
Volker Diekert
Mikhail Volkov (Eds.)

LN
CS

 1
32

57

Developments
in Language Theory
26th International Conference, DLT 2022
Tampa, FL, USA, May 9–13, 2022
Proceedings

Lecture Notes in Computer Science 13257

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Volker Diekert • Mikhail Volkov (Eds.)

Developments
in Language Theory
26th International Conference, DLT 2022
Tampa, FL, USA, May 9–13, 2022
Proceedings

123

Editors
Volker Diekert
University of Stuttgart
Stuttgart, Baden-Württemberg, Germany

Mikhail Volkov
Ural Federal University
Ekaterinburg, Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-05577-5 ISBN 978-3-031-05578-2 (eBook)
https://doi.org/10.1007/978-3-031-05578-2

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5994-3762
https://orcid.org/0000-0002-9327-243X
https://doi.org/10.1007/978-3-031-05578-2

Preface

The 26th International Conference on Developments in Language Theory (DLT 2022)
was held in Tampa, Florida, USA during May 9–13, 2022. It was organised by the
Department of Mathematics and Statistics of the University of South Florida. The
preparations for DLT 2022 were overshadowed by the deeply shocking and frightening
events in Ukraine. The situation of the ongoing heavy military actions made it hard to
continue our work. However, as science and research are built on collaboration
regardless of race, religion, gender or politics, the decision was taken to continue with
the conference. The mission Scientists-Sans-Frontière is a manifesto for peace.

The DLT conference series provides a forum for presenting current developments in
formal languages and automata. Its scope is very general and includes, among others,
the following topics and areas: grammars, acceptors and transducers for words, trees
and graphs; algebraic theories of automata; algorithmic, combinatorial, and algebraic
properties of words and languages; variable length codes; symbolic dynamics; cellular
automata; groups and semigroups generated by automata; polyominoes and multidi-
mensional patterns; decidability questions; image manipulation and compression;
efficient text algorithms; relationships to cryptography, concurrency, complexity the-
ory, and logic; bio-inspired computing; and quantum computing.

Since its establishment by Grzegorz Rozenberg and Arto Salomaa in Turku (1993),
a DLT conference had been held every other year in Magdeburg (1995), Thessaloniki
(1997), Aachen (1999), and Vienna (2001). Since 2001, a DLT conference takes place
in Europe every odd year and outside Europe every even year. The locations of DLT
conferences since 2002 were: Kyoto (2002), Szeged (2003), Auckland (2004), Palermo
(2005), Santa Barbara (2006), Turku (2007), Kyoto (2008), Stuttgart (2009), London
(2010), Milano (2011), Taipei (2012), Marne-la-Vallée (2013), Ekaterinburg (2014),
Liverpool (2015), Montréal (2016), Liège (2017), Tokyo (2018), Warsaw (2019), and
Porto (2021). In 2020, the DLT conference was planned to be held in Tampa, Florida,
but due to COVID-19 pandemics, it was canceled. However, accepted papers of DLT
2020 were published in volume 12086 of Lecture Notes in Computer Science, and the
authors of these papers were invited to present their work at DLT 2021. The decision to
hold DLT 2022 in Tampa was made in the anticipation of restoring the functioning
of the DLT conference series in its established rhythm.

In 2018, the DLT conference series instituted the Salomaa Prize to honour the work
of Arto Salomaa, as well as the success of automata and formal languages theory. The
prize is funded by the University of Turku. The ceremony for Salomaa Prize 2021 took
place during DLT 2022, and we congratulate the winner Juhani Karhumäki.

This volume contains invited contributions and the accepted papers of DLT 2022.
There were 32 submissions by 68 authors from 18 countries: Belgium, Canada, China,
Columbia, Czechia, Finland, France, Germany, India, Italy, Japan, Poland, Russia,
Slovakia, South Korea, UK, and the USA. Each submission was reviewed by at least
three referees. All submissions were thoroughly discussed by the Program Committee

(PC) who decided to accept 22 papers (68.75% acceptance rate) to be presented at the
conference. We would like to thank the members of the Program Committee, and all
external referees, for their work in evaluating the papers and for valuable comments
that led to the selection of the contributed papers.

The Organizing Committee of DLT 2022 established a Best Paper Award, which the
PC has awarded to the paper “Visit-bounded Stack Automata” by Jozef Jirasek and Ian
McQuillan.

There were six invited talks, which were presented by:

– Paola Bonizzoni (University of Milano-Bicocca, Italy)
– Joel Day (Loughborough University, UK)
– Delaram Kahrobaei (City University of New York, USA)
– Jarkko Kari (University of Turku, Finland)
– Volodymyr Nekrashevych (Texas A&M University, USA)
– Helmut Seidl (Technical University of Munich, Germany)

We warmly thank the invited speakers, as well as all authors of submitted papers.
Their effort was the basis for the success of the conference.

The EasyChair conference system provided excellent support in the selection of the
papers, the preparation of these proceedings, as well as in the making of the conference
schedule. We would like to thank Springer’s editorial staff, and in particular Ronan
Nugent, Anna Kramer, Maree Shirota, and Guido Zosimo-Landolfo for their help
during the process of publishing this volume.

We are grateful to the Organizing Committee members: Lina Fajardo Gomez,
Margherita Ferrari, Nataša Jonoska, Abdulmelik Mohammed, Masahico Saito, and
Dmytro Savchuk.

DLT 2022 was financially supported by National Science Foundation, National
Security Agency, University of South Florida (USF), and USF Research One.

We are looking forward to DLT 2023 at the University of Umeå, Sweden.

May 2022 Volker Diekert
Mikhail Volkov

vi Preface

Organization

Steering Committee

Marie-Pierre Béal Université Gustave Eiffel, France
Cristian S. Calude University of Auckland, New Zealand
Volker Diekert Universität Stuttgart, Germany
Yo-Sub Han Yonsei University, South Korea
Juraj Hromkovic ETH Zürich, Switzerland
Oscar H. Ibarra University of California, Santa Barbara, USA
Nataša Jonoska University of South Florida, USA
Juhani Karhumäki University of Turku, Finland
Martin Kutrib Universität Giessen, Germany
Giovanni Pighizzini (Chair) Università degli Studi di Milano, Italy
Michel Rigo University of Liège, Belgium
Antonio Restivo Università degli Studi di Palermo, Italy
Wojciech Rytter University of Warsaw, Poland
Kai Salomaa Queen’s University, Canada
Shinnosuke Seki University of Electro-Communications, Japan
Mikhail Volkov Ural Federal University, Russia
Takashi Yokomori Waseda University, Japan

Program Committee

Volker Diekert (Co-chair) University of Stuttgart, Germany
Yo-Sub Han Yonsei University, Korea
Artur Jeż University of Wrocław, Poland
Jarkko Kari University of Turku, Finland
Alexander Okhotin St. Petersburg State University, Russia
Joël Ouaknine Max Planck Institute for Software Systems, Germany
Svetlana Puzynina St. Petersburg State University, Russia
Narad Rampersad University of Winnipeg, Canada
Helmut Seidl Technical University of Munich, Germany
Krishna Shankara

Narayanan
Indian Institute of Technology Bombay, India

Mikhail Volkov (Co-chair) Ural Federal University, Russia
Marc Zeitoun University of Bordeaux, France

Organizing Committee

Lina Fajardo Gomez University of South Florida, USA
Margherita Ferrari University of South Florida, USA
Nataša Jonoska University of South Florida, USA
Abdulmelik Mohammed University of South Florida, USA
Masahico Saito University of South Florida, USA
Dmytro Savchuk University of South Florida, USA

Additional Reviewers

Antolin, Yago
Bienvenu, Laurent
Carton, Olivier
Charlier, Émilie
Chistikov, Dmitry
D’Alessandro, Flavio
De Luca, Alessandro
Fleischmann, Pamela
Frougny, Christiane
Göller, Stefan
Govind, R.
Guillon, Pierre
Haase, Christoph
Holub, Stepan
Holík, Lukáš
Jacquemard, Florent
Ko, Sang-Ki
Kociumaka, Tomasz
Kopra, Johan
Kufleitner, Manfred
Kutrib, Martin
Lopez, Aliaume
Makarov, Vladislav

Marin, Mircea
Martyugin, Pavel
Masopust, Tomáš
Mayr, Richard
McQuillan, Ian
Niehren, Joachim
Parshina, Olga
Peltomäki, Jarkko
Praveen, M.
Prigioniero, Luca
Richomme, Gwenaël
Roychowdhury, Sparsa
Saarela, Aleksi
Salomaa, Kai
Sangnier, Arnaud
Sarkar, Saptarshi
Sebastien, Labbe
Senizergues, Geraud
Shur, Arseny
Steiner, Wolfgang
Walukiewicz, Igor
Zetzsche, Georg

viii Organization

Abstracts of Invited Talks

Algebraic Methods for Periodicity
in Multidimensional Symbolic Dynamics

Jarkko Kari

Department of Mathematics and Statistics,
University of Turku, 20014 Turku, Finland

jkari@utu.fi

Abstract. A d-dimensional configuration is a coloring c : Zd �! A of the
infinite grid by elements of a finite set A�Z. It is natural to express such a
configuration as a formal power series with d variables X ¼ ðx1; . . .; xdÞ where
the coefficient of the Xu term is cðuÞ for all u 2 Z

d. Invariance of c under the
translation by v 2 Z

d then means that the difference (Laurent) polynomial
Xv � 1 annihilates the power series in the sense that its formal product with the
series is the null series. More generally, we say that a polynomial p periodizes
c if the formal product pc is strongly periodic. All periodizing polynomials of
c form a polynomial ideal, and we can use algebraic geometry to study the
structure of this ideal PerðcÞ. We call a polynomial a line polynomial if it has at
least two non-zero terms and the exponents of the terms lie on a single line. If
PerðcÞ contains a line polynomial then clearly c is periodic in the direction of the
line. If PerðcÞ contains a non-zero polynomial then it can be proved using a
dilation lemma and Hilbert’s Nullstellensatz that PerðcÞ contains a product of
line polynomials [1, 2]. In the two-dimensional case d ¼ 2 one can further show
that PerðcÞ is a principal ideal generated by a product of line polynomials. It
follows in the two-dimensional case that if PerðcÞ contains a polynomial without
line polynomial factors then c is strongly periodic. Our methods can be applied,
for example, on low complexity configurations, containing at most |D| patterns
of a finite shape D�Z

d . We have shown that a two-dimensional uniformly
recurrent configuration that has low complexity with respect to a convex shape
D must be periodic [4, 5]. This implies that any 2D subshift containing a low
complexity configuration with respect to a convex shape D also contains a
periodic configuration. We have also shown that any low complexity configu-
ration (with respect to any shape D) of the well-known Ledrappier subshift is
periodic, and this result can be extended to many other algebraically defined
subshifts [6].

Keywords: Multidimensional symbolic dynamics • Periodicity • Formal power
series • Multivariate polynomials • Algebraic subshifts

https://orcid.org/0000-0003-0670-6138

References

1. Kari, J., Szabados, M.: An algebraic geometric approach to Nivat’s conjecture. In: Hall-
dórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol.
9135, pp. 273–285. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_
22

2. Kari, J., Szabados, M.: An algebraic geometric approach to Nivat’s conjecture. Inf. Comput.
271, 104481 (2020). https://doi.org/10.1016/j.ic.2019.104481

3. Kari, J.: Low-complexity tilings of the plane. In: Hospodár, M., Jirásková, G., Konstantinidis,
S. (eds.) DCFS 2019. LNCS, vol. 11612, pp. 35–45. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-23247-4_2

4. Kari, J., Moutot, E.: Decidability and periodicity of low complexity tilings. In: Proceedings of
STACS 2020, Leibniz International Proceedings in Informatics (LIPIcs), vol. 154, pp. 14:1–
14:12 (2020). https://doi.org/10.4230/LIPIcs.STACS.2020.14

5. Kari, J., Moutot, E.: Decidability and periodicity of low complexity tilings. Theory Comput.
Syst. (2021). https://doi.org/10.1007/s00224-021-10063-8

6. Kari, J., Moutot, E.: Nivat’s conjecture and pattern complexity in algebraic subshifts. Theor.
Comput. Sci. 777, 379–386 (2019). https://doi.org/10.1016/j.tcs.2018.12.029

xii J. Kari

https://doi.org/10.1007/978-3-662-47666-6_22
https://doi.org/10.1007/978-3-662-47666-6_22
https://doi.org/10.1016/j.ic.2019.104481
https://doi.org/10.1007/978-3-030-23247-4_2
https://doi.org/10.1007/978-3-030-23247-4_2
https://doi.org/10.4230/LIPIcs.STACS.2020.14
https://doi.org/10.1007/s00224-021-10063-8
https://doi.org/10.1016/j.tcs.2018.12.029

Non-deterministic Transducers

Volodymyr Nekrashevych

Texas A&M University, 3368 TAMU, College Station, TX 77843-3368, USA
nekrash@math.tamu.edu

https://www.math.tamu.edu/ nekrash/

Abstract. A deterministic (synchronous) transducer is defined as a map
p : Q� X �! X � Q, where X is a finite set (alphabet), and Q is the set of
states, together with a choice of the initial state q0 2 Q. We say that the
automaton is finite if Q is finite.

Here kðq; xÞ ¼ ðy; pÞ is interpreted as the condition that being in state q and
reading the letter x on the input, the automaton transitions to the state p and
prints y to the output. This way the automaton defines a transformation pq0 :
X� �! X� of the set of finite words and a transformation pq0 : X

x �! Xx of the
set of one-sided infinite words. Namely, if pðq; xÞ ¼ ðy; pÞ, then we set pqðxvÞ ¼
yppðvÞ for every v 2 X� and every v 2 Xx.

Deterministic automata (transformation defined by them) are important tools
in group theory. Many examples of groups with interesting properties are
generated by transformations defined by finite automata (see [1]). Theory of
automata is effectively used to study properties of such groups.

A group generated by transformations defined by finite automata acts on the
corresponding sets Xn of finite words of given length. It follows that any such
group is residually finite.

A more general class of groups is obtained by passing to a more general class
of transformations. It appears naturally in the study of hyperbolic dynamical
systems and provides first examples of simple finitely generated groups with
various finiteness conditions (e.g., amenability or sub-exponential growth, see
[2. 3]).

A non-deterministic transducer is a finite labeled graph given by the set of
vertices Q (states of the automaton), a set of edges E, maps s; r : E �! Q (the
source and the range of the edges), a labeling k : E �! X2, and a set Q0 � Q of
initial states. We say that a pair ðx1x2. . .; y1y2. . .Þ 2 Xx � Xx is accepted by the
automaton if there exists a path e1e2. . . 2 Ex such that sðe1Þ 2 Q0, rðeiÞ ¼
sðeiþ 1Þ for all i� 1, and kðeiÞ ¼ ðxi; yiÞ. We say that the automaton is x-
deterministic if for every x1x2. . . 2 Xx there exists at most one sequence
y1y2. . . 2 Xx such that the pair ðx1x2. . .; y1y2. . .Þ is accepted. If the automaton is
x-deterministic, then the transformation x1x2. . . 7! y1y2. . . is a continuous map
between two closed subsets of Xx.

We are interested in groups generated by homeomorphisms of a fixed closed
subsetF � Xx defined byx-deterministic finite automata. It seems thatmanywell
known techniques of groups generated by finite deterministic automata can be
extended to this much larger class of transformations. However, many other tools
(especially ones relying on the actions on the sets Xn offinite words) are missing,
and generalizing them to non-deterministic automata is one of our goals. Another

https://orcid.org/0000-0002-4500-7164

goal is understanding transformations defined by finite non-deterministic auto-
mata in the context of x-deterministic languages.

Keywords: Non-deterministic transducer • x-deterministic automaton • Group
generated by homeomorphisms

References

1. Grigorchuk, R.I., Nekrashevich, V.V., Sushchanskii, V.I.: Automata, dynamical systems and
groups. Proc. Steklov Inst. Math. 231, 128–203 (2000)

2. Juschenko, K., Monod, N.: Cantor systems, piecewise translations and simple amenable
groups. Ann. Math. 178(2), 775–787 (2013). https://doi.org/10.4007/annals.2013.178.2.7

3. Nekrashevych, V.: Palindromic subshifts and simple periodic groups of intermediate growth.
Ann. Math. 187(3), 667–719 (2018). https://doi.org/10.4007/annals.2018.187.3.2

xiv V. Nekrashevych

https://doi.org/10.4007/annals.2013.178.2.7
https://doi.org/10.4007/annals.2018.187.3.2

Origin-Equivalence for Macro Tree
Transducers

Helmut Seidl

Fakultät für Informatik, TU München, Germany
seidl@in.tum.de

Abstract. We consider a notion of origin for deterministic macro tree trans-
ducers with look-ahead which records for each output node, the corresponding
input node for which a rule-application generated that output node. With respect
to this natural notion, we show that origin equivalence is decidable—whenever
the transducers are weakly self-nesting. The latter means that whenever two
nested calls on the same input node occur, then there must be at least one other
node (a terminal output node or a call on another input node) in between these
nested calls. We also indicate that for monadic input alphabets, equivalence
of the transducers can be reduced to origin equivalence – whenever unrestricted
self-nesting is allowed.

These results have been obtained jointly with Sebastian Maneth.

Keywords: Macro tree transducers • Origin equivalence • Decidablility

https://orcid.org/0000-0002-2135-1593

Contents

Invited Talks

Can Formal Languages Help Pangenomics to Represent and Analyze
Multiple Genomes? . 3

Paola Bonizzoni, Clelia De Felice, Yuri Pirola, Raffaella Rizzi,
Rocco Zaccagnino, and Rosalba Zizza

Word Equations in the Context of String Solving . 13
Joel D. Day

A Survey on Delegated Computation. 33
Giovanni Di Crescenzo, Matluba Khodjaeva, Delaram Kahrobaei,
and Vladimir Shpilrain

Regular Papers

Checking Regular Invariance Under Tightly-Controlled String
Modifications . 57

C. Aiswarya, Sahil Mhaskar, and M. Praveen

Deciding Atomicity of Subword-Closed Languages 69
Aistis Atminas and Vadim Lozin

Prefix Palindromic Length of the Sierpinski Word. 78
Dora Bulgakova, Anna Frid, and Jérémy Scanvic

Preservation of Normality by Unambiguous Transducers 90
Olivier Carton

A Full Characterization of Bertrand Numeration Systems 102
Émilie Charlier, Célia Cisternino, and Manon Stipulanti

On the Decidability of Infix Inclusion Problem . 115
Hyunjoon Cheon, Joonghyuk Hahn, and Yo-Sub Han

Column Representation of Sturmian Words in Cellular Automata 127
Francesco Dolce and Pierre-Adrien Tahay

Logarithmic Equal-Letter Runs for BWT of Purely Morphic Words 139
Andrea Frosini, Ilaria Mancini, Simone Rinaldi, Giuseppe Romana,
and Marinella Sciortino

On Perfect Coverings of Two-Dimensional Grids . 152
Elias Heikkilä, Pyry Herva, and Jarkko Kari

Automata-Theoretical Regularity Characterizations for the Iterated Shuffle
on Commutative Regular Languages . 164

Stefan Hoffmann

On the Complexity of Decision Problems for Counter Machines
with Applications to Coding Theory . 177

Oscar H. Ibarra and Ian McQuillan

Visit-Bounded Stack Automata . 189
Jozef Jirásek and Ian McQuillan

Well Quasi-Orders Arising from Finite Ordered Semigroups. 201
Ondřej Klíma and Jonatan Kolegar

The Billaud Conjecture for jRj ¼ 4, and Beyond. 213
Szymon Łopaciuk and Daniel Reidenbach

Weighted Tree Automata with Constraints . 226
Andreas Maletti and Andreea-Teodora Nász

Performing Regular Operations with 1-Limited Automata. 239
Giovanni Pighizzini, Luca Prigioniero, and Šimon Sádovský

Binomial Complexities and Parikh-Collinear Morphisms 251
Michel Rigo, Manon Stipulanti, and Markus A. Whiteland

Rational Index of Languages with Bounded Dimension of Parse Trees 263
Ekaterina Shemetova, Alexander Okhotin, and Semyon Grigorev

Measuring Power of Locally Testable Languages . 274
Ryoma Sin’ya

The Power Word Problem in Graph Products . 286
Florian Stober and Armin Weiß

On One-Counter Positive Cones of Free Groups . 299
Zoran Šunić

Kolmogorov Complexity Descriptions of the Exquisite Behaviors
of Advised Deterministic Pushdown Automata . 312

Tomoyuki Yamakami

Author Index . 325

xviii Contents

Invited Talks

Can Formal Languages Help Pangenomics
to Represent and Analyze Multiple

Genomes?

Paola Bonizzoni1(B) , Clelia De Felice2 , Yuri Pirola1 , Raffaella Rizzi1 ,
Rocco Zaccagnino2 , and Rosalba Zizza2

1 Dip. di Informatica, Sistemistica e Comunicazione, University of Milano-Bicocca,
viale Sarca 336, 20126 Milan, Italy

{paola.bonizzoni,yuri.pirola,raffaella.rizzi}@unimib.it
2 Dip. di Informatica, University of Salerno, via Giovanni Paolo II 132,

84084 Fisciano, Italy
{cdefelice,rzaccagnino,rzizza}@unisa.it

Abstract. Graph pangenomics is a new emerging field in computational
biology that is changing the traditional view of a reference genome from a
linear sequence to a new paradigm: a sequence graph (pangenome graph
or simply pangenome) that represents the main similarities and differ-
ences in multiple evolutionary related genomes. The speed in producing
large amounts of genome data, driven by advances in sequencing tech-
nologies, is far from the slow progress in developing new methods for
constructing and analyzing a pangenome. Most recent advances in the
field are still based on notions rooted in established and quite old lit-
erature on combinatorics on words, formal languages and space efficient
data structures. In this paper we discuss two novel notions that may help
in managing and analyzing multiple genomes by addressing a relevant
question: how can we summarize sequence similarities and dissimilari-
ties in large sequence data? The first notion is related to variants of the
Lyndon factorization and allows to represent sequence similarities for a
sample of reads, while the second one is that of sample specific string as
a tool to detect differences in a sample of reads. New perspectives opened
by these two notions are discussed.

1 Introduction

The 1000 Genomes Project [16] marks the beginning of new computational
approaches to genomic studies involving the use of efficient data structures to
represent the high variation rate among multiple genomes. Indeed, a main result
of the project has been the characterization of a broad spectrum of genetic vari-
ations in the human genome, including the discovery of novel variations in the

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk�lodowska-Curie grant agreement No
872539.

c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 3–12, 2022.
https://doi.org/10.1007/978-3-031-05578-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_1&domain=pdf
http://orcid.org/0000-0001-7289-4988
http://orcid.org/0000-0002-1789-1706
http://orcid.org/0000-0002-8479-7592
http://orcid.org/0000-0001-9730-7516
http://orcid.org/0000-0002-9089-5957
http://orcid.org/0000-0001-9144-3074
https://doi.org/10.1007/978-3-031-05578-2_1

4 P. Bonizzoni et al.

South Asian, African and European populations—thus enhancing the catalogue
of variability within the human individuals. In particular, the question “what is
an ideal human reference genome?” is becoming the focus of investigations that
also involve theoreticians in the computer science community. While the litera-
ture in computational biology presents experimental evidence of the advantages
of the idea of replacing a linear reference with a pangenome graph [23,37,39],
still theoretical foundations of computational pangenomics is missing. A recent
tutorial introduces the main theoretical background in graph pangenomics [1].
It is interesting to note that formal language theory has again played a crucial
role in suggesting novel approaches to this new emerging field. The first main
representation of a graph pangenome is based on building a prefix language from
the interpretation of the graph as an automaton [33], while Wheeler graphs [22]
establish an interesting connection between regular languages and compressed
data structures which are fundamental in the indexing of pangenomes. Language
theoretic notions that have been recently rediscovered in Bioinformatics are those
of Lyndon words and of the Lyndon factorization of a word [15,21,32]. Indeed,
these well-known notions intervene in a bijective transformation [29] alterna-
tive to the Burrows-Wheeler Transform for compressing sequences and in new
measures of similarities between sequences [7]. The investigation of sequence
similarity and dissimilarity measures is a crucial topic in Bioinformatics for
comparing sequences. For example, sequence alignment is the oldest standard
procedure performed to measure the distance between sequences. However, the
search for alignment-free approaches to sequence comparison is the focus of deep
investigations in the framework of pangenomics, since there is the need to cope
with the high computational cost of the alignment and have fast approaches
to compute genetic variations in a pangenome [1]. In this direction, a possible
alignment-free approach may consist in applying mathematical transformations
on sequences that lead easily to a fast sequence comparison. In particular, sum-
marizing sequences by alternative representations is becoming a new paradigm
for facing the huge amount of sequencing data. Factorizing a word is intuitively a
way to give an alternative representation of it: thus, a main question is whether
there exists a way to factorize sequences so that it may lead to a more com-
pact representation to detect shared regions between sequences. This work is
focused on the Lyndon factorization as a factorization preserving similarities
among sequences. Since being able to detect dissimilarities is also important in
sequence comparison, here we also present a novel notion aiming at discovering
differences among similar sequences. This is the notion of sample specific string
(SFS) [27]. We show applications of both notions in facing problems motivated
by computational pangenomics [13,20].

This paper is structured as follows. After introducing preliminaries on
sequences, Lyndon words and Lyndon factorization, we survey some main theo-
retical results on Lyndon-based factorizations motivated by Bioinformatics appli-
cations. Then, we discuss preliminary results on their application. In Sect. 4 we
discuss the theoretical background of the notion of sample specific strings and
then, we present its application in structural variant detection. We conclude with
some open problems related to Lyndon-based factorizations.

Can Formal Languages Help Pangenomics? 5

2 Preliminaries

Throughout this paper we follow [31] for the notations. Let w = a1 · · · am be a
string (or word) over a finite alphabet Σ. The empty word is denoted by 1. The
length of w (that is, the number m of its characters) will be denoted by |w|. A
word x ∈ Σ∗ is a factor of w ∈ Σ∗ if there are u1, u2 ∈ Σ∗ such that w = u1xu2.
If u1 = 1 (resp. u2 = 1), then x is a prefix (resp. suffix) of w. A factor (resp.
prefix, suffix) x of w is proper if x �= w. We recall that, given a nonempty word
w, a border of w is a word which is both a proper prefix and a suffix of w. The
longest border is also called the border of w. A word w ∈ Σ+ is bordered if it has
a nonempty border. Otherwise, w is unbordered. A nonempty word w is primitive
if w = xk implies k = 1. An unbordered word is primitive. Given w,w′ ∈ Σ∗, we
denote by w < w′ (resp. w ≤ w′) if w is lexicographically smaller than w′ (resp.
smaller than or equal to w′). Furthermore, for two nonempty words w,w′, we
write w � w′ if w < w′ and additionally w is not a proper prefix of w′ [4]. We
recall that a factorization of a string w is a sequence F (w) = (f1, f2, . . . , fn) of
factors such that w = f1f2 · · · fn.

In [6] a numeric representation of a factorization of a string is defined,
named the fingerprint of w with respect to F (w), i.e., the sequence L(w) =
(|f1|, |f2|, . . . , |fn|) of the lengths of the factors of F (w). In addition, a k-finger
is a k-mer of L(w), that is, any substring (li, li+1, . . . , li+k−1) composed of k
consecutive elements of L(w).

In this framework, we consider strings over a the DNA alphabet and they
will be simply called sequences, meaning to represent genomes or fragments of
genome sequences. For preliminaries to computational pangenomics and some
basic notions, we address the reader to a recent tutorial [1].

3 Lyndon Words and Lyndon-Based Factorization

The Lyndon Factorization CFL. In order to obtain read fingerprints, in [7]
some special kinds of factorizations are proposed, named Lyndon-based factoriza-
tions, since they are defined starting from the well-known Lyndon factorization
of a string w [32]. Each string w can be uniquely factorized into a non-increasing
product (w.r.t. the lexicographic order) of Lyndon words [32]. A Lyndon word is a
string which is strictly smaller than any of its nonempty proper suffixes. Lyndon
words are primitive and unbordered. For example, suppose that Σ = {a, c, g, t}
and a < c < g < t (in next examples, we always suppose this ordering on the
alphabet). Thus, accgctct is a Lyndon word, whereas cac is not a Lyndon word,

Formally, given a string w, its Lyndon factorization CFL(w) is a sequence
CFL(w) = (f1, f2, . . . , fn) of words such that f1 ≥ f2 ≥ · · · ≥ fn and each
fi is a Lyndon word. For example, given w1 = gcatcaccgctctacagaac, we have
that CFL(w1) = (g, c, atc, accgctct, acag, aac). The notation CFL is due to the
fact that stating the uniqueness of this factorization is usually credited to Chen,
Fox and Lyndon [15]. We recall that CFL can be computed in linear time and
constant space [21].

6 P. Bonizzoni et al.

The notion of Lyndon words has been shown to be useful in theoretical
applications, such as the well-known proof of the Runs Theorem [2], as well as in
string compression analysis. Furthermore, the Lyndon factorization has recently
revealed to be a useful tool also in investigating queries on suffixes of a word
and sorting such suffixes with strong potentialities for string comparison that
have not been completely explored and understood. Relations between Lyndon
words and the Burrows-Wheeler Transform (BWT) have also been discovered
first in [18,34] and, more recently, in [3,28,29]. A connection is found between
the Lyndon factorization CFL and the Lempel-Ziv (LZ) factorization [26], where
it is shown that in general the size of the LZ factorization is larger than the size
of the Lyndon factorization, and in any case the size of the Lyndon factorization
cannot be larger than a factor of 2 with respect to the size of LZ. This result
has been further extended in [40] to overlapping LZ factorizations.

Conservation Property of CFL. In [10] a new property of the Lyndon fac-
torization, named Conservation Property [6,7,13], has been proved, which is
crucial in our framework, and here reported. More precisely, let CFL(w) =
(�1, �2, . . . , �n). We firstly recall that x is a simple factor of w if, for each occur-
rence of x as a factor of w, there is j, with 1 ≤ j ≤ n, such that x is a factor of
�j . So, let x = �′′

i �i+1 · · · �j−1�
′
j be a non simple factor of w, for some indexes i, j

with 1 ≤ i < j ≤ n, and �i = �′
i�

′′
i , �j = �′

j�
′′
j .

The above-mentioned Conservation Property is stated below and it compares
the Lyndon factorization of w and that of its non-simple factors.

Lemma 1 [9,10]. Let w ∈ Σ+ be a word and let CFL(w) = (�1, . . . , �n)
be its Lyndon factorization. For any i, j, with 1 ≤ i ≤ j ≤ n, one has
CFL(�i�i+1 · · · �j) = (�i, �i+1, . . . , �j). In addition, let x be a non-simple factor
of w such that x is not a concatenation of consecutive factors of CFL(w) and let
�′′
i , �i+1, . . . , �j−1, �

′
j be such that x = �′′

i �i+1 · · · �j−1�
′
j, with 1 ≤ i < j ≤ n.

Let CFL(�′′
i) = (m1, . . . , mh) and CFL(�′

j) = (v1, . . . , vt). We have

CFL(x) = (m1, . . . , mh, �i+1, . . . , �j−1, v1, . . . , vt)

where it is understood that if �′′
i = 1 (resp. �′

j = 1), then the first h terms (resp.
last t terms) in CFL(x) vanish.

According to Lemma 1, given two strings w and w′ sharing a common over-
lap x, under some hypothesis, there exist factors that are in common between
CFL(w) and CFL(w′). Thus w and w′ will have fingerprints sharing k-fingers for
a suitable size k. For example, consider again w1 = gcatcaccgctctacagaac and
let w2 = ccaccgctctacagaagcatc. Then, CFL(w1) = (g, c, atc, accgctct, acag,
aac) and we have that CFL(w2) = (c, c, accgctct, acag, aagcatc). Hence, we
have L(w1) = (1, 1, 3, 8, 4, 3) and L(w2) = (1, 1, 8, 4, 7). The two common con-
secutive elements (8, 4) are related to the same factors in the two words (8 is
related to accgctct and 4 is related to acag) and capture the common substring
accgctctacag given by their concatenation.

Can Formal Languages Help Pangenomics? 7

Even though the hypothesis that x is not simple with respect to CFL(w)
cannot be dropped (see [6]), it is worthy of note that in real data this hypothesis
is always satisfied. Such an interesting property suggests the possibility of using
directly k-fingers as features. Indeed, in [6] it is presented an approach in which
k-fingers are used for classifying sequencing reads (Sect. 3.1).

Canonical Inverse Lyndon Factorization ICFL. The Canonical Inverse Lyn-
don factorization ICFL(w) = (f1, f2, . . . , fn) has been introduced in [8] as a
factorization of w such that f1 � f2 � · · · � fn and each fi is an inverse
Lyndon word, that is, each nonempty proper suffix of fi is strictly smaller than
fi [8]. For example, cac, tcaccgc are inverse Lyndon words. Let us consider again
w1 = gcatcaccgctctacagaac. We have that ICFL(w1) = (gca, tcaccgc, tctacagaac).
Observe that, differently from Lyndon words, inverse Lyndon words may be bor-
dered. Furthermore, this factorization is also unique and can be computed in
linear time [8].

What is the motivation of introducing a new factorization? In [10] two main
results are proved: (i) an upper bound on the length of the longest common prefix
of two factors of w starting from different positions on w is provided, and (ii) a
relation among sorting of global suffixes, i.e., suffixes of the word w, and sorting
of local suffixes, i.e., suffixes of the products of factors in ICFL(w) is given. The
latter result is the counterpart for ICFL(w) of the compatibility property, proved
in [35] for the Lyndon factorization. However, (ii) is in some sense stronger than
that one in [35], as we explain below. Indeed, as a preliminary result, in [10] it
is proved that that the longest common prefix between fi and fi+1 is shorter
than the border of fi, when w is not an inverse Lyndon word. This result is
obtained thanks to the grouping property of ICFL proved in [8]: given a word w,
the factors in ICFL(w) are obtained by grouping together consecutive factors of
the anti-Lyndon factorization of w that form a non-increasing chain for the prefix
order (the anti-Lyndon factorization of w is the Lyndon factorization w.r.t. the
inverse lexicographic order).

In this framework, a natural question is whether and how the longest common
extensions for arbitrary positions on w are related to the size of the factors in
ICFL(w). It is proved that there are relations between the length of the longest
common prefix lcp(x, y) of two factors x, y of a word w starting from different
positions on w and the maximum length M of two consecutive factors of the
inverse Lyndon factorization of w. More precisely, M is an upper bound on
the length of lcp(x, y). Thus, this result is in some sense stronger than the
compatibility property, proved in [35] for the Lyndon factorization and in [10]
for the inverse Lyndon factorization. Roughly, the compatibility property allows
us to extend to the suffixes of the whole word the mutual order between suffixes
of the concatenation of (inverse) Lyndon factors.

3.1 Some Applications: Representing and Querying Read Sequences

Sequencing technologies produce the main input data for a vast majority of algo-
rithms in Bioinformatics. For example, the only way to get the whole sequence of

8 P. Bonizzoni et al.

the genome of a single individual is to produce (by sequencing) fragmented multi-
ple copies of the genome sequence (called reads), that are computationally assem-
bled into the original sequence. The extraordinary improvements in the sequenc-
ing technologies has allowed to obtain long enough fragments w.r.t. to the original
massive sequencing consisting of reads of an average length of around 100 base
pairs. In this section we touch upon two applications of the notion of fingerprint,
presented in the previous sections, related to two traditionally difficult Bioinfor-
matics tasks: genome assembly and transcript read classification. Indeed, read fin-
gerprints provide a compact representation of the reads and, thanks to the Con-
servation Property, they are effective in preserving sequence similarities. In fact,
the k-fingers (sub-pieces of a fingerprint) are able to capture the similarity regions
between two reads in a more flexible way with respect to the k-mers of a sequence:
the length k of a k-mer is fixed, whereas the length of the read substring, under-
going a k-finger, is variable. Furthermore, fingerprints are numerical sequences
shorter than the represented character sequences and we also expect that they are
resilient to errors occurring in the reads (especially in long reads). The first appli-
cation is related to genome assembly based on the use of an overlap graph which is
constructed by detecting the overlaps between genomic reads [11,12]. When deal-
ing with long reads this task is further complicated by the length of the reads and
the high sequencing error rate. In [13] a novel alignment-free algorithm for dis-
covering the overlaps in a set of noisy long reads is presented, which exploits the
fingerprints of the reads. Indeed, the k-fingers provide anchors for computing the
overlaps between reads. The algorithm takes as input a set S of genomic reads
and, after factorizing them, builds a hash table of the k-fingers by performing a
linear scanning of the fingerprints. Next, the hash table is used in order to com-
pute in O(LN) time the common regions between each read s and the reads previ-
ously processed, assuming that the read length is L and N is the maximum num-
ber of occurrences of a unique (that is, occurring once) k-finger of s in the reads
considered at the previous iterations. At the end, the algorithm obtains the read
overlaps from all the detected common regions. Observe that comparing reads in
a reference-free framework often requires a pairwise comparison and is compu-
tationally demanding (refer for example to the problem of the identification of
the relationships between metagenomic reads [25]). The second application of the
read fingerprints is related to the problem of assigning transcriptomic reads (that
is, reads sequenced from gene transcripts of RNA-Seq reads) to their origin gene.
In [6] fingerprints are used as a machine-interpretable representation of sequenc-
ing data in order to define an effective feature embedding method for assigning
RNA-Seq reads to the origin gene. Indeed, a fingerprint (and the sequence of k-
fingers) is used to produce an embedded representation of the read. Moreover, the
machine learning classifier proposed in [6] was also extended for detecting chimeric
RNA-Seq reads, which is a subtask of gene-fusion finding methods [19,30,38]. In
fact, the chimeric reads detection problem can be seen as a variant of the read-
gene classification problem since it requires to assign a chimeric read to two genes
(instead of a single gene), which have been fused after genomic rearrangement.

Can Formal Languages Help Pangenomics? 9

4 Sample Specific Strings and Structural Variations
in Human Genome

A classical example of how combinatorics on words is helping comparative
genomics to analyze sequences, is given by the notion of minimal absent word [5]:
this is a word absent from y whose all proper factors occur in y. It has several
applications in Bioinformatics [14,36]. Here we consider a slightly different vari-
ant based on the idea of considering minimal words that are absent in a sequence
but present in another sequence: we call them specific strings. Recently, in [27]
the notion of sample specific string has been proposed to detect signatures of
variations between a reference genome R and a sample T of reads from a tar-
get individual. A sample of reads is the typical output of the sequencing of an
individual and consists of a collection of strings or reads.

Let us formally recall the notion of specific strings introduced in [27].

Definition 1. Let R (reference) and T (target) be two strings over a finite
alphabet. Then a factor s of T is a T -specific string w.r.t. to R (in short specific
string) if the following properties hold:

1. s is not a factor of R,
2. any proper factor of s occurs in R.

Then given a collection of strings S and a string R, s is a sample specific
string for the collection S, SFS in short, if s is a T -specific string for some
target T in S. A linear-time algorithm for computing T -specific string that are
not overlapping on the input sequence T is given in [27], while an extensive
discussion of some algorithmic properties is reported in [27]. SFSs have been
proved in [20] to be effective in detecting breakpoints of structural variants (SV)
i.e. medium to large size insertions and deletions in a reference genome that
are present in a human sample of high quality long reads, (e.g. PACBIO HIFI).
Indeed, the main idea behind the notion of SFS is that they may be of variable
length w.r.t. fixed length k-mers traditionally used to identify SVs as unique k-
mers occurring in a sequence. More precisely, given a substring x of a sequence
R, an insertion or deletion inside x it is likely to produce a new string y that
does not occur in R. Moreover, the breakpoints of the insertion or deletions (a
breakpoint in x is a position of x delimiting the insertion or deletion) are likely to
be associated to two factors which may be absent from R. Behind the practical
interest in SFSs they are an interesting notion from the theoretical point of view.
In particular, we conjecture that the SFSs could provide bounds on the classical
edit distance and on the edit distance with moves, a generalization of the edit
distance allowing the exchange of blocks, i.e. factors inside the sequence [17].

5 Open Problems

The method given in [6] uses representation of reads obtained starting from Lyn-
don based factorizations. A natural question, faced in the same paper, is whether

10 P. Bonizzoni et al.

the corresponding representation produced by its fingerprint or by its k-fingers is
unique, a property which is closely related to the collision phenomenon: distinct
strings may have common k-fingers. An open problem is of how the lexicographic
ordering of the alphabet may affect the collision phenomenon, The properties
described in [6] show that the choice of a specific ordering of the initial alphabet
can have a significant impact on the collision phenomenon. However, the prob-
lem of understanding if there exists an order that minimizes this phenomenon
remains open (and, if exists, which is this order) and future investigations should
be devoted to it. It is worth of note that in general, the questions of finding an
optimal alphabet ordering for Lyndon factorization (i.e., such that number of
Lyndon factors is at most, or at least, n, for a given number n) is hard [24].

As already mentioned in Sect. 3, it could be interesting to investigate how
the bound proved for the longest common prefix between suffixes of factors in
ICFL may be used for efficiently sorting suffixes. Furthermore, one challenging
question is whether ICFL could be used instead of CFL for defining a new bijective
version of the Burrows Wheeler Transform, as done in [29].

References

1. Baaijens, J.A., et al.: Computational graph pangenomics: a tutorial on data
structures and their applications. Nat. Comput. (2022). https://doi.org/10.1007/
s11047-022-09882-6

2. Bannai, H.I.T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The “Runs”
Theorem. SIAM J. Comput. 46(5), 1501–1514 (2017)

3. Bannai, H., Kärkkäinen, J., Köppl, D., Piatkowski, M.: Indexing the bijective
BWT. In: Pisanti, N., Pissis, S.P. (eds.) 30th Annual Symposium on Combina-
torial Pattern Matching, CPM 2019, 18–20 June 2019, Pisa, Italy. LIPIcs, vol. 128,
pp. 17:1–17:14 (2019)

4. Bannai, H., Tomohiro, I., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: A
new characterization of maximal repetitions by Lyndon trees. In: Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2015, San Diego, CA, USA, 4–6 January 2015, pp. 562–571 (2015)

5. Béal, M.-P., Mignosi, F., Restivo, A.: Minimal forbidden words and symbolic
dynamics. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp.
555–566. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60922-9 45

6. Bonizzoni, P., et al.: Numeric Lyndon-based feature embedding of sequencing reads
for machine learning approaches. CoRR abs/2202.13884 (2022), https://arxiv.org/
abs/2202.13884

7. Bonizzoni, P., et al.: Can we replace reads by numeric signatures? Lyndon finger-
prints as representations of sequencing reads for machine learning. In: Mart́ın-Vide,
C., Vega-Rodŕıguez, M.A., Wheeler, T. (eds.) AlCoB 2021. LNCS, vol. 12715, pp.
16–28. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74432-8 2

8. Bonizzoni, P., De Felice, C., Zaccagnino, R., Zizza, R.: Inverse Lyndon words and
inverse Lyndon factorizations of words. Adv. Appl. Math. 101, 281–319 (2018)

https://doi.org/10.1007/s11047-022-09882-6
https://doi.org/10.1007/s11047-022-09882-6
https://doi.org/10.1007/3-540-60922-9_45
https://arxiv.org/abs/2202.13884
https://arxiv.org/abs/2202.13884
https://doi.org/10.1007/978-3-030-74432-8_2

Can Formal Languages Help Pangenomics? 11

9. Bonizzoni, P., De Felice, C., Zaccagnino, R., Zizza, R.: Lyndon words versus inverse
lyndon words: queries on suffixes and bordered words. In: Leporati, A., Mart́ın-
Vide, C., Shapira, D., Zandron, C. (eds.) LATA 2020. LNCS, vol. 12038, pp. 385–
396. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40608-0 27

10. Bonizzoni, P., De Felice, C., Zaccagnino, R., Zizza, R.: On the longest common
prefix of suffixes in an inverse Lyndon factorization and other properties. Theor.
Comput. Sci. 862, 24–41 (2021)

11. Bonizzoni, P., Della Vedova, G., Pirola, Y., Previtali, M., Rizzi, R.: An external-
memory algorithm for string graph construction. Algorithmica 78(2), 394–424
(2017)

12. Bonizzoni, P., Della Vedova, G., Pirola, Y., Previtali, M., Rizzi, R.: FSG: fast string
graph construction for de novo assembly. J. Comput. Biol. 24(10), 953–968 (2017)

13. Bonizzoni, P., Petescia, A., Pirola, Y., Rizzi, R., Zaccagnino, R., Zizza, R.: Kfinger:
capturing overlaps between long reads by using Lyndon fingerprints. In: IWBBIO
Conference, Gran Canaria, Spain, 27th–30th June 2022, Proceedings. to appear
(2021)

14. Chairungsee, S., Crochemore, M.: Using minimal absent words to build phylogeny.
Theor. Comput. Sci. 450, 109–116 (2012)

15. Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus, IV. The quotient
groups of the lower central series. Ann. Math. 68, 81–95 (1958)

16. Consortium,G.P., et al.: A global reference for human genetic variation. Nature
526(7571), 68 (2015)

17. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with
moves. ACM Trans. Algorithms (TALG) 3(1), 1–19 (2007)

18. Crochemore, M., Désarménien, J., Perrin, D.: A note on the Burrows-Wheeler
transformation. Theor. Comput. Sci. 332(1), 567–572 (2005)

19. Davidson, N.M., Chen, Y., Ryland, G.L., Blombery, P., Göke, J., Oshlack, A.:
JAFFAL: Detecting fusion genes with long read transcriptome sequencing. bioRxiv
(2021). https://doi.org/10.1101/2021.04.26.441398

20. Denti, L., Khorsand, P., Bonizzoni, P., Hormozdiari, F., Chikhi, R.: Improved struc-
tural variant discovery in hard-to-call regions using sample-specific string detection
from accurate long reads. bioRxiv (2022)

21. Duval, J.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381
(1983)

22. Gagie, T., Manzini, G., Sirén, J.: Wheeler graphs: a framework for BWT-based
data structures. Theor. Comput. Sci. 698, 67–78 (2017)

23. Garrison, E., Sirén, J., Novak, A.M., et al.: Variation graph toolkit improves read
mapping by representing genetic variation in the reference. Nat. Biotechnol. 36,
875–879 (2018)

24. Gibney, D., Thankachan, S.V.: Finding an optimal alphabet ordering for Lyndon
factorization is hard. In: 38th International Symposium on Theoretical Aspects of
Computer Science (STACS2021), pp. 1–15. Leibniz International Proceedings in
Informatics (LIPIcs) (2021)

25. Girotto, S., Pizzi, C., Comin, M.: MetaProb: accurate metagenomic reads binning
based on probabilistic sequence signatures. Bioinform. 32(17), 567–575 (2016)

26. Kärkkäinen, J., Kempa, D., Nakashima, Y., Puglisi, S.J., Shur, A.M.: On the size of
Lempel-Ziv and Lyndon factorizations. In: 34th Symposium on Theoretical Aspects
of Computer Science, STACS 2017, 8–11 March 2017, Hannover, Germany. pp.
45:1–45:13 (2017)

https://doi.org/10.1007/978-3-030-40608-0_27
https://doi.org/10.1101/2021.04.26.441398

12 P. Bonizzoni et al.

27. Khorsand, P., Denti, L., Human Genome Structural Variant, C., Bonizzoni, P.,
Chikhi, R., Hormozdiari, F.: Comparative genome analysis using sample-specific
string detection in accurate long reads. Bioinform. Adv. 1(1), vbab005 (2021)

28. Köppl, D., Hashimoto, D., Hendrian, D., Shinohara, A.: In-place Bijective Burrows-
Wheeler transforms. In: 31st Annual Symposium on Combinatorial Pattern Match-
ing (CPM 2020). Leibniz International Proceedings in Informatics (LIPIcs), vol.
161, pp. 21:1–21:15 (2020)

29. Kufleitner, M.: On bijective variants of the Burrows-Wheeler transform. In: Pro-
ceedings of the Prague Stringology Conference 2009, Prague, Czech Republic,
August 31–September 2, 2009. pp. 65–79 (2009)

30. Liu, Q., Hu, Y., Stucky, A., Fang, L., Zhong, J.F., Wang, K.: LongGF: computa-
tional algorithm and software tool for fast and accurate detection of gene fusions
by long-read transcriptome sequencing. BMC Genomics 21, 793 (2020). https://
doi.org/10.1186/s12864-020-07207-4

31. Lothaire, M.: Algebraic combinatorics on words. Encycl. Math. Appl., vol. 90.
Cambridge University Press, Cambridge (1997)

32. Lyndon, R.: On Burnside problem I. Trans. Amer. Math. Soc. 77, 202–215 (1954)
33. Mäkinen, V., Välimäki, N., Sirén, J.: Indexing graphs for path queries with appli-

cations in genome research. IEEE ACM Trans. Comput. Biol. Bioinform. 11(2),
375–388 (2014)

34. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: An extension of the Burrows-
Wheeler transform. Theor. Comput. Sci. 387(3), 298–312 (2007)

35. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: Suffix array and Lyndon fac-
torization of a text. J. Discrete Algorithms 28, 2–8 (2014)

36. Pinho, A.J., Ferreira, P.J., Garcia, S.P., Rodrigues, J.M.: On finding minimal
absent words. BMC Bioinform. 10(1), 1–11 (2009)

37. Rakocevic, G., et al.: Fast and accurate genomic analyses using genome graphs.
Nat. Genet. 51(2), 354–362 (2019)

38. Rautiainen, M., et al.: AERON: transcript quantification and gene-fusion detection
using long reads. bioRxiv (2020). https://doi.org/10.1101/2020.01.27.921338

39. Sibbesen, J.A., Maretty, L., Krogh, A.: Accurate genotyping across variant classes
and lengths using variant graphs. Nat. Genet. 50(7), 1054–1059 (2018)

40. Urabe, Y., Kempa, D., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: On
the size of overlapping Lempel-Ziv and Lyndon factorizations. In: 30th Annual
Symposium on Combinatorial Pattern Matching, CPM 2019, 18–20 June 2019,
Pisa, Italy. LIPIcs, vol. 128, pp. 29:1–29:11. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2019)

https://doi.org/10.1186/s12864-020-07207-4
https://doi.org/10.1186/s12864-020-07207-4
https://doi.org/10.1101/2020.01.27.921338

Word Equations in the Context of String
Solving

Joel D. Day(B)

Loughborough University, Loughborough, UK

J.Day@lboro.ac.uk

Abstract. String solvers are tools for automatically reasoning about
words over some finite alphabet. They are commonly used to perform
analyses of string manipulating programs. A fundamental problem which
string solvers need to address is solving word equations, usually in combi-
nation with additional constraints involving e.g. string lengths or regular
languages. In this article, a survey of results on the topic of word equa-
tions is presented with an emphasis on recent results which are relevant
to the theoretical foundations of string solvers.

Keywords: Word equations · String constraints · String solving

1 Introduction

Describing one object as a combination others, whether expressed concretely
or abstractly, is one of the most fundamental things we do in mathematics.
Naturally, we can also do this for words w over some alphabet Σ. By introducing
a set X of variables, we can express w as the concatenation of smaller words,
some of which are not known explicitly. For example, if x, y ∈ X are variables
and a, b ∈ Σ, we can express that w is a word containing an occurrence of aba
(so consisting of an unknown word followed by aba followed by another unknown
word) by writing w as xabay.

Word equations arise when we have multiple ways of expressing the same
word in this way. For example, we might describe a word containing both ab and
ba via the word equation x1aby1

.= x2bay2. Formally, a word equation is a pair
(U, V) ∈ (X ∪ Σ)∗ which we usually write as U

.= V . Its solutions are substi-
tutions of the variables for words in Σ∗ which identify the two sides. Formally,
solutions are modelled by morphisms h : (X ∪ Σ)∗ → Σ∗ satisfying h(a) = a for
all a ∈ Σ and such that h(U) = h(V).

Perhaps unsurprisingly given their fundamental nature, many natural and
well-studied problems related to words can be expressed in terms of word equa-
tions. We have already seen how to express the pattern matching problem, namely
the property that a concrete word (aba) occurs as a factor of some larger word
w ∈ Σ∗ via the equation w

.= xabay. Expressing that a concrete word occurs
as a (scattered) subsequence of w can be done by adding further variables
z1, z2, . . . between each of the letters. In the case of aba, we get the equation
c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 13–32, 2022.
https://doi.org/10.1007/978-3-031-05578-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_2&domain=pdf
http://orcid.org/0000-0002-3660-7766
https://doi.org/10.1007/978-3-031-05578-2_2

14 J. D. Day

w
.= xaz1bz2ay. More generally, word equations of the form w

.= V where w ∈ Σ∗

and V ∈ (X ∪ Σ)∗ correspond exactly to the membership problem for pattern
languages (also called pattern matching with variables). For a constant k ∈ N,
the relation “x is a length-k scattered subsequence of w” where x is a variable
can also be expressed, meaning that the k-spectra (see, e.g. [67]) of words can
also be expressed as solution-sets to word equations. On the other hand, it fol-
lows from [41] that the property “x is a scattered subsequence of y” where both
x and y are variables and therefore not of bounded length cannot be expressed
via word equations.

The problems mentioned above have been well studied independently from
word equations and are substantial areas of research in their own right. Arguably
the most interesting and complex cases of word equations are when the vari-
ables occur in such a way that they form cyclic dependencies. For example, the
equation xy

.= yx for variables x and y, often referred to as the commutation
equation, is solved by a substitution if and only if x and y are substituted for rep-
etitions of the same word w [61]. The equations xyz = zux and xaby

.= ybax are
examples whose solution-sets’ descriptions are much more involved, and which
have strong connections to the Fibonacci, and Standard and Sturmian words
respectively [20,49].

The explicit study of word equations (equivalently equations in a free monoid
or semigroup) can be traced back as far as A. A. Markov in the 1940s, although
connections to Diophantine equations mean that in some sense, they have been
studied indirectly for much longer [32]. Originally it was hoped that the satisfi-
ability problem - whether or not a given word equation has a solution - might
provide an means of connecting Diophantine equations with the computations
of Turing machines in such a way as to allow for a proof that solving the for-
mer is undecidable and thus settling Hilbert’s famous 10th problem. However
this turned out not to be feasible with Makanin famously providing an algo-
rithm for the satisfiability problem for word equations in 1977 [64]. Since then,
several further algorithms have been presented by Plandowski and Rytter [76],
Plandowski [74] and Jeż [52]. The latter, based on the Recompression technique
resulted in a considerably simpler proof of correctness and has since been use to
improve the PSPACE complexity upper bound given by Plandowski’s algorithm
to non-deterministic linear space [53].

The positive result of Makanin became highly influential in combinatorial
group theory: in a series of results ultimately resolving Tarski’s Conjectures, it
was first adapted to work for equations in free groups by Makanin himself [63,65],
before being used by Razborov to provide a method for describing all solutions
to equations in free groups via so-called Makanin-Razborov diagrams [78]. More
recently, algorithms for solving word equations have been extended to work in
a range of algebraic structures such as hyperbolic groups [19,23] and partially
commutative groups [35].

There has also been much interest in the free monoid case (on which we
concentrate in the current paper) from several perspectives. Constructions exist
(see e.g. [55,61] for reducing the satisfiability of Boolean combinations of word
equations to the satisfiability of a single word equation. Consequently, Makanin’s

Word Equations in the Context of String Solving 15

result extends to the existential theory of a free semigroup or monoid. Further
results on logics involving words/concatenation can be found e.g. in Büchi and
Senger [14] where the notion of definability is considered, and Quine [77] and
Durnev [36] who show undecidability when quantifier alternations are allowed.
Further undecidability results considering logics involving words and additional
predicates (such as “is a scattered subsequence of” and “is abelian-equivalent
to”) can be found in [26,41]. The expressive power of word equations in defining
relations and languages via (projections of) their solution-sets is considered in
detail in [55] where some powerful tools are given for showing inexpressibility
based on the notion of a synchronising factorisation.

In the field of combinatorics on words, constant-free word equations (equa-
tions of the form U

.= V where U, V ∈ X∗) have been studied extensively. In
addition to solving specific equations or families of equations [21,43,46,70,80],
a major topic of ongoing research involves independent systems of word equa-
tions - systems such that removing any one of the equations leads to a strictly
larger set of solutions [20,42,48,56,71]. A connection between constant-free word
equations and the general case is shown in [81].

From an algorithms and complexity perspective, it is easily seen that the
satisfiability problem for word equations is NP-hard. Indeed, the result fol-
lows directly from NP-completeness of the membership problem for pattern lan-
guages [8]. On the other hand, it remains a long-standing open problem as to
what the true complexity of the problem is, and in particular whether or not it is
NP-complete. Plandowski and Rytter [76] showed that long solutions are highly
compressible, and consequently, even an exponential bound on the length of the
shortest solution, when one exists, would imply inclusion in NP. Nevertheless,
the best known bound remains double-exponential [52,73].

Open Problem 1 ([76]). Is the satisfiability problem for word equations con-
tained in NP?

2 String Solving

In recent years, a whole new community has formed with the goal of developing
automated reasoning tools capable of proving or disproving statements involv-
ing words called string solvers, motivated primarily by applications in formal
methods. Simply put, string solvers take as input a string constraint which can
be thought of as a (usually quantifier-free) formula comprising Boolean combi-
nations of atomic constraints involving:

– constants from Σ∗ for some finite alphabet Σ,
– variables whose potential values range over Σ∗,
– common relations and operations on words such as concatenation, equal-

ity, length-comparisons, regular language membership, and typical string-
manipulation functions such as Replace All() and Index Of(), string-
number conversion, etc.

16 J. D. Day

Their task is then to automatically determine the satisfiability of that formula,
so, whether or not values for the variables can be found such that the formula
becomes true. A comprehensive list of common relations and operations occur-
ring as string constraints can be found in [7]. A standardised language for speci-
fying string constraints in string solvers based on the Satisfiability Modulo Theo-
ries framework has also been implemented as part of the SMT-LIB format [2,11].
Most currently available string-solvers do not cater for the whole SMT-LIB stan-
dard, but focus rather on specific subsets to which their approaches or target
applications are best suited.

Growing interest in string solving is possibly due to a steady increase in
string-manipulating programs which are vulnerable to exploitation or attack
(e.g. due to being publicly accessible on the web) in combination with substan-
tial improvements in string solvers’ own performance when employed in static
analysis tasks aimed at improving security and reliability of software. There are
many ways string solvers can be deployed in the context of software analysis.
We list a few below (see e.g. [5,12,15,60]):

Path Feasibility. A common task in static analysis is to break down the possible
executions of a piece of software into finitely many cases (paths). The problem of
path feasibility involves working out which combinations of conditions on inter-
nal values result in paths which might actually occur in a real execution, and
conversely which combinations of conditions are contradictory and so don’t need
to be considered further. Path feasibility analyses are also particularly useful in
automated test-case generation.

Sanitisation and Validation. Cross-site scripting (XSS) and SQL injection
attacks have both regularly been listed on the OWASP list of Top 10 Web
Application Security Risks in recent years [1]. Although the two categories have
been merged into a single one: “injection” in the 2021 list, it remains in a promi-
nent position at #3. Such injection attacks involve tricking a system to execute
malicious code. In the case of SQL injection, it might be that textual input is
given which later forms part of an SQL database query constructed as a string.
Maliciously designed entries, when not properly sanitised, can then influence the
structure and meaning of the query, allowing the user to access or erase data.
In XSS attacks, a similar effect can be achieved by getting a user’s browser to
execute malicious code e.g. in a link. Errors in input sanitisation and valida-
tion are not uncommon and automated analysis of (parts of) software handling
externally generated data can help to reduce such errors [15].

Dynamically Generated Code. It is becoming increasingly common in pro-
gramming languages to be able to dynamically load code such as functions and
classes from string variables meaning that the executed code depends on the
values of those string variables at runtime. While extremely powerful, this is
also dangerous if the strings are not constructed safely and correctly. Again,
both static and dynamic analyses performed with the help of string solvers can
mitigate to some extent these risks.

Word Equations in the Context of String Solving 17

The are also many potential areas of application for string solvers beyond
software analysis and formal methods more generally, for example in database
theory [10,37,38] or as automated proof assistants for areas such as combina-
torics on words (see e.g. [47]).

Many string solving tools are now available employing a wide range of strate-
gies, including CVC5 [9], Z3Str4 [68], Norn [3], Z3-Trau [4], OSTRICH [17],
Sloth [45], Woorpje [24,28], CertiStr [54] and HAMPI [57]. Some, such as CVC5
and Z3str4 are designed to be more general, while others are developed with
more specific tasks in mind. Many benchmarks exist, and in addition to the
MOSCA (meeting on String Constraints and Applications) workshop [40], there
is also now a string track at the annual SMT competition. Several meta-tools
have been developed for comparing string solvers [58], automatically producing
or altering test cases and benchmarks (fuzzing) [13] and very recently also for
analysing large and often opaque sets of benchmarks [27].

Nevertheless, many challenges remain, of which one is obtaining a better
understanding of the theoretical foundations involving word equations in com-
bination with other combinations of constraints. When atomic constraints are
restricted to involve only concatenation and equality comparisons, string solving
can be reduced to solving word equations. Several other types of constraint, like
regular language membership and linear arithmetic involving string-lengths are
well understood in isolation and can be tackled in practice using highly opti-
mised tools. However a common feature of string solving applications is that
types of constraints often have to satisfied in combination.

It has been known since the 1990s that satisfiability of word equations with
regular language membership constraints on the variables is decidable [33,82]
(see also [61]). However, many other combinations quickly lead to undecidabil-
ity: for example in the presence of a Replace All() operator (modelled formally
as finite transducers) [60] or in the presence of functions which count the num-
bers of a letter occurring in a word [14,26]. Since concatenation, equality (and
thus word equations), regular language membership and linear (in)equalities over
lengths of variables are particularly prominent types of string constraints (which
additionally can in combination be used to model several other common con-
straints such as Index Of()), a particularly important open problem remains:

Open Problem 2. Is the satisfiability problem decidable for quantifier-free for-
mulas combining word equations with regular language membership and linear
(in)equalities over the lengths of variables?

Formally, the satisfiability problem for quantifier-free formulas is a natural
extension of the satisfiability problem for word equations: can we find substitu-
tions for the variables which make the formula true when evaluated according
to the natural semantics?

We call atomic constraints consisting of regular language membership regular
constraints. They have the form x ∈ L where x is a variable and L is a regular

18 J. D. Day

language given e.g. by an NFA or regular expression1. Similarly, we call atomic
constraints consisting of linear (in)equalities over lengths of variables length con-
straints. We use |x| to denote the length of a word x, including the case that
x is a variable and the length is then an unknown number. Length constraints
can be formalised e.g. as having the form c1|x1| + c2|x2| . . . ck|xk| ⊕ d1|x1| +
d2|x2| . . . dk|xk| where ⊕ ∈ {>,=}, and for 1 ≤ i ≤ k, ci, di ∈ Z and xi are vari-
ables. Using this terminology, and recalling that Boolean combinations of word
equations can be rewritten as a single equation, Open Problem 2 asks whether
the satisfiability problem for word equations with regular and length constraints
is decidable. An example of a string constraint involving word equations, reg-
ular constraints and length constraints is given below (x, y, z are variables and
a, b ∈ Σ.

(x .= yabz ∧ |y| > |z|) ∨ (x .= ybaz ∧ z ∈ a∗)

Both regular constraints and length constraints can be subsumed
by language-membership constraints involving visibly pushdown languages
(VPLs) [6]. VPLs generalise regular languages while retaining many of the desir-
able closure and algorithmic properties. Nevertheless, it is shown in [25] that
combining word equations with VPL membership constraints results in an unde-
cidable satisfiability problem.

Theorem 1 ([25]). For every recursively enumerable language L, there exists a
quantifier free formula f combining word equations and VPL membership con-
straints and a variable x occurring in f , such that

L = {w | x may be substituted by w as part of a satisfying assignment for f}.

It follows that the satisfiability problem for such formulas is undecidable.

Since VPLs share many properties with regular languages, VPL-membership
constraints can be viewed as only a minor generalisation of regular (and length)
constraints. This leads us to the following open problem, for which a negative
would also yield a negative answer to Open Problem 2.

Open Problem 3. Does there exist a recursively enumerable language L which
is not expressible as the set

{w | x may be substituted by w as part of a satisfying assignment for f}
for some quantifier free formula f combining word equations, regular constraints
and length constraints?

A careful application of Greibach’s theorem reveals that we cannot in general
decide whether a property of words expressed by solutions to a string constraint
1 Since it is easy to simulate the intersection of regular languages via conjunctions of

regular constraints, the satisfiability problem for formulas containing regular con-
straints is automatically PSPACE-hard. Therefore, we can convert between any rea-
sonable choices for specifying regular languages without affecting the computational
complexity.

Word Equations in the Context of String Solving 19

combining word equations, regular constraints, and length constraints can also
be expressed using a combination of word equations and regular constraints
alone.

Theorem 2 ([25]). The following problem is undecidable: given a quantifier
free formula f combining of word equations, regular constraints and length con-
straints, and a variable x occurring in f , does there exist a quantifier free formula
f ′ containing only word equations and regular constraints and a variable y in f ′

such that S1 = S2 where:

S1 = {w | x may be substituted by w as part of a satisfying assignment for f}
and

S2 = {w | x may be substituted by w as part of a satisfying assignment for f ′}?

A weaker version of Open Problem 2, where regular constraints are omitted,
is also a long standing open problem in the field of word equations.

Open Problem 4. Is the satisfiability problem decidable for quantifier-free for-
mulas combining word equations and linear (in)equalities over the lengths of
variables?

The difficulty of dealing with word equations in combination with length
constraints is highlighted in [62], where they show that the set {(|h(x)|, |h(y)|) |
h is a solution to xaby

.= ybax}, where |w| denotes the length of the word w, is
not definable in Presburger arithmetic.

3 A Closer Look at Solution-Sets

One of the most natural ways to try to improve our understanding of word
equations, and in particular to improve techniques for solving them in com-
bination with other constraints in practice, is to look closer at the structure
of their solution-sets. Indeed, if when we are given a string constraint consist-
ing, for example, of word equations, regular language memberships and length
(in)equalities, one could try to solve the overall constraint by first providing a
description of the set of solutions to the system of word equations without the
additional constraints, and subsequently use that description to reason whether
a solution exists satisfying the additional constraints. For example, given the
string constraint

xy
.= yx ∧ |y| > |x| ∧ x ∈ {ab}∗ ∧ y /∈ a{a, b}+

one could first notice that a pair of words x, y is a solution to the word equation
xy

.= yx if and only if they are both repetitions of the same word, or more
formally, if there exist w ∈ Σ∗ and p, q ∈ N0 such that x = wp and y = wq where
w0 is the empty word and wi+1 = wiw [61]. With such an explicit description
to hand, it is then not difficult to observe that since x ∈ {ab}+, x and y must
necessarily both be repetitions of w = ab. From y /∈ a{a, b}∗ we further conclude
that y is the empty word, and since this implies that |y| > |x| cannot be met,
that this string constraint is unsatisfiable.

20 J. D. Day

3.1 Parametric Solutions

The description of solutions x, y to the equation xy
.= yx given in terms of an

unknown word w and numbers p, q is called a parametric solution. Parametric
solutions are particularly useful because they are a very explicit description of
the solution-set. Following [20], they are defined formally as follows.

Definition 1. Let Δ,Γ be alphabets. We call elements of Δ word parameters
and elements of Γ numerical parameters. Parametric words are defined induc-
tively as follows.

– Each element of Δ is a parametric word,
– if δ is a parametric word and k ∈ Γ is a numerical parameter, then δk is a

parametric word,
– if δ1, δ2 are parametric words, then their concatenation δ1δ2 is also a para-

metric word.

Every assignment ϕ of words in Σ∗ to the word parameters and numbers from
N0 to the numerical parameters maps a parametric word to a unique concrete
word ϕ(δ) ∈ Σ∗ called the value.

Given a word equation E over n variables, a parametric solution for E is
an n-tuple of parametric words such that every assignment ϕ induces a solution.
Moreover, E is said to be parametrizable if the solution-set is exactly described
by finitely many parametric solutions.

The definition above is given in context of constant-free word equations. For
this reason, it does not include provision for constants occurring in parametric
solutions. However, it is very natural to extend Definition 1 to the more general
case by simply adding the axiom that each element of Σ∪{ε} is also a parametric
word, where ε denotes the empty word.

Unfortunately, although it was shown by Hmelevskii [44] that every constant-
free equation with at most three variables is parametrizable, the same does not
hold when a fourth variable is introduced. A more concise proof of the latter
fact is given by Czeizler in [20].

Theorem 3 (Czeizler [20], Hmelevskii [44]). Let x, y, z, v be variables. Then
the word equation xyz

.= zvx is not parametrizable.

Of course the negative parametrizability result also carries through to the
general case in which constants are also allowed. In fact, it follows from [49]
that the word equation xaby

.= ybax with only two variables x and y is not
parametrizable.

3.2 Graph Representations of Solution-Sets

A key question then, is how to represent solution-sets to word equations if not by
parametric words? One answer can be found in approaches for algorithmically
solving word equations which have been extended to produce descriptions of the
full solution-set.

Word Equations in the Context of String Solving 21

Decision procedures for solving word equations usually revolve around some
non-deterministic search for solutions, made necessary by the fact that the sat-
isfiability problem is NP-hard. This search can often be formalised in terms of
iteratively applying transformation rules (e.g. to a possibly extended representa-
tion of the equation, or a solution to it2) with the aim of eventually reaching some
trivial case signifying that a solution exists. Such an approach yields a (possibly
infinite) graph which, with the correct setup, provides a complete description
of the set of solutions by virtue of accounting for the search across all possibili-
ties. Guaranteeing that the graph is finite presents more of a challenge, although
there are now several different approaches which achieve this.

In an early example of this approach, Makanin’s algorithm for solving equa-
tions in a free group was used by Razborov in developing an algorithmic rep-
resentation of all solutions to systems of equations in a free group [78]. In [75],
Plandowski adapted his algorithm for solving word equations to produce a finite
graph representing all solutions, and more recently, the same was achieved in a
simpler manner using the Recompression technique of Jeż [52].

Diekert, Jeż and Plandowski generalised the Recompression approach to work
in the presence of both regular membership constraints and involution [34]. This
combination is significant because it allows for the extension of methods from
the free monoid to the free group setting. Shortly after, Ciobanu, Diekert and
Elder [18] provided a simpler representation in terms of EDT0L languages.

Theorem 4 ([18]). Solution-sets to word equations with regular membership
constraints and involution (and hence also equations in free groups) are EDT0L
languages. In particular, they are also indexed languages.

Indexed languages are a subset of the context-sensitive languages. EDT0L
(Extended Deterministic Table 0-Interaction Lindermayer) languages are lan-
guages defined by a specific variety of so-called L-systems, which generate words
by iterated applications of morphisms to some initial “seed” word. They are
strictly contained in the indexed languages and are incomparable to context-free
languages. Despite their verbose name, EDT0L languages are a natural class
with a simple intuition, corresponding to the case when the application of the
morphisms is constrained by some NFA-like control.

Definition 2. Let A be an alphabet and L ⊆ A∗. Then L is an EDT0L language
if there exists an alphabet C with A ⊆ C, a word w ∈ C∗ and a rational set R
of morphisms h : C∗ → C∗ such that L = {h(w) | h ∈ R}.

Given an equation U
.= V with variables x1, x2, . . . , xn, the construction

from [18] essentially equates the set of solutions

{(g(x1), g(x2), . . . , g(xn)) | g(U) = g(V)}
with the set {(h(c1), h(c2), . . . , h(cn)) | h ∈ R} for some rational set of
morphisms R and additional letters c1, c2, . . . , ck. The latter set is then eas-
ily encoded as an EDT0L language using a separator symbol # as the set
2 These two viewpoints are not mutually exclusive as a word equation can be thought

of as a compact representation of a solution.

22 J. D. Day

{h(c1#c2# . . . #cn) | h ∈ R}. The set R, when represented by the underlying
NFA, provides a graph representation of all solutions. This graph representation
facilitates algorithmic solutions to problems other than just the satisfiability
problem. In particular (in)finiteness can be determined by looking for cycles in
the NFA defining R.

Corollary 1 ([18]). It is decidable whether the solution-set to a (system of)
word equations with regular language membership constraints is finite.

Unfortunately, these graph representations are not as well suited to other
canonical decision problems. Indeed, negative results can be inferred from [36,
39], both of which provide proofs of the fact that deciding the truth of logical
sentences of the form

∀x∃y1, y2, . . . , yn. ϕ

where ϕ is a Boolean combination of word equations is undecidable. In particular,
we get the following.

Theorem 5 ([36,39]). It is undecidable whether or not, given a word equation
E containing a variable x (and possibly others), the set {h(x) | h is a solution
to E} is exactly Σ∗.

Moreover, we note the following negative result from [25].

Theorem 6 ([25]). It is undecidable, given a word equation E containing a
variable x (and possibly others), the set {h(x) | h is a solution to E} is a regular
language.

Consequently, we cannot expect that any reasonable (computable) represen-
tation of solution-sets to word equations is sufficiently descriptive as to allow for
inference of all interesting properties.

3.3 Nielsen Transformations

A disadvantage of the graph representations discussed in the previous section is
that, even in for those that are guaranteed to be finite, the edge relations are
complex (or, at least in the case of Recompression, highly non-deterministic)
meaning it is difficult to study their structure in detail. Quadratic word equa-
tions, in which each variable occurs at most twice, offer a much simpler means
of producing a finite graph describing all solutions via a rewriting process based
on a well-known type of morphism called Nielsen transformations.

The rewriting relation, which we denote ⇒NT , is combinatorially simple at
a local level. When applied iteratively to a given word equation E, it induces a
graph G⇒NT

E describing all solutions which in the general case is usually infinite,
but in the quadratic case is guaranteed to be finite. G⇒NT

E has as vertices word
equations (including E) and its edges are labelled with morphisms ψ : (X ∪
Σ)∗ → (X ∪ Σ)∗. Solutions to E are obtained by composing the morphisms

Word Equations in the Context of String Solving 23

occurring as edge-labels on walks3 in the graph starting at E and finishing at the
trivial equation ε

.= ε. The underlying idea comes from a basic fact concerning
semigroups called Levi’s lemma, stated as follows.

Lemma 1 (Levi’s Lemma). Let u, v, x, y ∈ Σ∗ be words such that uv = xy.
Then there exists w such that either:

– u = xw and wv = y, or
– x = uw and wy = v.

Levi’s lemma applies to word equations in the following way: given a word
equation xU

.= yV where x, y ∈ X ∪ Σ are the leftmost symbols on each side
of the equation and U, V ∈ (X ∪ Σ)∗ are the remaining parts, we have three
possibilities for a non-erasing solution4 h: either

– h(x) = h(y) and h(U) = h(V) (this corresponds to the case that w = ε in
Levi’s lemma), or

– h(x) = h(y)w and wh(U) = h(V) for some w ∈ Σ+

– h(x)w = h(y) and h(U) = wh(V) for some w ∈ Σ+.

In the first case, if x, y ∈ Σ with x = y, no solutions exist. If x = y ∈ Σ
then solutions to E are exactly solutions to U

.= V . Otherwise, solutions h to
E can be found by looking for solutions h′ to the equation U ′ .= V ′ obtained
by replacing x everywhere by y in U and V respectively if x is a variable (or
vice-versa if y is a variable).

In the second case, if x is not a variable, then no solutions exist for this
case. Otherwise, by introducing a new variable z (intended to account for w,
so that h(z) = w) we can find solutions h to E in terms of solutions h′ to the
equation zU ′ .= V ′ obtained by replacing all occurrences of x by yz in U and V
respectively. The third case is symmetrical to the second.

Thus, overall, solutions to E can be reduced to solutions to (at most) three
further equations derived by cancelling some symbols from the left and perform-
ing a replacement of the form x → yz or x → y. Notice that when performing a
replacement x → yz, we actually remove all occurrences of x from the equation,
and so we might as well re-use the variable x in place of z to get x → yx (and
similarly for y → xz we might as well use y in place of z to get y → xy). These
replacements can be performed via the application of morphisms from a set Ψ
defined as follows: for x ∈ X ∪Σ and y ∈ X, ψ(x,y), ψ̂(x,y) : (X ∪Σ)∗ → (X ∪Σ)∗

belong to Ψ such that:

ψ(x,y)(y) = xy ψ̂(x,y)(y) = x

ψ(x,y)(z) = z for z = y, ψ̂(x,y)(z) = z for z = y.

3 Paths in which both vertices and edges may be repeated.
4 Non-erasing solutions are solutions for which h(x) is not the empty word for any

variable x. The general case can be reduced to the non-erasing case by simply guess-
ing in advance which variables should be mapped to the empty word and removing
them from the word equation(s).

24 J. D. Day

The morphisms ψ(x,y) are called Nielsen transformations, hence the name of
this approach. We denote by ⇒NT the relation consisting of pairs (E1, E2) such
that E2 may be derived from E1 according to one of the three cases above.

Now suppose we have a quadratic equation E and consider E′ such that
E ⇒NT E′. Then the removal of the leftmost symbols means that |E| ≥ |E′|.
Similarly, the number of occurrences of each variable in E is at least as high as
in E′, and no new symbols are introduced. It follows that there are only finitely
many equations E′′ such that E ⇒∗

NT E′′ where ⇒∗
NT denotes the reflexive

transitive closure of ⇒NT .
Let G⇒NT

E be the graph whose vertices are equations E′′ reachable from E by
iteratively applying ⇒NT , and whose edges are given by ⇒NT , labelled with the
appropriate corresponding morphisms. Given a word equation E′ occurring as a
vertex in this graph, for each solution h′ to E′ there exists an edge in the graph
from E′ to a (not necessarily distinct) equation E′′ labelled with a morphism
ψ, such that h′ = h′′ ◦ ψ for some strictly shorter solution5 h′′ to E′′. For this
reason, all solutions to the original equation E can be obtained by composing
the morphisms occurring on a walk in the graph from the original equation to
the trivial equation ε

.= ε as mentioned previously. If the equation ε
.= ε is not

present in the graph, no solutions exist.
As an example, consider the equation E given by Xabaa

.= baaXa over the
variable X and constants a, b ∈ Σ. The graph G⇒NT

E (with labels) is shown in
Fig. 1.

Treating the graph as an NFA AE over the alphabet of morphisms Ψ whose
accepting state is ε

.= ε and whose initial state is E, we obtain a rational set
L(AE) of morphisms exactly describing the set of solutions to E. For example
one solution is given by h = ψ̂(a,X) ◦ ψ(b,X) ◦ ψ(a,X) ◦ ψ(a,X) ◦ ψ(b,X) (note that
the composition occurs in the opposite order from left to right to the “word”
from Ψ∗ accepted by A), which is the substitution h given by h(X) = baaba,
h(a) = a and h(b) = b.

h(X) = ψ̂(a,X) ◦ ψ(b,X) ◦ ψ(a,X) ◦ ψ(a,X) ◦ ψ(b,X)(X)

= ψ̂(a,X) ◦ ψ(b,X) ◦ ψ(a,X) ◦ ψ(a,X)(bX)

= ψ̂(a,X) ◦ ψ(b,X) ◦ ψ(a,X)(baX)

= ψ̂(a,X) ◦ ψ(b,X)(baaX)

= ψ̂(a,X)(baabX)
= baaba

The simplicity of this approach based on Nielsen transformations and Levi’s
lemma, along with the fact that it is easily adapted for use with regular language
membership constraints and length constraints means it is a good candidate for
practical implementations. As such it has been used in the string solving tool
Woorpje [28], and other string solvers make use of similar ideas. It also has
5 Where the length of the solution is measured in terms of the word obtained by

applying it to one side of the equation.

Word Equations in the Context of String Solving 25

Fig. 1. The graph G⇒NT
E in the case that E is the equation Xabaa

.
= baaXa. Trivially

unsolvable equations in the graph are crossed out and their ingoing edge labels omitted.

several advantages from a theoretical point of view: the structural properties of
the graph G⇒NT

E provide information about the solution-set of E. For example
if it is a directed acyclic graph (DAG), then it is straightforward to show that
E is parametrizable. Actually, a slightly stronger statement, namely that G⇒NT

E

does not have two distinct cycles sharing a vertex, is sufficient to guarantee that
E is parametrizable [72]. Similar restrictions on the structure of G⇒NT

E have
been used to identify cases where satisfiability remains decidable even when
length constraints are added [62]. Several case where the graph is guaranteed to
be finite even when the underlying equation E is not quadratic are considered
in [69]. Moreover the simplicity of the rewriting transformations make the graphs
obtained via Nielsen transformations much more accessible for more detailed
combinatorial analyses such as the one given in [29].

3.4 Restricted Word Equations

In the absence of positive answers to Open Problems 1, 2 and 4, it is natural
to consider them also in the context of syntactically restricted subclasses of
word equations. For simplicity, we concentrate in this section on single word
equations. Some care is needed when generalising to Boolean combinations: while
in general it is no restriction to do so due to the constructions e.g. in [55], these
constructions are not guaranteed to respect the syntactic restrictions and so
cannot be used directly to generalise the results in this section. However, in most
cases equivalent results hold at least for systems (conjunctions) of equations.

Solution-sets to word equations containing only one variable have a particu-
larly restricted form and are well understood:

Theorem 7 ([59,71]). Let x be a variable, and let U
.= V be a word equation

such that U, V ∈ {x} ∪ Σ∗. Then one of the following holds:

26 J. D. Day

1. The set of solutions for U
.= V is finite and has cardinality at most three, or

2. There exist words u, v ∈ Σ∗ such that uv is primitive6 the set of solutions for
U

.= V has the form {h : ({x} ∪ Σ)∗ → Σ∗ | h(x) ∈ (uv)∗u}.
Corollary 2. Word equations with exactly one variable are parametrizable.
Moreover, the satisfiability problem for word equations with one variable and
with length constraints and regular constraints is decidable.

The satisfiability problem for word equations is solvable in deterministic lin-
ear time [51]. Similarly, word equations with two variables are also solvable in
polynomial time [16,22,49]. However, we have already seen that solution-sets to
word equations with two variables are not necessarily parametrizable, and Open
Problems 2 and 4 remain open in this case.

Further cases can be derived from restricted classes of string constraints.
The notions of solved form [39], acyclic [5] and straight-line [60] constraints
are all syntactic restrictions designed such that cyclic dependencies between
the variables are avoided. As such, the solution-sets to constraints adhering to
these definitions are generally parametrizable, and satisfiability for constraints
involving word equations, length constraints and regular constraints (and even
Replace All() in the case of the straight-line fragment) become decidable.

We have already mentioned in the previous section that quadratic word equa-
tions - equations which contain each variable at most twice (although the number
of variables is unconstrained) - possess the desirable property that the simple
Nielsen transformation algorithm for producing a graph representation of all
solutions is guaranteed to terminate. Nevertheless, Open Problems 1, 2 and 4
all remain open even in the quadratic case. It was shown in [79] that the sat-
isfiability problem remains NP-hard in the quadratic case. On the other hand,
word equations in which variables occur at most once are trivially parametriz-
able, and it is easily seen that the satisfiability problem remains decidable in
the presence of various additional constraints, including length constraints and
regular constraints.

In [66], the class of regular word equations was proposed as a natural sub-
class of the quadratic word equations. The initial idea was to consider classes
of equations U

.= V for which the satisfiability problem remains NP-hard, even
when the two sides U and V constitute patterns for which the membership prob-
lem can be solved in polynomial time. Regular word equations derive their name
from regular patterns [50] in which each variable occurs at most once. Conse-
quently, each variable may occur twice overall, but not twice on the same side
of the equation.

