
Word Equations in the Context of String
Solving

Joel D. Day(B)

Loughborough University, Loughborough, UK

J.Day@lboro.ac.uk

Abstract. String solvers are tools for automatically reasoning about
words over some finite alphabet. They are commonly used to perform
analyses of string manipulating programs. A fundamental problem which
string solvers need to address is solving word equations, usually in combi-
nation with additional constraints involving e.g. string lengths or regular
languages. In this article, a survey of results on the topic of word equa-
tions is presented with an emphasis on recent results which are relevant
to the theoretical foundations of string solvers.

Keywords: Word equations · String constraints · String solving

1 Introduction

Describing one object as a combination others, whether expressed concretely
or abstractly, is one of the most fundamental things we do in mathematics.
Naturally, we can also do this for words w over some alphabet Σ. By introducing
a set X of variables, we can express w as the concatenation of smaller words,
some of which are not known explicitly. For example, if x, y ∈ X are variables
and a, b ∈ Σ, we can express that w is a word containing an occurrence of aba
(so consisting of an unknown word followed by aba followed by another unknown
word) by writing w as xabay.

Word equations arise when we have multiple ways of expressing the same
word in this way. For example, we might describe a word containing both ab and
ba via the word equation x1aby1

.= x2bay2. Formally, a word equation is a pair
(U, V) ∈ (X ∪ Σ)∗ which we usually write as U

.= V . Its solutions are substi-
tutions of the variables for words in Σ∗ which identify the two sides. Formally,
solutions are modelled by morphisms h : (X ∪ Σ)∗ → Σ∗ satisfying h(a) = a for
all a ∈ Σ and such that h(U) = h(V).

Perhaps unsurprisingly given their fundamental nature, many natural and
well-studied problems related to words can be expressed in terms of word equa-
tions. We have already seen how to express the pattern matching problem, namely
the property that a concrete word (aba) occurs as a factor of some larger word
w ∈ Σ∗ via the equation w

.= xabay. Expressing that a concrete word occurs
as a (scattered) subsequence of w can be done by adding further variables
z1, z2, . . . between each of the letters. In the case of aba, we get the equation
c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 13–32, 2022.
https://doi.org/10.1007/978-3-031-05578-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_2&domain=pdf
http://orcid.org/0000-0002-3660-7766
https://doi.org/10.1007/978-3-031-05578-2_2

14 J. D. Day

w
.= xaz1bz2ay. More generally, word equations of the form w

.= V where w ∈ Σ∗

and V ∈ (X ∪ Σ)∗ correspond exactly to the membership problem for pattern
languages (also called pattern matching with variables). For a constant k ∈ N,
the relation “x is a length-k scattered subsequence of w” where x is a variable
can also be expressed, meaning that the k-spectra (see, e.g. [67]) of words can
also be expressed as solution-sets to word equations. On the other hand, it fol-
lows from [41] that the property “x is a scattered subsequence of y” where both
x and y are variables and therefore not of bounded length cannot be expressed
via word equations.

The problems mentioned above have been well studied independently from
word equations and are substantial areas of research in their own right. Arguably
the most interesting and complex cases of word equations are when the vari-
ables occur in such a way that they form cyclic dependencies. For example, the
equation xy

.= yx for variables x and y, often referred to as the commutation
equation, is solved by a substitution if and only if x and y are substituted for rep-
etitions of the same word w [61]. The equations xyz = zux and xaby

.= ybax are
examples whose solution-sets’ descriptions are much more involved, and which
have strong connections to the Fibonacci, and Standard and Sturmian words
respectively [20,49].

The explicit study of word equations (equivalently equations in a free monoid
or semigroup) can be traced back as far as A. A. Markov in the 1940s, although
connections to Diophantine equations mean that in some sense, they have been
studied indirectly for much longer [32]. Originally it was hoped that the satisfi-
ability problem - whether or not a given word equation has a solution - might
provide an means of connecting Diophantine equations with the computations
of Turing machines in such a way as to allow for a proof that solving the for-
mer is undecidable and thus settling Hilbert’s famous 10th problem. However
this turned out not to be feasible with Makanin famously providing an algo-
rithm for the satisfiability problem for word equations in 1977 [64]. Since then,
several further algorithms have been presented by Plandowski and Rytter [76],
Plandowski [74] and Jeż [52]. The latter, based on the Recompression technique
resulted in a considerably simpler proof of correctness and has since been use to
improve the PSPACE complexity upper bound given by Plandowski’s algorithm
to non-deterministic linear space [53].

The positive result of Makanin became highly influential in combinatorial
group theory: in a series of results ultimately resolving Tarski’s Conjectures, it
was first adapted to work for equations in free groups by Makanin himself [63,65],
before being used by Razborov to provide a method for describing all solutions
to equations in free groups via so-called Makanin-Razborov diagrams [78]. More
recently, algorithms for solving word equations have been extended to work in
a range of algebraic structures such as hyperbolic groups [19,23] and partially
commutative groups [35].

There has also been much interest in the free monoid case (on which we
concentrate in the current paper) from several perspectives. Constructions exist
(see e.g. [55,61] for reducing the satisfiability of Boolean combinations of word
equations to the satisfiability of a single word equation. Consequently, Makanin’s

Word Equations in the Context of String Solving 15

result extends to the existential theory of a free semigroup or monoid. Further
results on logics involving words/concatenation can be found e.g. in Büchi and
Senger [14] where the notion of definability is considered, and Quine [77] and
Durnev [36] who show undecidability when quantifier alternations are allowed.
Further undecidability results considering logics involving words and additional
predicates (such as “is a scattered subsequence of” and “is abelian-equivalent
to”) can be found in [26,41]. The expressive power of word equations in defining
relations and languages via (projections of) their solution-sets is considered in
detail in [55] where some powerful tools are given for showing inexpressibility
based on the notion of a synchronising factorisation.

In the field of combinatorics on words, constant-free word equations (equa-
tions of the form U

.= V where U, V ∈ X∗) have been studied extensively. In
addition to solving specific equations or families of equations [21,43,46,70,80],
a major topic of ongoing research involves independent systems of word equa-
tions - systems such that removing any one of the equations leads to a strictly
larger set of solutions [20,42,48,56,71]. A connection between constant-free word
equations and the general case is shown in [81].

From an algorithms and complexity perspective, it is easily seen that the
satisfiability problem for word equations is NP-hard. Indeed, the result fol-
lows directly from NP-completeness of the membership problem for pattern lan-
guages [8]. On the other hand, it remains a long-standing open problem as to
what the true complexity of the problem is, and in particular whether or not it is
NP-complete. Plandowski and Rytter [76] showed that long solutions are highly
compressible, and consequently, even an exponential bound on the length of the
shortest solution, when one exists, would imply inclusion in NP. Nevertheless,
the best known bound remains double-exponential [52,73].

