
Visit-Bounded Stack Automata

Jozef Jirásek(B) and Ian McQuillan

Department of Computer Science, University of Saskatchewan,
Saskatoon, SK S7N 5A9, Canada

jirasek.jozef@usask.ca, mcquillan@cs.usask.ca

Abstract. An automaton is k-visit-bounded if during any computation
its work tape head visits each tape cell at most k times. In this paper
we consider stack automata which are k-visit-bounded for some inte-
ger k. This restriction resets the visits when popping (unlike similarly
defined Turing machine restrictions) which we show allows the model
to accept a proper superset of context-free languages and also a proper
superset of languages of visit-bounded Turing machines. We study two
variants of visit-bounded stack automata: one where only instructions
that move the stack head downwards increase the number of visits of the
destination cell, and another where any transition increases the number
of visits. We prove that the two types of automata recognize the same
languages. We then show that all languages recognized by visit-bounded
stack automata are effectively semilinear, and hence are letter-equivalent
to regular languages, which can be used to show other properties.

Keywords: Stack automata · Visit-bounded automata · Semilinear
languages

1 Introduction

When introducing a machine model or a grammar system, one of the most
useful properties is that of semilinearity. The idea of a language being semilinear
is defined formally in Sect. 2, but equivalently, a language is semilinear if and
only if it has the same Parikh image as some regular language [6]. In particular,
when this property is effective for a machine model M, there is a procedure
to construct a letter-equivalent finite automaton from any such machine. It is
well-known due to Parikh that the context-free languages have this property [12].
When this property is effective along with effective closure under homomorphism,
inverse homomorphism, and intersection with regular languages (the full trio
properties), it immediately implies several useful properties.

1. It provides a procedure to decide emptiness, finiteness, and membership [8].
2. The class can be augmented by reversal-bounded counters and the result-

ing class is still semilinear [5]—more generally, the smallest full trio (or even
full AFL) containing the languages accepted by M that is also closed under
intersection with one-way nondeterministic reversal-bounded multicounter
machines [8] is also semilinear. The resulting family has the positive decidable
properties of (1).

c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 189–200, 2022.
https://doi.org/10.1007/978-3-031-05578-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_15&domain=pdf
https://doi.org/10.1007/978-3-031-05578-2_15

190 J. Jirásek and I. McQuillan

3. All bounded languages accepted by M are so-called bounded semilinear lan-
guages [9], and they can all be accepted by a deterministic machine model,
one-way deterministic reversal-bounded multicounter machines [9], where we
can decide containment and equivalence of two machines.

4. Properties related to counting functions and slenderness (having at most k
strings of each length) can be decided [10].

It is also one of the key properties of a class of grammars being mildly context-
sensitive [11], which was developed to encompass the properties that are impor-
tant for computational linguistics.

Stack automata are a generalization of pushdown automata with the ability
to push and pop at the top of the stack, and an added ability to read the contents
of the stack in a two-way read-only fashion [2]. They are quite powerful however
and can accept non-semilinear languages [1,3]. Checking stack automata are
stack automata that cannot pop, and cannot push after reading from the stack.
Here, we consider a restriction on stack automata. Given a subset E of the stack
instructions (push, pop, stay, move left, or right), a machine is k-visitE-bounded
if, during any computation, its stack head visits each tape cell while performing
an instruction of E at most k times; and it is visitE-bounded if it is k-visitE-
bounded for some k. We omit E if it contains all instructions.

Importantly in this definition, when a cell is popped, the count towards this
bound disappears with it, and any new symbols pushed start with a count of
zero. This makes the definition in some ways more general than had we defined
Turing machines with a visit-bounded worktape. This type of model was studied
by Greibach [4], who studied one-way input with a single Turing machine work
tape which it can edit (precisely, Greibach defines the machines to be preloaded
with a string from a language family such as the regular languages—but as we
are restricting our study to regular languages, this preloading does not affect the
capacity). Greibach showed that the languages accepted by finite-visit Turing
machines are a semilinear subset of the checking stack languages.

Here we show that a stack language is visit-bounded if and only if it is visitE-
bounded where E only contains an instruction to move left. We then show that
the family of languages accepted by visit-bounded stack automata only contain
semilinear languages, in contrast to stack automata generally. Furthermore, they
form a language family properly between the context-free and stack languages.