Definition 3. A word equation U
.= V is regular if each variable occurs at most

once in U and at most once in V .

Surprisingly, even severely restricted subclasses of regular word equations
have an NP-hard satisfiability problem. The class of regular-ordered word equa-
tions (ROWEs) is the class of regular word equations for which the variables
6 A word is primitive if it cannot be written as the repetition of a strictly shorter

word.

Word Equations in the Context of String Solving 27

occur in the same order from left to right on both sides of the equation (some
variables may still occur on only one side). So, for example, the equation
x1ax2bx3

.= x1babax3 is regular-ordered, but x1ax2bx3
.= x3babax1 is not.

Theorem 8 ([30]). The satisfiability problem for ROWEs is NP-complete.

Moreover, it was shown in [62] that the satisfiability problem for ROWEs
with length constraints is decidable, extending a weaker result from [26].

In [31], Theorem 8 was extended slightly to cover regular-reversed word equa-
tions (RRWEs): equations U

.= V in which the order of variables in V is exactly
the reverse of the order of the variables in U . A much more comprehensive
result is given in [29], which describes in detail the structure of the graphs
G⇒NT

E obtained as the result of the Nielsen transformation algorithm described
in Sect. 3.3 in the case of all regular word equations. A consequence of this
description is that the minimal path between any two vertices (when it exists)
has length bounded by a polynomial in the length of the original equation.

Theorem 9 ([29]). Let E be a regular word equation. Let v1, v2 be vertices in
the graph G⇒NT

E such that there exists a path from v1 to v2. Then the shortest
such path has length at most O(|E|12).

Consequently, in order to (non-deterministically) check whether a solution
exists to a regular word equation E, it suffices to guess the equations occurring
along the path in G⇒NT

E from E to ε
.= ε. Each equation on that path will be

no larger than E, and it is easily verifiable in polynomial time that there is
indeed an edge between each successive pair of equations. Thus, it follows that
satisfiability for regular word equations is in NP. Combined with the hardness
result from [30], we get the following.

Corollary 3 ([29,30]). The Satisfiability problem for regular word equations is
NP-complete.

Of course one of the most natural open problems remains whether the tech-
niques of [29] can be extended to work for quadratic word equations more gen-
erally.

Open Problem 5. Does Theorem 9 also hold for all quadratic word equations?

Moreover, the detailed analysis in [29] would be a good basis from which to
try to resolve Open Problems 4 and 2 in the sub-case of regular word equations.
In particular, several structures in the graphs G⇒NT

E are described which might
provide new insights into how complex the set of lengths of solutions to (regular)
word equations can be.

Open Problem 6. What is the decidability status for the satisfiability problem
for regular word equations with length constraints? What about for regular word
equations with length constraints and regular constraints?

28 J. D. Day

4 Conclusions

The study of word equations has yielded many significant and influential results
over the past half-century, and is of interest in a variety of areas, including
logic, formal languages, combinatorics on words, and combinatorial group theory.
More recently, there has been substantial interest in the topic from the within
the formal methods community, specifically in relation to string solvers, which
aim to solve problems involving words which often incorporate word equations
alongside other constraints such as regular language membership and length-
comparisons. The two fields are mutually beneficial: theoretical results on word
equations and related topics can provide insights and ideas for more efficient,
powerful and ultimately practical algorithms implemented in string solvers while
on the other hand, a better understanding of the problems that string solvers
must tackle can reveal new open problems and directions to be explored in the
theory. Recent results focusing on the structure and properties of solution-sets
for restricted classes of word equations provide a basis from which we can hope
to make progress on long standing open problems which remain central to both
the theory and practice.

References

1. OWASP top ten web application security risks. https://owasp.org/www-project-
top-ten/. Accessed 15 Mar 2022

2. SMT-LIB standard for unicode strings. https://smtlib.cs.uiowa.edu/theories-
UnicodeStrings.shtml. Accessed 15 Mar 2022

3. Abdulla, P.A., et al.: Norn: an SMT solver for string constraints. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462–469. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 29

4. Abdulla, P.A., et al.: Efficient handling of string-number conversion. In: Proceed-
ings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 943–957 (2020)

5. Abdulla, P.A., et al.: String constraints for verification. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 150–166. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 10

6. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the
36th ACM Symposium on Theory of Computing (STOC), STOC 2004, pp. 202–
211 (2004)

7. Amadini, R.: A survey on string constraint solving. ACM Comput. Surv. (CSUR)
55(1), 1–38 (2021)

8. Angluin, D.: Finding patterns common to a set of strings. In: Proceedings of the
Eleventh Annual ACM Symposium on Theory of Computing, pp. 130–141 (1979)

9. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: Fisman,
D., Rosu, G. (eds) TACAS 2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-99524-9 24

10. Barceló, P., Muñoz, P.: Graph logics with rational relations: the role of word com-
binatorics. ACM Trans. Comput. Logic (TOCL) 18(2), 1–41 (2017)

11. Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-LIB standard: Version 2.0. In:
Proceedings of the 8th International Workshop on Satisfiability Modulo Theories,
Edinburgh, England, vol. 13, p. 14 (2010)

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
https://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-030-99524-9_24

Word Equations in the Context of String Solving 29

12. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00768-2 27

13. Blotsky, D., Mora, F., Berzish, M., Zheng, Y., Kabir, I., Ganesh, V.: StringFuzz:
a fuzzer for string solvers. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018.
LNCS, vol. 10982, pp. 45–51. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96142-2 6

14. Büchi, J.R., Senger, S.: Definability in the existential theory of concatenation and
undecidable extensions of this theory. In: Mac Lane, S., Siefkes, D. (eds.) The
Collected Works of J. Richard Büchi, pp. 671–683. Springer, New York (1990).
https://doi.org/10.1007/978-1-4613-8928-6 37

15. Bultan, T., Yu, F., Alkhalaf, M., Aydin, A.: String Analysis for Software Verifica-
tion and Security, vol. 10. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-68670-7

16. Charatonik, W., Pacholski, L.: Word equations with two variables. In: Abdulrab,
H., Pécuchet, J.-P. (eds.) IWWERT 1991. LNCS, vol. 677, pp. 43–56. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-56730-5 30

17. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for
path feasibility of string-manipulating programs with complex operations. Proc.
ACM Program. Lang. 3(POPL), 1–30 (2019)

18. Ciobanu, L., Diekert, V., Elder, M.: Solution sets for equations over free groups
are EDT0L languages. Internat. J. Algebra Comput. 26(05), 843–886 (2016)

19. Ciobanu, L., Elder, M.: Solutions sets to systems of equations in hyperbolic groups
are EDT0L in PSPACE. arXiv preprint arXiv:1902.07349 (2019)

20. Czeizler, E.: The non-parametrizability of the word equation xyz = zvx: a short
proof. Theoret. Comput. Sci. 345(2–3), 296–303 (2005)

21. Czeizler, E., Holub, Š, Karhumäki, J., Laine, M.: Intricacies of simple word equa-
tions: an example. Int. J. Found. Comput. Sci. 18(06), 1167–1175 (2007)

22. Da̧browski, R., Plandowski, W.: Solving two-variable word equations. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.
408–419. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-
8 36

23. Dahmani, F., Guirardel, V.: Foliations for solving equations in groups: free, virtu-
ally free, and hyperbolic groups. J. Topol. 3(2), 343–404 (2010)

24. Day, J.D., et al.: On solving word equations using SAT. In: Filiot, E., Jungers, R.,
Potapov, I. (eds.) RP 2019. LNCS, vol. 11674, pp. 93–106. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-30806-3 8

25. Day, J.D., Ganesh, V., Grewal, N., Manea, F.: Formal languages via theories over
strings: What’s decidable? Unpublished manuscript

26. Day, J.D., Ganesh, V., He, P., Manea, F., Nowotka, D.: The satisfiability of word
equations: decidable and undecidable theories. In: Potapov, I., Reynier, P.-A. (eds.)
RP 2018. LNCS, vol. 11123, pp. 15–29. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-00250-3 2

27. Day, J.D., Kröger, A., Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.:
BASC: benchmark analysis for string constraints. Unpublished manuscript

28. Day, J.D., Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: Rule-based
word equation solving. In: Proceedings of the 8th International Conference on
Formal Methods in Software Engineering, pp. 87–97 (2020)

29. Day, J.D., Manea, F.: On the structure of solution-sets to regular word equations.
In: Theory of Computing Systems, pp. 1–78 (2021)

https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1007/978-1-4613-8928-6_37
https://doi.org/10.1007/978-3-319-68670-7
https://doi.org/10.1007/978-3-319-68670-7
https://doi.org/10.1007/3-540-56730-5_30
http://arxiv.org/abs/1902.07349
https://doi.org/10.1007/978-3-540-27836-8_36
https://doi.org/10.1007/978-3-540-27836-8_36
https://doi.org/10.1007/978-3-030-30806-3_8
https://doi.org/10.1007/978-3-030-00250-3_2
https://doi.org/10.1007/978-3-030-00250-3_2

30 J. D. Day

30. Day, J.D., Manea, F., Nowotka, D.: The hardness of solving simple word equations.
In: 42nd International Symposium on Mathematical Foundations of Computer Sci-
ence (MFCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

31. Day, J.D., Manea, F., Nowotka, D.: Upper bounds on the length of minimal solu-
tions to certain quadratic word equations. In: 44th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2019)

32. Diekert, V.: More than 1700 years of word equations. In: Maletti, A. (ed.) CAI 2015.
LNCS, vol. 9270, pp. 22–28. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-23021-4 2

33. Diekert, V., Gutierrez, C., Hagenah, C.: The existential theory of equations with
rational constraints in free groups is PSPACE-complete. Inf. Comput. 202(2), 105–
140 (2005)

34. Diekert, V., Jeż, A., Plandowski, W.: Finding all solutions of equations in free
groups and monoids with involution. Inf. Comput. 251, 263–286 (2016)

35. Diekert, V., Muscholl, A.: Solvability of equations in free partially commutative
groups is decidable. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP
2001. LNCS, vol. 2076, pp. 543–554. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-48224-5 45

36. Durnev, V.G.: Undecidability of the positive ∀∃3-theory of a free semigroup. Sib.
Math. J. 36(5), 917–929 (1995)

37. Freydenberger, D.D.: A logic for document spanners. Theory Comput. Syst. 63(7),
1679–1754 (2019)

38. Freydenberger, D.D., Peterfreund, L.: The theory of concatenation over finite mod-
els. In: 48th International Colloquium on Automata, Languages, and Programming
(ICALP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

39. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with length
constraints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012.
LNCS, vol. 7857, pp. 209–226. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39611-3 21

40. Hague, M.: Strings at MOSCA. ACM SIGLOG News 6(4), 4–22 (2019)
41. Halfon, S., Schnoebelen, P., Zetzsche, G.: Decidability, complexity, and expres-

siveness of first-order logic over the subword ordering. In: 2017 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–12. IEEE
(2017)

42. Harju, T., Nowotka, D.: On the independence of equations in three variables. The-
oret. Comput. Sci. 307(1), 139–172 (2003)

43. Harju, T., Nowotka, D.: On the equation xk = zk1
1 zk2

2 · · · zkn
n in a free semigroup.

Theoret. Comput. Sci. 330(1), 117–121 (2005)
44. Hmelevskii, J.I.: Equations in free semigroups, volume 107 of Am. Math. Soc.

Transl. Proc. Steklov and Insti. Mat (1976)
45. Holik, L., Janku, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with

concatenation and transducers solved efficiently. In: Proceedings of the ACM on
Programming Languages, vol. 2, pp. 1–32. ACM Digital Library (2018)

46. Holub, Š, Kortelainen, J.: On systems of word equations with simple loop sets.
Theoret. Comput. Sci. 380(3), 363–372 (2007)

47. Holub, Š., Starosta, Š.: Formalization of basic combinatorics on words. In: 12th
International Conference on Interactive Theorem Proving (ITP 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2021)

48. Holub, Š, Žemlička, J.: Algebraic properties of word equations. J. Algebra 434,
283–301 (2015)

https://doi.org/10.1007/978-3-319-23021-4_2
https://doi.org/10.1007/978-3-319-23021-4_2
https://doi.org/10.1007/3-540-48224-5_45
https://doi.org/10.1007/3-540-48224-5_45
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/978-3-642-39611-3_21

Word Equations in the Context of String Solving 31

49. Ilie, L., Plandowski, W.: Two-variable word equations. RAIRO-Theoret. Inform.
Appl. 34(6), 467–501 (2000)

50. Jain, S., Ong, Y.S., Stephan, F.: Regular patterns, regular languages and context-
free languages. Inf. Process. Lett. 110(24), 1114–1119 (2010)

51. Jeż, A.: One-variable word equations in linear time. Algorithmica 74(1), 1–48
(2016)

52. Jeż, A.: Recompression: a simple and powerful technique for word equations. J.
ACM (JACM) 63(1), 1–51 (2016)

53. Jeż, A.: Word equations in non-deterministic linear space. J. Comput. Syst. Sci.
123, 122–142 (2022)

54. Kan, S., Lin, A.W., Rümmer, P., Schrader, M.: CertiStr: a certified string solver.
In: Proceedings of the 11th ACM SIGPLAN International Conference on Certified
Programs and Proofs, pp. 210–224 (2022)

55. Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and
relations by word equations. J. ACM (JACM) 47(3), 483–505 (2000)

56. Karhumäki, J., Saarela, A.: On maximal chains of systems of word equations. Proc.
Steklov Inst. Math. 274(1), 116–123 (2011)

57. Kiezun, A., Ganesh, V., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI:
a solver for word equations over strings, regular expressions, and context-free gram-
mars. ACM Trans. Softw. Eng. Methodol. (TOSEM) 21(4), 1–28 (2013)

58. Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: ZaligVinder: a generic test
framework for string solvers. J. Softw. Evol. Process, e2400 (2021)

59. Laine, M., Plandowski, W.: Word equations with one unknown. Int. J. Found.
Comput. Sci. 22(02), 345–375 (2011)

60. Lin, A.W., Barceló, P.: String solving with word equations and transducers:
towards a logic for analysing mutation XSS. In: Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 123–136 (2016)

61. Lothaire, M.: Algebraic Combinatorics on Words, vol. 90. Cambridge University
Press, Cambridge (2002)

62. Majumdar, R., Lin, A.W.: Quadratic word equations with length constraints,
counter systems, and Presburger arithmetic with divisibility. Log. Meth. Comput.
Sci. 17 (2021)

63. Makanin, G.S.: Decidability of the universal and positive theories of a free group.
Math. USSR-Izvestiya 25(1), 75 (1985)

64. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Matem-
aticheskii Sbornik 145(2), 147–236 (1977)

65. Makanin, G.S.: Equations in a free group. Math. USSR-Izvestiya 21(3), 483 (1983)
66. Manea, F., Nowotka, D., Schmid, M.L.: On the complexity of solving restricted

word equations. Int. J. Found. Comput. Sci. 29(05), 893–909 (2018)
67. Maňuch, J.: Characterization of a word by its subwords. In: Developments in Lan-

guage Theory: Foundations, Applications, and Perspectives, pp. 210–219. World
Scientific (2000)

68. Mora, F., Berzish, M., Kulczynski, M., Nowotka, D., Ganesh, V.: Z3str4: a multi-
armed string solver. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021.
LNCS, vol. 13047, pp. 389–406. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90870-6 21

69. Nepeivoda, A.: Program specialization as a tool for solving word equations. In:
Electronic Proceedings in Theoretical Computer Science, EPTCS, pp. 42–72 (2021)

70. Nowotka, D., Saarela, A.: One-variable word equations and three-variable constant-
free word equations. Int. J. Found. Comput. Sci. 29(05), 935–950 (2018)

https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1007/978-3-030-90870-6_21

32 J. D. Day

71. Nowotka, D., Saarela, A.: An optimal bound on the solution sets of one-variable
word equations and its consequences. SIAM J. Comput. 51(1), 1–18 (2022)

72. Petre, E.: An elementary proof for the non-parametrizability of the equation
xyz=zvx. In: Fiala, J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004. LNCS, vol.
3153, pp. 807–817. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-28629-5 63

73. Plandowski, W.: Satisfiability of word equations with constants is in NEXPTIME.
In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Com-
puting, pp. 721–725 (1999)

74. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J.
ACM (JACM) 51(3), 483–496 (2004)

75. Plandowski, W.: An efficient algorithm for solving word equations. In: Proceedings
of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, pp. 467–
476 (2006)

76. Plandowski, W., Rytter, W.: Application of Lempel-Ziv encodings to the solution
of word equations. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 731–742. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055097

77. Quine, W.V.: Concatenation as a basis for arithmetic. J. Symbolic Logic 11(4),
105–114 (1946)

78. Razborov, A.A.: On systems of equations in free groups. In: Combinatorial and
Geometric Group Theory, pp. 269–283 (1993)

79. Robson, J.M., Diekert, V.: On quadratic word equations. In: Meinel, C., Tison, S.
(eds.) STACS 1999. LNCS, vol. 1563, pp. 217–226. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-49116-3 20

80. Saarela, A.: Word equations with kth powers of variables. J. Comb. Theory Ser.
A. 165, 15–31 (2019)

81. Saarela, A.: Hardness results for constant-free pattern languages and word equa-
tions. In: 47th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

82. Schulz, K.U.: Makanin’s algorithm for word equations-two improvements and a
generalization. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572, pp. 85–150.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55124-7 4

https://doi.org/10.1007/978-3-540-28629-5_63
https://doi.org/10.1007/978-3-540-28629-5_63
https://doi.org/10.1007/BFb0055097
https://doi.org/10.1007/BFb0055097
https://doi.org/10.1007/3-540-49116-3_20
https://doi.org/10.1007/3-540-55124-7_4

A Survey on Delegated Computation

Giovanni Di Crescenzo1, Matluba Khodjaeva2(B), Delaram Kahrobaei3,
and Vladimir Shpilrain4

1 Peraton Labs, Basking Ridge, NJ, USA
gdicrescenzo@peratonlabs.com

2 CUNY John Jay College of Criminal Justice, New York, NY, USA
mkhodjaeva@jjay.cuny.edu

3 CUNY Graduate Center, New York, NY, USA
dkahrobaei@gc.cuny.edu

4 City University of New York, New York, NY, USA

vshpilrain@ccny.cuny.edu

Abstract. In the area of delegated computation, the main problem asks
how a computationally weaker client device can obtain help from one
or more computationally stronger server devices to perform some com-
putation. Desirable guarantees for the client include correctness of the
computation and privacy of the inputs, regardless of any server malicious
behavior. In this survey, we review techniques in the area of single-server
delegated computation, focusing on a representative subset of algebraic
operations that are components of many cryptographic schemes: (a) ring
multiplication, (b) cyclic group exponentiation, and (c) bilinear-map
pairing. We describe and analyze examples of delegation protocols for
these operations, discuss the state of the art, report numeric performance
results, and point at several directions for future research.

1 Introduction

Modern computation paradigms (e.g., cloud/fog/edge computing, large-scale
computations over big data, Internet of Things, etc.) may involve devices of
potentially very different computational resources (i.e., power, sizes and mem-
ory). Methods to share computation among devices of significantly different com-
putational power are now attracting both practitioners and researchers for their
combined theoretical insights and relevance to applications.

The area of server-aided cryptography, or delegation/outsourcing of crypto-
graphic primitives, studies some of these questions with the focus on the following
main problem: how can a computationally weaker client delegate cryptographic
computations to computationally superior servers? This problem has been first
discussed in [1,29,44] and a first formal model has been produced in [35]. In
the past few years, this problem is seeing an increased interest because of the
prevalence of cryptography in today’s practical applications, and the momentum
in the shift of modern computation paradigms.

A solution to this problem is an interactive protocol between a computation-
ally weaker client and one or more servers, where the client holding an input x

c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 33–53, 2022.
https://doi.org/10.1007/978-3-031-05578-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_3&domain=pdf
https://doi.org/10.1007/978-3-031-05578-2_3

34 G. Di Crescenzo et al.

wants to delegate to the server(s) computation of a function F on input x, and
the main desired requirements for this delegated computation of F (x) are:

1. result correctness: if the client and server(s) are honest, the client obtains the
correct output of the function evaluated on its input;

2. input privacy: only minimal or no information about x should be revealed to
the server(s);

3. result security: the server(s) should not be able, except possibly with very
small probability, to convince the client to accept a result different than F (x);
and

4. client efficiency: the client’s runtime should be much smaller than computing
F (x) without delegation.

Following, for instance [55], protocols can be partitioned into (a) an offline
phase, where input x is not yet known, but somewhat expensive computation can
be performed by the client or a client deployer and stored on the client’s device,
and (b) an online phase, where we assume the client’s resources are limited, and
thus the client needs the server’s help to compute F (x). (see Fig. 1 for a pictorial
description of this interaction model.)

Fig. 1. Delegated computation of y = F (x): interaction model

In this survey, we review techniques in the area of delegated computation to
a single, possibly malicious, server, focusing on a representative subset of opera-
tions that are components of a large number of cryptographic schemes: (a) ring
multiplication, (b) cyclic group exponentiation, and (c) bilinear-map pairing. We
describe and analyze examples of protocols for delegated computation of these
operations where the amount of work performed by the client in the online phase
is less than what is needed in the best known method for non-delegated compu-
tation, as listed in Table 1. We also report numeric performance results, listed
in Table 2, derived by software implementations or benchmark-based analysis,

A Survey on Delegated Computation 35

to give evidence that the achieved asymptotic improvements are also relevant
for input lengths of practical interest. We conclude with some open problems on
the delegated computation of these as well as other operations.

Table 1. Delegated computations and reduced client work

Delegated computation C’s dominating online computation

Ring multiplication Reduction modulo small prime

Multiplication modulo small prime

Group exponentiation Small-exponent exponentiation

Bilinear-map pairing Small-exponent exponentiation

Organization of This Survey. In Sect. 2 we review main notions and require-
ments of interest in the design of delegated computation protocols. We then
review the problems of delegated computation of ring multiplication in Sect. 3,
group exponentiation in Sect. 4, and bilinear-map pairings in Sect. 5. In each of
these sections, we describe the related algebraic setting, show an example of a
delegated computation protocol, and review related literature work. Finally, we
conclude in Sect. 6 by discussing directions for future research.

Table 2. Runtimes of delegated computations derived from commodity-laptop imple-
mentations [19,21,25] or estimations [23] from benchmark runtimes [10], setting λ = 60,
σ = 2048 for multiplication, exponentiation and product of exponentiations, σ = 256
for pairings, and m = 10 for product of multiplications. Parameters λ, σ, metrics
tF , tS , tC and input scenarios are defined in Sect. 2.

Mod Mult
y = a ∗ b mod p

Exp y = gx Prod of Exp
y =

∏m
i gxi

i

Pairing
y = e(A, B)

a and b
pub on

a priv on
b pub off

g pub off
x priv on

g1, . . . , gm pub off
x1,, xm priv on

A pub on
B pub off

A priv on
B pub off

A priv on
B priv off

tF 6.64E–06 6.85E–06 4.16E–03 4.15E–02 1.15E+02 1.15E+02 1.15E+02

tS 8.26E–06 4.82E–06 1.66E–02 9.13E–02 2.30E+02 2.30E+02 2.30E+02

tS/tF 1.24 0.70 3.98 2.20 2.00 2.00 2.00

tC 1.82E–06 2.53E–06 1.82E–04 1.75E–04 6.26E+00 6.33E+01 1.15E+01

tF /tC 3.65 2.71 22.92 237.63 18.38 18.18 9.98

2 Model and Definitions

In this section we describe the model for delegated computation, including a
discussion of the requirements of result correctness, input privacy, result security,
and efficiency for delegated client-server computation protocols in the single,
possibly malicious, server model.

36 G. Di Crescenzo et al.

System Scenario, Entities, and Protocol. We consider a system model
with a single client, denoted as C, and a single server, denoted as S. As client’s
computational resources are expected to be more limited than server’s, C is
interested in delegating the computation of specific functions to S. We assume
that the communication link between C and S is authenticated or not subject
to modification attacks, and note that such attacks can be separately addressed
using communication security techniques from any applied cryptography text-
book (see, e.g., [45]). The interaction model admits an offline phase, where, say,
precomputation can be performed and its results can be made available onto C’s
device. This model has been justified in several ways, all appealing to different
application settings. In the presence of a trusted party, such as a deploying entity
setting up C’s device, the trusted party can simply perform the precomputation
and store them on C’s device. If no trusted party is available, in the presence of
a pre-processing phase where C’s device does not have significant computation
constraints, C can itself perform the precomputed exponentiations and store
them on its own device.

Let σ denote the computational security parameter (i.e., the length of an
instance to an underlying intractable computational problem, based on the best
known solution for this problem), and let λ denote the statistical security param-
eter (i.e., a parameter such that events with probability 2−λ are extremely rare).
Both parameters are expressed in unary notation (i.e., 1σ, 1λ).

Let F : Dom(F) → CoDom(F) be a function, where Dom(F) denotes F ’s
domain, CoDom(F) denotes F ’s co-domain, and desc(F) denotes F ’s descrip-
tion. Assuming desc(F) is known to both C and S, and input x is known only
to C, we define a client-server protocol for the delegated computation of F in the
presence of an offline phase as a 2-party, 2-phase, interactive protocol (C,S),
which operates in an offline phase (before the function input is available) and
an online phase (after the function input is available), and satisfies the following
result correctness, result security, input privacy and efficiency requirements.

Result Correctness Requirement. Informally, the (natural) correctness
requirement states that if both parties follow the protocol, then C obtains some
output at the end of the protocol, and this output is, with high probability, equal
to the value obtained by evaluating function F on C’s input.

Result Security Requirement. Informally speaking, the most basic result
security requirement would state the following: if C follows the protocol, a mali-
cious adversary corrupting S cannot convince C to output, at the end of the
protocol, some result y′ different from the value y = F (x), except for probability
2−λ, where λ is the (configurable) statistical parameter. To model an adversary’s
partial knowledge of the input, we define a stronger result security requirement,
by allowing the adversary to even choose C’s input x, before attempting to con-
vince C of an incorrect output. We also do not restrict the adversary to run in
polynomial time. The definition assumes that the communication link between
C and S is not subject to modification attacks, and we note that such attacks
can be independently addressed using textbook time-efficient symmetric cryp-
tography techniques (e.g., MACs). We also augment the adversary’s power so

A Survey on Delegated Computation 37

that the adversary can even take part in a number of protocol executions, where
it chooses C’s input before attempting to convince C to output an incorrect
result.

Input Privacy Requirement. Informally speaking, the input privacy require-
ment guarantees the following: if C follows the protocol, a malicious adversary
corrupting server S, cannot obtain any information about C’s input x from a pro-
tocol execution. This is formalized by extending the indistinguishability-based
approach typically used in formal definitions for encryption schemes. That is,
the adversary can pick two equal-size inputs x0 and x1, then one of these two
inputs is chosen at random and used by C in the protocol with the adversary
acting as S, and then at the end of the protocol the adversary tries to guess
which of the two inputs was used by C. Then the privacy requirement says that
such adversary cannot correctly guess which of the two inputs was used by C
better than by a random guess. We also augment the adversary’s power so that
the adversary can even take part in a number of protocol executions, where it
chooses C’s input before picking x0 and x1.

Efficiency Metrics and Requirements. Let (C,S) be a client-server protocol
for the outsourced computation of a function F . We say that (C,S) has efficiency
parameters (tF , tP , tC , tS , sc, cc,mc) if F can be computed (without outsourcing)
using tF (σ, λ) atomic operations, C can run the protocol in the offline phase
using tP (σ, λ) atomic operations and in the online phase using tC(σ, λ) atomic
operations, S can run the protocol using tS(σ, λ) atomic operations, C and S
exchange a total of at most mc messages, of total length at most cc, C’s storage
complexity sc. It is obviously of interest to minimize all these protocol efficiency
metrics, although the main efficiency goals in designing protocols are

1. tC(σ, λ) << tF (σ, λ), and
2. tS(σ, λ) not significantly larger than tF (σ, λ).

Input Scenarios. The use of the result of a delegated computation within a
cryptographic scheme or protocol may impose (or not) privacy and/or efficiency
requirements. Accordingly, it makes sense to distinguish input scenarios when
delegating computations. We say that an input x to F is

– public online if x is unknown in the offline phase but known by both parties
in the online phase;

– public offline if x is known by both parties starting from the offline phase;
– private online if x is unknown in the offline phase but known to C in the

online phase;
– private offline if x is known to C starting from the offline phase but unknown

to S.

Generally speaking, a delegated computation protocol with a private online/offline
input is also a delegated computation protocol where that input is public
online/offline, but a protocol for the latter input scenario may be more efficient
than a protocol for the former. Similarly, a delegated computation protocol with
a public/private online input is also a delegated computation protocol where that

38 G. Di Crescenzo et al.

input is public/private offline, but again a protocol for the latter input scenario
may be more efficient than a protocol for the former.

3 Delegated Computation of Ring Multiplication

3.1 Algebraic Setting

Let (R,+, ·) be a ring, where by ‘+’, ‘–’ and ‘·’, we denote the addition, sub-
traction and multiplication operations between values in the set R. By expo-
nentiation to an exponent t we denote the ring multiplication of an element by
itself t − 1 times. If σ denotes a security parameter, then we let � denote the
length of the binary representation of elements in R and we consider the typical
parameter setting of cryptographic applications, where we set � = σ. We say
that R is efficient if its addition, subtraction and multiplication operation can
be computed in time polynomial in �.

In this section we will mainly consider the following two classes of efficient
rings:

– the ring (Z,+, ·) of integers;
– the ring (Zp,+ mod p, · mod p), for a prime p, where Zp denotes the set of

integers {0, . . . , p − 1}.

We briefly recall the best known runtime results for relevant operations over these
rings, on input of a σ1-bit value x1 and a σ2-bit value x2, where we assume, wlog,
that x1 > x2:

– addition/subtraction: Ta(σ1) = O(σ1)
– modular reduction (i.e., x1 mod x2): Tmr(σ1, σ2) = O(σ2(σ1 − σ2))
– multiplication: Tm(σ1, σ2), which is = O(σ1σ2), using the grade school algo-

rithm, in practical uses for elliptic-curve cryptography; or = O(σ1.585
1), using

Karatsuba’s algorithm (see, e.g., [40,41]), in practical uses for RSA and dis-
crete logarithm based cryptography. Algorithms with even lower asymptotic
runtime expressions, include the Toom-Cook algorithm (see, e.g., Section 9.5.1
of [18]), the Schonhage-Strassen algorithm based on FFT (see, e.g., Section
9.5.6 of [18]), and Furer’s algorithm [30], although according to [31], these
are less recommended for applied cryptography because of practical analy-
sis considerations. (For more details, see Section 2.2 of [31] and references
therein.)

3.2 An Example Protocol

As an example of delegated computation of ring multiplication, we describe the
single-server protocol Pmul from [25], for ring (Zp,+ mod p, · mod p), where p
is a large prime, in the input scenario ‘a and b public online’ (i.e., no privacy is
required on values a, b ∈ Zp).

Informal Description of Pmul. The protocol is based on the generalization
in [25] of a classical probabilistic test for the verification of integer products,

A Survey on Delegated Computation 39

credited to Pippenger and Yao in [38]. The server computes the product w of
the two inputs a, b over the ring of integers and sends to the client the quotient
w0 and remainder w1 modulo p of this product. The client reduces a, b, w0, w1

modulo a small randomly chosen prime q, and verifies the correct computation of
w0, w1 with respect to a, b modulo q. To satisfy the client efficiency and security
requirements, the prime q is chosen in the offline phase so that the verification in
the online phase is satisfied by an incorrect server message only with probability
≤ 2−λ, for a desired statistical parameter λ. To further reduce client online
computation, even the value p mod q is computed in the offline phase.

Formal Description of Pmul = (C,S). By π(x) we denote the number of
prime integers less than or equal to x.

Offline Input: 1σ, 1λ, prime p ∈ {0, 1}σ

Offline phase instructions:

1. Randomly chooses a prime q < 2η,
where η = �λ + log2 λ + log2(π(2σ))�

2. Compute p′ = p mod q
3. Return: (q, p′) and store this pair on C’s device

Online Input to C and S: 1σ, 1λ, prime p ∈ {0, 1}σ, a, b ∈ Zp

Online Input to C: q, p′

Online phase instructions:

1. S computes w := a ·b (i.e., the product, over Z, of a, b, considered as integers)
S computes w0, w1 such that w = w0 · p + w1 (over Z), where 0 ≤ w1 < p
S sends w0, w1 to C

2. C computes w′
0 := w0 mod q and w′

1 := w1 mod q
C computes a′ := a mod q and b′ := b mod q
If a′ · b′ �= w′

0 · p′ + w′
1 mod q then

C returns: ⊥ and the protocol halts
C returns: y := w1

Protocol Pmul satisfies result correctness, result security (with probability 2−λ),
and various efficiency properties.

The correctness property follows by observing that if C and S follow the
protocol, then S computes w0, w1 as w = a · b = w0 · p + w1 and the equation
a · b = w0 · p + w1 is satisfied over Z and is therefore satisfied also modulo the
small prime q. This prevents C to return ⊥, and allows C to return the correct
output value w1 = w mod p = a · b mod p.

The security property follows by showing that for any malicious S, possibly
deviating from the protocol instructions, the probability that S convinces C
to accept a result y �= a · b mod p is ≤ 2−λ. The proof of this property uses
the following lemma from [25], which is a 2-parameter generalization of a result
underlying Pippenger’s probabilistic test [38,56], on checking integer equations
modulo small random primes.

40 G. Di Crescenzo et al.

Lemma 1. Let λ, σ be integers such that λ ≥ 28 and 7 ≤ σ ≤ 4096. Also, let
π(u) denote the number of prime integers ≤ u and let Pη be the set of prime
integers < 2η. For any integer x such that 1 ≤ x ≤ 22σ, if η = �λ + log2 λ +
log2(π(2σ))�, it holds that Prob [q ← Pη : x = 0 mod q] ≤ 2−λ.

As for the efficiency properties, by protocol inspection we observe that

1. C’s online runtime tC is dominated by the time to compute 4 η-bit-modulus
reductions of σ-bit ring values, 2 multiplications between η-bit integers, and
1 addition between η-bit values;

2. S’s runtime tS is dominated by the time to compute 1 multiplication and 1
division mod p;

3. offline phase runtime tP is dominated by the time to compute 1 η-bit random
prime generation and 1 η-bit-modulus reduction of a σ-bit ring value;

4. communication complexity consists of cc = 2 σ-bit integers sent by S to C;
5. message complexity consists of a single message from S to C;
6. storage complexity on C’s device consists of 2 η-bit integers.

In [25], performance results from a software implementation of Pmul on a com-
modity laptop were discussed. In particular, the improvement between delegated
and non-delegated computation was measured as tF /tC ∈ [5.07, 6.87], for val-
ues of σ, λ that are relevant to practical applications of discrete-logarithm and
factoring-based cryptographic schemes (i.e., when σ = 3072 and λ ∈ [10, 50]).

3.3 Related Work

The ring multiplication operation is ubiquitous in cryptographic schemes.
A result in [7], building on techniques from [8], can be stated as a protocol

for the delegated computation of multiplication in ring (Zp,+ mod p, · mod p),
in the input scenario ‘a and b private online’, and requiring 5 non-colluding and
honest-but-curious servers. We believe this protocol can be adapted to run with
4 non-colluding and honest-but-curious servers and no offline phase, or 3 servers
with an offline phase. In all these protocols the client only performs linear-time
operations (e.g., additions, subtractions, random choice of a ring value).

In [25] the authors show that ring multiplication can be efficiently delegated
by a client with quasilinear online runtime to a single, malicious, server, in each
of these two input scenarios: (1) a and b public online; and (2) a private online
and b public offline.

4 Delegated Computation of Group Exponentiation

4.1 Algebraic Setting and Preliminaries

Let (G,×) be a group, let σ be its computational security parameter (i.e., the
length of an instance for the underling problem which is assumed to be compu-
tationally intractable), and let � denote the length of the binary representation

A Survey on Delegated Computation 41

of elements in G. Typically, in cryptographic applications we set � = σ. We also
assume that (G,×) has order q, for some large prime q, and is thus cyclic, and
denote as g one of its generators.

By y = gx we denote the exponentiation (in G) of g to the x-th power; i.e.,
the value y ∈ G such that g × · · · × g = y, where the multiplication operation ×
is applied x − 1 times. Let Zq = {0, 1, . . . , q − 1}, and let Fg,q : Zq → G denote
the function that maps every x ∈ Zq to the exponentiation (in G) of g to the
x-th power. By desc(Fg,q) we denote a conventional description of the function
Fg,q that includes its semantic meaning as well as generator g, order q and the
efficient algorithms computing multiplication and inverses in G. On input a σ1-
bit exponent x and a σ2-bit base g, the runtime Texp of exponentiation can be
assumed to be O(σ1Tm(σ2)) using the ‘square-and-multiply’ algorithm, where
Tm(σ) denotes the time for multiplication of two σ-bit integers. In practice, a
few optimized variants of this algorithm are used (for more details, see Section
2.8 of [31] and references therein).

We say that a group is efficient if its description is short (i.e., has length poly-
nomial in σ), its associated × operation and the inverse operation are efficient
(i.e., they can be executed in time polynomial in σ).

We now define an efficiently verifiable membership protocol for G as a one-
message protocol, denoted as the pair (mProve,mVerify) of algorithms, satisfying

1. completeness: for any w ∈ G, mVerify(w,mProve(w))=1;
2. soundness: for any w �∈ G, and any mProve′,

mVerify(w,mProve′(w))=0; ‘
3. efficient verifiability: the runtime of mVerify is o(Texp);
4. efficient provability: the runtime of mProve is O(Texp).

While groups used in cryptography schemes are usually efficient, it is not clear
whether all of them have an efficiently verifiable group membership protocol.
We now show three examples of groups that are often used in cryptography and
that do have efficiently verifiable membership protocols.
Example 1: (G,×) = (Z∗

p, · mod p), for a large prime p. This group was one of
the most recommended for early foundational cryptographic schemes like the
Blum-Micali pseudo-random generator [6], etc. Note that multiplication and
inverses modulo p can be computed in time polynomial in log p, and an effi-
ciently verifiable membership protocol goes as follows:

1. on input w, mProve does nothing;
2. on input w, mVerify returns 1 if 0 < w < p and 0 otherwise.

The completeness, soundness, efficient provability properties of this protocol are
easily seen to hold. The efficient verifiability property follows by noting that
mVerify runs in time linear in log p, which is strictly smaller than the time for
exponentiation mod p (in fact, even the time for multiplication mod p).
Example 2: (G, ∗) = (Gq, · mod p), for large primes p, q such that p = kq + 1,
where k �= q is another prime and Gq is the q-order subgroup of Z∗

p. This group is

42 G. Di Crescenzo et al.

one of the most recommended for cryptographic schemes like the Diffie-Hellman
key exchange protocol [26], El-Gamal encryption [28], Cramer-Shoup encryption
[17], DSA etc. It is known that by Sylow’s theorem, Gq in this case is the only
subgroup of order q in the group Z

∗
p (i.e. gq = 1 mod p if and only if g ∈ Gq).

Also, the set of elements of Gq is precisely the set of k-th powers of elements of
Z

∗
p. Thus, an efficiently verifiable membership protocol can be built as follows:

1. on input w, mProve computes r = w(q+1)/k mod p and returns r;
2. on input w, r, mVerify returns 1 if w = rk mod p and 0 otherwise.

The completeness and soundness properties of this protocol are easily seen to
hold. The efficient provability follows by noting that mProve only performs 1
exponentiation mod p. The efficient verifiability property follows by noting
that mVerify requires one exponentiation mod p to the k-th power. We note
that mVerify is very efficient in the case when k is small (e.g., k = 2), which is
a typical group setting in cryptographic protocols based on discrete logarithms.
Example 3: (G,+) = (E(Fp),point addition), for a large prime p > 3: an ellip-
tic curve E over a field Fp, is the set of pairs (x, y) ∈ E(Fp) that satisfy the
Weierstrass equation

y2 = x3 + ax + b mod p,

together with the imaginary point at infinity O, where a, b ∈ Fp and 4a3+27b2 �=
0 mod p. The elliptic curve defined above is denoted by E(Fp). This group
is one of the most recommended for cryptographic schemes like Elliptic-curve
Diffie-Hellman key exchange protocol, Elliptic-curve ElGamal encryption, etc.
Moreover, many discrete logarithm based cryptographic protocols defined over
the set Zp in Example 1 can be rewritten as defined over E(Fp). When those
protocols are rewritten using the additive operation for this group instead of
modular multiplication over Zp, the multiplication operation is rewritten as point
addition and the exponentiation is rewritten as scalar multiplication in the group
E(Fp), and the textbook “square-and-multiply” algorithm becomes a “double-
and-add” algorithm. An efficiently verifiable membership protocol for this group
simply consists of verifying the Weierstrass equation, as follows:

1. on input (x, y), mProve does nothing;
2. on input (x, y), mVerify returns 1 if y2 = x3 +ax+ b mod p and 0 otherwise.

The completeness, soundness, efficient provability properties of this protocol are
easily seen to hold. The efficient verifiability property follows by noting that
mVerify performs only 4 multiplications mod p.

4.2 An Example Protocol

As an example of delegated computation of group exponentiation, in this section
we describe a single-server protocol Pexp for the delegated computation of expo-
nentiation, i.e. the delegation of function Fg,q(x) = gx, where (g, q) is public
offline and x is private online. Here, g is a generator of the q-order group G,

A Survey on Delegated Computation 43

which is assumed to be efficient and to have an efficiently verifiable membership
protocol.

Informal Description. Protocol Pexp is a slight simplification of the protocol in
[19], and the main idea consists of C using a probabilistic verification equation
to check S’s computations, this equation being verifiable using only a much
smaller number of modular multiplications than in a non-delegated computation
of F . More specifically, C injects an additional random element in the inputs on
which S is asked to compute the value of function F , so to satisfy the following
properties: (a) if S returns correct computations of F , then C can use these
random values to correctly compute y; (b) if S returns incorrect computations
of F , then S either does not meet some deterministic verification equation or
can only meet C’s probabilistic verification equation for one possible value of
the random elements; (c) C’s message hides the values of the random element
as well as C’s input to the function. By choosing a large enough domain (i.e.,
{1, . . . , 2λ}) from which this random value is chosen, the protocol achieves a very
small security probability (i.e., 2−λ). As this domain is much smaller than Gq,
this results in a considerable efficiency gain on C’s online running time.

Formal Description of Pexp. Let (mProve,mVerify) denote an efficiently ver-
ifiable membership protocol for efficient prime-order group (G,×), such as any
of the groups in Sect. 4.1, examples 1, 2, and 3.
Offline Input: 1σ, 1λ, desc(Fg,q)
Offline phase instructions:

1. Randomly choose ui ∈ Zq, for i = 0, 1
2. Set vi = gui and store (ui, vi) on C, for i = 0, 1

Online Input to C: 1σ, 1λ, desc(Fg,q), x ∈ Zq, (u0, v0), (u1, v1)
Online Input to S: 1σ, 1λ, desc(Fg,q)
Online phase instructions:

1. C randomly chooses c ∈ {1, . . . , 2λ}
C sets z0 := (x − u0) mod q, z1 := (c · x + u1) mod q
C sends z0, z1 to S

2. S computes wi := gzi and π0 :=mProve(w0)
S sends w0, w1, π0 to C

3. If mVerify(w0, π0) = 0 then
C returns: ⊥ and the protocol halts

C computes y := w0 ∗ v0
If w1 = yc ∗ v1 then

C returns: ⊥ and the protocol halts
C returns: y

Protocol Pexp satisfies result correctness, input privacy, result security (with
probability 2−λ), and various efficiency properties.

The correctness property follows by showing that if C and S follow the proto-
col, C always outputs y = Fg,q(x) = gx. First, we show that the 2 tests performed

44 G. Di Crescenzo et al.

by C are always passed and then the latter equality for C’s output y. To show
that the membership test is always passed, we note that wi is computed by S as
gzi , for i = 0, 1, and thus w0 ∈ G since g is a generator of group G. Moreover, the
probabilistic test is always passed since w1 = gz1 = gcx+u1 = (gx)cgu1 = ycv1.
This implies that C never returns ⊥, and thus returns y. To see that this returned
value y is the correct output, note that y = w0∗v0 = gz0 ∗gu0 = gx−u0 ∗gu0 = gx.

The input privacy property follows by observing that the message (z0, z1)
sent by C does not leak any information about x, since both z0 and z1 are
randomly and indepedently distributed in Zq, as so are u0 and u1 chosen.

The result security property follows by showing that for any malicious S,
possibly deviating from the protocol instructions, the probability that S con-
vinces C to accept a result y �= gx is ≤ 2−λ. The proof of this property follows
as a consequence of the following facts:

1. if the pair (w′
0, w

′
1) sent by S satisfies C’s membership and probabilistic tests,

then both w′
0 and w′

1 belong to G;
2. if w′

0, w
′
1 ∈ G then there exists at most one value of c ∈ {1, . . . , 2λ} such that

any pair (w′
0, w

′
1) �= (w0, w1) sent by S satisfies C’s probabilistic test;

3. the pair (z0, z1) sent by C does not leak any information about c.

We note that Fact 1 follows from group properties of Gq, Fact 2 follows from
a discrepancy analysis on the probabilistic test (see [19] for details), and Fact 3
follows using similar arguments as in the proof of the input privacy property.
As for the efficiency properties, by protocol inspection we observe that

1. C’s online runtime tC is dominated by the time to compute 1 λ-bit-exponent
σ-bit-base exponentiation; lower-order operations include 1 group member-
ship verifications in G, 2 multiplications in G and 1 modular multiplication
in Zq;

2. S’s runtime tS is dominated by the time to compute 2 σ-bit-exponent σ-bit-
base exponentiations + 1 group membership proof generations in G;

3. offline phase runtime tP is dominated by the time to compute 2 σ-bit-random-
exponent σ-bit-base exponentiations in G;

4. communication complexity consists of cc = 5 σ-bit integers sent between S
and C;

5. message complexity consists of mc = 2 messages between C and S;
6. storage complexity consists of sc = 4 σ-bit values stored on C’s device.

Based on a software implementation of Pexp on a commodity laptop, the
improvement between delegated and non-delegated computation was measured
as tF /tC = 22.92, for values of σ, λ that are relevant to practical applica-
tions of discrete-logarithm and factoring-based cryptographic schemes (i.e., when
σ = 2048, λ = 60), and using example 1 in Sect. 4.1, when k = 2, as a group.

4.3 Related Work

The group exponentiation operation is ubiquitous in cryptographic schemes.

A Survey on Delegated Computation 45

A number of solutions have been proposed for delegated computation of expo-
nentiation in some groups used in cryptography, even before the introduction of
a formal privacy/security model, which were either not accompanied by proofs
or broken in follow-up papers. The single-server solution from [35] assumes that
the server is honest on almost all inputs. Other solutions were proposed in more
recent papers, including [13–15,27,42,54], but these solutions either only con-
sider a semi-honest server [15], or two non-colluding servers [14], or do not target
input privacy [27] or do not satisfy input privacy [11,42], or do not satisfy result
security [58], or only achieve constant security probability (of detecting a cheat-
ing server) [13,42,54], or require the communication of more than a constant
number of group values [22].

The scheme presented in [19], allows, in the public-offline-base private-online-
exponent input scenario, efficient and result-secure delegation of exponentiation
in any prime-order group with an efficiently verifiable group membership pro-
tocol; including all groups in Examples 1–3 from Sect. 4.1. The scheme in [20]
allows, in the private-online-base public-offline-exponent input scenario, efficient
and result-secure delegation of exponentiation in the RSA group Z

∗
n, where n is

the product of two safe same-length primes. The schemes in [22] achieve the same
properties for exponentiation in arbitrary efficient groups, but at the expense of
communicating more than a constant number of group values.

5 Delegation of Pairings

5.1 Algebraic Setting

Let G1, G2 be additive cyclic groups of order q and GT be a multiplicative
cyclic group of the same order q, for some large prime q. A bilinear map (also
called pairing and so called from now on) is an efficiently computable map e :
G1 × G2 → GT with the following properties:

1. Bilinearity: for all A ∈ G1 and B ∈ G2, and for any r, s ∈ Zq, it holds that
e(rA, sB) = e(A,B)rs

2. Non-triviality: if U is a generator for G1 and V is a generator for G2 then
e(U, V) is a generator for GT

The last property rules out the trivial scenario where e maps all of its inputs to
1. We denote a conventional description of the bilinear map e as desc(e).

The currently most practical pairing realizations use an ordinary elliptic curve
E defined over a field Fp, for some large prime p, as follows. Group G1 is the
q-order additive subgroup of E(Fp); group G2 is a specific q-order additive sub-
group of E(Fpk) contained in E(Fpk) \ E(Fp); and group GT is the q-order
multiplicative subgroup of F∗

pk . Here, k is the embedding degree; i.e., the small-
est positive integer such that q|(pk −1); Fpk is the extension field of Fp of degree
k; and F

∗
pk is the field composed of non-zero elements of Fpk . After the Weil

pairing was considered in [9], more efficient constructions have been proposed
as variants of the Tate pairing, including the more recent ate pairing variants

46 G. Di Crescenzo et al.

(see, e.g., [3,49,53] for more details on the currently most practical pairing real-
izations). Even after these improvements and much work on optimization of
pairing algorithms, non-delegated computation of a pairing is more expensive
than exponentiation in any of G1,G2,GT .

Moreover, motivated by reducing the chances of low-order attacks in cryp-
tographic protocols, in [3] the authors proposed the notion of subgroup-secure
elliptic curves underlying a pairing, in turn extending the notion of GT -strong
curves from [49]. They observe that in the currently most practical pairing real-
izations, GT is a subgroup of a group GT , also contained in F

∗
pk , with the follow-

ing two properties: (1) testing membership in GT is more efficient than testing
membership in GT ;(2) all elements of GT have order ≥ q. They also suggest to
set GT = GΦk(p), where GΦk(p) is the cyclotomic subgroups of order Φk(p) in
F

∗
pk , and where Φk(p) denotes the k-th cyclotomic polynomial. Satisfaction of

above property (2) is directly implied by the definitions of both GT -strong and
subgroup-secure curves. Satisfaction of above property (1) when GT = GΦk(p) is
detailed in Section 5.2 of [3] for the curve families BN-12, BLS-12, KSS-18, and
BLS-24, in turn elaborating on Section 8.2 of [49]. There, testing membership
in GT is shown to only require one multiplication in GT and a few lower-order
Frobenius-based simplifications. This is a significant improvement with respect
to testing membership in GT , for which currently best methods require an expo-
nentiation in GT with a large or somewhat large exponent (see, e.g. [50]).

For parameterized efficiency evaluation of pairing delegated computation pro-
tocols, we can use the following definitions:

– desc(e) denotes a conventional description of the bilinear map e;
– a1 (resp. a2) denotes the runtime for addition in G1 (resp. G2);
– m1(�) (resp. m2(�)) denotes the runtime for scalar multiplication of a group

value in G1 (resp. G2) with an �-bit scalar value;
– mT denotes the runtime for multiplication of group values in GT ;
– eT (�) denotes the runtime for an exponentiation in GT to an �-bit exponent;
– pT denotes the runtime for the bilinear pairing e;
– tM denotes the runtime for testing membership of a value to GT = GΦk(p).

We summarize some known facts about these quantities, of interest when eval-
uating the efficiency of protocols. First, for large enough � ≤ q,

a1 << m1(�), a2 << m2(�), mT (�) << eT (�), eT (�) < pT .

Also, using a double-and-add (resp., square-and-multiply) algorithm, one can
realize scalar multiplication (resp., exponentiation) in additive (resp., multi-
plicative) groups using, for random scalars (resp., random exponents), about
1.5� additions (resp., multiplications). Membership of a value w in GT can be
tested using one exponentiation in GT to the q-th power (i.e., checking that

A Survey on Delegated Computation 47

wq = 1). For some specific elliptic curve families, including some of the most
recommended in practice (i.e., BN-12, BLS-12, KSS-18, BLS-24), membership
of a value w in GT = GΦk(p) can be tested using about 1 multiplication in GT

and lower-order Frobenius-based simplifications (see, e.g., [3,49]).

5.2 An Example Protocol

As an example of delegated computation of a bilinear-map pairing, in this section
we describe a single-server protocol Ppair from [23] for delegated computation of
a pairing e, when input A is public online and B is public offline in the efficient
cyclic group G. In this protocol, the client’s online complexity is dominated by a
single exponentiation to a short exponent. The main idea in this protocol is that
since both inputs A and B are publicly known, S can compute w0 = e(A,B) and
send w0 to C, along with some efficiently verifiable ‘proof’ that w0 was correctly
computed. This proof is realized by the following 3 steps: first, C sends to S a
randomized version Z1 of value A, then S computes and sends to C pairing value
w1 = e(Z1, B); and finally C verifies that w0 ∈ GT and uses w1 and a pairing
value computed in the offline phase in an efficient probabilistic verification for
the correctness of S’s message (w0, w1). A formal description follows.
Formal Description of Ppair.
Offline Input: desc(e), B ∈ G2

Offline phase instructions:

1. Randomly choose U1 ∈ G1

2. Set v1 := e(U1, B)
3. Store U1, v1 on C’s device

Online Input to C: 1σ, 1λ, desc(e), U1, v1, A ∈ G1, B ∈ G2

Online Input to S: 1σ, 1λ, desc(e), A ∈ G1, B ∈ G2

Online phase instructions:

1. C randomly chooses c ∈ {1, . . . , 2λ}
C sets Z1 := c · A + U1 and sends Z1 to S

2. S computes w0 := e(A,B), w1 := e(Z1, B) and sends w0, w1 to C
3. (Group GT ’s Membership Test:) C checks that w0 ∈ GT

(Probabilistic (w0, w1)-Correctness Test:) C checks that w1 = wc
0 · v1

If any of these tests fails then C returns ⊥ and the protocol halts
C returns y = w0

Protocol Ppair satisfies result correctness, result security (with probability
2−λ), and various efficiency properties.

The result correctness property follows by showing that if C and S follow the
protocol, C always outputs y = e(A,B). We first show that the 2 tests performed
by C are always passed. The membership test is always passed since the value
w0 sent by S belongs to GT ⊆ GT . The probabilistic test is always passed since

w1 = e(Z1, B) = e(c · A + U1, B) = e(A,B)c · e(U1, B) = wc
0 · v1.

48 G. Di Crescenzo et al.

This implies that C never returns ⊥, and thus always returns y = w0 = e(A,B).
The result security property follows by showing that for any malicious S,

possibly deviating from the protocol instructions, the probability that S con-
vinces C to accept a result y �= e(A,B) is ≤ 2−λ. The proof of this property
follows as a consequence of the following facts:

1. if the pair (w′
0, w

′
1) sent by S satisfies C’s membership and probabilistic tests,

then both w′
0 and w′

1 belong to GT ;
2. if w′

0, w
′
1 ∈ GT then there exists at most one value of c ∈ {1, . . . , 2λ} such

that any pair (w′
0, w

′
1) �= (w0, w1) sent by S satisfies C’s probabilistic test;

3. the value Z1 sent by C does not leak any information about c.

We note that Fact 1 follows from group properties of GT , Fact 2 follows from
a discrepancy analysis on the probabilistic test (see [23] for details) and critically
uses the property that all elements of GT have order > 2λ, and Fact 3 follows by
observing that Z1 is uniformly distributed in G1 since so is U1.
As for the efficiency properties, by protocol inspection we observe that

1. C’s online runtime tC is dominated by the time to compute 1 λ-bit-exponent
exponentiation in GT and 1 λ-bit-scalar multiplication in G1; lower-order
operations include 1 multiplication in GT and 1 membership verification in
group GT ;

2. S’s runtime tS is dominated by the time to compute 2 pairing computations;
3. offline phase runtime tP is dominated by the time to compute 1 pairing com-

putation;
4. communication complexity consists of cc = 3 values in G1 or GT sent between

S and C;
5. message complexity consists of mc = 2 messages between C and S;
6. storage complexity consists of 2 values in G1 or GT stored on C’s device.

The parameterized efficiency improvement on tC is about pT /eT (λ) over non-
delegated computation tF . The numeric efficiency improvement over non-
delegated computation was estimated to range between 7.180 and 24.721 depend-
ing on the elliptic curve underlying the pairing, using benchmark results from
[10].

5.3 Related Work

Pairing-based cryptography, starting with [9,37,48], has attracted much research
in the past 2 decades (see, e.g., [43]).

Protocols for the delegated computation of a pairing were first studied in a
work by Girault et al. [32]. However, protocols in both this work and [34] did
not satisfy result security in the presence of a malicious server. Schemes with
this latter property were proposed in [16,39], but these protocols turned out to
require more client computation than in a non-delegated computation. Later,
[12] showed that in their protocols the client’s runtime is strictly lower than

A Survey on Delegated Computation 49

non-delegated computation of a pairing on the KSS-18 curve [36], but, accord-
ing to [34], not on a BN curve. In [23], efficient, input-private and result-secure
delegated pairing computation protocols are presented for scenarios where at
least one of the two pairing inputs is known in the offline phase; there, about
1 order of magnitude improvement on client online runtime is achieved over
non-delegated computation, for 4 of the currently most practical elliptic curve
families. In [24], efficient, input-private and result-secure delegated pairing com-
putation protocols are presented for scenarios where both pairing inputs are
known in the online phase, again with client online runtime improving over
non-delegated computation, for 4 of the currently most practical elliptic curve
families.

6 Conclusions and Directions for Future Research

We reviewed techniques for a computationally weaker client to perform an effi-
cient, private and secure delegated computation of operations often used in
cryptography schemes, such as ring multiplication, group exponentiation and
bilinear-map pairings, where delegation is performed to a single, possibly mali-
cious, server. Single-server delegated computation is a relatively new area and
there are several directions of research and open questions, in particular about
the existence (or not) of protocols for both the computations considered in
Sects. 3,4, and 5 and related computations considered in cryptography schemes.
For instance, other delegated computations considered in the literature include
group inverses [13,47], scalar multiplication [59], isogenies [46], as well as encryp-
tion and signature schemes (e.g., [21,35,52]). For all the discussed or mentioned
computations, it is of interest to prove or disprove the existence of delegation
protocols along the following directions:

1. for all input scenarios (e.g., public/private, online/offline, etc.)
2. with improved performance on efficiency metrics (i.e., client computation,

communication, client storage complexity);
3. with security in the presence of malicious server(s) behavior;
4. with minimal possible number of servers;
5. with no or reduced use of client storage from the offline phase.

This survey focuses on delegated computation of specific operations often used
in cryptography schemes. A survey on delegated computation of specific opera-
tions beyond cryptography (yet often using cryptographic techniques to achieve
privacy and security properties) can be found in [51]. Surveys on delegated com-
putation of arbitrary functions, with clients more computationally powerful than
considered here, can be found in [2,57].

Other very related areas include the theory of program result checking [5,55],
where the output of a program on a given input is being probabilistically veri-
fied by a computationally more efficient checker, and the theory of multi-prover
interactive proof systems [4], where a polynomial-time verifier checks the truth

50 G. Di Crescenzo et al.

of a language membership statement by interacting with multiple computation-
ally more powerful and non-colluding provers. These, in turn, are very related to
the area of interactive zero-knowledge proof systems [33], where a polynomial-
time verifier checks the truth of a language membership statement by interacting
with a single, computationally more powerful, prover, and the zero-knowledge
property guarantees that the verifier obtains no additional information.

Acknowledgements. Part of the first author’s work was supported by the Defense
Advanced Research Projects Agency (DARPA), contract n. HR001120C0156. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation hereon. Disclaimer: The views and
conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of DARPA, or the U.S. Government.

References

1. Abadi, M., Feigenbaum, J., Kilian, J.: On hiding information from an oracle. In:
J. Comput. Syst. Sci. 39(1), 21–50 (1989)

2. Ahmad, H., et al.: Primitives towards verifiable computation: a survey. Front. Com-
put. Sci. 12(3), 451–478 (2018). https://doi.org/10.1007/s11704-016-6148-4

3. Barreto, P.S.L.M., Costello, C., Misoczki, R., Naehrig, M., Pereira, G.C.C.F.,
Zanon, G.: Subgroup security in pairing-based cryptography. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 245–
265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 14

4. Ben-Or,M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive
proofs: how to remove intractability assumptions. In: STOC, pp. 113–131 (1988)

5. Blum, M., Kannan, S.: Designing programs that check their work, In J. ACM
42(1), 269–291 (1995). Also Proc. of ACM STOC 89

6. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput. 13(4), 850–864 (1984)

7. Blum, M., Luby, M., Rubinfeld, R.: Program result checking against adaptive pro-
grams and in cryptographic settings. In: Distributed Computing and Cryptography,
pp. 107–118 (1989)

8. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. J. Comput. Syst. Sci. 47(3), 549–595 (1993)

9. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

10. Bos, J.W., Costello, C., Naehrig, M.: Exponentiating in pairing groups. In: Lange,
T., Lauter, K., LisoněK P. (eds.) SAC 2013. LNCS, vol. 8282. Springer, Cham
(2013)

11. Cai, J., Ren, Y., Jiang, T.: Verifiable outsourcing computation of modular expo-
nentiations with single server. Int. J. Netw. Secur. 19(3), 449–457 (2017)

12. Canard, S., Devigne, J., Sanders, O.: Delegating a pairing can be both secure and
efficient. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS,
vol. 8479, pp. 549–565. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07536-5 32

https://doi.org/10.1007/s11704-016-6148-4
https://doi.org/10.1007/978-3-319-22174-8_14
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-319-07536-5_32
https://doi.org/10.1007/978-3-319-07536-5_32

A Survey on Delegated Computation 51

13. Di Crescenzo, G., Khodjaeva, M., Kahrobaei, D., Shpilrain, V.: Efficient and secure
delegation of exponentiation in general groups to a single malicious server. Math.
Comput. Sci. 14(3), 641–656 (2020). https://doi.org/10.1007/s11786-020-00462-4

14. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for secure out-
sourcing of modular exponentiations. In: Foresti, S., Yung, M., Martinelli, F.
(eds.) ESORICS 2012. LNCS, vol. 7459, pp. 541–556. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33167-1 31

15. Chevalier, C., Laguillaumie, F., Vergnaud, D.: Privately outsourcing exponentia-
tion to a single server: cryptanalysis and optimal constructions. In: Proceedings of
ESORICS: 261–278, Springer, Cham (2016). https://doi.org/10.1007/978-3-030-
58951-6

16. Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. In: Proceedings of the 9th IFIP WG 8.8/11.2
International Conference on Smart Card Research and Advanced Application, pp.
24–35 (2010). https://doi.org/10.1007/978-3-642-12510-2 3

17. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

18. Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective, 2nd
edn., Springer, Cham (2005). https://doi.org/10.1007/0-387-28979-8-2005

19. Di Crescenzo, G., Khodjaeva, M., Kahrobaei, D., Shpilrain, V.: Practical and secure
outsourcing of discrete log group exponentiation to a single malicious server. In
Proceedings of 9th ACM CCSW, pp. 17–28 (2017)

20. Di Crescenzo, G., Khodjaeva, M., Kahrobaei, D., Shpilrain, V.: Secure delegation
to a single malicious server: exponentiation in RSA-type groups. In: Proceedings
of the IEEE CNS, pp. 1–9 (2019)

21. Di Crescenzo, G., Khodjaeva, M., Kahrobaei, D., Shpilrain, V.: Delegating a prod-
uct of group exponentiations with application to signature schemes. In J. Math.
Cryptol. 14(1), 438–459 (2020)

22. Di Crescenzo, G., Khodjaeva, M., Kahrobaei, D., Shpilrain, V.: Efficient and secure
delegation of exponentiation in general groups to a single malicious server. Math.
Comput. Sci. 14(3), 641–656 (2020). https://doi.org/10.1007/s11786-020-00462-4

23. Di Crescenzo, G., Khodjaeva, M., Kahrobaei, D., Shpilrain, V.: Secure and efficient
delegation of elliptic-curve pairing. In: Proceedings of ACNS 2020, LNCS, vol.
12146. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81645-2

24. Di Crescenzo, G., Khodjaeva, M., Kahrobaei, D., Shpilrain, V.: Secure and efficient
delegation of pairings with online inputs. In: Liardet, P.-Y., Mentens, N. (eds.)
CARDIS 2020. LNCS, vol. 12609, pp. 84–99. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-68487-7 6

25. Di Crescenzo, G., Khodjaeva, M., Shpilrain, V., Kahrobaei, D., Krishnan, R.:
Single-server delegation of ring multiplications from quasilinear-time clients. In
14th International Conference on Security of Information and Networks (SIN), pp.
1–8 (2021)

26. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

27. Dijk, M., Clarke, D., Gassend, B., Suh, G., Devadas, S.: Speeding up exponentiation
using an untrusted computational resource. Designs Codes Cryptogr. 39(2), 253–
273 (2006)

28. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

https://doi.org/10.1007/s11786-020-00462-4
https://doi.org/10.1007/978-3-642-33167-1_31
https://doi.org/10.1007/978-3-030-58951-6
https://doi.org/10.1007/978-3-030-58951-6
https://doi.org/10.1007/978-3-642-12510-2_3
https://doi.org/10.1007/0-387-28979-8-2005
https://doi.org/10.1007/s11786-020-00462-4
https://doi.org/10.1007/978-3-030-81645-2
https://doi.org/10.1007/978-3-030-68487-7_6
https://doi.org/10.1007/978-3-030-68487-7_6

52 G. Di Crescenzo et al.

29. Feigenbaum, J.: Encrypting problem instances: or ..., can you take advantage of
someone without having to trust him? In: Proceedings of CRYPTO, pp. 477–488
(1985)

30. Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009)
31. Galbraith, S.: Mathematics of Public-Key Cryptography, Cambridge Press, Cam-

bridge (2018)
32. Girault, M., Lefranc, D.: Server-aided verification: theory and practice. In: Roy,

B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 605–623. Springer, Heidelberg
(2005). https://doi.org/10.1007/11593447 33

33. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

34. Guillevic, A., Vergnaud, D.: Algorithms for outsourcing pairing computation. In
Joye M., Moradi, A. (eds.) Smart Card Research and Advanced Applications.
CARDIS 2014. LNCS, vol. 8968. Springer, Berlin (2011). https://doi.org/10.1007/
978-3-642-27257-8

35. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Proceedings of the TCC, pp. 264–82 (2005)

36. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng pairing
friendly elliptic curves using elements in the cyclotomic field. In Galbraith, S.D.,
Paterson, K.G. (eds.) Pairing-Based Cryptography - Pairing 2008. LNCS, vol. 5209.
Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-85538-5

37. Joux, A.: A one round protocol for tripartite Diffie–Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000). https://
doi.org/10.1007/10722028 23

38. Kaminski, M.: A note on probabilistically verifying integer and polynomial prod-
ucts. J. ACM 36(1), 142–149 (1989)

39. Kang, B.G., Lee, M.S., Park, M.S.: Efficient delegation of pairing computation. In:
IACR Cryptology ePrint Archive, n. 259 (2005)

40. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic
computers. In: Proceedings of the USSR Academy of Sciences, pp. 145: 293–294.
Translation in Physics-Doklady, 7, pp. 595–596 (1963)

41. Karatsuba, A.A.: The complexity of computations. In: Proceedings of the Steklov
Institute of Mathematics, pp. 211: 169–183. Translation from Trudy Mat. Inst.
Steklova, vol. 211, pp. 186–202 (1995)

42. Ma, X., Li, J., Zhang, F.: Outsourcing computation of modular exponentiations
in cloud computing. Cluster Comput. 16(4), 787–796 (2013). https://doi.org/10.
1007/s10586-013-0252-0

43. Moody, D., Peralta, R., Perlner, R., Regenscheid, A., Roginsky, A., Chen, L.:
Report on pairing-based cryptography. J. Res. Natl. Inst. Stand. Technol. 120,
11–27 (2015)

44. Matsumoto, T., Hideki Imai, K.-K.: Speeding up secret computations with insecure
auxiliary devices. In: Proceedings of CRYPTO, pp. 497–506 (1988)

45. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Location Boca Raton (1996)

46. Pedersen, R., Uzunkol, O.: Secure delegation of isogeny computations and crypto-
graphic applications. In: Proceedings of the ACM CCSW, pp. 29–42 (2019)

47. Ping, Y., Guo, X., Wang, B., Zhou, J.: Secure outsourcing of modular inverses and
scalar multiplications on elliptic curves. Int. J. Secur. Netw. 15(2), 101–110 (2020)

48. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: Sym-
posium on Cryptography and Information Security (SCIS) (2000)

https://doi.org/10.1007/11593447_33
https://doi.org/10.1007/978-3-642-27257-8
https://doi.org/10.1007/978-3-642-27257-8
https://doi.org/10.1007/978-3-540-85538-5
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/s10586-013-0252-0
https://doi.org/10.1007/s10586-013-0252-0

A Survey on Delegated Computation 53

49. Scott, M.: Unbalancing pairing-based key exchange protocols. In: IACR Cryptology
ePrint Archive, n. 688 (2013)

50. Scott, M.: A note on group membership tests for G1, G2 and GT on BLS pairing-
friendly curves. In: IACR Cryptology ePrint Archive, n. 1130 (2021)

51. Shan, Z., Ren, K., Blanton, M., Wang, C.: Practical secure computation outsourc-
ing: a survey. ACM Comput. Surv. 51(2), 31:1–31:40 (2018)

52. Uzunkol, O., Rangasamy, J., Kuppusamy, L.: Hide the modulus: a secure non-
interactive fully verifiable delegation scheme for modular exponentiations via CRT.
In: ISC, pp. 250–267 (2018)

53. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010)
54. Wang, Y., Wu, Q., Wong, D.S., Qin, B., Chow, S.S.M., Liu, Z., Tan, X.: Securely

outsourcing exponentiations with single untrusted program for cloud storage. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 326–343.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9 19

55. Wasserman, H., Blum, M.: Software reliability via run-time result-checking. J.
ACM 44(6), 826–849 (2019)

56. Yao, A.: A lower bound to palindrome recognition by probabilistic turing machines.
In Tech. Rep. STAN-CS-77-647 (1977)

57. Yu, X., Yan, Z., Vasilakos, A.V.: A survey of verifiable computation. Mob. Netw.
Appl. 22(3), 438–453 (2017). https://doi.org/10.1007/s11036-017-0872-3

58. Zhao, L., Zhang, M., Shen, H., Zhang, Y., Shen, J.: Privacy-preserving outsourc-
ing schemes of modular exponentiations using single untrusted cloud server. KSII
Trans. Internet Inf. Syst. 11 (2) (2017)

59. Zhou, K., Ren, J.: Secure outsourcing of scalar multiplication on elliptic curves.
In: ICC, pp. 1–5 (2016)

https://doi.org/10.1007/978-3-319-11203-9_19
https://doi.org/10.1007/s11036-017-0872-3

Regular Papers

Checking Regular Invariance Under
Tightly-Controlled String Modifications

C. Aiswarya1,2(B) , Sahil Mhaskar1 , and M. Praveen1,2

1 Chennai Mathematical Institute, Chennai, India
{aiswarya,sahil,praveenm}@cmi.ac.in

2 CNRS IRL ReLaX, Chennai, India

Abstract. We introduce a model for transforming strings, that provides
fine control over what modifications are allowed. The model consists of
actions, each of which is enabled only when the input string conforms to
a predefined template. A template can break the input up into multiple
fields, and constrain the contents of each of the fields to be from pre-defined
regular languages. The template can also constrain two fields to be dupli-
cates of each other. If the input string conforms to the template, the action
can be performed to modify the string. The output consists of the contents
of the fields, possibly in a different order, possibly with different numbers
of occurrences. Optionally, the action can also apply transductions on the
contents of the fields before outputting.

For example, the sentence “DLT will be held <cap:1>online</cap:1>

if<cap:2>covid-19</cap:2> cases surge.” conforms to the template
x<cap:y>z</cap:y>w. The output of the action can be defined as xf(z)w,
where f is defined by a transducer. If f just capitalises its input, then we
can perform this action twice to get the output “DLT will be held ONLINE

if COVID-19 cases surge.” Notice that, if we did not have the identifiers
specified by y, then it will capitalise parts of the input text not intended
to be capitalised.

We want to check that whenever the input comes from a given regular
language, the output of any action also belongs to that language. We call
this problem regular invariance checking. We show that this problem is
decidable and is PSPACE-complete in general. For some restricted cases
where there are no variable repetitions in the source and target templates
(or patterns) and the regular language is given by a DFA, we show that this
problem is co-NP-complete. We show that even in this restricted case, the
problem is W[1]-hard with the length of the pattern as the parameter.

1 Introduction

We consider systems maintaining information in text format in scenarios where
changes to the textual information should be tightly controlled. Often the textual
information that is maintained conforms to some syntactic structure, such as that
provided by context-free or regular languages. One of the desirable properties
of such systems is that if the modification is applied to textual information
that belongs to a specified language, the modified text should still belong to

c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 57–68, 2022.
https://doi.org/10.1007/978-3-031-05578-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_4&domain=pdf
http://orcid.org/0000-0002-4878-7581
http://orcid.org/0000-0001-9650-290X
http://orcid.org/0000-0002-5734-7115
https://doi.org/10.1007/978-3-031-05578-2_4

58 C. Aiswarya et al.

that language. In other words, the specified language should be invariant under
the modifications allowed by the system. A typical example of such systems is
maintaining configuration information in data centers, a task for which there
are dedicated softwares such as Apache ZooKeeper [1]. Resources such as GPUs
can be allocated to processes running on the service and we would want to move
GPUs from one process to another. Suppose we want to ensure that GPUs are
not moved from high priority processes to low priority ones. Such tight control
over the kind of modifications that are allowed is the main purpose of the formal
model we introduce here. We study the complexity of checking whether a given
regular language is invariant under the modifications allowed by a given system.
Currently our model is for strings, for which the invariance-checking problem is
already intractable.

One way to organise such information is to use models for business artifact
systems [3,6,8–10]. These use databases to store information and have prede-
fined actions that can modify this information. There are two issues with using
database-driven systems as a model for maintaining configuration information.
First, databases are an overkill for such applications. Even configuration man-
agement softwares are using more economical text files or simple data structures
like trees for this purpose. Second, while these database-driven systems allow
unbounded data domain, the domain is often uninterpreted and the only opera-
tion permitted on data is equality checking. Some works have considered numer-
ical domains [2,7], however string domains have not been considered yet. Hence,
transformations on strings such as the ones implemented by Mealy machines
would not be supported in database-driven system models.

For modelling transformations on text files, another alternative one would
think of are the traditional models of transducers. However, the main limitation
of these is that they cannot restrict a transduction to be enabled at some non-
regular set of strings. This is indeed needed for the configuration file example,
as we may need to check that the text entered in two different fields are equal
in order to enable a transformation.

We propose a formal model that is inspired by the database-driven sys-
tems and has the power of simple transducers (Mealy machines) inside. Like the
database-driven systems, our model has a set of actions, that transform a text
to another one. In the database-driven systems, actions are guarded by queries
with free variables, which also serve as handles in the database for manipulation.
In our model, actions are guarded by templates, and for an action to be enabled
at a text, the text should fit the template. A template is simply a pattern over
variables. An action matches the input string to a source pattern over variables,
storing parts of the input string in variables. Then it performs transductions
on the strings stored in the variables, and outputs the (transduced) strings in a
possibly different order, according to a target pattern over variables.

We study the following problem: Given an action and a regular language,
whether the regular language is invariant under the action. Invariance-check
is a basic safety check. Regularity is powerful enough to express many sanity
conditions and non-existence of some bugs.

Checking Regular Invariance Under Tightly-Controlled String Modifications 59

We study the complexity of regular invariance-checking and show that it
is PSPACE-complete. For a subclass of actions, where there are no variable
repetitions in the source and target patterns and where the regular language is
given by a deterministic finite-state automaton, we show it is co-NP-complete.
We further show that the problem is W[1]-hard even with the length of the
pattern as the parameter. Hence, the problem is unlikely to be fixed-parameter
tractable with this parameter.

Comparison with Transducers: Our model of actions is incomparable to classical
models of transducers. For instance an action can match the entire input text to a
single variable x and after an identity transduction, it can rewrite it as xx. After
performing this action once, the text files will be of the form ww, indicating that
regularity is not preserved. In another example, the input can be scanned into
a pattern of the form xx, thus enabling the action only at a non-regular set of
strings. Our model of actions is orthogonal to some of the expressive transducer
models such as a streaming string transducers (SST) [4]. Indeed, an SST can
convert a text to a concatenation of projection to odd positions followed by
projections to even positions. Our actions cannot do this. On the other hand
we can enable actions at some non-regular inputs, which even a two-way SST
cannot do.

2 Preliminaries

The set of all finite strings or words over a finite alphabet Σ is denoted Σ∗. The
empty string is denoted ε. For a string w, |w| is its length and w[i] is its ith

letter.

Mealy Machines. We consider functions from words to words defined by Mealy
Machines as a basic ingredient for our text-transforming actions. These func-
tions are also called pure sequential functions. We recall the definition of Mealy
Machines here, slightly simplified to our setting.

A Mealy machine defining a transduction from Σ∗ to Σ∗ is given by a tuple
M = (Q, q0, δ, out) where Q is a finite set of states, q0 ∈ Q is the initial state,
δ : Q×Σ → Q is the state transition function, and out : Q×Σ → Σ∗ is the output
function. We naturally extend the functions δ and out to words instead of letters
as follows. We let ̂δ(q, ε) = q, and ̂δ(q, wa) = δ(̂δ(q, w), a), where q ∈ Q, w ∈ Σ∗

and a ∈ Σ. Similarly ̂out(q, ε) = ε and ̂out(q, wa) = ̂out(q, w)out(̂δ(q, w), a). The
function defined by M is denoted [[M]]. [[M]] : Σ∗ → Σ∗ is given by [[M]](w) =
̂out(q0, w).

3 Model

Let var be a countable set of variables. A pattern is a string in (var∪ Σ)∗. For a
pattern pat, varpat is the set of elements from var appearing in pat, the elements

60 C. Aiswarya et al.

of which will be called variables of pat. A valuation is a morphism σ : var → Σ∗.
By abuse of notation, we extend this to a function σ : (var ∪ Σ)∗ → Σ∗ by
setting it to identity on Σ, and then naturally extending it to the asterate. We
now define actions that transform an input text to an output text.

An action α is a 4-tuple α := (srcPat, guardLang, transd, tgtPat), where srcPat,
tgtPat are (source and target) patterns, guardLang : varα → Reg(Σ), transd :
varα → {T : T is a transduction over Σ} are functions. Here varα := varsrcPat ∪
vartgtPat and Reg(Σ) is the set of regular languages over Σ.

An action α = (srcPat, guardLang, transd, tgtPat) is enabled at a string w if
there exists a valuation σ such that σ(srcPat) = w and σ(x) ∈ guardLang(x)
for all x in varsrcPat. We call σ an enabling valuation of α at w. We denote by
σα the valuation defined by σα(x) = transd(x)(σ(x)) for all x in var (recall that
transd(x) is a transduction associated with x). The action α acts on w using α,
resulting in the string σα(tgtPat); we denote it by w · (α, σ).

Example 1. Suppose configuration information about GPUs allocated to pro-
cesses are maintained in a text file. One part of the file stores priorities of
processes, using strings of the form “process 1 : high”, “process 2 : low” etc.
Another part of the file tracks GPUs allocated to processes, with strings of the
form “process 1 : gpu 1, gpu 2,”, “process 2 : gpu 3,” and so on. We describe an
action that allows to move a GPU from a low priority process to a high priority
one, provided there is still at least one GPU left for the low priority process.
The source and target patterns are as follows:

Source Pattern: x1 process x2 : low x3 process x4 : high x5 process x2 : x6

gpu x7 x8 process x4 : x9 x10.
Target Pattern: x1 process x2 : low x3 process x4 : high x5 process x2 : x6

x8 process x4 : x9 gpu x7 x10.

The guard languages assigned and the intended purpose of the variables are
given in Table 1. This action will move the gpu x7 from the low priority process
x2 to the high priority process x4. If changes to the configuration file are only
allowed through this action, then GPUs cannot be moved from high priority to
low priority processes.

While changing strings as above, we would like to ensure that the syntactical
structure of the strings is not broken. Suppose the contents of the file in the above
example belong to the language (process[0 − 9]+ : (high + low),)∗(process[0 −
9]+ : (gpu[0 − 9]+,)∗)∗. We want to verify that after applying the actions, the
resulting string is still in the language. We formalise this next.

Let Σ be a finite alphabet, L ⊆ Σ∗ be a language and α be an action over Σ.
We denote by post(L,α) the set {w · (α, σ) | w ∈ L, σ enables α at w} of results
of α acting on strings in L. We study the following problem:

Invariance-checking Problem
Input: Action α, regular language L.
Question: post(L,α) ⊆ L?

Checking Regular Invariance Under Tightly-Controlled String Modifications 61

Table 1. The variables and their guard languages from Example 1.

var guardLang Comments

x1 Σ∗ filler to match the prefix up to the
position where changes are to be made

x2 [0 − 9]+ Id of the low priority process

x3 Σ∗ filler

x4 [0 − 9]+ Id of the high priority process

x5 Σ∗ filler

x6 (gpu [0 − 9]+,)+ IDs of GPUs currently allocated to
process x2, not to be transferred

x7 [0 − 9]∗ ID of the GPU currently allocated to
process x2, to be transferred to x4

x8 Σ∗ filler

x9 (gpu [0 − 9]+,)∗ IDs of GPUs currently allocated to
process x4

x10 Σ∗ filler

Example 2. Consider an action α with srcPat := xy, tgtPat := yx, guardLang
assigns Σ∗ and transd assigns the identity transduction to all variables. Note
that post(L,α) = {uv | vu ∈ L, u, v ∈ Σ∗} is the rotational closure of L. A given
language L is invariant under α only if L is closed under rotations.

We study the complexity of the invariance-checking problem in the rest of
the paper.

4 Complexity of the Invariance-Checking Problem

Theorem 1. The invariance-checking problem is in PSPACE if the regular
language L is given by an NFA A, and the transduction transd(x) is given by a
Mealy machine for each variable x.

Proof. It is sufficient to show that checking whether post(L(A), α) �⊆ L(A) is in
PSPACE. Let α := (srcPat, guardLang, transd, tgtPat) be an action. For every
x ∈ varα, let Ax be an NFA for guardLang(x). For ease of use in this proof, let
P denote srcPat and P ′ denote tgtPat.

Let σ : varα → Σ∗ be a valuation and σα : varα → Σ∗ be the valuation defined
by σα(x) = transd(x)(σ(x)) for every x ∈ varα. Checking if post(L(A), α) �⊆ L(A)
is equivalent to checking the existence of a valuation σ satisfying the following
conditions.

1. σ(x) ∈ guardLang(x) for all x ∈ var,
2. σ(P) ∈ L(A) and
3. σα(P ′) �∈ L(A).

62 C. Aiswarya et al.

Let A = (Q,Σ,Δ,Qin, Qfin) be the input NFA describing the potential invari-
ant language. Let M(A) = {0, 1}Q×Q be the set of transformation matrices of A.
Suppose Id denotes the identity matrix. The set M(A) along with matrix mul-
tiplication (over the Boolean semiring) forms a monoid, with Id as the identity
element. Let h : Σ∗ → M(A) be the homomorphism given by h(a) = μa where
μa ∈ M(A) denotes the transition matrix for the letter a in A. Note that h(w) is
the state transformation induced by the word w—the (q, q′) entry is 1 in h(w)
if and only if there is a path from q to q′ in A on the word w. Let e ∈ {0, 1}Q

be the row vector whose qth entry is 1 if and only if q ∈ Qin and fT ∈ {0, 1}Q

be the column vector whose qth entry is 1 if and only if q ∈ Qfin. The string w
is in L(A) iff eh(w)f = 1.