Open Problem 1 ([76]). Is the satisfiability problem for word equations con-
tained in NP?

2 String Solving

In recent years, a whole new community has formed with the goal of developing
automated reasoning tools capable of proving or disproving statements involv-
ing words called string solvers, motivated primarily by applications in formal
methods. Simply put, string solvers take as input a string constraint which can
be thought of as a (usually quantifier-free) formula comprising Boolean combi-
nations of atomic constraints involving:

– constants from Σ∗ for some finite alphabet Σ,
– variables whose potential values range over Σ∗,
– common relations and operations on words such as concatenation, equal-

ity, length-comparisons, regular language membership, and typical string-
manipulation functions such as Replace All() and Index Of(), string-
number conversion, etc.

16 J. D. Day

Their task is then to automatically determine the satisfiability of that formula,
so, whether or not values for the variables can be found such that the formula
becomes true. A comprehensive list of common relations and operations occur-
ring as string constraints can be found in [7]. A standardised language for speci-
fying string constraints in string solvers based on the Satisfiability Modulo Theo-
ries framework has also been implemented as part of the SMT-LIB format [2,11].
Most currently available string-solvers do not cater for the whole SMT-LIB stan-
dard, but focus rather on specific subsets to which their approaches or target
applications are best suited.

Growing interest in string solving is possibly due to a steady increase in
string-manipulating programs which are vulnerable to exploitation or attack
(e.g. due to being publicly accessible on the web) in combination with substan-
tial improvements in string solvers’ own performance when employed in static
analysis tasks aimed at improving security and reliability of software. There are
many ways string solvers can be deployed in the context of software analysis.
We list a few below (see e.g. [5,12,15,60]):

Path Feasibility. A common task in static analysis is to break down the possible
executions of a piece of software into finitely many cases (paths). The problem of
path feasibility involves working out which combinations of conditions on inter-
nal values result in paths which might actually occur in a real execution, and
conversely which combinations of conditions are contradictory and so don’t need
to be considered further. Path feasibility analyses are also particularly useful in
automated test-case generation.

Sanitisation and Validation. Cross-site scripting (XSS) and SQL injection
attacks have both regularly been listed on the OWASP list of Top 10 Web
Application Security Risks in recent years [1]. Although the two categories have
been merged into a single one: “injection” in the 2021 list, it remains in a promi-
nent position at #3. Such injection attacks involve tricking a system to execute
malicious code. In the case of SQL injection, it might be that textual input is
given which later forms part of an SQL database query constructed as a string.
Maliciously designed entries, when not properly sanitised, can then influence the
structure and meaning of the query, allowing the user to access or erase data.
In XSS attacks, a similar effect can be achieved by getting a user’s browser to
execute malicious code e.g. in a link. Errors in input sanitisation and valida-
tion are not uncommon and automated analysis of (parts of) software handling
externally generated data can help to reduce such errors [15].

Dynamically Generated Code. It is becoming increasingly common in pro-
gramming languages to be able to dynamically load code such as functions and
classes from string variables meaning that the executed code depends on the
values of those string variables at runtime. While extremely powerful, this is
also dangerous if the strings are not constructed safely and correctly. Again,
both static and dynamic analyses performed with the help of string solvers can
mitigate to some extent these risks.

Word Equations in the Context of String Solving 17

The are also many potential areas of application for string solvers beyond
software analysis and formal methods more generally, for example in database
theory [10,37,38] or as automated proof assistants for areas such as combina-
torics on words (see e.g. [47]).

Many string solving tools are now available employing a wide range of strate-
gies, including CVC5 [9], Z3Str4 [68], Norn [3], Z3-Trau [4], OSTRICH [17],
Sloth [45], Woorpje [24,28], CertiStr [54] and HAMPI [57]. Some, such as CVC5
and Z3str4 are designed to be more general, while others are developed with
more specific tasks in mind. Many benchmarks exist, and in addition to the
MOSCA (meeting on String Constraints and Applications) workshop [40], there
is also now a string track at the annual SMT competition. Several meta-tools
have been developed for comparing string solvers [58], automatically producing
or altering test cases and benchmarks (fuzzing) [13] and very recently also for
analysing large and often opaque sets of benchmarks [27].

Nevertheless, many challenges remain, of which one is obtaining a better
understanding of the theoretical foundations involving word equations in com-
bination with other combinations of constraints. When atomic constraints are
restricted to involve only concatenation and equality comparisons, string solving
can be reduced to solving word equations. Several other types of constraint, like
regular language membership and linear arithmetic involving string-lengths are
well understood in isolation and can be tackled in practice using highly opti-
mised tools. However a common feature of string solving applications is that
types of constraints often have to satisfied in combination.

It has been known since the 1990s that satisfiability of word equations with
regular language membership constraints on the variables is decidable [33,82]
(see also [61]). However, many other combinations quickly lead to undecidabil-
ity: for example in the presence of a Replace All() operator (modelled formally
as finite transducers) [60] or in the presence of functions which count the num-
bers of a letter occurring in a word [14,26]. Since concatenation, equality (and
thus word equations), regular language membership and linear (in)equalities over
lengths of variables are particularly prominent types of string constraints (which
additionally can in combination be used to model several other common con-
straints such as Index Of()), a particularly important open problem remains:

Open Problem 2. Is the satisfiability problem decidable for quantifier-free for-
mulas combining word equations with regular language membership and linear
(in)equalities over the lengths of variables?

Formally, the satisfiability problem for quantifier-free formulas is a natural
extension of the satisfiability problem for word equations: can we find substitu-
tions for the variables which make the formula true when evaluated according
to the natural semantics?

We call atomic constraints consisting of regular language membership regular
constraints. They have the form x ∈ L where x is a variable and L is a regular

18 J. D. Day

language given e.g. by an NFA or regular expression1. Similarly, we call atomic
constraints consisting of linear (in)equalities over lengths of variables length con-
straints. We use |x| to denote the length of a word x, including the case that
x is a variable and the length is then an unknown number. Length constraints
can be formalised e.g. as having the form c1|x1| + c2|x2| . . . ck|xk| ⊕ d1|x1| +
d2|x2| . . . dk|xk| where ⊕ ∈ {>,=}, and for 1 ≤ i ≤ k, ci, di ∈ Z and xi are vari-
ables. Using this terminology, and recalling that Boolean combinations of word
equations can be rewritten as a single equation, Open Problem 2 asks whether
the satisfiability problem for word equations with regular and length constraints
is decidable. An example of a string constraint involving word equations, reg-
ular constraints and length constraints is given below (x, y, z are variables and
a, b ∈ Σ.