Lastly, we show that the class of languages of Turing machines with a finite-
visit (or finite-crossing) restriction (and a one-way input tape) is properly con-
tained in the class of languages of finite-visit stack automata (as the former does
not contain all context-free languages), demonstrating the power of our model
while still preserving semilinearity. This makes the family useful towards showing
that other families are semilinear.

2 Preliminaries

We refer to [6,7] for an introduction to automata and formal language theory.
An alphabet Σ is a finite set of symbols. A string over Σ is a finite sequence of

Visit-Bounded Stack Automata 191

symbols from Σ. The set of all strings over Σ, including the empty string λ, is
denoted by Σ∗. A language is a subset of Σ∗.

Let w be a string over Σ = {a1, a2, . . . , an}. The length of w, denoted by
|w|, is the number of characters in w, with |λ| = 0. For a ∈ Σ, the number of
occurrences of the character a in the string w is denoted by |w|a. The Parikh
image of a string w, denoted Ψ(w), is the vector (|w|a1 , |w|a2 , . . . , |w|an

). We
note that two strings have the same Parikh image if one is a permutation of the
other. For a language L ⊆ Σ∗, let Ψ(L) = {Ψ(w) | w ∈ L}. Two languages L1

and L2 are letter-equivalent if Ψ(L1) = Ψ(L2). Equivalently, every string in L1

is a permutation of some string in L2, and vice versa.
A subset Q of N

m (m-tuples) is a linear set if there exist �v0, �v1, . . . , �vr ∈ N
m

such that Q = {�v0+i1 �v1+· · ·+ir �vr | i1, . . . , ir ∈ N}. We call �v0 the constant and
�v1, . . . , �vr the periods. A finite union of linear sets is a semilinear set. A language
L ⊆ Σ∗ is semilinear if Ψ(L) is a semilinear set. It is known that a language L
is semilinear if and only if there exists a regular language L′ with Ψ(L) = Ψ(L′)
[6]. For a family of languages accepted by a class of machines M, we say that the
family is effectively semilinear if there is an algorithm to always determine the
constant and the periods for each linear set (or equivalently the letter-equivalent
finite automaton). The following is a classical result in automata theory.

Theorem 1 (Parikh’s Theorem [12]). Let L be a context-free language. Then
Ψ(L) is a semilinear set.

Let NFA be the class of nondeterministic finite automata and NPDA be the
class of nondeterministic pushdown automata. Given a class of machines M, let
L(M) be the family of languages accepted by M.

2.1 Stack Automata

A nondeterministic one-way stack automaton is a 6-tuple M = (Q,Σ, Γ, δ, q0, F),
where:

– Q is the finite set of states,
– Σ and Γ are the input and work tape alphabets;
– Let I = {S, L, R, push(x), pop | x ∈ Γ} be the instruction set, then:
– δ ⊆ Q × (Σ ∪ {λ}) × (Γ ∪ {�}) × Q × I is the transition relation,
– q0 ∈ Q is the initial state, and
– F ⊆ Q is the set of final states.

The special symbol � denotes the left end of the work tape, which is identified
with the bottom of the stack.

We will define the contents of the stack slightly differently (but equivalently)
from previous definitions in order to better capture the new restrictions. The
work tape shall be represented as a series of pairs (x, i), denoting individual
tape cells, where x ∈ Γ ∪ {�} is the symbol written in this cell, and i ∈ N is the
number of times the automaton has visited this cell. Note that the transition
function of the automaton only has access to the symbols written on the tape,
and the automaton can not inspect the visit counters of the cells.

192 J. Jirásek and I. McQuillan

A configuration of the automaton M is a triple (q, w, γ), where:

– q ∈ Q is the current state,
– w ∈ Σ∗ is the input that is still to be read,
– γ ∈ ({�}× N)(Γ × N)∗ �

(Γ × N)∗ is the current content of the work tape. The
special symbol

�

denotes the position of the tape head, which is scanning the
cell immediately preceding this symbol.

Now let E ⊆ {S, L, R, push, pop} be a set of expensive instructions. These
are the instructions that are counted as visits to the tape cell. The automaton
performs all instructions on the work tape as usual for stack automata. When
an expensive instruction is performed, the number of visits of the tape cell under
the head after the instruction is completed is increased by one.