To check whether post(L(A), α) �⊆ (L(A)), in place of checking for the exis-
tence of a valuation σ as above, we can equivalently check for the existence of
functions g, g′ : Σ ∪ varα → M(A) satisfying the following conditions.

4. g(a) = h(a) = g′(a) for all a ∈ Σ,
5. for all x ∈ var, there exists wx ∈ h−1(g(x)) ∩ guardLang(x) such that g′(x) =

h(transd(x)(wx)),
6. eg(P)f = 1 and
7. eg′(P ′)f = 0.

Suppose there is a valuation σ satisfying conditions 1—3. Setting wx = σ(x),
g(x) = h(wx) and g′(x) = h(transd(x)(wx)) for all x ∈ var will satisfy conditions
4—7. Conversely, suppose there exist functions g, g′ satisfying conditions 4—7.
Setting σ(x) = wx for all x ∈ var will satisfy conditions 1—3.

Now we give a non-deterministic PSPACE procedure for the invariant check-
ing problem. It will guess functions g, g′ and check that they satisfy conditions
4—7. Checking conditions 4, 6 and 7 can be easily done in PSPACE. We will
next prove that if there exists a string wx satisfying condition 5, there exists
such a string of length at most exponential in the size of the input, so that its
existence can be verified in PSPACE.

Suppose there exists a string wx satisfying condition 5. For every i in the
set {0, . . . , |wx|}, let ei be a vector over {0, 1} defined as follows. The vector
ei is indexed by Q × Q × Qx × Qx × Tx × Tx × Q × Q, where Q is the set of
states of A, Qx is the set of states in the NFA Ax recognising guardLang(x)
and Tx is the set of states in the Mealy machine Mx for transd(x). Let w[1, i]
be the restriction of w to positions 1 . . . i, with w[1, 0] := ε, the empty word.
The entry of ei at the index (qs, q

′
s, qx, q′

x, tx, t′x, qt, q
′
t) is 1 iff the following four

conditions are satisfied: 1) there is a path from qs to q′
s on w[1, i] in A, 2)

there is a path from qx to q′
x on w[1, i] in Ax, 3) there is a path from tx to

t′x on w[1, i] in Mx and 4) there is a path from qt to q′
t on transd(x)(w[1, i])

in A. Let n = |Q|4|Qx|2|Tx|2 and N = 2n be the number of distinct vectors
over {0, 1} indexed by Q × Q × Qx × Qx × Tx × Tx × Q × Q that can exist.
If |wx| > N , then there are distinct positions i, j such that ei = ej . We can
drop the portion of wx between i and j and the resulting string will still satisfy
condition 5. We can continue this until we get a string of length at most N that
satisfies condition 5. Hence a non-deterministic PSPACE procedure can guess

Checking Regular Invariance Under Tightly-Controlled String Modifications 63

and verify the existence of a string satisfying condition 5, using space linear in
log N = |Q|4|Qx|2|Tx|2. By Savitch’s theorem, there is a PSPACE procedure
that does the same.

Hence, the invariance-checking problem is in NPSPACE , and again by Sav-
itch’s theorem, it is in PSPACE. �	

We give complexity lower bounds for the invariance-checking problem under
some restrictions on the kind of patterns that are allowed and the representation
used to specify the invariant language.

Definition 1. A pattern pat over (var ∪ Σ) is called copyless if every variable
in pat occurs at most once. A pattern is called copyful if it is not copyless.

Theorem 2. The invariance-checking problem is PSPACE-hard even if transd
is the constant identity transduction function, guardLang is the constant Σ∗ func-
tion and at least one of the following is true: 1) the candidate language is given
as an NFA, 2) srcPat is copyful or 3) tgtPat is copyful.

The proof of the above theorem is split into the following three lemmas. They
all give reductions from the following DFA Intersection Problem, which is known
to be PSPACE-complete [14].

DFA Intersection Problem
Input: DFAs A1, A2, . . . , An.
Question: L(A1) ∩ L(A2) ∩ · · · ∩ L(An) �= ∅?

Lemma 1. Let A be an NFA and α be an action with a copyless srcPat and a
copyless tgtPat. Then the problem of deciding whether post(L(A), α) �⊆ L(A) is
PSPACE-hard.

Proof. Let A1, A2, . . . , An be a given instance of the DFA intersection problem.
Let A be an NFA over {#}∪Σ recognising the language {#}∪L(A1)∪L(A2)∪
· · · ∪ L(An). Since A1, A2, . . . , An are DFAs, the NFA A can be constructed in
polynomial time. For the action α, let the source pattern be #, and the target
pattern be x. The guard languages are given by guardLang(x) := Σ∗, and finally,
the function transd assigns the identity transduction to each variable x.

For any string w ∈ L(A), the action α is enabled at w using a valuation σ
iff σ(x) ∈ Σ∗ and w = #. For such a valuation σ, w · (α, σ) = σ(x). Hence
post(L(A), α) = Σ∗. Also, Σ∗ ∩ {#} = ∅ which gives us that post(L(A), α) ⊆
L(A) iff Σ∗ ⊆ L(A1)∪L(A2)∪· · ·∪L(An) ⇐⇒ ⋂n

i=1 L(Ai) = ∅. This completes
the reduction. �	
Lemma 2. Let A be a DFA. Let α be an action with a copyful srcPat and a
copyless tgtPat. Then the problem of deciding whether post(L(A), α) �⊆ L(A) is
PSPACE-hard.

Proof. Let A1, A2, . . . , An be a given instance of the DFA intersection problem.
Let A be a DFA over {#}∪Σ for the language Σ∗#L(A1)#L(A2)# . . . #L(An).
Since Ai are all DFAs, the DFA A can be constructed in polynomial time. For the

64 C. Aiswarya et al.

action α, let the source pattern be y#x#x# . . . #x, where we have n occurrences
of the variable x, and the target pattern be x. Let guardLang be the constant
Σ∗ function, and finally, the function transd assigns the identity transduction to
each variable x.

Notice that the target pattern (and hence any result of applying α on any
input string) does not contain the symbol #, but every string in the invariant
language contains at least one occurrence of #. Hence post(L(A), α) ⊆ L(A)
iff post(L(A), α) = ∅ iff α is never enabled on L(A) iff

⋂n
i=1 L(Ai) = ∅. This

completes the reduction. �	
Lemma 3. Let A be a DFA. Let α be an action with a copyless srcPat and a
copyful tgtPat. Then the problem of deciding whether post(L(A), α) �⊆ L(A) is
PSPACE-hard.

Proof. Let A1, A2, . . . , An be a given instance of the DFA intersection prob-
lem. Let A be a DFA over the alphabet {	} ∪ {#} ∪ Σ for the language
{	} ∪ (L(A1)#L(A2)# . . . #L(An)).For the action α, let the source pattern be
	, and the target pattern be x#x# . . . #x. The guard languages are given by
guardLang(x) := Σ∗, ∀x, and finally, the function transd assigns the identity
transduction to each variable x.

For any string in w ∈ L(A), the action α is enabled at w using a valuation σ
iff σ(x) ∈ Σ∗ and w = 	. For such a valuation σ, w · (α, σ) = σ(x). Hence
post(L(A), α) := {w#w# . . . #w | w ∈ Σ∗}. Since 	 is not in post(L(A), α),
we have that post(L(A), α) �⊆ L(A) ⇐⇒ there exists w1 ∈ Σ∗ such that
w1#w1# . . . #w1 �∈ L(A) ⇐⇒ w1 ∈ L(Ai),∀i ≤ n ⇐⇒ ⋂n

i=1 L(Ai) �= ∅. This
completes the reduction. �	

5 Invariance-Checking : Special Case

It turns out that if the candidate language is specified using a DFA and both
srcPat and tgtPat are copyless, there is a better upper bound for the invariance-
checking problem.

Theorem 3. Let A be a DFA and let α := (srcPat, guardLang, transd, tgtPat) be
an action such that srcPat, tgtPat are copyless patterns. In this case, the problem
of deciding whether post(L(A), α) ⊆ L(A) is in co-NP.

Proof. We will show that deciding whether post(L(A), α)∩L(A) �= ∅ is in NP, by
proving a short witness property. Suppose σ is a valuation such that σ(srcPat) ·
(α, σ) �∈ L(A). Then we will prove that there exists a valuation σ′ such that
σ′(srcPat) · (α, σ′) �∈ L(A) and |σ′(x)| is bounded by a polynomial in the size of
the input for all variables x. This suffices, since the presence of such a σ′ can be
guessed and verified in polynomial time.

For a valuation σ such that σ(srcPat) · (α, σ) �∈ L(A) and for a variable x,
suppose σ(x) = w. We will show how to drop portions of w to get a shorter
string w′ that still has all the following desirable properties of w. Let Mx be the
Mealy machine for transd(x).

Checking Regular Invariance Under Tightly-Controlled String Modifications 65

1. The run of A on σ(srcPat) enters w at state p and leaves at state p′.
2. The run of Ax (an automaton for guardLang(x)) on w starts at state q and

ends at state q′.
3. The run of Mx on w starts at state r and ends at state r′.
4. The run of A on σα(tgtPat) enters transd(x)(w) at state s and leaves at s′.

Let the first three runs above be in states pi, qi, ri respectively just before reading
w[i], the ith letter of w. Let the fourth run be in state si just before reading wt

i ,
the string output by Mx at position i while reading w. For some i, j with i �= j,
if the tuple 〈pi, qi, ri, si〉 is equal to the tuple 〈pj , qj , rj , sj〉, then we can drop
the portion of w between i and j and the shorter string will still have all the
four properties of w. We can continue this till we get a string of length at most
|Ax||A|2|Mx|. For every variable x, the desired valuation σ′ maps x to a short
string as described above, thus proving the small model property. �	

The above technique fails if A is an NFA. In that case, it is not enough to
ensure that fourth run in the above proof is a rejecting run—we will have to
prove that all runs of A on σα(tgtPat) are rejecting. The above technique fails if
srcPat is copyful. If a variable x occurs more than once, then the first run in the
proof above will pass through w more than once and we will have to take care
of all those passes. Hence, in place of checking that the four tuple 〈pi, qi, ri, si〉
repeats, we will have to consider tuples whose dimension depends on the input
and we will not get a small model property. Similarly, the above technique breaks
down if tgtPat is copyful.

Next we prove a matching lower bound for this case.

Lemma 4. Let α be an action with copyless source and target patterns. Then
the problem of checking whether a given DFA describes an invariant for α is
co-NP-hard.

Proof. We will give a reduction from the complement of the problem of finding
a clique in a graph. Given a number k and a graph over n vertices, the problem
is to check if the graph contains a k-clique as a subgraph. We know that this
problem is NP-complete [13].

Suppose we are given a graph G with vertex set V := {v1, v2, . . . , vn} and a
number k ≤ n. We will design an action α and the candidate invariant language
L with the following goal: The action α is enabled on an input string from L
only if it is of the form Iai1 vi1vi1 . . . vi1

︸ ︷︷ ︸

k

ai2 vi2vi2 . . . vi2
︸ ︷︷ ︸

k

. . . aik vikvik . . . vik
︸ ︷︷ ︸

k

with

1 ≤ i1 < i2 < . . . ik ≤ n. That is, it guesses k vertices, repeating each of them k
times in the string. This action will produce the output string

θ ai1 vi1vi2vi3 . . . vik ai2 vi1vi2vi3 . . . vik ai3 . . . aik vi1vi2 . . . vik .

Note that this output string has all the k guessed vertices in every block (delim-
ited by ai). The output string will belong to L only if at least two of these
vertices do not have an edge between them, i.e., these k vertices do not form a

66 C. Aiswarya et al.

0

in i1 i2 i3 . . . in

Xi

I

a1 a2 a3 a4 an

a2

a3

an

a3

an

an

an

v1 v2 v3 vn

out o1 o2 o3 . . . on

Xo

θ

a1 a2 a3 a4 an

a2

a3

an

a3

an

an

an

N1 N2 N3 Nn

Fig. 1. The automaton A used in the polynomial reduction from the problem of finding
a clique in a graph. Here Ni denotes the set of nodes at a distance at most one from
vi. That is, it includes vi and all the neighbours of vi. The transitions on unspecified
letters go to the respective sink states, as depicted by the dotted edges.

clique. The output string will not belong to L (that is, L is not an invariant) if
the k guessed vertices form a clique.

We require the source and target patterns of the action to be copyless. For
this we will use k2 variables of the form xj

i to represent the vertices in the string.
Further there are variables Si to represent the delimiters. Let us describe the
action α formally.

Let Σ = V ∪ {a1, a2, . . . , an, θ, I} and var = {S1, . . . , Sk} ∪ {xj
i | 1 ≤ i ≤

k, 1 ≤ j ≤ k}. The action α is given by

– Source pattern: I S1 x1
1 x2

1 . . . xk
1 S2 x1

2 x2
2 . . . xk

2 S3 . . . Sk x1
k x2

k . . . xk
k.

– Guard languages: xj
i �→ {v1, v2, . . . , vn} , Si �→ {a1, a2, . . . , an}

– Transduction transd maps every variable to the identity transduction.
– Target Pattern: θ S1 x1

1 x1
2 . . . x1

k S2 x2
1 x2

2 . . . x2
k S3 . . . Sk xk

1 xk
2 . . . xk

k.

Now let us define the DFA for the potential invariant L. The automaton A
is depicted in Fig. 1. It has a top part and a bottom part. Any string that starts
with the letter I, and hence could potentially match the input pattern, runs in
the top part. Any string that starts with θ, and hence all the output strings,
runs in the bottom part. All the states in the top part are accepting, except for
the sink state Xi. All the states in the bottom part are rejecting, except for the
sink state Xo.

The top part of the DFA makes sure that in a block following ai, it is the
same vertex vi that gets repeated. The length of each block and the number of

Checking Regular Invariance Under Tightly-Controlled String Modifications 67

blocks are taken care of by the source pattern. Thus the source pattern together
with this automaton A ensures that the input string is of the required form.
Notice that this part does not look at the edges in the graph, and in particular
does not verify that these vertices form a clique.

The bottom part of the automaton reads strings that start with a θ and in
particular the potential output strings of action α. This part of the automaton
makes sure that in the block following ai, all the vertices appearing in the block
are neighbours of vi or vi itself. The set of permitted vertices is denoted Ni, the
set of all vertices at a distance at most 1 from vi. Note that if the block after ai

contains a vertex vj which is not in Ni then it goes into the accepting sink state
Xo. Thus if the guessed vertices do not form a clique, the output string will be
accepted by A. On the other hand, if the guessed vertices form a clique, then
in every block the vertices encountered belong to the respective Ni and the run
remains in the bottom part where all states are rejecting.

Notice that the automaton A depends only on the input graph G, and not
on the number k.

If the input graph G has a clique of size k, then there is an input string that
matches the input pattern, and that produces the output string which is rejected
by the automaton A. Thus L(A) is not an invariant in this case. If the input
graph does not have a clique of size k, then for every input string that enables
the action α, the output string will have a block starting at some ai containing
a vertex that does not belong to the neighbour set Ni, and the run of A on
the output string will end up in the accepting sink state. Thus L(A) will be an
invariant in this case. �	

The k-clique problem is unlikely to be fixed-parameter tractable with the
clique-size k as the parameter, as it is W[1]-hard [11]. Thus we get:

Corollary 1. Let α be an action with copyless source and target patterns. Then
the problem of checking whether a given DFA describes an invariant for α is
W[1]-hard with the length of the patterns being the parameter.

6 Conclusions and Future Work

We have introduced a formal model for fine-controlled text modifications. We
have shown that the regular invariance-checking problem is PSPACE-complete.
For a restriction, the problem is shown to be co-NP-complete.

It is interesting to see whether we can lift our results to other transducer
models inside an action, instead of Mealy machines. An important next step is
to see whether we can have actions that act on trees or structured text instead
of simple texts. Trees are the main structures used to store configuration data
by Apache ZooKeeper, one of our motivations for the work. Further it could also
serve as a syntax checker for code translators etc., if we have structured text
(source codes, XML). It is worth investigating whether we can lift the actions to
form a sort of visibly pushdown transducer [12], and whether visibly pushdown
languages [5] can be checked for invariance.

68 C. Aiswarya et al.

References

1. Apache ZooKeeperTM. https://zookeeper.apache.org/. Accessed 21 Jan 2021
2. Abdulla, P.A., Aiswarya, C., Atig, M.F., Montali, M.: Reachability in database-

driven systems with numerical attributes under Regency bounding. In: Proceedings
of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2019, pp. 335–352. ACM (2019)

3. Abdulla, P.A., Aiswarya, C., Atig, M.F., Montali, M., Rezine, O.: Recency-bounded
verification of dynamic database-driven systems. In: Proceedings of the 35th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2016, pp. 195–210. ACM (2016)

4. Alur, R.: Streaming string transducers. In: Beklemishev, L.D., de Queiroz, R. (eds.)
WoLLIC 2011. LNCS (LNAI), vol. 6642, p. 1. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20920-8 1

5. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the
36th ACM Symposium on Theory of Computing, STOC 2004, pp. 202–211. ACM
(2004)

6. Hariri, B.B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification
of relational data-centric dynamic systems with external services. In: Proceedings
of the 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2013, pp. 163–174. ACM (2013)

7. Damaggio, E., Deutsch, A., Vianu, V.: Artifact systems with data dependencies
and arithmetic. ACM Trans. Database Syst. 37(3), 1–36 (2012)

8. Deutsch, A., Hull, R., Li, Y., Vianu, V.: Automatic verification of database-centric
systems. ACM SIGLOG News 5(2), 37–56 (2018)

9. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-
centric business processes. In: Proceedings of the 12th International Conference
on Database Theory, ICDT 2009, pp. 252–267. ACM (2009)

10. Deutsch, A., Li, Y., Vianu, V.: Verification of hierarchical artifact systems. In:
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS 2016, pp. 179–194. ACM (2016)

11. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness ii: on
completeness for W[1]. Theor. Comput. Sci. 141(1), 109–131 (1995)

12. Filiot, E., Raskin, J.-F., Reynier, P.-A., Servais, F., Talbot, J.-M.: Visibly push-
down transducers. J. Comput. Syst. Sci. 97, 147–181 (2018)

13. Karp, R.M.: Reducibility among combinatorial problems. In: Symposium on the
Complexity of Computer Computations 1972, pp. 85–103, March 1972

14. Kozen, D.: Lower bounds for natural proof systems. In: 18th Symposium on Foun-
dations of Computer Science, SFCS 1977, pp. 254–266 (1977)

https://zookeeper.apache.org/
https://doi.org/10.1007/978-3-642-20920-8_1
https://doi.org/10.1007/978-3-642-20920-8_1

Deciding Atomicity of Subword-Closed
Languages

Aistis Atminas1(B) and Vadim Lozin2

1 Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University,
111 Ren’ai Road, Suzhou 215123, China

Aistis.Atminas@xjtlu.edu.cn
2 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

V.Lozin@warwick.ac.uk

Abstract. We study languages closed under non-contiguous (scattered)
subword containment order. Any subword-closed language L can be u-
niquely described by its anti-dictionary, i.e. the set of minimal words
that do not belong to L. A language L is said to be atomic if it cannot
be presented as the union of two subword-closed languages different from
L. In this work, we provide a decision procedure which, given a language
over a finite alphabet defined by its anti-dictionary, decides whether it
is atomic or not.

Keywords: Subword-closed language · Joint embedding property ·
Decidability

1 Introduction

Throughout this paper, A is a finite alphabet and A∗ is the set of all finite
words over A. A word α is a subword of a word β if α can be obtained from β by
erasing some (possibly none) letters. We say that a language L is subword-closed
if β ∈ L implies α ∈ L for every subword α of β. According to the celebrated
Higman’s lemma [6], the subword order is a well-quasi-order, and hence every
subword-closed language L over a finite alphabet can be uniquely described by
a finite set of minimal words not in L, called the anti-dictionary of L. We will
denote the language defined by an anti-dictionary D by Free(D) and call the
words in D the minimal forbidden words for L.

A subword-closed language L is said to be atomic if L cannot be expressed
as the union of two non-empty subword-closed languages different from L. It is
well-known that atomicity is equivalent to the joint embedding property (JEP),
which, in case of languages, can be defined as follows: for any two words α ∈ L
and β ∈ L there is a word γ ∈ L containing α and β as subwords. Atomicity, or
JEP, is a fundamental property, which frequently appears in the study of various
combinatorial structures, for instance, growth rates of permutation classes [11] or
hereditary classes of graphs, which are critical with respect to some parameters
[1].
c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 69–77, 2022.
https://doi.org/10.1007/978-3-031-05578-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_5&domain=pdf
https://doi.org/10.1007/978-3-031-05578-2_5

70 A. Atminas and V. Lozin

The main problem we study in this paper is deciding whether a subword-
closed language given by its anti-dictionary is atomic or not. Decidability of
atomicity, or of JEP, is a question, which was addressed in various contexts.
In particular, in [3] Braunfeld has shown that this question is undecidable for
hereditary classes of graphs defined by finitely many forbidden induced sub-
graphs. One more undecidability result appeared in [2], where Bodirsky et al.
have shown that the joint embedding property is undecidable for the class of
all finite models of a given universal Horn sentence. On the other hand, sev-
eral positive results have been obtained by McDevitt and Ruškuc in [9], where
the authors studied classes of words and permutations closed under taking con-
secutive subwords, also known as factors, and consecutive subpermutations. In
both cases, atomicity of classes of words or permutations defined by finitely
many forbidden factors or consecutive subpermutations has been shown to be
decidable. We observe that every subword-closed language is also factor-closed.
However, for languages defined by finitely many forbidden factors or subwords
the two families are incomparable. There are languages defined by finitely many
forbidden factors that are not subword-closed, and there are subword-closed lan-
guages that are not defined by finitely many forbidden factors. For instance, for
the subword-closed language Free(101) the set of minimal forbidden factors is
infinite and contains all words of the form 10 . . . 01.

The main result of this paper, proved in Sect. 2, states that atomicity of
subword-closed languages is decidable. We discuss possible applications of this
result in Sect. 3.

2 Main Result

We start with some notational remarks. For a word w ∈ A∗, we denote by |w| the
number of letters in the word. Also, to simplify the notation Free(D) we omit
curly brackets when listing the elements of D. The main result is the following.

Theorem 1. Let L = Free(w1, w2, . . . , wn) be a language. It is algorithmically
decidable whether L is atomic or not. In particular, there exists a decision pro-
cedure of complexity O(n × m2) where m = |w1| + |w2| + . . . + |wn|.

The proof of this theorem will be given by induction on m = |w1| + |w2| +
. . . + |wn|, i.e. on the total number of letters in the forbidden words. If any of
the forbidden words consists of a single letter, then we claim that we can remove
this word from the anti-dictionary without changing atomicity, which is proved
in the following lemma.

Lemma 1. Let L = Free(w1, w2, . . . , wn) be a language. If |wi| = 1 for some
i, then L is atomic if and only if L′ = Free(w1, w2, . . . wi−1, wi+1, wi+2 . . . , wn)
is atomic.

Proof. Suppose wi is the word consisting of only one letter a ∈ A. As the set
of words defining the language is assumed to be minimal, we can see that letter

Deciding Atomicity of Subword-Closed Languages 71

a does not appear in any of the words wj with j �= i. Suppose first that L
is not atomic, i.e. L = L1 ∪ L2 for some non-empty languages L1 �= L and
L2 �= L. Then clearly, L1 and L2 do not contain letter a, so they can be written
as Free(a, x1, x2 . . . , xk) and Free(a, y1, y2, . . . , yl) for some words xi and yi not
containing letter a. But then L′ = Free(x1, x2, . . . , xk) ∪ Free(y1, y2, . . . , yl),
and hence L′ is not atomic either. On the other hand, suppose that L is atomic.
Pick any two words x′, y′ ∈ L′. Let the words x and y be the subwords of x′ and
y′ obtained by deleting all letters a in x and y, respectively. Then x, y ∈ L and
since L is atomic, by JEP there exists z ∈ L such that z contains x and y. By
adding |x|+ |y| copies of letter a between any two consecutive letters of z as well
as in the prefix and suffix of z, we obtain a new word z′ ∈ L′, which contains x′

and y′. Hence L′ is atomic as well. This finishes the proof. ��
Let W = {w1, w2, . . . , wn} be a set of incomparable words over A each of

which has at least two letters, and let L = Free(w1, w2, . . . , wn) be the language
defined by forbidding the words in W . For each i ∈ {1, 2, . . . , n}, we denote by
wi1 the first letter of wi and by w′

i ∈ A∗ the word obtained from wi by removing
wi1, i.e. wi = wi1w

′
i. Let

A′ = {wi1 : i = 1, 2, . . . , n} be the set of the first letters appearing in the words
w1, w2, . . . , wn.

We call the letters in A′ the leading letters. Also, we will say that a word w ∈ L
is leader-free if it contains no leading letters, and that w is an a-word if a ∈ A′

is the first (when reading from left to right) leading letter in w. For each letter
a ∈ A′, we denote by

Ia = {i ∈ N : wi1 = a} the set of indices of the words in W that start with
letter a,

Sa = {wi : i ∈ Ia} the subset of words from W that start with letter a,
S′
a = {w′

i : i ∈ Ia} the set of words obtained from the words in Sa by removing
the first letter a,

Wa = {w′
i : i ∈ Ia} ∪ {wi : i /∈ Ia} the set of words obtained from the words

in W by removing the first appearance of letter a from all the words that
start with a,

La = {pws : p ∈ Free(A′), w ∈ {a, ∅}, s ∈ Free(Wa)}. Informally, La is the
subword closure of the set of a-words in L. We observe that all leader-free
words from L belong to La.

Clearly, each La is a subword-closed language and L = Free(w1, w2, . . . , wn) =
∪a∈A′La.

Lemma 2. L is atomic only if L = La for some a ∈ A′.

Proof. Assume that for each a ∈ A′ the language La is a proper sublanguage of
L. Then take the minimal set A′′ ⊆ A′ such that ∪a∈A′′La = L. Such a set exists
as ∪a∈A′La = L and has size |A′′| ≥ 2 as each La is a proper sublanguage of L.
Fixing any b ∈ A′′ we obtain two proper sublanguages Lb and ∪a∈A′′\{b}La of L
whose union is L. So L is not atomic. Hence, L can be atomic only if for some
a ∈ A′ we have L = La. ��

72 A. Atminas and V. Lozin

To be able to determine whether La = L we will determine the list of minimal
forbidden subwords for the language La. For that purpose, let us define a simple
binary relation ◦ : A × A∗ → A∗ as follows: for any letter a ∈ A and any word
w ∈ A∗ we define

a ◦ w =
{

w, if w starts with letter a ,
aw, otherwise.

Given a letter b ∈ A′, we define Sb
a = {b ◦ w′

i : i ∈ Ia} to be the set of words
obtained from the words in S′

a by adding letter b in front of all words that do
not start with b.

Lemma 3. La = Free(W ∪b∈A′\{a} Sb
a).

Proof. We denote L′ = Free(W ∪b∈A′\{a} Sb
a) and show first that La is a subset

of L′, i.e. we show that every word which is forbidden for L′ is also forbidden
for La. Since La is a subset of L, every word from W is forbidden for La. Now
let b ∈ A′\{a} and assume, to the contrary, that a word bw ∈ Sb

a belongs to
La. Then, by definition, bw is contained in an a-word w′ ∈ La. But then w′

contains abw as a subword, which is impossible, because aw (if w ∈ S′
a) or

abw (if bw ∈ S′
a) belongs to W and hence is forbidden for words in La. This

contradiction proves that La ⊆ L′.
Conversely, consider a word w ∈ L′. Clearly, w belongs to L, since L′ ⊆ L. If

w is an a-word or leader-free, then it also belongs to La. Suppose w is a b-word
for a letter b ∈ A′\{a}. Then by inserting an a right before the leading b in w
we obtain a word w′, which still belongs to L, since otherwise a forbidden word
from Sb

a can be found in w. Therefore, w′ and hence w belong to La, proving
that L′ ⊆ La. ��

By the lemma above, to check whether La = L we only need to check whether
each element of ∪b∈A′\{a}Sb

a contains some of the words w1, w2, . . . , wn. If there is
an element w ∈ ∪b∈A′\{a}Sb

a which does not contain any of the words w1, . . . , wn,
then we can readily conclude that La �= L, because in this case w ∈ L and w �∈
La. The result below describes a procedure which makes the checking efficient.

Lemma 4. For every word w ∈ S′
a perform the following procedure:

1. If the first letter of w is in A′\{a} then stop, La �= L.
2. Otherwise, for every letter b ∈ A′\{a} do the following:

– Check whether there exists a word v ∈ S′
b contained in w. If yes, proceed

to the next b, if no then stop, La �= L.

If the algorithm has successfully run through all the words w ∈ S′
a and did not

stop, then La = L. The algorithm has running time O(|S′
a|nm) where m =

|w1| + |w2| + . . . + |wn|.
Proof. Consider any word in w ∈ S′

a. If the first letter of w is b, for some
b ∈ A′\{a}, then b ◦ w = w and by definition of Sb

a it follows that w ∈ Sb
a ⊆

Deciding Atomicity of Subword-Closed Languages 73

∪b∈A′\{a}Sb
a. As w = w′

i ∈ S′
a is a proper subword of some word wi ∈ Sa and

w1, w2, . . . , wn are incomparable, w cannot contain any word wj with j �= i.
Therefore,

La ⊆ Free(w1, w2, . . . , wi−1, w
′
i, wi+1, . . . , wn) �= L.

Next, consider the case when the first letter of w is not in A′\{a}. Pick
any b ∈ A′\{a}. Then b ◦ w = bw. Again, as bw ∈ Sb

a, L �= La, unless bw
contains some element of {w1, w2, . . . , wn}. Clearly bw cannot contain a word
wj ∈ {w1, w2, . . . , wn}\Sb, since otherwise w = w′

i contains wj , which is a con-
tradiction to the fact that wi and wj are incomparable for i �= j. Therefore,
L = La only if bw contains a word wj ∈ Sb, i.e. only if w contains a word
v = w′

j ∈ S′
b. Note that this has to hold for each b ∈ A′\{a}, since otherwise we

obtain a word in Sb
a that does not contain any of w1, w2, . . . , wn, in which case

La is a proper sublanguage of L.
Finally, note that if the procedure runs through all the words w ∈ S′

a without
deducing that L �= La, then every word in S′

a starts with a letter in A\A′ ∪ {a},
implying that for each letter b ∈ A′\{a}, every word in the set Sb

a = {b ◦w : w ∈
S′
a} = {bw : w ∈ S′

a} contains some word from the set {w1, w2, . . . , wn}. This
means that none of the words in ∪b∈A′\{a}Sb

a is minimal and hence

La = Free({w1, w2, . . . , wn} ∪b∈A′\{a} Sb
a) = Free({w1, w2, . . . , wn}) = L.

The main step of algorithm is checking whether a word w ∈ S′
a contains a

word from the set {w′
1, w

′
2, . . . , w

′
n}. To check whether w contains w′

i, one can go
through the letters of w until the first appearance of the first letter of w′

i in w is
found, then proceed to the first appearance of the second letter of w′

i in w and
so on. It takes O(|w|) steps to check whether w contains w′

i, and it is performed
for at most n different words w′

is. Hence for each w ∈ S′
a it takes O(|w|n) steps

and hence in total it takes O(|S′
a||w|n) steps. Noting that |w| ≤ m, completes

the proof of the lemma. ��
By Lemma 2, L is atomic only if L = La for some a ∈ A′. Rather than

checking whether L = La for each a ∈ A′, one can, in fact, quickly determine
one specific letter a ∈ A′ for which it suffices to verify whether L = La. In the
lemma below, for two vectors of integers v = (v1, . . . , vn) and u = (u1, . . . , um)
we say that v majorizes u if either n ≤ m and vi = ui for all i = 1, . . . , n or
there exists a p such that vp > up and vi = ui for all i = 1, . . . , p − 1.

Lemma 5. L is atomic only if L = La for a letter a ∈ A′ which can be found
using the following procedure:

– For each letter b ∈ A′, let (wb1, wb2, . . . , wbk) be the list of words in Sb ordered
so that |wb1| ≤ |wb2| ≤ . . . ≤ |wbk|. Define vector vb = (|wb1|, |wb2|, . . . , |wbk|).

– Find a letter b such that vb majorizes all vectors vc with c ∈ A′.
– Look at the second letter of each word in Sb, if any of these letters belong to

A′, say c ∈ A′, then choose a = c, otherwise choose a = b.

74 A. Atminas and V. Lozin

Proof. Suppose that vector vc does not majorize vb and assume, for contradic-
tion, L = Lc. We list the words of Sc as (wc1, wc2, . . . , wcl) with |wc1| ≤ |wc2| ≤
. . . ≤ |wcl| and the words of Sb as (wb1, wb2, . . . , wbk) with |wb1| ≤ |wb2| ≤ . . . ≤
|wbk|. Let w′

ci and w′
bi denote the words obtained from wci and wbi by removing

first letters c and b, respectively.
Since L = Lc, by Lemma 4, we have that each word w′

cj for j = 1, 2, . . . , l
contains a word w′

bi for some i = 1, 2, . . . , k. Then |wc1| = |wb1|, since otherwise
w′

c1 is strictly shorter than any word in S′
b, in which case it cannot contain a word

in S′
b. Let p be the largest integer such that |wb1 | = |wb2| = . . . = |wbp|. Clearly,

as vc does not majorize vb, we must also have |wc1| = |wc2| = . . . = |wcp|. For
each i ≤ p and j > p, we have |w′

ci| < |w′
bj |. Therefore, for each i ≤ p the word

w′
ci contains a word w′

bj with j ≤ p, and since these words have the same length,
we conclude that the set of words w′

ci for i = 1, 2, . . . p is just a permutation
of the set of words w′

bj with j = 1, 2, . . . , p. Now, take a word wc(p+1), which
must exist, since vc does not majorize vb. If w′

c(p+1) contains a word w′
bj with

j ≤ p, then w′
c(p+1) must contain a word w′

ch with h ≤ p, which is not possible,
as the words in the set Sc are incomparable. This means, similarly as before,
that the words in S′

c of length |w′
c(p+1)| must form a permutation of words in S′

b

of the same length. Continuing this way, we must conclude that Sc has the same
number of words as Sb and vc = vb, which is a contradiction to the assumption
that vc does not majorize vb.

Finally, consider the set A′′ = {b ∈ A′ : vb majorizes all vc with c ∈ A′}.
Then for any b, c ∈ A′′, we have vb = vc. Moreover, if for some letter a ∈ A′′ we
have L = La, then, by the arguments in the previous paragraph, for any letter
b ∈ A′′ we have S′

b = S′
a. Since for all letters b ∈ A′′ we have the same set S′

b, the
second condition of Lemma 4, is either satisfied or not, regardless of the choice
of b ∈ A′′. We need to check the first condition of Lemma 4 by looking at the
first letter of each word in the set S′

b. If such letter c belongs to A′, then the
only chance for L = La for some a ∈ A′′ is when a = c, since otherwise the first
condition of Lemma 4 is not satisfied. On the other hand, if none of the first
letters of S′

b belongs to A′, then the first condition of Lemma 4 is satisfied for
all sets S′

b with b ∈ A′′, and since all these sets are equal, we have that either
L = La holds for all a ∈ A′′ or for none of them, so it is enough to pick one of
them, say a = b to check whether La = L or not. This finishes the proof. ��

The final ingredient for our inductive argument is the following simple
observation.

Lemma 6. La is atomic if and only if Free(Wa) is atomic.

Proof. We recall that La can be presented as

La = {pws : p ∈ Free(A′), w ∈ {a, ∅}, s ∈ Free(Wa)}.

Suppose first that Free(Wa) is atomic. Pick x, y ∈ La. Then x = pxwxsx and y =
pywysy with px, py ∈ Free(A′), wx, wy ∈ {a, ∅} and sx, sy ∈ Free(Wa). Since
Free(Wa) is atomic, by JEP we have that there exists a word sz ∈ Free(Wa)

Deciding Atomicity of Subword-Closed Languages 75

containing sx and sy. Letting pz = pxpy, we can define z = pzasz. Clearly z
contains both x and y and since pz ∈ Free(A′), sz ∈ Free(Wa) we also have
z ∈ La. So La satisfies JEP, and so it is atomic.

Now suppose La is atomic. Pick x, y ∈ Free(Wa). Then since the words ax
and ay both belong to La and La is atomic, by JEP there exists z ∈ La which
contains both ax and ay. Let us denote z = pws with p ∈ Free(A′), w ∈ {a, ∅}
and s ∈ Free(Wa). As ax is a subword of z, and a does not appear in p, we have
that ax is a subword of ws, and since w ∈ {a, ∅} we conclude that x is a subword
of s. For the same reason, we have y is a subword of s. Since s ∈ Free(Wa), we
see that Free(Wa) satisfies JEP, hence Free(Wa) is atomic. Thus we conclude
that La is atomic if and only if Free(Wa) is atomic. ��

We are now ready to prove the main result of the paper.

Proof of Theorem 1. Let L = Free(w1, w2, . . . , wn) be a given language with
w1, w2, . . . , wn ∈ A∗ incomparable words. If |wi| = 1 for some i = 1, 2, . . . , n,
then remove such a word, as by Lemma 1 this operation does not affect atomicity.
So assume, without loss of generality, that |wi| ≥ 2 for all i = 1, 2, . . . , n. Now
perform the procedure of Lemma 5 to find a letter a ∈ A′ such that L is atomic
only if L = La.

Then perform the procedure of Lemma 4 to check whether La = L. If not,
then we know that L is not atomic. Now consider the case when L = La. In
this case, by Lemma 6, La is atomic if and only if Free(Wa) is atomic, and to
determine whether Free(Wa) is atomic we can proceed inductively, as the total
number of letters in the set Wa is smaller than in the original set of forbidden
words.

Note that the most expensive step in terms of algorithmic complexity is the
application of the procedure in Lemma 4, which takes O(|S′

a|nm) steps. After
completing the induction step we have a set of forbidden words with |S′

a| fewer
letters than the original set of forbidden words. Since the removal of |S′

a| letters
takes O(|S′

a|nm) steps to complete, to finish the procedure, i.e. to remove all
m letters, we will have the computational complexity of order O(m × nm) =
O(nm2). This finishes the proof. ��

We finish this section with a couple of corollaries that follow from the proof of
the main theorem. The first corollary gives a simple representation of all atomic
subword-closed languages. Following the algorithm of the main theorem, one can
efficiently move between this representation and the representation of the atomic
language given by forbidden subwords.

Corollary 1. Let L be a subword-closed language over a finite alphabet A. Then
L is atomic if and only if there exists a sequence of subsets Ai ⊆ A for i =
1, 2, . . . ,m + 1 and letters ai ∈ Ai for i = 1, 2, . . . ,m, such that

L = {w1a
′
1w2a

′
2 . . . wma′

mwm+1 : a′
i ∈ {ai, ∅} for all i ∈ {1, 2, . . . ,m} and

wi ∈ Free(Ai) for all i ∈ {1, 2, . . . ,m + 1}}.

76 A. Atminas and V. Lozin

The second corollary gives a simple description of all atomic languages defined
by one or two forbidden subwords.

Corollary 2. Let w,w1, w2 ∈ A∗ be some words over a finite alphabet A with w1

and w2 incomparable. Then

– Free(w) is atomic.
– Free(w1, w2) is atomic if and only if w1 = pw′s, w2 = pw′′s for some words

p, s ∈ A∗ and some words w′, w′′ ∈ A∗ such that either |w′| = 1 or |w′′| = 1.

Proof. Applying the algorithm for deciding atomicity to the language Free(w)
with w = x1x2 . . . xk, for some x1, x2, . . . , xk ∈ A, we see that Free(w) is atomic,
if and only if Free(x2x3 . . . xk) is atomic, if and only if Free(x3 . . . xk) is atomic,
. . ., if and only if Free(xk) is atomic. Clearly, Free(xk) is atomic and hence
Free(w) is atomic. Moreover, we can represent this language as

{w1x
′
1w2x

′
2 . . . wk−1x

′
k−1wk : x′

i ∈ {xi, ∅} for all i = {1, 2, . . . , k − 1} and
wi ∈ Free(xi) for all i = {1, 2, . . . , k}}.

Let us now write w1 = pw′s and w2 = pw′′s, where p and s are the longest
common prefix and the longest common suffix of w1 and w2, respectively. Note
that w′ �= ∅ and w′′ �= ∅, as otherwise one of w1 and w2 would be a subword of the
other, which is not allowed. Following the algorithm we see that Free(w1, w2)
is atomic if and only if Free(w′s, w′′s) is atomic. Suppose that |w′′| ≥ |w′|. Let
w′ = x1x2 . . . xk and w′′ = y1y2 . . . yl with l ≥ k. Then, if l > k the algorithm
removes the letter from w′′ and checks whether y2y3 . . . yls contains x2 . . . xks,
which happens if and only if y2y3 . . . yl contains x2 . . . xk. If it does, then the
length of y2y3 . . . yl is still bigger than of w′, in which case it removes one more
letter and checks whether y3y4 . . . yl contains x2 . . . xk. The process continues
until the length of the words yl−k+2yl−k+3 . . . yl and x2 . . . xk are the same, in
which case to contain one another means to be equal. Now, if k ≥ 2, this means
xk = yl and this contradicts the fact that s is the longest suffix. Thus if k ≥ 2
the two words cannot contain each other, and we conclude that the language
is not atomic. On the other hand, if k = 1, then clearly all containments are
satisfied trivially and algorithm proceeds without stopping, thus showing that
for k = 1 the language is atomic. This finishes the proof. ��

3 Concluding Remarks and Open Problems

In this paper we have proved that atomicity, or equivalently the joint embedding
property, is algorithmically decidable for subword-closed languages. However, the
question of computing a decomposition of a non-atomic language into two proper
subword-closed sublanguages remains open.

The decidability procedure developed in this paper implies, in particular,
that atomicity is decidable for hereditary subclasses of threshold graphs [8],
since there is a bijection between threshold graphs on n vertices and binary

Deciding Atomicity of Subword-Closed Languages 77

words of length n − 1. Note that for general hereditary classes this question is
undecidable [3].

Threshold graphs constitute a prominent example of graphs of bounded let-
tericity [10] and we conjecture that our result implies decidability of atomicity
for all hereditary classes in this family.

Clique-width [4] is a notion which is more general than lettericity in the sense
that bounded lettericity implies bounded clique-width but not necessarily vice
versa. Graphs of bounded clique-width can be described by words (algebraic
expressions) over a finite alphabet, and we believe that decidability of atomicity
can be extended to graphs of bounded clique-width.

The main result of this paper also implies that atomicity is decidable for
classes of linear read-once Boolean functions closed under renaming variables
and erasing variables from linear read-once expressions defining the functions,
because, similarly to threshold graphs, linear read-once Boolean functions can be
uniquely (up to renaming variables) described by binary words. Linear read-once
functions appeared in the literature under various other names such as nested
canalyzing functions, unate cascade functions [7], 1-decision lists [5], and we
conjecture that decidability of atomicity can be extended to classes of d-decision
lists for any fixed d. To support this conjecture, we observe that the main result of
this paper is valid for subword-closed languages over infinite alphabets, provided
that the set of minimal forbidden words is finite.

References

1. Alecu, B., Lozin, V., de Werra, D.: The micro-world of Cographs, Discrete App.
Math., 312, 3–14 (2022). https://doi.org/10.1016/j.dam.2021.11.004

2. Bodirsky, M., Rydval, J., Schrottenloher, A.: Universal Horn sentences and the
joint embedding property. arXiv:2104.11123v3

3. Braunfeld, s.: The undecidability of joint embedding and joint homomorphism for
hereditary graph classes. Discrete Math. Theor. Comput. Sci. 21(2), 17 p (2019),
Paper No. 9

4. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph gram-
mars. J. Comput. Sys. Sci. 46(2), 218–270 (1993)

5. Eiter, T., Ibaraki, T., Makino, K.: Decision lists and related Boolean functions.
Theor. Comput. Sci. 270(1), 493–524 (2002)

6. Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc.
2(3), 326–336 (1952)

7. Jarrah, A.S., Raposa, B., Laubenbacher, R.: Nested canalyzing, unate cascade, and
polynomial functions. Phys. D Nonlinear Phenom. 233(2), 167–174 (2007)

8. Mahadev, N.V.R., Peled, U.N.: Threshold graphs and related topics. Ann. Discrete
Math. 56. North-Holland Publishing Co., Amsterdam, 1995. xiv+543 pp

9. McDevitt, M., Ruškuc, N.: Atomicity and well quasi-order for consecutive orderings
on words and permutations. SIAM J. Discrete Math. 35 (1), 495–520 (2021)

10. Petkovšek, M.: Letter graphs and well-quasi-order by induced subgraphs. Discrete
Math. 244, 375–388 (2002)

11. Vatter, V.: Growth rates of permutation classes: from countable to uncountable.
Proc. Lond. Math. Soc. 119(3), 960–997 (2019)

https://doi.org/10.1016/j.dam.2021.11.004
http://arxiv.org/abs/2104.11123v3

Prefix Palindromic Length
of the Sierpinski Word

Dora Bulgakova1, Anna Frid1(B), and Jérémy Scanvic2

1 Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
anna.frid@univ-amu.fr

2 Unité de Mathématiques Pures et Appliquées (UMR 5669), École normale

supérieure de Lyon/CNRS/Inria, Lyon, France

Abstract. The prefix palindromic length pu(n) of an infinite word u is
the minimal number of concatenated palindromes needed to express the
prefix of length n of u. This function is surprisingly difficult to study;
in particular, the conjecture that pu(n) can be bounded only if u is
ultimately periodic is open since 2013. A more recent conjecture concerns
the prefix palindromic length of the period doubling word: it seems that
it is not 2-regular, and if it is true, this would give a rare example of a
non-regular function of a 2-automatic word.

For some other k-automatic words, however, the prefix palindromic
length is known to be k-regular. Here we add to the list of those words
the Sierpinski word s and give a complete description of ps(n).

1 Introduction

A palindrome is a word which does not change when read from left to right
and from right to left, like rotator or abbaaaabba. In this paper, we continue
to study decompositions of words over a finite alphabet to a minimal number
of palindromes: for example, for the word w = ababbaabbbaaa, this number
is equal to 4, since we can factorize this word as (aba)(bbaabb)(b)(aaa) or as
(aba)(bb)(aabbbaa)(a), but cannot manage with less than four palindromes. So,
we can write that the palindromic length of w, denoted as PL(w), is equal to 4.

In 2013, Puzynina, Zamboni and the second author [7] conjectured that if the
palindromic length of factors of an infinite word u is bounded, then the word u is
ultimately periodic. This conjecture remains open despite a partial solution in the
initial paper [7] and later particular results [2,5,10]. Saarela [11] proved that the
conjecture is equivalent to the same statement about prefixes, not all factors, of u.
His result makes reasonable to consider the prefix palindromic length pu(n), which
is also denoted as PPLu(n) in previous papers. This function of an infinite word u
and of n ≥ 0, equal to the palindromic length of the prefix of length n of u is thus
conjectured to be unbounded for every word which is not ultimately periodic.

A natural exercise on every new function of an infinite word is to compute or
to estimate it for classical examples like the Thue-Morse word and the Fibonacci
word. The first of these problems appears to be not too complicated: the prefix
palindromic length of the Thue-Morse word, which is 2-automatic, appears to be
c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 78–89, 2022.
https://doi.org/10.1007/978-3-031-05578-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_6&domain=pdf
https://doi.org/10.1007/978-3-031-05578-2_6

Prefix Palindromic Length of the Sierpinski Word 79

2-regular, and its first differences are described as a fixed point of a 4-uniform
morphism [4]. At the same time, the question on the Fibonacci word has not
been solved, moreover, it seems that its prefix palindromic length is even not
Fibonacci-regular [6].

Since these first exercises, a progress has been made in computing the pre-
fix palindromic length of some more known words, including the Rudin-Shapiro
word, the paperfolding word [6] and the Zimin word [9]. Moreover, it has been
proved that for every k-automatic word containing a finite number of distinct
palindromes, the prefix palindromic length is k-regular [6]. But the most intrigu-
ing are the results of computational experiments suggesting that for exam-
ple, for the period-doubling word, which is the fixed point of the morphism
a → ab, b → aa, the prefix palindromic length is not a 2-regular sequence [6].
At the moment, this is the second challenging conjecture on the prefix palin-
dromic length, since normally, all reasonable functions of k-automatic words are
k-regular.

Unable to solve any of the big conjectures, we continue collecting examples
when the prefix palindromic length is predictably regular. Here we prove it for the
Sierpinski word, the 3-automatic fixed point of the morphism ϕ : a → aba, b →
bbb. The fact that its prefix palindromic length is unbounded was proved already
in the initial paper [7]. The first morphic description of that function was con-
jectured in the Master thesis of Enzo Laborde [8], but here we find a simpler
one, which yet requires several pages of proofs.

A possible continuation of this research is to find a larger class of k-automatic
words with k-regular prefix palindromic length. It could help to extract proper-
ties of automatic words which prevent the function to be regular.

The proofs omitted in this submission can be found in our arXiv preprint
https://arxiv.org/abs/2201.09556. The result can also be generalized to all mor-
phisms of the form a → abn−2a, b → bn for n ≥ 3.

2 Definitions, Notation, Known Results

From now on, s = s[1]s[2] · · · s[n] · · · denotes the Sierpinski word, or the Cantor
word

ababbbababbbbbbbbbababbbabab27 · · · ,

defined as the fixed point starting with a of the morphism

ϕ :

{
a → aba,

b → bbb.

Here s[i] ∈ {a, b} for all i ≥ 1. Clearly, for every k, the Sierpinski word starts
with the palindrome ϕk(a) = ϕk−1(a)b3

k−1
ϕk−1(a). A factor s[i]s[i + 1] · · · s[j]

can also be denoted as s[i..j].
In what follows, PL(u) denotes the palindromic length of a finite word u, that is,

the minimal number of palindromes such that u is their concatenation. The prefix
palindromic length of s is denoted by ps(n) or p(n) for short: p(n) = PL(s[1..n]).

https://arxiv.org/abs/2201.09556

80 D. Bulgakova et al.

One of important general results on palindromic length is the following
inequality, which we refer below as Saarela’s inequality [11, Lemma 6]: for all
words u, v we have

|PL(u) − PL(v)| ≤ PL(uv).

This result is especially useful when one of words u, v or uv is a palindrome and
thus its palindromic length is equal to 1. If u is a prefix of a given infinite word
u of length n, and v is its next letter, it also immediately implies that

|pu(n + 1) − pu(n)| ≤ 1,

meaning that the first differences of the prefix palindromic length of a word can
be equal only to −1, 0, or 1.

As the name suggests, an infinite word u is called k-automatic if there exists
a deterministic finite automaton A such that every symbol u[n] of u can be
obtained as the output of A with the base-k representation of n as the input [1].
We will also need and use an equivalent definition of the same notion: a word u
is k-automatic if and only if there exists a k-uniform morphism ϕ : Σ∗ → Σ∗

and a 1-uniform morphism (or coding) c : Σ∗ → Δ∗ such that u = c(ϕ∞(a))
for a symbol a ∈ Σ. So, for example, the Sierpinski word is 3-automatic since
its morphism ϕ is 3-uniform, and the coding c can be chosen as the trivial one,
sending a to a and b to b.

A generalization of the notion of a k-automatic word to sequences on Z is
the notion of k-regular sequence: formally speaking, a Z-valued sequence is k-
regular if the Z-module generated by its k-kernel is finitely generated. Discussions
and equivalent definitions of k-regular sequences can be found in Chapter 16 of
Allouche and Shallit’s monograph [1]; what we really need in this paper is the
following lemma proven in [6] for the case when p is the prefix palindromic length
of an infinite word but true for every sequence with bounded first differences due
to exactly the same arguments.

Lemma 2.1. A Z-valued sequence r(n) with bounded first differences dr(n) =
r(n + 1) − r(n) is k-regular if and only if the sequence dr is k-automatic.

Since the main object we study in this paper is a 3-automatic word, we need
some addition notation concerning ternary representations.

Let X ⊂ {0,1,2}∗ be the language of ternary expansions of non-negative
integers without leading zeros. The fact that x ∈ X is the ternary expansion of
n will be denoted as [x]3 = n and (n)3 = x. By a convention, we put (0)3 = ε,
so, the ternary representation of 0 is the empty string. It means that every non-
empty representation starts with 1 or 2, so, X = {ε} ∪ {1,2}{0,1,2}∗. Note
that we write symbols of ternary strings in boldface to distinguish concatenated
strings from multiplied numbers.

When we consider ternary expansions with leading zeros, we mention that
they are just strings over {0,1,2}∗, not always from X.

For every function f(n), we also use the notation f(x), where x is a ternary
expansion of n. Also, let x be a ternary expansion of n, where 2 · 3k−1 ≤ n ≤ 3k;
then we denote the ternary expansion of 3k − n without leading zeros by x.

Prefix Palindromic Length of the Sierpinski Word 81

For all k, we clearly have 10k = ε. For x = 1x′, where x′ /∈ 0∗, the function
x is not defined, for any other x ∈ X we have 2x = x.

3 Auxiliary Functions qj(n)

To study the prefix palindromic length p(n) of the Sierpinski word, we first define
for every j ≥ 0 an auxiliary function

qj(n) = PL(bjs[1..n]).

Clearly, p(n) = q0(n), but for what follows, we need to study these functions for
all j.

Proposition 3.1. The functions qj can be found as follows:

– q0(0) = 0; for j > 0, we have qj(0) = 1;
– q0(1) = 1; for j > 0, we have qj(1) = 2;
– for 3k ≤ n ≤ 2 · 3k, we have qj(n) = 1 if n = 3k + j and qj(n) = 2 otherwise;
– for 2 · 3k ≤ n ≤ 3k+1 and j ≤ 3k, we have

qj(n) = 1 + min(q3k−j(n − 2 · 3k), qj(3k+1 − n)),

– at last, for 2 · 3k ≤ n ≤ 3k+1 and j > 3k, we have

qj(n) = min
m≤3k

qm(n) + 1.

The proof of this proposition is omitted because of the length constraint.

Proposition 3.2. For every k ≥ 0, j ≥ 0 and every n ≤ 3k we have

|qj(n) − qj(3k − n)| ≤ 1.

Proof. It is sufficient to see that qj(3k − n) =PL(bjs[1..3k − n]) =PL(s[n +
1..3k]bj), since the last two words are mirror images one of the other. Since
qj(n) =PL(bjs[1..n]) and bjs[1..n]s[n + 1..3k]bj = bjs[1..3k]bj is a palindrome,
the inequality is a particular case of Saarela’s one. �.

4 Function q and Its First Differences

In this section, we study another auxiliary function q(n) = min
j

qj(n).

Proposition 4.1. For every n ∈ N the following equalities hold:

q(n) =

⎧⎪⎨
⎪⎩

0, if n = 0;
1, if n = 1 or 3k ≤ n ≤ 2 · 3k;
min(1 + q(n − 2 · 3k), 1 + q(3k+1 − n)), if 2 · 3k < n ≤ 3k+1,

(1)

meaning also for q as the function of X that⎧⎪⎨
⎪⎩

q(ε) = 0;
q(1y) = 1 for all y ∈ {0,1,2}∗;
q(2y) = 1 + min(q(y), q(2y)) for all y ∈ {0,1,2}∗.

(2)

82 D. Bulgakova et al.

Proof. First of all, note that q(2 · 3k−1) = q(20k−1) = 1 = 1 + q(0) for all
k > 0, so, both (1) and (2) are true for such values. In all other cases, the two
statements are equivalent, so, it is sufficient to prove (1). In fact, it immediately
follows from Proposition 3.1 when we take the minimum for all j and notice that
the minimal value of qj(n) for n ≤ 3k+1 is always attained for some j ≤ 3k. �

Here is a list of basic properties of the function q.

Proposition 4.2. For every k ≥ 0 and every n ≤ 3k, we have |q(n) − q(3k −
n)| ≤ 1.

Proof. Follows directly from the definition of q(n) = minj qj(n) and Proposition
3.2. Indeed, suppose that q(n) ≥ q(3k − n) and j is such that q(3k − n) =
qj(3k − n). Clearly, q(n) ≤ qj(n). So, q(n) − q(3k − n) ≤ qj(n) − qj(3k − n) ≤ 1.
The case of q(n) ≤ q(3k − n) is symmetric. �

Corollary 4.3. For every n such that 2 ·3k < n ≤ 3k+1, we have |q(n−2 ·3k)−
q(3k+1 − n)| ≤ 1.

Proof. Follows immediately from the previous proposition and the fact that if
n′ = n − 2 · 3k, then 3k+1 − n = 3k − n′. �

The next several properties of q(x), x ∈ X, follow from (2) and are proved
by the same type of induction.

Lemma 4.4. For every x ∈ X ∩ {0,2}∗, we have q(x1) = q(x2).

Proof. We proceed by induction on the length of x. For x = ε, we have q(1) =
q(2) = 1, so the base of induction holds. Now consider x = 2y where y ∈
{0,2}∗ (so that y may contain leading zeros). We have q(x1) = q(2y1) = 1 +
min(q(y1), q(2y1)) and q(x2) = q(2y2) = 1 + min(q(y2), q(2y2)). But q(y1) =
q(y2) by the induction hypothesis; moreover, by the same hypothesis, q(2y1) =
q(2y2) since 2y1 = z2 and 2y2 = z1 for the same z ∈ X, where z is shorter
than x. �

Lemma 4.5. For all x ∈ X, we have q(x0) = q(x).

Proof. If x = ε, there is nothing to prove. If x = 1y, then q(x0) = q(x) = 1.
Now for x = 2y, we proceed by induction on the length of x. The base is given
by previous cases and x = 2 giving q(20) = q(6) = q(2) = q(2) = 1. For the
induction step, consider x = 2y, where the statement is proven for y (which
may start with leading zeros). It is sufficient to combine the last case of (2)
with the induction hypothesis and the fact that x0 = x0, so that q(y) = q(y0),
q(x) = q(x0) = q(x0). �

Lemma 4.6. For every x ∈ X ∩ {0, 2}∗ and for every w ∈ {0,1,2}∗, we have
q(x1w) = q(x1).

Proof. As above, we start from x = ε giving q(1w) = q(1) = 1 and proceed by
induction on the length of x: take x = 2y and suppose that the lemma is true
for all strings shorter than x. As above, it is sufficient to compare q(y1) with

Prefix Palindromic Length of the Sierpinski Word 83

q(y1w), which are equal by the induction hypothesis, and q(x1) with q(x1w).
For the latter comparison, we have to consider two cases: if w ∈ {0}∗, then the
equality holds due to the previous lemma. If w contains a non-zero symbol, then
denote x1 as t2 (indeed, its last symbol is equal to 2). Then x1w = t1w′ for some
w′; but we know by from Lemma 4.4 that q(t2) = q(t1) and from the induction
hypothesis that q(t1) = q(t1w′). So, q(x1) = q(x1w) and thus q(x1w) = q(x1).

�
Summarizing Lemmas 4.4 and 4.6, we observe the following

Corollary 4.7. For every x ∈ X such that x = y1z, where y ∈ {0,2}∗, we have
q(x) = q(y2).

So, we can concentrate on ternary representations from {0,2}∗. and, due to
Lemma 4.5 even on those of them that end with 2.

For such a representation, that is, for a finite word on the alphabet {0,2},
let us call a small group a sequence of 2 s separated from other such sequences
by one or several 0 s. In its turn, a large group is a word beginning and ending
with 2 that does not contain two consecutive 0 s and is separated from other
such groups by at least two consecutive 0 s. A large group is dense if it contains
two consecutive 2 s and sparse otherwise.

Example 4.8. The word 22202000022000202002 contains six small groups and
four large groups (22202,22,202,2). The first two of these large groups are
dense and the last two are sparse.

Theorem 4.9. For every x ∈ X ∩ {0,2}∗2,

1. q(x) = q(x) if and only if the first large group of x is sparse, that is, if and
only if 20k−1 ≤ [x]3 ≤ (20)k/2; otherwise q(x) = q(x) + 1;

2. the value of q(x) is equal to the number of small groups plus the number of
dense large groups in x.

Continuing the example above, we see that q(22202000022000202002) =
6 + 2 = 8. Moreover, 22202000022000202002 = 20222200222020221, due
to Lemma 4.4, q(20222200222020221) = q(20222200222020222), and the
latter representation contains 5 small groups and two large groups, both of them
dense, so that q(20222200222020222) = q(20222200222020221) = 7. It is
predicted by the first part of the theorem since the first large group of the initial
representation is dense.

The proof of the theorem is based on induction on the length of x and is
omitted because of the length constraint. �

The first part of the theorem above will be used later for the results on the
prefix palindromic length. As for the second part, it gives a formula for the
function q and in particular allows to find its first differences dq(n) = q(n+1)−
q(n). The following corollary of the theorem is straightforward.

84 D. Bulgakova et al.

Corollary 4.10. For every n ≥ 0 with (n)3 = x we have

dq(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if x contains 1; otherwise
1, if x ends by 0 directly preceeded by 0 or a sparse large group;
−1, if x ends by 2 which is a part of a dense large group;
0, in all other cases.

As it follows from this formula, the sequence dq(n) is automatic and here is the
corresponding automaton.

Here and below, when considering first differences, we sometimes prefer to
write - instead of −1, + instead of 1, and 0 in typewriter font.

D|+

S|0

S |0

D|-

0
1

2

0,1,2

0

1 2

0

1

2

The choice of state names of this automaton will be clear from further con-
structions.

In its turn, this automaton is equivalent to the following morphic construction
for the sequence dq.

Theorem 4.11. The sequence dq is the 3-automatic word over the alphabet
{-, 0, +} given as follows:

dq = γ(δ∞(D)),

where the morphism δ : {D,S, S′,D}∗ → {D,S, S′,D}∗ is defined by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ(D) = DSS′,
δ(S) = SSS,

δ(S′) = DSD,

δ(D) = S′SD,

and the coding γ : {D,S, S′,D}∗ → {-, 0, +}∗ is given by γ(D) =+, γ(S) =
γ(S′) =0, γ(D) =-.

5 Difference Between p(n) and q(n)

Now, after a study of the auxiliary function q, we return to the initial goal: the
prefix palindromic length p(n) of the Sierpinski word.

Prefix Palindromic Length of the Sierpinski Word 85

Proposition 5.1. For every n ≥ 0, the following holds.

p(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if n = 0;
1, if n = 1;
2, if 3k < n ≤ 2 · 3k;
min(2 + q(n − 2 · 3k), 1 + p(3k+1 − n)), if 2 · 3k < n ≤ 3k+1.

Equivalently, this formula can be written as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p(ε) = 0;
p(10k) = 1 for all k;
p(1y) = 2 for all y ∈ {0,1,2}∗\0∗;
p(2y) = 1 + min(1 + q(y), p(2y)) for all y ∈ {0,1,2}∗.

(3)

Proof. It is not difficult to see that the two statements are equivalent and
that the first three lines of (3) hold. As for the last equality, it can be proven
analogously to Proposition 4.1, using Proposition 3.1. �

Proposition 5.2. For every n ≥ 0 such that 2 · 3k ≤ n ≤ 3k+1, the equality
p(n) = q(n) holds if and only if p(3k+1 − n) = q(3k+1 − n) < q(n). Otherwise
p(n) = q(n) + 1.

Proof. For the edge values, we easily check that q(2 · 3k) = 1 < 2 = p(2 · 3k),
and q(3k+1 − 2 · 3k) = q(2 · 3k), so that the condition does not hold; on the other
hand, q(3k+1) = p(3k+1) = 1, and the condition holds. For other values, from
the previous results, we have

q(n) = min(1 + q(n − 2 · 3k), 1 + q(3k+1 − n)),

p(n) = min(2 + q(n − 2 · 3k), 1 + p(3k+1 − n)).

So, if p(3k+1−n) > q(3k+1−n), then the values compared for p(n) are just greater
than the respective values compared for q(n), and thus p(n) > q(n). Moreover,
suppose that p(3k+1 − n) = q(3k+1 − n). If q(3k+1 − n) = q(n), it immediately
means that q(n) = 1+q(n−2 ·3k) and p(n) = 1+q(3k+1−n) = 2+q(n−2 ·3k) >
q(n). On the other hand, if q(3k+1 − n) < q(n), then q(n) = 1 + q(3k+1 − n) ≤
1 + q(n − 2 · 3k), so, 1 + q(3k+1 − n) = 1 + p(3k+1 − n) < 2 + q(n − 2 · 3k) and
thus p(n) = 1 + q(3k+1 − n) = q(n). The equivalence is established. �

The following statement is a direct corollary of the previous proposition and
the first part of Theorem 4.9.

Proposition 5.3. For every x ∈ X, we have p(x) = q(x) if and only if x ∈ 10∗

or x starts with 2, p(x) = q(x) and [x]3 > (20)|x|/2.

Now the following statement can be proven by a straightforward induction.

Proposition 5.4. Let S ⊂ X be the set of ternary decompositions x such that
p(x) = q(x). Then

S = {ε} ∪ {10∗} ∪ {(22+00+)∗.22+.{0∗ ∪ 0+10∗}.

86 D. Bulgakova et al.

In other words, p(n) = q(n) if and only if n = 0, n = 3k for some k, or the
ternary decomposition of n consists of blocks of at least two 2 s and at least two
0 s, possibly followed by one 0 or at least one 0 before 10l for some l.

Proof of the Proposition 5.4. Denote by Sk the set of decompositions from
S corresponding to numbers not exceeding 3k and by Dk the difference Sk\Sk−1.
Clearly, Then S0 = {ε,1}, D1 = {10}, D2 = {22,100}. Now, let us proceed
by induction on k starting with this base. Due to Proposition 5.2 for every k
we should look for elements of Dk+1 among numbers of the form 3k+1 − m,
(m)3 ∈ Sk. By the induction hypothesis, the elements of Dk are 10k and some
decompositions of length k starting with 22. They correspond to the numbers
m from 2 · 3k−1 + 2 · 3k−2 to 3k. So, if (m)3 ∈ Dk, then 3k+1 − m ≤ 3k+1 − 2 ·
3k − 2 · 3k−1 < 2 · 3k, and due to Proposition 5.2, 3k+1 − m /∈ S. So,

Dk+1 = {3k+1 − m|(m)3 ∈ Sk−1}.

It remains to check by a simple case study (whether (m)3 contains 1 or not) that
subtracting from 3k+1 numbers whose ternary decompositions are in Sk−1 gives
exactly numbers with decompositions from S, as described in the assertion, of
length k + 1, plus 3k+1. �

Note also that the above expression for Dk+1 implies that

|Dk+1| = |Sk+1| − |Sk| = |Sk−1|,

and thus we can easily prove that every |Sk| is a Fibonacci number: |Sk| = Fk+3

(if we start with F0 = 0, F1 = F2 = 1).

The above proposition characterizes the function t(n) = p(n)− q(n) which is
equal to 0 if (n)3 ∈ S and to 1 otherwise. It also allows to find precisely its first
differences dt(n) = t(n + 1) − t(n):

Corollary 5.5. The first differences of the function t(n) are

dt(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if (n)3 ∈ S does not contain 1 and ends with 00 or 22;
1, if (n)3 ∈ S contains 1 or ends with 220;
−1, if (n)3 ∈ (22+00+)∗.{2 ∪ 2+12∗};
0, in all other cases.

Here the first case corresponds to t(n) = t(n + 1) = 0 and the last case to
t(n) = t(n + 1) = 1.

The corresponding automaton for dt(n) is depicted below.

Prefix Palindromic Length of the Sierpinski Word 87

C|-

A|0 A|0

B|+ B|-

C|+

S|0

0

1
2

2

1

0

2

1

0

0

1

2

0

1,2

2

0,1

0,1,2

This automaton is equivalent to the following morphic construction for the
sequence dt.

Theorem 5.6. The sequence dt is the 3-automatic word over the alphabet
{-, 0, +} given as follows:

dt = ξ(ν∞(A)),

where the morphism ν : {A,B,C,A,B,C, S}∗ → {A,B,C,A,B,C, S}∗ is
defined by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν(A) = ABC,

ν(B) = BSS,

ν(C) = ABS,

ν(A) = CBA,

ν(B) = SSB,

ν(C) = SBA,

ν(S) = SSS,

and the coding ξ : {A,B,C,A,B,C, S}∗ → {-, 0, +}∗ is given by ξ(A) = ξ(A) =
ξ(S) =0, ξ(B) = ξ(C) =+, ξ(B) = ξ(C) =-.

6 First Differences of p(n)

By the definition of t(n), the first differences of the function p(n) are

dp(n) = dq(n) + dt(n).

88 D. Bulgakova et al.

The functions dq(n) and dt(n) are completely described in Theorems 4.11 and
5.6 and by respective automata. It remains just to combine them, and one of
the natural ways to do it is to define a new morphism ψ =

(
δ
ν

)
just as a

direct product of δ and ν on the direct product of alphabets. We start with

both starting symbols and get ψ
(

A
D

)
=

(
A
D

)(
B
S

)(
C
S′

)
; here the upper line

is δ and the lower is ν. Then we define ψ on all the pairs of symbols that
appeared, and continue this process while they continue to appear. We observe
that only ten pairs appear in the fixed point of ψ starting with

(
A
D

)
: the alpha-

bet is A =
{(

A
D

)
,

(
A
D

)
,
(
B
S

)
,
(
B
S

)
,
(

C
S′

)
,

(
C
S′

)
,
(

S
D

)
,
(

S
D

)
,
(
S
S

)
,
(

S
S′

)}
. Since

we investigate the sum of the two first difference functions, each of these dou-
ble letters is coded by c

(
X
Y

)
= γ(X) + ξ(Y), where we recall that the symbols

−, 0,+ are in fact numbers −1, 0, 1. So, for example, we have c
(

A
D

)
= 0+1 = 1.

It remains to simplify the notation: the first six symbols of A can be denoted
by just their upper letters, and the last four, starting with S, are defined by
their lower letters. All this gives the following

Theorem 6.1. The sequence dp of first differences of the prefix palindromic
length of the Sierpinski word is the 3-automatic word over the alphabet {-, 0, +}
defined as

dp = c(ψ∞(A)),

where the morphism ψ : B∗ → B∗, where B = {A,B,C,D,A,B,C,D, S, S′}, is
defined by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(A) = ABC,

ψ(B) = BSS,

ψ(C) = ABD,

ψ(D) = DSS′,
ψ(A) = CBA,

ψ(B) = SSB,

ψ(C) = DBA,

ψ(D) = S′SD,

ψ(S) = SSS,

ψ(S′) = DSD,

and the coding c : B∗ → {-, 0, +}∗ is given by c(A) = c(B) = c(C) = c(D) = +,
c(A) = c(B) = c(C) = c(D) = −, c(S) = c(S′) = 0.

The corresponding DFAO is depicted below.

Prefix Palindromic Length of the Sierpinski Word 89

C|-

A|+ A|-

B|+ B|-

C|+

S|0

S |0

D|+ D|-

0

1
2

2

1

0

2

1

0

0

1

2

0

1,2

2

0,1
0,1,2

0

1 2

0

1
20

1

2

References

1. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications General-
izations. Cambridge University Press, Cambridge (2003)

2. Bucci, M., Richomme, G.: Greedy palindromic lengths. Int. J. Found. Comput.
Sci. 29, 331–356 (2018)

3. Cobham, A.: Uniform tag sequences. Math. Syst. Theory 6, 164–192 (1972)
4. Frid. A.E.: Prefix palindromic length of the Thue-Morse word. J. Integer. Seq. 22,

Article 19.7.8 (2019)
5. Frid, A.E.: Sturmian numeration systems and decompositions to palindromes. Eur.

J. Combin. 71, 202–212 (2018)
6. Frid, A.E., Laborde, E., Peltomäki, J.: On prefix palindromic length of automatic

words. Theoret. Comput. Sci. 891, 13–23 (2021)
7. Frid, A.E., Puzynina, S., Zamboni, L.: On palindromic factorization of words. Adv.

Appl. Math. 50, 737–748 (2013)
8. Laborde, E.: Sur la longueur palindromique du préfixe de suites k-automatiques,

Master thesis, Aix-Marseille Université (2020)
9. Li, S.: Palindromic length sequence of the ruler sequence and of the period-doubling

sequence (2020). https://arxiv.org/abs/2007.08317
10. Rukavicka, J.: Palindromic length and reduction of powers (2021). https://arxiv.

org/abs/2103.14609
11. Saarela, A.: Palindromic length in free monoids and free groups. In: Brlek, S., Dolce,

F., Reutenauer, C., Vandomme, É. (eds.) WORDS 2017. LNCS, vol. 10432, pp.
203–213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66396-8 19

https://arxiv.org/abs/2007.08317
https://arxiv.org/abs/2103.14609
https://arxiv.org/abs/2103.14609
https://doi.org/10.1007/978-3-319-66396-8_19

Preservation of Normality
by Unambiguous Transducers

Olivier Carton(B)

IRIF, Université de Paris, Paris, France

Olivier.Carton@irif.fr

Abstract. We consider finite state non-deterministic but unambiguous
transducers with infinite inputs and infinite outputs, and we consider the
property of Borel normality of sequences of symbols. When these trans-
ducers are strongly connected, and when the input is a Borel normal
sequence, the output is a sequence in which every block has a frequency
given by a weighted automaton over the rationals. We provide an algo-
rithm that decides in cubic time whether an unambiguous transducer
preserves normality.

Keywords: Functional transducers · Weighted automata · Normal
sequences

1 Introduction

More than one hundred years ago Émile Borel [3] gave the definition of normality.
A real number is normal to an integer base if, in its infinite expansion expressed in
that base, all blocks of digits of the same length have the same limiting frequency.
Borel proved that almost all (in a measure theoretic sense) real numbers are
normal to all integer bases. However, very little is known on how to prove that
a given number like

√
2 or π has this property.

The definition of normality was the first step towards a definition of random-
ness. Normality formalizes the least requirements about a random sequence. It is
indeed expected that in a random sequence, all blocks of symbols with the same
length occur with the same limiting frequency. Normality, however, is a much
weaker notion than the one of purely random sequences defined by Kolmogorov,
Martin-Löf and others [11].

The motivation of this work is the study of transformations preserving ran-
domness, hence preserving normality. The paper is focused on very simple trans-
formations, namely those that can be realized by finite-state machines. We
consider automata with outputs, also known as transducers, mapping infinite
sequences of symbols to infinite sequences of symbols. Input deterministic trans-
ducers were considered in [6] where it was shown that preservation of normality
can be checked in polynomial time for these transducers. This paper extends the
results to unambiguous transducers, that is, transducers where each sequence is

c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 90–101, 2022.
https://doi.org/10.1007/978-3-031-05578-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_7&domain=pdf
https://doi.org/10.1007/978-3-031-05578-2_7

Preservation of Normality by Unambiguous Transducers 91

the input label of at most one accepting run. These machines are of great impor-
tance because they coincide with functional transducers in the following sense.
Each unambiguous transducer is indeed functional as there is at most one output
for each input but it was shown conversely that each functional transducer is
equivalent to some unambiguous one [8].

An auxiliary result involving weighted automata is introduced to obtain the
main result. It states that if an unambiguous and strongly connected transducer
is fed with a normal sequence then the frequency of each block in the output is
given by a weighted automaton on rational numbers. It implies, in particular,
that the frequency of each block in the output sequence does not depend on the
input nor the run labeled by it as long as this input sequence is normal. As the
output of the run can be the used transitions, the result shows that each finite
run has a limiting frequency in the run.

Our result is connected to another strong link between normality and
automata. Agafonov’s theorem [1] states that if symbols are selected in a nor-
mal sequence using an oblivious finite state machine, the resulting sequence is
still normal. Oblivious means here that the choice of selecting a symbol is based
on the state of the machine after reading the prefix of the sequence before the
symbol but not including the symbol itself. Our result allows us to recover Aga-
fonov’s theorem about preservation of normality by selection but this application
is not detailed in this short version of the paper.

The paper is organized as follows. Notions of normal sequences and transduc-
ers are introduced in Sect. 2. Results are stated in Sect. 3. The main ingredients
of the construction are given in Sect. 4 while the algorithm is given in Sect. 5.

2 Basic Definitions

2.1 Normality

Before giving the formal definition of normality, let us introduce some simple
definitions and notation. Let A be a finite set of symbols that we refer to as the
alphabet. We write AN for the set of all sequences on the alphabet A and A∗

for the set of all (finite) words. The length of a finite word w is denoted by |w|.
The positions of sequences and words are numbered starting from 1. To denote
the symbol at position i of a sequence (respectively, word) w we write w[i], and
to denote the substring of w from position i to j inclusive we write w[i:j]. The
empty word is denoted by λ. The cardinality of a finite set E is denoted by #E.

Given two words w and v in A∗, the number |w|v of occurrences of v in w
is defined by |w|v = #{i : w[i:i + |v| − 1] = v}. Given a word w ∈ A+ and a
sequence x ∈ AN, we refer to the frequency of w in x as

freq(x,w) = lim
n→∞

|x[1:n]|w
n

when this limit is well-defined. A sequence x ∈ AN is normal on the alphabet A
if for every word w ∈ A+, freq(x,w) = (#A)−|w|

92 O. Carton

An occurrence of v is called aligned if its starting position i (as above) is such
that i − 1 is a multiple of the length of v. An alternative definition of normality
can be given by counting aligned occurrences, and it is well-known that they
are equivalent (see for example [2]). We refer the reader to [5, Chap. 4] for a
complete introduction to normality.

The most famous example of a normal sequence is due to Champernowne [7],
who showed in 1933 that the sequence obtained from concatenating all the natu-
ral numbers in their usual order (spaces are added for the reader’s convenience):

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 . . .

is normal on the alphabet {0, 1, . . . , 9}.

2.2 Automata and Transducers

In this paper we consider automata with outputs, also known as transducers.
We refer the reader to [12] for a complete introduction to automata accepting
sequences. Such finite-state machines are used to realize functions mapping words
to words and especially sequences to sequences. We mainly consider transducers
in which each transition consumes exactly one symbol of their input and outputs
a word which might be empty. As many reasonings ignore the outputs of the
transitions, we first introduce automata.

A (Büchi) automaton A is a tuple 〈Q,A,Δ, I, F 〉 where Q is the finite state
set, A the alphabet, Δ ⊆ Q × A × Q the transition relation, I ⊆ Q the set of
initial states and F is the set of final states. A transition is a tuple 〈p, a, q〉 in
Q × A × Q and it is written p a−→ q. A finite run in A is a finite sequence of
consecutive transitions,

q0
a1−→ q1

a2−→ q2 · · · qn−1
an−−→ qn

Its input is the word a1a2 · · · an. An infinite run in A is a sequence of consecutive
transitions,

q0
a1−→ q1

a2−→ q2
a3−→ q3 · · ·

A run is initial if its first state q0 is initial, that is, belongs to I. An infinite run
is called final if it visits infinitely often a final state. Let us denote by q x−→ ∞ the
existence of a final run labeled by x and starting from state q. An infinite run is
accepting if it is both initial and final. As usual, an automaton is deterministic
if it has only one initial state, that is #I = 1 and if p a−→ q and p a−→ q′ are two
of its transitions with the same starting state and the same label, then q = q′.
An automaton is called unambiguous if each sequence is the label of at most one
accepting run. By definition, deterministic automata are unambiguous but they
are not the only ones as is shown by the one pictured in Fig. 1 (right).

Each automaton A can be seen as a directed graph G by ignoring the labels
of its transitions. We define the strongly connected components (SCC) of A as
the strongly connected components of G. An automaton A is called strongly
connected if it has a single strongly connected component.

Preservation of Normality by Unambiguous Transducers 93

1 2

3 4

0|0
1|10
0|0

0|1
1|λ

0|0, 1|λ

1|1

1 2

3 4

0
1

0
0

1

0, 1

1

Fig. 1. An unambiguous transducer and its input automaton

A transducer with input alphabet A and output alphabet B is informally an
automaton whose labels of transitions are pairs (u, v) in A∗ ×B∗. The pair (u, v)
is usually written u|v and a transition is thus written p u|v−−→ q. The words u and v
are respectively called the input and output label of the transition. More formally
a transducer T is a tuple 〈Q,A,B,Δ, I, F 〉, where Q is a finite set of states, A
and B are the input and output alphabets respectively, Δ ⊆ Q × A∗ × B∗ × Q is
a finite transition relation and I ⊆ Q is the set of initial states and F is the set of
final states of the Büchi acceptance condition. The transducer is called real-time
if the transition relation is contained in Q × A × B∗ × Q, that is, the input label
of each transition is a symbol. The input automaton of a real-time transducer
is the automaton obtained by ignoring the output label of each transition. A
real-time transducer is called input deterministic (respectively, unambiguous) if
its input automaton is deterministic (respectively, unambiguous).

A finite run in T is a finite sequence of consecutive transitions,

q0
u1|v1−−−→ q1

u2|v2−−−→ q2 · · · qn−1
un|vn−−−−→ qn

Its input and output labels are the words u1u2 · · · un and v1v2 · · · vn respectively.
An infinite run in T is an infinite sequence of consecutive transitions,

q0
u1|v1−−−→ q1

u2|v2−−−→ q2
u3|v3−−−→ q3 · · ·

Its input and output labels are the sequences of symbols u1u2u3 · · · and v1v2v3 · · ·
respectively. Accepting runs are defined as for automata. The relation realized
by the transducer is the set of pairs (x, y) where x and y are the input and output
labels of an accepting run. It is a classical result that if the relation realized by
some transducer T is a function, it is also realized by a real-time transducer
which is easily obtained from T [13, Prop. 1.1, p. 646].

If T is an unambiguous transducer, each sequence x is the input label of at
most one accepting run in T . When this run does exist, its output is denoted
by T (x). This output might be finite but it is always possible to modify the
transducer in such a way that this output is infinite for each accepting run.
Therefore it is always assumed from now on that this output is infinite. We
say that an unambiguous transducer T preserves normality if for each normal
sequence x, T (x) is also normal.

94 O. Carton

An automaton (respectively, transducer) is said to be trim if each state occurs
in an accepting run. Automata and transducers are always assumed to be trim
since useless states can easily be removed.

We end this section by stating very easy but useful facts about unambiguous
automata. If 〈Q,A,Δ, I, F 〉 is an unambiguous automaton then each automaton
〈Q,A,Δ, {q}, F 〉 obtained by taking state q as initial state is also unambiguous.
Similarly, removing states or transitions from an unambiguous automaton yields
an unambiguous automaton. Combining these two facts gives that each strongly
connected component, seen as an automaton, of an unambiguous automaton is
still an unambiguous automaton.

2.3 Weighted Automata

We now introduce weighted automata. In this paper we only consider weighted
automata whose weights are rational numbers with the usual addition and mul-
tiplication (see [13, Chap. III] for a complete introduction).

A weighted automaton A is a tuple 〈Q,B,Δ, I, F 〉, where Q is the finite state
set, B is the alphabet, I : Q → Q and F : Q → Q are the functions that assign
to each state an initial and a final weight and Δ : Q × B × Q → Q is a function
that assigns to each transition a weight.