(x .= yabz ∧ |y| > |z|) ∨ (x .= ybaz ∧ z ∈ a∗)

Both regular constraints and length constraints can be subsumed
by language-membership constraints involving visibly pushdown languages
(VPLs) [6]. VPLs generalise regular languages while retaining many of the desir-
able closure and algorithmic properties. Nevertheless, it is shown in [25] that
combining word equations with VPL membership constraints results in an unde-
cidable satisfiability problem.

Theorem 1 ([25]). For every recursively enumerable language L, there exists a
quantifier free formula f combining word equations and VPL membership con-
straints and a variable x occurring in f , such that

L = {w | x may be substituted by w as part of a satisfying assignment for f}.

It follows that the satisfiability problem for such formulas is undecidable.

Since VPLs share many properties with regular languages, VPL-membership
constraints can be viewed as only a minor generalisation of regular (and length)
constraints. This leads us to the following open problem, for which a negative
would also yield a negative answer to Open Problem 2.

Open Problem 3. Does there exist a recursively enumerable language L which
is not expressible as the set

{w | x may be substituted by w as part of a satisfying assignment for f}
for some quantifier free formula f combining word equations, regular constraints
and length constraints?

A careful application of Greibach’s theorem reveals that we cannot in general
decide whether a property of words expressed by solutions to a string constraint
1 Since it is easy to simulate the intersection of regular languages via conjunctions of

regular constraints, the satisfiability problem for formulas containing regular con-
straints is automatically PSPACE-hard. Therefore, we can convert between any rea-
sonable choices for specifying regular languages without affecting the computational
complexity.

Word Equations in the Context of String Solving 19

combining word equations, regular constraints, and length constraints can also
be expressed using a combination of word equations and regular constraints
alone.

Theorem 2 ([25]). The following problem is undecidable: given a quantifier
free formula f combining of word equations, regular constraints and length con-
straints, and a variable x occurring in f , does there exist a quantifier free formula
f ′ containing only word equations and regular constraints and a variable y in f ′

such that S1 = S2 where:

S1 = {w | x may be substituted by w as part of a satisfying assignment for f}
and

S2 = {w | x may be substituted by w as part of a satisfying assignment for f ′}?

A weaker version of Open Problem 2, where regular constraints are omitted,
is also a long standing open problem in the field of word equations.

Open Problem 4. Is the satisfiability problem decidable for quantifier-free for-
mulas combining word equations and linear (in)equalities over the lengths of
variables?

The difficulty of dealing with word equations in combination with length
constraints is highlighted in [62], where they show that the set {(|h(x)|, |h(y)|) |
h is a solution to xaby

.= ybax}, where |w| denotes the length of the word w, is
not definable in Presburger arithmetic.

3 A Closer Look at Solution-Sets

One of the most natural ways to try to improve our understanding of word
equations, and in particular to improve techniques for solving them in com-
bination with other constraints in practice, is to look closer at the structure
of their solution-sets. Indeed, if when we are given a string constraint consist-
ing, for example, of word equations, regular language memberships and length
(in)equalities, one could try to solve the overall constraint by first providing a
description of the set of solutions to the system of word equations without the
additional constraints, and subsequently use that description to reason whether
a solution exists satisfying the additional constraints. For example, given the
string constraint

xy
.= yx ∧ |y| > |x| ∧ x ∈ {ab}∗ ∧ y /∈ a{a, b}+

one could first notice that a pair of words x, y is a solution to the word equation
xy

.= yx if and only if they are both repetitions of the same word, or more
formally, if there exist w ∈ Σ∗ and p, q ∈ N0 such that x = wp and y = wq where
w0 is the empty word and wi+1 = wiw [61]. With such an explicit description
to hand, it is then not difficult to observe that since x ∈ {ab}+, x and y must
necessarily both be repetitions of w = ab. From y /∈ a{a, b}∗ we further conclude
that y is the empty word, and since this implies that |y| > |x| cannot be met,
that this string constraint is unsatisfiable.

20 J. D. Day

3.1 Parametric Solutions

The description of solutions x, y to the equation xy
.= yx given in terms of an

unknown word w and numbers p, q is called a parametric solution. Parametric
solutions are particularly useful because they are a very explicit description of
the solution-set. Following [20], they are defined formally as follows.

Definition 1. Let Δ,Γ be alphabets. We call elements of Δ word parameters
and elements of Γ numerical parameters. Parametric words are defined induc-
tively as follows.

– Each element of Δ is a parametric word,
– if δ is a parametric word and k ∈ Γ is a numerical parameter, then δk is a

parametric word,
– if δ1, δ2 are parametric words, then their concatenation δ1δ2 is also a para-

metric word.

Every assignment ϕ of words in Σ∗ to the word parameters and numbers from
N0 to the numerical parameters maps a parametric word to a unique concrete
word ϕ(δ) ∈ Σ∗ called the value.

Given a word equation E over n variables, a parametric solution for E is
an n-tuple of parametric words such that every assignment ϕ induces a solution.
Moreover, E is said to be parametrizable if the solution-set is exactly described
by finitely many parametric solutions.

The definition above is given in context of constant-free word equations. For
this reason, it does not include provision for constants occurring in parametric
solutions. However, it is very natural to extend Definition 1 to the more general
case by simply adding the axiom that each element of Σ∪{ε} is also a parametric
word, where ε denotes the empty word.

Unfortunately, although it was shown by Hmelevskii [44] that every constant-
free equation with at most three variables is parametrizable, the same does not
hold when a fourth variable is introduced. A more concise proof of the latter
fact is given by Czeizler in [20].

Theorem 3 (Czeizler [20], Hmelevskii [44]). Let x, y, z, v be variables. Then
the word equation xyz

.= zvx is not parametrizable.

Of course the negative parametrizability result also carries through to the
general case in which constants are also allowed. In fact, it follows from [49]
that the word equation xaby

.= ybax with only two variables x and y is not
parametrizable.

3.2 Graph Representations of Solution-Sets

A key question then, is how to represent solution-sets to word equations if not by
parametric words? One answer can be found in approaches for algorithmically
solving word equations which have been extended to produce descriptions of the
full solution-set.