We define the move relation � between configurations of M using a set of
expensive instructions E as follows: For ι ∈ {S, L, R, push, pop}, let the cost of ι
be c(ι) = 1 if ι ∈ E, and c(ι) = 0 if ι /∈ E. Then:

– (p, aw, α(x, i)

�

β) � (q, w, α(x, i + c(S))

�

β)
if (p, a, x, q, S) ∈ δ,

– (p, aw, α(x, i)(y, j)

�

β) � (q, w, α(x, i + c(L))

�

(y, j)β)
if (p, a, x, q, L) ∈ δ,

– (p, aw, α(x, i)

�

(y, j)β) � (q, w, α(x, i)(y, j + c(R))

�

β)
if (p, a, x, q, R) ∈ δ,

– (p, aw, α(x, i)

�

) � (q, w, α(x, i)(y, c(push))

�

)
if (p, a, x, q, push(y)) ∈ δ, and

– (p, aw, α(x, i)(y, j)
�

) � (q, w, α(x, i + c(pop))
�

)
if (p, a, y, q, pop) ∈ δ;

where p, q ∈ Q, a ∈ Σ ∪ {λ}, w ∈ Σ∗, x ∈ Γ ∪ {�}, y ∈ Γ , i, j ∈ N, α ∈
{λ} ∪ ((� × N)(Γ × N)∗), β ∈ (Γ × N)∗, and the work tape string on both sides
of the relation is well-formed (in particular, x = � if and only if α = λ). Let �∗

denote the reflexive and transitive closure of �.
A computation of a stack automaton M on a string w ∈ Σ∗ is a sequence of

configurations c0 � c1 � · · · � cn, where c0 = (q0, w, (�, 0)

�

), and cn = (qn, λ, γn).
If qn ∈ F , this computation is accepting. The automaton M accepts a string w
if there exists an accepting computation of M on w. The language accepted by
M , denoted by L(M), is the set of all strings from Σ∗ that M accepts.

Let SA be the class of all stack automata. A stack automaton is called a
non-erasing stack automaton if it uses no pop instructions. A non-erasing stack
automaton is called a checking stack automaton if it cannot push again after
either a L or R instruction. The class of non-erasing stack automata is denoted
by NESA, and checking stack automata by CSA.

For an integer k and a set of expensive instructions E, we say that a com-
putation of a stack automaton M is k-visitE-bounded, if the number of visits of
every cell in every configuration in this computation is less than or equal to k.
We say that M is k-visitE-bounded if for every string w ∈ L(M) the automaton
M has a k-visitE-bounded accepting computation on w. Finally, M is visitE-
bounded if there is a finite k ∈ N such that M is k-visitE-bounded. If we leave

Visit-Bounded Stack Automata 193

off the subscript E, it is assumed that E = {S, L, R, push, pop}. Let VISITE(k)
be the class of k-visitE-bounded, VISITE be all visitE-bounded machines, and
again we leave off the subscript E if E = {S, L, R, push, pop}. It is immediate
that L(SA) = L(VISIT∅).

Note the important distinguishing feature of the stack automaton model
which sets it apart from known visit-bounded Turing machine models: whenever
a tape cell is popped from the top of the stack, the number of visits of that cell
is reset. Whenever a new cell is pushed to the top of the stack, this new cell
begins with a visit count of 0 (or 1, if push is an expensive instruction). This
allows a visit-bounded stack automaton to perform some computations that an
analogous visit-bounded Turing machine could not.

3 Visit-Bounded Automata

As we have seen in definitions in Sect. 2, the notion of a visit-bounded stack
automaton is dependent on the choice of the set of expensive instructions E
which increase the visit counters of tape cells. To begin, we consider two expen-
sive instruction sets: E = {L}, and E = {S, L, R, push, pop}. In the first case,
only L instructions increase the visit counters. In the second case, all instruc-
tions increase the visit counters.

Example 2. Let M = ({q0}, {a}, {}, {(q0, a, �, q0, S)}, q0, {q0}) be a stack
automaton. This simple automaton scans its input consisting of a number of
symbols a, while the work tape head rests on the bottom of the stack marker.

Observe that M is visit{L}-bounded, as it never performs an L instruction,
and thus the number of visits of the only used tape cell never increases above
0. On the other hand, M is not visit-bounded, as the S instructions in the only
computation of M on string ak increases the visit counter of the tape cell to k.