As usual, the weight of a run is the product of the weights of its transitions
times the initial weight of its first state and times the final weight of its last
state. Furthermore, the weight of a word w ∈ B∗ is the sum of the weights of all
runs with label w and it is denoted weightA(w).

q0 q11 11:1

0:1
1:1

0:2
1:2

Fig. 2. A weighted automaton

A transition p a−→ q with weight x is pictured p a:x−−→ q. Non-zero initial and
final weights are given over small incoming and outgoing arrows. A weighted
automaton is pictured in Fig. 2. The weight of the run q0

1−→ q1
0−→ q1

1−→ q1
0−→ q1

is 1 · 1 · 2 · 2 · 2 · 1 = 8. The weight of the word w = 1010 is 8 + 2 = 10. More
generally the weight of a word w = a1 · · · ak is the integer n =

∑k
i=1 ai2k−i (w

is a binary expansion of n with possibly some leading zeros).
A weighted automaton can also be represented by a triple 〈π, μ, ν〉 where π

is a row vector over Q of dimension 1 × n, μ is a morphism from B∗ into the set
of n×n-matrices over Q with the usual matrix multiplication and ν is a column
vector of dimension n × 1 over Q. The weight of a word w ∈ B∗ is then equal to
πμ(w)ν. The vector π is the vector of initial weights, the vector ν is the vector
of final weights and, for each symbol b, μ(b) is the matrix whose (p, q)-entry

Preservation of Normality by Unambiguous Transducers 95

is the weight x of the transition p b:x−−→ q. The weighted automaton pictured in
Fig. 2 is, for instance, represented by 〈π, μ, ν〉 where π = (1, 0), ν = (0

1) and the
morphism μ is given by

μ(0) =
(

1 0
0 2

)

and μ(1) =
(

1 1
0 2

)

.

3 Results

We now state the main results of the paper. The first one states that when a
transducer is strongly connected, unambiguous and complete, the frequency of
each finite word w in the output of a run with a normal input label is given
by a weighted automaton over Q. The second one states that it can be checked
whether an unambiguous transducer preserves normality.

Theorem 1. Given an unambiguous and strongly connected transducer, there
exists a weighted automaton A such that for each normal sequence x in the
domain of T and for any finite word w, freq(T (x), w) is equal to weightA(w).

Furthermore, the weighted automaton A can be computed in cubic time with
respect to the size of the transducer T .

Theorem 1 only deals with strongly connected transducers, but Proposition 5
deals with the general case by showing that it suffices to apply Theorem 1 to
some strongly connected components to check preservation of normality.

1 2

3 4

5

8
15

2
15

1
5

2
15

1
1

1
1

1

0: 1
2

1: 1
4 0:1

0:1

1: 1
4

1: 2
3

0: 1
3 0: 1

3

1: 2
3

1 2

3

5

8
15

2
15

1
5

2
15

1
1

1

1

0: 1
2

1: 1
4 0:1

0:1

1: 1
4

1: 2
3

0: 1
3

Fig. 3. Two weighted automata

To illustrate Theorem 1 we give in Fig. 3 two weighted automata which com-
pute the frequency of each finite word w in T (x) for a normal input x and the
transducer T pictured in Fig. 1. The leftmost one is obtained by the procedure
described in the next section. The rightmost one is obtained by removing useless
states from the leftmost one.

The decidability in cubic time of the equivalence of transducers over a (com-
putable) field yields the following theorem. The size of a transducer is the sum
of the sizes of its transitions where the size of a transition p a|w−−→ q is |aw|.

96 O. Carton

Theorem 2. It can be decided in cubic time whether an unambiguous transducer
preserves normality or not.

From the weighted automaton pictured in Fig. 3, it is easily computed that
the limiting frequencies of the digits 0 and 1 in the output T (x) of a normal
input x are respectively 9/15 and 6/15. This shows that the transducer T pic-
tured in Fig. 1 does not preserve normality. To illustrate the previous theorem,
we show that the transducer pictured in Fig. 4 is unambiguous and does preserve
normality. The output of each transition is either the input symbol or the empty
word. Therefore, the output is always a subsequence of the input sequence. It
can be checked that a symbol is selected, that is copied to the output, if the
number of 0 until the next 1 is finite and even, including zero.

1 2

3

4
0|0

1|11|λ
0|0

0|λ

1|λ

1|1

0|λ

Fig. 4. Another unambiguous transducer

By Proposition 5 below, it suffices to check that the strongly connected
component made of the states {1, 2, 3} does preserve normality. The weighted
automaton given by the algorithm is represented by the triple 〈π, μ,1〉 where π
is the row vector π = (3/4, 1/4), 1 is the column vector (1

1) and the morphism μ
is defined by

μ(0) =
(

1/4 1/12
3/4 1/4

)

and μ(1) =
(

1/2 1/6
0 0

)

.

The vector π satisfies πμ(0) = πμ(1) = 1
2π and therefore πμ(w)1 is equal to

2−|w| for each word w. This shows that the transducer pictured in Fig. 4 does
preserve normality.

4 Markov Chain of an Unambiguous Automaton

In this section, we introduce the main tools used to prove Theorems 1 and 2. Let
A be an automaton with state set Q. The adjacency matrix of A is the Q × Q-
matrix M defined by Mp,q = #{a ∈ A : p a−→ q}/#A. Its entry Mp,q is thus the
number of transitions from p to q divided by the cardinality of the alphabet A.
The factor 1/#A is just a normalization factor to compare the spectral radius of
this matrix to 1 rather than to the cardinality of the alphabet. By a slight abuse
of notation, the spectral radius of the adjacency matrix is called the spectral
radius of the automaton.

Preservation of Normality by Unambiguous Transducers 97

The adjacency matrix of the input automaton of the transducer pictured in
Fig. 1 is the matrix M given by

M =
1
2

(
1 1 1 0
1 0 0 0
0 0 0 1
1 0 2 0

)

It can be checked that the spectral radius of this matrix is 1.
Let us recall that the uniform measure μ is the measure on AN such that the

measure μ(wAN) of each cylinder wAN is (#A)−|w|. For each state q, let Fq be
the future set, that is the set Fq = {x : q x−→ ∞} of accepted sequences if q is
taken as the only initial state. Let αq be the measure of the set Fq. The spectral
radius of the adjacency matrix of an unambiguous automaton is at most 1. The
following proposition characterizes when it is equal to 1 or strictly less than 1.

Proposition 1. Let A be a strongly connected and unambiguous automaton and
let ζ be the spectral radius of its adjacency matrix. If ζ = 1 then A accepts at
least one normal sequence and each number αq is positive. If ζ<1, < then A
accepts no normal sequence and each number αq is equal to zero.

Now we sketch the proof of Proposition 1. It is well-known that the spectral
radius of a strongly connected automaton is related to the entropy of the corre-
sponding sofic shift [10, Thm 4.3.1]. If this spectral radius is less than 1, at least
one finite word w is the label of no run in A. Therefore, no normal sequence x is
the label of a run in A because w occurs in x with limiting frequency (#A)−|w|.
If the spectral radius is 1, then each finite word w is the label of at least one
run in A. By compacity of AN, it follows that each sequence, including the nor-
mal ones, is the label of a run in A. This run might be neither initial nor final.
Modifying the run at the beginning and at sparse positions (say positions 2n

for instance) yields an accepting run whose label is still normal if its label was
already normal before.

Now, we introduce a Markov chain associated with an unambiguous automa-
ton. The use of the ergodic theorem applied to this Markov chain is the main
ingredient in the proof of Theorem 1. Let A be a strongly connected and unam-
biguous automaton and let p be one of its states. We also suppose that the
spectral radius of its adjacency matrix M is 1. By Proposition 1, the measure αq

of each set Fq = {x : q x−→ ∞} is non-zero.
We define a stochastic process (Xn)n�0 as follows. Its sample set is the

set Fp ⊆ AN equipped with the uniform measure μ. For each sequence x =
x1x2x3 · · · in Fp, there exists a unique accepting run

(p = q0)
x1−→ q1

x2−→ q2
x3−→ q3 · · ·

The process is defined by setting Xn(x) = qn for each x ∈ Fp. The following
proposition states the main property of this process.

Proposition 2. The process (Xn)n�0 is a Markov chain.

The proof of this propostion is a mere verification. However it allows us to use
the ergodic theorem for Markov chains [4, Thm 4.1].

98 O. Carton

The Q × Q-matrix P of probabilities for the introduced Markov chain is
given by Pp,q = #{a ∈ A : p a−→ q}αq/(#A)αp. Note that the matrix P and the
adjacency matrix M of A are related by the equalities Pp,q = Mp,qαq/αp for
each states p, q ∈ Q. The stationary distribution of the stochastic matrix P is
the vector (πqαq)q∈Q where π = (πq)q∈Q is the left eigenvector of the matrix M
for the eigenvalue 1 and π has been normalized such that

∑
q∈Q πqαq = 1. The

following property states the main property of this stationary distribution.

Proposition 3. Let A be a strongly connected and unambiguous automaton
such that the spectral radius of its adjacency matrix is 1. Let ρ be an accept-
ing run whose label is a normal sequence. Then, for any state r

lim
n→∞

|ρ[1:n]|r
n

= πrαr

where ρ[1:n] is the finite run made of the first n transitions of ρ.

Note that the result of Proposition 3 implies that the frequencies of states
do not depend on the input as long as this input is normal. Note also that
the result is void if the spectral radius of the adjacency matrix is less than 1
because, by Proposition 1, no accepting run is labeled by a normal sequence.
This assumption could be removed because the statement remains true but this
is our choice to mention explicitly the assumption for clarity.

Now we sketch the proof of Proposition 3. For each real numbers ε, δ > 0,
there exists, by the ergodic theorem, an integer n such that for each integer k � n

#{w : |w| = k and ∃p, q, r ∈ Q
∣
∣|p w−→ q|r/k − πrαr

∣
∣>δ}<ε(#A)k.

This shows that, for k great enough, the cardinality of the set of bad words of
length k is small where a word w is bad if there are three states p, q, r such
that the number of occurrences of r in the run p w−→ q is far from the expected
value πrαrk. It suffices then to split the run ρ into blocks of length k and use
the fact that all words of length k have the same limiting frequency in the input
sequence.

The following proposition extends to finite runs the statement of Proposi-
tion 3 about states. It is obtained by applying Proposition 3 to a new automaton
whose states are the runs of length n of the starting one. The Markov chain asso-
ciated with this new automaton is called the snake Markov chain. See Problems
2.2.4, 2.4.6 and 2.5.2 (p. 90) in [4] for more details.

Proposition 4. Let A be a strongly connected and unambiguous automaton
such that the spectral radius of its adjacency matrix is 1. Let ρ be an accepting run
whose label is a normal sequence. For any finite run γ = q0

a1−→ q1 · · · qk−1
ak−→ qk

of length k, one has

lim
n→∞

|ρ[1:n]|γ
n

=
πq0αqk

(#A)k

where ρ[1:n] is the finite run made of the first n transitions of ρ.

Preservation of Normality by Unambiguous Transducers 99

5 Sketches of Proofs

In this section we skech the proofs for Theorems 1 and 2. The proofs are orga-
nized in three parts. First, the transducer T is normalized into another trans-
ducer T ′ realizing the same function. Then this latter transducer is used to
define a weighted automaton A. Second, the proof that the construction of A is
correct is carried out. Third, the algorithms computing A and checking whether
T preserves normality or not are given.

Each infinite accepting run in a transducer is eventually trapped in a strongly
connected component with at least one final state. If the input sequence is nor-
mal, the spectral radius of this component must be one by Proposition 1. Con-
versely, each strongly connected component with spectral radius one contains a
run labeled by a normal sequence. The next proposition follows.

Proposition 5. An unambiguous transducer T preserves normality if and only
if each strongly connected component of T with a final state and spectral radius 1
preserves normality.

Consider for instance the transducer pictured in Fig. 4. It has two strongly
connected components: the one made of states 1, 2, 3 and the one made of state 4.
The corresponding adjacency matrices are

1
2

(
0 1 1
1 1 1
1 0 0

)
and

(
1
2

)

whose spectral radii are respectively 1 and 1/2. It follows that the transducer
preserves normality if and only if the transducer reduced to the states 1, 2, 3 does
preserve normality.

In what follows we only consider strongly connected transducers. Propositions
3 and 4 have the following consequence. Let T be an unambiguous and strongly
connected transducer. If each transition has an empty output label, the output
of any run is empty and then T does not preserve normality. Therefore, we
assume that transducers have at least one transition with a non empty output
label. By Propositions 3 and 4, this transition is visited infinitely often if the
input is normal because the stationary distribution (πqαq)q∈Q is positive. This
guarantees that if the input sequence is normal, then the output sequence is
infinite and T (x) is well-defined.

Note that the output labels of the transitions in T from Theorem 1 may
have arbitrary lengths. We first describe the construction of an equivalent trans-
ducer T ′ such that all output labels in T ′ have length at most 1. We call this
transformation normalization and it consists in replacing each transition p a|v−−→ q
in T such that a ∈ A and |v| � 2 by n transitions:

p
a|b1−−→ q1

λ|b2−−→ q2 · · · qn−1
λ|bn−−−→ q

where q1, q2, . . . , qn−1 are new states and v = b1 · · · bn. We refer to p as the
parent of q1, · · · , qn−1.

100 O. Carton

The last step is the construction of a weighted automaton from the normal-
ized transducer. This is performed by replacing the input of each transition by
a weight. This weight is either 1/#A if the input is a symbol or 1 if the input
is the empty word λ. The transitions of the latter case have been added by
the normalization: the transition is then the only transition leaving that state.
The output of the transition in the transducer becomes then the input in the
weighted automaton. The last problem is that this new input is either a symbol
or the empty word λ. The last step consists in removing these λ-transitions. This
is done as for usual automata by replacing a path of λ-transitions followed by
a symbol by only one transition. This transformation must be carried out by
preserving weights of runs. The transitions and their associated weights are put
into two Q×Q-matrices M and E as follows. Transitions labeled by a symbol are
put in M while λ-transitions are put in E. The entries of M are sum of weighted
symbols while entries of E are just weights. The transitions are thus represented
by M +Eλ. They are replaced by the transitions represented by E∗M where E∗

is of course the matrix
∑

n�0 En. Note that this matrix E∗ can be effectively
computed since it is the solution of the equation X = EX + I where I is the
identity matrix.

6 Conclusion

The first result of the paper provides a weighted automaton which gives the
limiting frequency of each block in the output of a normal input. This automaton
can be used to check another property of this invariant. It can be decided,
for instance, whether this measure is a Bernoulli measure. This boils down to
checking whether the minimal automaton has only a single state.

In this work, it is assumed that the input of the transducer is normal, that
is generic for the uniform measure. It seems that the results can be extended to
the more general setting of Markovian measures. The case of hidden Markovian
measure, that is, measures computed by weighted automata, seems however more
involved [9].

Acknowledgments. The author would like to thank Verónica Becher for many fruit-
ful discussions and suggestions. The author is a member of the IRP SINFIN, CON-
ICET/Universidad de Buenos Aires–CNRS/Université de Paris and he is supported by
the ECOS project PA17C04. The author is also partially funded by the DeLTA project
(ANR-16-CE40-0007).

References

1. Agafonov, V.N.: Normal sequences and finite automata. Soviet Math. Doklady 9,
324–325 (1968)

2. Becher, V., Carton, O.: Normal numbers and computer science. In: Berthé, V.,
Rigo, M. (eds.) Sequences, Groups, and Number Theory. TM, pp. 233–269.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-69152-7 7

https://doi.org/10.1007/978-3-319-69152-7_7

Preservation of Normality by Unambiguous Transducers 101

3. Émile Borel, M.: Les probabilités dénombrables et leurs applications arithmétiques.
Rendiconti del Circolo Matematico di Palermo (1884-1940) 27(1), 247–271 (1909).
https://doi.org/10.1007/BF03019651

4. Brémaud, P.: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues.
Springer, Cham (2008). https://doi.org/10.1007/978-3-030-45982-6

5. Bugeaud, Y.: Distribution Modulo One and Diophantine Approximation, Cam-
bridge Tracts in Mathematics, vol. 193. Cambridge University Press, Cambridge
(2012)

6. Carton, O., Orduna, E.: Preservation of normality by transducers. Inf. Comput.
282, 104650 (2022)

7. Champernowne, D.G.: The construction of decimals normal in the scale of ten. J.
London Math. Soc. 1(4), 254–260 (1933)

8. Choffrut, C., Grigorieff, S.: Uniformization of rational relations. In: Karhumäki, J.,
Maurer, H.A., Paun, G., Rozenberg, G. (eds.) Jewels are Forever, Contributions
on Theoretical Computer Science in Honor of Arto Salomaa, pp. 59–71. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-642-60207-8 6

9. Hansel, G., Perrin, D.: Mesures de probabilité rationnelles. In: Lothaire, M. (ed.)
Mots, pp. 335–357. Hermes, Paris (1990)

10. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, Cambridge (1995)

11. Nies, A.: Computability and Randomness. Oxford University Press, Oxford (2009)
12. Perrin, D., Pin, J.É.: Infinite Words. Elsevier, Amsterdam (2004)
13. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cam-

bridge (2009)

https://doi.org/10.1007/BF03019651
https://doi.org/10.1007/978-3-030-45982-6
https://doi.org/10.1007/978-3-642-60207-8_6

A Full Characterization of Bertrand
Numeration Systems

Émilie Charlier , Célia Cisternino , and Manon Stipulanti(B)

Department of Mathematics, University of Liège, Liège, Belgium
{echarlier,ccisternino,m.stipulanti}@uliege.be

Abstract. Among all positional numeration systems, the widely studied
Bertrand numeration systems are defined by a simple criterion in terms
of their numeration languages. In 1989, Bertrand-Mathis characterized
them via representations in a real base β. However, the given condition
turns out to be not necessary. Hence, the goal of this paper is to provide
a correction of Bertrand-Mathis’ result. The main difference arises when
β is a Parry number, in which case two associated Bertrand numeration
systems are derived. Along the way, we define a non-canonical β-shift
and study its properties analogously to those of the usual canonical one.

Keywords: Numeration systems · Bertrand condition · Real bases
expansion · Dominant root · Parry numbers · Subshifts

1 Introduction

In 1957, Rényi [14] introduced representations of real numbers in a real base
β > 1. A β-representation of a nonnegative real number x is an infinite sequence
a1a2 · · · over N such that x =

∑∞
i=1

ai

βi . The most commonly used algorithm
in order to obtain such digits ai is the greedy algorithm. The corresponding
distinguished β-representation of a given x ∈ [0, 1] is called the β-expansion of
x and is obtained as follows: set r0 = x and for all i ≥ 1, let ti = �β ri−1�
and ri = β ri−1 − ti. The β-expansion of x is the infinite word dβ(x) = t1t2 · · ·
written over the alphabet {0, . . . , �β�}. In this theory, the β-expansion of 1 and
the quasi-greedy β-expansion of 1 given by d∗

β(1) = limx→1− dβ(x) play crucial
roles, as well as the β-shift

Sβ = {w ∈ {0, . . . , �β� − 1}N : ∀i ≥ 0, σi(w) ≤lex d∗
β(1)}

where σ(w1w2 · · ·) denotes the shifted word w2w3 · · · . Parry [12] showed that
the β-shift Sβ is the topological closure (w.r.t. the prefix distance) of the set
of infinite words that are the β-expansions of some real number in [0, 1) and
Bertrand-Mathis [1] characterized the real bases β for which Sβ is sofic, i.e., its

Émilie Charlier, Célia Cisternino and Manon Stipulanti are supported by the FNRS
grants J.0034.22, 1.A.564.19F and 1.B.397.20F respectively.

c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 102–114, 2022.
https://doi.org/10.1007/978-3-031-05578-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_8&domain=pdf
http://orcid.org/0000-0002-5789-2674
http://orcid.org/0000-0002-1994-9625
http://orcid.org/0000-0002-2805-2465
https://doi.org/10.1007/978-3-031-05578-2_8

A Full Characterization of Bertrand Numeration Systems 103

factors form a language that is accepted by a finite automaton. Expansions in a
real base are extensively studied under various points of view and we can only
cite a few of the many possible references [1,5,10,12,15].

In parallel, other numeration systems are also widely studied, this time to
represent nonnegative integers. A positional numeration system is given by an
increasing integer sequence U = (U(i))i≥0 such that U(0) = 1 and the quotients
U(i+1)

U(i) are bounded. The greedy U -representation of n ∈ N, denoted repU (n), is

the unique word a1 · · · a� over N such that n =
∑�

i=1 aiU(�−i), a1
= 0 and for all
j ∈ {1, . . . , �},

∑�
i=j aiU(�− i) < U(�− j +1). These representations are written

over the finite alphabet AU = {0, . . . , supi≥0

⌈U(i+1)
U(i)

⌉ − 1}. The numeration
language is the set NU = 0∗repU (N). Similarly, the literature about positional
numeration systems is vast; see [2–4,9,11,13,16] for the most topic-related ones.

There exists an intimate link between β-expansions and greedy U -representa-
tions. Its study goes back to the work [2] of Bertrand-Mathis. A positional numer-
ation system U is called Bertrand if the corresponding numeration language NU

is both prefix-closed and prolongable, i.e., if for all words w in NU , the word w0
also belongs to NU . These two conditions can be summarized as

∀w ∈ A∗
U , w ∈ NU ⇐⇒ w0 ∈ NU . (1)

The usual integer base numeration systems are Bertrand, as well the Zeckendorf
numeration system [19]. This form of the definition of Bertrand numeration
systems, as well as their names after Bertrand-Mathis, was first given in [3], and
then used in [4,11,13,17]. Bertrand numeration systems were also reconsidered
in [9]. Moreover, the normalization in base β > 1 in [3,7] deals with these
Bertrand numeration systems.

In [2], Bertrand-Mathis stated that a positional numeration system U is
Bertrand if and only if there exists a real number β > 1 such that NU = Fac(Sβ).
In this case, AU = {0, . . . , �β� − 1} and for all i ≥ 0,

U(i) = d1U(i − 1) + d2U(i − 2) + · · · + diU(0) + 1 (2)

where (di)i≥1 = d∗
β(1). This result has been widely used, see for example [3,4,10].

Note that the condition stated above is trivially sufficient. However, it is not
necessary (see Sect. 3). The mistake that occurs in the proof of [2] is a confusion
between d∗

β(1) and dβ(1) while describing the set Fac(Sβ) (which corresponds
to L(θ) in the notation of [2]). This mistake is then repeated in [10, Theorem
7.3.8]. Therefore, in this work, we propose a correction of this famous theorem
by fully characterizing Bertrand numeration systems.

The authors of [11,17] distinguish what they call Parry numeration systems
(which will be our canonical Bertrand systems associated with a Parry number)
among general Bertrand numeration systems. In fact, the only possible Bertrand
systems with a regular numeration language that are not Parry (in their sense)
are very specific and they will be clearly identified within our characterization.

The paper is organized as follows. We first fix some notation in Sect. 2. In
Sect. 3, we illustrate the fact that the Bertrand-Mathis theorem stated above

104 É. Charlier et al.

does not fully characterize Bertrand numeration systems and we correct it. Then,
in Sect. 4, we investigate Bertand numeration systems based on a sequence that
satisfies a linear recurrence relation. In Sect. 5, we obtain a second characteriza-
tion of Bertrand numeration systems in terms of the lexicographically greatest
words of each length in NU . This provides a refinement of a result of Hollan-
der [8]. Finally, seeing the importance of the newly introduced non-canonical
β-shift, we study its main properties in Sect. 6.

2 Basic Notation

We make use of common notions in formal language theory, such as alphabet,
letter, word, length of a word, prefix distance, convergence of words, language,
code and automaton [10]. In particular, the length of a finite word w is denoted
by |w|. The notation wω means an infinite repetition of the finite word w. The
set of factors of a word w is written Fac(w) and the set of factors of words in a set
L is written Fac(L). Given a finite word w and n ∈ {1, . . . , |w|}, the prefix and
suffix of length n of w are respectively written Prefn(w) and Suffn(w). Similarly,
for an infinite word w and n ≥ 0, we let Prefn(w) denote the prefix of length n
of w. If (A,<) is a totally ordered alphabet, then ≤lex denotes the usual induced
lexicographic order on both A∗ and AN.

3 Characterization of Bertrand Numeration Systems

The goal of this section is to give a full characterization of Bertrand numeration
systems defined by (1). In doing so, we correct the result of Bertand-Mathis
stated in the introduction.

First, we note that both implications in (1) are relevant. This observation is
illustrated in the following example.

Example 1. Consider the numeration system U defined by (U(0), U(1)) = (1, 3)
and U(i) = U(i− 1)+U(i− 2) for all i ≥ 2. It is not Bertrand as its numeration
language is not prolongable: for instance, 2 ∈ NU but 20 /∈ NU .

Now, consider U defined by (U(0), U(1)) = (1, 2) and U(i) = 5U(i − 1) +
U(i − 2) for all i ≥ 2. It is not Bertrand since the corresponding language NU is
not prefix-closed. Indeed, 50 ∈ repU (N) but 5 /∈ repU (N).

Then, let us show that the condition given in the original Bertrand-Mathis
result characterizing the Bertrand numeration systems is not necessary.

Example 2. Let U be the positional numeration system defined by U(0) = 1 and
U(i) = 3U(i − 1) + 1 for all i ≥ 1. This example was already considered in [11].
It is easy to see that NU = {0, 1, 2}∗ ∪ {0, 1, 2}∗30∗. The minimal automaton of
this language is depicted in Fig. 2b. Therefore, U is Bertrand. However, for all
β > 1, we have NU
= Fac(Sβ), in contradiction to the result from [2] (which has
been transcribed in the introduction). This can be seen by observing that for all

A Full Characterization of Bertrand Numeration Systems 105

0, 1, 2

(a) U(i) = 3i for i ≥ 0.

0, 1, 2 0

3

(b) U(0) = 1 and U(i) = 3U(i − 1) + 1 for
i ≥ 1.

Fig. 1. The minimal automata of the languages NU where U are respectively the
canonical and non-canonical Bertrand numeration systems associated with 3.

0

0

1

(a) (U(0), U(1)) = (1, 2) and
U(i) = U(i−1)+U(i−2) for i ≥ 2.

0

0

1 1

0

(b) (U(0), U(1)) = (1, 2) and U(i) = U(i−1)+
U(i − 2) + 1 for i ≥ 2.

Fig. 2. The minimal automata of the languages NU where U are respectively the

canonical and non-canonical Bertrand numeration systems associated with 1+
√

5
2

.

i ≥ 1, the lexicographically maximal word of length i in NU is 30i−1 while in
Fac(Sβ), this word is Prefi(d∗

β(1)). But we know that d∗
β(1) never ends with a

tail of zeroes. Also see [11, Lemma 2.5]. The sequence U satisfies (2) with (di)i≥1

not equal to d∗
3(1) = 2ω as prescribed in [2] but equal to d3(1) = 30ω instead.

Another example is the following one. We consider the positional numeration
system U defined by (U(0), U(1)) = (1, 2) and U(i) = U(i− 1)+U(i− 2)+1 for
all i ≥ 2. This system is Bertrand since the corresponding numeration language
is NU = {0, 10}∗ ∪ {0, 10}∗1 ∪ {0, 10}∗110∗. The minimal automaton of this
language is depicted in Fig. 2b. Similarly as in the previous paragraph, we see
that NU
= Fac(Sβ) for all β > 1. The sequence U satisfies (2) with (di)i≥1 equal
to dϕ(1) = 110ω where ϕ is the golden ratio 1+

√
5

2 .
We will show that, up to a single exception, the only possible Bertrand numer-

ation systems are given by the recurrence relation (2) where the sequence of
coefficients (di)i≥1 is either equal to d∗

β(1) or to dβ(1), as is the case of the pre-
vious two systems. Before proving our characterization of Bertrand numeration
systems, we need some technical results.

Lemma 1 ([10, Proposition 7.3.6]). The language NU of a positional numera-
tion system U is equal to {a ∈ A∗

U : ∀i ≤ |a|, Suffi(a) ≤lex repU (U(i) − 1)}.
Lemma 2. The numeration language NU of a Bertrand numeration system U
is factorial, that is, Fac(NU) = NU .

106 É. Charlier et al.

Proof. The fact that NU is prefix-closed comes from the definition of a Bertrand
numeration system. Since any positional numeration system has a suffix-closed
numeration language, the conclusion follows.

Lemma 3. A positional numeration system U is Bertrand if and only if there
exists an infinite word a over AU such that repU (U(i) − 1) = Prefi(a) for all
i ≥ 0. In this case, we have σi(a) ≤lex a for all i ≥ 0.

Proof. In order to get the necessary condition, it suffices to show that if U is
a Bertrand numeration system then for all i ≥ 1, repU (U(i) − 1) is a prefix
of repU (U(i + 1) − 1). Let thus i ≥ 1, and write repU (U(i) − 1) = a1 · · · ai

and repU (U(i + 1) − 1) = b1 · · · bi+1. On the one hand, since b1 · · · bi ∈ NU ,
we get b1 · · · bi ≤lex a1 · · · ai. On the other hand, since a1 · · · ai0 ∈ NU , we get
a1 · · · ai0 ≤lex b1 · · · bi+1, hence a1 · · · ai ≤lex b1 · · · bi.

Conversely, suppose that there exists an infinite word a over AU such that
repU (U(i) − 1) = Prefi(a) for all i ≥ 0. It is easily seen that for all w ∈ A∗

U and
all i ∈ {0, . . . , |w|}, we have Suffi(w) ≤lex Prefi(a) if and only if Suffi+1(w0) ≤lex

Prefi+1(a). Then we get that U is Bertrand by Lemma 1.
We now turn to the last part of the statement and we prove that σi(a) ≤lex

a for all i ≥ 0. Suppose to the contrary that there exists i ≥ 0 such that
σi(a) >lex a. Then there exists � ≥ 1 such that ai · · · ai+�−1 >lex a1 · · · a�, where
a = a1a2 · · · . This is impossible since ai · · · ai+�−1 ∈ NU by Lemma 2.

Lemma 4. Let a be an infinite word over N such that σi(a) ≤lex a for all i ≥ 0.
If a is not periodic, then we define d = a; otherwise we let n ≥ 1 be the smallest
integer such that a = (a1 · · · an)ω and we define d = a1 · · · an−1(an +1)0ω. Then
in both cases, we have σi(d) <lex d for all i ≥ 1.

Proof. The case where a is not periodic is straightforward. Suppose that a is
periodic. If i ≥ n, then σi(d) = 0ω <lex d. For i with 1 ≤ i ≤ n − 1, pro-
ceed by contradiction and suppose that σi(d) ≥lex d, that is, ai+1 · · · an−1(an +
1)0ω ≥lex a1a2 · · · an−1(an + 1)0ω. Then ai+1 · · · an−1(an + 1) >lex a1 · · · an−i.
By hypothesis on a, we also have ai+1 · · · an−1an ≤lex a1 · · · an−i. Thus, we
get ai+1 · · · an−1an = a1 · · · an−i. Moreover, by assumption on a, we have
σn(a) = a ≥lex σn−i(a). We then obtain that

σi(a) = ai+1 · · · anσn(a) ≥lex a1 · · · an−iσ
n−i(a) = a.

Since σi(a) ≤lex a by hypothesis, we get σi(a) = a, which is impossible since
i < n and n was chosen to be minimal for this property.

Lemma 5. Let a be an infinite word over N. We have σi(a) ≤ a for all i ≥ 0 if
and only if either a = 0ω, a = 10ω, a = d∗

β(1) for some β > 1 or a = dβ(1) for
some β > 1.

Proof. The sufficient condition follows from [12] (also see [10, Theorem 7.2.9 and
Corollary 7.2.10]). Now, suppose that σi(a) ≤ a for all i ≥ 0 and that a
= 0ω and
a
= 10ω. Let d be the sequence defined from a as in Lemma 4. Then σi(d) <lex d

A Full Characterization of Bertrand Numeration Systems 107

for all i ≥ 1. In particular, we get di ≤ d1 for all i ≥ 1. Moreover, we have d1 ≥ 1
and d
= 10ω (for otherwise a would be equal to either 0ω or 10ω). Then there
exists a unique β > 1 such that d = dβ(1); see [12] or [10, Corollary 7.2.10].
Also, we know that d∗

β(1) = (t1 · · · tn−1(tn − 1))ω whenever dβ(1) = t1 · · · tn0ω

with n ≥ 1 and tn
= 0, and that d∗
β(1) = dβ(1) otherwise; again, see [10,12]. We

get that either a = d∗
β(1) or a = dβ(1) depending on the periodicity of a.

Finally, we recall the so-called Renewal theorem as stated in [6, Theorem 1
on p. 330]; also see [18, Theorem 0.18].

Theorem 1 (Renewal theorem). Let (cn)n≥1 and (dn)n≥0 be sequences of
nonnegative real numbers with cn ≤ 1 for all n ≥ 1. Suppose the greatest common
divisor of all integers n with cn > 0 is 1. Let (un)n≥0 be the sequence defined
by the recurrence relation un = dn + c1un−1 + · · · + cnu0 for all n ≥ 0. If∑∞

n=1 cn = 1 and
∑∞

n=0 dn < ∞ then limn→∞ un = (
∑∞

n=0 dn)(
∑∞

n=1 ncn)−1

where this is interpreted as zero if
∑∞

n=1 ncn = ∞.

For a real number β > 1, we define

S′
β = {w ∈ {0, . . . , �β�}N : ∀i ≥ 0, σi(w) ≤lex dβ(1)}.

We are now ready to show the claimed correction of Bertrand-Mathis’ result.

Theorem 2. A positional numeration system U is Bertrand if and only if one
of the following occurs.

1. For all i ≥ 0, U(i) = i + 1.
2. There exists a real number β > 1 such that NU = Fac(Sβ).
3. There exists a real number β > 1 such that NU = Fac(S′

β).

Moreover, in Case 2 (resp. Case 3), the following hold:

a. There is a unique such β.
b. The alphabet AU equals {0, . . . , �β� − 1} (resp. {0, . . . , �β�}).
c. We have

U(i) = a1U(i − 1) + a2U(i − 2) + · · · + aiU(0) + 1 (3)

for all i ≥ 0 and

lim
i→∞

U(i)
βi

=
β

(β − 1)
∑∞

i=1 iaiβ−i
(4)

where (ai)i≥1 is d∗
β(1) (resp. dβ(1)).

d. The system U has the dominant root β, i.e., limi→∞
U(i+1)

U(i) = β.

Proof. Let U be a positional numeration system. We start with the backward
direction. If U(i) = i+1 for all i ≥ 0, then NU = 0∗∪0∗10∗, hence U is Bertrand.
Otherwise, for the sake of clarity, write S = {w ∈ N

N : ∀i ≥ 0, σi(w) ≤lex a}
with a = d∗

β(1) or a = dβ(1) as in the statement. Suppose that NU = Fac(S).

108 É. Charlier et al.

We show that U is Bertrand. Consider y ∈ NU . There exist words x ∈ N
∗ and

z ∈ N
N such that xyz ∈ S. Since σi(xy0ω) ≤lex σi(xyz) for all i ≥ 0, we get that

xy0ω ∈ S. Therefore y0 ∈ NU . The converse is immediate since if y0 ∈ Fac(S)
then y ∈ Fac(S) as well.

Conversely, suppose that U is Bertrand. By Lemma 3, there exists a =
a1a2 · · · such that repU (U(i) − 1) = Prefi(a) and σi(a) ≤lex a for all i ≥ 0.
In particular, we have a1 ≥ 1. If a = 10ω then U(i) = i + 1 for all i ≥ 0. Oth-
erwise, by Lemma 5, either a = d∗

β(1) for some β > 1 or a = dβ(1) for some
β > 1. Let us show that NU = Fac({w ∈ N

N : ∀i ≥ 0, σi(w) ≤lex a}). Consider
y ∈ NU . By Lemma 1, we have Suffi(y) ≤lex Prefi(a) for all i ≤ |y|. Therefore,
σi(y0ω) ≤lex a for all i ≥ 0. Conversely, suppose that y is a factor of an infinite
word w over N such that σi(w) ≤lex a for all i ≥ 0. Then Suffi(y) ≤lex Prefi(a)
for all i ≥ 0. By Lemma 1, we get y ∈ NU .

To end the proof, we note that AU = {0, . . . , �β� − 1} if a = d∗
β(1) and

AU = {0, . . . , �β�} if a = dβ(1). Moreover, since repU (U(i)−1) = a1 · · · ai for all
i ≥ 0, we get that the recurrence relation (3) holds for all i ≥ 0. The computation
of the limit from (4) then follows from Theorem 1 with ci = aiβ

−i, di = β−i

and ui = U(i)β−i. This in turn implies that limi→∞
U(i+1)

U(i) = β.

Note that in the previous statement, the second item coincides with the
condition given in the original theorem of Bertrand-Mathis [2]. The main dif-
ference between these two results is that there exist two Bertrand numeration
systems associated with a simple Parry number β > 1, i.e., such that dβ(1)
ends with infinitely many zeroes. To distinguish them, we call canonical the
Bertrand numeration system defined by (3) when a = d∗

β(1), and non-canonical
that for which a = dβ(1). For instance, the canonical Bertrand numeration
system associated with the golden ratio 1+

√
5

2 is the well-known Zeckendorf
numeration system U = (1, 2, 3, 5, 8, . . .) defined by (U(0), U(1)) = (1, 2) and
U(i) = U(i − 1) + U(i − 2) for all i ≥ 2 [19]. The associated non-canonical
Bertrand numeration system is the numeration system U = (1, 2, 4, 7, 12, . . .)
from Example 2 defined by (U(0), U(1)) = (1, 2) and U(i) = U(i−1)+U(i−2)+1
for all i ≥ 2. See Fig. 2 for automata recognizing the corresponding numeration
languages. In Figs. 1a and 1b, we see the canonical and non-canonical Bertrand
numeration systems associated with the integer base 3.

4 Linear Bertrand Numeration Systems

In the following proposition, we study the linear recurrence relations satisfied
by Bertrand numeration systems associated with a Parry number β, i.e., a real
number β > 1 such that dβ(1) is ultimately periodic. As is usual, if an expansion
ends with a tail of zeroes, we often omit to write it down.

Proposition 1. Let U be a Bertrand numeration system.

1. If NU = Fac(Sβ) where β > 1 is such that d∗
β(1) = d1 · · · dm(dm+1 · · · dm+n)ω

with m ≥ 0 and n ≥ 1, then U satisfies the linear recurrence relation of char-
acteristic polynomial (Xm+n − ∑m+n

j=1 djX
m+n−j) − (Xm − ∑m

j=1 djX
m−j).

A Full Characterization of Bertrand Numeration Systems 109

2. If NU = Fac(S′
β) where β > 1 is such that dβ(1) = t1 · · · tn with n ≥ 1

and tn ≥ 1, then U satisfies the linear recurrence relation of characteristic
polynomial (Xn+1 − ∑n

j=1 tjX
n+1−j) − (Xn − ∑n

j=1 tjX
n−j), that is, the

polynomial (X − 1)(Xn − ∑n
j=1 tjX

n−j).

Proof. We only prove the first item as the second is similar. Thus, we suppose
that NU = Fac(Sβ) where β > 1 is such that d∗

β(1) = d1 · · · dm(dm+1 · · · dm+n)ω

with m ≥ 0 and n ≥ 1. By Theorem 2, we get that

U(i) − U(i − n) =
i∑

j=1

djU(i − j) + 1 −
i−n∑

j=1

djU(i − n − j) − 1

=
m+n∑

j=1

djU(i − j) −
m∑

j=1

djU(i − n − j)

for all i ≥ m + n.

In the following corollary, we emphasize the simple form of the characteristic
polynomial in the first item of Proposition 1 when β is simple Parry number:
the coefficients can be obtained directly from the digits of dβ(1).

Corollary 1. Let U be a Bertrand numeration system such that NU = Fac(Sβ)
where β > 1 is such that dβ(1) = t1 · · · tn with n ≥ 1. Then U satisfies the linear
recurrence relation of characteristic polynomial Xn − ∑n

j=1 tjX
n−j.

5 Lexicographically Greastest Words of Each Length

A key argument in the proof of Theorem 2 was the study of the lexicographically
greatest words of each length; we see this in Lemmas 1 and 3. In this section,
we investigate more properties of these words, which will allow us to obtain yet
another characterization of Bertrand numeration systems.

In order to study the regularity of the numeration language of positional
systems having a dominant root, Hollander proved the following result.

Proposition 2 ([8, Lemmas 4.2 and 4.3]). Let U be a positional numeration
system having a dominant root β > 1. If β is not a simple Parry number,
then limi→∞ repU (U(i) − 1) = dβ(1). Otherwise, dβ(1) = t1 · · · tn with tn
=
0 and for all k ≥ 0, define wk = (t1 · · · tn−1(tn − 1))kt1 · · · tn. Then for all
� ≥ 0, there exists I ≥ 0 such that for all i ≥ I, there exists k ≥ 0 such that
Pref�(repU (U(i) − 1)) = Pref�(wk0ω).

Example 3. For the integer base-b numeration system U = (bi)i≥0, we have
wk = (b − 1)kb for all k ≥ 0 and repU (bi − 1) = (b − 1)i for all i ≥ 0.

For the Zeckendorf numeration system, it can be easily seen that repU (U(i)−
1) = (10)

i
2 if i is even, and repU (U(i) − 1) = (10)

i−1
2 1 otherwise. We have

wk = (10)k11 for all k ≥ 0. Therefore, for all � ≥ 0 and all i ≥ �, the words
repU (U(i) − 1) and w	�/2
 share the same prefix of length �.

110 É. Charlier et al.

Let U be the system defined by (U(0), U(1)) = (1, 3) and for i ≥ 2, U(i) =
3U(i−1)−U(i−2). Then U has the dominant root ϕ2 and repU (U(i)−1) = 21i−1

for all i ≥ 1. This agrees with Proposition 2 since dϕ2(1) = 21ω.

As illustrated in the next example, when β is a simple Parry number, Propo-
sition 2 does not imply the convergence of the sequence (repU (U(i) − 1))i≥0.

Example 4. Consider the numeration system U = (U(i))i≥0 defined by
(U(0), U(1), U(2), U(3)) = (1, 2, 3, 5) and for all i ≥ 4, U(i) = U(i − 1) +
U(i − 3) + U(i − 4) + 1. The sequence U satisfies the linear recurrence rela-
tion of characteristic polynomial X5 − 2X4 + X3 − X2 + 1, which has the
golden ratio as dominant root. Hence, as for the Zeckendorf numeration sys-
tem, we have wk = (10)k11 for all k ≥ 0. For all i ≥ 4, we can compute
repU (U(i)− 1) = 110i−2 if i ≡ 0, 1 mod 4, and repU (U(i)− 1) = 10110i−4 other-
wise. Therefore, for all i ≥ 4, repU (U(i)−1) = Prefi(w00ω) if i ≡ 0, 1 mod 4, and
repU (U(i) − 1) = Prefi(w10ω) otherwise. Thus, the limit limi→∞ repU (U(i) − 1)
does not exist.

In Examples 2, 3 and 4, we illustrated that the sequence (repU (U(i)− 1))i≥0

may or may not converge. In the first two, we gave examples such that its limit
is either dβ(1) or d∗

β(1). In the third, we illustrated that even if the recurrence
relation satisfied by U gives the intuition that the sequence would converge to
w10ω, it is not the case. In fact, seeing Proposition 2, one might think that we can
provide a positional numeration system U such that limi→∞ repU (U(i) − 1) =
wk0ω with k ≥ 1. We show that this cannot happen, which can be thought as a
refinement of Proposition 2.

Proposition 3. Let U be a positional numeration system with a dominant root
β > 1. If the limit limi→∞ repU (U(i)−1) exists, then it is either d∗

β(1) or dβ(1).

Proof. If dβ(1) is infinite, then the result follows from Proposition 2. Let us
consider the case where dβ(1) = t1 · · · tn with tn
= 0. Proceed by contradiction
and suppose that there exists k ≥ 1 such that limi→∞ repU (U(i) − 1) = wk0ω.
For all i large enough, t1 · · · tn−1(tn − 1) is a prefix of repU (U(i) − 1), hence the
greedy algorithm implies that

∑n
j=1 tjU(i−j) > U(i)−1. On the other hand, for

all i large enough, t1 · · · tn is a factor occurring at position kn+1 in repU (U(i+
kn)−1), hence, again from the greedy algorithm, we get U(i) >

∑n
j=1 tjU(i−j).

By putting the inequalities altogether, we obtain a contradiction.

Thanks to this result, we obtain another characterization of Bertrand numer-
ation systems.

Theorem 3. A positional numeration system U is Bertrand if and only if one
of the following conditions is satisfied.

1. We have repU (U(i) − 1) = Prefi(10ω) for all i ≥ 0.
2. There exists a real number β > 1 such that repU (U(i)− 1) = Prefi(d∗

β(1)) for
all i ≥ 0.

A Full Characterization of Bertrand Numeration Systems 111

3. There exists a real number β > 1 such that repU (U(i)− 1) = Prefi(dβ(1)) for
all i ≥ 0.

Proof. All three conditions are sufficient by Lemma 3. Conversely, suppose that
U is a Bertrand numeration system. In Case 1 of Theorem 2, we have repU (U(i)−
1) = repU (i) = 10i−1 for all i ≥ 1. Otherwise, U has a dominant root β > 1 by
Theorem 2. The result then follows from Lemma 3 combined with Proposition 3.

We note that the three cases of Theorem 3 indeed match those of Theorem 2.

6 The Non-canonical β-shift

In view of their definitions, the sets Sβ and S′
β are both subshifts of AN, i.e., they

are shift-invariant and closed w.r.t the topology induced by the prefix distance.
These subshifts coincide unless β is a simple Parry number. Therefore, in the
specific case where β is a simple Parry number, by analogy to the name β-shift
commonly used for Sβ , we call the set S′

β the non-canonical β-shift. In this
section, we see whether or not the classical properties of Sβ still hold for S′

β .
The following proposition is the analogue of [10, Theorem 7.2.13] that char-

acterizes sofic (canonical) β-shifts, i.e., such that Fac(Sβ) is accepted by a finite
automaton.

Proposition 4. A real number β > 1 is a Parry number if and only if the
subshift S′

β is sofic.

Proof (Sketch). If β is not a simple Parry number, then Sβ = S′
β and the

conclusion follows by [10, Theorem 7.2.13]. Suppose that β is a simple Parry
number for which dβ(1) = t1 · · · tn with n ≥ 1 and tn
= 0. We get d∗

β(1) =
(t1 · · · tn−1(tn − 1))ω. An automaton recognizing Fac(S′

β) can be constructed
as a slight modification of the classical automaton recognizing Fac(Sβ) given
in [10, Theorem 7.2.13]: we add a new final state q′, an edge from the state
usually denoted qn (that is, the state reached while reading t1 · · · tn−1) to the
new state q′ of label tn and a loop of label 0 on the state q′.

Example 5. The automata depicted in Figs. 1a and 1b accept Fac(S3) and
Fac(S′

3), and those of Figs. 2a and 2b accept Fac(Sϕ) and Fac(S′
ϕ).

A subshift S ⊆ AN is said to be of finite type if there exists a finite set of
forbidden factors defining words in S, i.e., if there exists a finite set X ⊂ A∗

such that S = {w ∈ AN : Fac(w) ∩ X = ∅}. It is said to be coded if there exists
a prefix code Y ⊂ A∗ such that Fac(S) = Fac(Y ∗). It is well known that the
β-shift Sβ is coded [10, Proposition 7.2.11] for any β > 1 and is of finite type
whenever β is a simple Parry number [10, Theorem 7.2.15]. However, neither of
these two properties is valid for the non-canonical β-shift S′

β .

Proposition 5. For any simple Parry number β, the subshift S′
β is not of finite

type.

112 É. Charlier et al.

Proof. Suppose that β is a simple Parry number for which dβ(1) = t1 · · · tn
with n ≥ 1 and tn
= 0. We show that for all k ≥ n − 1 and d ∈ {1, . . . , �β�},
t1 · · · tn0kd belongs to the minimal set of forbidden factors. Let k ≥ n − 1 and
d ∈ {1, . . . , �β�}. Clearly, t1 · · · tn0kd /∈ Fac(S′

β). Thus, in order to prove that
any proper factor of t1 · · · tn0kd belongs to Fac(S′

β), it suffices to prove that
both t1 · · · tn0k and t2 · · · tn0kd belong to Fac(S′

β). By [12] or [10, Corollary
7.2.10], we know that for all j ∈ {2, . . . , n}, we have tj · · · tn0ω <lex dβ(1). Thus,
t1 · · · tn0k ∈ Fac(S′

β) and for j ∈ {2, . . . , n}, we get tj · · · tn0j−1 <lex t1 · · · tn.
We obtain that for each j ∈ {2, . . . , n}, tj · · · tn0kd0ω <lex dβ(1). Since moreover
0�d0ω ≤lex dβ(1) for each � ∈ {0, . . . , k}, the conclusion follows.

In order to show that S′
β is not coded, we prove the stronger statement that

it is not irreducible. A subshift S is said to be irreducible if for all u, v ∈ Fac(S),
there exists w ∈ Fac(S) such that uwv ∈ Fac(S).

Proposition 6. For any simple Parry number β, the subshift S′
β is not irre-

ducible.

Proof. Suppose that β is a simple Parry number for which dβ(1) = t1 · · · tn with
n ≥ 1 and tn
= 0. If S′

β were irreducible, then there would exist w ∈ Fac(S′
β)

such that t1 · · · tnwt1 · · · tn ∈ Fac(S′
β), which is impossible.

The entropy of a subshift S of AN can be defined as the limit of the sequence
1
i log(Card(Fac(S) ∩ Ai)) as i tends to infinity. We refer the reader to [18, The-
orem 7.13] or [10]. It is well known that the β-shift Sβ has entropy log(β). The
following proposition shows that the same property holds for S′

β .

Proposition 7. For all real number β > 1, the subshift S′
β has entropy log(β).

Proof. Let β > 1 be a real number. Let U be the Bertrand numeration sys-
tem such that NU = Fac(S′

β), i.e., the numeration system defined by (3) with
(ai)i≥1 = dβ(1). Since the number of length-i factors of S′

β is equal to U(i), the
entropy of S′

β is given by limi→∞ 1
i log(U(i)). The result now follows from (4).

We note that, mutatis mutandis, the same proof can be applied in order to
show that the β-shift has entropy log(β).

Finally, whenever β is a Parry number, we prove a relation between the
number of words of each length in the canonical and the non-canonical β-shifts.

Proposition 8. Suppose that β > 1 is a real number such that dβ(1) = t1 · · · tn
with n ≥ 1 and tn
= 0, and let U and U ′ respectively be the canonical and non-
canonical Bertrand numeration systems associated with β. Then U ′(i + n) =
U(i + n) + U ′(i) for all i ≥ 0.

Proof. Since Prefn−1(dβ(1)) = Prefn−1(d∗
β(1)), we have U ′(i) = U(i) for all

i ∈ {0, . . . , n − 1}. Moreover, since t1 · · · tn is the only length-n factor of S′
β that

is not present in Sβ , we have U ′(n) = U(n) + 1. Hence, the statement holds for
i = 0 since U(0) = U ′(0) = 1. Now we proceed by induction. Consider i ≥ 1

A Full Characterization of Bertrand Numeration Systems 113

and suppose that the result holds for indices less than i. By (3) of Theorem 2
and Corollary 1, we get that U ′(i + n) − U(i + n) =

∑n
j=1 tjU

′(i + n − j) +
1 − ∑n

j=1 tjU(i + n − j) =
∑n

j=1 tj(U ′(i + n − j) − U(i + n − j)) + 1 where
U ′(i+n− j)−U(i+n− j) = 0 if j > i, and by induction hypothesis, U ′(i+n−
j) − U(i + n − j) = U ′(i − j) if j ≤ i. As a first case, assume that i ∈ {1, . . . , n}.
We obtain U ′(i+n)−U(i+n) =

∑i
j=1 tjU

′(i− j)+1 = U ′(i) where the second
equality comes from Theorem 2. As a second case, assume i ≥ n. Similarly, we
get U ′(i + n) − U(i + n) =

∑n
j=1 tjU

′(i − j) + 1 = U ′(i).

References

1. Bertrand-Mathis, A.: Développement en base θ; répartition modulo un de la suite
(xθn)n≥0; langages codés et θ-shift. Bull. Soc. Math. France 114(3), 271–323 (1986)

2. Bertrand-Mathis, A.: Comment écrire les nombres entiers dans une base qui n’est
pas entière. Acta Math. Hungar. 54(3–4), 237–241 (1989)

3. Bruyère, V., Hansel, G.: Bertrand numeration systems and recognizability. Theo-
ret. Comput. Sci. 181(1), 17–43 (1997)

4. Charlier, E., Rampersad, N., Rigo, M., Waxweiler, L.: The minimal automaton
recognizing mN in a linear numeration system. Integers 11B, A4, 24 (2011)

5. Dajani, K., Kraaikamp, C.: Ergodic Theory of Numbers, Carus Mathematical
Monographs, vol. 29. Mathematical Association of America, Washington, DC
(2002)

6. Feller, W.: An Introduction To Probability Theory and Its Applications, vol. 1,
2nd edn. John Wiley and Sons Inc.; Chapman and Hall Ltd., New York, London
(1957)

7. Frougny, C., Solomyak, B.: On representation of integers in linear numeration
systems. In: Ergodic theory of Zd actions, London Mathematical Society Lecture
Note Series, vol. 228, pp. 345–368. Cambridge University Press, Cambridge (1996)

8. Hollander, M.: Greedy numeration systems and regularity. Theory Comput. Syst.
31(2), 111–133 (1998)

9. Loraud, N.: β-shift, systèmes de numération et automates. J. Théor. Nombres
Bordeaux 7(2), 473–498 (1995)

10. Lothaire, M.: Algebraic combinatorics on Words, Encyclopedia of Mathematics
and Its Applications, vol. 90. Cambridge University Press, Cambridge (2002)

11. Massuir, A., Peltomäki, J., Rigo, M.: Automatic sequences based on Parry or
Bertrand numeration systems. Adv. Appl. Math. 108, 11–30 (2019)

12. Parry, W.: On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar.
11, 401–416 (1960)

13. Point, F.: On decidable extensions of Presburger arithmetic: from A. Bertrand
numeration systems to Pisot numbers. J. Symbolic Logic 65(3), 1347–1374 (2000)

14. Rényi, A.: Representations for real numbers and their ergodic properties. Acta
Math. Acad. Sci. Hungar. 8, 477–493 (1957)

15. Schmidt, K.: On periodic expansions of Pisot numbers and Salem numbers. Bull.
London Math. Soc. 12(4), 269–278 (1980)

16. Shallit, J.: Numeration systems, linear recurrences, and regular sets. Inform. Com-
put. 113(2), 331–347 (1994)

17. Stipulanti, M.: Convergence of Pascal-like triangles in Parry-Bertrand numeration
systems. Theoret. Comput. Sci. 758, 42–60 (2019)

114 É. Charlier et al.

18. Walters, P.: An Introduction to Ergodic Theory, Graduate Texts in Mathe-
matics, vol. 79. Springer-Verlag, New York, Berlin (1982). https://link.springer.
com/book/9780387951522

19. Zeckendorf, E.: Représentation des nombres naturels par une somme des nombres
de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Sci. Liège 41, 179–182 (1972)

https://springerlink.bibliotecabuap.elogim.com/book/9780387951522
https://springerlink.bibliotecabuap.elogim.com/book/9780387951522

On the Decidability of Infix Inclusion
Problem

Hyunjoon Cheon, Joonghyuk Hahn, and Yo-Sub Han(B)

Yonsei University, Seoul, Republic of Korea
{hyunjooncheon,greghahn,emmous}@yonsei.ac.kr

Abstract. We introduce the infix inclusion problem of two languages S
and T that decides whether or not S is a subset of the set of all infixes
of T . This problem is motivated from intrusion detection systems that
identify malicious patterns according to their semantics, which are often
disguised with additional information surrounding the patterns. In other
words, malicious patterns are embedded as an infix of the whole pat-
terns. We examine the infix inclusion problem, where a source S and
a target T are finite, regular or context-free languages. We prove that
the problem is 1) co-NP-complete when one of the languages is finite, 2)
PSPACE-complete when S, T are regular, 3) EXPTIME-complete when
S is context-free and T is regular and 4) undecidable for when S is either
regular or context-free and T is context-free.

Keywords: Infix inclusion · Decidability · Regular languages ·
Context-free languages

1 Introduction

Regular expressions are an efficient tool on searching and replacing string frag-
ments with common patterns. They are often used in several application domains
such as data validation, syntax highlight and text search [9,13]. As regular
expressions are getting more and more popular, there were several attempts
to exploit vulnerabilities of the matching schemes that give rise to serious prob-
lems in practice. One of the most serious problems is the regular expression
denial-of-service (ReDoS) problem. This problem arises because pattern match-
ing engines run a very long time to match a malicious regular expression and
inputs. In theory, the matching time should be polynomial [18,23]. Yet, most of
the practical matching engines require an exponential runtime for special regu-
lar expressions (= malicious patterns) because of the backtracking feature, like
backreferences [22]. An attacker can exploit a malicious pattern or an engine
and cause a denial-of-service attack, making an engine to spend an unbounded
amount of time. This makes a matching engine slow and unresponsive to process
such regular expressions [3,12].

ReDoS occurs because of a wrongly designed, malicious pattern S. Especially,
backreferences in practical patterns are the frequent causes of ReDoS behav-
ior [4]. However, users often use the backreferences due to its flexibility and
c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 115–126, 2022.
https://doi.org/10.1007/978-3-031-05578-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_9&domain=pdf
https://doi.org/10.1007/978-3-031-05578-2_9

116 H. Cheon et al.

expressibility. This tendency introduces a large amount of malicious patterns
in use. Moreover, if S is malicious, then a pattern T = αSβ is also malicious,
which appears often in practice [17]. For example, S = (([a-z])(\1)*)* is
a known malicious pattern and the attacker may make a new malicious pat-
tern T = abc (([a-z])(\1)*)* ETA to avoid the current detection systems. A
practical diagnosis for this problem is verifying the existence of known vulnera-
ble patterns on the target as an infix [12,25]. This leads us to introduce the infix
inclusion problem and investigate its decidability for different types of S and T .

Problem 1 (Infix inclusion problem). Given two languages S and T , the infix
inclusion problem (IIP) of (S, T), denoted by IIP(S, T), is to decide whether or
not S is a subset of infix(T).

The infix inclusion problem is trivial when T is given as an NFA A since
infix(T) can be represented by an NFA of the same size to A—thus, the problem
becomes the NFA inclusion problem, which is PSPACE-complete [10]. However,
it is not the case when T is given as an acyclic DFA or a DFA because its infix
language cannot be represented by an acyclic DFA or a DFA of the same size
anymore [7,16,19,20]. We study the IIP with respect to regular or context-free
languages, and their subfamilies together with deterministic and nondetermin-
istic representations. Table 1 summarizes our findings on the IIP.

Table 1. Decidability of the infix inclusion problem with respect to different classes of
source and target languages.

S

T
Acyclic FA FA DPDA / NPDA

Acyclic FA
co-NP-complete

(Theorem 6)

FA
PSPACE-complete

(Theorem 9)

DPDA / NPDA
EXPTIME-complete

(Theorem 13)

Undecidable

(Theorem 12)

We define some basic notations in Sect. 2. Then, we investigate the infix
inclusion problem when inputs are regular and context-free languages. We discuss
IIP on finite languages in Sect. 3, and IIP on infinite languages in Sect. 4. We
conclude the paper with a brief summary in Sect. 5.

2 Preliminaries

An alphabet Σ is a finite set of symbols. Given a finite string w = w1w2 · · · wn

over Σ, |w| = n denotes the length of w. λ is the string of length 0. A language L

On the Decidability of Infix Inclusion Problem 117

is a set of strings. Given a language L, L0 = {λ}, L1 = L, Li = Li−1L for i ≥ 2
and L∗ =

⋃
i L

i. Given a set S, |S| denotes the cardinality of S, P(S) = {X |
X ⊆ S} is the power set of S. The symbol ∅ denotes an empty set such that
|∅| = 0. A string x is an infix of a string w if there exist α, β ∈ Σ∗ such that
w = αxβ. Given a language L, infix(L) denotes the set of all infixes of w ∈ L.
Given two integers a and b that satisfy a ≤ b, [a, b] denotes a set {a, a+1, . . . , b}
of integers.

A finite-state automaton (FA) A is specified by a tuple (Q,Σ, δ, I, F), where
Q is a finite set of states, Σ is an alphabet, δ : Q × Σ → P(Q) is a transition
function, I, F ⊆ Q are a set of initial and final states, respectively. An FA is
deterministic if 1) |I| = 1 and 2) |δ(p, σ)| = 1 for every pair of p ∈ Q and σ ∈ Σ.
We denote the language of A by L(A). A language L is regular if there is an
FA A such that L(A) = L.

A pushdown automaton (PDA) A is specified by a tuple (Q,Σ, Γ, δ, I, Z0, F),
where Q is a set of states, each Σ and Γ is an alphabet for input and stack,
respectively, δ : Q×(Σ∪{λ})×Γ → P(Q×Γ ∗) is a transition function, I, F ⊆ Q
are a set of initial and final states, respectively and Z0 ∈ Γ is the bottom stack
symbol. A PDA is deterministic if 1) |I| = 1 and 2) for every q ∈ Q, σ ∈ Σ ∪{λ}
and γ ∈ Γ , |δ(q, σ, γ)| = 1. A language L is context-free if there is a PDA A such
that L = L(A).

A Turing machine (TM) M is specified by a tuple (Q,Σ, Γ, δ, q0, qacc, qrej),
where Q is a set of states, Σ is an input alphabet, Γ � Σ is a tape alphabet with
a blank symbol ∈ Γ \Σ, δ : Q×Γ → P(Q×Γ ×{L,R}) is a transition function
and each of q0, qacc and qrej ∈ Q is a start, accept and reject state, respectively,
where qacc 	= qrej . A configuration of TM M is a sequence of a state symbol and
tape symbols that denotes the current configuration of M . The position of the
state symbol denotes that the head points to the right symbol on the tape. For
example, the start configuration is q0w, and the position of q0 denotes that the
head points to the first symbol of w. A configuration is accepting if its state is
qacc, and rejecting if its state is qrej . A computation C of a TM M is a sequence
of configurations and two adjacent configurations follow the transition rule of
M . Given a input w, a computation C is accepting (rejecting) if 1) C starts with
the start configuration q0w and 2) C ends with an accepting (rejecting, resp.)
configuration. The language L(M) of a TM M is a set of strings w, where M
has an accepting computation starting with q0w.

For more background in automata theory, the reader may refer to the text-
books [21,24]

3 IIP on Finite Languages

We first consider the IIP when a source language S is finite, which is given
by an acyclic DFA or an acyclic NFA. We solve this case by investigating its
complement version; whether or not S is not in infix(T). We guess a certificate
string w to verify that an IIP-instance (S, T) of a source S and a target T is a
NO-instance.

118 H. Cheon et al.

Lemma 2. Let S be a finite language given by an acyclic NFA A and T be a
context-free language given by an NPDA B. Then, IIP(S, T) is in co-NP.

Proof. Given an additional string w as certificate, we can verify that (S, T) is a
NO-instance of IIP by determining the following three conditions.

1. |w| < |QA|, where QA is the set of states of A. (If |w| ≥ |QA|, then it is
immediate that w /∈ S.)

2. w ∈ S
3. w /∈ infix(T)

It is easy to see that all three conditions can be checked in poly-time.
�
For the case when T is finite, we can prove that it is also in co-NP using a

similar approach of the proof for Lemma 2.

Lemma 3. Let S be a context-free language given by an NPDA A and T be a
finite language given by an acyclic NFA B. Then, IIP(S, T) is in co-NP.

We can use the same approach in Lemmas 2 and 3 when the finite language
is given by an acyclic DFA. Next, we establish hardness for the IIP over finite
languages. For the hardness proof, we present a poly-time reduction from a co-
NP-complete problem, co-3SAT—the complement of the 3SAT problem [2]. A
co-3SAT instance consists of two components: a set X = {x1, x2, . . . , xn} of
n boolean variables and a formula φ in conjunctive normal form of m clauses,
where each clause is a disjunction of three boolean literals of X. The co-3SAT
problem is to decide whether or not φ is unsatisfiable for all possible assign-
ments ψ : X → {T, F} over X.

Lemma 4. Let S be a finite language given by an acyclic DFA A and T be a
finite language given by an acyclic NFA B. Then, IIP(S, T) is co-NP-hard.

Proof. We show a reduction from the co-3SAT problem to the IIP. Given a co-
3SAT instance consisting of a set X = {x1, . . . , xn} of n boolean variables and a
formula φ in conjunctive normal form of m clauses, we define an alphabet ΣX to
be a set of all variables of X and their negations; ΣX = {x | x ∈ X}∪{x | x ∈ X}.
Then, an assignment consists of n symbols from ΣX , where both xi and its
negation xi cannot be chosen at the same time. We design two acyclic DFAs A
and B such that S = L(A) contains all assignments and T = L(B) contains every
assignment that falsifies φ. If IIP(S, T) holds, then (X,φ) is a YES-instance for
co-3SAT problem.

An acyclic DFA A = (QA, ΣX , δA, iA, FA) consists of QA = [0, n], δA =
{(i − 1, σi, i) | σi ∈ {xi, xi} and i ∈ [1, n]}, iA = 0 and FA = {n}. We assume
that S contains all assignment sequences in fixed order [x1, . . . , xn].

An acyclic NFA B = (QB , ΣX , δB , IB , FB) accepts an assignment that fal-
sifies a clause of φ. This condition, checking whether or not three literals in a
clause are all false, is sufficient since φ is a conjunction of disjunctive clauses.
We assign QB = {qjk | j ∈ [1,m], k ∈ [0, n]}, IB = {qj0 | j ∈ [1,m]} and

On the Decidability of Infix Inclusion Problem 119

FB = {qjn | j ∈ [1,m]}. We use a state qjk as a flag state to check whether
or not the corresponding clause Cj = F for an input assignment. The set δB of
transitions is

δB = {(qjk−1, xk, qjk) | xk is not in Cj for j ∈ [1,m] and k ∈ [1, n]}.

Figure 1 shows an example of B with φ = (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x1 ∨ x5) ∧ · · · ∧
(x1 ∨ x4 ∨ x5).

q10

q20

...

qm0

q11

q21

qm1

q12

q22

qm2

q13

q23

qm3

q14

q24

qm4

q15

q25

qm5

x1 x2, x2 x3 x4 x5, x5

x2, x2 x3, x3 x4, x4 x5

x1 x2, x2 x3, x3 x4 x5

C1 = x1 ∨ x3 ∨ x4

C2 = x1 ∨ x1 ∨ x5

Cm = x1 ∨ x4 ∨ x5

Fig. 1. A target acyclic NFA B for co-3SAT instance (X, φ), where |X| = 5 and
φ = (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x1 ∨ x5) ∧ · · · ∧ (x1 ∨ x4 ∨ x5) of m clauses. The sink state is
not drawn. Note that q15 is reachable only if C1 = F for given assignment. Also note
no transitions from q20 to q21 since C2 has both x1 and x1.

In Fig. 1, the FA fragment for C1 accepts every assignment sequence that does
not contain x1, x3 and x4. Thus, all accepting assignments of C1 are unsatisfiable.
Since φ is a conjunction of clauses, one unsatisfiable clause makes φ unsatisfiable.
Therefore, it is easy to see that the resulting FA B, which is a union of all these
FA fragments, recognizes every assignment ψ such that φ(ψ) = F. In other words,
T = L(B) is a set of all assignments that make φ unsatisfiable. Since S is the
set of all assignments, IIP of S and T holds if φ is unsatisfiable.
�

Observe that the transition function δB of B is deterministic. Thus, we can
make an acyclic DFA for T if we merge all initial states into a single initial state
without introducing nondeterminism in B.

Lemma 5. When two languages S and T are given by acyclic DFAs, IIP(S, T)
is co-NP-hard.

Proof. We modify the acyclic NFA B in Lemma 4 and present an acyclic DFA
B′ = (QB ∪{i′B}, Σ# ∪ΣX , δ′

B , {i′B}, FB) for T , where Σ# = {#i | i ∈ [1,m]} is
a set of m distinct symbols that are not in ΣX . We add transitions (i′B ,#j , qj0)
for each clause Cj to δ′

B . Note that B′ verifies an assignment with prefix #j . For
instance, if Ci = F for a given assignment sequence ψ ∈ S, then B′ accepts #iψ.

120 H. Cheon et al.

Thus, if an assignment sequence ψ ∈ S is unsatisfiable, which means φ(ψ) = F,
then B′, from our constructions, accepts #iψ, where Ci = F for ψ. Therefore,
IIP of S and T given by acyclic DFAs is also co-NP-hard.
�

From Lemmas 4 and 5, we establish the following result.

Theorem 6. Given two languages S and T , if one is context-free and the other
is given by an acyclic DFA or acyclic NFA, IIP(S, T) is co-NP-complete.

Proof. From Lemmas 2 and 3, we can observe that the IIP with either the
source or the target being finite is in co-NP. Lemma 5 shows that IIP for two
acyclic DFAs is co-NP-hard. Since an acyclic DFA is also acyclic NFA, DFA,
NFA, DPDA and NPDA, we can immediately reduce the co-NP-hard problem
for these cases when at least one language is given by an acyclic DFA or acyclic
NFA.
�

4 IIP on Infinite Languages

Next we investigate the IIP of infinite languages for S and T . We first establish
a connection between the NFA inclusion problem and the IIP of two NFAs.

Lemma 7. When two languages S, T are given by NFAs, IIP(S, T) is PSPACE-
complete.

Proof. (in PSPACE): The IIP of S and T is equivalent to S ⊆ infix(T) by
definition, and the NFA inclusion problem is PSPACE-complete [10].

(PSPACE-hardness): We can solve the NFA inclusion problem S ⊆ T by
solving the IIP of #S# and #T#, where # is a symbol that does not appear
in S and T .
�

We obverse that the PSPACE-completeness for the IIP of two NFAs is
straightforward form the NFA inclusion result but the DFA case is not; while
the inclusion problem of two DFAs is efficiently decidable, the size of a DFA for
infix(L(A)) of an n-state DFA A can be exponential [16,19]. Lemma 8 gives a
PSPACE-hard bound for IIP of infinite regular languages. We show the hard-
ness by the reduction from the membership problem of a PSPACE TM, which
is definitely PSPACE-complete.

Lemma 8. When two languages S and T are given by DFAs A and B, IIP(S, T)
is PSPACE-hard.

Proof. We give a reduction from the membership problem on the PSPACE
TM [21] to the IIP. Given a PSPACE TM M = (Q,Σ, Γ, δ, q0, qacc, qrej) and
its input string w, there is a polynomial function l(x) that computes the max-
imum number of tape cells required for an input of length x. Thus, given an
input w, each configuration of w on M has length at most L = l(|w|) tape sym-
bols, which is polynomial to |w|. With this fact, the source DFA A recognizes a
computation C = C0#C1#C2# · · · #Cn satisfying the following four conditions.

On the Decidability of Infix Inclusion Problem 121

1. Each configuration Ci consists of a state symbol q ∈ Q and 2L + |w| tape
symbols from Γ including the blank symbol .

2. Configurations are separated by a symbol # /∈ Q ∪ Γ .
3. C0 = Lq0w

L is a start configuration with a blank space buffer of length L
on each end,

4. Cn is an accepting configuration and Ci (0 ≤ i < n) is neither accepting nor
rejecting.

Since the length of each configuration Ci is N = 2L + |w| + 1, the number of
states of A is also polynomial in the size of w. Note that A does not check
the validity of the transitions. Due to the construction, S contains all valid,
accepting computations and some invalid computations. For example, S has

Lq0w
L# Lqaccw

L even if δ has no available transitions from Lq0w
L to

Lqaccw
L.

The target DFA B acts as a filter of S that identifies all invalid computations
for w in S. A computation C is invalid for M on w if one of the following
conditions is satisfied.

1. C does not start with Lq0w
L,

2. C ends with neither an accepting nor a rejecting configuration, or
3. C does not follow the transition δ.

Note that every C ∈ S already does not satisfy the first two conditions
since A rejects every computation C that satisfies either the first or the sec-
ond condition. For the third condition, we construct a DFA gadget B′ =
(QB′ , ΣB′ , δB′ , {iB′}, FB′), where ΣB′ = Q ∪ Γ ∪ {#}, that reads the first three
symbols from a configuration, say u, and compares them with the three symbols,
say v of the same position on the next configuration. If these two parts u and v
are not a possible outcome from the transition function δ, C is invalid and B′

accepts the entire computation. For example, u = 0p0 and v = 01q is a valid
outcome if (p, 0, q, 1, R) ∈ δ, while u = 000 and v = 00q is an invalid outcome if
(p, σ, q, γ, L) /∈ δ with any combination of p, σ and γ, where p, q ∈ Q, σ, γ ∈ Γ .
Note that B′ validates the transition after reading v. Otherwise, B′ replaces v
as a new u and repeatedly reads the next three symbols on the corresponding
position until the input ends. Figure 2 depicts the gadget B′ identifying invalid
outcomes.

In Fig. 2, state (000,) is final because any valid transition cannot change
a symbol that is not under the head; on the other hand, (000, 000) is a valid
outcome and thus it is not final. Note that, if there is a transition leading to q
with a left-move in the TM M , the state (000, 00q) in B′ denotes a valid outcome
and thus it is also not final.

Since B′ has a limitation that B′ only compares the first three symbols of
configurations over the computation, we utilize the construction of Lemma 5 to
adjust where the comparison starts without introducing nondeterminism. The
target DFA B = (QB , ΣB , δB , {iB}, FB′) has the following components.

122 H. Cheon et al.

iB

000

00q

...

000
1

00q
1

1

· · ·

· · ·

· · ·

000
N − 2

000
000

000
00q

...

000

000
00q

ΣB

ΣB

ΣB

ΣB

ΣB

ΣB

ΣB

Consume 2L + |w| − 1 symbols

000

00q
ΣB

ΣB

ΣB

Fig. 2. The DFA gadget B′ identifies invalid outcomes. Remark that B′ reads three
symbols at the start and discard N −2 symbols until it reaches the next configuration.
Then it reads additional three symbols to validate the configurations according to the
transition δ of M . If it is an invalid outcome, then B′ accepts the input. This process
repeats until B′ finds an invalid sequence or reaches the end of the given input.

– QB = QB′ ∪ {iB} ∪ {øk | 1 ≤ k ≤ 2L + |w|}
– ΣB = Q ∪ Γ ∪ {#} ∪ {#k | 1 ≤ k ≤ 2L + |w| + 1}.
– δB is a union of the following three sets.

1. {(iB ,#1, iB′)} ∪ {(iB ,#k+1, øk | 1 ≤ k ≤ 2L + |w|}
2. {(ø1, γ, iB′) | γ ∈ Γ} ∪ {(øk+1, γ, øk | 1 ≤ k < 2L + |w|, γ ∈ Γ}
3. δB′

The symbol #k denotes that the initial symbol to compare is the kth one and
directs B′ to compare every configuration subsequence of kth to k+2nd symbols.
The transition function δB enables to verify every position of given computations
using the gadget B′.

Then, given a computation C of M , T contains at least one of #iC for any
i if C ∈ S is invalid. Otherwise, T does not contain any of #iC. Therefore, IIP
of S and T being true guarantees that M rejects w.
�

Combining Lemmas 7 and 8, we establish the following result for the IIP of
regular languages represented by either a DFA or an NFA.

Theorem 9. When two languages S and T are given by FAs (either DFA or
NFA), IIP(S, T) is PSPACE-complete.

We move to the IIP for the context-free language case, starting with the IIP
between a context-free language and a regular language. Since the IIP of S and
T is equivalent to S ⊆ infix(T) by definition, the following result is immediate
from the fact that the inclusion problem of an NPDA and an NFA is EXPTIME-
complete [10].

Lemma 10. Let S be a context-free language given by an NPDA and T be a
regular language given by an NFA. Then, IIP(S, T) is in EXPTIME.

On the Decidability of Infix Inclusion Problem 123

On the other hand, Lemma 11 shows a reduction from a membership test on
alternating TM [8] to the IIP of a DPDA and a DFA. An alternating TM M
is a Turing machine with two types (existential and universal) of states. An
existential state is similar to the states in an ordinary TM; when M is on an
existential state, it is sufficient to verify that any one of successive computation
has an accepting path. On the other hand, when M is on a universal state, M
must verify that all successive computations have an accepting path.

Lemma 11. Let S be a deterministic context-free language given by a DPDA A
and T be a regular language given by a DFA B. Then, IIP(S, T) is EXPTIME-
hard.

Proof (Sketch). We reduce the membership problem for a PSPACE alternating
TM M on an input w. Note that APSPACE is the class of languages recognized
by PSPACE alternating TMs, and is equivalent to EXPTIME [8]. Let us assume
that

1. M alternates existential and universal configurations,
2. a universal configuration, unless it is final, has exactly two next existential

configurations and
3. the start state q0 is existential.

Then, we can write a computation in the form of

C0#CR
1 $1

The first successor ofC1
︷ ︸︸ ︷
C2#CR

3 $1 · · · $2 · · · $2

The second successor ofC1
︷ ︸︸ ︷
C ′

2#C ′R
3 $1 · · · $2 · · · %,

where C0 = q0w. Since states alternate over the computation, we observe that
existential configurations (e.g., C0) are written in order and universal configu-
rations (e.g., C1) are written in reversed order. Note that, if we ignore the last
% symbol, the form is recursive, where $1’s and $2’s define nested pairs. For a
non-final universal configuration C1, $1 is followed by the first successive config-
uration (C2) of C1 until its $2 counterpart appears, which is then followed by
the second successive configuration C ′

2 of C1. Since all non-final universal con-
figurations (e.g., C1) have exactly two successive configurations by the second
assumption above, every such configuration has its corresponding $1 and $2.

It is easy to confirm that a subsequent computation sequence is always split
by # or $1. For example, C0#CR

1 $1C2$2C ′
2% denotes two valid moves C0, C1, C2

and C0, C1, C
′
2 of M on w, where C1 is a universal configuration. Also, similar

to Lemma 8, we fix the length of each configuration to N = 2 · l(|w|) + |w| + 1
and let L = l(|w|).

Now we design a DPDA A that checks the following five conditions:

1. Each configuration contains only one state symbol q ∈ Q and 2L + |w| tape
symbols.

2. C0 is a start configuration Lq0w
L.

3. The second transitions of a universal configuration, for example, from CR
1 to

C ′
2, are all valid.

124 H. Cheon et al.

4. The separator symbols (#, $1, $2) and the end marker symbol % are placed
correctly.

5. Every last configuration (preceding $2 or %) is an accepting configuration
and the others are neither accepting nor rejecting.

The new DPDA A verifies the first, second and fifth conditions without using
a stack, and checks the other two conditions (3, 4) simultaneously using a stack.
Note that since A only validates the transitions from a universal configuration to
its second successive configuration, S is a superset of all valid accepting compu-
tations for M on w. A target DFA B identifies a prefix #i (similar to Lemma 8)
followed by an invalid computation, which satisfies one of the following condi-
tions.

1. An existential transition (e.g., C0 to CR
1) is invalid.

2. The first transitions of a universal configuration (e.g., CR
1 to C2) is invalid.

Since T has only invalid computations, if IIP holds, then every computa-
tion that S contains must be invalid. Thus, w /∈ L(M). Since APSPACE and
EXPTIME are equivalent, this concludes the proof.
�

Lemmas 10 and 11 provide a tight complexity bound on the IIP of a context-
free language (in either DPDA or NPDA) and a regular language (in either DFA
or NFA). Thus, the IIP of a context-free language and a regular language is
EXPTIME-complete.

Theorem 12. When S is given by either a DPDA or an NPDA, and T is given
by either a DFA or an NFA, IIP(S, T) is EXPTIME-complete.

Theorem 12 ensures that the IIP of a context-free language S and a regular
language T is decidable. It turns out that the problem is not symmetric; when
S is regular and T is context-free, the IIP becomes undecidable. When S is
given by a DFA and T is given by a DPDA, we show that the IIP of S and T
can determine the emptiness of a linear-bounded automaton (LBA), which is
undecidable [21].

Theorem 13. When S is given by a DFA A and T is given by a DPDA B,
IIP(S, T) is undecidable.

Theorem 13 leads to the undecidability of IIP of context-free languages.

Corollary 14. When two languages S and T are context-free (given by NPDAs)
or deterministic context-free (given by DPDAs), IIP(S, T) is undecidable.

5 Conclusions

There have been several researches on the language inclusion problem [5,6,10,
11]. We have introduced another language inclusion problem based on the infix
set of all the strings in one language. The problem is motivated from an obser-
vation on how attackers produce new malicious patterns from known malicious

On the Decidability of Infix Inclusion Problem 125

patterns to damage a target system in practice. For instance, an attacker may
modify a known malicious pattern for the ReDoS attack to avoid the current
detection system by adding additional information before and after the pattern,
which can still cause the ReDoS attack. Here the malicious pattern S is being
an infix of the new pattern T ; namely S ∈ infix(T).

The IIP between two languages S and T is to determine whether or not S is
included in the set of all infixes of T . We have studied the problem for different
language classes including finite, regular and context-free cases for S and T . We
have established different decidability results for the considered cases including
the undecidability result. We have demonstrated that the problem is co-NP-
complete when one of S and T is finite, and PSPACE-complete when both S, T
are regular. Moreover, we proved that the problem is EXPTIME-complete when
S is context-free and T is regular. Finally, we have obtained the undecidability
result when T is context-free and S is either regular or context-free.

For future work, we can consider different classes of languages given by visi-
bly pushdown automata [1,6] or various counter machines [14,15]. For example,
when S is given by a DFA and T is given by a DCM(1, 1), IIP(S, T) is unde-
cidable [14], whereas when S is given by an NPDA augmented with reversal-
bounded counters and T is given by a deterministic one counter machine that
makes only 1 turn on the counter, the problem becomes decidable [15].