Word Equations in the Context of String Solving 21

Decision procedures for solving word equations usually revolve around some
non-deterministic search for solutions, made necessary by the fact that the sat-
isfiability problem is NP-hard. This search can often be formalised in terms of
iteratively applying transformation rules (e.g. to a possibly extended representa-
tion of the equation, or a solution to it2) with the aim of eventually reaching some
trivial case signifying that a solution exists. Such an approach yields a (possibly
infinite) graph which, with the correct setup, provides a complete description
of the set of solutions by virtue of accounting for the search across all possibili-
ties. Guaranteeing that the graph is finite presents more of a challenge, although
there are now several different approaches which achieve this.

In an early example of this approach, Makanin’s algorithm for solving equa-
tions in a free group was used by Razborov in developing an algorithmic rep-
resentation of all solutions to systems of equations in a free group [78]. In [75],
Plandowski adapted his algorithm for solving word equations to produce a finite
graph representing all solutions, and more recently, the same was achieved in a
simpler manner using the Recompression technique of Jeż [52].

Diekert, Jeż and Plandowski generalised the Recompression approach to work
in the presence of both regular membership constraints and involution [34]. This
combination is significant because it allows for the extension of methods from
the free monoid to the free group setting. Shortly after, Ciobanu, Diekert and
Elder [18] provided a simpler representation in terms of EDT0L languages.

Theorem 4 ([18]). Solution-sets to word equations with regular membership
constraints and involution (and hence also equations in free groups) are EDT0L
languages. In particular, they are also indexed languages.

Indexed languages are a subset of the context-sensitive languages. EDT0L
(Extended Deterministic Table 0-Interaction Lindermayer) languages are lan-
guages defined by a specific variety of so-called L-systems, which generate words
by iterated applications of morphisms to some initial “seed” word. They are
strictly contained in the indexed languages and are incomparable to context-free
languages. Despite their verbose name, EDT0L languages are a natural class
with a simple intuition, corresponding to the case when the application of the
morphisms is constrained by some NFA-like control.

Definition 2. Let A be an alphabet and L ⊆ A∗. Then L is an EDT0L language
if there exists an alphabet C with A ⊆ C, a word w ∈ C∗ and a rational set R
of morphisms h : C∗ → C∗ such that L = {h(w) | h ∈ R}.

Given an equation U
.= V with variables x1, x2, . . . , xn, the construction

from [18] essentially equates the set of solutions

{(g(x1), g(x2), . . . , g(xn)) | g(U) = g(V)}
with the set {(h(c1), h(c2), . . . , h(cn)) | h ∈ R} for some rational set of
morphisms R and additional letters c1, c2, . . . , ck. The latter set is then eas-
ily encoded as an EDT0L language using a separator symbol # as the set
2 These two viewpoints are not mutually exclusive as a word equation can be thought

of as a compact representation of a solution.

22 J. D. Day

{h(c1#c2# . . . #cn) | h ∈ R}. The set R, when represented by the underlying
NFA, provides a graph representation of all solutions. This graph representation
facilitates algorithmic solutions to problems other than just the satisfiability
problem. In particular (in)finiteness can be determined by looking for cycles in
the NFA defining R.

Corollary 1 ([18]). It is decidable whether the solution-set to a (system of)
word equations with regular language membership constraints is finite.

Unfortunately, these graph representations are not as well suited to other
canonical decision problems. Indeed, negative results can be inferred from [36,
39], both of which provide proofs of the fact that deciding the truth of logical
sentences of the form

∀x∃y1, y2, . . . , yn. ϕ

where ϕ is a Boolean combination of word equations is undecidable. In particular,
we get the following.

Theorem 5 ([36,39]). It is undecidable whether or not, given a word equation
E containing a variable x (and possibly others), the set {h(x) | h is a solution
to E} is exactly Σ∗.

Moreover, we note the following negative result from [25].

Theorem 6 ([25]). It is undecidable, given a word equation E containing a
variable x (and possibly others), the set {h(x) | h is a solution to E} is a regular
language.

Consequently, we cannot expect that any reasonable (computable) represen-
tation of solution-sets to word equations is sufficiently descriptive as to allow for
inference of all interesting properties.

3.3 Nielsen Transformations

A disadvantage of the graph representations discussed in the previous section is
that, even in for those that are guaranteed to be finite, the edge relations are
complex (or, at least in the case of Recompression, highly non-deterministic)
meaning it is difficult to study their structure in detail. Quadratic word equa-
tions, in which each variable occurs at most twice, offer a much simpler means
of producing a finite graph describing all solutions via a rewriting process based
on a well-known type of morphism called Nielsen transformations.

The rewriting relation, which we denote ⇒NT , is combinatorially simple at
a local level. When applied iteratively to a given word equation E, it induces a
graph G⇒NT

E describing all solutions which in the general case is usually infinite,
but in the quadratic case is guaranteed to be finite. G⇒NT

E has as vertices word
equations (including E) and its edges are labelled with morphisms ψ : (X ∪
Σ)∗ → (X ∪ Σ)∗. Solutions to E are obtained by composing the morphisms

Word Equations in the Context of String Solving 23

occurring as edge-labels on walks3 in the graph starting at E and finishing at the
trivial equation ε

.= ε. The underlying idea comes from a basic fact concerning
semigroups called Levi’s lemma, stated as follows.

Lemma 1 (Levi’s Lemma). Let u, v, x, y ∈ Σ∗ be words such that uv = xy.
Then there exists w such that either:

– u = xw and wv = y, or
– x = uw and wy = v.

Levi’s lemma applies to word equations in the following way: given a word
equation xU

.= yV where x, y ∈ X ∪ Σ are the leftmost symbols on each side
of the equation and U, V ∈ (X ∪ Σ)∗ are the remaining parts, we have three
possibilities for a non-erasing solution4 h: either

– h(x) = h(y) and h(U) = h(V) (this corresponds to the case that w = ε in
Levi’s lemma), or

– h(x) = h(y)w and wh(U) = h(V) for some w ∈ Σ+

– h(x)w = h(y) and h(U) = wh(V) for some w ∈ Σ+.

In the first case, if x, y ∈ Σ with x = y, no solutions exist. If x = y ∈ Σ
then solutions to E are exactly solutions to U

.= V . Otherwise, solutions h to
E can be found by looking for solutions h′ to the equation U ′ .= V ′ obtained
by replacing x everywhere by y in U and V respectively if x is a variable (or
vice-versa if y is a variable).

In the second case, if x is not a variable, then no solutions exist for this
case. Otherwise, by introducing a new variable z (intended to account for w,
so that h(z) = w) we can find solutions h to E in terms of solutions h′ to the
equation zU ′ .= V ′ obtained by replacing all occurrences of x by yz in U and V
respectively. The third case is symmetrical to the second.