Every visit-bounded automaton is also visit{L}-bounded. Indeed, the number
of visits to a cell can not increase if we only consider a limited subset of expensive
instructions. Perhaps surprisingly, as we will show in Theorem 3, the converse
is also true if we only consider languages accepted by the automaton. For any
visit{L}-bounded automaton A, we can construct a visit-bounded automaton B
with L(B) = L(A). Therefore, limiting the usage of any instruction other than
L does not reduce the descriptive power of the automaton model.

Theorem 3. Let A = (Q,Σ, Γ, δ, q0, F) be a visit{L}-bounded stack automaton.
Then there exists a visit-bounded stack automaton B such that L(B) = L(A).
Hence, L(VISIT) = L(VISIT{L}).

Proof. Let A be visit{L}-bounded, i.e., A visits every tape cell using the L instruc-
tion at most k times. We prove the theorem by describing a construction of the
automaton B. The basic idea of the construction is that B emulates a compu-
tation of A, but every symbol on the work tape of A shall be represented by
multiple copies of the same symbol on the work tape of B. Instructions of A
operating on a specific tape cell will be distributed among the copies of this cell

194 J. Jirásek and I. McQuillan

by B in such a way that every copy is only visited a fixed number of times. By
careful counting we show that any computation of A can be emulated by B in
such a way that the number of visits to every cell of B on any instruction can be
bounded as a function of k. This means that there is a constant which depends
on k such that B is -visit-bounded, i.e., B is visit-bounded.

The detailed construction appeared in Appendix A of the submitted
paper. ��

As a consequence of Theorem 3, the classes of languages accepted by visit{L}-
bounded and visit-bounded automata are identical.

We can also observe the following result for context-free languages:

Corollary 4. For all E ⊆ {S, L, R, push, pop}, L(NPDA) � L(VISITE).

Proof. A pushdown automaton can be seen as a stack automaton which never
uses the L and R instructions. This automaton is trivially visit{L}-bounded, and
by Theorem 3 its language can be accepted by some visit-bounded stack automa-
ton. Strictness can be seen using {anbncn | n > 0}. ��

We conclude this section with a comparison to Turing machines. Consider
nondeterministic Turing machines with a one-way read-only input and a single
work tape. If there is a bound on the number of changes of direction on the
work tape (reversal-bounded), we denote these machines by TMRB; if there is
a bound on the number of times the boundary of each pair of adjacent cells is
crossed (finite-crossing), we denote these machines by TMFC; and if there is a
bound on the number of visits to each cell (finite-visit), we denoted these by
TMFV. Greibach studies these machines [4] where the work tape is preloaded
with regular languages (or other families but we do not consider others), and the
work tape is confined to the preloaded space. This preloading does not impact
the languages accepted however as shown in the proof of the following, along
with a comparison to visit-bounded stack automata.

Proposition 5. L(TMRB) � L(TMFC) = L(TMFV) � L(VISIT).

Proof. First we will argue that preloading these Turing machines with regular
languages does note affect the languages accepted. Indeed, preloading can be
simulated by guessing and writing a preloaded string and then simulating. In the
other direction, a new dummy symbol B can be introduced, and the machine
can be preloaded with B∗, the machine then guesses some start position and
simulates using B as the blank symbol. It will only accept if it is preloaded
with a string that is longer than the number of cells visited and it guesses the
correct start position. Greibach shows that L(TMRB) � L(TMFC) = L(TMFV)
in Theorems 2.15 and 3.12. To show that L(TMFV) ⊆ L(VISIT), in Lemma 4.21
of [4], Greibach shows that every �L ∈ L(TMFV) can be accepted by a Turing
machine preset with a regular language where the machine does not ever change
the work tape contents, and every accepting computation is k-visit-bounded.
Such a machine M can be accepted by a k-visit-bounded stack automaton by
first guessing the stack contents, and then simulating. The inclusion is strict as

Visit-Bounded Stack Automata 195

noted in the proof of Theorem 4.26 [4] as the context-free Dyck language cannot
be accepted by a TMFV. ��

4 Semilinearity

The main result of this section is to prove that the language accepted by any visit-
bounded stack automaton is semilinear. To prove this, we give a procedure that,
given a visit-bounded stack automaton M , constructs a pushdown automaton
P , such that L(P) and L(M) are letter-equivalent. Specifically, we show that for
any string w ∈ L(M), the automaton P can accept some permutation of w, and
vice versa. It is known that languages of pushdown automata are semilinear, and
semilinearity is preserved under letter-equivalence, hence this proves the main
result.