Acknowledgments. We would like to thank Oscar Ibarra and Ian McQuillan for
their comments that relate our problem to the infix-density problem. This research
was supported by the NRF grant funded by MIST (NRF-2020R1A4A3079947). The
first two authors contributed equally to this work.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the
36th Annual ACM Symposium on Theory of Computing, pp. 202–211 (2004)

2. Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge
University Press, Cambridge (2009)

3. Berglund, M., Drewes, F., van der Merwe, B.: Analyzing catastrophic backtracking
behavior in practical regular expression matching. In: Proceedings of the 14th
International Conference on Automata and Formal Languages, pp. 109–123 (2014)

4. Berglund, M., van der Merwe, B.: Regular expressions with backreferences re-
examined. In: Proceedings of the Prague Stringology Conference 2017, pp. 30–41
(2017)

5. Bousquet, N., Löding, C.: Equivalence and inclusion problem for strongly unam-
biguious Büchi automata. In: Proceedings of the 4th International Conference on
Language and Automata Theory and Applications, pp. 118–129 (2010)

6. Bruyère, V., Ducobu, M., Gauwin, O.: Visibly pushdown automata: universality
and inclusion via antichains. In: Proceedings of the 7th International Conference
on Language and Automata Theory and Applications, pp. 190–201 (2013)

7. Câmpeanu, C., Moreira, N., Reis, R.: Distinguishability operations and closures.
Fundamenta Informaticae 148(3–4), 243–266 (2016)

8. Chandra, A.K., Stockmeyer, L.J.: Alternation. In: Proceedings of the 17th Annual
Symposium on Foundations of Computer Science, pp. 98–108 (1974)

126 H. Cheon et al.

9. Chapman, C., Stolee, K.T.: Exploring regular expression usage and context in
Python. In: Proceedings of the 25th International Symposium on Software Testing
and Analysis, pp. 282–293 (2016)

10. Clemente, L.: On the complexity of the universality and inclusion problems for
unambiguous context-free grammars. In: Proceedings of the 8th International
Workshop on Verification and Program Transformation and 7th Workshop on Horn
Clauses for Verification and Synthesis, pp. 29–43 (2020)

11. Clemente, L., Mayr, R.: Efficient reduction of nondeterministic automata with
application to language inclusion testing. Log. Methods Comput. Sci. 15(1), 12:1-
12:73 (2019)

12. Davis, J.C., Coghlan, C.A., Servant, F., Lee, D.: The impact of regular expression
denial of service (ReDoS) in practice: an empirical study at the ecosystem scale.
In: Proceedings of the 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 246–
256 (2018)

13. Davis, J.C., Michael IV, L.G., Coghlan, C.A., Servant, F., Lee, D.: Why aren’t
regular expressions a lingua franca? An empirical study on the re-use and porta-
bility of regular expressions. In: Proceedings of the 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 443–454 (2019)

14. Eremondi, J., Ibaraa, O.H., McQuillan, I.: On the density of context-free and
counter languages. Int. J. Found. Comput. Sci. 29(02), 233–250 (2018)

15. Eremondi, J., Ibarra, O.H., McQuillan, I.: Deletion operations on deterministic
families of automata. Inf. Comput. 256, 237–252 (2017)

16. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity.
J. Autom. Lang. Combin. 21(4), 251–310 (2017)

17. Kirrage, J., Rathnayake, A., Thielecke, H.: Static analysis for regular expression
denial-of-service attacks. In: Proceedings of the 7th International Conference on
Network and System Security, pp. 135–148 (2013)

18. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IRE Trans. Electron. Comput. EC. 9(1), 39–47 (1960)

19. Pribavkina, E.V., Rodaro, E.: State complexity of prefix, suffix, bifix and infix oper-
ators on regular languages. In: Proceedings of the 14th International Conference
on Developments in Language Theory, pp. 376–386 (2010)

20. Pribavkina, E.V., Rodaro, E.: State complexity of code operators. Int. J. Found.
Comput. Sci. 22(7), 1669–1681 (2011)

21. Sipser, M.: Introduction to the Theory of Computation, 3rd edn. Cengage Learning,
Boston (2013)

22. Spencer, H.: A regular-expression matcher. In: Software Solutions in C, pp. 35–71.
Academic Press Professional, Inc. (1994)

23. Thompson, K.: Programming techniques: regular expression search algorithm.
Commun. ACM 11(6), 419–422 (1968)

24. Wood, D.: Theory of Computation. Harper & Row, New York (1987)
25. Wüstholz, V., Olivo, O., Heule, M.J.H., Dillig, I.: Static detection of DoS vul-

nerabilities in programs that use regular expressions. In: Proceedings of the 23rd
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems, Part II, pp. 3–20 (2017)

Column Representation of Sturmian
Words in Cellular Automata

Francesco Dolce1(B) and Pierre-Adrien Tahay2(B)

1 FIT, Czech Technical University in Prague, Prague, Czech Republic
dolcefra@fit.cvut.cz

2 FNSPE, Czech Technical University in Prague, Prague, Czech Republic

pierre.adrien.tahay@cvut.cz

Abstract. We prove that, given a Sturmian word w with quadratic
slope, it is possible to construct a one-dimensional cellular automaton
such that w is represented in a chosen column in its space-time diagram.
Our proof is constructive and use the continued fraction expansion of
the slope of the word.

Keywords: Sturmian words · Cellular automata · Quadratic
numbers · Continued fraction expansion

1 Introduction

Sturmian words are infinite words over a binary alphabet that have exactly
n + 1 factors of length n for each non-negative n. Their origin can be traced
back to the astronomer J. Bernoulli III. Their first in-depth study is by Morse
and Hedlund [17]. Many combinatorial properties were described in the paper
by Coven and Hedlund [5]. Sturmian words are one of the most studied topics
in combinatorics on words. They can be defined in different ways and have
various interpretations in several domains, including combinatorics and discrete
geometry. A possible way to describe them is by using mechanical words.

In this paper we consider characteristic Sturmian words with quadratic slope
(see Sect. 2 for precise definitions). In particular, given such a Sturmian word w
with continued fraction of its slope α = [0, 1 + b1, b2, . . . , bm, a1, a2, . . . , ak] and
corresponding directive sequence Δ = (b1, b2, · · · , bm, (a1, a2, · · · , ak)ω), we have
w = limn→∞ wn, where w0 = a, w1 = b, wn = wbn

n−1wn−2 for 1 ≤ n ≤ m and
wm+n = w

a(n mod k)
m+n−1 wm+n−2 for n > 0 (where a0 := ak). We use such a character-

isation to construct a machine, called cellular automaton, that will “print” us the
infinite word w. A cellular automaton is a dynamical system defined by an infi-
nite string of symbols over an alphabet and a map, called local rule, that trans-
forms every symbol of the string according to its neighbourhood (see Sect. 3 for a

The research received funding from the Ministry of Education, Youth and Sports
of the Czech Republic through the projects CZ.02.1.01/0.0/0.0/16 019/0000765 and
CZ.02.1.01/0.0/0.0/16 019/0000778.

c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 127–138, 2022.
https://doi.org/10.1007/978-3-031-05578-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_10&domain=pdf
https://doi.org/10.1007/978-3-031-05578-2_10

128 F. Dolce and P.-A. Tahay

more precise definition). A classical example of a 2-dimensional cellular automa-
ton is given by 1970 Conway’s Game of Life. In spite of its very simple definition,
the Game of Life has some quite remarkable properties. Indeed, Rendell proved
that starting from it, it is possible to simulate any Turing machine [18]. In this
paper we consider one-dimensional cellular automata. The initial configuration
will be given by an infinite string over a (finite) alphabet.

Our main result is the following one.

Theorem 1. A Sturmian word with quadratic slope can be represented as a
column in the space-time diagram of a one-dimensional cellular automaton.

The task of representing a sequence over a finite alphabet in the space-time
diagram of a cellular automaton is a non-trivial and still not entirely explored
topic. One of the first results on the subject is the construction of the characteris-
tic sequence of primes numbers, done by Fischer in 1965, using a cellular automa-
ton with more than 30,000 states [8]. In 1997, Korec gives another construction
with only 11 states [13]. In 1999, Mazoyer and Terrier establish several geometric
constructions of increasing functions, which they call Fischer constructible [16].
A very interesting result is given by Rowland and Yassawi in 2015 [19]: they
give a complete characterisation of the construction of q-automatic sequence,
with q a power of a prime number, in the columns of the space-time diagram of
linear cellular automata. Finally, in 2018, Marcovici, Stoll and Tahay construct
different non-automatic sequences, such as the characteristic sequences of poly-
nomials (squares, cubes, etc.) and the Fibonacci word [15]. Our main result in
this paper can be seen as an extension of the construction obtained by Marcovici,
Stoll and Tahay for this last infinite word. While in [15] the authors use ad hoc
properties of Fibonacci numbers and Fibonacci finite words, in this article we
consider the development of the continued fraction associated a Sturmian word
with quadratic slope to define a new algorithm. Such an algorithm could even
be generalised to larger families of infinite words (see Sect. 6).

2 Preliminaries

In this section we recall some basic definitions on finite and infinite words. For
all undefined terms we refer to [14]. We denote the set of integers, of positive
integers and of non-negative integers respectively by Z, Z+ and N, while Q and
R denote the set of rational and of real numbers.

2.1 Words

An alphabet Σ is a (finite) set of symbols called letters. The set of finite words
Σ∗ over Σ is the free monoid having neutral element the empty word ε. We also
denote by Σ+ the free semigroup over Σ, e.g., Σ+ = Σ∗ \ {ε}. The length of a
word w = a0a1 · · · an−1, with ai ∈ Σ, is the non-negative integer |w| = n. The
length of ε is considered to be 0. When it is possible to write w = pus, with
p, u, s ∈ Σ∗, we call p (resp., s, u) a prefix (resp., suffix, factor) of w.

Column Representation of Sturmian Words in Cellular Automata 129

An infinite word over Σ is a sequence w = a0a1a2 · · · , with ai ∈ Σ for
all i. Similarly to finite words we can define the set of infinite words ΣN and
extend in a natural way to Σ∗ ∪ ΣN the notions of prefix, suffix and factor. An
infinite word w is eventually periodic if w = uvω = uvvv · · · . When u = ε we
say that w is purely periodic. An infinite word that is not eventually periodic
is called aperiodic. The factor complexity of an infinite word w is the mapping
Cw : N → N defined by Cw(n) = #{u | u is a factor of w and |u| = n}.

Aperiodic infinite words with the lowest possible factor complexity, i.e., such
that Cw(n) = n+1 for all n ∈ N, are called Sturmian words (for other equivalent
definitions see [1]). It follows from the definition that all Sturmian words are
defined over a binary alphabet, e.g., {a, b}. If both sequences aw and bw are
Sturmian, we call w a characteristic Sturmian word. The family of Sturmian
words coincide with the family of irrational mechanical words, as well as the
family of binary balanced aperiodic words (for more on balanced words see, for
instance, [1,6,10]). In particular, characteristic Sturmian words correspond to
balanced irrational mechanical words with intercept equal to the slope [14]. We
denote by cα the unique characteristic Sturmian word with slope (and intercept)
α. Since two Sturmian words with the same slope (but different intercept) share
the same set of factors, we will focus only on the study of characteristic Sturmian
words. Note that every mechanical word with rational slope is a purely periodic
word.

Example 1. Let us consider the well-known Fibonacci word f = abaababaab · · · .
It is defined as the fixed point of the morphism sending a �→ ab and b �→ a. The
word f is the characteristic Sturmian word c1/ϕ2 , where ϕ = 1+

√
5

2 .

2.2 Continued Fraction Expansion

Let θ be a real number. A continued fraction expansion of θ is defined as
[c0, c1, c2, . . .] whenever

θ = c0 +
1

c1 + 1

c2+
. . .

with c0 ∈ Z and ci ∈ Z+ for every positive i. It is known that if θ ∈ Q then there
exist exactly two continued fraction expansion of θ and they are both finite. On
the other hand every positive irrational number corresponds to a unique infinite
continued fraction expansion with c0 ∈ N and ci ∈ Z+ for all i ≥ 1. Note that, if
c0 = 0 then 0 ≤ θ ≤ 1. If θ is a quadratic irrational, then its continued fraction
expansion is eventually periodic, that is it will be of the form

θ = [b0, . . . , bm, a1, . . . , ak] = [b0, . . . , bm, a1, . . . , ak, a1, . . . , ak, . . .] .

Example 2. The golden ratio ϕ = 1+
√
5

2 is a quadratic irrational number. Its con-
tinued fraction expansion is ϕ =

[
1
]

= [1, 1, 1, . . .] The continued fraction expan-
sions of e and π are [2, 1, 2, 1, 1, 4, 1, 1, 6, . . .] and [3, 7, 15, 1, 292, 1, 1, 1, 2, . . .]
respectively (sequences A003417 and A001203 in the OEIS [20]).

https://oeis.org/A003417
https://oeis.org/A001203

130 F. Dolce and P.-A. Tahay

2.3 Standard Sequences and Directed Sequences

Let Δ = (dn)n≥1 be an integer sequence with d1 ∈ N and dn ∈ Z+ for every
positive integer n. The standard sequence associated to Δ is the sequence of
finite words (wn)n≥−1 defined by

w−1 = b, w0 = a, wn = wdn
n−1wn−2 for every n ≥ 1.

The sequence Δ is also called the directive sequence of (wn)n≥−1. Note that
if d1 > 0, every wn starts with a. Otherwise, wn starts with b for every n �= 0.
Let us consider the infinite word w = limn→∞ wn. Such an infinite word is
well defined and wn is a prefix of w for every positive n. We say that Δ (resp.
(wn)n≥−1) is the directive sequence (resp. the standard sequence) of w.

Example 3. Let us consider the directive sequence Δ = (1ω) = (1, 1, 1, . . .). The
associated standard sequence is f−1 = b, f0 = a, and fn = fn−1fn−2 for every
n ≥ 1. It is known that the Fibonacci word f defined in Example 1 can be
obtained as the limit f = limn→∞ fn.

Proposition 1 [14]. Let α be an irrational number with 0 < α < 1 having
continued fraction expansion α = [0, d1 + 1, d2, d3, . . .], and let (wn)n≥−1 be the
standard sequence associated to (d1, d2, d3, . . .). Then cα = limn→∞ wn.

Note that mechanical words are defined for 0 ≤ α ≤ 1. It is possible to gener-
alise such definition to every α ∈ R [14, Remark 2.1.12]: the fraction expansion in
the statement of Proposition 1 would be α = [c0, d1 + 1, d2, d3, . . .] with c0 ∈ Z,
but the standard associated sequence would not change.

Example 4. As seen in Example 3, the directive sequence of the Fibonacci word
f is (1ω). The continued fraction expansion of the corresponding irrational slope
(see also Example 1) is 1

ϕ2 =
[
0, 2, 1

]
.

Example 5. Let us consider the characteristic Sturmian word v having associated
directive sequence Δ = ((1, 2)ω). We have v = limn→∞ vn, where the standard
sequence (vn)n≥−1 is defined by v−1 = b, v0 = a, v2n+1 = v2nv2n−1 and v2n =
v2
2n−1v2n−2 for every n ∈ N. Since 3−√

3
3 =

[
0, 2, 2, 1

]
, we have, according to

Proposition 1, v = c(3−√
3)/3.

In the next sections we will also need the lengths of the prefixes of a charac-
teristic Sturmian sequence. Given a standard sequence (wn)n≥−1 we define for
every integer n ≥ −1 the number Wn = |wn|.
Example 6. Let (fn)n≥−1, and (vn)n≥−1 be the standard sequences defined in
Examples 3, and 5. Let Fn = |fn| and Vn = |vn|. For every n ∈ N we have the
relations Fn = Fn−1 + Fn−2, V2n+1 = V2n + V2n−1 and V2n = 2V2n−1 + V2n−2.

Column Representation of Sturmian Words in Cellular Automata 131

3 Cellular Automata

In the following we use the terminology developed by Mazoyer and Terrier in [16]
and Marcovici, Stoll and Tahay in [15].

Definition 1. A one-dimensional cellular automaton (CA) is a dynamical sys-
tem (AZ, T), where A is a finite set, and where the map T : AZ → AZ is defined
by a local rule which acts uniformly and synchronously on the configuration space.
More precisely, there exists an integer r ∈ N called the radius of the CA, and a
local rule τ : A2r+1 → A such that for every x = (xk)k∈Z and for every k ∈ Z,
we have T (x)k = τ((xk+i)−r≤i≤r).

When the set A is understood, we will call cellular automaton just the map
T . The elements of AZ are called configurations. By the Curtis-Hedlund-Lyndon
Theorem [9], a map T : AZ → AZ is a CA if and only if it is continuous with
respect to the product topology and it commutes with the shift map σ defined
by σ(x)k = xk−1, for every configuration x = (xk)k∈Z and every k ∈ Z. Let
0 ∈ A and T : AZ → AZ a cellular automaton. We say that T is 0-quiescent
if T (0Z) = 0Z = · · · 000 · · · . A configuration x = (xk)k∈Z is called finite if the
set {k ∈ Z : xk �= 0} is finite. A cellular automaton can be visualized by using
a space-time diagram which is a 2-dimensional grid where each cell contains
an element of the set A and is represented by a space coordinate and a time
coordinate.

Let us consider the set

S =
{

(Tn(x)0)n≥0 ∈ AN : T is a 0-quiescent CA on AZ and x is finite
}

.

In other words, S is the set of sequences of AN that can occur as the first
column (and thus as any column) in the space-time diagram of some one-
dimensional 0-quiescent CA, starting from a finite initial configuration. This
set corresponds to the set of Fischer’s produced sequences in [16].

In a space-time diagram it is also possible to “transmit information” through
signals, that is to connect two cells (m,n) and (m′, n+ t) through a monotonous
path; we call slope of the signal the number t

m′−m (see [16, Definitions 3 and 4]
for a formal definition). When m = m′, we call such a signal a vertical signal
or a signal of infinite slope. For the sake of simplicity, we usually represent a
signal as a straight line between the cells (m,n) and (m′, n + t). Signals are
usually “porous”, i.e., they do not interact between each other. In some case,
however, we also need to consider “concrete” signals. In particular, let us define
two distinct kinds of walls. We say that a wall is of type (i) whenever a given
signal hitting the wall bounces from the cell just above, i.e., when a given signal
of slope d arrives in a cell (�, t), then such a signal dies and a new signal of slope
−d starts from the cell (�, t + 1). We say that a wall is of type (ii) whenever a
given signal hitting the wall bounces from the same cell, i.e., when a given signal
of slope d arrives in a cell (�, t), then such a signal dies and a new signal of slope
−d starts from the same cell (�, t). We usually represent a wall of type (i) as a

132 F. Dolce and P.-A. Tahay

line inside the column � + 1 when the signals comes from the left (resp. � − 1
when the signal comes from the right), and a wall of type (ii) as a rectangle
containing the cells in the column � (see Fig. 1).

t
t + 1

t

Fig. 1. Walls of type (i) (on the left) and of type (ii) (on the right).

When two signals meet, we can mark the cell at the intersection, i.e., assign
to it a value from the set A, and define new signals starting from it.

4 Construction of Numbers

To prove our main result we proceed in two steps. First let us construct a CA
recognising the lengths Wn of the prefixes wn of our Sturmian word w.

Let X ⊂ Z. Let us denote by 1X the characteristic function of X, that is the
map 1X : Z → {0, 1} defined by 1X(x) = 1 iff x ∈ X.

Proposition 2 [16]. Let (Sn)n≥0 be an integer sequence defined by Sn+p =
p−1∑

i=0

aiSn+i, where p, ai ∈ N. Then 1{Sn}n≥0 ∈ S.

Mazoyer and Terrier give an explicit method to build this sequences in a
column of a CA. We propose here a different construction for a particular case
that will be necessary for representing a Sturmian word of quadratic slope.

Proposition 3. Let (dn)n≥1 be an eventually periodic integer sequence with
d1 ∈ N and di ∈ Z+ for every i ≥ 2. Let (Sn)n≥0 be the integer sequence defined
by Sn = dnSn−1+Sn−2 for every n ≥ 0, with S−1, S0 ∈ Z+. Then 1{Sn}n≥0 ∈ S.

Proof (Sketch). Since the sequence (dn)n≥1 is eventually periodic, then there
exist m ∈ N, k ∈ Z+ and b1, . . . , bm, a1, . . . ak ∈ N such that (dn)n≥1 =
(b1, . . . , bm, (a1, . . . , ak)ω) . Note that we can consider the first Sm rows of the
cellular automaton as initial conditions, i.e., we can start the construction from
the row of rank Sm. Let n ≥ 1 be an integer. We are going to consider two
distinct cases according to the value of dn+1.

Let us first suppose that dn+1 �= 1. Assume that we have already marked the
cells (0, Sn), (Sn−2, Sn), (Sn−1, Sn), (Sn−1 + Sn−2, Sn) and (Sn, Sn). We claim

Column Representation of Sturmian Words in Cellular Automata 133

that we can mark the cells (0, Sn+1), (Sn−1, Sn+1), (Sn, Sn+1), (Sn+Sn−1, Sn+1)
and (Sn+1, Sn+1) In order to do that, we use the relation

Sn+1 = Sn + dn(dn+1 − 1)Sn−1 + (dn+1 − 1)Sn−2 + Sn−1.

The idea is to consider intermediate rows, such that their distance is given by
the addends in the previous sum. When two signals meet, they died and we can
use the cell on the intersection to define other signals. The slope of each signal
is determined by the ratio between the difference between the time coordinates
and the difference between the space coordinates. For example, the slope of the
signal between the cell (0, Sn) and the cell (Sn−1, Sn + dn(dn+1 − 1)Sn−1) is

(Sn + dn(dn+1 − 1)Sn−1) − Sn

Sn−1 − 0
= dn(dn+1 − 1)

When dn+1 = 1 the construction is different. In this case the three rows
Sn, Sn+dn(dn+1−1)Sn−1 and dn+1Sn coincide, as well as the two rows Sn+Sn−1

and Sn+1 (resp. the two columns Sn + Sn−1 and Sn+1). We start with the cells
(0, Sn), (Sn−2, Sn), (Sn−1, Sn) and (Sn, Sn) and we claim that we can mark the
cells (0, Sn+1), (Sn−1, Sn+1), (Sn, Sn+1) and (Sn+1, Sn+1).

The construction of the sequence (Sn)n≥0 is illustrated in Figs. 2 and 3. Using
these figures it is not hard to recover exact definitions of the signals. For sake of
simplicity we use the same colour when two signals have the same slope and we
represent only the cells on the intersections between two signals.

Fig. 2. Construction of the number sequence (Sn)n≥0 when dn+1 �= 1.

134 F. Dolce and P.-A. Tahay

Fig. 3. Construction of the number sequence (Sn)n≥0 when dn+1 = 1.

In particular, in both cases we are able to mark the cell (0, Sn). Hence we
can mark the sequence {Sn}n≥0 on the column 0. To complete the proof it is
enough to put the letter 1 in the cells (0, Sn), for every n ≥ 0 and the letter 0
in all other cells in the column 0.

Note that the hypothesis of eventual periodicity of the sequence (dn)n≥1 in
the previous proof is essential to guarantee that the cellular automaton is defined
over a finite set A. Indeed, since the signals (and their slope) are periodically
repeated, we have Card(A) = O(k), where k is the length of the maximum
between the pre-period and the eventual period of (dn)n≥1.

Example 7. Let us consider the word f defined in Example 1 and the associated
numerical sequence (Fn)n≥0. According to Proposition 3 we have 1{Fn}n≥0 ∈ S.

5 Construction of Prefixes

In this section we prove our main theorem. In order to do that, we need some
preliminary results.

Proposition 4. Let Δ = (dn)n≥1 be an eventually periodic integer sequence
with d1 ≥ 0 and dn ≥ 1 for every n > 1; let (wn)n≥−1 be the standard sequence
associated to Δ defined by w−1 = b, w0 = a, and wn = wdn

n−1wn−2 for every
n ≥ 1. Then w = limn→∞ wn ∈ S.

In order to prove Proposition 4, we need the following result stating that a
letter in a cell of a CA can be recopied in the same column and in any row above.
Moreover, we can do it by using only walls and signals of slope 1 and −1.

Lemma 1. Let T : AZ → AZ be a CA, a ∈ A, and n,m, t, t′ ∈ Z with m > 0,
and t > t′ ≥ 0. Suppose that the cells (n, t′), (n + m, t′) and (n, t) are marked,
the last one with a. Then it is possible to mark the cell (n, t + m) with a.

Proof. Without loss of generality, suppose that n = 0 and t′ = 0. and so a is
in the cell (0, t). Let us prove that we can recopy a into the cell (0, t + m). To
mark the wall we are going to use the cell (m, 0). We consider two distinct cases,
according to the parity of m.

Column Representation of Sturmian Words in Cellular Automata 135

Let m be odd. We consider a wall of type (i) to the right of the column
m
2 �.

Such a wall can be defined, for instance, using two signals of slope 1 and −1
starting respectively at (0, 0) and at (m, 0) (see left of Fig. 4).

We send a signal of slope 1 from the cell (0, t); when this signal touches the
wall we define a new signal of slope −1 (starting from the cell above); when this
new signal meets the column 0, we write the letter a. Since
m

2 � = m−1
2 , we have

that the new a is exactly on the row t + m−1
2 + m−1

2 + 1 = t + m. as wanted.
Suppose now that m is even. We consider this time a wall of type (ii) in the

column m
2 . Such a wall can be defined, for instance, using two signals of slope

1 and −1 starting respectively at (0, 0) and at (m, 0) (see right of Fig. 4). We
send a signal of slope 1 from the cell (0, t); when this signal hit the wall, we
define a new signal of slope −1 (starting from the same cell); when this new
signal meets the column 0, we write the letter a. The new a is exactly on the
row t + m

2 + m
2 − 1 + 1 = t + m, as wanted.

Fig. 4. Recopying of letters.

We can now prove Proposition 4.

Proof (of Proposition 4). Let us denote Sn = |wn| for all n ≥ −1. For every
n ≥ 1 we have Sn = dnSn−1 + Sn−2. Since, for all n ≥ 2, wn−3 is a suffix of
wn−1, the word wn−3wn−2 is a suffix of wn. Suppose the word wn constructed
for a given n ≥ 2 and suppose that the last letter of wn is in the cell (0, Sn).

Let us first suppose that dn �= 1. We will show that it is possible to construct
the word wn+1 with its last letter in the cell (0, Sn+1). In order to do that,
we will use the relation wn+1 = wn((wdn−1

n−2 wn−3)dnwn−2)dn+1−1w
dn−1
n−2 wn−3. Let

us take up the construction of Proposition 3 until the number Sn. Moreover,
in the column 0 we mark the cell (0, Sn−1 + dn−1(dn − 1)Sn−2). For this, we
define a signal of slope −(dn−1(dn − 1)) from the cell (Sn−2, Sn−1). This signal
meets the vertical signal defined from (0, Sn−1) in the required cell (0, Sn−1 +
dn−1(dn − 1)Sn−2). From this cell we define a signal P(n−1)

1 of slope 1 and from
the cells (Sn−2, Sn−1 +dn−1(dn −1)Sn−2), (Sn−1, Sn−1 +dn−1(dn −1)Sn−2) and
(Sn−1 +Sn−2, Sn−1 +dn−1(dn −1)Sn−2) we define three signals N(n−1)

1 , N(n−1)
2

and N(n−1)
3 of slope −1. At the intersection of these with the signal P(n−1)

1 we
define three walls M(n−1)

1 , M(n−1)
2 and M(n−1)

3 in the columns Sn−2, Sn−1 and

136 F. Dolce and P.-A. Tahay

Sn−1+Sn−2 respectively. These walls will be of type (i) or of type (ii) according
to the parity of the columns where N(n−1)

i originate. Suppose we have already
recopied the words wn−3 and wn−2 in the suffix of wn, i.e., we have found the two
corresponding heights in the column 0. Now, from these two words, we are going
to define signals of slope 1 that will stop against one of the three walls previously
defined and send back signals of slope −1 that will recopy the same word in the
column 0. Using Lemma 1 we can recopy one by one the letters of wn−2 and wn−3.
First, we send a signal of slope 1 from each letter of wn−2. When this signal meets
the wall M(n−1)

1 we send a signal of slope −1 until the column 0. Since N(n−1)
1

is generated from the column Sn−2 the letters of wn−2 are recopied in the same
column but above at distance Sn−2. This means that we have recopied a second
word wn−2 above the first. We repeat this procedure dn−1 times and we get the
word w

dn−1
n−2 above the wn already constructed. Next, we send a signal of slope

1 from each letter of wn−3 to the wall M(n−1)
3 and, in a similar way, from there

we send a signal of slope −1 to the column 0. The letters of wn−3 are recopied in
the same column but above at distance Sn−1+Sn−2 = dn−1Sn−2+Sn−3+Sn−2.
Thus, we have recopied a word wn−3 above the word wn−3wn−2w

dn−1
n−2 , where the

subword wn−3wn−2 corresponds to a suffix of wn. So far we have constructed
the word wn(wdn−1

n−2 wn−3) on the column 0. For the next step we need to use
also the word wn−2 in the suffix of wn. This time, we send signals of slope
1 from cells in column 0 to the wall M(n−1)

3 and from there, signals of slope
−1 to the column 0. Therefore, the letters of wn−2 are recopied in the same
column but above at distance Sn−1 + Sn−2 = (dn−1 + 1)Sn−2 + Sn−3. Hence
we obtain the word wn(wdn−1

n−2 wn−3)wn−2 in the column 0. By using the wall
M(n−1)

1 the word wn((wdn−1
n−2 wn−3)w

dn−1
n−2 can be obtained. From every letter

of the word wn−3 we send signals of slope 1 to the wall M(n−1)
2 and, from

there, signals of slope −1 back to column 0. The letters of wn−3 are recopied in
the same column but above at distance Sn−1 = dn−1Sn−2 + Sn−3. Hence, we
obtain the word wn(wdn−1

n−2 wn−3)w
dn−1
n−2 wn−3. Similarly, it is easy to obtain the

word wn(wdn−1
n−2 wn−3)dn = wn(wdn−1

n−2 wn−3)dn−1(wn−2w
dn−1−1
n−2 wn−3). Following

the same idea, we use the wall M(n−1)
2 to recopy wn−2 in the column 0 but

Sn−1 = (dn−1 − 1)Sn−2 + Sn−3 + Sn−2 cells above and so, we obtain the word
wn(wdn−1

n−2 wn−3)dnwn−2. Since the suffix of this word is wn−3wn−2 the previous
steps can be applied again to obtain the word wn((wdn−1

n−2 wn−3)dnwn−2)dn+1−1

which also has the suffix wn−3wn−2. Thus we easily obtain the word
wn((wdn−1

n−2 wn−3)dnwn−2)dn+1−1w
dn−1
n−2 wn−3 = wn+1.

Let us now consider the case dn = 1. Here we have Sn = Sn−1 + Sn−2 and
the cell (Sn−1 + Sn−2, Sn−1 + dn−1(dn − 1)Sn−2) = (Sn, Sn−1) is not marked.
Therefore the wall M(n−1)

3 can no longer be defined as before. This time, we
define a wall M(n)

4 at the intersection of a signal P(n)
2 a slope 1 starting from

(0, Sn) and a signal N(n)
4 of slope −1 starting from (Sn, Sn). The suffix wn−2wn−3

of wn is below the signals used to define the wall M(n)
4 , therefore, we have

Column Representation of Sturmian Words in Cellular Automata 137

to construct the word wn−3wn−2 in wn(wdn−1
n−2 wn−3wn−2)

dn+1−1
w

dn−1
n−2 wn−3 =

wn+1 in another way. We have to copy the letters of the word wn−3wn−2 in the
column 0 above at distance Sn−3 + Sn−2 + dn−1Sn−2 = Sn−1 + Sn−2 = Sn. In
order to do that, we define a wall M(n−1)

5 of type (i) or (ii) (according to the
parity) by intersecting a signal P(n−1)

3 of slope 1 from (Sn−2, Sn−1) and a signal
N(n−1)

2 of slope −1 from (Sn−1, Sn−1) defined as in the previous case. Such a
wall is in the column Sn−2 +

⌊
Sn−1−Sn−2

2

⌋
= Sn − Sn−1 +

⌊
Sn−1 − Sn

2

⌋
=

⌊
Sn

2

⌋
.

We send a signal of slope 1 from each letter of wn−3wn−2 to the wall M(n−1)
5

and from there we send a signal of slope −1 until the column 0. Therefore, we
have constructed the word wnw

dn−1
n−2 wn−3wn−2. The rest of the construction is

the same as before, with M(n)
4 playing the role of the wall M(n−1)

3 for the rows
above the word wn−3wn−2.

Note that the signals P(n)
i can also be used to destroy the walls M(n−1)

i

previously constructed. Formally, when a signal P(n)
i meets a wall M(n−1)

i , the
last one is destroyed and the signal P(n)

i continues its move.

Example 8. The Fibonacci word f defined in Example 1 is in S.

We can now prove our main result.

Proof (of Theorem 1). Let w be a Sturmian word of quadratic slope, α =
[0, 1 + b1, b2, . . . , bm, a1, a2, . . . , ak] the continued fraction expansion of its slope,
and (wn)n≥−1 the standard sequence associated to the eventually periodic inte-
ger sequence Δ = (b1, · · · , bm, (a1, · · · , ak)ω) so that Δ is an eventually peri-
odic integer sequence. Following Proposition 1, we have w = limn→∞ wn. Using
Propositions 3 and 4, it is clear that w ∈ S.

6 Conclusions

To prove our results we used the continued fraction expansion associated with
w. However, to use Proposition 4 it is enough to know how to decompose each
prefix wn in compositions of powers of smaller prefixes. A different approach
could be to use the morphisms

G =
{
a �→ a
b �→ ab

and D =
{
a �→ ba
b �→ b

.

Indeed, it is known that for every standard Sturmian sequence w there exist
a unique sequence of words

(
w(i)

)
i

and an infinite sequence (ψi)i ∈ {G,D}N
of morphisms such that w = limn→∞ ψ0ψ1 . . . ψn(w(n)) (see, for instance, [12]).
Using these notions, and the strictly related notion of S-adicity, we think it is
possible to generalise our results to larger classes of words and languages, namely
Arnoux-Rauzy words and dendric words (see, e.g., [2,3,7]).

138 F. Dolce and P.-A. Tahay

Blanchard and Kůrka [4] consider a larger family of languages that can be
recognised by a non-deterministic Turing machine. This family contains the lan-
guages corresponding to quadratic numbers but also the ones corresponding to
Hurwitz numbers, such as e (a Hurwitz number is an irrational such that its con-
tinued fraction expansion is a polynomial mixture [11]). An interesting question
is whether it is possible to generalise our construction to such a family as well.

References

1. Balková, Ľ, Pelantová, E., Starosta, Š: Sturmian jungle (or garden?) on multiliteral
alphabets. RAIRO - Theor. Inf. Appl. 44, 443–470 (2010)

2. Berthé, V., et al.: Acyclic, connected and tree sets. Monatshefte für Mathematik
176(4), 521–550 (2014). https://doi.org/10.1007/s00605-014-0721-4

3. Berthé, V., Dolce, F., Durand, F., Leroy, J., Perrin, D.: Rigidity and substitutive
tree words. Int. J. Found. Comp. S. 29, 705–720 (2018)

4. Blanchard, F., Kůrka, P.: Language complexity of rotations and Sturmian
sequences. Theoret. Comput. Sci. 209, 179–193 (1998)

5. Coven, E.M., Hedlund, G.A.: Sequences with minimal block growth. Math. Sys.
Theory 7, 138–153 (1973)

6. Dolce, F., Dvořáková, L., Pelantová, E.: On balanced sequences and their asymp-
totic critical exponent. In: Leporati, A., Mart́ın-Vide, C., Shapira, D., Zandron, C.
(eds.) LATA 2021. LNCS, vol. 12638, pp. 293–304. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-68195-1 23

7. Dolce, F., Perrin, D.: Eventually dendric shift spaces. Ergod. Theor. Dyn. Syst.
41, 2023–2048 (2021)

8. Fischer, P.C.: Generation of primes by a one-dimensional real-time iterative array.
J. Assoc. Comput. Mach. 12, 388–394 (1965)

9. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system.
Math. Sys. Theory 3, 320–375 (1969)

10. Hubert, P.: Suites équilibrées. Theoret. Comput. Sci. 242, 91–108 (2000)
11. Hurwitz, A.: Über die Bedingungen, unter welchen eine Gleichung nur Wurzeln

mit negativen reellen Theilen besitzt. Math. Ann. 46, 273–3284 (1895)
12. Justin, J., Pirillo, G.: Episturmian words and episturmian morphisms. Theoret.

Comput. Sci. 276, 281–313 (2002)
13. Korec, I.: Real-time generation of primes by a one-dimensional cellular automaton

with 11 states. In: Mathematical Foundations of Computer Science 1997, vol. 1295,
pp. 358–367. Berlin, Heidelberg (1997)

14. Lothaire, M.: Algebraic combinatorics on words. Encyclopedia of Mathematics and
its Applications, vol. 90. Cambridge University Press, Cambridge (2002)

15. Marcovici, I., Stoll, T., Tahay, P.-A.: Construction of some nonautomatic sequences
by cellular automata. Lecture Notes in Comput. Sci. 10875, 113–126 (2018)

16. Mazoyer, J., Terrier, V.: Signals in one-dimensional cellular automata. Theoret.
Comput. Sci. 217, 53–80 (1999)

17. Morse, M., Hedlund, G.A.: Symbolic dynamics II. Sturmian Trajectories. Am. J.
Math. 62, 1–42 (1940)

18. Rendell, P.: Turing universality of the game of life. In: Adamatzky, A. (eds.)
Collision-Based Computing, ECC, vol. 18. Springer, Cham (2002). https://doi.
org/10.1007/978-3-319-19842-2

19. Rowland, E., Yassawi, R.: A characterization of p-automatic sequences as columns
of linear cellular automata. Adv. in Appl. Math. 63, 68–89 (2015)

20. Sloane, N.J.A.: On-line Encyclopedia of Integer Sequences. https://oeis.org/

https://doi.org/10.1007/s00605-014-0721-4
https://doi.org/10.1007/978-3-030-68195-1_23
https://doi.org/10.1007/978-3-030-68195-1_23
https://doi.org/10.1007/978-3-319-19842-2
https://doi.org/10.1007/978-3-319-19842-2
https://oeis.org/

Logarithmic Equal-Letter Runs for BWT
of Purely Morphic Words

Andrea Frosini1, Ilaria Mancini2, Simone Rinaldi2, Giuseppe Romana3,
and Marinella Sciortino3(B)

1 Universitá di Firenze, Florence, Italy
andrea.frosini@unifi.it

2 Universitá di Siena, Siena, Italy
ilaria.mancini@student.siena.it, simone.rinaldi@unisi.it

3 Universitá di Palermo, Palermo, Italy
{giuseppe.romana01,marinella.sciortino}@unipa.it

Abstract. In this paper we study the number rbwt of equal-letter runs
produced by the Burrows-Wheeler transform (BWT) when it is applied
to purely morphic finite words, which are words generated by iterating
prolongable morphisms. Such a parameter rbwt is very significant since it
provides a measure of the performances of the BWT , in terms of both
compressibility and indexing. In particular, we prove that, when BWT
is applied to whichever purely morphic finite word on a binary alphabet,
rbwt is O(log n), where n is the length of the word. Moreover, we prove
that rbwt is Θ(log n) for the binary words generated by a large class of
prolongable binary morphisms. These bounds are proved by providing
some new structural properties of the bispecial circular factors of such
words.

Keywords: Burrows-Wheeler Transform · Equal-letter runs ·
Morphisms · Bispecial circular factors

1 Introduction

The Burrows-Wheeler Transform (BWT) is a reversible transformation that pro-
duces a permutation of the text given in input, according to the lexicographical
order of its cyclic rotations. It was introduced in 1994 in the field of Data Com-
pression [3] and it still represents the main component of some of the most known
lossless text compression tools [24] as well as of compressed indexes [9]. BWT is
used as pre-processing of memoryless compressors, causing the boosting of their
performance. The key motivation for this fact is that BWT is likely to create
equal-letter runs (clusters) that are longer than the clusters of the original text.
In other words, if we denote with r(w) the number of equal-letter runs in the
word w, the number rbwt(w) of equal-letter runs produced by BWT applied to
w often becomes lower than r(w). It is important to note that the performance
in terms of both space and time of text compressors and compressed index-
ing data structures applied on a text w can be evaluated by using rbwt(w) [11].
c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 139–151, 2022.
https://doi.org/10.1007/978-3-031-05578-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_11&domain=pdf
https://doi.org/10.1007/978-3-031-05578-2_11

140 A. Frosini et al.

An upper bound on the number of clusters produced by BWT has been provided
in [13], in particular, it has been proved that rbwt(w) = O(z(w) log2 n) where
z(w) is the number of phrases in the LZ77 factorization of w and n is the length
of w. The ratio between rbwt(w) and the number of clusters in the BWT of the
reverse of w has been studied in [12]. A recent comparative survey illustrating the
properties of rbwt(w) and other repetitiveness measures can be found in [18]. In
particular, in this survey the measure γ, which is the size of the smallest string
attractor for the sequence [14], and the measure δ, which is defined from the
factor complexity function [5], are also considered. From a combinatorial point
of view, the parameter rbwt has been studied in order to obtain more informa-
tion about the combinatorial complexity of a word from the number of clusters
produced by applying the BWT . In particular, great attention has been given
to the characterization of the words for which the BWT produces the minimal
number of clusters [8,17,22,26]. A first combinatorial investigation of the BWT
clustering effect has been given in [15,16] in which the BWT -clustering ratio
ρ(w) = rbwt(w)

r(w) has been studied. In particular, it has been proved in [16] that
ρ(w) ≤ 2 and infinite families of words for which ρ assumes its maximum value
have been shown. In [15] the behavior of ρ is studied for two very well known
families of words, namely Sturmian words and de Brujin binary words.

This paper is focused on investigating the behaviour of BWT when applied
to finite words obtained by iterating a morphism. Morphisms are well-known
objects in the field of combinatorics on words and they represent a powerful
and natural tool to define repetitive sequences. Studying the compressibility of
repetitive sequences is an issue that is raising great interest. The morphisms,
combined with macro-schemes, have been used to define other mechanisms to
generate repetitive sequences, called NU -systems [19]. We consider the mor-
phisms ϕ that admit a fixed point (denoted by ϕ∞(a)) starting from a given
character a ∈ A, i.e. ϕ∞(a) = limi→∞ ϕi(a). Such morphisms are called pro-
longable on a. In [25] the measure γ is computed for the prefixes of infinite words
that are fixed points of some morphisms. Moreover, a complete characterization
of the Lempel-Ziv complexity z for the prefixes of fixed points of prolongable
morphisms has been given in [6]. In this paper we analyse the number rbwt of
equal-letter runs and the BWT -clustering ratio ρ when BWT is applied to the
purely morphic finite words, i.e. the words ϕi(a) generated by iterating a mor-
phism ϕ prolongable on a. In [2], the parameter ρ has been computed for the
families of finite words generated by some morphisms. In all cases considered in
[2], the BWT efficiently clusters since the value of ρ is much lower than 1. In
the one-page abstract appeared in [10] we extended such results by providing
some new upper bounds on rbwt(ϕi(a)) depending on the factor complexity of
the fixed point ϕ∞(a) for a large class of morphisms.

In this paper, we formalize the notion of BWT -highly compressible morphism
by evaluating, for a given morphism ϕ, whether BWT -clustering ratio ρ on
the words ϕi(a) tends towards zero, when i goes to infinity. We introduce the
notion of run-bounded morphism and we identify some classes of BWT -highly

Logarithmic Equal-Letter Runs for BWT of Purely Morphic Words 141

compressible morphisms, by proving that rbwt is O(log n) for words of length n
generated by primitive morphisms.

Furthermore, we give some combinatorial properties of several classes of
binary morphisms and we improve the results announced in [10] in the case
of binary purely morphic words. In fact, in [10] we provided the upper bound
O(log n) for the parameter rbwt only for one class of binary morphism. Here, we
prove that such an upper bound holds for every purely morphic finite word on
a binary alphabet. A consequence of these results is that all binary prolongable
morphisms, except a few cases, are BWT -highly compressible. Finally, we prove
that rbwt(w) is Θ(log n) for the binary finite words w generated by a large class of
morphisms. Such bounds are obtained by using a close relation between rbwt(w)
and the combinatorial notion of a bispecial circular factor of w and by providing
some new structural properties of the bispecial circular factors of infinite families
of finite binary words generated by prolongable morphisms.

2 Preliminaries

Let A = {a1, a2, . . . , ak} be a finite ordered alphabet with a1 < a2 < . . . < ak,
where < denotes the standard lexicographic order. We assume that |A| ≥ 2.
The set of words over the alphabet A is denoted by A∗. A finite word w =
w1w2 · · · wn ∈ A∗ is a finite sequence of letters from A. The length of w, denoted
|w|, is the number n of its letters, |w|a denotes the number of occurrences of
the letter a in w. An infinite word x = x1x2x3 . . . is a non-ending sequence of
elements of the alphabet A.

Given an infinite or finite word x, we say that a word u is a factor of x if
x = vuy for some words v and y. The word u is a prefix (resp. suffix) of x if
x = uy (resp. x = yu) for some word y. A factor u of x is left special (right
special) if there exist a, b ∈ A with a �= b such that both au and bu (ua and
ub) are factors of x. A factor u is bispecial if it is both left and right special.
We denote by fx(k) the number of distinct factors of x having length k. The
function fx is called factor complexity of x.

We say that a finite word w has a period p > 0 if wi = wi+p for each
i ≤ |w| − p. It is easy to see that each integer p ≥ |w| is a period of w. The
smallest of all periods is called minimum period of w. The notion of period can
be also given for infinite words. We say that an infinite word is ultimately periodic
with period p > 0 if exists K ≥ 1 such that wi = wi+p for each i ≥ K. Moreover,
if this condition holds for every i ∈ N, w is said periodic (with period p). An
infinite word x is aperiodic if it is not ultimately periodic.

Given two finite words w, z ∈ A∗, we say that w is a cyclic rotation of z,
or equivalently w and z are conjugate, if w = uv and z = vu, where u, v ∈ A∗.
Conjugacy between words is an equivalence relation over A∗. We say that a finite
word u is a circular factor of w if u is a factor of a conjugate of w. For instance,
aa is a circular factor of abbba, but it is not a factor. We denote by C(w) the
set of circular factors of a word w. If we denote by cw(k) the number of distinct
circular factors of w having length k, it is easy to see that fw(k) ≤ cw(k), for each

142 A. Frosini et al.

k ≥ 1. Note that the notions of left special, right special and bispecial factors
can be extended to circular factors. In particular, we say that u is a bispecial
circular factor of a word w if there exist a, b ∈ A, with a �= b, and a′, b′ ∈ A,
with a′ �= b′, such that both aua′ and bub′ are circular factors of w. We denote
by BS(w) the set of bispecial circular factors of w.

The Burrows-Wheeler Transform (BWT) is a reversible transformation intro-
duced in the context of Data Compression [3]. Given a word w ∈ A∗, the BWT
produces a permutation of w which is obtained by concatenating the last let-
ter of the lexicographically sorted cyclic rotations of w, and we denote it with
bwt(w). Note that bwt(w) = bwt(v) if and only if w and v are conjugate.

The run-length encoding of a word w, denoted by rle(w), is a sequence of
pairs (wi, li) with wi ∈ A and li > 0, such that w = wl1

1 wl2
2 · · · wlr

r and wi �= wi+1.
We denote by r(w) = |rle(w)|, i.e. the number r of equal-letter runs in w. We
denote by rbwt(w) = r(bwt(w)) the number of equal-letter runs in bwt(w). The
BWT-clustering ratio ρ(w) = rbwt(w)

r(w) is a measure introduced to evaluate how
much the number of equal-letter runs varies when BWT is applied [16].

Morphisms are fundamental tools of formal languages and a very crucial
notion in combinatorics on words. They represent a very interesting way to
generate an infinite family of words. Let A and Σ be alphabets. A morphism
is a map ϕ from A∗ to Σ∗ that obeys the identity ϕ(uv) = ϕ(u)ϕ(v) for all
words u, v ∈ A∗. By definition, a morphism can be described by just specifying
the images of the letters of A. Examples of very well known morphisms are the
Thue-Morse morphism τ , defined as τ(a) = ab and τ(b) = ba, and the Fibonacci
morphism θ, defined as θ(a) = ab and θ(b) = a. A morphism ϕ is primitive if
there exists a positive integer k such that, for every pair of characters a, b ∈ A, the
character a occurs in ϕk(b). Both τ and θ are primitive morphisms. A morphism
is called non-erasing if |ϕ(a)| ≥ 1, for each a ∈ A. In the following we consider
only non-erasing morphisms.

Morphisms can be classified by the length of images of letters. If there is a
constant k such that |ϕ(a)| = k for all a ∈ A then we say that ϕ is k-uniform
(or just uniform, if k is clear from the context). For instance, the Thue-Morse
morphism τ is 2-uniform. The growth function of a morphism ϕ with respect
to a letter a ∈ A and an iteration i is defined by ϕa(i) = |ϕi(a)|. A letter a
is said to be growing for ϕ if limi→∞ ϕa(i) = +∞, otherwise it is bounded.
A morphism ϕ is growing if each letter of the alphabet is growing for ϕ. For
growing morphisms it holds that, for every a ∈ A, ϕa(i) = Θ(ieapi

a), for some
ea ≥ 0 and pa > 1. Another classification of morphisms is according to its growth
function on distinct letters [20]. A growing morphism ϕ is called quasi-uniform
if ϕa(i) = Θ(pi) for every a ∈ A and some p > 0; ϕ is called polynomially
divergent if for every a ∈ A it holds that ϕa(i) = Θ(ieapi) for some p > 1 and
exist a, b ∈ A such that ea �= eb ≥ 0; ϕ is called exponentially divergent if exist
a, b ∈ A such that ϕa(i) = Θ(ieapi

a) and ϕb(i) = Θ(iebpi
b), for some ea, eb ≥ 0

and pa �= pb > 1.
A morphism is called prolongable on a letter a ∈ A if ϕ(a) = au with u ∈ A+.

Then, for i ≥ 1, ϕi(a) = auϕ(u) · · · ϕi−1(u). In this case, the infinite family of

Logarithmic Equal-Letter Runs for BWT of Purely Morphic Words 143

finite words {a, ϕ(a), . . . , ϕi(a), . . .} are prefixes of a unique infinite word denoted
by ϕ∞(a), that is called purely morphic word or word generated by ϕ. In this
paper, we assume ϕ(a) /∈ {a}+. Examples of infinite words generated by a mor-
phism are the Thue-Morse word t = abbabaabbaababba . . . generated by the
Thue-Morse morphism τ and the Fibonacci word f = abaababaabaab . . . gen-
erated by the Fibonacci morphism θ. More generally, an infinite word is called
morphic if is generated by applying a coding (a 1-uniform morphism from A to
a possibly different alphabet Σ) to a purely morphic word.

3 BWT-Highly Compressible Morphisms

In this section, we focus on the morphisms that generate finite words w on which
the Burrows-Wheeler transform leads to a significant reduction of the number
of equal-letter runs. In particular, we show that some upper bounds depending
on the factor complexity of the fixed point of the morphism can be derived.

Definition 1. A morphism ϕ prolongable on a ∈ A is BWT -highly compressible
if lim supi→∞ ρ(ϕi(a)) = 0, where ρ is the BWT -clustering ratio.

The factor complexity of purely morphic words has been studied [20].

Theorem 2 [20]. Let x = ϕ∞(a) be an infinite aperiodic word and let fx be its
factor complexity.

1. If ϕ is growing, then fx(n) is Θ(n), Θ(n log log n) or Θ(n log n) if ϕ is quasi-
uniform, polynomially divergent or exponentially divergent, respectively

2. Let ϕ be not-growing and let B be the set of its bounded letters
(a) if x has arbitrarily large factors of B∗ then fx(n) = Θ(n2)
(b) if the factors of B∗ in x have bounded length then fx(n) can be any of

Θ(n), Θ(n log log n) or Θ(n log n).

The following theorem summarizes some results in [7] regarding the factor
complexity of some particular classes of morphisms. Both Fibonacci morphism
θ and Thue-Morse morphism τ are included in these classes.

Theorem 3. Let x = ϕ∞(a) be an aperiodic infinite word. If ϕ is uniform or
primitive, then fx(n) = Θ(n).

The following two examples provide a BWT -highly compressible and a not
BWT -highly compressible morphism, respectively.

Example 4 (Θ(n log log n) factor complexity). Let us consider the binary mor-
phism ϕ defined as ϕ(a) = abab and ϕ(b) = bb. In this case ϕa(i) = (i+1)2i and
ϕb(i) = 2i. Moreover, r(ϕi(a)) = 2i+1 and rbwt(ϕi(a)) = 2i, for i > 2. Hence, ϕ
is BWT -highly compressible.

144 A. Frosini et al.

Example 5 (Θ(n log n) factor complexity). Let us consider the morphism ψ
defined as ψ(a) = abc, ψ(b) = bb and ψ(c) = ccc. One can verify that
x = ψ∞(a) = abcb2c3b4c9 . . . and ψa(i + 1) = ψa(i) + 2i + 3i. Moreover,
ρ(ψi(a)) = rbwt(ψ

i(a))
r(ψi(a)) = 4i

2i+1 > 1 for i > 2. Hence, ψ is not BWT -highly
compressible.

The following proposition gives an upper bound on the value rbwt(ϕi(a)), for
some classes of morphisms prolongable on a. Such bounds depend on the factor
complexity of the infinite word generated by ϕ.

Proposition 6. Let x = ϕ∞(a) be an infinite word. Then the following bounds
for rbwt(ϕi(a)), i ≥ 1, hold:

1. if fx(n) = Θ(1) then rbwt(ϕi(a)) = Θ(1);
2. if fx(n) = Θ(n) then rbwt(ϕi(a)) = O(i);
3. if fx(n) = Θ(n log log n) then rbwt(ϕi(a)) = O(i log i log log i);
4. if fx(n) = Θ(n log n) then rbwt(ϕi(a)) = O(i2 log i).

Proof. (Sketch) Bound 1 follows from the inequalities rbwt(v) ≤ rbwt(uvk) ≤
rbwt(v) + 2|u|, for every u, v ∈ A∗ and k > 0. The other bounds can be derived
by using an upper bound proved in [13] and from the fact that the growth of
every morphism is in O(ρi

a), for some ρa > 1 [23]. ��
Note that the upper bounds 2, 3 and 4 of Proposition 6 have been enunciated

in [10], and the upper bound 2 extends some known results. In fact, as shown in
[2], for the i-th Thue-Morse word τ i(a), it holds that rbwt(τ i(a)) = Θ(i). We also
remark that, since n = |τ i(a)| = 2i, rbwt(τ i(a)) = Θ(log n). However, the lower
bounds can be quite different. In fact, for the i-th Fibonacci word θi(a) it holds
that rbwt(θi(a)) = Θ(1), as shown in [17]. In the next section we show that, in
case of binary alphabet, lower and upper bounds can be derived for some classes
of morphisms.

In the next example we show a class of morphisms ϕk, over an alphabet of
size k, such that rbwt(ϕi

k(a)) = Θ(n
1

k−1), where n = |ϕi
k(a)|.

Example 7 (Θ(n2) factor complexity). Let us consider the morphism

ϕk :

a1 	→ a1a2

a2 	→ a2a3

. . .
ak−1 	→ ak−1ak

ak 	→ ak

One can verify that n = |ϕi
k(a)| = Θ(ik−1) [6]. Moreover, r(ϕi

k(a)) = Θ(ik−2)
and rbwt(ϕi

k(a)) = Θ(i) = Θ(n
1

k−1). Hence, ϕk is BWT -highly compressible for
every k > 3.

Here we introduce the notion of run-bounded morphism in order to identify
some classes of BWT -highly compressible morphisms.

Logarithmic Equal-Letter Runs for BWT of Purely Morphic Words 145

Definition 8. Let ϕ be a morphism such that r(ϕi(a)) ≤ K, for every i > 0,
for some a ∈ A and K > 0. Then we say that ϕ is run-bounded on a.

The following two propositions give bounds for r(ϕi(a)). Note that, since ϕ
is prolongable, r(ϕi(a)) is not decreasing.

Proposition 9. Let ϕ be a morphism prolongable on a ∈ A and let R = {b ∈
A | ϕ is run-bounded on b}. If ϕ(a) = au with u ∈ R+ then r(ϕi(a)) = O(i).

Proof. Recall that ϕi(a) = auϕ(u)ϕ2(u) · · · ϕi−1(u). Since ϕ is run-bounded on
every symbol in u, then r(ϕi(u)) ≤ K · |u|, for some K > 0 and every i > 0.
Hence, we have that r(ϕi(a)) ≤ 1 +

∑i−1
j=0 r(ϕj(u)) ≤ (K · |u|) · i = O(i). ��

Proposition 10. Let ϕ be a morphism prolongable on a ∈ A such that
r(ϕ(a)) ≥ 2. If exists t > 0 such that a occurs at least twice in ϕt(a), then
the growth of r(ϕi(a)) is exponential.

The following corollary can be proved by using Propositions 6 and 10.

Corollary 11. Let ϕ be a primitive morphism and prolongable on a and let
n = |ϕi(a)|, i ≥ 1. It holds that rbwt(ϕi(a)) = O(log n) and limi→∞ ρ(ϕi(a)) = 0,
therefore ϕ is BWT -highly compressible.

Corollary 11 confirms what could be also deduced from results in [2] and
[17], namely that the Thue-Morse morphism τ and the Fibonacci morphism θ
are BWT -highly compressible, since both are primitive. The following exam-
ple shows that, unlike primitive morphisms, there exist uniform morphisms on
generic alphabets that are not BWT -highly compressible. The situation becomes
different if binary alphabets are considered, as shown in the next section.

Example 12. Let us consider the 3-uniform morphism η defined as η(a) = abc,
η(b) = bbb and η(c) = ccc. It is easy to verify that in this case r(ηi(a)) =
r(abcbbbccc · · · b3i−1

c3
i−1

) = 2i + 1 and rbwt(ηi(a))) = 4i, for every i ≥ 2. Hence,
ρ(ηi(a)) = 2 − 2

2i+1 and it is not BWT -highly compressible.

4 Upper and Lower Bounds for rbwt

In this section we show that lower and upper bounds for rbwt of a word w
over a generic alphabet can be derived by considering the number of extensions
of some bispecial circular factors of w. By focusing on binary words over the
ordered alphabet A = {a, b} generated by a binary morphism μ prolongable on
a, we give some new structural properties of their circular bispecial factors. Such
results allow us to derive logarithmic lower and upper bounds for some classes of
binary morphisms. Furthermore, we prove that for all the binary morphisms μ
prolongable on a, except few cases, limi→∞ ρ(μi(a)) = 0. Hence they are BWT -
highly compressible. Note that such results are independent of the order between
the letters in A.

146 A. Frosini et al.

Let u be a circular factor of a given word w over a generic alphabet A.
Inspired by the notation in [4], we denote by er(u) = |{x ∈ A | ux ∈ C(w)}| − 1
the number of right circular extensions of u in w minus 1, and by e�(u) =
|{x ∈ A | xu ∈ C(w)}| − 1 the number of left circular extensions of u in w
minus 1. The bispecial circular factors of w can be classified according to the
number of their extensions. In particular, a circular factor u is strictly bispecial
if |C(w) ∩ AuA| = (er(u) + 1)(e�(u) + 1), u is weakly bispecial if |C(w) ∩ AuA| =
max{er(u), e�(u)} + 1. We denote by SBS(w) and WBS(w) the set of strictly
and weakly bispecial circular factors of w, respectively. The following lemma
holds. The upper bound is already known in terms of the size of the compact
directed acyclic word graph [1].

Lemma 13. Let w be a word over the alphabet A. Then,
∑

u∈WBS(w)

min{el(u), er(u)} + 1 ≤ rbwt(w) ≤
∑

u∈BS(w)

er(u) + 1.

From now on, we suppose that A = {a, b}. Given a binary morphism μ, the
notation μ ≡ (α, β) means that μ(a) = α and μ(b) = β.

4.1 Combinatorial Structure of Binary Morphisms

In this subsection we give a combinatorial characterization of α and β, for several
classes of binary morphisms μ ≡ (α, β), with α /∈ {a}+. Such a characterization,
which depends on the factor complexity of the fixed point μ∞(a), is used in the
next subsection to derive lower and upper bound for rbwt.

The following proposition consider ultimately periodic purely morphic words
and can be proved by using the proof of [21, Corollary 3].

Proposition 14. Let x = μ∞(a) be an infinite binary ultimately periodic word,
where μ ≡ (α, β). Then, one of the following cases occurs:

1. α = η� and β = ηt, for some η ∈ {a, b}∗ and some �, t ≥ 1;
2. α = abk and β = b�, for some k ≥ 1, � ≥ 1;
3. α = (ab)pa and β = (ba)qb for some p, q ≥ 1;
4. α = (abp)qa and β = b, for some p ≥ 1, q ≥ 1.

Let Ri = {q1 < q2 < . . . < qh} be the set of non-negative integers such that
abqja is a circular factor in μi(a), for some 1 ≤ j ≤ h. Denoted by na = |α|a,
it is easy to verify that |R1| ≤ na, since μ(a) = abt1abt2a · · · abtna with tj ≥ 0
for every 1 ≤ j ≤ na. As shown later, the size of the sets Ri can be used to
derive tighter bounds for rbwt on words generated by binary morphisms. The
two following lemmas give a combinatorial characterization of the sets Ri for
every non-primitive binary morphism.

Lemma 15. Let μ = (α, β) be a non-growing morphism prolongable on a and
let x = μ∞(a) be its fixed point.

Logarithmic Equal-Letter Runs for BWT of Purely Morphic Words 147

1. If α = aubak, β = b, for some u ∈ A∗, and k ≥ 1 then Ri = R1 for every
i ≥ 1;

2. If α = auabk, β = b, for some u ∈ A∗, and k ≥ 1 then Ri =
⋃i

h=1

⋃na−1
j=1 {tj +

(h − 1)k} ∪ {ik} for every i ≥ 1.

Lemma 16. Let μ be a growing non-primitive binary morphism. If μ∞(a) is
ultimately periodic, then μ ≡ (abk, b�), k ≥ 1, � > 1 and Ri = k

∑i−1
j=0 �j, i ≥ 1.

Otherwise, it holds that μ ≡ (auabk, b�), k ≥ 0, � > 1, u ∈ A∗ and Ri =
⋃i

h=1

⋃na−1
j=1 { �h−1((�−1)tj+k)−k

�−1 } ∪ {k �i−1
�−1 }, for every i ≥ 1.

The following two propositions give a combinatorial characterization of non-
primitive morphisms generating aperiodic words.

Proposition 17. Let μ = (α, β) be a non-growing morphism prolongable on a
and let x = μ∞(a) be its aperiodic fixed point. Then, one of the following cases
must occur:

1. α = aubak, β = b, for some u ∈ A∗ and k ≥ 1, and fx(n) = Θ(n);
2. α = auabk, β = b, for every u ∈ A∗ and k ≥ 1, and fx(n) = Θ(n2).

Remark 18. Note that the morphism μ ≡ (auabk, b), k ≥ 1 always generates a
fixed point with quadratic factor complexity for some u ∈ A∗. If μ ≡ (aubak, b),
k ≥ 1, then we have to distinguish two cases: if k > 1, then μ generates a fixed
point with linear factor complexity for some u ∈ A∗; if k = 1, by Proposition
14 (case 4), u �= (bpa)qbp−1, p, q ≥ 1, otherwise the fixed point is ultimately
periodic.

Proposition 19. Let μ = (α, β) be a growing non-primitive morphism pro-
longable on a and let x = μ∞(a) be its aperiodic fixed point. Then, μ ≡ (av, b�),
for some � ≥ 2 and v ∈ A+ such that |v|a, |v|b ≥ 1. Moreover, let na = |av|a.
Then, it holds that:

1. na < � iff fx(n) = Θ(n);
2. na = � iff fx(n) = Θ(n log log n);
3. na > � iff fx(n) = Θ(n log n).

The following proposition shows that for every binary non-primitive mor-
phism, except for the case of non-growing morphisms with linear factor complex-
ity of the fixed point (case 1 of Lemma 15), the size of the set Ri of non-negative
integers j such that abja is a circular factor of μi(a) grows linearly with i.

Proposition 20. Let μ ≡ (auabk, b�) a binary morphism with k ≥ 0, � ≥ 1 and
k + � > 1 and aperiodic fixed point. Then |Ri| = Θ(i).

148 A. Frosini et al.

4.2 Logarithmic Bounds for rbwt in Case of Binary Morphisms

In this subsection we prove that if w is a finite word of length n generated by
iterating a binary morphism, then rbwt(w) = O(log n). Moreover, we identify
some classes of binary morphisms for which Ω(log n) is a lower bound for rbwt.
From Proposition 14, one can easily derive that in case of ultimately periodic
words rbwt is Θ(1). In case of a primitive morphism μ the upper bound O(log n)
can be deduced by Proposition 6 and Theorem 3, by using the fact that, in this
case, μi(a) is exponential [23]. Hence, here we can suppose that the morphism
μ ≡ (α, β) is not primitive, with α /∈ {a}+, and μ∞(a) is aperiodic.

The following lemmas give a structural characterization of the bispecial circu-
lar factors of the words generated by iterating a binary morphism. In particular,
Lemma 21 shows how to construct bispecial circular factors of μi+1(a) starting
from the bispecial circular factors of μi(a), i ≥ 1. In Lemma 22 we prove that
all bispecial circular factors can be constructed by starting from the bispecial
circular factors of a finite set of words depending of the images of μ on the letters
of the alphabet.

Lemma 21. Let μ ≡ (auabk, b�) be a binary morphism, for some k ≥ 0, � ≥ 1.
If v is a circular bispecial factor of μi(a), i ≥ 1, then w = bkμ(v) is a bispecial
circular factor of μi+1(a).

Lemma 22. Let μ ≡ (α, β) = (auabk, b�) for some k ≥ 0, � ≥ 1, let m be the
length of the longest equal-letter run of b’s that occurs in auabk, and let M =
max{�m−(�+1)k

�2 �, 0}. Then, every circular bispecial factor w of μi+1(a), i ≥ 1,
either appears as a circular factor in

⋃M
j=0{μ(α)μ(β)jμ(α)} or w = bkμ(v), for

some circular bispecial factor v in μi(a) (or w = bh, for some h ≥ 1, when k ≥ 0
and � > 1).

Theorem 23. Let μ ≡ (auabk, b�) be a non-primitive morphism with k ≥ 0,
� ≥ 1 with aperiodic fixed point. Then rbwt(μi(a)) = O(i).

Proof. (Sketch) The case k = 0 and � = 1 follows from Proposition 17 and
Proposition 6. In case of binary alphabet, Lemma 13 implies that, for every
i ≥ 1, rbwt(μi(a)) ≤ |BS(μi(a))|+1. If k ≥ 1 and � = 1, then |BS(μi(a))| = O(i)
by using Lemma 22. If k ≥ 0 and � > 1, |BS(μi(a))| grows exponentially since
BS contains the subset BSb(μi(a)) = {bh | bh, bh+1 ∈ C(μi(a))} by Lemma 22.
However, only the elements of a subset of BSb(μi(a)) size at most 2|Ri| produce
an increase of 1 for rbwt(μi(a)). The thesis follows from Proposition 20. ��
Theorem 24. Let μ ≡ (auabk, b�) be a non-primitive morphism with k ≥ 0,
� ≥ 1 and x = μ∞(a) is aperiodic. Then rbwt(μi(a)) = Ω(|Ri|). Moreover, when
μ is not growing with fx(n) = Θ(n2) or μ is growing, then rbwt(μi(a)) = Ω(i).

Proof. (Sketch) Let Ri = {q1 < q2 < . . . < q|Ri|} the set of non-negative integers
such that abqja ∈ C(μi(a)). For every qj ∈ Ri, we can consider the block Xj of
lexicographically sorted conjugates starting with bqja. Among the corresponding

Logarithmic Equal-Letter Runs for BWT of Purely Morphic Words 149

characters in bwt(μi(a)), at least one occurrence of the letter a is included. For
every 0 ≤ j ≤ �|Ri|−1	

2 , let us consider the blocks X2j+1 and X2j+3. Since
q2j+1 < q2j+3 − 1, there are at least |X2j+3| lexicographically sorted conjugates
starting with bq2j+3−1a and ending with b. The second part of the thesis is proved
by using Propositions 17, 19 and 20. ��
Remark 25. Note that Theorem 23 and Theorem 24 also hold when b < a.

The following lemma and corollary allow us to states that, for morphisms
focused in this subsection, i = Θ(log n), where n = μa(i) = |μi(a)|.
Lemma 26. Let μ ≡ (α, β) a binary morphism prolongable on a. Let na =
|α|a, nb = |α|b,ma = |β|a,mb = |β|b and αi = |μi−1(a)|a, βi = |μi−1(a)|b. It
holds that:

r(μi(a)) ≥ αir(α) + βir(β) − |μi−1(a)| + 1

with

αi = naαi−1 + manbαi−2 + mambnbαi−3 + mam2
bnbαi−4 + · · ·+ mami−3

b nb

βi = mbβi−1 + manbβi−2 + mananbβi−3 + man2
anbβi−4 + · · ·+ mani−4

a nbβ2 + ni−2
a nb.

From Lemma 26 and Proposition 10, the following corollary follows.

Corollary 27. Let μ = (α, β) a binary morphism prolongable on a. Then, the
growth of μa(i) is exponential except when α = abp, with p ≥ 1, and β = b,
where μa(i) = Θ(i).

The goal of the following result is to evaluate the BWT -clustering ratio of
the finite words generated by iterating a binary morphism. The proof can be
derived from Lemma 26, Proposition 14, Corollary 11, and Theorem 23.

Theorem 28. Let μ ≡ (α, β) be a binary morphism prolongable on a such that
μ �≡ (abm, bn) for every m ≥ 1, n ≥ 1. Then limi→∞ ρ(μi(a)) = 0, consequently
μ is BWT -highly compressible.

5 Conclusions and Further Work

In this paper, we have studied the number rbwt(w) of equal-letter runs produced
by the BWT , when w = μi(a) of length n is the binary word generated after
the i-th iteration of a morphism μ prolongable on the letter a with an aperiodic
fixed point x = μ∞(a). We have proved that rbwt(w) is Θ(log n) when μ is a
non-primitive growing morphism or a non-primitive not-growing morphism such
that fx(n) = Θ(n2). The problem of characterizing the primitive morphisms such
that rbwt(w) is Ω(log n) is still open. This could allow a tight lower bound to be
deduced even for non-primitive not growing morphisms such that fx(n) = Θ(n).
Moreover, we are interested to extend these bounds also for purely morphic finite
words on larger alphabets, and also for generic morphic finite words.

150 A. Frosini et al.

References

1. Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Composite
repetition-aware data structures. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.)
CPM 2015. LNCS, vol. 9133, pp. 26–39. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-19929-0 3

2. Brlek, S., Frosini, A., Mancini, I., Pergola, E., Rinaldi, S.: Burrows-Wheeler trans-
form of words defined by morphisms. In: Colbourn, C.J., Grossi, R., Pisanti, N.
(eds.) IWOCA 2019. LNCS, vol. 11638, pp. 393–404. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25005-8 32

3. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Technical report, DIGITAL System Research Center (1994)

4. Cassaigne, J.: Complexity and special factors. (complexité et facteurs spéciaux.).
Bull. Belgian Math. Soc. - Simon Stevin 4(1), 67–88 (1997)

5. Christiansen, A.R., Ettienne, M.B., Kociumaka, T., Navarro, G., Prezza, N.:
Optimal-time dictionary-compressed indexes. ACM Trans. Algorithms 17(1), 8:1–
8:39 (2021)

6. Constantinescu, S., Ilie, L.: The Lempel-Ziv complexity of fixed points of mor-
phisms. SIAM J. Discret. Math. 21(2), 466–481 (2007)

7. Ehrenfeucht, A., Lee, K.P., Rozenberg, G.: Subword complexities of various classes
of deterministic developmental languages without interactions. Theor. Comput.
Sci. 1(1), 59–75 (1975)

8. Ferenczi, S., Zamboni, L.Q.: Clustering words and interval exchanges. J. Integer
Seq. 16(2), Article 13.2.1 (2013)

9. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52, 552–581 (2005)
10. Frosini, A., Mancini, I., Rinaldi, S., Romana, G., Sciortino, M.: Burrows-Wheeler

transform on purely morphic words. In: DCC, pp. 452–452. IEEE (2022)
11. Gagie, T., Navarro, G., Prezza, N.: Fully functional suffix trees and optimal text

searching in BWT-runs bounded space. J. ACM 67(1), 2:1–2:54 (2020)
12. Giuliani, S., Inenaga, S., Lipták, Z., Prezza, N., Sciortino, M., Toffanello, A.: Novel

results on the number of runs of the Burrows-Wheeler transform. In: Bureš, T., et
al. (eds.) SOFSEM 2021. LNCS, vol. 12607, pp. 249–262. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-67731-2 18

13. Kempa, D., Kociumaka, T.: Resolution of the Burrows-Wheeler transform conjec-
ture. In: FOCS, pp. 1002–1013. IEEE (2020)

14. Kempa, D., Prezza, N.: At the roots of dictionary compression: string attractors.
In: STOC. pp. 827–840. ACM (2018)

15. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: Burrows-Wheeler transform
and Run-Length Enconding. In: Brlek, S., Dolce, F., Reutenauer, C., Vandomme,
É. (eds.) WORDS 2017. LNCS, vol. 10432, pp. 228–239. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66396-8 21

16. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M., Versari, L.: Measuring the
clustering effect of BWT via RLE. Theoret. Comput. Sci. 698, 79–87 (2017)

17. Mantaci, S., Restivo, A., Sciortino, M.: Burrows-Wheeler transform and Sturmian
words. Inform. Process. Lett. 86, 241–246 (2003)

18. Navarro, G.: Indexing highly repetitive string collections, part I: repetitiveness
measures. ACM Comput. Surv. 54(2), 29:1–29:31 (2021)

19. Navarro, G., Urbina, C.: On stricter reachable repetitiveness measures. In: Lecroq,
T., Touzet, H. (eds.) SPIRE 2021. LNCS, vol. 12944, pp. 193–206. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86692-1 16

https://doi.org/10.1007/978-3-319-19929-0_3
https://doi.org/10.1007/978-3-319-19929-0_3
https://doi.org/10.1007/978-3-030-25005-8_32
https://doi.org/10.1007/978-3-030-67731-2_18
https://doi.org/10.1007/978-3-319-66396-8_21
https://doi.org/10.1007/978-3-030-86692-1_16

Logarithmic Equal-Letter Runs for BWT of Purely Morphic Words 151

20. Pansiot, J.: Complexité des facteurs des mots infinis engendrés par morphimes
itérés. In: ICALP. Lecture Notes Computer Science, vol. 172, pp. 380–389. Springer
(1984)

21. Pansiot, J.J.: Decidability of periodicity for infinite words. RAIRO - Theor. Inform.
Appl. 20(1), 43–46 (1986)

22. Restivo, A., Rosone, G.: Burrows-Wheeler transform and palindromic richness.
Theoret. Comput. Sci. 410(30–32), 3018–3026 (2009)

23. Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems. Elsevier
Science (1980)

24. Seward, J.: The bzip2 home page (2006). http://www.bzip.org
25. Shaeffer, L., Shallit, J.: String attractors for automatic sequences. CoRR

abs/2012.06840 (2020)
26. Simpson, J., Puglisi, S.J.: Words with simple Burrows-Wheeler transforms. Elec-

tron. J. Combin. 15 (article R83) (2008)

http://www.bzip.org

On Perfect Coverings of Two-Dimensional
Grids

Elias Heikkilä1, Pyry Herva2(B), and Jarkko Kari2

1 Nordic Semiconductor, Aalto University, Espoo, Finland
elias.heikkila@aalto.fi

2 Department of Mathematics and Statistics, University of Turku, 20014 Turku,
Finland

{pysahe,jkari}@utu.fi

Abstract. We study perfect multiple coverings in translation invariant
graphs with vertex set Z

2 using an algebraic approach. In this approach
we consider any such covering as a two-dimensional binary configura-
tion which we then express as a two-variate formal power series. Using
known results, we conclude that any perfect multiple covering has a
non-trivial periodizer, that is, there exists a non-zero polynomial whose
formal product with the power series presenting the covering is a two-
periodic configuration. If a non-trivial periodizer has line polynomial
factors in at most one direction, then the configuration is known to be
periodic. Using this result we find many setups where perfect multiple
coverings of infinite grids are necessarily periodic. We also consider some
algorithmic questions on finding perfect multiple coverings.

Keywords: Perfect multiple coverings · Two-dimensional
configurations · Laurent polynomials · Formal power series · Periodicity

1 Introduction and Preliminaries

A perfect multiple covering in a graph is a set of vertices, a code, such that
the number of codewords in the neighborhood of an arbitrary vertex depends
only on whether the vertex is in the code or not. In this paper we study these
codes on translation invariant graphs with the vertex set Z

2. We present codes
as two-dimensional binary configurations and observe that the perfect covering
condition provides an algebraic condition that can be treated with the algebraic
tools developed in [8]. We focus on periodic codes and, in particular, study setups
where all codes are necessarily periodic. The approach we take was initially
mentioned in an example in the survey [6] by the third author, and considered
in the Master’s thesis [5] by the first author.

We start by giving the basic definitions, presenting the aforementioned alge-
braic approach and stating some past results relevant to us. In Sect. 2 we describe
an algorithm to find the line polynomial factors of any given (Laurent) polyno-
mial. In Sect. 3 we formally define the perfect multiple coverings in graphs and
c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 152–163, 2022.
https://doi.org/10.1007/978-3-031-05578-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_12&domain=pdf
http://orcid.org/0000-0003-0670-6138
https://doi.org/10.1007/978-3-031-05578-2_12

On Perfect Coverings of Two-Dimensional Grids 153

prove some periodicity results concerning them. We give new algebraic proofs of
some known results concerning perfect multiple coverings on the infinite square
grid and on the triangular grid [1,12], and provide a new result on the forced
periodicity of such coverings on the king grid. Furthermore, we generalize the
definition of perfect coverings for two-dimensional binary configurations with
respect to different neighborhoods and covering constants. In Sect. 4 we con-
sider some algorithmic questions concerning perfect coverings. Using a standard
argument by H. Wang we show that under certain constraints it is algorithmi-
cally decidable to determine whether there exist any perfect coverings with given
neighborhood and given covering constants.

Configurations, Periodicity, Finite Patterns and Subshifts
A d-dimensional configuration is a coloring of the infinite grid Z

d using finitely
many colors, that is, an element of AZ

d

which we call the d-dimensional con-
figuration space where A is some finite alphabet. For a configuration c we let
cu = c(u) to be the symbol or color that c has in cell u. The translation τ t by
a vector t ∈ Z

d shifts a configuration c such that τ t(c)u = cu−t for all u ∈ Z
d.

A configuration c is t-periodic if τ t(c) = c and c is periodic if c is t-periodic
for some non-zero t ∈ Z

d. We also say that a configuration c is periodic in
direction v ∈ Z

d \ {0} if c is kv-periodic for some k ∈ Q. A d-dimensional
configuration c is strongly periodic if it has d linearly independent vectors of
periodicity. Strongly periodic configurations are then periodic in all directions.
Two-dimensional strongly periodic configurations are called two-periodic.

A finite pattern is an assignment of symbols on some finite shape D ⊆ Z
d,

that is, an element of AD where A is some fixed alphabet. In particular, the finite
patterns in AD are called D-patterns. Let us denote by A∗ the set of all finite
patterns over alphabet A where the dimension d is known from the context. A
finite pattern p ∈ AD appears in a configuration c ∈ AZ

d

if τ t(c)|D = p for some
t ∈ Z

d. A configuration c contains the pattern p if it appears in c. For a fixed
shape D, the set of all D-patterns that appear in c is the set LD(c) = {τ t(c)|D |
t ∈ Z

d} and the set of all finite patterns in c is denoted by L(c) which we call
the language of c. For a set S ⊆ AZ

d

of configurations we define LD(S) and
L(S) as the unions of LD(c) and L(c) over all c ∈ S, respectively.

Let us review some basic concepts of symbolic dynamics we need. For a
reference see e.g. [3,10,11]. The configuration space AZ

d

can be made a compact
topological space by endowing A with the discrete topology and considering the
product topology it induces on AZ

d

– the prodiscrete topology. This topology is
induced by a metric where two configurations are close if they agree on a large
area around the origin. Thus AZ

d

is a compact metric space.
A subset S ⊆ AZ

d

of the configuration space is a subshift if it is topologically
closed and translation-invariant meaning that if c ∈ S then for any t ∈ Z

d also
τ t(c) ∈ S. Equivalently we can define subshifts using forbidden patterns: Given
a set F ⊆ A∗ of forbidden finite patterns, the set

XF = {c ∈ AZ
d | L(c) ∩ F = ∅}

154 E. Heikkilä et al.

of configurations that avoid all forbidden patterns is a subshift, and every sub-
shift is obtained by forbidding some set of finite patterns. If F ⊆ A∗ is finite
then we say that XF is a subshift of finite type (SFT).

The orbit of a configuration c is the set O(c) = {τ t(c) | t ∈ Z
d} of its every

translate. The orbit closure O(c) is the topological closure of its orbit under
the prodiscrete topology. The orbit closure of a configuration c is the smallest
subshift that contains c. It consists of all configurations c′ such that L(c′) ⊆ L(c).

The Algebraic Approach
To present a configuration c ∈ AZ

d

algebraically we make the assumption that
A ⊆ Z. Then we identify the configuration c with the formal power series

c(X) =
∑

u∈Zd

cuXu

over d variables x1, . . . , xd where we have denoted X = (x1, . . . , xd) and Xu =
xu1
1 · · · xud

d for any u = (u1, . . . , ud) ∈ Z
d. For d = 2 we usually denote X =

(x, y). More generally we study the set of all formal power series C[[X±1]] =
C[[x±1

1 , . . . , x±1
d]] over d variables x1, . . . , xd with complex coefficients. A power

series is finitary if it has only finitely many different coefficients and integral if
its coefficients are all integers. Thus we identify configurations with finitary and
integral power series.

We also use Laurent polynomials which we call from now on simply polyno-
mials. We use the term “proper” when we talk about proper (i.e., non-Laurent)
polynomials. Let us denote by C[X±1] = C[x±1

1 , . . . , x±1
d] the set of all (Laurent)

polynomials over d variables x1, . . . , xd with complex coefficients, which is the
Laurent polynomial ring. We say that two polynomials have no common factors
if all of their common factors are units and that they have a common factor if
they have a non-unit common factor.

A product of a polynomial and a power series is well defined. We say that
a polynomial f = f(X) annihilates (or is an annihilator of) a power series
c = c(X) if fc = 0, that is, if their product is the zero power series. We say
that a formal power series c = c(X) is periodic if it is annihilated by a difference
polynomial Xt−1 where t is non-zero. Note that this definition is consistent with
the definition of periodicity of configurations defined above. Indeed if c = c(X)
is a configuration then multiplying it by a monomial Xt produces the translated
configuration τ t(c) and hence c is t-periodic if and only if c = τ t(c) = Xtc,
which is equivalent to (Xt − 1)c = 0. So it is natural to study the annihilator
ideal

Ann(c) = {f ∈ C[X±1] | fc = 0}
of a power series c ∈ C[[X±1]], which indeed is an ideal of the Laurent polynomial
ring. Hence the question whether a configuration (or any formal power series) is
periodic is equivalent to asking whether its annihilator ideal contains a difference
polynomial. Another useful ideal that we study is the periodizer ideal

Per(c) = {f ∈ C[X±1] | fc is strongly periodic}.

On Perfect Coverings of Two-Dimensional Grids 155

Note that clearly Ann(c) is a subset of Per(c). Note also that a configuration
c has a non-trivial (= non-zero) annihilator if and only if it has a non-trivial
periodizer. The following theorem states that if a configuration has a non-trivial
periodizer then it has in fact an annihilator of a particular simple form – a
product of difference polynomials.

Theorem 1 [8]. Let c be a configuration in any dimension that has a non-
trivial periodizer. Then there exist pairwise linearly independent t1, . . . , tm with
m ≥ 1 such that

(Xt1 − 1) · · · (Xtm − 1) ∈ Ann(c).

Line Polynomials
The support of a power series c =

∑
u∈Zd cuXu is the set supp(c) = {u ∈

Z
d | cu �= 0}. Thus a polynomial is a power series with a finite support. A line

polynomial is a polynomial whose support contains at least two points and the
points of the support lie on a unique line. In other words, a polynomial f is a line
polynomial if it is not a monomial and there exist vectors u,v ∈ Z

d such that
supp(f) ⊆ u + Qv. In this case we say that f is a line polynomial in direction
v. We say that non-zero vectors v,v′ ∈ Z

d are parallel if v′ ∈ Qv, and clearly
then a line polynomial in direction v is also a line polynomial in any parallel
direction. A vector v ∈ Z

d is primitive if its components are pairwise relatively
prime. If v is primitive then Qv∩Z

d = Zv. For any non-zero v ∈ Z
d there exists

a parallel primitive vector v′ ∈ Z
d. It follows that we may assume the vector v in

the definition of a line polynomial f to be primitive so that supp(f) ⊆ u+Zv. In
the following our preferred presentations of directions are in terms of primitive
vectors.