Thus, overall, solutions to E can be reduced to solutions to (at most) three
further equations derived by cancelling some symbols from the left and perform-
ing a replacement of the form x → yz or x → y. Notice that when performing a
replacement x → yz, we actually remove all occurrences of x from the equation,
and so we might as well re-use the variable x in place of z to get x → yx (and
similarly for y → xz we might as well use y in place of z to get y → xy). These
replacements can be performed via the application of morphisms from a set Ψ
defined as follows: for x ∈ X ∪Σ and y ∈ X, ψ(x,y), ψ̂(x,y) : (X ∪Σ)∗ → (X ∪Σ)∗

belong to Ψ such that:

ψ(x,y)(y) = xy ψ̂(x,y)(y) = x

ψ(x,y)(z) = z for z = y, ψ̂(x,y)(z) = z for z = y.

3 Paths in which both vertices and edges may be repeated.
4 Non-erasing solutions are solutions for which h(x) is not the empty word for any

variable x. The general case can be reduced to the non-erasing case by simply guess-
ing in advance which variables should be mapped to the empty word and removing
them from the word equation(s).

24 J. D. Day

The morphisms ψ(x,y) are called Nielsen transformations, hence the name of
this approach. We denote by ⇒NT the relation consisting of pairs (E1, E2) such
that E2 may be derived from E1 according to one of the three cases above.

Now suppose we have a quadratic equation E and consider E′ such that
E ⇒NT E′. Then the removal of the leftmost symbols means that |E| ≥ |E′|.
Similarly, the number of occurrences of each variable in E is at least as high as
in E′, and no new symbols are introduced. It follows that there are only finitely
many equations E′′ such that E ⇒∗

NT E′′ where ⇒∗
NT denotes the reflexive

transitive closure of ⇒NT .
Let G⇒NT

E be the graph whose vertices are equations E′′ reachable from E by
iteratively applying ⇒NT , and whose edges are given by ⇒NT , labelled with the
appropriate corresponding morphisms. Given a word equation E′ occurring as a
vertex in this graph, for each solution h′ to E′ there exists an edge in the graph
from E′ to a (not necessarily distinct) equation E′′ labelled with a morphism
ψ, such that h′ = h′′ ◦ ψ for some strictly shorter solution5 h′′ to E′′. For this
reason, all solutions to the original equation E can be obtained by composing
the morphisms occurring on a walk in the graph from the original equation to
the trivial equation ε

.= ε as mentioned previously. If the equation ε
.= ε is not

present in the graph, no solutions exist.
As an example, consider the equation E given by Xabaa

.= baaXa over the
variable X and constants a, b ∈ Σ. The graph G⇒NT

E (with labels) is shown in
Fig. 1.

Treating the graph as an NFA AE over the alphabet of morphisms Ψ whose
accepting state is ε

.= ε and whose initial state is E, we obtain a rational set
L(AE) of morphisms exactly describing the set of solutions to E. For example
one solution is given by h = ψ̂(a,X) ◦ ψ(b,X) ◦ ψ(a,X) ◦ ψ(a,X) ◦ ψ(b,X) (note that
the composition occurs in the opposite order from left to right to the “word”
from Ψ∗ accepted by A), which is the substitution h given by h(X) = baaba,
h(a) = a and h(b) = b.

h(X) = ψ̂(a,X) ◦ ψ(b,X) ◦ ψ(a,X) ◦ ψ(a,X) ◦ ψ(b,X)(X)

= ψ̂(a,X) ◦ ψ(b,X) ◦ ψ(a,X) ◦ ψ(a,X)(bX)

= ψ̂(a,X) ◦ ψ(b,X) ◦ ψ(a,X)(baX)

= ψ̂(a,X) ◦ ψ(b,X)(baaX)

= ψ̂(a,X)(baabX)
= baaba

The simplicity of this approach based on Nielsen transformations and Levi’s
lemma, along with the fact that it is easily adapted for use with regular language
membership constraints and length constraints means it is a good candidate for
practical implementations. As such it has been used in the string solving tool
Woorpje [28], and other string solvers make use of similar ideas. It also has
5 Where the length of the solution is measured in terms of the word obtained by

applying it to one side of the equation.

Word Equations in the Context of String Solving 25

Fig. 1. The graph G⇒NT
E in the case that E is the equation Xabaa

.
= baaXa. Trivially

unsolvable equations in the graph are crossed out and their ingoing edge labels omitted.

several advantages from a theoretical point of view: the structural properties of
the graph G⇒NT

E provide information about the solution-set of E. For example
if it is a directed acyclic graph (DAG), then it is straightforward to show that
E is parametrizable. Actually, a slightly stronger statement, namely that G⇒NT

E

does not have two distinct cycles sharing a vertex, is sufficient to guarantee that
E is parametrizable [72]. Similar restrictions on the structure of G⇒NT

E have
been used to identify cases where satisfiability remains decidable even when
length constraints are added [62]. Several case where the graph is guaranteed to
be finite even when the underlying equation E is not quadratic are considered
in [69]. Moreover the simplicity of the rewriting transformations make the graphs
obtained via Nielsen transformations much more accessible for more detailed
combinatorial analyses such as the one given in [29].

3.4 Restricted Word Equations

In the absence of positive answers to Open Problems 1, 2 and 4, it is natural
to consider them also in the context of syntactically restricted subclasses of
word equations. For simplicity, we concentrate in this section on single word
equations. Some care is needed when generalising to Boolean combinations: while
in general it is no restriction to do so due to the constructions e.g. in [55], these
constructions are not guaranteed to respect the syntactic restrictions and so
cannot be used directly to generalise the results in this section. However, in most
cases equivalent results hold at least for systems (conjunctions) of equations.

Solution-sets to word equations containing only one variable have a particu-
larly restricted form and are well understood:

Theorem 7 ([59,71]). Let x be a variable, and let U
.= V be a word equation

such that U, V ∈ {x} ∪ Σ∗. Then one of the following holds:

26 J. D. Day

1. The set of solutions for U
.= V is finite and has cardinality at most three, or

2. There exist words u, v ∈ Σ∗ such that uv is primitive6 the set of solutions for
U

.= V has the form {h : ({x} ∪ Σ)∗ → Σ∗ | h(x) ∈ (uv)∗u}.
Corollary 2. Word equations with exactly one variable are parametrizable.
Moreover, the satisfiability problem for word equations with one variable and
with length constraints and regular constraints is decidable.

The satisfiability problem for word equations is solvable in deterministic lin-
ear time [51]. Similarly, word equations with two variables are also solvable in
polynomial time [16,22,49]. However, we have already seen that solution-sets to
word equations with two variables are not necessarily parametrizable, and Open
Problems 2 and 4 remain open in this case.