Theorem 6. Let M = (Q,Σ, Γ, δ, q0, F) be a visit-bounded stack automaton.
Then the language accepted by M is effectively semilinear.

Proof. Let M be k-visit-bounded for an integer k. Further, assume that the
automaton ends its computation with an empty stack. If it does not, this can
be achieved by deleting the entire content of the stack before accepting, which
adds at most one visit to every tape cell.

The central concept used for the proof is the visit history of a tape cell. Using
the analogy of a physical work tape with paper cells, every time the automaton
makes a move, it records the transition it has just used (a 5-tuple (p, a, x, q, ι)) on
both the cell it left and the cell it entered. If the transition used an S instruction,
those two refer to the same cell. In this way, since every cell is visited at most
k times before being destroyed, the visit history of every cell contains at most
2k entries: k for transitions which were used to enter the cell, and another k for
transitions which were used to leave. We shall refer to the i-th entering transition
as tin[i] and the i-th leaving transition as tout[i]. Also note that throughout the
computation of the machine every transition used is recorded exactly twice: once
in the cell it begins in, and once in the cell it ends in. This connection links the
visit histories of all cells into a linked list-like structure which records the entire
computation of M . Since every transition contains the input symbol being read
(if any), following these links allows us to see the string being accepted.

The main idea is to construct a pushdown automaton P , which emulates the
push and pop instructions in some computation of M , while nondeterministically
guessing the entire history of every cell pushed on the stack. As long as P can
ensure the integrity of links between every pair of adjacent cells, the entire linked
list can be followed to reconstruct a computation of M , including the L, R, and
S instructions. Then if P also reads all input symbols corresponding to every tin
transition in all histories, it accepts a permutation of the string accepted by M
in this computation.

An important fact affecting the construction of P is that cells on the work
tape of M can be erased and replaced by another cell. Therefore, not all of the
transitions in the history of one cell need to correspond to transitions in the

196 J. Jirásek and I. McQuillan

history of one adjacent cell. Some transitions could connect to a cell that had
been in that place but was previously erased, and some transitions might connect
to a cell that will be in that place in the future, after the currently following cell
is erased. Therefore, the representation of every cell in P will additionally carry
a completed transition counter, an index ctc in the range 1 ≤ ctc ≤ k, which
indicates how many transitions in the history of the current cell have already
been matched with corresponding transitions in the histories of adjacent cells.

We can now describe the construction of the pushdown automaton P .

Definition 7. A history card is a (2k + 2)-tuple (x, ctc, tin[1], . . . , tin[k],
tout[1], . . . , tout[k]), where:

– x ∈ (Γ ∪ {�}) is the stack symbol written on the tape cell,
– 1 ≤ ctc ≤ k is the completed transition counter,
– tin[i] ∈ (δ ∪ {∅}), for 1 ≤ i ≤ k, are the transitions ending in this cell, and
– tout[j] ∈ (δ ∪ {∅}), for 1 ≤ j ≤ k, are the transitions originating in this cell.

Not all possible history cards can appear in some computation of M . We
impose several consistency constraints on the history cards that P can use,
to ensure that the information on each card is filled in properly and does not
contradict itself.

Definition 8. A history card is internally consistent, if all the following hold:

– tin[i]
= ∅ ⇐⇒ tout[i]
= ∅ for all 1 ≤ i ≤ k. If there is an incoming transition,
there has to be a corresponding outgoing transition.

– If tin[i] = ∅, then also tin[i + 1] = ∅. Similarly if tout[i] = ∅, then also
tout[i + 1] = ∅. This holds for all 1 ≤ i < k. Transitions are always stored in
a contiguous block of indices starting from the beginning of the card.

– The transition tin[1] performs the push(x) instruction, where x is the symbol
stored on this card. The last non-empty tout[i] performs the pop instruction.
No other tin transitions are push and no other tout transitions are pop instruc-
tions. The history of a cell begins when it is pushed and ends when it is popped
from the stack. Each of these events can only happen once in the lifetime of
the cell.