Any line polynomial φ in a (primitive) direction v can be written uniquely
in the form

φ = Xu(a0 + a1X
v + . . . + anXnv) = Xu(a0 + a1t + . . . + antn)

where u ∈ Z
d, n ≥ 1, a0 �= 0, an �= 0 and t = Xv. Let us call the single variable

proper polynomial a0+a1t+. . .+antn ∈ C[t] the normal form of φ. Moreover, for
a monomial aXu we define its normal form to be a. Thus two line polynomials
in the direction v have the same normal form if and only if they are the same
polynomial up to multiplication by Xu, for some u ∈ Z

d.
Difference polynomials are line polynomials and hence the annihilator pro-

vided by Theorem 1 is a product of line polynomials. Annihilation by a difference
polynomial means periodicity. More generally, annihilation of a configuration c
by a line polynomial in a primitive direction v can be understood as the anni-
hilation of the one-dimensional v-fibers

∑
k∈Z

cu+kvXu+kv of c in direction v,
and since annihilation in the one-dimensional setting implies periodicity we con-
clude that a configuration is periodic if and only if it is annihilated by a line
polynomial. It is known that if c has a periodizer with line polynomial factors
in at most one direction then c is periodic:

156 E. Heikkilä et al.

Theorem 2 [9]. Let c be a two-dimensional configuration and f ∈ Per(c). Then
the following conditions hold.

– If f does not have any line polynomial factors then c is two-periodic.
– If all line polynomial factors of f are in the same direction then c is periodic

in this direction.

Proof Sketch. The periodizer ideal Per(c) is a principal ideal generated by a
polynomial g = φ1 · · · φm where φ1, . . . , φm are line polynomials in pairwise non-
parallel directions [9]. Because f ∈ Per(c) we know that g divides f . If f does not
have any line polynomial factors then g = 1 and thus c = gc is two-periodic. If f
has line polynomial factors and they are in the same primitive direction v then
g is a line polynomial in this direction. Since gc is two-periodic it is annihilated
by (Xkv − 1) for some k ∈ Z. Then the configuration c is annihilated by the
line polynomial (Xkv − 1)g in direction v. We conclude that c is periodic in
direction v. �	

2 Line Polynomial Factors

The open and closed discrete half planes determined by a non-zero vector v ∈ Z
2

are the sets Hv = {u ∈ Z
2 | 〈u,v⊥〉 > 0} and Hv = {u ∈ Z

2 | 〈u,v⊥〉 ≥ 0},
respectively, where v⊥ = (v2,−v1) is orthogonal to v = (v1, v2). Let us also
denote by lv = Hv \ Hv the discrete line parallel to v that goes through the
origin. In other words, the half plane determined by v is the half plane “to the
right” of the line lv when moving along the line in the direction of v. We say
that a finite set D ⊆ Z

2 has an outer edge in direction v if there exists a vector
t ∈ Z

2 such that D ⊆ Hv + t and |D ∩ (lv + t)| ≥ 2. We then call D ∩ (lv + t) an
outer edge of D in direction v. An outer edge corresponding to v means that the
convex hull of D has an edge in direction v in the clockwise orientation around
D.

If D does not have an outer edge in direction v then there exists a vector
t ∈ Z

2 such that D ⊆ Hv + t and |D ∩ (lv + t)| = 1 and then we say that D
has a vertex in direction v and we call D ∩ (lv + t) a vertex of D in direction
v. We say that a polynomial f has an outer edge or a vertex in direction v if
its support has an outer edge or a vertex in direction v, respectively. Note that
every finite shape D has either an edge or a vertex in any non-zero direction.
Note also that in this context directions v and −v are not the same: a shape
may have an outer edge in direction v but no outer edge in direction −v. The
following lemma shows that a polynomial can have line polynomial factors only
in the directions of its outer edges.

Lemma 1 [7]. Let f be a non-zero polynomial with a line polynomial factor in
direction v. Then f has outer edges in directions v and −v.

Let v ∈ Z
2 \ {0} be any non-zero primitive vector and let f =

∑
fuXu be

a polynomial. Recall that v-fibers of f are the polynomials
∑

k∈Z
fu+kvXu+kv

On Perfect Coverings of Two-Dimensional Grids 157

for u ∈ Z
2. Thus a non-zero v-fiber of a polynomial is either a line polynomial

or a monomial. Let us denote by Fv(f) the set of different normal forms of all
non-zero v-fibers of a polynomial f , which is thus a finite set. The following
simple example illustrates the concept of fibers and their normal forms.

3x

y

xy2

xy

x3y3

x4y4

Fig. 1. The support of f = 3x+y+xy2+xy+x3y3+x4y4 and its different (1, 1)-fibers.

Example 1. Let us determine the set Fv(f) for f = f(X) = f(x, y) = 3x + y +
xy2 + xy + x3y3 + x4y4 and v = (1, 1). By grouping the terms we can write

f = 3x+y(1+xy)+xy(1+x2y2+x3y3) = X(1,0)·3+X(0,1)(1+t)+X(1,1)(1+t2+t3)

where t = X(1,1) = xy. Hence Fv(f) = {3, 1 + t, 1 + t2 + t3}. See Fig. 1 for a
pictorial illustration. �	
As noticed in the example above, polynomials are linear combinations of their
fibers: for any polynomial f and any non-zero primitive vector v we can write

f = Xu1ψ1 + . . . + Xunψn

for some u1, . . . ,un ∈ Z
2 where ψ1, . . . , ψn ∈ Fv(f). We use this in the proof of

the next theorem.

Theorem 3. A polynomial f has a line polynomial factor in direction v if and
only if the polynomials in Fv(f) have a common factor.

Proof. For any line polynomial φ in direction v, and for any polynomial g, the v-
fibers of the product φg have a common factor φ. In other words, if a polynomial
f has a line polynomial factor φ in direction v then the polynomials in Fv(f)
have the normal form of φ as a common factor.

For the converse direction, assume that the polynomials in Fv(f) have a
common factor φ which is thus a line polynomial in direction v. Then there
exist vectors u1, . . . ,un ∈ Z

d and polynomials φψ1, . . . , φψn ∈ Fv(f) such that

f = Xu1φψ1 + . . . + Xunφψn.

Hence φ is a line polynomial factor of f in direction v. �	

158 E. Heikkilä et al.

Note that Lemma 1 actually follows immediately from Theorem 3: A vertex
instead of an outer edge in direction v or −v provides a non-zero monomial
v-fiber, which implies that the polynomials in Fv(f) have no common factors.

Thus to find out the line polynomial factors of f we first need to find out
the possible directions of the line polynomials, that is, the directions of the
(finitely many) outer edges of f , and then we need to check for which of these
possible directions v the polynomials in Fv(f) have a common factor. There are
clearly algorithms to find the outer edges of a given polynomial and to determine
whether finitely many line polynomials have a common factor. If such a factor
exists then f has a line polynomial factor in this direction by Theorem 3. Thus
we have proved the following theorem.

Theorem 4. There is an algorithm to find the line polynomial factors of a given
(Laurent) polynomial.

3 Perfect Coverings

In this paper a graph is a tuple G = (V,E) where V is the (possibly infinite)
vertex set of G and E ⊆ {{u, v} | u, v ∈ V, u �= v} is the edge set of G. Thus the
graphs we consider are simple and undirected. We also assume that all vertices
have only finitely many neighbors in the graph. For a graph G = (V,E) we call
any subset S ⊆ V of the vertex set a code in G. The distance d(u, v) of two
vertices u, v ∈ V is the length of a shortest path between them. The (closed)
r-neighborhood of a vertex u ∈ V is the set Nr(u) = {v ∈ V | d(v, u) ≤ r}, that
is, the ball of radius r centered at u. Let us now give the definition of the family
of codes we consider.

Definition 1. Let G = (V,E) be a graph. A code S ⊆ V is an (r, b, a)-covering
in G for non-negative integers b and a if the r-neighborhood of every vertex in
S contains exactly b elements of S and the r-neighborhood of every vertex not in
S contains exactly a elements of S, that is, if for every u ∈ V

|Nr(u) ∩ S| =

{
b if u ∈ S

a if u �∈ S
.

By a perfect (multiple) covering we mean any (r, b, a)-covering.

3.1 Infinite Grids

An infinite grid is a translation invariant graph with the vertex set Z2. In other
words, in infinite grids Nr(u) = u+ Nr(0) for all u ∈ Z

2. The square grid is the
graph (Z2, ES) with ES = {{u,v} | u − v ∈ {(±1, 0), (0,±1)}}, the king grid
is the graph (Z2, EK) with EK = {{u,v} | u − v ∈ {(±1, 0), (0,±1), (±1,±1)}}
and the triangular grid is the graph (Z2, ET) with ET = {{u,v} | u − v ∈
{(±1, 0), (0,±1), (1, 1), (−1,−1)}}. See Fig. 2 for the 1-neighborhoods of a vertex
in these graphs. A code S ⊆ Z

2 is periodic if S = S +t for some non-zero t ∈ Z
2.

It is two-periodic if S = S + t1 and S = S + t2 where t1 and t2 are linearly
independent. The following result is by Axenovich.

On Perfect Coverings of Two-Dimensional Grids 159

(a) The square grid (b) The king grid (c) The triangular grid

Fig. 2. The 1-neighborhoods of the black vertex in (a) the square grid, (b) the king
grid, and (c) the triangular grid.

Theorem 5 [1]. If b − a �= 1 then any (1, b, a)-covering in the square grid is
two-periodic.

A code S ⊆ Z
2 in any infinite grid can be presented as a configuration c ∈ {0, 1}Z2

which is defined such that cu = 1 if u ∈ S and cu = 0 if u �∈ S. The positioning
of the codewords in the r-neighborhood of any vertex u ∈ Z

2 is then presented
as a finite pattern c|u+Nr(0).

Definition 2. A configuration c ∈ {0, 1}Z2
is a (D, b, a)-covering for a finite

shape D ⊆ Z
2 (the neighborhood) and non-negative integers b and a (the covering

constants) if for all u ∈ Z
2 the pattern c|u+D contains exactly b symbols 1 if

cu = 1 and exactly a symbols 1 if cu = 0.

We call also any (D, b, a)-covering perfect and hence a perfect covering is either
a code in a graph or a two-dimensional binary configuration.

Definitions 1 and 2 are consistent in infinite grids: a code S in an infinite grid
G is an (r, b, a)-covering if and only if the configuration c ∈ {0, 1}Z2

presenting S
is a (D, b, a)-covering where D is the r-neighborhood of 0 in G. For a set D ⊆ Z

2

we define its characteristic polynomial to be fD(X) =
∑

u∈D X−u. Let us denote
by 1(X) the constant power series

∑
u∈Z2 Xu. If c is a (D, b, a)-covering then

from the definition we get that fD(X)c(X) = (b − a)c(X) + a1(X) which is
equivalent to (fD(X) − (b − a)) c(X) = a1(X). Thus if c is a (D, b, a)-covering
then fD(X) − (b − a) ∈ Per(c). Using our formulation we get a simple proof for
Theorem 5:

Reformulation of Theorem 5. Let D be the 1-neighborhood of 0 in the square
grid and assume that b − a �= 1. Then every (D, b, a)-covering is two-periodic.

Proof. Let c be an arbitrary (D, b, a)-covering. We show that g = fD − (b −
a) = x−1 + y−1 + 1 − (b − a) + x + y ∈ Per(c) has no line polynomial factors.
Then c is two-periodic by Theorem 2. The outer edges of g are in directions
(1, 1), (−1,−1), (1,−1) and (−1, 1) and hence by Lemma 1 any line polynomial
factor of g is either in direction (1, 1) or (1,−1). For v ∈ {(1, 1), (1,−1)} we
have Fv(g) = {1 + t, 1 − (b − a)}. See Fig. 3 for an illustration. Since 1 − (b − a)
is a non-trivial monomial, by Theorem 3 the periodizer g ∈ Per(c) has no line
polynomial factors. �	

160 E. Heikkilä et al.

The following result was already proved in a more general form in [12]. We give
a short proof using our algebraic approach.

Theorem 6 [12]. Let r ≥ 2 and let D be the r-neighborhood of 0 in the square
grid. Then every (D, b, a)-covering is two-periodic. In other words, all (r, b, a)-
coverings in the square grid are two-periodic for all r ≥ 2.

Proof. Let c be an arbitrary (D, b, a)-covering. Again, by Theorem 2, it is enough
to show that g = fD − (b − a) ∈ Per(c) has no line polynomial factors. By
Lemma 1 any line polynomial factor of g has direction (1, 1) or (1,−1). So
assume that v ∈ {(1, 1), (1,−1)}. We have φ1 = 1 + t + . . . + tr ∈ Fv(g) and
φ2 = 1 + t + . . . + tr−1 ∈ Fv(g). See Fig. 3 for an illustration in the case r = 2.
Since φ1 − φ2 = tr, the polynomials φ1 and φ2 have no common factors, and
hence by Theorem 3 the periodizer g has no line polynomial factors. �	

1
+
t

1
−
(b

−
a
)

1
+
t
+
t
2

1
+
t

1 + t + t2 + t3 + t4

1 + t + (1 − (b − a))t2 + t3 + t4

Fig. 3. The constellation on the left illustrates the proof of Theorem 5, the constellation
on the center illustrates the proof of Theorem 6 with r = 2 and the constellation on
the right illustrates the proof of Theorem 7 with r = 2.

If a �= b then for all r ≥ 1 any (r, b, a)-covering in the king grid is two-periodic:

Theorem 7. Let r ≥ 1 be arbitrary and let D be the r-neighborhood of 0 in the
king grid and assume that a �= b. Then any (D, b, a)-covering is two-periodic.
In other words, all (r, b, a)-coverings in the king grid are two-periodic whenever
a �= b.

Proof. Let c be an arbitrary (D, b, a)-covering. By Theorem 2 it is sufficient to
show that g = fD − (b − a) has no line polynomial factors. The outer edges of
g are in directions (1, 0), (−1, 0), (0, 1) and (0,−1). Hence by Lemma 1 any line
polynomial factor of g has direction (1, 0) or (0, 1). Let v ∈ {(1, 0), (0, 1)}. We
have φ1 = 1 + t + . . . + tr−1 + (1 − (b − a))tr + tr+1 + . . . + t2r ∈ Fv(g) and
φ2 = 1 + t + . . . + t2r ∈ Fv(g). See Fig. 3 for an illustration with r = 2. Since
φ2−φ1 = (b−a)tr is a non-trivial monomial, φ1 and φ2 have no common factors.
Thus g has no line polynomial factors by Theorem 3. �	
Similarly as in the square grid we can give simple proofs for known results from
[12] concerning forced periodicity in the triangular grid:

On Perfect Coverings of Two-Dimensional Grids 161

Theorem 8 [12]. Let D be the 1-neighborhood of 0 in the triangular grid and
assume that b − a �= −1. Then every (D, b, a)-covering in the triangular grid
is two-periodic. In other words, all (1, b, a)-coverings in the triangular grid are
two-periodic whenever b − a �= −1.

Theorem 9 [12]. Let r ≥ 2 and let D be the r-neighborhood of 0 in the tri-
angular grid. Then every (D, b, a)-covering is two-periodic. In other words, all
(r, b, a)-coverings in the triangular grid are two-periodic for r ≥ 2.

3.2 General Convex Neighborhoods

A shape D ⊆ Z
2 is convex if it is the intersection D = conv(D) ∩ Z

2 where
conv(D) ⊆ R

2 is the real convex hull of D.
Let D ⊆ Z

2 be a finite convex shape. Any (D, b, a)-covering has a periodizer
g = fD − (b−a). As earlier, we study whether g has any line polynomial factors.
For any v �= 0 the set Fv(fD) contains only polynomials φn = 1 + . . . + tn−1

for different n ≥ 1 since D is convex: if D contains two points then D contains
every point between them. Thus Fv(g) contains only polynomials φn for different
n ≥ 1 and, if b − a �= 0, also a polynomial φn0 − (b − a)tm0 for some n0 ≥ 1 such
that φn0 ∈ Fv(fD) and for some m0 ≥ 0. If b − a = 0 then g = fD and thus
Fv(g) = Fv(fD).

Two polynomials φm and φn have a common factor if and only if gcd(m,n) >
1. More generally, the polynomials φn1 , . . . , φnr

have a common factor if and only
if d = gcd(n1, . . . , nr) > 1 and, in fact, their greatest common factor is the dth
cyclotomic polynomial ∏

1≤k≤d
gcd(k,d)=1

(t − ei·
2πk

d).

Let us introduce the following notation. For any polynomial f , we denote
by F ′

v(f) the set of normal forms of the non-zero fibers
∑

k∈Z
fu+kvXu+kv for

all u �∈ Zv. In other words, we exclude the fiber through the origin. Let us also
denote fibv(f) for the normal form of the fiber

∑
k∈Z

fkvXkv through the origin.
Thus Fv(f) = F ′

v(f) ∪ {fibv(f)}.
Applying Theorems 2 and 3 we have the following theorem that gives suffi-

cient conditions for every (D, b, a)-covering to be periodic for a finite and convex
D. The first part of the theorem was also mentioned in [4] in a more general
form.

Theorem 10. Let D be a finite convex shape, g = fD − (b−a) and let E be the
set of the outer edge directions of g.

– Assume that b − a = 0. For any v ∈ E denote dv = gcd(n1, . . . , nr) where
Fv(g) = {φn1 , . . . , φnr

}. If dv = 1 holds for all v ∈ E then every (D, b, a)-
covering is two-periodic. If dv = 1 holds for all but some parallel v ∈ E then
every (D, b, a)-covering is periodic.

162 E. Heikkilä et al.

– Assume that b − a �= 0. For any v ∈ E denote dv = gcd(n1, . . . , nr) where
F ′

v(g) = {φn1 , . . . , φnr
}. If the dv’th cyclotomic polynomial and fibv(g) have

no common factors for any v ∈ E then every (D, b, a)-covering is two-
periodic. If the condition holds for all but some parallel v ∈ E then every
(D, b, a)-covering is periodic. (Note that the condition is satisfied, in particu-
lar, if dv = 1.)

4 Algorithmic Aspects

All coverings are periodic, in particular, if there are no coverings at all! It is
useful to be able to detect such trivial cases.

The set

S(D, b, a) = {c ∈ {0, 1}Z2 | (fD − (b − a))c = a1(X)}

of all (D, b, a)-coverings is an SFT for any given finite shape D and non-negative
integers b and a. Hence the question whether there exist any (D, b, a)-coverings
for given neighborhood D and covering constants b and a is equivalent to the
question whether the SFT S = S(D, b, a) is non-empty. The question of empti-
ness of a given SFT is in general undecidable, but if the SFT is known to be not
aperiodic then the problem becomes decidable. In particular, if g = fD − (b − a)
has line polynomial factors in at most one direction then this question is decid-
able:

Theorem 11. Let finite D ⊆ Z
2 and non-negative integers b and a be given

such that the polynomial g = fD − (b − a) has line polynomial factors in at most
one parallel direction. Then there exists an algorithm to determine whether there
exist any (D, b, a)-coverings.

Proof. Let S = S(D, b, a) be the SFT of all (D, b, a)-coverings. Since g has line
polynomial factors in at most one direction, by Theorem 2 every element of
S is periodic. Any two-dimensional SFT that contains periodic configurations
contains also two-periodic configurations, so S is either empty or contains a two-
periodic configuration. By a standard argumentation by H. Wang [13] there exist
semi-algorithms to determine whether a given SFT is empty and whether a given
SFT contains a two-periodic configuration. Running these two semi-algorithms
in parallel gives us an algorithm to test whether S �= ∅. �	
One may also want to design a perfect (D, b, a)-covering for given D, b and a. This
can be effectively done under the assumptions of Theorem 11: As we have seen,
if S = S(D, b, a) is non-empty it contains a two-periodic configuration. For any
two-periodic configuration c it is easy to check if c contains a forbidden pattern.
By enumerating two-periodic configurations one-by-one one is guaranteed to find
eventually one that is in S.

If the polynomial g has no line polynomial factors then the following stronger
result holds:

On Perfect Coverings of Two-Dimensional Grids 163

Theorem 12. If the polynomial g = fD − (b−a) has no line polynomial factors
for given finite shape D ⊆ Z

2 and non-negative integers b and a then the SFT
S = S(D, b, a) is finite. One can then effectively construct all the finitely many
elements of S.

The proof of the first part of above theorem relies on the fact that a two-
dimensional subshift is finite if and only if it contains only two-periodic cofigura-
tions [2]. If g has no line polynomial factors then every configuration it periodizes
(including every configuration in S) is two-periodic by Theorem 2, and hence S is
finite. The “moreover” part of the theorem, i.e., the fact that one can effectively
produce all the finitely many elements of S holds generally for finite SFTs.

References

1. Axenovich, M.A.: On multiple coverings of the infinite rectangular grid with balls
of constant radius. Disc. Math. 268(1), 31–48 (2003)

2. Ballier, A., Durand, B., Jeandal, E.: Structural aspects of tilings. In: Albers, S.,
Weil, P. (eds.) 25th International Symposium on Theoretical Aspects of Computer
Science. Leibniz International Proceedings in Informatics (LIPIcs), vol. 1, pp. 61–
72. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2008)

3. Ceccherini-Silberstein, T., Coornaert, M.: Cellular Automata and Groups. Springer
Monographs in Mathematics, Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14034-1

4. Geravker, N., Puzynina, S.A.: Abelian Nivat’s conjecture for non-rectangular pat-
terns (2021). arXiv:2111.04690

5. Heikkilä, E.: Algebrallinen näkökulma peittokoodeihin. Master’s thesis University
of Turku (2020)

6. Kari, J.: Low-complexity tilings of the plane. In: Hospodár, M., Jirásková, G.,
Konstantinidis, S. (eds.) DCFS 2019. LNCS, vol. 11612, pp. 35–45. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-23247-4 2

7. Kari, J., Moutot, E.: Nivat’s conjecture and pattern complexity in algebraic sub-
shifts. Theor. Comput. Sci. 777, 379–386 (2019)

8. Kari, J., Szabados, M.: An algebraic geometric approach to nivat’s conjecture. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9135, pp. 273–285. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47666-6 22

9. Kari, J., Szabados, M.: An algebraic geometric approach to Nivat’s conjecture. Inf.
Comput. 271, 104481 (2020)

10. Kůrka, P.: Topological and Symbolic Dynamics. Collection SMF, Société
Mathématique de France (2003)

11. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, Cambridge (1995)

12. Puzynina, S.A.: On periodicity of generalized two-dimensional infinite words. Inf.
Comput. 207(11), 1315–1328 (2009)

13. Wang, H.: Proving theorems by pattern recognition - II. Bell Syst. Tech. J. 40(1),
1–41 (1961). https://doi.org/10.1002/j.1538-7305.1961.tb03975.x

https://doi.org/10.1007/978-3-642-14034-1
https://doi.org/10.1007/978-3-642-14034-1
http://arxiv.org/abs/2111.04690
https://doi.org/10.1007/978-3-030-23247-4_2
https://doi.org/10.1007/978-3-662-47666-6_22
https://doi.org/10.1007/978-3-662-47666-6_22
https://doi.org/10.1002/j.1538-7305.1961.tb03975.x

Automata-Theoretical Regularity
Characterizations for the Iterated Shuffle

on Commutative Regular Languages

Stefan Hoffmann(B)

Informatikwissenschaften, FB IV, Universität Trier, Trier, Germany

hoffmanns@informatik.uni-trier.de

Abstract. We present new automata-theoretical characterizations for
the regularity of the iterated shuffle on commutative regular languages.
Using these characterizations we show that, for a fixed alphabet, it is
tractable to decide whether the iterated shuffle of a regular commutative
language is itself regular when the input language is given by a deter-
ministic automaton. Additionally, we introduce two new subclasses of
commutative regular languages, called Type I and Type II languages,
on which the iterated shuffle is regularity-preserving and show that the
iterated shuffle of a commutative language is a Type I language if it is
regular. Additionally, we establish various closure properties and show
that we can decide if a language given by deterministic automaton is in
one of these classes in polynomial time.

Keywords: Finite automata · Commutative languages · Closure
properties · Iterated shuffle · Shuffle closure · Regularity-preserving
operations

1 Introduction

The shuffle and iterated shuffle have been introduced and studied to understand,
or specify, the semantics of parallel programs. This was undertaken (seemingly)
independently by Campbell and Habermann [4], by Mazurkiewicz [17] and by
Shaw [22]. They introduced flow expressions, which allow for sequential operators
(catenation and iterated catenation) as well as for parallel operators (shuffle and
iterated shuffle) to specify sequential and parallel execution traces.

The shuffle operation as a binary operation is regularity-preserving on all
regular languages, see [1,3,10,11,21] for further work related to the binary shuffle
in formal language theory.

However, already the iterated shuffle of very simple languages (like {ab, ba},
whose iterated shuffle equals the set of words with an equal number of a’s and
b’s) can give non-regular languages. Hence, it is interesting to know, and to
identify, quite rich classes for which this operation is regularity-preserving.

For further connections on regularity conditions and closure properties, in
particular for the star-free languages, see the recent survey [20].
c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 164–176, 2022.
https://doi.org/10.1007/978-3-031-05578-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_13&domain=pdf
http://orcid.org/0000-0002-7866-075X
https://doi.org/10.1007/978-3-031-05578-2_13

Iterated Shuffle on Commutative Languages and Automata 165

Overview and Contribution. In Sect. 2 we introduce various notions and results
that we need. Then, in Sects. 3 and 4, we introduce the Type I and the Type II
languages respectively. For languages from both classes, we show that the iter-
ated shuffle is always regular. Type I languages were already investigated in [12]
(without calling them Type I languages). We show additional closure properties
for the Type I language and prove that when the iterated shuffle of a commu-
tative language is regular, then it is a Type I language. The Type II languages
are an extension of the Type I languages. We give automata-theoretical charac-
terizations for both classes of languages.

In Sect. 5 we derive, using a result by Imreh, Ito & Katsura [14], two
automata-theoretical characterizations for the regularity of the iterated shuf-
fle of a commutative regular language. One is a condition on the final states, the
other refines this (essentially, it says that we can interchange a universal quan-
tifier for final states with an existential quantifier for certain letters). We give a
few corollaries and state an even easier characterization for a binary alphabet.

Section 6 uses the results from the previous sections to show that it is pos-
sible to decide in polynomial time, for a fixed alphabet, whether the iterated
shuffle of a commutative regular language is regular when the input is given by
a deterministic automaton. Also, our results imply polynomial time procedures
to decide if a given regular language is a Type I or Type II language when the
input is given by a deterministic automaton.

2 Preliminaries

General Notions. Let Σ be a finite set of symbols called an alphabet. The set
Σ∗ denotes the set of all finite sequences, i.e., of all words. The finite sequence
of length zero, or the empty word, is denoted by ε. We set Σ+ = Σ∗ \ {ε}. For
a given word w ∈ Σ∗ we denote by |w| its length, and for a ∈ Σ by |w|a the
number of occurrences of the symbol a in w. A language is a subset of Σ∗. For
w ∈ Σ∗, we set alph(u) = {a ∈ Σ | |u|a > 0} and alph(L) =

⋃
u∈L alph(u)

for L ⊆ Σ∗. If L ⊆ Σ∗ and u ∈ Σ∗, then the left quotient is the languages
u−1L = {v ∈ Σ∗ | uv ∈ L} and the right quotient is Lu−1 = {v ∈ Σ∗ | vu ∈ L}.

Given two integers a, b ≥ 0, we denote by gcd(a, b) and by lcm(a, b), their
greatest common divisor and their least common multiple, respectively.

We assume the reader to have some basic knowledge in formal language the-
ory, as contained, e.g., in [13,16]. For instance, we make use of regular expressions
to describe languages and the operators Kleene star, Kleene plus and concate-
nation.

Let Γ ⊆ Σ. Then, we define projection homomorphisms πΓ : Σ∗ → Γ ∗

onto Γ ∗ by πΓ (x) = x for x ∈ Γ , πΓ (x) = ε for x /∈ Γ and πΓ (x1x2 · · · xn) =
πΓ (x1)πΓ (x2) · · · πΓ (xn) for x1, x2, . . . , xn ∈ Σ.

By N0 = {0, 1, 2, . . .}, we denote the set of natural numbers, including zero.
A quintuple A = (Σ,Q, δ, q0, F) is a finite complete deterministic automaton

(DFA), where δ : Q × Σ → Q is a totally defined transition function, Q a finite
set of states, q0 ∈ Q the start state and F ⊆ Q the set of final states. As we
are not concerned with other models, we will simply call them automata. The

166 S. Hoffmann

transition function δ : Q × Σ → Q can be extended to a transition function on
words δ∗ : Q × Σ∗ → Q by setting δ∗(q, ε) = q and δ∗(q, wa) := δ(δ∗(q, w), a)
for q ∈ Q, a ∈ Σ and w ∈ Σ∗. In the remainder, we drop the distinction
between both functions and will also denote this extension by δ. The language
recognized (or accepted) by an automaton A = (Σ,Q, δ, q0, F) is L(A) = {w ∈
Σ∗ | δ(q0, w) ∈ F}. A language L ⊆ Σ∗ is called regular if L = L(A) for some
finite automaton A.

If S ⊆ Q, q ∈ Q, u ∈ Σ∗ and L ⊆ Σ∗, we set δ(S, u) = {δ(q, u) | q ∈ S} and
δ(q, L) = {δ(q, v) | v ∈ L}.

The following number-theoretical result from [18] will be needed.

Lemma 1. Suppose a, b are positive integers. Then each number of the form
ax + by, with x, y ≥ 0, is a multiple of gcd(a, b) and the largest multiple of
gcd(a, b) that cannot be represented as ax+by, with x, y ≥ 0, is lcm(a, b)−(a+b).

Commutative Languages and the Shuffle Operation. For a given word w ∈ Σ∗,
we define perm(w) := {u ∈ Σ∗ | ∀a ∈ Σ : |u|a = |w|a}. If L ⊆ Σ∗,
then we set perm(L) :=

⋃
w∈L perm(w). A language is called commutative, if

perm(L) = L. Let Σ = {a1, . . . , ak}. The Parikh mapping is ψ : Σ∗ → N
k
0 given

by ψ(u) = (|u|a1 , . . . , |u|ak
) for u ∈ Σ∗. We have perm(L) = ψ−1(ψ(L)). Every

commutative L ⊆ Σ∗ can be identified with its Parikh image ψ(L). We make
use of this identification occasionally (for example when depicting commutative
languages graphically, like in Fig. 1 or 2) without special mentioning.

An automaton A = (Σ,Q, δ, q0, F) is called commutative, if for all q ∈ Q
and a, b ∈ Σ we have δ(q, ab) = δ(q, ba). A commutative automaton recognizes
a commutative language. Furthermore, if L ⊆ Σ∗ is commutative and regular,
then the automaton with the least number of states recognizing L is commutative
(see [6, Proof of Theorem 15] for a proof).

The shuffle operation, denoted by �, is defined by

u � v = {w ∈ Σ∗ | w = x1y1x2y2 · · · xnyn for some words
x1, . . . , xn, y1, . . . , yn ∈ Σ∗ such that u = x1x2 · · · xn and v = y1y2 · · · yn},

for u, v ∈ Σ∗ and L1 � L2 :=
⋃

x∈L1,y∈L2
(x� y) for L1, L2 ⊆ Σ∗.

In writing formulas without brackets, we suppose that the shuffle operation
binds stronger than the set operations, and the concatenation operator has the
strongest binding.

If L1, . . . , Ln ⊆ Σ∗, we set�n
i=1Li = L1� . . .�Ln. The iterated shuffle of

L ⊆ Σ∗ is L�,∗ =
⋃

n≥1�
n
i=1L ∪ {ε}. Note that ∅�,∗ = {ε}.

Theorem 2 (Fernau et al. [7]). Let U, V,W ⊆ Σ∗ and Vi ⊆ Σ∗, i ∈ I, for
an arbitrary index set I. Then,

1. U � V = V � U (commutative law);
2. (U � V)�W = U � (V �W) (associative law);
3. U �

(⋃
i∈I Vi

)
=

⋃
i∈I(U � Vi) (distributive over arbitrary unions);

4. (U�,∗)�,∗ = U�,∗;

Iterated Shuffle on Commutative Languages and Automata 167

5. (U ∪ V)�,∗ = U�,∗
� V �,∗;

6. (U � V �,∗)�,∗ = (U � (U ∪ V)�,∗) ∪ {ε}.
We also write�a∈Γ La to mean La1 � . . . � Lak

for some ordering Σ =
{a1, . . . , ak} with k = |Σ|. Note that by Theorem 2 (commutative law) this is
well-defined and does not depend on the chosen ordering.

A commutative language L ⊆ Σ∗ is periodic if there exists v ∈ N
Σ
0 (we

identify N
Σ
0 , the set of functions Σ → N0, with the set of points N

|Σ|
0 without

specifically introducing an ordering on Σ) and numbers ca ≥ 0 for a ∈ Σ such
that

ψ(L) =

{

p ∈ N
Σ
0 | ∀a ∈ Σ ∃na ∈ N0 : p = v +

∑

a∈Σ

na · ca · ψ(a)

}

. (1)

These languages were introduced in [5] and it was shown that every regular
commutative language is a finite union of periodic languages.

In fact, a variant of this result already goes back to Ginsburg & Spanier [8,
Lemma 1.2].

For reference, we state the following simple folklore result.

Lemma 3. If L ⊆ {a}∗ is recognizable by a DFA with a single final state, then
L is empty, or L = {an} for some n ≥ 0 or L = an(ap)∗ for some n ≥ 0, p > 0.

With Lemma 3 we can easily prove the next characterization of periodic
languages (as far as we know, this was not stated elsewhere).

Proposition 4. The language L ⊆ Σ∗ is periodic if and only if L =�a∈ΣLa

where each La ⊆ a∗ is non-empty and recognizable by a DFA with a single final
state.

In [14,15], the iterated shuffle on commutative regular languages was inves-
tigated and the following regularity condition stated [15, Theorem 4.6.1].

Theorem 5 (Imreh, Ito & Katsura [14,15]). Let L ⊆ Σ∗ be commutative
and regular. Then L�,∗ is regular if and only if for all u ∈ L \ {ε} and all
a ∈ alph(u) with a+∩L = ∅ we have aiΣ∗ ∩ (L∩alph(u)∗) �= ∅ for every positive
integer i.

3 Type I Languages

Referring to v ∈ N
Σ
0 from Eq. (1) for periodic languages, write v = (va)a∈Σ

(or v = (v1, . . . , vk) if Σ = {a1, . . . , ak}). Then a periodic language is called
diagonal periodic if va > 0 implies ca > 0 for each a ∈ Σ. These languages were
introduced in [12]. We define a Type I language as a finite union of diagonal
periodic languages. These languages are obviously regular and commutative. See
Fig. 1 for an example of the Parikh image of a Type I language and its iterated
shuffle.

Without denoting them as Type I languages, finite unions of diagonal periodic
languages were investigated in [12] and the following results were obtained.

168 S. Hoffmann

5 10 15 20 25

5

10

15

20

25

Letter a

L
et
te
r
b

0

Fig. 1. The Parikh image of the Type I language bb(bbb)∗∪aaa(aaaa)∗
�bbb(bbbb)∗ (red

diamonds) and its iterated shuffle (black dots), which is regular. (Color figure online)

1. The diagonal periodic languages have the form {ε} or�a∈Γ aka(apa)∗ for
Γ ⊆ Σ with numbers ka ≥ 0 and pa > 0 for a ∈ Γ .

2. The iterated shuffle of a Type I language is a Type I language.
3. The binary shuffle of two Type I languages yields a Type I language.
4. The class of Type I languages equals the positive Boolean algebra (i.e., a class

of language closed under union and intersection) generated by languages of
the form Γ ∗, Γ+, {u ∈ Σ+ | |u|a ≥ n} and {u ∈ Σ∗ | |u|a ≡ k (mod n)} for
Γ ⊆ Σ, 0 ≤ k < n.

Also, it was observed that commutative group languages and languages con-
tained in Com+(Σ∗), the positive variety of languages recognized by commu-
tative ordered semigroups (see [19] for formal definitions of these notions), are
Type I languages.

Here, we state additional closure properties, give an automata-theoretical
characterization and prove that if the iterated shuffle of any commutative lan-
guage is regular, then it is a Type I language.

Using that πΓ (�a∈ΣLa) = �a∈Γ La for languages La ⊆ {a}∗, we can
additionally conclude that Type I languages are closed under projection.

Proposition 6. If L ⊆ Σ∗ is a Type I language and Γ ⊆ Σ, then πΓ (L) is a
Type I language.

Type I languages are special because when the iterated shuffle of a commuta-
tive language is regular, then it is a Type I language. The basic proof idea is that
we can always append a word and repeat it infinitely often without leaving the
iterated shuffle. In particular, by doing sufficiently often so we can “eliminate”
parts that are not diagonal periodic.

Iterated Shuffle on Commutative Languages and Automata 169

Theorem 7. Let L ⊆ Σ∗ be any commutative language. If L�,∗ is regular, then
it is a Type I language.

Proof (sketch). The iterated shuffle L�,∗ of a commutative language is com-
mutative. So, if it is regular, as written in Sect. 2 it is a finite union of
periodic languages. By Proposition 4 these periodic languages have the form
�a∈ΣLa with La ⊆ a∗ being regular and recognizable by automata with
a single final state. By Lemma 3, we can assume (the case La = ∅ can be
excluded) |La| = 1 or La = aka(apa)∗ with pa > 0. Now, if we take such a part
U ⊆ L�,∗ of the union which is not a diagonal periodic language, we can write
U =�a∈Σaka(apa)∗ ⊆ L�,∗ such that there exists b ∈ Σ with kb > 0 and
pb = 0. As�a∈Σaka ⊆ L�,∗, we have

U �

(

�
a∈Σ

aka

)�,∗
=

(

�
a∈Σ\{b}

aka(apa)∗(aka)∗
)

� bkb(bkb)∗ ⊆ L�,∗.

Let a ∈ Σ \ {b}. Now if ka = pa = 0, then aka(apa)∗(aka)∗ = {ε} and
if precisely one of ka or pa is non-zero, it is a language of the form aka(ap)∗

with p ∈ {ka, pa} being non-zero. So, only the case that ka and pa are both
non-zero is left. In that case, by Lemma 1, the language (apa)∗(aka)∗ equals
F ∪ alcm(pa,ka)−(pa+ka)(agcd(pa,ka))+ (note that the plus operator was used,
and, in fact, lcm(pa, ka) − (pa + ka) is the largest multiple of gcd(pa, ka) not
of the form upa + vka) with F ⊆ {ε, a, a2, . . . , alcm(pa,ka)−(pa+ka)−gcd(pa,ka)}.
However, as the words in (apa)∗(aka)∗ have length divisible by gcd(pa, ka),
we have F ∪ alcm(pa,ka)−(pa+ka)(agcd(pa,ka))+ = F · (alcm(pa,ka))∗ ∪
alcm(pa,ka)−(pa+ka)(agcd(pa,ka))+.

Using that shuffle and concatenation distribute over union, we can write the
language U �

(
�a∈Σaka

)�,∗ as a finite union of periodic languages that are
in fact diagonal periodic languages. Repeating this procedure for other parts
U ⊆ L�,∗ that are not diagonal periodic languages, we can write L�,∗ as a finite
union of diagonal periodic languages. Hence it is a Type I language. ��

Next, we give a characterization in terms of automata.

Theorem 8. Let L ⊆ Σ∗. Then L is a Type I language if and only if there
exists a commutative automaton A = (Σ,Q, δ, q0, F) with L = L(A) such that
for each u ∈ L(A) and a ∈ alph(u) there exists a final state q = δ(q0, uan) ∈ F
for some n > 0 such that1 q = δ(q, an).

Note that {a} ∪ aaaa(aa)∗ is not a Type I language and this language shows
that the divisibility condition in Theorem 8 is necessary, as it fulfills the condition
with an n ≥ 0 and p > 0 such that n is not divisible by p (for example for u = a
we have n = 3 and p = 2).

1 As noted by a reviewer, this is a more compact way of expressing the fact that there
exist n ≥ 0 and p > 0 such that q = δ(q0uan), q = δ(q, ap) and n is divisible by p.

170 S. Hoffmann

Let A = (Σ,Q, δ, q0, F). It can be shown that the condition from Theorem 8
has to hold true for the minimal automaton of the commutative language. This
directly yields that if A with F = {qf} is the minimal automaton for L(A), then
L(A) is a Type I language if and only if q ∈ δ(q, a+) for each a ∈ alph(L(A)).

Let A = (Σ,Q, δ, q0, F) be an automaton and u ∈ Σ∗. Then u−1L(A) =
L((Σ,Q, δ, δ(q0, u), F)). Hence, Theorem 8 directly yields the next closure prop-
erty. Note that for commutative languages L ⊆ Σ∗ we have u−1L = Lu−1.

Proposition 9. If L ⊆ Σ∗ is a Type I language and u ∈ Σ∗, then u−1L and
Lu−1 are Type I languages.

Lastly in this section, we point out that the set of words of sufficient length
from a regular commutative language forms a Type I language. More specifically,
if L is accepted by an n-state commutative automaton and u ∈ L with |u|a ≥ n,
then it induces a loop in the automaton and by commuativity, a loop labelled
by a occurs at the state at which the word ends. This can be used to construct
an automaton as in Theorem 8.

Proposition 10. Let A = (Σ,Q, δ, q0, F) be a commutative automaton. Then
L(A) ∩ {u ∈ Σ∗ | ∀a ∈ alph(u) : |u|a ≥ |Q|} is a Type I language.

4 Type II Languages

Here, we introduce Type II languages, which properly contain the Type I lan-
guages, and show that the iterated shuffle of a Type II language yields a Type I
language.

Definition 11. We call a commutative language a Type II language, if it is a
finite union of languages of the form

�
a∈Γ

aka(apa)∗ (2)

with Γ ⊆ Σ and which fulfills the condition that if there exists a ∈ Γ such that
pa = 0 and ka > 0, then kb = 0 for all b ∈ Γ \ {a}.

Actually, the choice of a subalphabet Γ is not necessary in the previous
definition, as we can set ka = pa = 0 for unused letters. We use this form
without reference to a subalphabet occasionally.

Note that every Type I language is also a Type II language.
Type II languages are clearly regular (more specifically, languages having the

form stated in Eq. (2) are periodic).

Proposition 12. Every Type II language is regular.

Example 1. The shuffle {a}� {b} of the two Type II languages {a} and {b} is
neither a Type I nor a Type II language. Hence, contrary to Type I languages,
Type II languages are not closed under the binary shuffle operation.

Iterated Shuffle on Commutative Languages and Automata 171

For Type II languages, the iterated shuffle yields a Type I language. In par-
ticular, it is also regularity-preserving on this class.

Theorem 13. The iterated shuffle of a Type II language is a Type I language.

The question arises how Type II languages relate to the regularity of the
iterated shuffle in general.

Proposition 14. The iterated shuffle of a periodic language is regular if and
only if it has the form as stated in Eq. (2), which is equivalent for periodic lan-
guages to being a Type II language.

Remark 1. However, in general Type II languages do not characterize those lan-
guages that have regular iterated shuffle. For general languages, the situation is
more complicated. For example for L = {a, b, ab, ba} we have L�,∗ = {a, b}∗, but
L is not a Type II language.

5 10 15 20 25

5

10

15

20

25

Letter a

L
et
te
r
b

0

Fig. 2. The Parikh image of the Type II language aaa� (bb)∗ ∪ aaaaaaa� (aaaaa)∗

(red diamonds) and its iterated shuffle (black dots), which is regular. (Color figure
online)

Lastly in this section, we give an automata-theoretical characterization of
Type II languages.

Theorem 15. Let L ⊆ Σ∗. Then L is a Type II language if and only if there
exists a commutative automaton A = (Σ,Q, δ, q0, F) with L = L(A) such that
when u ∈ L(A), at least one of the following two conditions is true:

1. for each a ∈ alph(u) there exists n > 0 such that q = δ(q0, uan) ∈ F and
δ(q, an) = q (observe that this is the same condition as in Theorem 8),

2. there exists Δu ⊆ Σ with |Δu| ≤ 1 such that for each a ∈ Σ \Δu and v ∈ Δ∗
u

with |v|b = |u|b for each b ∈ Δu we have δ(q0, vai·|u|a) ∈ F for all i ≥ 0.

172 S. Hoffmann

start

a a
a

a

a a
a

a

b

b

a, b

a, b

b

b

b

b

b

b

Fig. 3. Example automaton such that the iterated shuffle of its accepted language is
regular according to Theorem 16.

5 Automata-Theoretical Characterizations

Here, in Theorems 16 and 18 we derive two conditions on commutative automata
that characterize the regularity of the iterated shuffle of the recognized language,
state some corollaries and an easy condition in Theorem 19, stating that only
the existence of a single final state contained in a cycle for certain letters is
equivalent to regularity of the iterated shuffle.

Theorem 16. Let A = (Σ,Q, δ, q0, F) be commutative and L = L(A). Then
L�,∗ is regular if and only if for each a ∈ Σ with a+ ∩L = ∅ and u ∈ Σ∗aΣ∗ ∩L
there exists q ∈ δ(q0, alph(u)∗) ∩ F such that δ(q, ap) = q for some p > 0.

Proof. Note that L is a commutative language. First, suppose L�,∗ is regular
and we have a letter a ∈ Σ with a+ ∩ L = ∅ and a word u ∈ Σ∗aΣ∗ ∩ L. By
Theorem 5, for each i > 0 there exists ui ∈ aiΣ∗ ∩ (L ∩ alph(u)∗). Consider the
states qi = δ(q0, ui) ∈ F . As the state set is finite, by the pigenhole principle,
there exists a single state q ∈ F such that q = δ(q0, ui) for infinitely many
indices i > 0. Using finiteness again on the prefixes ai of the infinitely many ui

with δ(q0, ui) = q, there exist 0 < r < s such that we can write ur = arvr and
us = asvs with vr, vs ∈ Σ∗, q = δ(q0, ur) = δ(q0, us) and δ(q0, ar) = δ(q0, as). By
commutativity, δ(q, as−r) = δ(q0, arvra

s−r) = δ(q0, aras−rvr) = δ(q0, asvr) =
δ(δ(q0, as), vr) = δ(δ(q0, ar), vr) = δ(q0, arvr) = q. Hence with p = s − r > 0 one
implication is shown.

Conversely, suppose the condition of the statement holds true for L. Let
a ∈ Σ with a+ ∩ L = ∅ and u ∈ Σ∗aΣ∗ ∩ L. By assumption there exists
q ∈ F , v ∈ alph(u)∗ and p > 0 such that q = δ(q0, v) and δ(q, ap) = q. Hence
v(ap)∗ ⊆ L∩alph(u)∗. By commutativity (ap)∗v ⊆ L. Hence, the condition from
Theorem 5 is fulfilled and L�,∗ is regular. ��

Using Theorem 16, we next give some more concrete classes of automata that
recognize language whose iterated shuffle is regular. Recall that q ∈ δ(q, a+) is
equivalent to the fact that there exists p > 0 such that q = δ(q, ap), i.e., the
state is contained in a cycle for the letter a in the automaton.

Iterated Shuffle on Commutative Languages and Automata 173

Corollary 17. Let A = (Σ,Q, δ, q0, F) be a commutative automaton. The iter-
ated shuffle L(A)�,∗ is regular when A fulfills one of the following additional
properties:

1. A has the property that for each q ∈ F and a ∈ Σ we have q ∈ δ(q0, a+) or
q ∈ δ(q, a+).

2. A has the property that for each q ∈ F and a ∈ Σ we have q ∈ δ(q, a+).
3. A is a permutation automaton, i.e., the map q �→ δ(q, a) is a permutation for

each a ∈ Σ.

Note that Theorem 16 only applies to regular languages. For example, the
iterated shuffle of the non-regular language aaaaa� (bb)∗ ∪ a� b� perm((ab)∗)
is regular.

Next, using commutativity, we can strengthen Theorem 16 in the sense that
a single final state works for certain letters (instead of a different final state for
each letter as in Theorem 16).

Theorem 18. Let A = (Σ,Q, δ, q0, F) be a the minimal automaton for a com-
mutative language L ⊆ Σ∗. Set Γ = {a ∈ Σ | a+ ∩ L = ∅}. Then L�,∗ is
regular if and only if for each u ∈ L there exists q ∈ δ(q0, alph(u)∗) ∩ F such
that δ(q, apa) = q for numbers pa > 0 and each a ∈ Γ ∩ alph(u).

Observe that in Theorem 18 we only require that the final state is in a
cycle for letters from Γ ∩ alph(u). For example, in Fig. 3 for u = bb we have
Γ ∩ alph(u) = ∅, and hence the condition is vacously fulfilled for the state at
which this word words ends, which is contained in no cycle at all.

For a binary alphabet, Theorem 18 yields even simpler conditions.

Theorem 19. Let Σ be a binary alphabet and L ⊆ Σ∗. Set Γ = {a ∈ Σ |
a+ ∩ L = ∅}. Let L ⊆ Σ∗ be commutative and regular. Then, the following are
equivalent:

1. L�,∗ is regular
2. in the minimal automaton A = (Σ,Q, δ, q0, F) for L there exists a final state q

reachable from the start state such that q ∈ δ(q, a+) for every a ∈ Γ ∩alph(L),
3. there exists N >0 such that U = πΓ (L)∩⋂

a∈Γ {u ∈ Σ∗ | |u|a ≥ N} is a Type
I language with alph(U) = Γ .

In Theorem 19 we can choose N to be the number of states of a recognizing
automaton for L ⊆ Σ∗. Furthermore, observe that the condition alph(U) = Γ is
important, as for example for L = {ab, ba} and N = 3 we have U = ∅, which is
a Type I language, but L�,∗ is not regular.

Remark 2. |Σ| = 2 is crucial in Theorem 19. Let L = a� b ∪ aa∗
� bb∗

� cc∗.
Then L�,∗ is not regular, but the last condition of Theorem 19 is true.

174 S. Hoffmann

6 Decision Problems

In [8,9] it was shown that for regular L ⊆ Σ∗, it is decidable if perm(L) is
regular. As perm(L)�,∗ = perm(L∗), also the regularity of the iterated shuffle
on commutative regular languages is decidable. As noted in [15], Theorem 5 (and
a related theorem) also yields this result. However, it is not immediately clear
that this can be done in polynomial time. In fact, the proof in [8] uses Presburger
arithmetic, and deciding the truth of Presburger formulae is complete for the
class of language recognized by alternating Turing machines using at most double
exponential time and a linear number of alternations [2]. So, in total, the proof
from [8] only yields containment in double exponential space. By a statement
given in [7, Theorem 45] it follows that for a regular language given by a regular
expression over a binary alphabet it is co-NP-hard to decide if the commutative
closure is regular.

With Theorem 16 we can in fact decide regularity of the iterated shuffle of
a commutative regular language in polynomial time when the input is given as
a deterministic automaton and the alphabet is fixed in advance, i.e., not part of
the input. Let Σ = {a1, . . . , ak}. The algorithm iterates through all words of the
form ai1

1 · · · aii
k where i1 + . . . + ik is at most the number of states n of the input

automaton. This is essentially the bottleneck, yielding a running time in O(nk).
We do not know if a polynomial-time algorithm is possible when the alphabet
is allowed to vary as part of the input.

Theorem 20. Fix Σ. Given a regular commutative language in Σ∗ by a DFA
we can decide in polynomial time whether the iterated shuffle of this language is
regular.

For the introduced classes of languages Theorems 8 and 15 yield decidability
in polynomial time if the language is given by a deterministic automaton.

Theorem 21. Fix Σ. Given a regular language by a DFA we can decide in
polynomial time whether it is a Type I language, a Type II language or neither.

7 Conclusion

We have given automata-theoretical characterizations for the regularity of the
iterated shuffle of commutative regular languages and identified two wide sub-
classes of commutative regular languages for which the iterated shuffle is regu-
larity-preserving. We investigated the relation of these classes to common opera-
tions and the iterated shuffle. Then we used our results to derive the tractability
of related decision problems when the input is given by deterministic automata
for a fixed alphabet. We do not know what is the computational complexity
when the alphabet is allowed to vary as part of the input. Furthermore, when
the input is given by non-deterministic automata (see, for example, the text-
book [13] for their definition) or regular expressions, if these decision problems
are tractable as well or not is an open problem.

Iterated Shuffle on Commutative Languages and Automata 175

Acknowledgement. I thank the anonymous reviewers for careful reading and helping
me identifying some unclear formulations and typos throughout the text.

References

1. Almeida, J., Ésik, Z., Pin, J.: Commutative positive varieties of languages. Acta
Cybern. 23(1), 91–111 (2017)

2. Berman, L.: The complexitiy of logical theories. Theor. Comput. Sci. 11, 71–77
(1980)

3. Berstel, J., Boasson, L., Carton, O., Pin, J., Restivo, A.: The expressive power of
the shuffle product. Inf. Comput. 208(11), 1258–1272 (2010)

4. Campbell, R.H., Habermann, A.N.: The specification of process synchronization
by path expressions. In: Gelenbe, E., Kaiser, C. (eds.) OS 1974. LNCS, vol. 16, pp.
89–102. Springer, Heidelberg (1974). https://doi.org/10.1007/BFb0029355

5. Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free lan-
guages. Theor. Comput. Sci 27, 311–332 (1983)

6. Fernau, H., Hoffmann, S.: Extensions to minimal synchronizing words. J. Autom.
Lang. Combin. 24(2–4), 287–307 (2019)

7. Fernau, H., Paramasivan, M., Schmid, M.L., Vorel, V.: Characterization and com-
plexity results on jumping finite automata. Theor. Comput. Sci 679, 31–52 (2017)

8. Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proceedings of the American
Mathematical Society 17, 1043–1049 (1966)

9. Gohon, P.: An algorithm to decide whether a rational subset of n∧ k is recognizable.
Theor. Comput. Sci. 41, 51–59 (1985)

10. Gómez, A.C., Pin, J.: Shuffle on positive varieties of languages. Theor. Comput.
Sci. 312(2–3), 433–461 (2004)

11. Hoffmann, S.: Commutative regular languages – properties and state complexity.
In: Ćirić, M., Droste, M., Pin, J.É. (eds.) CAI 2019. LNCS, vol. 11545, pp. 151–163.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21363-3 13

12. Hoffmann, S.: Regularity conditions for iterated shuffle on commutative regular
languages. In: Maneth, S. (ed.) CIAA 2021. LNCS, vol. 12803, pp. 27–38. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-79121-6 3

13. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company, Boston (1979)

14. Imreh, B., Ito, M., Katsura, M.: On shuffle closure of commutative regular lan-
guages. In: Bridges, D.S., Calude, C.S., Gibbons, J., Reeves, S., Witten, I.H. (eds.)
DMTCS 1996, pp. 276–288. Springer-Verlag, Singapore (1996)

15. Ito, M.: Algebraic Theory of Automata and Languages. World Scientific, Singapore
(2004)

16. Kozen, D.: Automata and Computability. Undergraduate Texts in Computer Sci-
ence, Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-85706-5

17. Mazurkiewicz, A.: Parallel recursive program schemes. In: Bečvář, J. (ed.) MFCS
1975. LNCS, vol. 32, pp. 75–87. Springer, Heidelberg (1975). https://doi.org/10.
1007/3-540-07389-2 183

18. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacob-
sthal’s function. Int. J. Found. Comput. Sci. 13(1), 145–159 (2002)

19. Pin, J.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, pp. 679–746. Springer, Heidelberg (1997). https://doi.
org/10.1007/978-3-642-59136-5 10

https://doi.org/10.1007/BFb0029355
https://doi.org/10.1007/978-3-030-21363-3_13
https://doi.org/10.1007/978-3-030-79121-6_3
https://doi.org/10.1007/978-3-642-85706-5
https://doi.org/10.1007/3-540-07389-2_183
https://doi.org/10.1007/3-540-07389-2_183
https://doi.org/10.1007/978-3-642-59136-5_10
https://doi.org/10.1007/978-3-642-59136-5_10

176 S. Hoffmann

20. Pin, J.É.: How to prove that a language is regular or star-free? In: Leporati, A.,
Mart́ın-Vide, C., Shapira, D., Zandron, C. (eds.) LATA 2020. LNCS, vol. 12038,
pp. 68–88. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40608-0 5

21. Restivo, A.: The shuffle product: new research directions. In: Dediu, A.-H., For-
menti, E., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp.
70–81. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15579-1 5

22. Shaw, A.C.: Software descriptions with flow expressions. IEEE Trans. Softw. Eng.
4, 242–254 (1978)

https://doi.org/10.1007/978-3-030-40608-0_5
https://doi.org/10.1007/978-3-319-15579-1_5

On the Complexity of Decision Problems
for Counter Machines with Applications

to Coding Theory

Oscar H. Ibarra1 and Ian McQuillan2(B)

1 Department of Computer Science, University of California,
Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu
2 Department of Computer Science, University of Saskatchewan,

Saskatoon, SK S7N 5A9, Canada

mcquillan@cs.usask.ca

Abstract. We study the computational complexity of several decision
problems (including the emptiness, disjointness, finiteness, and contain-
ment problems) for various restrictions of two-way reversal-bounded mul-
ticounter machines (2NCM). We then apply the results to some problems
in coding theory. We examine generalizations of various types of codes
with marginal errors; for example, a language L is k-infix-free (k ≥ 0) if
there is no non-empty string y in L that is an infix of more than k strings
in L− {y}. This allows for bounded error versus standard infix-free lan-
guages. We show that it is PSPACE-complete to decide, given k and a
2NCM M whose input is finite-crossing, whether L(M) is not k-infix-
free. It follows that the problem is also PSPACE-complete for one-way
nondeterministic and deterministic finite automata (even for the two-
way models), answering an open question in [12]. We also look at the
complexity of the problem for restricted models of 2NCM and for other
types of codes, and improve/generalize some previous results.

1 Introduction

When introducing a new machine model, it is common to study several stan-
dard decision problems, determine whether they are decidable, and find their
computational complexity. Frequently studied decision problems for a class of
machines M include:

– emptiness problem for M: Given a machine M ∈ M, is L(M) = ∅?
– disjointness problem for M: Given machines M1,M2 ∈ M, is L(M1) ∩

L(M2) = ∅?
– containment problem for M: Given machines M1,M2 ∈ M, is L(M1) ⊆

L(M2)?

The research of I. McQuillan was supported, in part, by Natural Sciences and Engi-
neering Research Council of Canada.

c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 177–188, 2022.
https://doi.org/10.1007/978-3-031-05578-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_14&domain=pdf
https://doi.org/10.1007/978-3-031-05578-2_14

178 O. H. Ibarra and I. McQuillan

– equivalence problem for M: Given machines M1,M2 ∈ M, is L(M1) =
L(M2)?

– finiteness problem for M: Given machines M ∈ M, is L(M) finite?

The non-emptiness problem is the negation of the emptiness problem and simi-
larly for the other problems (the negation of the finiteness problem is called the
infiniteness problem). It is sometimes more natural in terms of computational
complexity to analyze the negations.

Machine models with a one- or two-way input tape plus one or more data
stores such as stacks [1], pushdowns, queues, and counters [4], are frequently
studied. However, even one-way machines with two counters (or pushdowns,
stacks, or one queue) have the same power as Turing machines [4,14] making all
of the decision problems undecidable. However, restrictions lead to lesser com-
putational capacity. A machine with one or more counters is called r-reversal-
bounded if, during any accepting computation, each counter makes at most r
changes between non-decreasing and non-increasing the size of the counters; and
it is reversal-bounded if it is r-reversal-bounded for some r. It is known that
one-way nondeterministic reversal-bounded multicounter machines (NCM) have
lesser power than Turing machines, and it has decidable emptiness, finiteness,
and disjointness problems [7]. While containment and equivalence are undecid-
able, they are decidable for deterministic machines (DCM) [7]. With two-way
inputs, it is known that two-way deterministic reversal-bounded multicounter
machines (2DCM) have the same power as Turing machines [7], making all the
problems undecidable. Again, restrictions make some problems decidable. Such a
machine is called c-crossing if every input that is accepted has an accepting com-
putation in which the input head crosses the boundary between any two adjacent
cells at most c times; and it is finite-crossing if it is c-crossing for some c. Note
that 1-crossing corresponds to one-way machines. It is known that any two-way
nondeterministic finite-crossing reversal-bounded multicounter machine can be
converted to an equivalent one-way machine [7]. While this is not the case for
deterministic machines, the more general two-way deterministic finite-crossing
reversal-bounded multicounter machines still have decidable containment and
equivalence problems making them one of the most general classes of languages
where this is the case.

Here, we summarize existing—and determine new—computational complex-
ity results for decision problems on one-way and two-way finite-crossing reversal-
bounded multicounter machines. We study the problem depending upon whether
each of the number of crossings, counters, and counter reversals are fixed or
not. At one end of the spectrum, if all are allowed to vary then the non-
emptiness problem is PSPACE-complete for both nondeterministic and deter-
ministic machines, and if all are fixed, then they are in P.

We then explore applications to coding theory. A code property or relation
can be used to define a family of languages. For example, the infix relation
(sometimes called subword relation) can be used to define infix-free languages—
a language L is infix-free if x, y ∈ L, and x is an infix of y implies x = y;
similarly with prefix- and suffix-free languages. In [11,12], Ko et al. generalized

Complexity of Decision Problems with Applications to Coding Theory 179

these notions to allow for marginal errors in codes. They introduced the notion
of k-infix-free (resp., k-prefix-free, k-suffix-free) languages. A language L is k-
infix-free if there is no non-empty string y in L that is an infix of more than
k strings in L − {y}. The special cases, k-prefix-free language and k-suffix-free
language, are defined similarly. Note that when k = 0, the definition reduces
to the well-studied concepts [10,15] of infix-free (resp., prefix-free, suffix-free)
languages. It was shown in [12] that it is PSPACE-complete to decide, given k
and an NFA M , whether L(M) is not k-prefix-free (resp., k-suffix-free). It was
also shown that it is PSPACE-hard to decide whether L(M) is not k-infix-free,
but left open the question of whether the problem is in PSPACE. When k is
fixed, it was remarked in [12] that the problem can be shown to be in PSPACE.

In this paper, we show that the k-infix-problem is in PSPACE (thus, PSPACE-
complete) for finite-crossing 2NCM and for two-way NFA. In contrast, if k and the
number of crossings are fixed, then the problem is NP-complete. Furthermore,
when k, the number of crossings, counters, and reversals are fixed, the k-infix-
problem is in P. We also investigate the complexity of the problem for other
restricted models of 2NCM and improve/generalize some previous results. All
omitted proofs will appear in an extended journal version.

2 Preliminaries

We assume a familiarity with the basics of automata and formal language the-
ory. This includes the basic definitions of one-way deterministic finite automata
(DFA), one-way nondeterministic finite automata (NFA), two-way determinis-
tic finite automata (2DFA), two-way nondeterministic finite automata (2NFA),
deterministic Turing machines (DTM), and nondeterministic Turing machines
(NTM). All two-way machines are assumed to have left and right end-markers
(�,�) around the input. We also omit the definition of generalized sequential
machines [4], which we assume to be one-way, nondeterministic, and to have
final states. We will assume familiarity with the basics of complexity theory, the
complexity classes P,NP, and PSPACE, and with the concepts of hardness and
completeness for a complexity class [4].

Let Σ be a finite alphabet. Then Σ∗ (Σ+) is the set of all words (resp.
non-empty words) over Σ which includes the empty word λ. A language L with
respect to Σ is any subset of Σ∗. Given L, the complement of L with respect to
Σ, L = Σ∗ − L. Given a word w ∈ Σ∗, if w = xyz for some strings, x, y, z ∈ Σ∗,
then we say x is a prefix of w, y is an infix of w, and z is a suffix of w.

We will only describe reversal-bounded multicounter machines informally and
refer to [7] for formal definitions. A two-way m-counter machine M is a 2NFA
where the input is surrounded by left and right end-markers � and �, which
is augmented with m counters. On each move, each counter can be kept the
same or incremented/decremented by 1, and tested for zero. The counters are
r-reversal-bounded if, during any accepting computation, each counter makes
at most r changes between non-decreasing and non-increasing mode (and vice
versa). A two-way m-counter machine is c-crossing if it has the property that

180 O. H. Ibarra and I. McQuillan

every input that is accepted has an accepting computation in which the input
head crosses the boundary between any two adjacent cells at most c times. A
machine is finite-crossing if it is c-crossing for some given c, and reversal-bounded
if it is r-reversal-bounded for some r.

We will use the following notations in the paper:

– NCM(m, r): one-way m-counter machines where all counters are r-reversal-
bounded.

– NCM(m):
⋃

r>0 NCM(m, r).
– NCM:

⋃
m>0,r>0 NCM(m, r).

– 2NCM: two-way machines with multiple reversal-bounded counters.
– 2NCM(m) and 2NCM(m, r) are defined similarly.
– 2NCM(m, r, c): c-crossing two-way m-counter machines where all counters are

r-reversal-bounded.

In the deterministic versions of the above models, ‘N’ is replaced by ‘D’. So,
for example, DCM and DCM(m) denote the deterministic versions of NCM and
NCM(m), respectively. It is evident that e.g. NCM(0, 0) corresponds to NFA, and
similarly with other models. Also, since every 2NFA is finite-crossing, it follows
that

⋃
c>0 NCM(0, 0, c) = 2NFA, and similarly for 2DFA.

3 Complexity of Decision Problems for Restrictions
of 2NCM

We first recall some known results.

Lemma 1 [7]. We can construct, given a 2NCM(m, r, c) (resp. 2DCM(m, r, c))
M of size n, a machine 2NCM(m�(r+1)/2�, 1, c) (resp. 2DCM(m�(r+1)/2�, 1, c))
M ′ such that L(M) = L(M ′) and M ′ is of size at most n�(r + 1)/2�, in time
polynomial in the size of M .

The following result is from [2] (with additional details in [6]):

Lemma 2 (Theorem 5 [2]). We can effectively construct, given a 2NCM(m, 1, c)
M , an NCM(2m, 1) M ′ such that L(M ′) = L(M). If M has size n, then M ′ has
size n′ ≤ dnc for some constant d. Moreover M ′ can be constructed in time
polynomial in n′, hence exponential in n.

Proof. We briefly describe the construction in [6] of the NCM(2m, 1) M ′ from
the 2NCM(m, 1, c) M , as it is informative in the proof of Proposition 5. On
an input w = a0a1 · · · al to M (a0 and al are the left and right end-markers),
M ′ simulates M by keeping track of the ordered sequence, Ri, of transition
rules M uses when its input head moves right from ai−1 to ai, or left from
ai to ai−1. Note that there are at most c such transition rules in Ri. So, in
simulating an accepting computation of M , M ′ need only nondeterministically
guess a sequence, R1R2 · · · Rl, of ordered transition rules that corresponds to
the desired accepting computation of M , noting that M ′ can check (from the

Complexity of Decision Problems with Applications to Coding Theory 181

specification of M) whether Ri+1 is a valid successor of Ri. All counter increases
are simulated by the first set of m counters and all counter decreases by the
next set of m counters, which are verified to be the same at the end. We refer
the reader to [6] for the details of the construction of M ′ from M . Note that
M ′ can ‘stay’ on a symbol an unbounded number of moves before moving off
the symbol. This is handled in a rather tricky way and is described in [6]. The
number of possible distinct such ordered transition rules Ri is tc, where t is the
number of transition rules of M . It is also clear that M ′ can be constructed in
time polynomial in its size n′. Note that n′ is exponential in the size n of M . 	

Lemma 3 (Lemma 2 [2]). Let M be an NCM(m, 1) with size n. Let t be the
number of transition rules of M (note that t ≤ n). Then L(M) �= ∅ if and only
if M accepts some input within time (i.e., number of moves and also maximum
counter value) (mt)d

′m ≤ (mn)d
′m for some constant d′.

We state the following while pointing out the complexity.

Lemma 4 (Lemma 1 [6], Lemma 3.2 [7]). We can effectively construct in poly-
nomial time, given M ∈ 2DCM(m, 1, c), an equivalent M ′ ∈ 2DCM(m+1, 1, c+2)
which always halts. Further, if M ∈ DCM(m, 1), then M ′ ∈ DCM(m, 1).

It is therefore clear that given a finite-crossing 2DCM M , another machine
M ′ can be constructed in polynomial time accepting L(M).

3.1 The Non-emptiness Problem

We characterize the complexity of non-emptiness for finite-crossing 2DCM and
2NCM as follows. We include both deterministic and nondeterministic machines
in order to highlight problems where there are differences.

Proposition 5. The non-emptiness problems for both classes 2DCM(m, r, c)
and 2NCM(m, r, c) are PSPACE-complete. This is also true when m = r = 0,
i.e. for 2DFA and 2NFA.

Proof. First we show that the problem is in PSPACE. Let M be a 2NCM(m, r, c)
of size n, and we assume r = 1 by Lemma 1. Note that m and c are taken into
account in the size n. From Lemma 2, if we were to construct the NCM(2m, 1)
M ′ equivalent to M , it would be of size at most dnc for some constant d. Then
from Lemma 3, L(M ′) �= ∅ if and only if it accepts some input within time

t = (2mdnc)2md′
,

for some constants d, d′. Hence, we would need to decide if M ′ accepts some
string with a maximum value in each of the 2m counters during the computation
is at most t. Thus the counters can be simulated by an NTM M ′′ using space
log t, which is polynomial in n, m, and c. The idea is for the NTM M ′′, when
given a specification of M as input, to simulate the one-way equivalent of M
(i.e. M ′) indirectly by guessing the sequence of crossing sequences R1, . . . , Rl,

182 O. H. Ibarra and I. McQuillan

and the one-way input to M ′ symbol-by-symbol (so there is no need to write
the symbol since it is one-way unlike had it directly simulated the two way M).
Then M ′′ uses the specification of M to verify that the guessed R1, . . . , Rl are
correct. So, the NTM M ′′ guesses an input string w symbol-by-symbol and uses
polynomial space to simulate the sequence of ordered transition rules R1R2 · · · Rl

simulating the computation of the 2NCM M as described in the proof of Lemma
2, noting that an Ri need only space d′′c for some constant d′′. It follows that
the non-emptiness of L(M) is in PSPACE.

That the problem is PSPACE-hard follows from the fact that deciding, given
a list of c DFA’s, whether they have a non-empty intersection (hence, a 2DFA
making 2c passes on the input tape) is already PSPACE-hard [13]. 	

For the case of NCM or 2NCM where the number of input crossings if fixed,
we have a lower complexity:

Proposition 6. For fixed c, the non-emptiness problems for DCM(m, r, c) and
NCM(m, r, c) are NP-complete. This is also true for (c = 1,m = 2) and (c =
1, r = 1) over unary alphabets.

Proof. The NP-hardness was shown in [2] for DCM(2) over a unary alphabet;
hence for c = 1,m = 2 over unary alphabets (and for c = r = 1 by Lemma 1).

From the construction in the proof of Lemma 2, when c is fixed, a NCM(2m, 1)
M ′ can be built simulating the c-crossing 2NCM(m, 1, c) in time polynomial in
the size of M . In [3], it was shown that the non-emptiness problem for NPCM
(i.e., NPDA with 1-reversal-bounded counters hence also for r-reversal-bounded
counters by Lemma 1) is in NP. Hence, non-emptiness for NCM is in NP. 	

The following result was also shown in [2].

Proposition 7 (Theorem 6, [2]). Let m, r, c be a fixed integers. Then the non-
emptiness problems for 2DCM(m, r, c) and 2NCM(m, r, c) are in P.

The status of the non-emptiness problem for two-way NCM based on their
restrictions is summarized as follows.

Proposition 8. The following are true:

1. The non-emptiness problems for 2DCM, 2NCM, 2DCM(2, r), 2NCM(2, r),
2NCM(m, 1), and 2DCM(m, 1) are undecidable.

2. The non-emptiness problems for both2DCM(m, r, c) and 2NCM(m, r, c) are
PSPACE-complete. This is also true for m = r = 0; i.e. for 2NFA and 2DFA.

3. For fixed c, the non-emptiness problems for 2DCM(m, r, c) and 2NCM(m, r, c)
are NP-complete. This is also true for both (m = 2, c = 1) (i.e. DCM(2, r))
and r = c = 1 (i.e. DCM(m, 1)), even over unary languages.

4. For fixed c,m, r, the non-emptiness problems for both 2DCM(m, r, c) and
2NCM(m, r, c) are in P.

5. The non-emptiness problems for both 2DCM(1, r, 1) and 2NCM(1, r, 1) (i.e.
DCM(1, r) and NCM(1, r)) are in P.

We note that the non-emptiness for 2DCM(1) is decidable [8] but the com-
plexity is open; for 2NCM(1), decidability is open.

Complexity of Decision Problems with Applications to Coding Theory 183

3.2 Other Decision Problems

Next, we examine the non-disjointment problem, which parallels non-emptiness
in terms of complexity.

Proposition 9. The following are true:

1. The non-disjointment problems for 2DCM, 2NCM, 2DCM(2, r), 2NCM(2, r),
2NCM(m, 1), and 2DCM(m, 1) are undecidable.

2. The non-disjointment problems for 2DCM(m, r, c) and 2NCM(m, r, c) are
PSPACE-complete. This is also true for m = r = 0; i.e. for 2DFA and 2NFA.

3. For fixed c, the non-disjointment problems for both families 2DCM(m, r, c)
and 2NCM(m, r, c) are NP-complete. This is also true for (m = 2, c = 1) (i.e.
DCM(2, r)) and r = c = 1 (i.e. DCM(m, 1)), even over unary languages.

4. For fixed c,m, r, the non-disjointment problems for both 2DCM(m, r, c) and
2NCM(m, r, c) are in P.

For the non-containment, non-equivalence, and non-universe problems, there
are differences between deterministic and nondeterministic machines.

Proposition 10. The following are true:

1. The non-containment, non-equivalence, and non-universe problems for all of
2DCM, 2DCM(2, r), 2DCM(m, 1), and NCM(1, 1) are undecidable.

2. The non-containment, non-equivalence, and non-universe problems for the
family 2DCM(m, r, c) are PSPACE-complete. This is also true for m = r = 0;
i.e. for 2DFA.

3. For fixed c, the non-containmment non-equivalence, and non-universe prob-
lems for 2DCM(m, r, c) are NP-complete. This is also true for (m = 2, c = 1)
(i.e. DCM(2, r)) and r = c = 1 (i.e. DCM(m, 1)), even over unary languages.

4. For fixed c,m, r, the non-containment, non-equivalence, and non-universe
problems for 2DCM(m, r, c) are in P.

Next, we study the complexity of the infiniteness problem. In this case, hard-
ness is relatively straightforward using the non-emptiness problem.

Proposition 11. The following are true:

1. The infiniteness problems for all of 2DCM, 2NCM, 2DCM(2, r), 2NCM(2, r),
2NCM(m, 1), and 2DCM(m, 1) are undecidable.

2. The infiniteness problems for 2DCM(m, r, c) and 2NCM(m, r, c) are PSPACE-
hard. This is also true for m = r = 0.

3. For fixed c, the infiniteness problems for 2DCM(m, r, c) and 2NCM(m, r, c)
are NP-complete. This is also true for both (m = 2, c = 1) (i.e. DCM(2, r))
and r = c = 1 (i.e. DCM(m, 1)), even over unary languages.

While we know completeness for the case where crossings are fixed, when they
can vary, we do not know whether the infiniteness problem for 2NCM(m, r, c) is
in PSPACE. However, we can prove that it is in exponential space.

184 O. H. Ibarra and I. McQuillan

Proposition 12. The infiniteness problems for both families 2DCM(m, r, c) and
2NCM(m, r, c) are in exponential space.

There are still two open problems. First, is the infiniteness problem for finite-
crossing 2NCM in PSPACE, thereby making it PSPACE-complete? Also, if c,m, r
are all fixed, is it in P (we only know they are in NP by part 3)?

The above proposition is in contrast to c-crossing 2NFA for fixed c, since
such an 2NFA can be converted to an equivalent NFA in polynomial time, and
infiniteness of NFA is in P; hence, infiniteness of c-crossing 2NFA for fixed c is
in P. When c is not fixed (i.e. for 2NFA generally), it is already known that
the problem is PSPACE-hard [5], but the authors could not find a result that
shows infiniteness is in PSPACE. The following shows that infiniteness is indeed
in PSPACE.

Proposition 13. The infiniteness problems for 2DFA and 2NFA are PSPACE-
complete.

This is in contrast to 2DCM(2), where the emptiness and infiniteness problems
are undecidable [7].

4 Complexity of k-Infix-Freeness of Languages

Let k ≥ 0. A language L is k-infix-free if there is no string y �= λ in L that is an
infix of more than k strings in L − {y}. A language L is k-prefix-free (k-suffix-
free) if there is no string y �= λ in L that is a prefix (suffix resp.) of more than
k strings in L − {y}.

The following was shown in [12]:

Proposition 14 ([12]).

1. Deciding, given k ≥ 0 and DFA M , whether L(M) is not k-prefix-free is in P.
2. Deciding, given k ≥ 0 and NFA M , whether L(M) is not k-prefix-free is

PSPACE-complete.
3. Deciding, given k ≥ 0 and NFA (or DFA) M , whether L(M) is not k-suffix-

free is PSPACE-complete.
4. Deciding, given k ≥ 0 and NFA (or DFA) M , whether L(M) is not k-infix-free

is PSPACE-hard.

It was left open in [12], whether k-infix-freeness for NFA is in PSPACE, though
it was mentioned that for fixed k, the problem can be shown to be in PSPACE.

The following result answers the open problem in the affirmative, even for
the more general model of M being a finite-crossing 2NCM:

Lemma 15. Deciding, given k ≥ 0 and a 2NCM(m, r, c) (or 2DCM(m, r, c)) M ,
whether L(M) is not k-infix-free (resp. k-suffix-free) is PSPACE-complete. Also,
deciding, given k ≥ 0 and a 2NCM(m, r, c) M , whether L(M) is not k-prefix-free
is PSPACE-complete. These remain true when c = 1,m = r = 0.

Complexity of Decision Problems with Applications to Coding Theory 185

Proof. First, we show that the problem is in PSPACE for 2NCM(m, r, c) and k-
infix-freeness. Let k ≥ 0 and L be a language accepted by an 2NCM(m, r, c) M
with input alphabet Σ. (Note that the input to M has end-markers which we
do not explicitly show.) Let $,# be new symbols not in Σ. Define the language

L′ = {y$x1#z1$ · · · $xk+1#zk+1 | y ∈ L, y �= λ, xi, zi ∈ Σ∗ such that xizi �= λ,
xiyzi ∈ L, xiyzi �= xjyzj for i �= j}.

Clearly, L is not k-infix-free if and only if L′ �= ∅. We construct another finite-
crossing 2NCM M ′ to accept L′. (M ′ has left and right end markers on the
input.) M ′ when given an input, does the following:

1. M ′ checks that the input has the correct format. This requires no counter
and only 2 crosses on the input.

2. M ′ simulates M and checks that y is in L. This requires m r-reversal-bounded
counters (to simulate the counters of M) and make at most c crosses on the
input.

3. For 1 ≤ i ≤ k+1, M ′ moves its input head at the beginning of xi. It simulates
M on xiyzi. To do this, it starts reading xi, and whenever it crosses from
reading xi to y (which happens at most c times), M ′ moves to the left end-
marker and continues the simulation reading y. The case is similar when
simulating the cross of y moving left to xi, y moving right to zi, and moving
left from zi to y. This process requires m counters that are ((k+2)r)-reversal-
bounded and (k + 2)c crosses on the input.

4. If k > 0, M ′ does the following: For 1 ≤ i ≤ k, M ′ checks that xiyzi �= xjyzj
for i + 1 ≤ j ≤ k + 1. We describe how M ′ can do this using a 1-reversal-
bounded counter, say C. M ′ nondeterministically moves its head to some
position p within xiyzi while recording the distance of p from the left end-
marker in counter C and the symbol, si, in that position in the state. (Note
that since xiyzi is not contiguous, if M ′ nondeterministically selects a position
beyond xi, M ′ needs to move its head to the left end marker and scan segment
y and resume incrementing C and then return to the beginning of zi.) Then
M ′ moves its head to the beginning of xj and starts decrementing counter C
to zero to locate the symbol sj corresponding to position p within xjyzj and
verifies that si �= sj .

The entire process above requires k+(k−1)+ · · ·+1 = k(k+1)/2 1-reversal-
bounded counters and at most 4k(k + 1)/2 = 2k(k + 1) crosses on the input.

Thus M ′ needs m′ = 2m + k(k + 1)/2 counters that are r′ = ((k + 2)r)-reversal-
bounded and c′ = 2+ c+(k +2)c+2k(k +1) = 2k2 +2k +2+ c(k +3) crossings.
Now let n be the size of M . (Note that the number m of 1-reversal-bounded
counters of M is already taken into account in n.) Clearly, M ′ has size at most
p(kn) for some effectively computable low-order polynomial p(.), independent of
k and n. (Note also that in step 4, because M ′ does not need to remember all
the guessed symbols si, sj at the same time but it can operate one at a time, it
does not cause an exponential blowup in states).

186 O. H. Ibarra and I. McQuillan

Then M ′ is of size p(kn), is c′-crossing (which is polynomial in k and c)
and has m′ counters (which is polynomial in m and k) that are r′-reversal-
bounded (that is polynomial in k and r). It follows from Proposition 5 that
non-emptiness of L(M ′) is in PSPACE. Hence, deciding if L(M) is not k-infix-
free is in PSPACE. It is straightforward to modify this proof for k-suffix-freeness
and k-prefix-freeness.

That the problems are PSPACE-hard (even without counters) was already
shown in Proposition 14. 	

Corollary 16. Deciding, given k ≥ 0 and an NFA (or 2NFA,DFA, or 2DFA)
M , whether L(M) is not k-infix-index is PSPACE-complete.

The above corollary answers an open question in [12] of whether or not k-
infix-freeness of NFA languages is in PSPACE. Not only do we extend this for
finite-crossing 2NCM but also for 2NFA.

In [12], it was mentioned that it could be shown that for a fixed k, deciding,
given an NFA M , whether L(M) is not k-infix-free is in PSPACE. In fact, this
problem is in P, as this is a special case of the next result.

Lemma 17. Let m, r, c, and k be fixed integers. Deciding, given a 2NCM(m, r, c)
M , whether L(M) is not k-infix-free (resp. k-suffix-free, k-prefix-free) is in P.

Altogether we can prove the following:

Proposition 18. The following are true:

1. Deciding, given k,m, r, c and a 2NCM(m, r, c) (or 2DCM(m, r, c)) M , whether
L(M) is not k-infix-free (resp. suffix-free) is PSPACE-complete. This is also
true for k-prefix-free with 2NCM(m, r, c). These remain true when c,m, r are
fixed with c = 1,m = r = 0, and for 2NFA and 2DFA.

2. Let k,m, r be fixed. Deciding, given c and an NCM(m, r, c) (or DCM(m, r, c))
M , whether L(M) is not k-infix-free (resp. k suffix-free, k-prefix-free) is
PSPACE-complete. Further, this is true when k = m = r = 0, and for 2NFA
and 2DFA.

3. Let k, c be fixed. Deciding, given m, r and a 2NCM(m, r, c) (or 2DCM(m, r, c))
M , whether L(M) is not k-infix-free (resp. k-suffix-free, k-prefix-free) is NP-
complete. In particular, this is true when (k = 0,m = 2, c = 1), or (k = 0, r =
c = 1).

4. Let m, r, c, k be fixed. Deciding, given an 2NCM(m, r, c) M , whether L(M) is
not k-infix-free (resp. k-suffix-free, k-prefix-free) is in P.