Further cases can be derived from restricted classes of string constraints.
The notions of solved form [39], acyclic [5] and straight-line [60] constraints
are all syntactic restrictions designed such that cyclic dependencies between
the variables are avoided. As such, the solution-sets to constraints adhering to
these definitions are generally parametrizable, and satisfiability for constraints
involving word equations, length constraints and regular constraints (and even
Replace All() in the case of the straight-line fragment) become decidable.

We have already mentioned in the previous section that quadratic word equa-
tions - equations which contain each variable at most twice (although the number
of variables is unconstrained) - possess the desirable property that the simple
Nielsen transformation algorithm for producing a graph representation of all
solutions is guaranteed to terminate. Nevertheless, Open Problems 1, 2 and 4
all remain open even in the quadratic case. It was shown in [79] that the sat-
isfiability problem remains NP-hard in the quadratic case. On the other hand,
word equations in which variables occur at most once are trivially parametriz-
able, and it is easily seen that the satisfiability problem remains decidable in
the presence of various additional constraints, including length constraints and
regular constraints.

In [66], the class of regular word equations was proposed as a natural sub-
class of the quadratic word equations. The initial idea was to consider classes
of equations U

.= V for which the satisfiability problem remains NP-hard, even
when the two sides U and V constitute patterns for which the membership prob-
lem can be solved in polynomial time. Regular word equations derive their name
from regular patterns [50] in which each variable occurs at most once. Conse-
quently, each variable may occur twice overall, but not twice on the same side
of the equation.

Definition 3. A word equation U
.= V is regular if each variable occurs at most

once in U and at most once in V .

Surprisingly, even severely restricted subclasses of regular word equations
have an NP-hard satisfiability problem. The class of regular-ordered word equa-
tions (ROWEs) is the class of regular word equations for which the variables
6 A word is primitive if it cannot be written as the repetition of a strictly shorter

word.

Word Equations in the Context of String Solving 27

occur in the same order from left to right on both sides of the equation (some
variables may still occur on only one side). So, for example, the equation
x1ax2bx3

.= x1babax3 is regular-ordered, but x1ax2bx3
.= x3babax1 is not.

Theorem 8 ([30]). The satisfiability problem for ROWEs is NP-complete.

Moreover, it was shown in [62] that the satisfiability problem for ROWEs
with length constraints is decidable, extending a weaker result from [26].

In [31], Theorem 8 was extended slightly to cover regular-reversed word equa-
tions (RRWEs): equations U

.= V in which the order of variables in V is exactly
the reverse of the order of the variables in U . A much more comprehensive
result is given in [29], which describes in detail the structure of the graphs
G⇒NT

E obtained as the result of the Nielsen transformation algorithm described
in Sect. 3.3 in the case of all regular word equations. A consequence of this
description is that the minimal path between any two vertices (when it exists)
has length bounded by a polynomial in the length of the original equation.

Theorem 9 ([29]). Let E be a regular word equation. Let v1, v2 be vertices in
the graph G⇒NT

E such that there exists a path from v1 to v2. Then the shortest
such path has length at most O(|E|12).

Consequently, in order to (non-deterministically) check whether a solution
exists to a regular word equation E, it suffices to guess the equations occurring
along the path in G⇒NT

E from E to ε
.= ε. Each equation on that path will be

no larger than E, and it is easily verifiable in polynomial time that there is
indeed an edge between each successive pair of equations. Thus, it follows that
satisfiability for regular word equations is in NP. Combined with the hardness
result from [30], we get the following.

Corollary 3 ([29,30]). The Satisfiability problem for regular word equations is
NP-complete.

Of course one of the most natural open problems remains whether the tech-
niques of [29] can be extended to work for quadratic word equations more gen-
erally.

Open Problem 5. Does Theorem 9 also hold for all quadratic word equations?

Moreover, the detailed analysis in [29] would be a good basis from which to
try to resolve Open Problems 4 and 2 in the sub-case of regular word equations.
In particular, several structures in the graphs G⇒NT

E are described which might
provide new insights into how complex the set of lengths of solutions to (regular)
word equations can be.

Open Problem 6. What is the decidability status for the satisfiability problem
for regular word equations with length constraints? What about for regular word
equations with length constraints and regular constraints?

28 J. D. Day

4 Conclusions

The study of word equations has yielded many significant and influential results
over the past half-century, and is of interest in a variety of areas, including
logic, formal languages, combinatorics on words, and combinatorial group theory.
More recently, there has been substantial interest in the topic from the within
the formal methods community, specifically in relation to string solvers, which
aim to solve problems involving words which often incorporate word equations
alongside other constraints such as regular language membership and length-
comparisons. The two fields are mutually beneficial: theoretical results on word
equations and related topics can provide insights and ideas for more efficient,
powerful and ultimately practical algorithms implemented in string solvers while
on the other hand, a better understanding of the problems that string solvers
must tackle can reveal new open problems and directions to be explored in the
theory. Recent results focusing on the structure and properties of solution-sets
for restricted classes of word equations provide a basis from which we can hope
to make progress on long standing open problems which remain central to both
the theory and practice.

References

1. OWASP top ten web application security risks. https://owasp.org/www-project-
top-ten/. Accessed 15 Mar 2022

2. SMT-LIB standard for unicode strings. https://smtlib.cs.uiowa.edu/theories-
UnicodeStrings.shtml. Accessed 15 Mar 2022

3. Abdulla, P.A., et al.: Norn: an SMT solver for string constraints. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462–469. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 29

4. Abdulla, P.A., et al.: Efficient handling of string-number conversion. In: Proceed-
ings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 943–957 (2020)

5. Abdulla, P.A., et al.: String constraints for verification. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 150–166. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 10

6. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the
36th ACM Symposium on Theory of Computing (STOC), STOC 2004, pp. 202–
211 (2004)

7. Amadini, R.: A survey on string constraint solving. ACM Comput. Surv. (CSUR)
55(1), 1–38 (2021)

8. Angluin, D.: Finding patterns common to a set of strings. In: Proceedings of the
Eleventh Annual ACM Symposium on Theory of Computing, pp. 130–141 (1979)

9. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: Fisman,
D., Rosu, G. (eds) TACAS 2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-99524-9 24

10. Barceló, P., Muñoz, P.: Graph logics with rational relations: the role of word com-
binatorics. ACM Trans. Comput. Logic (TOCL) 18(2), 1–41 (2017)

11. Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-LIB standard: Version 2.0. In:
Proceedings of the 8th International Workshop on Satisfiability Modulo Theories,
Edinburgh, England, vol. 13, p. 14 (2010)

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
https://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-030-99524-9_24