• The exception to the three rules above is a card with x = �. This card
represents the bottom of the stack of M , and here the computation of M
begins and ends. Therefore tin[1] = ∅, there is exactly one i such that
tin[i]
= ∅ and tout[i] = ∅, no tin is a push or R instruction, and no tout is
a pop or L instruction.

– The work tape symbol read in every tout transition is the symbol x on this
card.

Denote by H the set of all internally consistent history cards. Note that
|H| ≤ (|Γ | + 1)k(|δ| + 1)2k. The set H shall be the working alphabet of the
pushdown automaton P . An example of history cards and links between them
corresponding to a computation of M is shown in Fig. 1. The links are not
explicitly stored but will be implied.

Visit-Bounded Stack Automata 197

y
push(y) S R ∅ ∅

S L pop ∅ ∅

z
push(z) S S ∅ ∅

S S pop ∅ ∅

x
push(x) L R pop pop

push(y) L R push(z) pop

�
∅ L S pop ∅

push(x) S R ∅ ∅

Fig. 1. Histories of tape cells after executing the following sequence of instructions:
push(x), push(y), S, L, L, S, R, R, pop, push(z), S, S, pop, pop. Only the instructions used in
the transitions are shown, states and symbols read are omitted. Transitions tin shown
in the top row, and tout in the bottom row. Arrows show links between history cards
formed by pairs of identical transitions.

Now we describe an algorithm used by P to simulate a computation of M .
This algorithm employs two subprocedures: the first one advances the completed
transition counter on a card step by step, verifying that the transitions on the
card can link together to form a continuous computation, until either a push or
a pop transition, or the end of the computation is reached. The facts that need
to be verified are that S instructions on this card link to each other, and that
every outgoing L instruction is followed by an incoming R instruction.

The second procedure takes two history cards as input and attempts to link
together transitions between them. An outgoing push instruction on the bottom
card has to link to the first incoming instruction on the top card. Every outgoing
R instruction on the bottom card has to link to an incoming R instruction on
the top card, and every outgoing L instruction on the top card has to link to an
incoming L instruction on the bottom card. Finally, the last transition of the top
card, performing a pop instruction, has to link to an incoming pop transition on
the bottom card.

The complete description of both procedures appeared in Appendix B of the
submitted paper. The important fact is that since there are only finitely many
different history cards, the pushdown automaton itself does not have to perform
either of these procedures. The results for all possible inputs can be encoded
into its transition function.

A description of the algorithm performed by P is in Algorithm 4.1.

198 J. Jirásek and I. McQuillan

1 Nondeterministically choose a history card containing the symbol �. Push this
card on the stack.

2 Read all input symbols that are read in any incoming transition on this card.
3 while There is a history card on the stack do
4 Advance the ctc of the card on top of the stack, verifying the consistency of

instruction links, until either a push or a pop instruction, or the end of the
computation is encountered.

5 if The transition encountered performs a push instruction then
6 Nondeterministically choose a history card containing the symbol being

pushed.
7 Verify that the chosen card can be matched to the card currently on top

of the stack.
8 if The cards can be matched together then
9 Move the ctc of the card on top of the stack to the incoming pop

instruction corresponding to the removal of the cell represented by
the new card.

10 Push the newly chosen card on top of the stack, initializing its ctc to
1.

11 Read all input symbols that are read in any incoming transition on
the new card.

12 else
13 Halt the computation and reject.
14 end

15 else if The transition encountered performs the pop instruction, or the end
of the computation is encountered then

16 Erase the top card from the stack.
17 else if A transition on the card can not be linked properly then
18 Halt the computation and reject.
19 end

20 end
21 Finish the computation and accept.

Algorithm 4.1: The algorithm performed by the pushdown automaton P
emulating a computation of a visit-bounded stack automaton.

If the computation of P succeeds, this means that all transitions in all the
history cards used can be linked together to form one possible contiguous com-
putation of M . Further, P reads every symbol that is read by every instruction
in this computation, just not necessarily in the same order as M . However,
this means that the string read by P is a permutation of the string that is
read by the corresponding computation of M . Therefore, the language of P is
letter-equivalent to the language of M . Finally, since the languages of pushdown
automata are semilinear, and semilinearity is preserved under letter-equivalence,
this means that the language of M is semilinear as well. ��

Visit-Bounded Stack Automata 199

5 Other Expensive Instruction Sets

We have considered automata models with E = {L} and E = {S, L, R, push, pop}.
We can ask whether models with other expensive instruction sets also describe
the same class of languages.