The only open cases not resolved is for determining the complexity of whether
a 2DCM(m, r, c) is not k-prefix-free when k is allowed to vary but c is fixed. We
can resolve this when c is at least two, and partially resolve it when c = 1.

Proposition 19. The following are true:

1. Let c ≥ 2,m, r be fixed. Deciding, given k and M ∈ 2DCM(m, r, c), whether
L(M) is not k-prefix-free is PSPACE-complete. This remains true when c = 2
and m = r = 0 (i.e. given a 2DFA that makes one cross on the input).

Complexity of Decision Problems with Applications to Coding Theory 187

2. Let c = 1. Deciding, given k ≥ 0 and m ∈ 2DCM(m, r, c) (i.e. M ∈
DCM(m, r)), whether M is not k-prefix-free is NP-hard. This remains true
when k = 0 and either m = 2 or r = 1.

It is open, whether the non-k-prefix-freeness problem for DCM is in NP (although
we know it is in PSPACE), or whether the problem is PSPACE-hard. Also, it is
open to determine the complexity of testing if a (one-way) DCM(m, r) is not
k-prefix-free when k is allowed to vary but m, r are fixed. We have not been able
to completely solve these problems, but they are in PSPACE by Proposition 18
(1). We also know that it is NP-hard if at least one of m, r varies, but it is open
if it is in NP.

5 Generalizations of k-Infix-Freeness

The infix relation was used to define infix-free languages and k-infix-free lan-
guages. This notion can be generalized to allow for repeating occurrences of an
infix up to some bounded number of times. The authors are unaware of this
exact definition in the literature.

Definition 20. A string y is an order n repeated-infix of a string w if w =
x1yx2 · · · xnyxn+1 for some strings x1, ..., xn+1. Let n ≥ 1 and k ≥ 0. A language
L is k-infix(n)-free if there is no string y �= λ in L that is an order n repeated-infix
of more than k strings in L − {y}.

The constructions in the proof of Lemma 15 can be generalized to this case.

Proposition 21. Deciding, given n, c ≥ 1, k,m, r ≥ 0 and a 2NCM(m, r, c) (or
2DCM(m, r, c)) M , whether L(M) is not k-infix(n)-free is PSPACE-complete.

It is worth mentioning that this definition of order n repeated infix allowed the
occurrences of the repeated string y within w to be non-adjacent. This type of
operation has been defined and studied more frequently where the repetitions of
y are adjacent [9]. Proposition 21 would hold with this definition as well.

Next we consider another generalization. Let k ≥ 0 and L be a language. We
say that y is not k-infix-free in L if y is in L and there are more than k strings of
the form xyz (for some x, z) in L − {y}. Using this, we define L to be infinitely
not k-infix-free if there are infinitely many strings y that are not k-infix-free in
L. The special cases, infinitely not k-prefix-free and infinitely not k-suffix-free
are defined similarly.)

Proposition 22. It is decidable, given k,m, r ≥ 0, c ≥ 1 and a 2NCM(m, r, c)
(or 2DCM(m, r, c)) M , whether L(M) is infinitely not k-infix-free.

It is open whether the problem above is in PSPACE. However, we can show
that it is PSPACE-hard, even for special cases:

Proposition 23

1. It is PSPACE-hard to decide, given k ≥ 0 and an NFA M , whether L(M) is
infinitely not k-prefix-free.

2. It is PSPACE-hard to decide, given k ≥ 0 and a DFA M , whether L(M) is
infinitely not k-suffix-free.

188 O. H. Ibarra and I. McQuillan

References

1. Ginsburg, S., Greibach, S., Harrison, M.: Stack automata and compiling. J. ACM
14(1), 172–201 (1967)

2. Gurari, E.M., Ibarra, O.H.: The complexity of decision problems for finite-turn
multicounter machines. J. Comput. Syst. Sci. 22(2), 220–229 (1981)

3. Hague, M., Lin, A.W.: Model checking recursive programs with numeric data types.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 743–759.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 60

4. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

5. Hunt, H.B.: On the time and tape complexity of languages i. In: Proceedings of the
Fifth Annual ACM Symposium on Theory of Computing, STOC 1973, pp. 10–19
(1973)

6. Ibarra, O., Yen, H.: On the containment and equivalence problems for two-way
transducers. Theor. Comput. Sci. 429, 155–163 (2012)

7. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25(1), 116–133 (1978)

8. Ibarra, O.H., Jiang, T., Tran, N., Wang, H.: New decidability results concerning
two-way counter machines. SIAM J. Comput. 23(1), 123–137 (1995)

9. Ito, M., Kari, L., Kincaid, Z., Seki, S.: Duplication in DNA sequences. In: Ito, M.,
Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 419–430. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85780-8 33

10. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Hei-
delberg (1997). https://doi.org/10.1007/978-3-642-59136-5

11. Han, Y.-S., Ko, S.-K., Salomaa, K.: Generalizations of code languages with
marginal errors. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 264–275.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21500-6 21

12. Ko, S.K., Han, Y.S., Salomaa, K.: Generalizations of code languages with marginal
errors. Int. J. Found. Comput. Sci. 32, 509–529 (2021)

13. Kozen, D.: Lower bounds for natural proof systems. In: Proceedings of the 18th
Symposium on the Foundations of Computer Science, pp. 254–266. IEEE (1977)

14. Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics
in theory of Turing Machines. Ann. Math. 74(3), 437–455 (1961)

15. Shyr, H.J.: Free Monoids and Languages, 3rd edn. Hon Min Book Company,
Taichung (2001)

https://doi.org/10.1007/978-3-642-22110-1_60
https://doi.org/10.1007/978-3-540-85780-8_33
https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1007/978-3-319-21500-6_21

Visit-Bounded Stack Automata

Jozef Jirásek(B) and Ian McQuillan

Department of Computer Science, University of Saskatchewan,
Saskatoon, SK S7N 5A9, Canada

jirasek.jozef@usask.ca, mcquillan@cs.usask.ca

Abstract. An automaton is k-visit-bounded if during any computation
its work tape head visits each tape cell at most k times. In this paper
we consider stack automata which are k-visit-bounded for some inte-
ger k. This restriction resets the visits when popping (unlike similarly
defined Turing machine restrictions) which we show allows the model
to accept a proper superset of context-free languages and also a proper
superset of languages of visit-bounded Turing machines. We study two
variants of visit-bounded stack automata: one where only instructions
that move the stack head downwards increase the number of visits of the
destination cell, and another where any transition increases the number
of visits. We prove that the two types of automata recognize the same
languages. We then show that all languages recognized by visit-bounded
stack automata are effectively semilinear, and hence are letter-equivalent
to regular languages, which can be used to show other properties.

Keywords: Stack automata · Visit-bounded automata · Semilinear
languages

1 Introduction

When introducing a machine model or a grammar system, one of the most
useful properties is that of semilinearity. The idea of a language being semilinear
is defined formally in Sect. 2, but equivalently, a language is semilinear if and
only if it has the same Parikh image as some regular language [6]. In particular,
when this property is effective for a machine model M, there is a procedure
to construct a letter-equivalent finite automaton from any such machine. It is
well-known due to Parikh that the context-free languages have this property [12].
When this property is effective along with effective closure under homomorphism,
inverse homomorphism, and intersection with regular languages (the full trio
properties), it immediately implies several useful properties.

1. It provides a procedure to decide emptiness, finiteness, and membership [8].
2. The class can be augmented by reversal-bounded counters and the result-

ing class is still semilinear [5]—more generally, the smallest full trio (or even
full AFL) containing the languages accepted by M that is also closed under
intersection with one-way nondeterministic reversal-bounded multicounter
machines [8] is also semilinear. The resulting family has the positive decidable
properties of (1).

c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 189–200, 2022.
https://doi.org/10.1007/978-3-031-05578-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_15&domain=pdf
https://doi.org/10.1007/978-3-031-05578-2_15

190 J. Jirásek and I. McQuillan

3. All bounded languages accepted by M are so-called bounded semilinear lan-
guages [9], and they can all be accepted by a deterministic machine model,
one-way deterministic reversal-bounded multicounter machines [9], where we
can decide containment and equivalence of two machines.

4. Properties related to counting functions and slenderness (having at most k
strings of each length) can be decided [10].

It is also one of the key properties of a class of grammars being mildly context-
sensitive [11], which was developed to encompass the properties that are impor-
tant for computational linguistics.

Stack automata are a generalization of pushdown automata with the ability
to push and pop at the top of the stack, and an added ability to read the contents
of the stack in a two-way read-only fashion [2]. They are quite powerful however
and can accept non-semilinear languages [1,3]. Checking stack automata are
stack automata that cannot pop, and cannot push after reading from the stack.
Here, we consider a restriction on stack automata. Given a subset E of the stack
instructions (push, pop, stay, move left, or right), a machine is k-visitE-bounded
if, during any computation, its stack head visits each tape cell while performing
an instruction of E at most k times; and it is visitE-bounded if it is k-visitE-
bounded for some k. We omit E if it contains all instructions.

Importantly in this definition, when a cell is popped, the count towards this
bound disappears with it, and any new symbols pushed start with a count of
zero. This makes the definition in some ways more general than had we defined
Turing machines with a visit-bounded worktape. This type of model was studied
by Greibach [4], who studied one-way input with a single Turing machine work
tape which it can edit (precisely, Greibach defines the machines to be preloaded
with a string from a language family such as the regular languages—but as we
are restricting our study to regular languages, this preloading does not affect the
capacity). Greibach showed that the languages accepted by finite-visit Turing
machines are a semilinear subset of the checking stack languages.

Here we show that a stack language is visit-bounded if and only if it is visitE-
bounded where E only contains an instruction to move left. We then show that
the family of languages accepted by visit-bounded stack automata only contain
semilinear languages, in contrast to stack automata generally. Furthermore, they
form a language family properly between the context-free and stack languages.

Lastly, we show that the class of languages of Turing machines with a finite-
visit (or finite-crossing) restriction (and a one-way input tape) is properly con-
tained in the class of languages of finite-visit stack automata (as the former does
not contain all context-free languages), demonstrating the power of our model
while still preserving semilinearity. This makes the family useful towards showing
that other families are semilinear.

2 Preliminaries

We refer to [6,7] for an introduction to automata and formal language theory.
An alphabet Σ is a finite set of symbols. A string over Σ is a finite sequence of

Visit-Bounded Stack Automata 191

symbols from Σ. The set of all strings over Σ, including the empty string λ, is
denoted by Σ∗. A language is a subset of Σ∗.

Let w be a string over Σ = {a1, a2, . . . , an}. The length of w, denoted by
|w|, is the number of characters in w, with |λ| = 0. For a ∈ Σ, the number of
occurrences of the character a in the string w is denoted by |w|a. The Parikh
image of a string w, denoted Ψ(w), is the vector (|w|a1 , |w|a2 , . . . , |w|an

). We
note that two strings have the same Parikh image if one is a permutation of the
other. For a language L ⊆ Σ∗, let Ψ(L) = {Ψ(w) | w ∈ L}. Two languages L1

and L2 are letter-equivalent if Ψ(L1) = Ψ(L2). Equivalently, every string in L1

is a permutation of some string in L2, and vice versa.
A subset Q of N

m (m-tuples) is a linear set if there exist �v0, �v1, . . . , �vr ∈ N
m

such that Q = {�v0+i1 �v1+· · ·+ir �vr | i1, . . . , ir ∈ N}. We call �v0 the constant and
�v1, . . . , �vr the periods. A finite union of linear sets is a semilinear set. A language
L ⊆ Σ∗ is semilinear if Ψ(L) is a semilinear set. It is known that a language L
is semilinear if and only if there exists a regular language L′ with Ψ(L) = Ψ(L′)
[6]. For a family of languages accepted by a class of machines M, we say that the
family is effectively semilinear if there is an algorithm to always determine the
constant and the periods for each linear set (or equivalently the letter-equivalent
finite automaton). The following is a classical result in automata theory.

Theorem 1 (Parikh’s Theorem [12]). Let L be a context-free language. Then
Ψ(L) is a semilinear set.

Let NFA be the class of nondeterministic finite automata and NPDA be the
class of nondeterministic pushdown automata. Given a class of machines M, let
L(M) be the family of languages accepted by M.

2.1 Stack Automata

A nondeterministic one-way stack automaton is a 6-tuple M = (Q,Σ, Γ, δ, q0, F),
where:

– Q is the finite set of states,
– Σ and Γ are the input and work tape alphabets;
– Let I = {S, L, R, push(x), pop | x ∈ Γ} be the instruction set, then:
– δ ⊆ Q × (Σ ∪ {λ}) × (Γ ∪ {�}) × Q × I is the transition relation,
– q0 ∈ Q is the initial state, and
– F ⊆ Q is the set of final states.

The special symbol � denotes the left end of the work tape, which is identified
with the bottom of the stack.

We will define the contents of the stack slightly differently (but equivalently)
from previous definitions in order to better capture the new restrictions. The
work tape shall be represented as a series of pairs (x, i), denoting individual
tape cells, where x ∈ Γ ∪ {�} is the symbol written in this cell, and i ∈ N is the
number of times the automaton has visited this cell. Note that the transition
function of the automaton only has access to the symbols written on the tape,
and the automaton can not inspect the visit counters of the cells.

192 J. Jirásek and I. McQuillan

A configuration of the automaton M is a triple (q, w, γ), where:

– q ∈ Q is the current state,
– w ∈ Σ∗ is the input that is still to be read,
– γ ∈ ({�}× N)(Γ × N)∗ �

(Γ × N)∗ is the current content of the work tape. The
special symbol

�

denotes the position of the tape head, which is scanning the
cell immediately preceding this symbol.

Now let E ⊆ {S, L, R, push, pop} be a set of expensive instructions. These
are the instructions that are counted as visits to the tape cell. The automaton
performs all instructions on the work tape as usual for stack automata. When
an expensive instruction is performed, the number of visits of the tape cell under
the head after the instruction is completed is increased by one.

We define the move relation � between configurations of M using a set of
expensive instructions E as follows: For ι ∈ {S, L, R, push, pop}, let the cost of ι
be c(ι) = 1 if ι ∈ E, and c(ι) = 0 if ι /∈ E. Then:

– (p, aw, α(x, i)

�

β) � (q, w, α(x, i + c(S))

�

β)
if (p, a, x, q, S) ∈ δ,

– (p, aw, α(x, i)(y, j)

�

β) � (q, w, α(x, i + c(L))

�

(y, j)β)
if (p, a, x, q, L) ∈ δ,

– (p, aw, α(x, i)

�

(y, j)β) � (q, w, α(x, i)(y, j + c(R))

�

β)
if (p, a, x, q, R) ∈ δ,

– (p, aw, α(x, i)

�

) � (q, w, α(x, i)(y, c(push))

�

)
if (p, a, x, q, push(y)) ∈ δ, and

– (p, aw, α(x, i)(y, j)
�

) � (q, w, α(x, i + c(pop))
�

)
if (p, a, y, q, pop) ∈ δ;

where p, q ∈ Q, a ∈ Σ ∪ {λ}, w ∈ Σ∗, x ∈ Γ ∪ {�}, y ∈ Γ , i, j ∈ N, α ∈
{λ} ∪ ((� × N)(Γ × N)∗), β ∈ (Γ × N)∗, and the work tape string on both sides
of the relation is well-formed (in particular, x = � if and only if α = λ). Let �∗

denote the reflexive and transitive closure of �.
A computation of a stack automaton M on a string w ∈ Σ∗ is a sequence of

configurations c0 � c1 � · · · � cn, where c0 = (q0, w, (�, 0)

�

), and cn = (qn, λ, γn).
If qn ∈ F , this computation is accepting. The automaton M accepts a string w
if there exists an accepting computation of M on w. The language accepted by
M , denoted by L(M), is the set of all strings from Σ∗ that M accepts.

Let SA be the class of all stack automata. A stack automaton is called a
non-erasing stack automaton if it uses no pop instructions. A non-erasing stack
automaton is called a checking stack automaton if it cannot push again after
either a L or R instruction. The class of non-erasing stack automata is denoted
by NESA, and checking stack automata by CSA.

For an integer k and a set of expensive instructions E, we say that a com-
putation of a stack automaton M is k-visitE-bounded, if the number of visits of
every cell in every configuration in this computation is less than or equal to k.
We say that M is k-visitE-bounded if for every string w ∈ L(M) the automaton
M has a k-visitE-bounded accepting computation on w. Finally, M is visitE-
bounded if there is a finite k ∈ N such that M is k-visitE-bounded. If we leave

Visit-Bounded Stack Automata 193

off the subscript E, it is assumed that E = {S, L, R, push, pop}. Let VISITE(k)
be the class of k-visitE-bounded, VISITE be all visitE-bounded machines, and
again we leave off the subscript E if E = {S, L, R, push, pop}. It is immediate
that L(SA) = L(VISIT∅).

Note the important distinguishing feature of the stack automaton model
which sets it apart from known visit-bounded Turing machine models: whenever
a tape cell is popped from the top of the stack, the number of visits of that cell
is reset. Whenever a new cell is pushed to the top of the stack, this new cell
begins with a visit count of 0 (or 1, if push is an expensive instruction). This
allows a visit-bounded stack automaton to perform some computations that an
analogous visit-bounded Turing machine could not.

3 Visit-Bounded Automata

As we have seen in definitions in Sect. 2, the notion of a visit-bounded stack
automaton is dependent on the choice of the set of expensive instructions E
which increase the visit counters of tape cells. To begin, we consider two expen-
sive instruction sets: E = {L}, and E = {S, L, R, push, pop}. In the first case,
only L instructions increase the visit counters. In the second case, all instruc-
tions increase the visit counters.

Example 2. Let M = ({q0}, {a}, {}, {(q0, a, �, q0, S)}, q0, {q0}) be a stack
automaton. This simple automaton scans its input consisting of a number of
symbols a, while the work tape head rests on the bottom of the stack marker.

Observe that M is visit{L}-bounded, as it never performs an L instruction,
and thus the number of visits of the only used tape cell never increases above
0. On the other hand, M is not visit-bounded, as the S instructions in the only
computation of M on string ak increases the visit counter of the tape cell to k.

Every visit-bounded automaton is also visit{L}-bounded. Indeed, the number
of visits to a cell can not increase if we only consider a limited subset of expensive
instructions. Perhaps surprisingly, as we will show in Theorem 3, the converse
is also true if we only consider languages accepted by the automaton. For any
visit{L}-bounded automaton A, we can construct a visit-bounded automaton B
with L(B) = L(A). Therefore, limiting the usage of any instruction other than
L does not reduce the descriptive power of the automaton model.

Theorem 3. Let A = (Q,Σ, Γ, δ, q0, F) be a visit{L}-bounded stack automaton.
Then there exists a visit-bounded stack automaton B such that L(B) = L(A).
Hence, L(VISIT) = L(VISIT{L}).

Proof. Let A be visit{L}-bounded, i.e., A visits every tape cell using the L instruc-
tion at most k times. We prove the theorem by describing a construction of the
automaton B. The basic idea of the construction is that B emulates a compu-
tation of A, but every symbol on the work tape of A shall be represented by
multiple copies of the same symbol on the work tape of B. Instructions of A
operating on a specific tape cell will be distributed among the copies of this cell

194 J. Jirásek and I. McQuillan

by B in such a way that every copy is only visited a fixed number of times. By
careful counting we show that any computation of A can be emulated by B in
such a way that the number of visits to every cell of B on any instruction can be
bounded as a function of k. This means that there is a constant which depends
on k such that B is -visit-bounded, i.e., B is visit-bounded.

The detailed construction appeared in Appendix A of the submitted
paper. ��

As a consequence of Theorem 3, the classes of languages accepted by visit{L}-
bounded and visit-bounded automata are identical.

We can also observe the following result for context-free languages:

Corollary 4. For all E ⊆ {S, L, R, push, pop}, L(NPDA) � L(VISITE).

Proof. A pushdown automaton can be seen as a stack automaton which never
uses the L and R instructions. This automaton is trivially visit{L}-bounded, and
by Theorem 3 its language can be accepted by some visit-bounded stack automa-
ton. Strictness can be seen using {anbncn | n > 0}. ��

We conclude this section with a comparison to Turing machines. Consider
nondeterministic Turing machines with a one-way read-only input and a single
work tape. If there is a bound on the number of changes of direction on the
work tape (reversal-bounded), we denote these machines by TMRB; if there is
a bound on the number of times the boundary of each pair of adjacent cells is
crossed (finite-crossing), we denote these machines by TMFC; and if there is a
bound on the number of visits to each cell (finite-visit), we denoted these by
TMFV. Greibach studies these machines [4] where the work tape is preloaded
with regular languages (or other families but we do not consider others), and the
work tape is confined to the preloaded space. This preloading does not impact
the languages accepted however as shown in the proof of the following, along
with a comparison to visit-bounded stack automata.

Proposition 5. L(TMRB) � L(TMFC) = L(TMFV) � L(VISIT).

Proof. First we will argue that preloading these Turing machines with regular
languages does note affect the languages accepted. Indeed, preloading can be
simulated by guessing and writing a preloaded string and then simulating. In the
other direction, a new dummy symbol B can be introduced, and the machine
can be preloaded with B∗, the machine then guesses some start position and
simulates using B as the blank symbol. It will only accept if it is preloaded
with a string that is longer than the number of cells visited and it guesses the
correct start position. Greibach shows that L(TMRB) � L(TMFC) = L(TMFV)
in Theorems 2.15 and 3.12. To show that L(TMFV) ⊆ L(VISIT), in Lemma 4.21
of [4], Greibach shows that every �L ∈ L(TMFV) can be accepted by a Turing
machine preset with a regular language where the machine does not ever change
the work tape contents, and every accepting computation is k-visit-bounded.
Such a machine M can be accepted by a k-visit-bounded stack automaton by
first guessing the stack contents, and then simulating. The inclusion is strict as

Visit-Bounded Stack Automata 195

noted in the proof of Theorem 4.26 [4] as the context-free Dyck language cannot
be accepted by a TMFV. ��

4 Semilinearity

The main result of this section is to prove that the language accepted by any visit-
bounded stack automaton is semilinear. To prove this, we give a procedure that,
given a visit-bounded stack automaton M , constructs a pushdown automaton
P , such that L(P) and L(M) are letter-equivalent. Specifically, we show that for
any string w ∈ L(M), the automaton P can accept some permutation of w, and
vice versa. It is known that languages of pushdown automata are semilinear, and
semilinearity is preserved under letter-equivalence, hence this proves the main
result.

Theorem 6. Let M = (Q,Σ, Γ, δ, q0, F) be a visit-bounded stack automaton.
Then the language accepted by M is effectively semilinear.

Proof. Let M be k-visit-bounded for an integer k. Further, assume that the
automaton ends its computation with an empty stack. If it does not, this can
be achieved by deleting the entire content of the stack before accepting, which
adds at most one visit to every tape cell.

The central concept used for the proof is the visit history of a tape cell. Using
the analogy of a physical work tape with paper cells, every time the automaton
makes a move, it records the transition it has just used (a 5-tuple (p, a, x, q, ι)) on
both the cell it left and the cell it entered. If the transition used an S instruction,
those two refer to the same cell. In this way, since every cell is visited at most
k times before being destroyed, the visit history of every cell contains at most
2k entries: k for transitions which were used to enter the cell, and another k for
transitions which were used to leave. We shall refer to the i-th entering transition
as tin[i] and the i-th leaving transition as tout[i]. Also note that throughout the
computation of the machine every transition used is recorded exactly twice: once
in the cell it begins in, and once in the cell it ends in. This connection links the
visit histories of all cells into a linked list-like structure which records the entire
computation of M . Since every transition contains the input symbol being read
(if any), following these links allows us to see the string being accepted.

The main idea is to construct a pushdown automaton P , which emulates the
push and pop instructions in some computation of M , while nondeterministically
guessing the entire history of every cell pushed on the stack. As long as P can
ensure the integrity of links between every pair of adjacent cells, the entire linked
list can be followed to reconstruct a computation of M , including the L, R, and
S instructions. Then if P also reads all input symbols corresponding to every tin
transition in all histories, it accepts a permutation of the string accepted by M
in this computation.

An important fact affecting the construction of P is that cells on the work
tape of M can be erased and replaced by another cell. Therefore, not all of the
transitions in the history of one cell need to correspond to transitions in the

196 J. Jirásek and I. McQuillan

history of one adjacent cell. Some transitions could connect to a cell that had
been in that place but was previously erased, and some transitions might connect
to a cell that will be in that place in the future, after the currently following cell
is erased. Therefore, the representation of every cell in P will additionally carry
a completed transition counter, an index ctc in the range 1 ≤ ctc ≤ k, which
indicates how many transitions in the history of the current cell have already
been matched with corresponding transitions in the histories of adjacent cells.

We can now describe the construction of the pushdown automaton P .

Definition 7. A history card is a (2k + 2)-tuple (x, ctc, tin[1], . . . , tin[k],
tout[1], . . . , tout[k]), where:

– x ∈ (Γ ∪ {�}) is the stack symbol written on the tape cell,
– 1 ≤ ctc ≤ k is the completed transition counter,
– tin[i] ∈ (δ ∪ {∅}), for 1 ≤ i ≤ k, are the transitions ending in this cell, and
– tout[j] ∈ (δ ∪ {∅}), for 1 ≤ j ≤ k, are the transitions originating in this cell.

Not all possible history cards can appear in some computation of M . We
impose several consistency constraints on the history cards that P can use,
to ensure that the information on each card is filled in properly and does not
contradict itself.

Definition 8. A history card is internally consistent, if all the following hold:

– tin[i]
= ∅ ⇐⇒ tout[i]
= ∅ for all 1 ≤ i ≤ k. If there is an incoming transition,
there has to be a corresponding outgoing transition.

– If tin[i] = ∅, then also tin[i + 1] = ∅. Similarly if tout[i] = ∅, then also
tout[i + 1] = ∅. This holds for all 1 ≤ i < k. Transitions are always stored in
a contiguous block of indices starting from the beginning of the card.

– The transition tin[1] performs the push(x) instruction, where x is the symbol
stored on this card. The last non-empty tout[i] performs the pop instruction.
No other tin transitions are push and no other tout transitions are pop instruc-
tions. The history of a cell begins when it is pushed and ends when it is popped
from the stack. Each of these events can only happen once in the lifetime of
the cell.

• The exception to the three rules above is a card with x = �. This card
represents the bottom of the stack of M , and here the computation of M
begins and ends. Therefore tin[1] = ∅, there is exactly one i such that
tin[i]
= ∅ and tout[i] = ∅, no tin is a push or R instruction, and no tout is
a pop or L instruction.

– The work tape symbol read in every tout transition is the symbol x on this
card.

Denote by H the set of all internally consistent history cards. Note that
|H| ≤ (|Γ | + 1)k(|δ| + 1)2k. The set H shall be the working alphabet of the
pushdown automaton P . An example of history cards and links between them
corresponding to a computation of M is shown in Fig. 1. The links are not
explicitly stored but will be implied.

Visit-Bounded Stack Automata 197

y
push(y) S R ∅ ∅

S L pop ∅ ∅

z
push(z) S S ∅ ∅

S S pop ∅ ∅

x
push(x) L R pop pop

push(y) L R push(z) pop

�
∅ L S pop ∅

push(x) S R ∅ ∅

Fig. 1. Histories of tape cells after executing the following sequence of instructions:
push(x), push(y), S, L, L, S, R, R, pop, push(z), S, S, pop, pop. Only the instructions used in
the transitions are shown, states and symbols read are omitted. Transitions tin shown
in the top row, and tout in the bottom row. Arrows show links between history cards
formed by pairs of identical transitions.

Now we describe an algorithm used by P to simulate a computation of M .
This algorithm employs two subprocedures: the first one advances the completed
transition counter on a card step by step, verifying that the transitions on the
card can link together to form a continuous computation, until either a push or
a pop transition, or the end of the computation is reached. The facts that need
to be verified are that S instructions on this card link to each other, and that
every outgoing L instruction is followed by an incoming R instruction.

The second procedure takes two history cards as input and attempts to link
together transitions between them. An outgoing push instruction on the bottom
card has to link to the first incoming instruction on the top card. Every outgoing
R instruction on the bottom card has to link to an incoming R instruction on
the top card, and every outgoing L instruction on the top card has to link to an
incoming L instruction on the bottom card. Finally, the last transition of the top
card, performing a pop instruction, has to link to an incoming pop transition on
the bottom card.

The complete description of both procedures appeared in Appendix B of the
submitted paper. The important fact is that since there are only finitely many
different history cards, the pushdown automaton itself does not have to perform
either of these procedures. The results for all possible inputs can be encoded
into its transition function.

A description of the algorithm performed by P is in Algorithm 4.1.

198 J. Jirásek and I. McQuillan

1 Nondeterministically choose a history card containing the symbol �. Push this
card on the stack.

2 Read all input symbols that are read in any incoming transition on this card.
3 while There is a history card on the stack do
4 Advance the ctc of the card on top of the stack, verifying the consistency of

instruction links, until either a push or a pop instruction, or the end of the
computation is encountered.

5 if The transition encountered performs a push instruction then
6 Nondeterministically choose a history card containing the symbol being

pushed.
7 Verify that the chosen card can be matched to the card currently on top

of the stack.
8 if The cards can be matched together then
9 Move the ctc of the card on top of the stack to the incoming pop

instruction corresponding to the removal of the cell represented by
the new card.

10 Push the newly chosen card on top of the stack, initializing its ctc to
1.

11 Read all input symbols that are read in any incoming transition on
the new card.

12 else
13 Halt the computation and reject.
14 end

15 else if The transition encountered performs the pop instruction, or the end
of the computation is encountered then

16 Erase the top card from the stack.
17 else if A transition on the card can not be linked properly then
18 Halt the computation and reject.
19 end

20 end
21 Finish the computation and accept.

Algorithm 4.1: The algorithm performed by the pushdown automaton P
emulating a computation of a visit-bounded stack automaton.

If the computation of P succeeds, this means that all transitions in all the
history cards used can be linked together to form one possible contiguous com-
putation of M . Further, P reads every symbol that is read by every instruction
in this computation, just not necessarily in the same order as M . However,
this means that the string read by P is a permutation of the string that is
read by the corresponding computation of M . Therefore, the language of P is
letter-equivalent to the language of M . Finally, since the languages of pushdown
automata are semilinear, and semilinearity is preserved under letter-equivalence,
this means that the language of M is semilinear as well. ��

Visit-Bounded Stack Automata 199

5 Other Expensive Instruction Sets

We have considered automata models with E = {L} and E = {S, L, R, push, pop}.
We can ask whether models with other expensive instruction sets also describe
the same class of languages.

It is possible to show that visit{R}-bounded automata accept the same class
of languages as visit{L}-bounded automata. The proof uses similar ideas as in
the construction in the proof of Theorem 3, though we do not include it here.
Adding the S instruction to a set of expensive instructions does not change the
class of languages accepted, as every S instruction can be replaced by a pair of
R and L instructions, or push and pop instructions when operating on top of
the stack. Therefore it is always possible to construct an equivalent automaton
which never uses the S instruction.

Hence, if we consider expensive instruction sets E containing either L or R,
any visit-bounded automaton is also visitE bounded for such E. Therefore all
models with such an expensive instruction set accept the same class of languages.

Making expensive instructions exactly the push instructions has no effect on
the languages accepted (i.e. it accepts all stack languages), as any cell can only
be pushed on the stack once. We only include the push instruction as a possible
expensive instruction for completeness.

Finally, we shall see that a model with E = {pop} also accepts all stack
automaton languages. Using a procedure similar to the one in the construction
of automaton B in Theorem 3 we can clone symbols on the stack and replace
every pop transition by a sequence pop − pop − push, such that every cell is
visited at most twice by pop instructions.

These results can be summarized as follows. The hierarchy is depicted in
Fig. 2.

Fig. 2. The language families listed are related such that the families that are equal
are written together in a box, inclusions are shown with an arrow that are proper in
every case, and no lines connecting them indicate that they are incomparable.

Theorem 9. The hierarchy shown in Fig. 2 is correct.

Proof. That L(TMRB) � L(TMFC) = L(TMFV) � L(VISIT) is shown in Propo-
sition 5. That L(TMFV) � L(CSA) is shown in [4]. That L(CSA) � L(NESA) �

L(SA) is well known [3]. That L(NPDA) � L(VISIT) was shown in Corollary
4. That L(VISIT) = L(VISIT{L}) is from Theorem 3, and the equality with
L(VISIT{R}) is mentioned above. The equality of L(SA) with L(VISIT{pop}) and

200 J. Jirásek and I. McQuillan

L(VISIT{push}) is also mentioned above. The proper inclusion of L(VISIT) in
L(SA) follows from Theorem 6 since stack automata can accept non-semilinear
languages [3]. Also, L(CSA) contains languages not accepted by L(VISIT) since
L(CSA) contains non-semilinear languages [3]. Also, it is known that L(NESA)
does not contain all context-free languages [4]. ��
Hence, all the families above that are semilinear are contained in L(VISIT),
making it the most powerful such family.

References

1. Ginsburg, S., Greibach, S., Harrison, M.: One-way stack automata. J. ACM 14(2),
389–418 (1967)

2. Ginsburg, S., Greibach, S., Harrison, M.: Stack automata and compiling. J. ACM
14(1), 172–201 (1967)

3. Greibach, S.: Checking automata and one-way stack languages. J. Comput. Syst.
Sci. 3(2), 196–217 (1969)

4. Greibach, S.A.: One way finite visit automata. Theor. Comput. Sci. 6, 175–221
(1978)

5. Harju, T., Ibarra, O., Karhumäki, J., Salomaa, A.: Some decision problems concern-
ing semilinearity and commutation. J. Comput. Syst. Sci. 65(2), 278–294 (2002)

6. Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley, Reading
(1978)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

8. Ibarra, O., McQuillan, I.: Semilinearity of families of languages. Int. J. Found.
Comput. Sci. 31(8), 1179–1198 (2020)

9. Ibarra, O.H., McQuillan, I.: On families of full trios containing counter machine
languages. Theor. Comput. Sci. 799, 71–93 (2019)

10. Ibarra, O.H., McQuillan, I., Ravikumar, B.: On counting functions and slenderness
of languages. Theor. Comput. Sci. 777, 356–378 (2019)

11. Joshi, A.K.: Tree adjoining grammars: how much context-sensitivity is required
to provide reasonable structural descriptions? In: Natural Language Parsing, pp.
206–250. Cambridge University Press, Cambridge (1985)

12. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)

Well Quasi-Orders Arising from Finite
Ordered Semigroups

Ondřej Kĺıma(B) and Jonatan Kolegar

Department of Mathematics and Statistics, Masaryk University,
Kotlářská 2, 611 37 Brno, Czech Republic

{klima,kolegar}@math.muni.cz

Abstract. In 1985, Bucher, Ehrenfeucht and Haussler studied deriva-
tion relations associated with a given set of context-free rules. Their
research motivated a question regarding homomorphisms from the semi-
group of all words onto a finite ordered semigroup. The question is which
of these homomorphisms induce a well quasi-order on the set of all words.
We show that this problem is decidable and the answer does not depend
on the homomorphism, but it is a property of the ordered semigroup.

Keywords: Finite semigroups · Well quasi-orders · Unavoidable words

1 Introduction

The notion of well quasi-order (wqo) is a well-established tool in mathematics
and in many areas of theoretical computer science that was rediscovered by many
authors (see [8] by Kruskal). A comprehensive overview of the applications of
the notion in theory of formal languages and combinatorics on words can be
found in the book [10] by de Luca and Varricchio or in the survey paper [2] by
D’Alessandro and Varricchio. Since our contribution belongs to formal language
theory, we recall the central notion of wqo directly for the set of all words over
a finite alphabet A. A quasi-order ≤ on a set A∗ is a wqo if it has no infinite
antichains and no decreasing infinite chains (the latter property is often called
well-foundedness). There are several equivalent conditions for the notion (see,
e.g., [10, Theorem 6.1.1]); among them we recall the following: for every infinite
sequence of words w1, w2, . . . there exist integers 0 < i < j such that wi ≤ wj .
We point out that the important property which makes the notion of wqo a
useful tool is that every subset of A∗ upper closed with respect to a monotone
wqo ≤ is a regular language (see [10, Theorem 6.3.1]).

The first example of a wqo in the area of formal languages was given by
Higman [5]. We mention the simplest consequence of the general statement,
namely the result that the embedding relation � on A∗ is a wqo. The embedding
relation � is often called subword ordering, because a word u embeds in a word

The research was supported by Grant 19-12790S of the Grant Agency of the Czech
Republic.

c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 201–212, 2022.
https://doi.org/10.1007/978-3-031-05578-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_16&domain=pdf
https://doi.org/10.1007/978-3-031-05578-2_16

202 O. Kĺıma and J. Kolegar

v if u is a scattered subword of v, i.e., u � v if there are factorizations of the
same length u = a1 . . . ak and v = v1 . . . vk such that, for all i ∈ {1, . . . , k}, we
have ai ∈ A, vi ∈ A+, and ai appears in vi.

The considered notion of embedding relation can be modified by requiring
different conditions on the factorizations. For example, if the alphabet A is quasi-
ordered by �, then we may replace the condition that ai appears in vi by the
condition that there is a letter b ∈ A such that ai � b and b appears in vi. In this
way we obtain a quasi-order considered by Higman where he extended his result
to infinite alphabets. Another variant is the following gap embedding considered
by Schütte and Simpson in [14] for an alphabet equipped with a linear order �:
the defining condition that ai appears in vi is replaced by the condition that
the letter ai is the last letter in vi and it is the least letter in vi with respect
to �. Notice that yet another modification of the gap embedding is the priority
embedding in [4] by Haase, Schmitz, and Schnoebelen.

Our paper concentrates on an application of wqos motivated by the work of
Bucher, Ehrenfeucht and Haussler [1], which leads to a purely algebraic question
in the realm of ordered semigroups. Notice that the topic is nicely overviewed in
the recent survey paper [13] by Pin.

Before we introduce the primary question, we briefly recall the role of ordered
semigroups in the algebraic theory of regular languages. At first, when we talk
about an ordered semigroup (S, ·,≤), we assume that the partial order ≤ is
monotone (or stable), i.e., compatible with the multiplication · in the sense
that, for arbitrary x, y, s ∈ S, the inequality x ≤ y implies both s · x ≤ s · y
and x · s ≤ y · s. The finite ordered semigroups are used to recognize regular
languages similarly to unordered semigroups – see, e.g., the fundamental survey
on the algebraic theory of regular languages [12] by Pin. The modification is
natural as the syntactic semigroup of a regular language is implicitly ordered in
the following way. In the syntactic congruence of the regular language, words are
related if they have the same set of contexts. Then one may also compare these
sets of contexts by the inclusion relation; this comparison gives the syntactic
quasi-order and consequently the partial order on the syntactic semigroup of
the considered regular language. Let us note that in the literature the syntactic
quasi-order is not always defined in this way, as sometimes the dual quasi-order
is considered instead, e.g., in [12].

The starting point in the study of well quasi-orders in [1] was a research by
Ehrenfeucht, Haussler, and Rozenberg [3] concerning certain rewriting systems
preserving regularity, where a well quasi-order plays a role of a sufficient con-
dition guaranteeing the required property of the rewriting system. Particular
attention in that research is paid to rewriting systems R with rules of the form
a → u with a being a letter and u being a word. For such a rewriting system,
several conditions equivalent to the fact that the derivation relation ∗=⇒R is a
well quasi-order are stated in [1]. For example, one of the equivalent conditions
is that the set L = {aua | a ∈ A, u ∈ A∗, a ∗=⇒R aua} is unavoidable (in the sense
that every infinite word over the alphabet A contains a finite factor from the
language L). Unfortunately, they did not give algorithms to test the conditions.

Well Quasi-Orders Arising from Finite Ordered Semigroups 203

They also showed that every derivation relation that is a wqo originates from
a rewriting system induced by a semigroup homomorphism σ : A+ → S onto a
finite ordered semigroup (S, ·,≤) by the following formula:

Rσ = {a → u | a ∈ A, u ∈ A+, σ(a) ≤ σ(u)}.

The open question is to characterize homomorphisms σ such that ∗=⇒Rσ
is a

well quasi-order. Another research goal is a characterization of finite ordered
semigroups S such that the relation ∗=⇒Rσ

is a wqo for every alphabet A and
every homomorphism σ : A+ → S. For the purpose of this paper we call these
ordered semigroups congenial.

Let us note that the examples of wqos mentioned earlier also fit to the intro-
duced scheme of relations arising from a homomorphism onto a finite ordered
semigroup. Indeed, for an alphabet A we may consider an ordered semigroup
(P (A),∪,⊆) consisting of non-empty subsets of A equipped with the operation
of union, and ordered by the inclusion relation. Then for the homomorphism
σ : A+ → P (A), where σ(a) = {a} for a ∈ A, the relation ∗=⇒Rσ

coincides
with the embedding relation �.1 For the gap embedding, one may construct the
semigroup A × A (ordered by equality), where the multiplication is given by
(a, b) · (c, d) = (min(a, c), d), where min is taken with respect to � (and the
homomorphism σ : A+ → A × A is the extension of the diagonal mapping).

Up to our knowledge, and also according to the survey paper [13], there
is just one significant contribution to the mentioned open questions. Namely,
in the paper [9] by Kunc, the questions are solved for the semigroups ordered
by the equality relation. It is stated in [9] (implicitly contained in the proof
of Theorem 10) that the property depends only on the semigroup S, not on
the actual homomorphism σ. The congenial semigroups ordered by the equality
relation are characterized as finite chains of finite simple semigroups. One of
the equivalent characterizations of this transparent structural property is the
following condition which can be checked in polynomial time: for every s, t ∈ S,
we have (s · t)ω · s = s or t · (s · t)ω = t, where (s · t)ω is the power of s · t that is
idempotent.

Our research aims to give an analogous characterization in the general case;
however, we do not fulfill that program yet, and our contribution brings tentative
results. As the main result, we show that the problem of whether a homomor-
phism induces a well quasi-order is decidable. The proof is an almost straight-
forward application of the mentioned characterization in [1]. We show that the
mentioned side result from [9] holds in the full generality: the property is indeed
a property of an ordered semigroup and does not depend on the homomorphism.
Next, we give some necessary and sufficient conditions ensuring congeniality.

1 For a variant of Higman’s Lemma where the alphabet A is equipped with the quasi-
order �, we take for the ordered semigroup S the subsemigroup of P (A) consisting
of all downward closed subsets of A with respect to the considered quasi-order �.
Note that for an infinite alphabet the constructed ordered semigroup is not finite
and therefore it is not our focus.

204 O. Kĺıma and J. Kolegar

Due to the space constraints, some proofs are omitted. They are available in
the full version of the paper [7].

2 Preliminaries

We briefly recall basic notions and fix notation used in the paper. When we talk
about ordered semigroup or semigroup, we write simply S instead of formal nota-
tion (S, ·,≤) and (S, ·). Throughout the paper we work with finite semigroups
with the exception of the free monoid A∗ (the free semigroup A+) formed by
(non-empty) words over an alphabet A. We use the symbol ε for the empty word.
An element e in a semigroup S is called idempotent if e · e = e. For all s ∈ S, the
set {sn |n ∈ N} contains exactly one idempotent, which is denoted sω. We put
sω+1 = sω · s which equals (by definition) to s · sω. By S1 we mean the monoid
S ∪{1} with a new neutral element 1 added when S is not a monoid and S1 = S
otherwise. We denote evalS : S+ → S the evaluation homomorphism from the
free semigroup over S defined by the rule evalS(s) = s for all s ∈ S. Here, an
element w ∈ S+ is a word w = s1s2 . . . sk, where si ∈ S for i ∈ {1, . . . , k}, and
for such w we have evalS(w) = evalS(s1s2 . . . sk) = s1 · s2 · · · sk.

Furthermore, we use the Green relations, a basic notion in the theory of
semigroups (see [6] by Howie). For the reader’s convenience we recall that an
ideal of a semigroup S is a non-empty subset I ⊆ S such that for all t ∈ I and
s ∈ S we have t · s ∈ I and s · t ∈ I. The ideal generated by an element s ∈ S is
equal to S1sS1 = {x · s · y |x, y ∈ S1}. Then the Green relation J is defined by
the rule sJ t ⇐⇒ S1sS1 = S1tS1. We say that a semigroup is simple if it has
no proper ideal, i.e., if all elements of the semigroup are J -equivalent.

The following lemma is well known (see, e.g., [11, Theorem 1.11] by Pin).

Lemma 1. Let S be a finite semigroup. There exists n ∈ N such that for every
sequence of elements s1, . . . , sn ∈ S there are indices i, j ∈ {1, . . . , n}, i ≤ j for
which the product si · si+1 · · · sj is an idempotent.

For words w, x, y, z ∈ A∗ such that w = xyz, we say that x is a prefix, y is
a factor and z is a suffix. We say that the prefix x of w is proper if |x| < |w|,
where |w| is the length of the word w. A language L ⊆ A∗ is unavoidable if an
arbitrary infinite word u over A has a factor v in L. We denote the set of all
infinite words over A by A∞.

A quasi-order ≤ on a set X is a reflexive and transitive binary relation. It is
called a well quasi-order (wqo) if for an infinite sequence (xn)n∈N of elements of
X there exist indices m,n ∈ N such that m < n and xm ≤ xn. Many equivalent
defining conditions are known (see, e.g., [10, Theorem 6.1.1]).

The next definition is partially motivated by results from [1]. We prefer to
follow the formalism and notation used in [9].

Definition 2. Let σ : A+ → S be a homomorphism onto a finite ordered semi-
group. We denote ≤σ a quasi-order on A∗ defined by setting u ≤σ v if and only
if there exist factorizations u = a1 . . . an and v = v1 . . . vn, such that for all
i ∈ {1, . . . , n} we have ai ∈ A, vi ∈ A+ and σ(ai) ≤ σ(vi).

Well Quasi-Orders Arising from Finite Ordered Semigroups 205

We refer to the list of inequalities σ(aj) ≤ σ(vj) for j ∈ {1, . . . , n} as to the
proof of u ≤σ v, and we can use the proof to form other inequalities. We say that
ai . . . aj ≤σ vi . . . vj is the consequence of the proof given by the factor ai . . . aj .
Note that u ≤σ v implies σ(u) ≤ σ(v) and either u = v = ε or u, v ∈ A+. Finally,
it is clear that ≤σ is a stable quasi-order on A∗.

The following interpretation of the results from [1] needs some other obser-
vations [1, Sect. 3] concerning rewriting systems of the form mentioned in the
introduction (in [1] called 0S schemes): If the relation ∗=⇒R with rules of the form
a → u, a ∈ A, u ∈ A+ is a wqo, then there is a homomorphism σ : A+ → S onto
a finite ordered semigroup such that the relations ∗=⇒R and ≤σ coincide. And
vice versa, if ≤σ is a wqo, then there is a system R with the property ∗=⇒R = ≤σ.

Proposition 3 [1]. Let σ : A+ → S be a homomorphism onto a finite ordered
semigroup. Then the following conditions are equivalent:

1. The relation ≤σ is a well quasi-order on A∗.
2. The language Lσ = {awa | a ∈ A,w ∈ A∗, a ≤σ awa} is unavoidable over A.
3. The language {aw | a ∈ A,w ∈ A∗, a ≤σ aw} is unavoidable over A.

We say that an ordered semigroup S is congenial if for every homomorphism
σ : A+ → S the corresponding relation ≤σ is a well quasi-order. The class of
congenial semigroups is denoted C.

We finish this section with a basic observation that it is enough to consider
the case of the homomorphism evalS when a congeniality of S is tested. We
establish the following auxiliary lemma with the proof essentially same as to the
unordered case (see [9, Theorem 10, (iii)=⇒(i)]).

Lemma 4. Let σ : A+ → S be a homomorphism to an ordered semigroup S such
that ≤σ is a wqo. Let B be an alphabet, α : B+ → A+ be a homomorphism of
free semigroups such that α(B) ⊆ A, and ϕ = σ ◦ α. Then the quasi-order ≤ϕ is
a wqo. �

The following is a direct consequence of Lemma 4 for A = S and σ = evalS .

Lemma 5. A semigroup S is congenial if and only if ≤evalS is a wqo. �

3 What Makes an Ordered Semigroup Congenial

Due to [9, Lemma 2], we know that a semigroup S ordered by equality is con-
genial if and only if for every s, t ∈ S either s = (s · t)ω · s or t = t · (s · t)ω. The
natural generalization of this condition for an ordered semigroup S is

∀s, t ∈ S : s ≤ (s · t)ω · s or t ≤ t · (s · t)ω. (1)

We show that this condition is indeed necessary. Note that a semigroup satisfy-
ing (1) also satisfies s ≤ sω+1 as it is just the condition (1) with s = t.

Proposition 6. Every congenial semigroup satisfies the condition (1). �

206 O. Kĺıma and J. Kolegar

The following example shows that the condition (1) is not a sufficient condi-
tion. It indicates that the ordered situation is more complicated.

Example 7. Denote FLRB(3) the free left-regular band (i.e., semigroup satisfying
the identities xyx = xy and x2 = x) over three generators a, b, c. The semigroup
has 15 elements represented by words listed in Fig. 1, where the order is depicted.
For the product of a pair of elements, we simply concatenate the words and then

acb bac cba

ac abc ba bca cb cab

a ab b bc c ca

Fig. 1. The order ≤ of FLRB(3).

omit the second occurrence of each letter if it occurs. It is a routine to check
that FLRB(3) satisfies the condition (1).

Now we take σ : {a, b, c}+ → FLRB(3) where σ(a) = a, σ(b) = b, σ(c) = c.
For the language Lσ given by Proposition 3, we see that u ∈ Lσ if and only
if σ(u) ∈ {a, ac, acb, b, ba, bac, c, cb, cba}. The periodical infinite word generated
by abc, that is (abc)∞ = abcabc . . . , has no factor in the language Lσ since
σ((abc)na) = abc (for n ∈ N) and similarly for factors starting and ending with
b, resp. c. This means that Lσ is avoidable and FLRB(3) /∈ C. Therefore, the
condition (1) is not the characterization of the class of congenial semigroups.

We also add an example of ordered semigroup which is not completely regular.

Example 8. We consider two ordered versions B+
2 and B−

2 of the Brandt semi-
group B2. The semigroup is generated by two elements a and b satisfying a2 = 0,
b2 = 0, aba = a, and bab = b. The semigroup has five elements a, b, ab, ba, and 0,
where ab, ba, 0 are idempotents. The orders are given in Fig. 2. In both cases we
consider a homomorphism σ : {a, b}+ → B2, where σ(a) = a, σ(b) = b.

a ab ba b 0

B+
2 : B−

2 :

0 b ba ab a

Fig. 2. Orders of B+
2 and B−

2 .

Firstly, we deal with B+
2 . Taking the sequence of words (ai)i∈N, we get an

infinite antichain with respect to ≤σ showing that ≤σ is not a wqo and thus

Well Quasi-Orders Arising from Finite Ordered Semigroups 207

B+
2 /∈ C. For the ordered semigroup B−

2 , we see that a ≤ a2 = 0, b ≤ b2 = 0,
and a = aba, and so a2, b2, aba ∈ Lσ for Lσ from Proposition 3. The language
{a2, aba, b2} is unavoidable, which implies B−

2 ∈ C.

Motivated by the previous examples and basic observations, we show the first
sufficient condition ensuring the congeniality.

Proposition 9. Let S be a finite ordered semigroup satisfying the inequality
x ≤ x · (y · x)ω. Then S is congenial.

Proof. Let σ : A+ → S be an arbitrary homomorphism. We show that the set Lσ

from Proposition 3 is unavoidable. Let v ∈ A∞. Since the alphabet is finite, some
letter a ∈ A has infinitely many occurrences in v. We consider the factorization
v = w0aw1aw2aw3 . . . , where the words wi do not contain the letter a. We take
the sequence s1 = σ(w1a), s2 = σ(w2a), . . . and use Lemma 1 to show that there
exist indices i, j such that σ(wia . . . wja) is an idempotent. If we denote x = σ(a),
y = σ(wia . . . wj), then we get y · x = (y · x)ω and x ≤ x · (y · x)ω = x · y · x.
Therefore a ≤σ awia . . . wja and the infinite word v has a factor in Lσ. �

4 Effective Characterization of the Class C
In order to check the condition in Proposition 3, we introduce some technical
notation. Let A be an alphabet, and w ∈ A+ be a word. Then we write f(w) for
the first letter in w, i.e., the letter a such that w ∈ aA∗. Dually, �(w) means the
last letter in the word w. Moreover, we denote the set of all factors and suffixes
of a given word in a usual way with an exception that we do not consider letters
as factors and suffixes here:

Fac(w) = {u ∈ A+ \ A | ∃p, q ∈ A∗, w = puq}, and

Suf(w) = {u ∈ A+ \ A | ∃p ∈ A∗, w = pu}.

Now, let σ : A+ → S be a homomorphism onto a finite ordered semigroup.
We introduce the main technical notation: for w ∈ A+ we put

Facσ(w) = {(σ(u), f(u), �(u)) ∈ S × A × A | u ∈ Fac(w)}, and

Sufσ(w) = {(σ(u), f(u), �(u)) ∈ S × A × A | u ∈ Suf(w)}.

Notice that Facσ(w) = Sufσ(w) = Fac(w) = Suf(w) = ∅ whenever w ∈ A.
Furthermore, Sufσ(w) ⊆ S × A × {�(w)} for every word w, that is a useful
property motivating the following definition. A non-empty subset M of the set
S ×A×A is called coherent if there is a letter a ∈ A such that M ⊆ S ×A×{a};
if such a letter exists, we denote it by �(M).

Clearly, w ∈ A+ does not avoid Lσ = {ava | a ∈ A, v ∈ A∗, a ≤σ ava} if and
only if there exist w′, v, w′′ ∈ A∗ such that w = w′avaw′′ and σ(a) ≤ σ(ava). The
latter condition is equivalent to (σ(ava), a, a) ∈ Facσ(w) with σ(a) ≤ σ(ava). In
other words, a word w ∈ A+ avoids the set Lσ if and only if Facσ(w) is disjoint
with the set F = {(s, a, a) ∈ S × A × A | σ(a) ≤ s}. Now, we are ready to
formulate a direct consequence of Proposition 3.

208 O. Kĺıma and J. Kolegar

Lemma 10. Let σ : A+ → S be a homomorphism onto a finite ordered semi-
group S. Then the relation ≤σ is a well quasi-order if and only if the set
{w ∈ A+ \ A | Facσ(w) ∩ F = ∅} is finite. �

To test whether the considered set is finite, we use that every Facσ(w) is
a subset of S × A × A, and therefore there are only finitely many of them. In
fact, we compute all possible Sufσ(w) disjoint with F instead of computing all
Facσ(w). It is enough as Facσ(w) is a union of all Sufσ(u) where u is a prefix
of w. Naturally, we compute sets Sufσ(u) recursively, since Sufσ(wa) can be
determined by Sufσ(w) in the following way. Informally speaking, we add a at
the end of all elements of Sufσ(w) and evaluate the suffix �(Sufσ(w))a of wa of
length two. Therefore, we see the sets Sufσ(w) as states of the following finite
deterministic incomplete automaton Aσ over the alphabet A. Notice that the
automaton does not have final states.

We put Aσ = (Q,A, δ, ι) where Q = {ι} � Ā � P, Ā = {ā | a ∈ A}, and
P = {M ⊆ S × A × A |M �= ∅,M ∩ F = ∅,M coherent}. For a given set M ∈ P
and a letter a ∈ A we define

M ∗ a = {(s · σ(a), b, a) | (s, b, c) ∈ M} ∪ {(σ(�(M)a), �(M), a)}.

Similarly, for b̄ ∈ Ā we put b̄ ∗ a = {(σ(ba), b, a))}. Furthermore, we define the
partial transition function δ : Q × A → Q by δ(ι, a) = ā for the initial state ι,
and for q ∈ Q \ {ι} we put δ(q, a) = q ∗ a if q ∗ a ∈ P. Note that the condition
q ∗ a ∈ P is equivalent to q ∗ a ∩ F = ∅ since q ∗ a is always non-empty and
coherent. In particular, we have �(q ∗a) = a. As usual, the partial function δ can
be extended to the partial function δ : Q × A+ → Q, which is denoted by δ too.

The following lemma summarises the properties of the previous constructions,
with an obvious proof by an induction with respect to the length of words.

Lemma 11. Let σ : A+ → S be a homomorphism onto a finite ordered semi-
group S, and Aσ be the automaton defined as above. For every word w ∈ A+ \A,
the state δ(ι, w) is defined in Aσ if and only if Facσ(w) ∩ F = ∅. Moreover, if
δ(ι, w) is defined, then δ(ι, w) = Sufσ(w). �

Now, we are ready to state the main result. The proof is straightforward
consequence of Proposition 3 and the constructions and lemmas in this section.

Theorem 12. Let σ : A+ → S be a homomorphism onto a finite ordered semi-
group S. Then ≤σ is a wqo if and only if the automaton Aσ does not contain an
infinite path starting in the initial state ι. �

The purpose of Theorem 12 is the following statement.

Corollary 13. Let σ : A+ → S be a homomorphism onto a finite ordered semi-
group S. Then it is decidable whether ≤σ is a well quasi-order. �

Recall that all states in P are coherent subsets of S × A × A. Since the
automaton Aσ is finite, the existence of an infinite path starting in the initial
state ι is equivalent to the existence of a loop reachable from ι. If we assume
that there is a loop labeled by u and reachable by v, then we have that vu∞ =
vuuu . . . avoids Lσ. Hence the periodical infinite word u∞ avoids Lσ too.

Well Quasi-Orders Arising from Finite Ordered Semigroups 209

Corollary 14. Let σ : A+ → S be a homomorphism onto a finite ordered semi-
group S. Then there is an infinite word avoiding Lσ if and only if there is a
periodic infinite word u∞ with that property. �

The number of states of the automaton Aσ is bounded by |A| × 2|S|×|A| +
|A|+1, that gives the obvious exponential bound for the time complexity of the
algorithm based on Theorem 12.

One may modify the construction of Aσ if the condition (3) from Proposi-
tion 3 replaces the Condition (2). This means that Corollary 14 holds if we take
the set {aw | a ∈ A,w ∈ A+, σ(a) ≤ σ(aw)} instead of the set Lσ.

5 Other Necessary and Sufficient Conditions

The motivation for this section is to examine whether the condition that ≤σ

is a wqo depends on the homomorphism σ or it is just a property of the semi-
group. Therefore, we try to prove necessary conditions from Sect. 3 under the
assumption that ≤σ is a wqo.

Proposition 15. Let σ : A+ → S be a homomorphism onto a finite ordered
semigroup S such that ≤σ is a wqo. Then for every u ∈ A+ there exists an
integer p > 1 such that u ≤σ up.

Proof. We show the statement by induction with respect to the length of the
word u. For every a ∈ A the definition of wqo implies that ak ≤σ a� for some
integers k < �, and by the definition of ≤σ we have a ≤σ ap for some p > 1.

Assume that the statement is true for all words shorter than a given word
u ∈ A+ \ A. Similarly to the initial step, we have uk ≤σ u� for some k < �. We
consider the consequences of the proof of uk ≤σ u� given by factors u of uk. The
first non-trivial inequality among these consequences in the order from left to
right is of the form u ≤σ umv where v is a proper prefix of u. Notice that for
v = ε we are done.

For the considered prefix v of u we may also have some inequality of the form
v ≤σ ujw with j ∈ N, in particular the proof of the inequality uk ≤σ u� has such
a consequence. We analyze the inequalities of that form for all prefixes of u.

On the set P = {v ∈ A∗ | v is prefix of u} we define the relation → as follows:
v → w if there is j ≥ 0 such that v ≤σ ujw and |v| < |ujw|. (Notice that if
w = v, then j > 0.) Since ≤σ is a stable quasi-order the relation → is transitive.
As is discussed above, there is v ∈ P , v �= u such that u → v and so at least one
of the following cases occurs.

Case I: u → ε. This means u ≤σ uj with j > 1 and we are done.
Case II: there is v ∈ P such that u → v �= ε, and there is no w such that

v → w. In particular, v �= u. Let v̄ be the suffix of u such that vv̄ = u. Since
v �= ε, we have |v̄| < |u| and by the induction assumption there is p such that
v̄ ≤σ v̄p. If we consider the proof of u ≤σ ujv, then the consequence given by
the prefix v is trivial equality (by the assumption that there is no inequality
of the form v ≤σ ujw with |v| < |ujw|). Then the consequence of the proof

210 O. Kĺıma and J. Kolegar

given by the suffix v̄ is in the form v̄ ≤σ v̄uj−1v. Now we use this inequality
(p − 1)-times to get v̄p−1 ≤σ (v̄uj−1v)p−1 = v̄u(p−1)j−1v. Then we multiply the
former inequality by v̄ on the right and we get v̄p ≤σ v̄u(p−1)j . Since we assumed
v̄ ≤σ v̄p, we also get v̄ ≤σ v̄u(p−1)j . Finally, we multiply by v on the left and
obtain u ≤σ u(p−1)j+1.

Case III: there is v ∈ P such that u → v �= ε, and v → v. This means that
there is j > 0 such that v ≤σ ujv. Now, it is enough to multiply the former
inequality by the suffix v̄ of u on the right, and we get u ≤σ uj+1. �

We try to show that an ordered semigroup S is congenial whenever we have
an onto homomorphism σ : A+ → S determining the wqo ≤σ. This means that
for every homomorphism ϕ : B+ → S, the set Lϕ = {bwb | b ∈ B,w ∈ B∗, b ≤ϕ

bwb} has to be unavoidable. Hence, every periodic infinite word w∞ must contain
a factor from Lϕ. In particular, if B contains n letters b1, b2, . . . , bn, then, for
the word w = b1b2 . . . bn, there is an index i ∈ {1, . . . , n} and an integer p ∈ N

such that ϕ(bi) ≤ ϕ(bi(bi+1 . . . bi)p). Since the homomorphism σ is onto, we may
consider words wj ∈ A+ such that σ(wj) = ϕ(bj). In this setting, we want to
show that σ(wi) ≤ σ(wi(wi+1 . . . wi)p). In fact, we aim on the stronger inequality
wi ≤σ wi(wi+1 . . . wi)p. Proposition 15 is a special case of this property for n = 1.
The following statement fulfills the sketched program.

Theorem 16. Let S be a finite ordered semigroup. Then the following condi-
tions are equivalent:

(i) There exists an alphabet A and an onto homomorphism σ : A+ → S such
that ≤σ is a well quasi-order.

(ii) There exists an alphabet A and an onto homomorphism σ : A+ → S such
that, for every n ∈ N and a1, . . . , an ∈ A, there exists i ∈ {1, . . . , n} and
p ∈ N such that ai ≤σ ai(ai+1 . . . ana1 . . . ai)p.

(iii) There exists an alphabet A and an onto homomorphism σ : A+ → S such
that, for every n ∈ N and u1, . . . , un ∈ A+, there exists i ∈ {1, . . . , n} and
p ∈ N such that ui ≤σ ui(ui+1 . . . unu1 . . . ui)p.

(iv) There exists an alphabet A and an onto homomorphism σ : A+ → S such
that, for every n ∈ N and u1, . . . , un ∈ A+, there exists i ∈ {1, . . . , n} and
p ∈ N such that σ(ui) ≤ σ (ui(ui+1 . . . unu1 . . . ui)p).

(v) For every n ∈ N and s1, . . . , sn ∈ S, there exists i ∈ {1, . . . , n} and p ∈ N

such that si ≤ si · (si+1 · · · sn · s1 · · · si)p.
(vi) For every alphabet B and a homomorphism ϕ : B+ → S the relation ≤ϕ is

a well quasi-order.

Proof. We show the implications from top to bottom. The omitted implications
are easy to see. In the conditions (i)–(iv), the same pair (A, σ) is employed.

“(i) =⇒ (ii)”: We consider a new alphabet B = {b1, . . . , bn} of size n and
a homomorphism α : B+ → A+ such that α(bi) = ai for all i ∈ {1, . . . , n}.
We denote the composition σ ◦ α by ϕ. By Lemma 4, we know that the rela-
tion ≤ϕ is a wqo. In particular, the infinite word (b1b2 . . . bn)∞ has a factor in
Lϕ = {bwb | b ∈ B,w ∈ B∗, b ≤ϕ bwb}. Therefore, there is i ∈ {1, . . . , n} and

Well Quasi-Orders Arising from Finite Ordered Semigroups 211

p ∈ N such that bi ≤ϕ bi(bi+1 . . . bnb1 . . . bi)p. Finally, we get σ(ai) = ϕ(bi) ≤
ϕ(bi(bi+1 . . . bnb1 . . . bi)p) = σ(ai(ai+1 . . . ana1 . . . ai)p).

“(ii) =⇒ (iii)”: We apply the condition (ii) on the word u = u1u2 . . . un which
we see as a concatenation of individual letters. So, there is i ∈ {1, . . . , n}, p ∈ N

and u′
i, u

′′
i ∈ A∗ such that ui = u′

iau′′
i and a ≤σ a(u′′

i ui+1 . . . unu1 . . . ui−1u
′
ia)p.

If we multiply this inequality by the word u′
i on left and by the word u′′

i on right,
we get ui ≤σ ui(ui+1 . . . unu1 . . . ui−1ui)p.

“(v) =⇒ (vi)”: It follows from Corollary 14. �
The condition (ii) from Theorem 16 was mentioned in [1] in the setting of

rewriting systems, namely it occurs as condition (c) in the concluding section.
Also, the condition in Proposition 15 is mentioned there as the condition (b). It
is mentioned in [1] without proof that the conditions are equivalent.

The equivalence of the conditions (i) and (vi) in Theorem 16 gives the fol-
lowing result saying that whether the induced quasi-order ≤σ is a wqo does not
depend on the homomorphism σ and it is a property of the ordered semigroup.

Corollary 17. Let σ : A+ → S be a homomorphism onto a finite ordered semi-
group S. Then ≤σ is a wqo if and only if the semigroup S is congenial. �

We get the following characterization of congeniality using the condition (v)
of Theorem 16.

Corollary 18. Let S be an ordered semigroup. Then S is congenial if and only
if for every n ∈ N and s1, . . . , sn ∈ S, there exists i ∈ {1, . . . , n} such that
si ≤ si · (si+1 · · · sn · s1 · · · si)ω. �

Unfortunately, it is not possible to bound n in Corollary 18. Indeed, there
is a sequence of ordered semigroups Sm such that Sm satisfies the condition in
Corollary 18 if n < m and does not satisfy the condition for n = m.

6 Conclusion

We have shown that for a homomorphism σ : A+ → S onto a finite ordered
semigroup, it is decidable whether ≤σ is a wqo. We also proved that the question
does not depend on σ, but it is indeed a property of the given ordered semigroup.
One may expect more effective or transparent characterization similar to that
of the unordered case in [9]. Nevertheless, our observations suggest that such a
characterization could be more difficult to obtain.

We conclude with a brief discussion of the applications of our results. We
do not see any direct impact of the research to the work done in [1]. On the
other hand, in [9], the wqo was applied to prove regularity of maximal solutions
of very general language equations and inequalities (see also [13]). The theory
developed in [9] may be naturaly extended to the ordered case, so our new class
of ordered semigroups inducing well quasi-orders may find the application there.

Acknowledgement. We are grateful to the referees for their numerous valuable sug-
gestions which improved the paper, in particular, its introductory part. We also thank
to Michal Kunc for inspiring discussions.

212 O. Kĺıma and J. Kolegar

References

1. Bucher, W., Ehrenfeucht, A., Haussler, D.: On total regulators generated by deriva-
tion relations. Theor. Comput. Sci. 40, 131–148 (1985). https://doi.org/10.1016/
0304-3975(85)90162-8

2. D’Alessandro, F., Varricchio, S.: Well quasi-orders in formal language theory. In:
Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 84–95. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-85780-8 6

3. Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free lan-
guages. Theor. Comput. Sci. 27, 311–332 (1983). https://doi.org/10.1016/0304-
3975(82)90124-4

4. Haase, C., Schmitz, S., Schnoebelen, P.: The power of priority channel systems.
Log. Methods Comput. Sci. 10(4) (2014). https://doi.org/10.2168/LMCS-10(4:
4)2014

5. Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc.
s3-2(1), 326–336 (1952). https://doi.org/10.1112/plms/s3-2.1.326

6. Howie, J.M.: An Introduction to Semigroup Theory. Academic Press, London
(1976)

7. Kĺıma, O., Kolegar, J.: Well quasi-orders arising from finite ordered semigroups
(2022). https://arxiv.org/abs/2203.06535

8. Kruskal, J.B.: The theory of well-quasi-ordering: a frequently discovered concept.
J. Comb. Theory Ser. A 13(3), 297–305 (1972). https://doi.org/10.1016/0097-
3165(72)90063-5

9. Kunc, M.: Regular solutions of language inequalities and well quasi-orders. Theor.
Comput. Sci. 348, 277–293 (2005). https://doi.org/10.1016/j.tcs.2005.09.018

10. de Luca, A., Varricchi, S.: Finiteness and Regularity in Semigroups and For-
mal Languages. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-
59849-4

11. Pin, J.É.: Varieties of Formal Languages. Foundations of Computer Science. North
Oxford Academic, London (1986)

12. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of Formal Languages, pp. 679–746. Springer, Heidelberg (1997). https://doi.org/
10.1007/978-3-642-59136-5 10

13. Pin, J.É.: How to prove that a language is regular or star-free? In: Leporati, A.,
Mart́ın-Vide, C., Shapira, D., Zandron, C. (eds.) LATA 2020. LNCS, vol. 12038,
pp. 68–88. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40608-0 5

14. Schütte, K., Simpson, S.G.: Ein in der reinen Zahlentheorie unbeweisbarer Satz
über endliche Folgen von natürlichen Zahlen. Arch. Math. Log. 25(1), 75–89 (1985).
https://doi.org/10.1007/BF02007558

https://doi.org/10.1016/0304-3975(85)90162-8
https://doi.org/10.1016/0304-3975(85)90162-8
https://doi.org/10.1007/978-3-540-85780-8_6
https://doi.org/10.1016/0304-3975(82)90124-4
https://doi.org/10.1016/0304-3975(82)90124-4
https://doi.org/10.2168/LMCS-10(4:4)2014
https://doi.org/10.2168/LMCS-10(4:4)2014
https://doi.org/10.1112/plms/s3-2.1.326
https://arxiv.org/abs/2203.06535
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1016/j.tcs.2005.09.018
https://doi.org/10.1007/978-3-642-59849-4
https://doi.org/10.1007/978-3-642-59849-4
https://doi.org/10.1007/978-3-642-59136-5_10
https://doi.org/10.1007/978-3-642-59136-5_10
https://doi.org/10.1007/978-3-030-40608-0_5
https://doi.org/10.1007/BF02007558

The Billaud Conjecture for |Σ| “ 4,
and Beyond

Szymon �Lopaciuk(B) and Daniel Reidenbach

Department of Computer Science, Loughborough University,
Loughborough LE11 3TU, UK

{s.p.lopaciuk,d.reidenbach}@lboro.ac.uk

Abstract. The Billaud Conjecture, first stated in 1993, is a fundamen-
tal problem on finite words and their heirs, i.e., the words obtained by
a projection deleting a single letter. The conjecture states that every
morphically primitive word, i.e., a word which is not a fixed point of
any non-identity morphism, has at least one morphically primitive heir.
In this paper we give the proof of the Conjecture for alphabet size 4,
and discuss the potential for generalising our reasoning to larger alpha-
bets. We briefly discuss how other language-theoretic tools relate to the
Conjecture, and their suitability for potential generalisations.

Keywords: Billaud Conjecture · Morphic primitivity · Fixed point

1 Introduction

The context of our research is the notion of morphic primitivity of words: a word
is morphically primitive if the only morphism for which it is a fixed point is the
identity morphism. In 1993, Billaud [1] stated the following conjecture, which is
still open to this day, relating to the concept of morphic primitivity of words:

Conjecture 1 (The Billaud Conjecture). There exists at least one letter x in
every morphically primitive word w such that the word obtained by deleting all
occurrences of x in w is also morphically primitive.

Let us call the word w the parent, and the words obtained through a deletion
of a letter from w heirs. We can consider, as an example, morphically primitive
parent abcbac: the heir resulting from the deletion of the letter c is abba, and
it is morphically primitive. Notably, as the Billaud Conjecture is an implication
and not a characterisation, while there are morphically imprimitive words such
as (abc)2 whose all heirs are morphically imprimitive, there are also words like
a(bc)2a, which are morphically imprimitive, yet have morphically primitive heirs
(in our example abba).

The conjecture has been open for almost three decades and only a few special
cases where it holds have so far been established; no counterexamples have been
found, and the conjecture is widely believed to be true. Shortly after Billaud
c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 213–225, 2022.
https://doi.org/10.1007/978-3-031-05578-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_17&domain=pdf
http://orcid.org/0000-0001-6697-7170
http://orcid.org/0000-0001-7996-5291
https://doi.org/10.1007/978-3-031-05578-2_17

214 S. �Lopaciuk and D. Reidenbach

posed his question, Geser [4] noted that in the context of morphic imprimitivity
of words we need only to consider idempotent morphisms; an extended version of
this statement was proved by Levé and Richomme [10]. It has been shown that
the conjecture holds in the following special cases: Nevisi and Reidenbach [13]
proved that the conjecture is correct for all words (with three or more different
letters) if they contain each letter exactly twice. Restricting the alphabet size,
Zimmermann [17] showed that the conjecture holds for the alphabet size of 3.
(We note the case of alphabet size of 2 is trivial.) Walter [16] identified and
proved some of the cases necessary for showing that the conjecture holds for
alphabet size of 4. Levé and Richomme [10], working with the contrapositive of
the conjecture, proved that if all morphically imprimitive heirs of a word are fixed
points of non-trivial morphisms with exactly one expanding letter each, then the
same holds for the parent word; the letter x is expanding if the morphism φ for
which the word is a fixed point is such that |φ(x)| � 2. The latter two results
form the basis for the completion of our proof for the Billaud Conjecture for
alphabet size 4.

Morphic primitivity of words has been studied by Head [7] in the context
of L-systems, by Hamm and Shallit [6], and in the context of erasing pattern
languages by Reidenbach [14]; all these authors gave alternative characterisations
of the concept. The term ‘morphic imprimitivity’ itself was coined by Reidenbach
and Schneider [15], who described a characteristic factorisation of these words.
Holub [8] gave a polynomial-time algorithm to find an imprimitivity factorisation
of a word (further refined by Matocha and Holub [11], and Kociumaka et al. [9]).

In this paper we show that the Billaud Conjecture holds for the class of
words over the alphabet of size 4. We begin by introducing some concepts that
are vital to our reasoning in Sect. 3. Prior to giving our proof in Sect. 5, and in
order to provide the reader with some intuition for the direction of our reasoning,
in Sect. 4, we present a generalised overview, or a ‘blueprint’, of the steps one
can follow in order to attempt to prove the Billaud Conjecture holds for any
fixed alphabet size. Moreover, alongside our presentation of the proof technique,
we discuss other tools available in the literature that are of relevance to the
conjecture, namely the synchronised shuffle [3], and pattern expressions [2].

Due to space constraints, most of the proofs have been omitted.

2 Preliminaries

We denote the set of positive integers with N`, and non-negative ones with N0.
Moreover, for any two integers m,n, m � n, let �n,m� be the set of all integers
i such that n � i � m. An alphabet Σ is an enumerable set of symbols or
letters. As a word (over an alphabet Σ) we refer to a finite sequence of elements,
symbols, of Σ. The cardinality of a set A shall be denoted by |A|, similarly the
length of a word w is |w|. The empty word, denoted by λ, is the special word for
which |λ| “ 0. The set of all words over an alphabet Σ is denoted with Σ∗, and
of all non-empty words with Σ`.

We write the concatenation of two words u, v as u · v or uv; we extend this
to languages: L · L′ :“ {uv | u P L, v P L′}. Sometimes, where a set operation is

The Billaud Conjecture for |Σ| “ 4, and Beyond 215

implied, we shall write w instead of {w} for a word w, e.g., w∗ “ {w}∗. Given
a word w and n P N0, wn denotes the n-fold concatenation of the word w. A
word v is a factor of w, denoted v Ď w, if there exist words w1, w2 satisfying
w “ w1 · v · w2; the factor v is a prefix if w1 “ λ, and a suffix if w2 “ λ. We say
that a word v is a circular factor of w if it is a factor of w, or if there exists a
prefix v′ and a suffix v′′ of w such that v “ v′′v′. The number of occurrences of
a factor v in w is denoted by |w|v. Given words u and v, we define their shuffle
product, u D v, as the set of all words w such that w “ u1v1u2v2 · · · unvn, where
u “ u1u2 · · · un and v “ v1v2 · · · vn for some n P N`; we extend this definition
to languages, so that L

D

L′ :“ {u

D

v | u P L, v P L′}. Let symb(w) denote the
set of all letters x Ď w. Finally, we define a regular expression E (over Σ) and
its language L(E) in the usual way, and we use | as the alternative operator.

For any alphabets A and B and all words w, v P A∗, a (homo-)morphism
φ : A∗ → B∗ is a function that satisfies φ(w)φ(v) “ φ(wv). A morphism φ :
A∗ → A∗ is idempotent if φ “ φ ˝ φ. A word w is a fixed point of a morphism
φ if φ(w) “ w. If a morphism φ is not idempotent, and there exists a finite
fixed point word w of φ, then there exists an idempotent morphism φ′ such that
φ′(w) “ w [4]. If X is a set of letters, then we denote with πX the morphism
deleting all x P X, i.e., πX(x) “ λ for all x P X, and πX(x) “ x otherwise; we
extend this to sets: given a set of words Y , let πX(Y) :“ {πX(w) | w P Y }. We
call a morphism trivial or the identity if it maps every letter to itself.

A word w is morphically primitive [15] if there is no word w′ with |w′| < |w|
such that w and w′ can be mapped onto each other by morphisms; otherwise
w is morphically imprimitive. This definition is equivalent to the notion of mor-
phic primitivity used at the beginning of Sect. 1, as we shall explain in due
course. Let φ : Σ∗ → Σ∗ be an idempotent morphism; when discussing mor-
phic imprimitivity we shall restrict ourselves only to idempotent morphisms,
unless explicitly stated otherwise. We define the following three sets, similarly
to Levé and Richomme [10], which form a partition on symb(w), in the context
of φ: the set of expanding letters, Eφ “ {x P Σ | |φ(x)| � 2}, of mortal letters,
Mφ “ {x P Σ | φ(x) “ λ}, and of constant letters, Cφ “ {x P Σ | φ(x) “ x}. An
imprimitivity factorisation f of w is a tuple 〈x1, x2, . . . , xn; v1, v2, . . . , vn〉 where
v1, v2, . . . , vn P Σ`, x1, x2, . . . , xn P Σ, n P N`, such that w can be factorised as
u0v1u1v2u2 · · · vnun for some u0, u1, . . . , un P Σ∗, and there is a non-trivial mor-
phism φ with φ(w) “ w such that for all i P N`, |vi|xi

“ 1 and vi “ φ(xi), and
u0, u1, . . . , un P C∗

φ. We shall say that φ determines f , and define sets Ef ,Mf ,
and Cf to be equal to Eφ,Mφ, and Cφ. As we shall operate with the follow-
ing concepts interchangeably, we restate the following result by Reidenbach and
Schneider [15]. For every word w, the following statements are equivalent: w is
morphically imprimitive, w is a fixed point of a non-trivial morphism, and w has
an imprimitivity factorisation.

3 Languages of Fixed Points and Their Parents

In this section we shall present a conjecture that will form the basis of
our hypothesised proof technique for the Billaud Conjecture for an arbitrary

216 S. �Lopaciuk and D. Reidenbach

alphabet size, and more specifically the basis of the proof of the Billaud Conjec-
ture for alphabet size 4.

The classical way of thinking about the Billaud Conjecture is centred around
the parent word and the operation of deleting letters from said word. In the
original statement presented in Conjecture 1, we delete letters from any morphi-
cally primitive word, and assert that at least one heir obtained in this manner
is morphically primitive as well. The contrapositive statement of the conjecture
asserts that the parent word is morphically imprimitive if all of its heirs have this
property. Levé and Richomme [10] extend this way of thinking to sets of words.
In this section, we present an alternative, yet similar, version of the Billaud Con-
jecture, which can be summarised as follows. Consider some alphabet Σ and |Σ|
sets of ‘heir candidate’ words, and consider all the ways that the words of the
‘heir candidate’ sets can be combined to create a set of parent words. We con-
jecture that if every ‘heir candidate’ set consists only of morphically imprimitive
words, the set of parents (if not empty) consists only of morphically imprimitive
words as well. We will discuss this conjecture in more detail in due course, but
for now we illustrate what we mean with an example:

Example 1. Let Σ :“ {a, b, c}, and let us define the morphisms φc : a �→ ab, b �→
λ, φb : a �→ ac, c �→ λ, and φa : b �→ bc, c �→ λ. Let Wc, Wb, and Wa be
sets of words consisting of all fixed points of φc, φb, and φa, respectively. For
example, ab P Wc, and (ac)7 P Wb. We can also represent these sets with regular
expressions: Wc “ L((ab)∗), Wb “ L((ac)∗), and Wa “ L((bc)∗).

We now consider the set W of all words w such that πx(w) P Wx, x P {a, b, c}.
It can be shown, due to the properties of regular languages that we discuss below,
that W “ L((abc)∗). We have started with three sets of morphically imprimitive
words Wc, Wb, and Wa, and we can see that W , constructed by combining these
sets, is also a set of morphically imprimitive words, as every word of the form
(abc)∗ is a fixed point of, e.g., the morphism φ : a �→ abc, bc �→ λ.

We commence our discussion by analysing the languages of fixed points of
morphisms. To this end, we define formally what we mean by this concept:

Definition 1. Given a morphism φ, let Fφ be the set of all words w such that
φ(w) “ w. Moreover, given a set of morphisms Φ, let FΦ be the union of all Fφ

with φ P Φ. We refer to Fφ (or FΦ) as the language of fixed points of φ (or Φ).

In the context of our Example 1 it can be seen that Wc, Wb, and Wa are
languages of fixed points of φc, φb, and φa. We first consider the languages of
fixed points of a single morphism, and make the following simple observation
about the nature of these languages:

Lemma 1. Let φ be an idempotent morphism over the finite alphabet Σ. Then
Fφ “ {φ(x) | x P Σ}∗.

From the above lemma, it follows in particular that:

Corollary 1. Let φ be an idempotent morphism. Then Fφ is regular.

The Billaud Conjecture for |Σ| “ 4, and Beyond 217

In Example 1 we note that due to the properties of regular languages, we can
deduce that our language W is regular, and in particular we are able to give its
structure; we shall now give more detail on why that is in the following example:

Example 2. Let Wc, Wb, and Wa be as in Example 1. Let us recall that Wc “
L((ab)∗) “ Fφc

. In such a case, the set W ′
c of all possible words w satisfying

πc(w) P Wc can be represented as follows L((ac∗b|c)∗), or alternatively as Wc

D

L(c∗), as it is a language of repetitions of ab interleaved by an arbitrary number
of cs. If we define W ′

b and W ′
a in an analogous fashion to be the languages of all

possible parents of the words of Wb and Wa respectively, then we can see that
W “ W ′

c X W ′
b X W ′

a, i.e., W is the set of those parents, whose respective heirs
are in Wc, Wb, and Wa. It is well-known that regular languages are closed under
intersection, and in this case we can represent W as follows: W “ L((abc)∗).

Let us now formally define the concept of the set of all possible parents of
fixed points of morphisms. For the ease of notation let us denote by Σx the set
Σz{x} for some x P Σ.