Word Equations in the Context of String Solving 29

12. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00768-2 27

13. Blotsky, D., Mora, F., Berzish, M., Zheng, Y., Kabir, I., Ganesh, V.: StringFuzz:
a fuzzer for string solvers. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018.
LNCS, vol. 10982, pp. 45–51. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96142-2 6

14. Büchi, J.R., Senger, S.: Definability in the existential theory of concatenation and
undecidable extensions of this theory. In: Mac Lane, S., Siefkes, D. (eds.) The
Collected Works of J. Richard Büchi, pp. 671–683. Springer, New York (1990).
https://doi.org/10.1007/978-1-4613-8928-6 37

15. Bultan, T., Yu, F., Alkhalaf, M., Aydin, A.: String Analysis for Software Verifica-
tion and Security, vol. 10. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-68670-7

16. Charatonik, W., Pacholski, L.: Word equations with two variables. In: Abdulrab,
H., Pécuchet, J.-P. (eds.) IWWERT 1991. LNCS, vol. 677, pp. 43–56. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-56730-5 30

17. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for
path feasibility of string-manipulating programs with complex operations. Proc.
ACM Program. Lang. 3(POPL), 1–30 (2019)

18. Ciobanu, L., Diekert, V., Elder, M.: Solution sets for equations over free groups
are EDT0L languages. Internat. J. Algebra Comput. 26(05), 843–886 (2016)

19. Ciobanu, L., Elder, M.: Solutions sets to systems of equations in hyperbolic groups
are EDT0L in PSPACE. arXiv preprint arXiv:1902.07349 (2019)

20. Czeizler, E.: The non-parametrizability of the word equation xyz = zvx: a short
proof. Theoret. Comput. Sci. 345(2–3), 296–303 (2005)

21. Czeizler, E., Holub, Š, Karhumäki, J., Laine, M.: Intricacies of simple word equa-
tions: an example. Int. J. Found. Comput. Sci. 18(06), 1167–1175 (2007)

22. Da̧browski, R., Plandowski, W.: Solving two-variable word equations. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.
408–419. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-
8 36

23. Dahmani, F., Guirardel, V.: Foliations for solving equations in groups: free, virtu-
ally free, and hyperbolic groups. J. Topol. 3(2), 343–404 (2010)

24. Day, J.D., et al.: On solving word equations using SAT. In: Filiot, E., Jungers, R.,
Potapov, I. (eds.) RP 2019. LNCS, vol. 11674, pp. 93–106. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-30806-3 8

25. Day, J.D., Ganesh, V., Grewal, N., Manea, F.: Formal languages via theories over
strings: What’s decidable? Unpublished manuscript

26. Day, J.D., Ganesh, V., He, P., Manea, F., Nowotka, D.: The satisfiability of word
equations: decidable and undecidable theories. In: Potapov, I., Reynier, P.-A. (eds.)
RP 2018. LNCS, vol. 11123, pp. 15–29. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-00250-3 2

27. Day, J.D., Kröger, A., Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.:
BASC: benchmark analysis for string constraints. Unpublished manuscript

28. Day, J.D., Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: Rule-based
word equation solving. In: Proceedings of the 8th International Conference on
Formal Methods in Software Engineering, pp. 87–97 (2020)

29. Day, J.D., Manea, F.: On the structure of solution-sets to regular word equations.
In: Theory of Computing Systems, pp. 1–78 (2021)

https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1007/978-1-4613-8928-6_37
https://doi.org/10.1007/978-3-319-68670-7
https://doi.org/10.1007/978-3-319-68670-7
https://doi.org/10.1007/3-540-56730-5_30
http://arxiv.org/abs/1902.07349
https://doi.org/10.1007/978-3-540-27836-8_36
https://doi.org/10.1007/978-3-540-27836-8_36
https://doi.org/10.1007/978-3-030-30806-3_8
https://doi.org/10.1007/978-3-030-00250-3_2
https://doi.org/10.1007/978-3-030-00250-3_2

30 J. D. Day

30. Day, J.D., Manea, F., Nowotka, D.: The hardness of solving simple word equations.
In: 42nd International Symposium on Mathematical Foundations of Computer Sci-
ence (MFCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

31. Day, J.D., Manea, F., Nowotka, D.: Upper bounds on the length of minimal solu-
tions to certain quadratic word equations. In: 44th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2019)

32. Diekert, V.: More than 1700 years of word equations. In: Maletti, A. (ed.) CAI 2015.
LNCS, vol. 9270, pp. 22–28. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-23021-4 2

33. Diekert, V., Gutierrez, C., Hagenah, C.: The existential theory of equations with
rational constraints in free groups is PSPACE-complete. Inf. Comput. 202(2), 105–
140 (2005)

34. Diekert, V., Jeż, A., Plandowski, W.: Finding all solutions of equations in free
groups and monoids with involution. Inf. Comput. 251, 263–286 (2016)

35. Diekert, V., Muscholl, A.: Solvability of equations in free partially commutative
groups is decidable. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP
2001. LNCS, vol. 2076, pp. 543–554. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-48224-5 45

36. Durnev, V.G.: Undecidability of the positive ∀∃3-theory of a free semigroup. Sib.
Math. J. 36(5), 917–929 (1995)

37. Freydenberger, D.D.: A logic for document spanners. Theory Comput. Syst. 63(7),
1679–1754 (2019)

38. Freydenberger, D.D., Peterfreund, L.: The theory of concatenation over finite mod-
els. In: 48th International Colloquium on Automata, Languages, and Programming
(ICALP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

39. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with length
constraints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012.
LNCS, vol. 7857, pp. 209–226. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39611-3 21

40. Hague, M.: Strings at MOSCA. ACM SIGLOG News 6(4), 4–22 (2019)
41. Halfon, S., Schnoebelen, P., Zetzsche, G.: Decidability, complexity, and expres-

siveness of first-order logic over the subword ordering. In: 2017 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–12. IEEE
(2017)

42. Harju, T., Nowotka, D.: On the independence of equations in three variables. The-
oret. Comput. Sci. 307(1), 139–172 (2003)

43. Harju, T., Nowotka, D.: On the equation xk = zk1
1 zk2

2 · · · zkn
n in a free semigroup.

Theoret. Comput. Sci. 330(1), 117–121 (2005)
44. Hmelevskii, J.I.: Equations in free semigroups, volume 107 of Am. Math. Soc.

