack
	1 Introduction
	2 Related Work
	3 Overview of CBTC and Attack/Failure Model
	3.1 Train-to-Wayside Radio Network
	3.2 Attack and Failure Model
	3.3 Alternative Networks for CBTC Signaling

	4 Transparent, Agnostic, Secure Channel (TASC) System
	4.1 Resilience Against Jamming/Interference
	4.2 Resilience Against AP Failure

	5 Security Discussion of TASC
	6 Prototype for Concept Validation
	7 Conclusion
	References

	Author Index