It is possible to show that visit{R}-bounded automata accept the same class
of languages as visit{L}-bounded automata. The proof uses similar ideas as in
the construction in the proof of Theorem 3, though we do not include it here.
Adding the S instruction to a set of expensive instructions does not change the
class of languages accepted, as every S instruction can be replaced by a pair of
R and L instructions, or push and pop instructions when operating on top of
the stack. Therefore it is always possible to construct an equivalent automaton
which never uses the S instruction.

Hence, if we consider expensive instruction sets E containing either L or R,
any visit-bounded automaton is also visitE bounded for such E. Therefore all
models with such an expensive instruction set accept the same class of languages.

Making expensive instructions exactly the push instructions has no effect on
the languages accepted (i.e. it accepts all stack languages), as any cell can only
be pushed on the stack once. We only include the push instruction as a possible
expensive instruction for completeness.

Finally, we shall see that a model with E = {pop} also accepts all stack
automaton languages. Using a procedure similar to the one in the construction
of automaton B in Theorem 3 we can clone symbols on the stack and replace
every pop transition by a sequence pop − pop − push, such that every cell is
visited at most twice by pop instructions.

These results can be summarized as follows. The hierarchy is depicted in
Fig. 2.

Fig. 2. The language families listed are related such that the families that are equal
are written together in a box, inclusions are shown with an arrow that are proper in
every case, and no lines connecting them indicate that they are incomparable.

Theorem 9. The hierarchy shown in Fig. 2 is correct.

Proof. That L(TMRB) � L(TMFC) = L(TMFV) � L(VISIT) is shown in Propo-
sition 5. That L(TMFV) � L(CSA) is shown in [4]. That L(CSA) � L(NESA) �

L(SA) is well known [3]. That L(NPDA) � L(VISIT) was shown in Corollary
4. That L(VISIT) = L(VISIT{L}) is from Theorem 3, and the equality with
L(VISIT{R}) is mentioned above. The equality of L(SA) with L(VISIT{pop}) and

200 J. Jirásek and I. McQuillan

L(VISIT{push}) is also mentioned above. The proper inclusion of L(VISIT) in
L(SA) follows from Theorem 6 since stack automata can accept non-semilinear
languages [3]. Also, L(CSA) contains languages not accepted by L(VISIT) since
L(CSA) contains non-semilinear languages [3]. Also, it is known that L(NESA)
does not contain all context-free languages [4]. ��
Hence, all the families above that are semilinear are contained in L(VISIT),
making it the most powerful such family.

References

1. Ginsburg, S., Greibach, S., Harrison, M.: One-way stack automata. J. ACM 14(2),
389–418 (1967)

2. Ginsburg, S., Greibach, S., Harrison, M.: Stack automata and compiling. J. ACM
14(1), 172–201 (1967)

3. Greibach, S.: Checking automata and one-way stack languages. J. Comput. Syst.
Sci. 3(2), 196–217 (1969)

4. Greibach, S.A.: One way finite visit automata. Theor. Comput. Sci. 6, 175–221
(1978)

5. Harju, T., Ibarra, O., Karhumäki, J., Salomaa, A.: Some decision problems concern-
ing semilinearity and commutation. J. Comput. Syst. Sci. 65(2), 278–294 (2002)

6. Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley, Reading
(1978)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

8. Ibarra, O., McQuillan, I.: Semilinearity of families of languages. Int. J. Found.
Comput. Sci. 31(8), 1179–1198 (2020)

9. Ibarra, O.H., McQuillan, I.: On families of full trios containing counter machine
languages. Theor. Comput. Sci. 799, 71–93 (2019)

10. Ibarra, O.H., McQuillan, I., Ravikumar, B.: On counting functions and slenderness
of languages. Theor. Comput. Sci. 777, 356–378 (2019)

11. Joshi, A.K.: Tree adjoining grammars: how much context-sensitivity is required
to provide reasonable structural descriptions? In: Natural Language Parsing, pp.
206–250. Cambridge University Press, Cambridge (1985)

12. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)

	Visit-Bounded Stack Automata
	1 Introduction
	2 Preliminaries
	2.1 Stack Automata

	3 Visit-Bounded Automata
	4 Semilinearity
	5 Other Expensive Instruction Sets
	References