Transl. Proc. Steklov and Insti. Mat (1976)
45. Holik, L., Janku, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with

concatenation and transducers solved efficiently. In: Proceedings of the ACM on
Programming Languages, vol. 2, pp. 1–32. ACM Digital Library (2018)

46. Holub, Š, Kortelainen, J.: On systems of word equations with simple loop sets.
Theoret. Comput. Sci. 380(3), 363–372 (2007)

47. Holub, Š., Starosta, Š.: Formalization of basic combinatorics on words. In: 12th
International Conference on Interactive Theorem Proving (ITP 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2021)

48. Holub, Š, Žemlička, J.: Algebraic properties of word equations. J. Algebra 434,
283–301 (2015)

https://doi.org/10.1007/978-3-319-23021-4_2
https://doi.org/10.1007/978-3-319-23021-4_2
https://doi.org/10.1007/3-540-48224-5_45
https://doi.org/10.1007/3-540-48224-5_45
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/978-3-642-39611-3_21

Word Equations in the Context of String Solving 31

49. Ilie, L., Plandowski, W.: Two-variable word equations. RAIRO-Theoret. Inform.
Appl. 34(6), 467–501 (2000)

50. Jain, S., Ong, Y.S., Stephan, F.: Regular patterns, regular languages and context-
free languages. Inf. Process. Lett. 110(24), 1114–1119 (2010)

51. Jeż, A.: One-variable word equations in linear time. Algorithmica 74(1), 1–48
(2016)

52. Jeż, A.: Recompression: a simple and powerful technique for word equations. J.
ACM (JACM) 63(1), 1–51 (2016)

53. Jeż, A.: Word equations in non-deterministic linear space. J. Comput. Syst. Sci.
123, 122–142 (2022)

54. Kan, S., Lin, A.W., Rümmer, P., Schrader, M.: CertiStr: a certified string solver.
In: Proceedings of the 11th ACM SIGPLAN International Conference on Certified
Programs and Proofs, pp. 210–224 (2022)

55. Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and
relations by word equations. J. ACM (JACM) 47(3), 483–505 (2000)

56. Karhumäki, J., Saarela, A.: On maximal chains of systems of word equations. Proc.
Steklov Inst. Math. 274(1), 116–123 (2011)

57. Kiezun, A., Ganesh, V., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI:
a solver for word equations over strings, regular expressions, and context-free gram-
mars. ACM Trans. Softw. Eng. Methodol. (TOSEM) 21(4), 1–28 (2013)

58. Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: ZaligVinder: a generic test
framework for string solvers. J. Softw. Evol. Process, e2400 (2021)

59. Laine, M., Plandowski, W.: Word equations with one unknown. Int. J. Found.
Comput. Sci. 22(02), 345–375 (2011)

60. Lin, A.W., Barceló, P.: String solving with word equations and transducers:
towards a logic for analysing mutation XSS. In: Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 123–136 (2016)

61. Lothaire, M.: Algebraic Combinatorics on Words, vol. 90. Cambridge University
Press, Cambridge (2002)

62. Majumdar, R., Lin, A.W.: Quadratic word equations with length constraints,
counter systems, and Presburger arithmetic with divisibility. Log. Meth. Comput.
Sci. 17 (2021)

63. Makanin, G.S.: Decidability of the universal and positive theories of a free group.
Math. USSR-Izvestiya 25(1), 75 (1985)

64. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Matem-
aticheskii Sbornik 145(2), 147–236 (1977)

65. Makanin, G.S.: Equations in a free group. Math. USSR-Izvestiya 21(3), 483 (1983)
66. Manea, F., Nowotka, D., Schmid, M.L.: On the complexity of solving restricted

word equations. Int. J. Found. Comput. Sci. 29(05), 893–909 (2018)
67. Maňuch, J.: Characterization of a word by its subwords. In: Developments in Lan-

guage Theory: Foundations, Applications, and Perspectives, pp. 210–219. World
Scientific (2000)

68. Mora, F., Berzish, M., Kulczynski, M., Nowotka, D., Ganesh, V.: Z3str4: a multi-
armed string solver. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021.
LNCS, vol. 13047, pp. 389–406. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90870-6 21

69. Nepeivoda, A.: Program specialization as a tool for solving word equations. In:
Electronic Proceedings in Theoretical Computer Science, EPTCS, pp. 42–72 (2021)

70. Nowotka, D., Saarela, A.: One-variable word equations and three-variable constant-
free word equations. Int. J. Found. Comput. Sci. 29(05), 935–950 (2018)

https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1007/978-3-030-90870-6_21

32 J. D. Day

71. Nowotka, D., Saarela, A.: An optimal bound on the solution sets of one-variable
word equations and its consequences. SIAM J. Comput. 51(1), 1–18 (2022)

72. Petre, E.: An elementary proof for the non-parametrizability of the equation
xyz=zvx. In: Fiala, J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004. LNCS, vol.
3153, pp. 807–817. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-28629-5 63

73. Plandowski, W.: Satisfiability of word equations with constants is in NEXPTIME.
In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Com-
puting, pp. 721–725 (1999)

74. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J.
ACM (JACM) 51(3), 483–496 (2004)

75. Plandowski, W.: An efficient algorithm for solving word equations. In: Proceedings
of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, pp. 467–
476 (2006)

76. Plandowski, W., Rytter, W.: Application of Lempel-Ziv encodings to the solution
of word equations. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 731–742. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055097

77. Quine, W.V.: Concatenation as a basis for arithmetic. J. Symbolic Logic 11(4),
105–114 (1946)

78. Razborov, A.A.: On systems of equations in free groups. In: Combinatorial and
Geometric Group Theory, pp. 269–283 (1993)

79. Robson, J.M., Diekert, V.: On quadratic word equations. In: Meinel, C., Tison, S.
(eds.) STACS 1999. LNCS, vol. 1563, pp. 217–226. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-49116-3 20

80. Saarela, A.: Word equations with kth powers of variables. J. Comb. Theory Ser.
A. 165, 15–31 (2019)

81. Saarela, A.: Hardness results for constant-free pattern languages and word equa-
tions. In: 47th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

82. Schulz, K.U.: Makanin’s algorithm for word equations-two improvements and a
generalization. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572, pp. 85–150.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55124-7 4

https://doi.org/10.1007/978-3-540-28629-5_63
https://doi.org/10.1007/978-3-540-28629-5_63
https://doi.org/10.1007/BFb0055097
https://doi.org/10.1007/BFb0055097
https://doi.org/10.1007/3-540-49116-3_20
https://doi.org/10.1007/3-540-55124-7_4

	Word Equations in the Context of String Solving
	1 Introduction
	2 String Solving
	3 A Closer Look at Solution-Sets
	3.1 Parametric Solutions
	3.2 Graph Representations of Solution-Sets
	3.3 Nielsen Transformations
	3.4 Restricted Word Equations

	4 Conclusions
	References