Definition 2. Let Σ be an alphabet and let x P Σ. Let φ : Σ∗
x → Σ∗

x be an
idempotent morphism, and let Φ be a set of idempotent morphisms with the same
domain and codomain as φ. Then the set of all possible parents of fixed points
of φ is defined as Pφ,Σ :“ Fφ

D

x∗. Similarly, PΦ,Σ :“ ⋃
φPΦ Pφ,Σ “ FΦ

D

x∗.

In fact, the sets W ′
c, W ′

b, and W ′
a in Example 2 are equal to Pφc,Σ , Pφb,Σ , and

Pφa,Σ , respectively. Let us recall that the class of regular languages is known to
be closed under the shuffle operation, as shown by Ginsburg and Spanier [5]. As a
consequence of this, henceforth, we shall extend our regular expression notation
with the infix operator D .

Moreover, in the context of the above result, it is clear that for any idempo-
tent morphism φ and any alphabet Σ the language Pφ,Σ is regular. Therefore,
due to regular languages being closed under both the intersection and the shuffle
operation, we can give a generalisation of our statement in Example 2, i.e., we
can conclude that a language W , satisfying πx(W) “ Fφx

with φx : Σ∗
x → Σ∗

x

for all x P Σ, is regular. We leave open the question of deciding, in the general
case, whether the regular expression generating W generates only morphically
imprimitive words. Nevertheless we note that a suitable characterisation could
provide additional insights into the Billaud Conjecture.

We now formally present the conjecture announced earlier in this section.

Conjecture 2. Let Σ “ {a1, a2, . . . , an} be an alphabet with n � 3, and let
Φ1, Φ2, . . . , Φn be sets of idempotent, non-trivial morphisms such that for every
φ P Φi, i P �1, n�, we have that φ : πai

(Σ)∗ → πai
(Σ)∗. Let L :“ ⋂

iP�1,n� PΦi,Σ .
Then, either L “ ∅ or there exists a set of idempotent, non-trivial morphisms
Φ such that L Ď FΦ.

We can show the equivalence of our conjecture and the Billaud Conjecture:

Proposition 1. Conjecture 2 is equivalent to the Billaud Conjecture.

218 S. �Lopaciuk and D. Reidenbach

From the prior remarks, the implication from our conjecture to the Billaud
Conjecture is apparent. In the other direction, we can show that the Billaud
Conjecture implies our conjecture by assuming the former, and showing that L,
as it is defined above, is a subset of some FΦ. As all heirs of every word w P L
are morphically imprimitive, by the Billaud Conjecture we have that w is a fixed
point of some non-trivial morphism φ; then, taking Φ to be the union of all such
morphisms φ, we have that L Ď PΦ.

4 A ‘Blueprint’ for a Billaud Conjecture Proof for Fixed
Σ

We are now ready to discuss the way of how Conjecture 2 can serve as a template
for proving the Billaud Conjecture for a fixed alphabet size. One of the difficulties
of applying Conjecture 2 to solve the Billaud Conjecture directly is the inherent
necessity of considering sets Φ1, Φ2, . . . that can contain an infinite number of
morphisms. In fact, in order to prove the Billaud Conjecture, it is sufficient
to show that for every Σ, the conjecture holds for the sets Φ1, Φ2, . . . , Φ|Σ|
each containing all possible morphisms. However, we will now describe how,
by solving a finite number of subproblems, we can nevertheless show that the
Billaud Conjecture holds for an alphabet Σ of a fixed size N .

To start, for every Σx let us consider a partition Φx of the class of all idem-
potent morphisms over Σx into a finite number of subsets Φx,1, Φx,2, . . . , Φx,|Φx|.
Each of the sets of morphisms Φx,i, i P �1, |Φx|�, corresponds to an equivalence
class under the relation that Eφ “ Eφ′ , Mφ “ Mφ′ , and Cφ “ Cφ′ for any two
morphisms φ, φ′ P Φx,i.

Example 3. Let Σ “ {a, b, c}. For any non-trivial idempotent morphism φ :
Σ∗

c → Σ∗
c , we can have the following 2 options for 〈Eφ,Mφ, Cφ〉: 〈{a}, {b}, ∅〉

and 〈{b}, {a}, ∅〉. We note that Eφ and Mφ cannot be empty for a non-trivial φ,
hence we only have the two options. Then, we can consider, e.g., that Φc,1 is the
set of all morphisms φ : Σ∗

c → Σ∗
c with Eφ “ {a} and Mφ “ {b}, and Φc,2 the

set of all φ : Σ∗
c → Σ∗

c with Eφ “ {b} and Mφ “ {a}. There are no idempotent,
non-trivial morphisms φ : Σ∗

c → Σ∗
c beyond Φc,1 Y Φc,2.

We note that |Φx| is finite, as there is a finite number of ways in which we can
partition Σx into three sets, even when, as we do, the definition of a partition is
relaxed to allow the third set to be empty. Let us now represent with HΣ the set
⨉xPΣΦx, whose every element has the structure 〈Φa1,i1 , Φa2,i2 , . . . , ΦaN ,iN 〉 for
Σ “ {a1, a2, . . . , aN} and i1, i2, . . . , iN P N`. This set represents all of the cases
of our proof blueprint, and in each of the cases we shall prove Conjecture 2 for
〈Φ1, Φ2, . . . , ΦN 〉 P HΣ .

Example 4. Let Σ “ {a, b, c}. Given a morphism φ P Φx,i, let us also define the
following notation: Rx,i :“ 〈Eφ,Mφ, Cφ〉. We recall from Example 3 that Φc,1 is
the set of all morphisms φ with Rc,1 “ 〈a, b, ∅〉 (let us for readability abuse the
notation and omit the set braces), Φc,2 a set of all those with Rc,2 “ 〈b, a, ∅〉.

The Billaud Conjecture for |Σ| “ 4, and Beyond 219

We can similarly write for Φb that {Rb,1, Rb,2} “ {〈a, c, ∅〉, 〈c, a, ∅〉}, and for Φa

that {Ra,1, Ra,2} “ {〈b, c, ∅〉, 〈c, b, ∅〉}. Therefore there are six cases to consider,
as |HΣ | “ 6, and HΣ consist of all six combinations of the sets of morphisms.

Once we show that, for every case of HΣ , Conjecture 2 holds, we can conclude
that it holds for Σ in general. We shall show why that is, and to that end let
us assume to the contrary that our conjecture holds for all the cases of HΣ ,
but it does not in general for Σ. Since Conjecture 2 is equivalent to the Billaud
Conjecture, let us assume that there is a word w P Σ∗, such that each of its heirs
πx(w), x P Σ, is a fixed point of some non-trivial, idempotent morphism φx, and
such that w is morphically primitive. For every x P Σ, there must exist an
i P N` such that φx P Φx,i, as all Φx,j , j P �1, |Φx|�, together form a partition on
a set of all non-trivial, idempotent morphisms of the form Σ∗

x → Σ∗
x. Therefore,

given Σ “ {a1, a2, . . . , aN}, there is a case 〈Φa1 , Φa2 , . . . , ΦaN
〉 P HΣ such that

φai
P Φai

for all i P �1, N�. Therefore, as Conjecture 2 is assumed to hold in
such a case, we can show that w is a morphically imprimitive word. This is a
contradiction to our assumption that w was morphically primitive.

We can consult the following partial example to see how one can prove a
simple single instance of Conjecture 2:

Example 5. Let Σ “ {a, b, c}. Let us also use the following shorthand notation
within this example: [x �→ w] shall stand for a morphism φ such that φ(x) :“ w
and φ(y) :“ λ for all y P symb(w)z{x}.

We consider a partial example, namely a case H :“ 〈Φa, Φb, Φc〉 for Con-
jecture 2 where Φc “ {[a �→ ab], [a �→ ab2]}, Φb “ {[c �→ ac], [c �→ a2c]}, and
Φa “ {[b �→ bc], [b �→ bc2]}. The set Φc contains a very small subset of mor-
phisms φ for which Eφ “ {a}, Mφ “ {b}, and Cφ “ ∅. We can make similar
observations about Φb ⊂ Φ′

b and Φc ⊂ Φ′
c, and see that H is a restriction of some

H ′ P HΣ .
We shall now show that L :“ ⋂

xPΣ PΦx,Σ only contains words that are
fixed points of non-trivial morphisms. We note, that FΦc

can be represented as
a regular expression L((ab)∗|(abb)∗), and so PΦc,Σ “ L(((ab)∗|(abb)∗) D c∗) “
L((ac∗b|c)∗|(ac∗bc∗b|c)∗). We can analogously represent the languages PΦb,Σ and
PΦa,Σ and then apply known algorithms (Thompson’s, Kleene’s [12], and finite
automaton intersection) to obtain their intersection, L “ L((abc)∗). As explained
in Example 1, such L is a subset of, e.g., F[a�→abc], and so Conjecture 2 holds for
the case H.

In Example 5 we are still working with regular languages for simplicity. In
reality, a set of all morphisms with given letter roles is infinite, and as such,
an infinite union of regular languages is no longer regular. As a result, our
reasoning needs to be more robust: it is however possible, and indeed this is
what we accomplish in our proof of the Billaud Conjecture for |Σ| “ 4.

A question relevant to the conjecture is to find an algorithm that could yield
a proof of the Billaud Conjecture given a case H P HΣ . As mentioned before, in
general, FΦ and PΦ,Σ may not be regular for an infinite Φ. If we consider a set
Φ of all non-trivial morphisms with specific letter roles, the set FΦ is recursive,

220 S. �Lopaciuk and D. Reidenbach

as we can check if a word w satisfies φ(w) “ w for some φ, and whether φ P Φ.
Similarly, PΦ,Σx

is recursive as we can decide if a word belongs to PΦ,Σx
by

first deleting all of its occurrences of x, and then checking if the result is in FΦ.
Since recursive languages are closed under intersection, L :“ ⋂

xPΣ PΦx,Σx
, where

H “ 〈Φx〉xPΣ , is recursive as well. However, in order to prove Conjecture 2 for Σ,
we need to show that L Ď FΦ for some set of non-trivial, idempotent morphisms.
Clearly, this is true if L is a subset of the set of all morphically imprimitive words
over Σ; however the inclusion of recursive languages is undecidable in general.

Therefore, we need to know more about the classes of languages of fixed
points, and their parents, their closure and inclusion properties to be able to
answer our question. The set LΦ for a class of morphisms Φ with specific let-
ter roles can be modelled using the so-called pattern expressions, introduced by
Câmpeanu and Yu [2], which are a language descriptor more powerful than both
regular expressions and patterns. The operation of intersection of languages of
parents of fixed points of morphisms can similarly be expressed directly on the
languages of fixed points themselves using an operation of synchronised shuf-
fle, introduced by De Simone [3]. Due to space constraints we state without
proof that, in fact, given two sets of morphisms Φ, Ψ of some case H P HΣ ,
the synchronised shuffle of FΦ and FΨ is equivalent to PΦ,Σ X PΨ,Σ . If pattern
expression languages were closed under synchronised shuffle, this would consti-
tute a step closer to constructing the described algorithm and solving the Billaud
Conjecture; unfortunately, it can be shown that this is not the case in general.
Nevertheless, further work related to these concepts, with a particular focus on
bettering our understanding of the languages of fixed points, could be valuable
for proving the Billaud Conjecture.

5 A Proof for the Billaud Conjecture for |Σ| “ 4

We apply the general reasoning presented in the previous section to show that
the Billaud Conjecture holds for |Σ| “ 4. To this end, we begin by presenting
some results by others, which are prerequisites for our result. First, however, we
recall the following definition by Levé and Richomme [10]:

Definition 3. Let w be a morphically imprimitive word, and let F be the set of
all of its imprimitivity factorisations. Then, let minCardExp(w) :“ minfPF |Ef |
be the minimal number of expanding letters of w.

The following are the results by others which are vital prerequisites for our
completion of the announced proof of the special case of the Billaud Conjecture.

Theorem 1 (Levé and Richomme [10]). Let w be a word. If for all x P
symb(w) we have minCardExp(πx(w)) “ 1, then w is morphically imprimitive.

Lemma 2 (Walter [16]). Let w be a word with |symb(w)| “ 4, and let all of the
heirs of w be morphically imprimitive. If minCardExp(πx(w)) “ 2 for exactly
three or exactly four letters x P symb(w), then w is morphically imprimitive.

The Billaud Conjecture for |Σ| “ 4, and Beyond 221

Any heir of a word w with symb(w) “ 4 consists of three letters. Therefore, 1
and 2 are the only valid values of minCardExp(πx(w)) for any x P Σ, as at least
one letter has to be expanding, and the three letters cannot all be expanding.
The above two results show that the Billaud Conjecture holds for the cases
when there are 0, 3, or 4 heirs w′ of w with minCardExp(w′) “ 2. Subsequently,
we discuss the remaining cases when there are exactly 1 or 2 heirs w′ with
minCardExp(w′) “ 1, and present the main theorem.

Before we commence with our main lemma, we present a technical lemma
describing a structure of certain factors of certain regular languages, that will
be of use in the proof for our main lemma:

Lemma 3. Let the word w P Σ∗ have one of the following structures:

– w P {uxu′, vyv′}∗, where x, y P Σ, such that x �“ y and x, y �Ď uu′vv′;
– w P {uxu′}∗, where x P Σ and x �Ď uu′, in which case let us assume that

vyv′ “ λ.

Then, any circular factor s of w such that s P x(Σzx)∗x is equal to s “
xu′(vyv′)kux and |s|y “ k where k P N0, and |s|z “ |uu′|z ` k|vv′|z for every
letter z /P {x, y}.

Finally, we present our main lemma, which complements the previous results
by others. As the full proof alone exceeds the page limit, we present a small
subset of representative cases, while the full proof can be found in the appendix.
Our proof is split into cases corresponding to all relevant H P HΣ , and in each
case we show the conjecture holds for all words w P Σ∗ whose heirs are fixed
points of any morphisms satisfying the case H.

Lemma 4. Let w be a word with |symb(w)| “ 4, and let all heirs of w be
morphically imprimitive. If minCardExp(πx(w)) “ 2 for exactly one or exactly
two letters x P symb(w), then w is morphically imprimitive.

Proof fragment. Let us assume that symb(w) “ {a, b, c, d}; the letters a, b, c, d
are distinct. Let us assume to the contrary that w is morphically primitive.

Throughout the entire reasoning that follows, let us always assume that the
variables i, j, k, �,m, n, p, q, r, s, t, þ are non-negative integers. These variables
may be reused between cases, and should not be assumed to have the same
value between different (sub-)cases; conversely, they shall stay constant within
the given (sub-)case.

Let us assume w.l.o.g. that minCardExp(πd(w)) “ 2. Let us further assume,
w.l.o.g. that the expanding letters in πd(w) are a and b. Thus we can write that:

πd(w) P {ciacj , ckbc�}∗ where i ` j, k ` � � 1. (1)

As a consequence of the statement of the lemma, we know that all heirs
of w are morphically imprimitive. In particular, that implies that the word
πc(w) is morphically imprimitive, and that minCardExp(πc(w)) “ 2 or
minCardExp(πc(w)) “ 1. We present the following overview of the cases for
πc(w) and its imprimitivity factorisation f , followed by a discussion of duplicate
cases:

222 S. �Lopaciuk and D. Reidenbach

Ef Mf Cf Case Ef Mf Cf Case Ef Mf Cf Case Ef Mf Cf Case

a, b d Case 1 a d b Case 4 b d a (Case 4) d b a (Case 6)

a b, d Case 2 b a, d (Case 2) d a, b Case 5 a, d b Case 7

a b d Case 3 b a d (Case 3) d a b Case 6 b, d a (Case 7)

As a result of the assumption about both a, b being expanding in πd(w), the
cases for f where a, b are swapped need not be considered separately, as they are
symmetric. These cases correspond to the bracketed cases in the table above.

In the full proof we shall examine the cases and further heirs to show for
the purpose of contradiction that w cannot be morphically primitive. Firstly,
however, we present the following claim, which will prove vital in our subsequent
case analysis:

Claim 1. If the number of occurrences of a or the number of occurrences of c is
the same for every circular factor v of πd(w) with v P b{a, c}∗b, then we have a
contradiction to the assumption that minCardExp(πd(w)) “ 2.

Proof of Claim 1. Let us factorise the word πd(w) in the following fashion, where
N :“ |w|b − 1:

πd(w) “ v′bv1bv2b· · ·bvNbv′′, where v′, v′′, v1, v2, . . . , vN P {a, c}∗.

Let us, for ease of reasoning, denote the word v′′v′ with v0. The words bv0b,
bv1b, . . ., bvNb are all the circular factors v of πd(w) as defined in the statement
of the claim. Due to the structure of πd(w), described in (1), every word vJ ,
J P �0, N�, necessarily has the following form as a consequence of Lemma 3:

vJ “ c�(ciacj)|vJ |ack. (2)

Therefore, we can express the relation between |vJ |a and |vJ |c in any vJ , J P
�0, N�, as follows:

|vJ |c “ k ` � ` |vJ |a(i ` j). (3)

If, as per the assumption of our claim, |v0|x “ |v1|x “ . . . “ |vN |x for x “ a or
x “ c, then, due to the linear dependence between |vJ |a and |vJ |c described in
(3), |v0|x “ |v1|x “ . . . “ |vN |x for both x “ a and x “ c.

Therefore, due to (2), we have that in fact v0 “ v1 “ . . . “ vN . In particular,
since v0 “ v′′v′, we can give the following representation of πd(w):

πd(w) P {v′bv′′}∗ and b �Ď v′v′′.

Hence, πd(w) has an imprimitivity factorisation f ′ with Ef ′ “ {b}, which con-
tradicts our assumption that minCardExp(πd(w)) “ 2. �	 (Claim 1)

In order to illustrate our reasoning, we now consider a number of represen-
tative sub-cases of Case 1 of the full proof.

Case 1. Let Ef “ {a, b}, Mf “ {d}; then we can write:

πc(w) P {dnadm, dpbdq}∗, where n ` m, p ` q � 1. (4)

The Billaud Conjecture for |Σ| “ 4, and Beyond 223

Additionally, we assume that minCardExp(πc(w)) “ 2, as otherwise πc(w) has
an alternative imprimitivity factorisation such that one of the Cases 2−6 applies.
Moreover, recall that:

πd(w) P {ciacj , ckbc�}∗ where i ` j, k ` � � 1. (1 revisited)

Let g be an imprimitivity factorisation of πa(w). If follows from the above struc-
ture of πd(w) that |πa(w)|b < |πa(w)|c and |πa(w)|b < |πa(w)|d, and there-
fore we know that the letter b is not in Mg. Moreover, due to the fact that
minCardExp(πd(w)) “ minCardExp(πc(w)) “ 2, we can further assume, due to
the statement of our lemma where we postulate that there are at most two heirs
with said property, that minCardExp(πa(w)) “ 1.

Let us summarise all possible letter role combinations in g, and outline the
sub-cases of the present case:

Eg Mg Cg Case Eg Mg Cg Case Eg Mg Cg Case

b c, d Case 1.1 c b, d b /P Mg � d b, c b /P Mg �

b c d Case 1.2(a) c b d b /P Mg � d b c b /P Mg �

b d c Case 1.2(b) c d b Case 1.3(a) d c b Case 1.3(b)

Case 1.1. Let Eg “ {b} and Mg “ {c, d}; then we can write:

πa(w) P {u}∗, where u P (
cr D dt

)
b
(
cs D dþ

)
, and r ` s, t ` þ � 1.

Due to the above structure of πa(w) the number of cs in every circular factor
of πa(w) of the form b{c, d}∗b is the same, and equal to r ` s (as can be cal-
culated due to Lemma 3). Hence, as a, c P symb(πd(w)), it follows that r ` s
is also the number of cs in every circular factor of πd(w) of the form b{a, c}∗b.
Thus, Claim 1 applies, and we have a contradiction to the assumption that
minCardExp(πd(w)) “ 2.

Case 1.2(a). Let Eg “ {b}, Mg “ {c}, and Cg “ {d}; then we can write:

πa(w) P {crbcs, d}∗ where r ` s � 1.

As in the preceding case, due to the above structure of πa(w), the number of
cs in every circular factor of πa(w) of the form b{c, d}∗b is the same, and equal
to r ` s (as can be calculated due to Lemma 3). We can apply Claim 1 in
the same way as in Case 1.1 to reach a contradiction to the assumption that
minCardExp(πd(w)) “ 2.

Case 1.3(a). Let Eg “ {c}, Mg “ {d}, and Cg “ {b}; then we can write:

πa(w) P {drcds, b}∗ where r ` s � 1. (5)

224 S. �Lopaciuk and D. Reidenbach

Due to Lemma 3 we can write the following equations for any circular factor
v P b{a, c, d}∗b of w: |v|d “ |v|c(r ` s) due to (5); |v|c “ k ` � ` |v|a(i ` j) due to
(1); and |v|d “ p ` q ` |v|a(n ` m) due to (4). We can solve the above equations
for |v|a to obtain a value independent of a choice of an occurrence of the factor
v in w. Therefore, the number of as in any circular factor of πd(w) of the form
b{a, c}∗b is the same, and Claim 1 applies as in the preceding cases.

The Remaining Cases. The omitted cases of Case 1 can be analogously shown
to hold using Claim 1. With help of Claim 1 and another claim phrased below,
we can use a similar analysis to prove the remaining cases.

Claim 2. If every circular factor of πa(w) of the form d{b, c}∗d is the same, and
if every circular factor of πc(w) of the form d{a, b}∗d is the same as well, then
the word w is morphically imprimitive. �	

Theorem 1, Lemma 2, and Lemma 4 directly imply our main result:

Theorem 2. The Billaud Conjecture holds for all words w with |symb(w)| “ 4.

Acknowledgements. We thank the anonymous reviewers for their thorough and
helpful comments, and for suggesting a more concise proof of Lemma 4.

References

1. Billaud, M.: A problem with words. Newsgroup ‘comp.theory’ (1993)
2. Câmpeanu, C., Yu, S.: Pattern expressions and pattern automata. Inf. Process.

Lett. 92(6), 267–274 (2004)
3. De Simone, R.: Languages infinitaires et produit de mixage. Theoret. Comput. Sci.

31(1–2), 83–100 (1984)
4. Geser, A.: Your ‘Problem with Words’. Private communication to M, Billaud (1993)
5. Ginsburg, S., Spanier, E.H.: Mappings of languages by two-tape devices. J. ACM

12(3), 423–434 (1965)
6. Hamm, D., Shallit, J.: Characterization of finite and one-sided infinite fixed points

of morphisms on free monoids. Technical Report CS-99-17, University of Waterloo,
Ontario, Canada (1999)

7. Head, T.: Fixed languages and the adult languages of OL schemes. Int. J. Comput.
Math. 10(2), 103–107 (1981)

8. Holub, Š: Polynomial-time algorithm for fixed points of nontrivial morphisms. Dis-
cret. Math. 309(16), 5069–5076 (2009)

9. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Linear-time version of
Holub’s algorithm for morphic imprimitivity testing. Theoret. Comput. Sci. 602,
7–21 (2015)

10. Levé, F., Richomme, G.: On a conjecture about finite fixed points of morphisms.
Theoret. Comput. Sci. 339(1), 103–128 (2005)

11. Matocha, V., Holub, Š: Complexity of testing morphic primitivity. Kybernetika
49(2), 216–223 (2013)

12. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IRE Trans. Electron. Comput. EC-9(1), 39–47 (1960)

The Billaud Conjecture for |Σ| “ 4, and Beyond 225

13. Nevisi, H., Reidenbach, D.: Morphic primitivity and alphabet reductions. In: Pro-
ceedings of DLT 2021. LNCS, vol. 7410, pp. 440–451. Springer, Berlin (2012)

14. Reidenbach, D.: Discontinuities in pattern inference. Theoret. Comput. Sci. 397(1),
166–193 (2008)

15. Reidenbach, D., Schneider, J.C.: Morphically primitive words. Theoret. Comput.
Sci. 410(21), 2148–2161 (2009)

16. Walter, T.: Über die Billaudsche Vermutung. Diplomarbeit, Universität Stuttgart,
Fakultät Informatik, Elektrotechnik und Informationstechnik, Germany (2011)

17. Zimmermann, P.: A Problem With Words From Michel Billaud. Private commu-
nication to M, Billaud (1993)

Weighted Tree Automata
with Constraints

Andreas Maletti and Andreea-Teodora Nász(B)

Faculty of Mathematics and Computer Science, Universität Leipzig,
PO box 100 920, 04009 Leipzig, Germany

{maletti,nasz}@informatik.uni-leipzig.de

Abstract. The HOM problem, which asks whether the image of a reg-
ular tree language under a given tree homomorphism is again regular, is
known to be decidable [Godoy & Giménez: The HOM problem is decid-
able. JACM 60(4), 2013]. However, the problem remains open for regular
weighted tree languages. It is demonstrated that the main notion used in
the unweighted setting, the tree automaton with equality and inequality
constraints, can straightforwardly be generalized to the weighted setting
and can represent the image of any regular weighted tree language under
any nondeleting, nonerasing tree homomorphism. Several closure prop-
erties as well as decision problems are also investigated for the weighted
tree languages generated by weighted tree automata with constraints.

1 Introduction

Numerous extensions of nondeterministic finite-state string automata have been
proposed in the past few decades. On the one hand, the qualitative evaluation
of inputs was extended to a quantitative evaluation in the weighted automata
of [23]. This development led to the fruitful study of recognizable formal power
series [22], which are well-suited for representing factors such as costs, consump-
tion of resources, or time and probabilities related to the processed input. The
main algebraic structure for the weight calculations are semirings [16,17], which
offer a nice compromise between generality and efficiency of computation (due
to their distributivity).

On the other hand, finite-state automata have been generalized to other input
structures such as infinite words [21] and trees [4]. Finite-state tree automata
were introduced independently in [7,24,25] and they and the tree languages
they generate, called regular tree languages, have been intensively studied since
their inception [4]. They are successfully utilized in various applications in many
diverse areas like natural language processing [18], picture generation [8], and
compiler construction [28]. Indeed several applications require the combination
of the two mentioned generalizations and a broad range of weighted tree automa-
ton (WTA) models has been studied (cf. [13, Chapter 9] for an overview). It is

Research financially supported by a scholarship awarded to T. Nasz by the Free State
of Saxony (Funding no. LAU-R-I-9-2-1021).

c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 226–238, 2022.
https://doi.org/10.1007/978-3-031-05578-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_18&domain=pdf
https://doi.org/10.1007/978-3-031-05578-2_18

Weighted Tree Automata with Constraints 227

well-known that finite-state tree automata cannot ensure that two subtrees (of
potentially arbitrary size) are always equal in an accepted tree [14]. An extension
proposed in [20] aims to remedy this problem and introduces a tree automaton
model that explicitly can require certain subtrees to be equal or unequal. Such
models are very useful when investigating transduction models (see [13] for an
overview) that can copy subtrees (thus resulting in equal subtrees) and they are
the main tool used in the seminal paper [15] that proved that the HOM problem
is decidable.

The HOM problem was a long-standing open problem in the theory of tree
languages and recently solved in [15]. It asks whether the image of an (effectively
presented) regular tree language under a given tree homomorphism is again reg-
ular. This is not necessarily the case as tree homomorphisms can create copies of
subtrees. Indeed removing this ability from the tree homomorphism, obtaining
a linear tree homomorphism, yields that the mentioned image is always regu-
lar [14]. In the solution to the HOM problem provided in [15] the image is first
represented by a tree automaton with constraints and then it is investigated
whether this tree automaton actually generates a regular tree language.

In the weighted setting, the HOM problem is also interesting as it once again
provides an answer whether a given homomorphic image of a regular weighted
tree language can efficiently be represented. While preservation of regularity has
been investigated [3,10–12] also in the weighted setting, the decidability of the
HOM problem remains wide open. With the goal of investigating this problem,
we introduce weighted tree automata with constraints (WTAc for short) in this
contribution. We demonstrate that those WTAc can again represent all homo-
morphic images of the regular weighted tree languages. Thus, in principle, it
only remains to provide a decision procedure for determining whether a given
WTAc generates a regular weighted tree language. We approach this task by
providing some common closure properties following essentially the steps also
taken in [15]. For zero-sum free semirings we can also show that decidability
of support emptiness and finiteness are directly inherited from the unweighted
case [15].

2 Preliminaries

We denote the set of nonnegative integers by N, and for every k ∈ N, we let
[k] = {i ∈ N | 1 ≤ i ≤ k}. For all sets T and Z let TZ be the set of all
mappings ϕ : Z → T , and correspondingly we sometimes write ϕz instead of ϕ(z)
for every ϕ ∈ TZ . The cardinality of Z is denoted by |Z|.

A ranked alphabet (Σ, rk) is a pair consisting of a finite set Σ and a map-
ping rk ∈ N

Σ that assigns a rank to each symbol of Σ. If there is no risk of
confusion, we denote a ranked alphabet (Σ, rk) by Σ. We write σ(k) to indi-
cate that rk(σ) = k. Moreover, for every k ∈ N we let Σk = rk−1(k). Let
X = {xi | i ∈ N} be a countable set of (formal) variables. For each n ∈ N

we let Xn =
{
xi | i ∈ [n]

}
. Given a ranked alphabet Σ and a set Z, the

set TΣ(Z) of Σ” trees indexed by Z is the smallest set such that Z ⊆ TΣ(Z)

228 A. Maletti and A.-T. Nász

and σ(t1, . . . , tk) ∈ TΣ(Z) for every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Z). We
abbreviate TΣ(∅) simply to TΣ , and any subset L ⊆ TΣ is called a tree language.

Let Σ be a ranked alphabet, Z a set, and t ∈ TΣ(Z). The set pos(t)
of positions of t is inductively defined by pos(z) = {ε} for all z ∈ Z and
by pos

(
σ(t1, . . . , tk)

)
=

{
ε
} ∪ ⋃

i∈[k]

{
iw | w ∈ pos(ti)

}
for all k ∈ N, σ ∈ Σk,

and t1, . . . , tk ∈ TΣ(Z). The size |t| of t is defined as |t| = |pos(t)|. For w ∈ pos(t)
and t′ ∈ TΣ(Z), the label t(w) of t at w, the subtree t|w of t at w, and the sub-
stitution t[t′]w of t′ into t at w are defined by z(ε) = z|ε = z and z[t′]ε = t′

for all z ∈ Z and for t = σ(t1, . . . , tk) by t(ε) = σ, t(iw′) = ti(w′), t|ε = t,
t|iw′ = ti|w′ , t[t′]ε = t′, and t[t′]iw′ = σ

(
t1, . . . , ti−1, ti[t′]w′ , ti+1, . . . , tk

)
for

all k ∈ N, σ ∈ Σk, t1, . . . , tk ∈ TΣ(Z), i ∈ [k], and w′ ∈ pos(ti). For all σ ∈ Σ∪Z,
we let posσ(t) =

{
w ∈ pos(t) | t(w) = σ

}
and var(t) = {x ∈ X | posx(t) �= ∅}.

Finally, for every t ∈ TΣ(Z), finite V ⊆ Z, and θ ∈ TΣ(Z)V , the substitu-
tion θ applied to t is written as tθ and defined by vθ = θv for every v ∈ V ,
zθ = z for every z ∈ Z \ V , and σ(t1, . . . , tk)θ = σ(t1θ, . . . , tkθ) for all k ∈ N,
σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Z). We also write the substitution θ ∈ TΣ(Z)V as
(i) [v1 ← θv1 , . . . , vn ← θvn

] if V = {v1, . . . , vn} or (ii) [θx1 , . . . , θxn
] if V = Xn.

A commutative semiring [16,17] is a tuple (S,+, ·, 0, 1) such that (S,+, 0) and
(S, ·, 1) are commutative monoids, · distributes over +, and 0 ·s = 0 for all s ∈ S.
Examples include (i) the Boolean semiring B =

({0, 1},∨,∧, 0, 1
)
, (ii) the semi-

ring N =
(
N,+, ·, 0, 1), (iii) the tropical semiring T =

(
N ∪ {∞},min,+,∞, 0

)
,

and (iv) the arctic semiring A =
(
N ∪ {−∞},max,+,−∞, 0

)
. Given semi-

rings (S,+, ·, 0, 1) and (T,⊕,�,⊥,�), a semiring homomorphism is a map-
ping h ∈ T

S such that h(0) = ⊥, h(1) = �, and h(s1 + s2) = h(s1) ⊕ h(s2)
as well as h(s1 · s2) = h(s1) � h(s2) for all s1, s2 ∈ S. When there is no risk
of confusion, we refer to a semiring (S,+, ·, 0, 1) simply by its carrier set S. A
semiring S is a ring if there exists −1 ∈ S such that −1 + 1 = 0. Let Σ be a
ranked alphabet. Any mapping A ∈ S

TΣ is called a weighted tree language over S
and its support is supp(A) = {t ∈ TΣ | At �= 0}.

Let Σ and Δ be ranked alphabets and let h′ ∈ TΔ(X)Σ be a mapping
such that h′

σ ∈ TΔ(Xk) for all k ∈ N and σ ∈ Σk. We extend h′ to h ∈
TTΣ

Δ by (i) hα = h′
α ∈ TΔ(X0) = TΔ for all α ∈ Σ0 and (ii) hσ(t1,...,tk) =

h′
σ[ht1 , . . . , htk

] for all k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ . The mapping h is
called the tree homomorphism induced by h′, and we identify h′ and its induced
tree homomorphism h. It is nonerasing if h′

σ /∈ X for all k ∈ N and σ ∈ Σk,
and it is nondeleting if var(h′

σ) = Xk for all k ∈ N and σ ∈ Σk. Let h ∈ TTΣ

Δ

be a nonerasing and nondeleting homomorphism. Then h is input finitary ; i.e.,
the set h−1(u) is finite for every u ∈ TΔ because |t| ≤ |u| for each t ∈ h−1(u).
Additionally, let A ∈ S

TΣ be a weighted tree language. We define the weighted
tree language h(A) ∈ S

TΔ for every u ∈ TΔ by h(A)u =
∑

t∈h−1(u) At.

3 Weighted Tree Grammars with Constraints

Let us start with the formal definition of our weighted tree grammars. They are
a weighted variant of the tree automata with equality and inequality constraints

Weighted Tree Automata with Constraints 229

originally introduced in [1,5] (with constraints on direct subtrees). An overview
of further developments for these automata can be found in [26]. We essentially
use the version recently utilized to solve the HOM problem [15, Definition 4.1].

Definition 1. A weighted tree grammar with constraints (WTGc) is a
tuple G = (Q,Σ,F, P,wt) such that

– Q is a finite set of nonterminals and F ∈ S
Q assigns final weights,

– Σ is a ranked alphabet of input symbols,
– P is a finite set of productions of the form (, q, E, I), where 	 ∈ TΣ(Q) \ Q,

q ∈ Q, and E, I ⊆ N
∗ × N

∗ are finite sets, and
– wt ∈ S

P assigns a weight to each production. ��
In the following, let G = (Q,Σ,F, P,wt) be a WTGc. The components of a

production p = (, q, E, I) ∈ P are the left-hand side 	, the governing nontermi-
nal q, the set E of equality constraints, and the set I of inequality constraints.
Correspondingly, the production p is also written 	

E,I−→ q or even 	
E,I−→wtp

q
if we want to indicate its weight. Additionally, we simply list an equality con-
straint (v, v′) ∈ E as v = v′ and an inequality constraint (v, v′) ∈ I as v �= v′.

A production 	
E,I−→ q ∈ P is normalized if 	 = σ(q1, . . . , qk) for some k ∈ N,

σ ∈ Σk, and q1, . . . , qk ∈ Q, and it is unconstrained if E = ∅ = I; in this case we
also simply write 	 → q. The WTGc G is a weighted tree automaton with con-
straints (WTAc) if all productions p ∈ P are normalized, and it is a weighted tree
grammar (WTG) [14] if all productions p ∈ P are unconstrained. If G is both a
WTAc as well as a WTG, then it is a weighted tree automaton (WTA) [14]. All
these devices have Boolean final weights if F ∈ {0, 1}Q. Finally, if we utilize the
Boolean semiring B, then we reobtain the unweighted versions and omit the ‘W’
in the abbreviations and the mapping ‘wt’ from the tuple.

The semantics for our WTGc G is a slightly non-standard derivation seman-
tics when compared to [15, Definitions 4.3 and 4.4]. Let (v, v′) ∈ N

∗ × N
∗

and t ∈ TΣ . If v, v′ ∈ pos(t) and t|v = t|v′ , we say that t satisfies (v, v′), other-
wise t dissatisfies (v, v′). Let now C ⊆ N

∗ ×N
∗ be a finite set of constraints. We

write t |= C if t satisfies all (v, v′) ∈ C, and t | �∀=C if t dissatisfies all (v, v′) ∈ C.
Universally dissatisfying C is generally stronger than simply not satisfying C.

Definition 2. A sentential form (for G) is simply a tree of ξ ∈ TΣ(Q). Given an

input tree t ∈ TΣ, sentential forms ξ, ζ ∈ TΣ(Q), a production p = 	
E,I−→ q ∈ P ,

and a position w ∈ pos(ξ), we write ξ ⇒p,w
G,t ζ if ξ|w = 	, ζ = ξ[q]w, and

the constraints E and I are fulfilled on t|w; i.e., t|w |= E and t|w | �∀=I. A
sequence d = (p1, w1) · · · (pn, wn) ∈ (P × N

∗)∗ is a derivation of G for t if there
exist ξ1, . . . , ξn ∈ TΣ(Q) such that t ⇒p1,w1

G,t ξ1 ⇒p2,w2
G,t · · · ⇒pn,wn

G,t ξn. It is left-
most if additionally w1 ≺ w2 ≺ · · · ≺ wn, where � is the lexicographic order
on N

∗ in which prefixes are larger, so ε is the largest element. ��
Note that the sentential forms ξ1, . . . , ξn are uniquely determined if they

exist, and for any derivation d for t there exists a unique permutation of d that

230 A. Maletti and A.-T. Nász

is a left-most derivation for t. The derivation d is complete if ξn ∈ Q, and in
that case it is also called a derivation to ξn. The set of all complete left-most
derivations for t to q ∈ Q is denoted by Dq

G(t). The WTGc G is unambiguous
if

∑
q∈supp(F)|Dq

G(t)| ≤ 1 for every t ∈ TΣ .

Definition 3. The weight of a derivation d = (p1, w1) · · · (pn, wn) is defined to
be wtG(d) =

∏n
i=1 wt(pi). The weighted tree language generated by G, written

simply G ∈ S
TΣ , is defined for every t ∈ TΣ by

Gt =
∑

q∈Q, d∈Dq
G(t)

Fq · wtG(d).

��
Two WTGc are equivalent if they generate the same weighted tree language.

Finally, a weighted tree language is regular if it is generated by a WTG, and it is
constraint-regular if it is generated by a WTGc. Since the weights of productions
are multiplied, we can assume that wtp �= 0 for all p ∈ P .

Example 4. Consider the WTGc G =
(
Q,Σ,F, P,wt

)
over A with Q = {q, q′},

Σ = {α(0), γ(1), σ(2)}, Fq = −∞, Fq′ = 0, and P and ‘wt’ given by the pro-
ductions p1 = α →0 q, p2 = γ(q) →1 q, and p3 = σ

(
γ(q), q

) 11=2−→1 q′. The
tree t = σ

(
γ(γ(α)), γ(α)

)
has the unique left-most derivation

d = (p1, 111) (p2, 11) (p1, 21) (p2, 2) (p3, ε)

to the nonterminal q′. Overall, we have supp(G) =
{
σ
(
γi+1(α), γi(α)

) | i ∈ N
}

and Gt = |posγ(t)| for every t ∈ supp(G). ��
For the restricted model of WTAc we introduce another semantics, called

initial algebra semantics, which is often more convenient in proofs.

Definition 5. If G is a WTAc, then for each q ∈ Q we define wtq
G ∈ S

TΣ for
every t = σ(t1, . . . , tk) with k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ by

wtq
G(t) =

∑

p=σ(q1,...,qk)
E,I−→q∈P

t|=E, t| �∀=I

wtp ·
k∏

i=1

wtqi

G(ti) .

��
It is a routine matter to verify wtq

G(t) =
∑

d∈Dq
G(t) wtG(d) for every q ∈

Q and t ∈ TΣ . Indeed as for WTG and WTA [13] also every WTGc can be
turned into an equivalent WTAc at the expense of additional nonterminals by
decomposing the left-hand sides.

Lemma 6 (cf. [15, Lemma 4.8]). WTGc and WTAc are equally expressive.

Weighted Tree Automata with Constraints 231

Proof. Let G = (Q,Σ,F, P,wt) be a WTGc with a non-normalized production

p = σ(1, . . . , 	k)
E,I−→ q ∈ P , let U be an infinite set with Q ⊆ U and let ϕ ∈

UTΣ(Q) be an injective map such that ϕq = q for all q ∈ Q. We define the
WTGc G′ = (Q′, Σ, F ′, P ′,wt′) such that Q′ = Q ∪ {ϕ�1 , . . . , ϕ�k

}, F ′
q = Fq for

all q ∈ Q and F ′
q′ = 0 for all q′ ∈ Q′ \ Q, and

P ′ = (P \ {p}) ∪ {σ(ϕ�1 , . . . , ϕ�k
)

E,I−→ q} ∪ {	i → ϕ�i
| i ∈ [k], 	i /∈ Q},

and for every p′ ∈ P ′

wt′
p′ =

⎧
⎪⎨

⎪⎩

wtp′ if p′ ∈ P \ {p}
wtp if p′ = σ(ϕ�1 , . . . , ϕ�k

)
E,I−→ q

1 otherwise.

��
Example 7. Consider the WTGc G of Example 4 and its non-normalized produc-
tion p = σ

(
γ(q), q

) 11=2−→1 q′. Applying the construction in the proof of Lemma 6

we replace p by the productions σ(q′′, q) 11=2−→1 q and γ(q) →0 q′′, where q′′ is
some new nonterminal. The such obtained WTGc is already a WTAc. ��

Another routine normalization turns the final weights into Boolean final
weights [2, Lemma 6.1.1]. This is achieved by adding special copies of all non-
terminals that terminate the derivation and pre-apply the final weight.

Lemma 8. WTAc and WTAc with Boolean final weights are equally expressive.

Let d ∈ Dq
G(t) be a derivation for some q ∈ Q and t ∈ TΣ . Since we

often argue with the help of such derivations d, it is a nuisance that we might
have wtG(d) = 0. This anomaly can occur even if wtp �= 0 for all p ∈ P due to the
presence of zero-divisors, which are elements s, s′ ∈ S \ {0} such that s · s′ = 0.
However, we can fortunately avoid such anomalies altogether utilizing a con-
struction of [19] based on Dickson’s Lemma [6], which has been lifted to tree
automata in [9]. We note that the construction preserves Boolean final weights.

Lemma 9. For every WTAc G there exists a WTAc G′ = (Q′, Σ, F ′, P ′,wt′)
that is equivalent and wt′

G′(d′) �= 0 for all q′ ∈ Q′, t′ ∈ TΣ, and d′ ∈ Dq′
G′(t′).

For zero-sum free semirings [16,17] we obtain that the support supp(G) of
an WTAc can be generated by a TAc. A semiring is zero-sum free if s = 0 = s′

for every s, s′ ∈ S such that s + s′ = 0. Clearly, rings are never zero-sum free,
but the mentioned semirings B, N, T, and A are all zero-sum free.

Corollary 10 (of Lemmata 6 and 9). If S is zero-sum free, then supp(G) is
constraint-regular for every WTGc G.

232 A. Maletti and A.-T. Nász

Proof. We apply Lemmata 6 and 8 to obtain an equivalent WTAc with Boolean
final weights and then Lemma 9 to obtain the WTAc G′ = (Q′, Σ, F ′, P ′,wt′)
with Boolean final weights. As mentioned we can assume that wt′

p′ �= 0 for

all p′ ∈ P ′. Let q′ ∈ supp(F ′) and t′ ∈ TΣ with Dq′
G′(t′) �= ∅. Since wt′

G′(d′) �= 0
for every d′ ∈ Dq′

G′(t′) and s+s′ �= 0 for all s, s′ ∈ S\{0} due to zero-sum freeness,
we obtain t′ ∈ supp(G′). Thus, the existence of a complete derivation for t′ to
an accepting nonterminal (i.e., one with final weight 1) characterizes whether we
have t′ ∈ supp(G′). Consequently, the TAc

(
Q′, Σ, supp(F ′), P ′) generates the

tree language supp(G′), which is thus constraint-regular. ��

4 Closure Properties

In this section we investigate several closure properties of the constraint-regular
weighted tree languages. We start with the (point-wise) sum, which is given
by (A + A′)t = At + A′

t for every t ∈ TΣ and A,A′ ∈ S
TΣ . Given WTGc

G and G′ generating A and A′ we can trivially use a disjoint union construction
to obtain a WTGc generating A + A′. We omit the details.

Proposition 11. The constraint-regular weighted tree languages (over the same
ranked-alphabet) are closed under sums. ��

The corresponding (point-wise) product is the Hadamard product, which is
given by (A · A′)t = At · A′

t for every t ∈ TΣ and A,A′ ∈ S
TΣ . With the help of

a standard product construction we show that the constraint-regular weighted
tree languages are also closed under Hadamard product. As preparation we
introduce a special normal form. A WTAc G = (Q,Σ,F, P,wt) is constraint-

determined if E = E′ and I = I ′ for all productions σ(q1, . . . , qk)
E,I−→ q ∈ P

and σ(q1, . . . , qk)
E′,I′
−→ q ∈ P . In other words, two productions cannot differ

only in the sets of constraints. It is straightforward to turn any WTAc into an
equivalent constraint-determined WTAc by introducing additional nonterminals
(e.g. annotate the constraints to the state on the right-hand side).

Theorem 12. The constraint-regular weighted tree languages (over the same
ranked alphabet) are closed under Hadamard product.

Proof. Let A,A′ ∈ S
TΣ be constraint-regular. Without loss of generality (see

Lemma 6) we can assume constraint-determined WTAc G = (Q,Σ,F, P,wt)
and G′ = (Q′, Σ, F ′, P ′,wt′) that generate A and A′, respectively. We con-
struct the direct product WTAc G × G′ = (Q × Q′, Σ, F ′′, P ′′,wt′′) such that
F ′′

〈q,q′〉 = Fq · F ′
q′ for every q ∈ Q and q′ ∈ Q′ and for every production

p = σ(q1, . . . , qk)
E,I−→ q ∈ P and production p′ = σ(q′

1, . . . , q
′
k)

E′,I′
−→ q′ ∈ P ′

the production

p′′ = σ
(〈q1, q′

1〉, . . . , 〈qk, q′
k〉) E∪E′,I∪I′

−→ 〈q, q′〉

Weighted Tree Automata with Constraints 233

belongs to P ′′ and its weight is wt′′
p′′ = wtp · wt′

p′ . No other productions belong
to P ′′. The proof that G × G′ = A · A′ is a straightforward induction prov-
ing wt〈q,q′〉

G×G′(t) = wtq
G(t) · wtq′

G′(t) for all t ∈ TΣ using the initial algebra seman-
tics. The WTAc G and G′ are required to be constraint-determined, so that
we can uniquely identify the productions p ∈ P and p′ ∈ P ′ that construct a
production p′′ ∈ P ′′. ��
Example 13. Let G =

({q}, Σ, F, P,wt
)

and G′ =
({z}, Σ, F ′, P ′,wt′) be WTAc

over A and Σ = {α(0), γ(1), σ(2)}, Fq = F ′
z = 0, and the productions

α →0 q γ(q) →2 q σ(q, q) 1=2−→0 q (P)

α →0 z γ(z)
11 �=12−→ 1 z σ(z, z) →1 z. (P ′)

We observe that

supp(G) =
{
t ∈ TΣ | ∀w ∈ posσ(t) : t|w1 = t|w2

}

supp(G′) =
{
t ∈ TΣ | ∀w ∈ posγ(t) : if t(w1) = σ then t|w11 �= t|w12

}

and Gt = 2|posγ(t)| as well as G′
t′ = |posγ(t′)| + |posσ(t′)| for all t ∈ supp(G)

and t′ ∈ supp(G′). We obtain the WTAc G × G′ =
({〈q, z〉}, Σ, F ′′, P ′′,wt′′)

with F ′′
〈q,z〉 = 0 and the following productions.

α →0 〈q, z〉 γ
(〈q, z〉) 11 �=12−→ 3 〈q, z〉 σ

(〈q, z〉, 〈q, z〉) 1=2−→1 〈q, z〉

Hence we obtain the equality (G × G′)t = 3|posγ(t)| + |posσ(t)| = Gt · G′
t for

every tree t ∈ supp(G) ∩ supp(G′). ��
Next, we use an extended version of the classical power set construction to

obtain an unambiguous WTAc that keeps track of the reachable nonterminals,
but preserves only the homomorphic image of its weight. The unweighted part of
the construction mimics a power-set construction and the handling of constraints
roughly follows [15, Definition 3.1].

Theorem 14. Let h ∈ T
S be a semiring homomorphism into a finite semi-

ring T. For every WTAc G = (Q,Σ,F, P,wt) over S there exists an unambiguous
WTAc G′ = (TQ, Σ, F ′, P ′,wt′) such that for every t ∈ TΣ and ϕ ∈ T

Q

wtϕ
G′(t) =

{
1 if ϕq = hwtq

G(t) for all q ∈ Q

0 otherwise.

Moreover, G′
t = hG(t) for every t ∈ TΣ.

Proof. Let C =
{
E | σ(q1, . . . , qk)

E,I−→ q ∈ P
} ∪ {

I | σ(q1, . . . , qk)
E,I−→ q ∈ P

}
be

the constraints that occur in G. We let F ′
ϕ =

∑
q∈Q hF (q) · ϕq for every ϕ ∈ T

Q.

234 A. Maletti and A.-T. Nász

For all k ∈ N, σ ∈ Σk, nonterminals ϕ1, . . . , ϕk ∈ T
Q, and constraints E ⊆ C we

let p′ = σ(ϕ1, . . . ϕk)
E,I−→ ϕ ∈ P ′, where I = C \ E and for every q ∈ Q

ϕq =
∑

p=σ(q1,...,qk)
E,I−→q∈P

E⊆E, I⊆I

hwt(p) · ϕ1
q1 · . . . · ϕk

qk
. (1)

No additional productions belong to P ′. Finally, we set wt′
p′ = 1 for all p′ ∈ P ′.

In general, the WTAc G′ is certainly not deterministic due to the choice of
constraints, but G′ is unambiguous since the resulting 2|C| rules for each left-
hand side have mutually exclusive constraint sets. In fact, for each t ∈ TΣ there
is exactly one left-most complete derivation of G′ for t, and it derives to ϕ ∈ T

Q

such that ϕq = hwtq
G(t) for every q ∈ Q. The weight of that derivation is 1. These

statements are proven inductively. The final statement G′
t = hG(t) is an easy

consequence of the previous statements. ��
Example 15. Reconsider the WTAc obtained as the disjoint union of the WTAc
G and G′ of Example 13 as well as the semiring homomorphism h ∈ B

A given
by ha = 1 for all a ∈ A \ {−∞} and h−∞ = 0. The set C of utilized constraints
is

{
(1, 2), (11, 12)

}
and we write ϕ ∈ B

Q simply as subsets of Q. We obtain
the unambiguous WTAc G′′ with the following (sensible, i.e. having satisfiable
constraints) productions for all Q′, Q′′ ⊆ {q, z}, which all have weight 1.

α
1 �=2,11 �=12−→ {q, z}

γ(Q′)
1=2,11=12−→ Q′ ∩ {q} γ(Q′)

1 �=2,11=12−→ Q′ ∩ {q}
γ(Q′)

1=2,11 �=12−→ Q′ γ(Q′)
1 �=2,11 �=12−→ Q′

σ(Q′, Q′′)
1=2,11=12−→ Q′ ∩ Q′′ σ(Q′, Q′′)

1 �=2,11=12−→ Q′ ∩ Q′′ ∩ {z}
σ(Q′, Q′′)

1=2,11 �=12−→ Q′ ∩ Q′′ σ(Q′, Q′′)
1 �=2,11 �=12−→ Q′ ∩ Q′′ ∩ {z}

Each t ∈ TΣ has exactly one left-most complete derivation in G′′; it derives
to Q′, where (i) q ∈ Q′ iff t ∈ supp(G) and (ii) z ∈ Q′ iff t ∈ supp(G′). ��
Corollary 16 (of Theorem 14). Let S be finite. For every WTAc over S there
exists an equivalent unambiguous WTAc. ��
Corollary 17 (of Theorem 14). Let S be zero-sum free. For every WTAc G
over S there exists an unambiguous TAc generating supp(G).

Proof. Utilizing Lemma 8 we can first construct an equivalent WTAc with
Boolean final weights. If S is zero-sum free, then there exists a semiring homo-
morphism h ∈ B

S by [27]. By Lemma 9 we can assume that each derivation
of G has non-zero weight and sums of non-zero elements remain non-zero by
zero-sum freeness. Thus we can simply replace the factor hwt(p) by 1 in (1). The
such obtained TAc generates supp(G). ��

Weighted Tree Automata with Constraints 235

Let A,A′ ∈ S
TΣ . It is often useful (see [15, Definition 4.11]) to restrict A to the

support of A′ but without changing the weights of those trees inside the support.
Formally, we define A|supp(A′) ∈ S

TΣ for every t ∈ TΣ by A|supp(A′)(t) = A(t)
if t ∈ supp(A′) and A|supp(A′)(t) = 0 otherwise. Utilizing the unambiguous
WTAc and the Hadamard product, we can show that A|supp(A′) is constraint-
regular if A and A′ are constraint-regular and the semiring S is zero-sum free.

Theorem 18. Let S be zero-sum free. For all WTAc G and G′ there exists a
WTAc H such that H = G|supp(G′).

Proof. By Corollary 10 the support supp(G′) is constraint-regular. Hence we
can obtain an unambiguous WTAc G′′ for supp(G′) using Theorem 14. Without
loss of generality we assume that both G and G′′ are constraint-determined; we
note that the normalization preserves unambiguous WTAc. Finally we construct
G × G′′, which by Theorem 12 generates exactly G|supp(G′) as required. ��

5 Towards HOM Problem

The strategy of [15] for deciding the HOM problem first represents the homo-
morphic image L of the regular tree language with the help of an WTGc G. For
deciding whether L is regular, a tree automaton G′ simulating the behavior of G
up to a certain bounded height is constructed. If G′ = G, then L is regular. If
not, pumping arguments are used to prove that it is impossible to find any TA
for L. Overall, they reduce the HOM problem to an equivalence problem.

Towards solving the HOM problem in the weighted case we now proceed sim-
ilarly. First, we show that WTGc can encode each (well-defined) homomorphic
image of a regular weighted tree language. This ability motivated their definition
in the unweighted case [15, Proposition 4.6], and it also applies in the weighted
case with minor restrictions that just enforce that all obtained sums are finite.

Theorem 19. Let G = (Q,Σ,F, P,wt) be a WTA and h ∈ TTΣ

Δ be a nondeleting
and nonerasing tree homomorphism. There exists a WTGc G′ with G′ = h(G).

Proof. We construct a WTGc G′ for h(G) in two stages. First, we construct the
WTGc G′′ =

(
Q ∪ {⊥},Δ ∪ Δ × P, F ′′, P ′′,wt′′) such that for every production

p = σ(q1, . . . , qk) → q ∈ P and hσ = u = δ(u1, . . . , un),

p′′ =
(
〈δ, p〉(u1, . . . , un)�q1, . . . , qk�

E,∅−→ q
)

∈ P ′′ with E =
⋃

i∈[k]

posxi
(u)2

where the substitution 〈δ, p〉(u1, . . . , un)�q1, . . . , qk� replaces for every i ∈ [k] only
the left-most occurrence of xi in 〈δ, p〉(u1, . . . , un) by qi and all other occurrences
by ⊥. Moreover wt′′

p′′ = wtp. Additionally, we let p′′
δ = δ(⊥, . . . ,⊥) → ⊥ ∈ P ′′

with wt′′
p′′

δ
= 1 for every k ∈ N and δ ∈ Δk ∪ Δk × P . No other productions are

in P ′′. Finally, we let F ′′
q = Fq for all q ∈ Q and F ′′

⊥ = 0.
We can now delete the annotation. First we remove all productions to ⊥ that

are labeled with symbols from Δ × P . Second, we use a deterministic relabeling

236 A. Maletti and A.-T. Nász

to remove the second components of labels of Δ × P . Thus, we overall obtain a
WTGc G′ (using only equality constraints) such that G′ = h(G).

The sole purpose of the annotations is to establish a one-to-one correspon-
dence between the valid runs of G and those of G′′, before evaluating the sums
to compute h(G). This simplifies the understanding of the correctness of the
construction, but is otherwise superfluous and may be omitted for efficiency. ��

Let us illustrate the construction on a simple example.

Example 20. Consider the WTA G =
({q, q′}, Σ, F, P,wt

)
over the semiring N

with Σ = {α(0), φ(1), γ(1), ε(1)}, Fq = 0, Fq′ = 1, and the set of productions
and their weights given by p1 = α →1 q, p2 = γ(q) →2 q, p3 = ε(q) →1 q and
p4 = φ(q) →1 q′. We have supp(G) =

{
φ(t) | t ∈ TΣ\{φ}

}
and Gt = 2|posγ(t)|

for t ∈ supp(G). Consider the ranked alphabet Δ = {α(0), γ(1), σ(2)} and the
homomorphism h induced by hα = α, hγ = hε = γ(x1), and hφ = σ

(
γ(x1), x1

)
.

So supp
(
h(G)

)
=

{
σ
(
γn+1(α), γn(α)

) | n ∈ N
}

and h(G)t =
∑n

k=0

(
n
k

)
2k = 3n

for every t = σ
(
γn+1(α), γn(α)

) ∈ supp
(
h(G)

)
. A WTGc for h(G) is constructed

as follows. First, we let G′′ =
({q, q′,⊥},Δ ∪ Δ × P, F ′′, P ′′,wt′′) with F ′′

q′ = 1,
F ′′

q = F ′′
⊥ = 0 and the productions and their weights are given by

〈α, p1〉 →1 q 〈γ, p2〉(q) →2 q 〈γ, p3〉(q) →1 q 〈σ, p4〉
(
γ(q),⊥) 11=2−→1 q′

and δ(⊥, . . . ,⊥) →1 ⊥ for all δ ∈ Δ∪Δ×P . Next we remove the second compo-
nent of the labels and add weights of productions that become equal. This applies
to the production γ(q) → q, which obtains the sum of the two productions (with
annotations p2 and p3). So we obtain the WTGc G′ =

({q, q′,⊥},Δ, F ′′, P ′,wt′)

with the following productions for all δ ∈ Δ.

α →1 q γ(q) →3 q σ
(
γ(q),⊥) 11=2−→1 q′ δ(⊥, . . . ,⊥) →1 ⊥

��
Although for zero-sum free semirings, the support of a regular weighted tree

language is again regular, in general, the converse is not true, so we cannot apply
the decision procedure from [15] to the support of h(G) in order to decide its
regularity. Instead, we hope to extend the unweighted argument in a way that
tracks the weights sufficiently close. For this, we prepare two decidability results,
which rely mostly on the corresponding results in the unweighted case. To this
end, we need to relate our WTGc constructed in Theorem 19 to those used in [15].
This requires that the equality constraints in every production refer to positions
that occur in its left-hand side and are labeled by the same nonterminal.

Definition 21. A WTGc G = (Q,Σ,F, P,wt) is classic if {v, v′} ⊆ pos() and

	(v) = 	(v′) ∈ Q for every production 	
E,I−→ q ∈ P and (v, v′) ∈ E. ��

Theorem 22. Let S be a zero-sum free semiring, G = (Q,Σ,F, P,wt) be a WTA
and h ∈ TTΣ

Δ be a nondeleting and nonerasing tree homomorphism. Finally,
let A = h(G). Emptiness and finiteness of supp(A) are decidable.

Weighted Tree Automata with Constraints 237

The proof of Theorem 22 applies the corresponding result for the unweighted
case. In short, we use Theorem 19 to represent A by a WTGc for which we drop
the weights. The resulting TGc representing supp(A) is then modified into an
equivalent, classic one. For this, emptiness and finiteness are decidable by [15].

References

1. Bogaert, B., Tison, S.: Equality and disequality constraints on direct subterms in
tree automata. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp.
159–171. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55210-3 181

2. Borchardt, B.: The Theory of Recognizable Tree Series. Ph.D. thesis, Technische
Universität Dresden (2005)

3. Bozapalidis, S., Rahonis, G.: On the closure of recognizable tree series under tree
homomorphisms. J. Autom. Lang. Comb. 10(2–3), 185–202 (2005)

4. Comon, H., et al.: Tree automata – Techniques and applications (2007)
5. Comon, H., Jacquemard, F.: Ground reducibility and automata with disequality

constraints. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994.
LNCS, vol. 775, pp. 149–162. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-57785-8 138

6. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. Amer. J. Math. 35(4), 413–422 (1913)

7. Doner, J.: Tree acceptors and some of their applications. J. Comput. System Sci.
4(5), 406–451 (1970)

8. Drewes, F.: Grammatical Picture Generation: A Tree-Based Approach. Springer,
Heidelberg (2006). https://doi.org/10.1007/3-540-32507-7

9. Droste, M., Heusel, D.: The supports of weighted unranked tree automata. Funda.
Inform. 136(1–2), 37–58 (2015)

10. Ésik, Z., Kuich, W.: Formal tree series. J. Autom. Lang. Comb. 8(2), 219–285
(2003)

11. Fülöp, Z., Maletti, A., Vogler, H.: Preservation of recognizability for synchronous
tree substitution grammars. In: Proceedings of the Workshop Applications of Tree
Automata in Natural Language Processing, pp. 1–9. ACL (2010)

12. Fülöp, Z., Maletti, A., Vogler, H.: Weighted extended tree transducers. Funda-
menta Informaticae 111(2), 163–202 (2011)

13. Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Droste,
M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. Monographs
in Theoretical Computer Science. An EATCS Series, pp. 313–403. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-01492-5 9

14. Gécseg, F., Steinby, M.: Tree automata. Technical report 1509.06233, arXiv (2015)
15. Godoy, G., Giménez, O.: The HOM problem is decidable. J. ACM 60(4), 1–44

(2013)
16. Golan, J.S.: Semirings and Their Applications. Kluwer Academic, Dordrecht (1999)
17. Hebisch, U., Weinert, H.J.: Semirings - Algebraic Theory and Applications in Com-

puter Science. World Scientific, Singapore (1998)
18. Jurafsky, D., Martin, J.H.: Speech and Language Processing, 2nd edn. Prentice

Hall, Hoboken (2008)
19. Kirsten, D.: The support of a recognizable series over a zero-sum free, commutative

semiring is recognizable. Acta Cybernet. 20(2), 211–221 (2011)

https://doi.org/10.1007/3-540-55210-3_181
https://doi.org/10.1007/3-540-57785-8_138
https://doi.org/10.1007/3-540-57785-8_138
https://doi.org/10.1007/3-540-32507-7
https://doi.org/10.1007/978-3-642-01492-5_9

238 A. Maletti and A.-T. Nász

20. Mongy-Steen, J.: Transformation de noyaux reconnaissables d’arbres. Forêts
RATEG. Ph.D. thesis, Université de Lille (1981)

21. Perrin, D.: Recent results on automata and infinite words. In: Chytil, M.P.,
Koubek, V. (eds.) MFCS 1984. LNCS, vol. 176, pp. 134–148. Springer, Heidel-
berg (1984). https://doi.org/10.1007/BFb0030294

22. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Springer, New York (1978). https://doi.org/10.1007/978-1-4612-6264-0

23. Schützenberger, M.P.: On the definition of a family of automata. Inf. Control 4(2–
3), 245–270 (1961)

24. Thatcher, J.W.: Characterizing derivation trees of context-free grammars through
a generalization of finite automata theory. J. Comput. Syst. Sci. 1(4), 317–322
(1967)

25. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an applica-
tion to a decision problem of second-order logic. Math. Syst. Theory 2(1), 57–81
(1968). https://doi.org/10.1007/BF01691346

26. Tison, S.: Tree automata, (dis-)equality constraints and term rewriting: what’s
new? In: Proceedings of the 22nd International Conference on Rewriting Tech-
niques and Applications. LIPIcs, vol. 10, pp. 1–2. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik (2011)

27. Wang, H.: On characters of semirings. Houston J. Math. 23(3), 391–405 (1997)
28. Wilhelm, R., Seidl, H., Hack, S.: Compiler Design. Springer, Heidelberg (2013).

https://doi.org/10.1007/978-3-642-17540-4

https://doi.org/10.1007/BFb0030294
https://doi.org/10.1007/978-1-4612-6264-0
https://doi.org/10.1007/BF01691346
https://doi.org/10.1007/978-3-642-17540-4

Performing Regular Operations
with 1-Limited Automata

Giovanni Pighizzini1, Luca Prigioniero1(B) , and Šimon Sádovský2

1 Dipartimento di Informatica, Università degli Studi di Milano,
via Celoria, 18, 20133 Milan, Italy

{pighizzini,prigioniero}@di.unimi.it
2 Department of Computer Science, Comenius University,

Mlynská Dolina, 842 48 Bratislava, Slovakia
sadovsky@dcs.fmph.uniba.sk

Abstract. The descriptional complexity of basic operations on regular
languages using 1-limited automata, a restricted version of one-tape Tur-
ing machines, is investigated. When simulating operations on determinis-
tic finite automata with deterministic 1-limited automata, the sizes of the
resulting devices are polynomial in the sizes of the simulated machines.
The situation is different when the operations are applied on determin-
istic 1-limited automata: while for boolean operations the simulations
remain polynomial, for product, star, and reversal they cost exponential
in size. These bounds are tight.

1 Introduction

It is well known that regular languages are recognized by finite automata and
are closed under several language operations. When a class of languages benefits
of such strong closure properties, it is quite natural to ask how much these
operations cost in terms of size of the description of recognizing devices. In
this paper we focus on the complexity of union, intersection, complementation,
product, star, and reversal. The costs of these operations on deterministic finite
automata (1dfas) have been widely studied in the literature [6,7,15,16], while
the case of two-way finite automata (in both deterministic and nondeterministic
version) has also been considered [4,5].

In this paper we study the descriptional complexity of language operations
on deterministic 1-limited automata (d1-las). Limited automata are a kind of
single-tape Turing machines with rewriting restrictions, introduced by Hibbard
in 1967 [2] and recently reconsidered and deeply investigated (see, e.g., [1,8–
12,14]). These devices are two-way finite automata with the extra capability of
overwriting the contents of each tape cell only in the first d visits, for a fixed
constant d ≥ 0 (we use the name d-limited automaton to explicitly mention

The research of Šimon Sádovský was supported, in part, by Slovak Scientific Grant
Agency VEGA (Grant 1/0601/20) and by Comenius University in Bratislava (Grant
UK/258/2021).

c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 239–250, 2022.
https://doi.org/10.1007/978-3-031-05578-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_19&domain=pdf
http://orcid.org/0000-0001-7163-4965
https://doi.org/10.1007/978-3-031-05578-2_19

240 G. Pighizzini et al.

the constant d). For any fixed d ≥ 2, d-limited automata have the same power
as pushdown automata, namely they accept exactly context-free languages [2],
while deterministic 2-limited automata recognize exactly the class of determin-
istic context-free languages [10]. For d = 0 no rewritings are possible, hence the
resulting models are two-way finite automata. The computational power does
not increase if the rewritings in any cell are restricted only to the first visit. In
other words, 1-limited automata are no more powerful than finite automata [13].
However, their descriptions can be significantly more succinct. In particular, a
double exponential size gap between 1-limited automata and one-way determin-
istic finite automata has been proved in [9], while exponential size gaps have been
proved for the conversions from 1-limited automata into one-way nondetermin-
istic finite automata and from deterministic 1-limited automata into one-way
deterministic finite automata.

In the study of the descriptional complexity of language operations given a
family of recognizers (source devices), the goal is the investigation of the size of
the devices (target devices) accepting the languages obtained by applying some
operations to (the languages accepted by) the source devices. Up to now, in
the literature it has been analyzed the size of target devices of the same family
as the source devices. However, the results on the succinctness of the descrip-
tion of 1-limited automata suggested us to propose a different approach. Here,
for each operation we study, we first take finite automata as source devices,
and we simulate the operations on them with 1-limited automata as target
devices. We emphasize that we consider deterministic machines only. There-
fore, we prove that, despite the capabilities of 1-limited automata of rewriting
the cells of the tape during the first visit do not make this model more powerful
than finite automata, using these machines as target devices for simulating oper-
ations between finite automata yields 1-limited automata more succinct than the
equivalent finite automata. In fact, if we consider operations between 1dfas (as
source devices), we are able to create d1-las accepting the languages obtained
by applying such operations that are smaller than the equivalent 1dfas obtained
by using standard constructions [16]. In particular, while the 1dfas accepting
the languages obtained by applying the operations of reversal, product, and star
on the languages accepted by 1dfas cost exponential, the constructions we pro-
vided yield equivalent d1-las whose sizes are only polynomial in the sizes of the
source 1dfas.

On the other hand, when considering 1-limited automata as source and target
devices, the simulations cost polynomial only in the case of union, intersection,
and complementation. In the case of reversal, product, and star, however, we
were able to find exponential lower bounds witnessing the fact that there is no
smaller automaton than the one obtained by converting the simulated d1-las
into 1dfas first (obtaining exponentially larger machines), and then applying the
corresponding (polynomial-size) language operation construction for obtaining
a d1-la.

Performing Regular Operations with 1-Limited Automata 241

2 Preliminaries

We assume the reader familiar with notions from formal languages and automata
theory, in particular with one-way and two-way deterministic finite automata
(1dfas and 2dfas for short, respectively). For further details see, e.g., [3]. Given
a set S, #S denotes its cardinality and 2S the family of all its subsets. Given an
alphabet Σ, we denote by |w| the length of a string w ∈ Σ∗, by wR the reversal
of w, and by ε the empty string. Given two languages L,L′ ⊆ Σ∗, Lc denotes
the complement of L, L∗ denotes the (Kleene) star of L, LR denotes the reversal
of L, and L ·L′, L∪L′, and L∩L′ denote the product (or concatenation), union,
and intersection of L and L′, respectively (with the usual meaning).

A deterministic 1-limited automaton (d1-la) is a 2dfa which can rewrite
the contents of each tape cell in the first visit only. Formally, it is a tuple A =
(Q,Σ, Γ, δ, q0, F), where Q is a finite set of states, Σ is a finite input alphabet,
Γ is a finite working alphabet such that Σ ∪ {�,�} ⊆ Γ , �,� /∈ Σ are two
special symbols, called the left and the right end-markers, and δ : Q × Γ →
Q×Γ ×{−1,+1} is the transition function. At the beginning of the computation,
the input is stored onto the tape surrounded by the two end-markers, the left
end-marker being at the position zero. Hence, on input w, the right end-marker
is on the cell in position |w| + 1. The head of the automaton is on cell 1 and the
state of the finite control is the initial state q0. In one move, according to the
transition function and to the current state, A reads a symbol from the tape,
changes its state, replaces the symbol just read from the tape by a new symbol,
and moves its head to one position forward or backward. Furthermore, the head
cannot pass the end-markers, except at the end of computation, to accept the
input, as explained below. However, replacing symbols is allowed to modify the
content of each cell only during the first visit (after that, the contents of the cell
is said to be frozen), with the exception of the cells containing the end-markers,
which are never modified. For technical details see [10]. A accepts an input w
if and only if there is a computation path which starts from the initial state q0
with the input tape containing w surrounded by the two end-markers and the
head on the first input cell, and which ends in a final state q ∈ F after passing
the right end-marker. It is an easy observation that one can enforce 1-limited
automata to always rewrite each cell in the first visit so that they know whether
they are scanning the cell for the first time or not.

The size of a machine is given by the total number of symbols used to write
down its description. Therefore, the size of deterministic 1-limited automata
is bounded by a polynomial in the number of states and of working symbols,
namely, it is Θ(#Q · #Γ · log(#Q · #Γ)). In the case of deterministic finite
automata, since no writings are allowed and hence the working alphabet is not
provided, the size is linear in the number of instructions and states, which is
bounded by a polynomial in the number of states and in the number of input
symbols, namely, it is Θ(#Σ · #Q · log(#Q)).

242 G. Pighizzini et al.

3 Product and Kleene Star

We start our investigation by studying the operations of product and star. It is
known that the costs for these operations on 1dfas are exponential due to the
need of simulating in a deterministic way the nondeterministic choices used for
decomposing the input string. However, we show that, using d1-las as simulating
machines, the costs reduce to polynomials. Then, we analyze the simulations of
these operations when the given machines are d1-las. In this case, by studying
suitable witness languages, we prove that the costs become exponential.

3.1 Simulations of Operations on 1DFAs

We now describe how to obtain a d1-la A = (Q,Σ, Γ, δ, q0, F) accepting the
concatenation of the languages accepted by two 1dfas A′ = (Q′, Σ, δ′, q′

0, F
′)

and A′′ = (Q′′, Σ, δ′′, q′′
0 , F ′′), in such a way that the size of A is polynomial

in the sizes of A′ and A′′. Let n′ = #Q′, n′′ = #Q′′, Q′ = {q′
0, q

′
1, . . . , q

′
n′−1},

and Q′ = {q′′
0 , q′′

1 , . . . , q′′
n′′−1}.

Let us start by briefly recalling how a 1dfa accepting L(A′) · L(A′′) can
work. It simulates A′ on the whole input word and, every time a final state is
entered, it starts a parallel simulation of the automaton A′′ on the remaining
input suffix. When the end of the input is reached, if some computation of A′′ is
in a final state, the 1dfa accepts. Since the simulating 1dfa keeps in its finite
control, at the same time, a state of A′ and the set of states reached by all the
parallel simulations of A′′, its size is Θ(n′ · 2n

′′
), which is optimal [16].

In our case the goal is to avoid the exponential blowup in size by exploiting
the rewriting capability of 1-las. To this end, A still simulates the behavior
of A′ by using a state component of size n′, and marks the cells from which
the simulations of A′′ can start, that are the cells next to the ones A′ enters
some accepting state. So the simulation can be executed in a sequential rather
than parallel way. Moreover, instead of storing the set of states reached by the
simulations of A′′ in the finite control, A encodes and writes it along the tape.
This information is then accessed, using the ability of 1-las of scanning the tape
in a two-way fashion, to start and recover the simulations of A′′.

In order to encode the set of states reached by the computations of A′′,
the tape is logically divided into blocks of n′′ cells (possibly with a final shorter
block). Thus, the i-th cell of each block is marked with ✔ if the state q′′

i is reached
by some simulation of A′′ ending in the last cell before the block, otherwise it is
marked with ✗.

The written information is organized into three tracks. In particular, for each
frozen cell:

– The first track contains a copy of the input symbol originally contained in the
cell before the rewriting, so that it can be still accessed during the simulations
of A′′;

– The second track contains a marker indicating whether (✔) or not (✗) the
automaton A′ has entered an accepting state right before reading the cell,

Performing Regular Operations with 1-Limited Automata 243

i.e., by reading the input prefix which ends in the cell immediately to the left.
So that for any cell containing ✔ a simulation of A′′ can be started;

– The third track contains a marker indicating whether (✔) or not (✗) the
corresponding states are reachable by some simulation of A′′, as explained
above.

To make the storing and the recovering of the information about the sim-
ulation of the automaton A′′ possible while keeping the cost of the simulation
polynomial in the size of the simulated devices, the behavior of the simulating
1-la will be restricted to virtual windows of length 2n′′ that cover two successive
blocks of cells. The right block covered by a window contains, in some position,
the leftmost cell that has not been overwritten so far, to which we refer as rel-
ative frontier. We refer to the positions relative to the current window as pairs
in {0, 1, . . . , n′′ − 1} × {l,r}, where the pairs whose second element is l (resp.,
r) denote the left (resp., right) block of the window.

We now present some details on how A recognizes L(A′) · L(A′′). The d1-la
stores in its finite control the position of the frontier in the right block of the
window, the relative position of the head within the window, and the state of
the automaton A′, which is updated every time the cell at the frontier is read.
At the beginning of the computation, the simulated state of the automaton A′ is
initialized with q′

0, and the relative frontier and the relative position both point
at position 0 into the right block of the window.

Let us now show how the 1-la can overwrite each block, cell by cell, with
an encoding of the set of states reached by all computations of A′′ at the end
of the previous block and how it can mark the cells in which the simulations
of A′′ start. Let (i,r), i ∈ {0, . . . , n′′ − 1}, be the position of the frontier. Before
visiting the cell in that position, the 1-la has to gather the information to write
in the leftmost cell that has not been rewritten yet. In particular, it has

1. To check whether the simulated automaton A′ accepts the input scanned so
far: This can be easily done by using the state component devoted to the
simulation of A′ for simulating a move of A′ on the current input symbol and
verify whether it enters a state in F ′. In that case, A will write ✔ on the
second track, ✗ otherwise.

2. To check whether the state q′′
i can be reached by some computation of A′′

before entering the (first cell of the) right block of the current window: This
operation is split into two phases. First, the 1-la starts (from the initial
state q′′

0) the computations of A′′ from each cell of the left block whose second
track contains ✔. Then, it recovers, in turn, the computations of A′′ from
the states indicated in the third track of the cells of the left block, starting
from the leftmost position of the window, i.e., relative position (0, l). If,
during these two phases, the computation of A′′ reaches the state q′′

i after
simulating the transition on the symbol in the last cell of the left block, i.e.,
relative position (n′′ − 1, l), the simulating automaton has to write ✔ in the
third track, ✗ otherwise.

After gathering this information, the 1-la moves the head to the frontier, over-
writes the cell, and the frontier is moved to the next cell. When the last cell of

244 G. Pighizzini et al.

the window is overwritten, the window shifted forward of one block (i.e., it is
shifted n′′ − 1 cells to the left), so the right block becomes the left one and the
frontier points at position (0,r).

When the machine detects the end of the input, indicated by the right end-
marker �, it has to check whether some simulation of A′′ halts in some accepting
state. This can be done with the same approach described in Item 2, but the two
procedures of the two phases continue the simulations until the last cell of the
input rather than stopping in position (n′′ − 1, l). The d1-la accepts if, during
the two phases, some state in F ′′ is reached at the end of the input or if the
simulated state of A′ is final and the initial state of A′′ is final as well.

By computing the size of the resulting d1-la A, we are able to state our
result on the acceptance of the product of two regular languages (represented
by 1dfas) by a d1-la.

Theorem 1. Let A′ = (Q′, Σ, δ′, q′
0, F

′) and A′′ = (Q′′, Σ, δ′′, q′′
0 , F ′′) be two

1dfas. Then there exists a d1-la accepting L(A′) · L(A′′) with O(#Q′#Q′′4)
states and 5#Σ + 2 working symbols.

Let us now turn our attention to the star operation. Let A = (Q,Σ, δ, qI , F)
be a 1dfa. The d1-la N for L(A)∗ can implement an approach similar to the
one used for the product, so we now illustrate the main differences.

In this case, the only automaton to be simulated is A. The first simulation
is started from the leftmost input cell. N then starts a new simulation every
time a (simulated) final state is entered by some simulated computation of A.
If, at the end of the input, some simulation reaches a final state, then the 1-la
accepts.

To implement this strategy, the tape of N is still organized as for the simula-
tion of the product, i.e., it is logically split into blocks of size #Q and three tracks
are used to store a copy of the input, indicating whether or not some simulation
of A has entered an accepting state on the previous cell, and a marker indicating
whether or not the corresponding states are reachable by some simulation of A.

Before entering a new cell, N first checks whether the prefix already visited
is in L(A)∗. This is done by recovering the simulations of A (from the states
encoded on the third track) and starting the new ones (from the cells of the
second track marked with ✔), and checking whether some of them reaches a
state in F . After that, N checks whether the state whose index is equal to the
index of the frontier (relative to the block) is reached at the end of the previous
block by some simulation. Once this information is computed, the automaton
moves the head on the cell at the frontier and overwrites it.

When the right endmarker is reached, N only needs to check whether some
simulated device is in a final state and, in that case, accepts.

Theorem 2. Let A = (Q,Σ, δ, q0, F) be a 1dfa. Then there exists a d1-la
accepting L(A)∗ with O(#Q4) states and 5#Σ + 2 working symbols.

Performing Regular Operations with 1-Limited Automata 245

3.2 Simulations of Operations on D1-LAs

We now focus on the size costs of the operations of product and star on d1-las.
An immediate approach is to convert the source d1-las to 1dfas, and then to
apply the constructions shown in the previous section. Since converting d1-las
into 1dfas costs exponential in size [9], this procedure yields exponential-size
d1-las for the two operations we are considering. Here, we show that this strat-
egy cannot be improved, in fact we prove exponential lower bounds for these
operations.

For each integer k ≥ 2, let us consider the language of the strings obtained
by concatenating at least two blocks of length k, in which the first and the last
blocks are equal: Lk = {w{a, b}knw | n ≥ 0, w ∈ {a, b}k}.

A d1-la Ak may recognize Lk as follows. It first scans the leftmost block w
of length k of the input, overwriting each symbol with a marked copy. Then, Ak

repeats a subroutine which overwrites any subsequent block of length k, say x,
with some fixed symbol �, while checking in the meantime whether x equals w
or not. This can be achieved as follows. A boolean variable matched is used to
keep track of whether or not the prefixes of x and w compared so far match. At
the beginning of the inspection of x, the device assigns true to matched, then
it iteratively inspects the symbols of x. Suppose that all the symbols to the
left of the j-th symbol of x have been inspected and overwritten by �. Before
inspecting the j-th symbol of x, first, Ak, with the help of a counter modulo k,
moves the head leftward to the position j of w and stores the unmarked scanned
symbol σ in its finite control; second, it moves the head rightward until reaching
the position j of x, namely, the leftmost position that has not been overwritten
so far. At this point, Ak compares the scanned symbol (i.e., the j-th symbol
of x) with σ. If the two symbols differ, the machine assigns false to matched. If,
after inspecting a block of length k, Ak detects that the next symbol is the right
endmarker, then it stops the computation, accepting in case matched contains
true. Otherwise Ak repeats the subroutine described above in order to inspect
the next block.

It is possible to implement Ak with a number of states linear in k and 7
working symbols (the input symbols and their marked copies, the endmarkers,
and the symbol �).

Let us now consider the language L2
k, namely the product of Lk with itself. In

this case, the ability of rewriting the tape cell contents of d1-las does not come
in handy. This is because, ideally, the d1-la cannot know in advance where to
“split” the input string into two parts belonging to Lk. This idea is confirmed
by the proof of the following result:

Theorem 3. For any integer k ≥ 2,

– There exist two d1-las A′ and A′′ of size linear in k such that any d1-la
accepting L(A′) · L(A′′) needs size at least exponential in k.

– There exists a d1-la A of size linear in k such that any d1-la accepting
L(A)∗ needs size exponential in k.

246 G. Pighizzini et al.

Proof. Let us consider the language Lk. Using the approach described above, it
is possible to recognize Lk with a d1-la of size linear in k.

Let us turn our attention to the language Lk ·Lk = L2
k. To give a lower bound

for the size required by any 1dfa accepting it, we are now going to describe a set
of pairwise distinguishable strings for this language. We remind the reader that
two strings x, y are distinguishable with respect to a language L when there is
a string z such that exactly one of the two strings xz and yz belongs to L. The
cardinality of each set of strings which are pairwise distinguishable with respect
to L gives a lower bound for the number of states of each 1dfa accepting L.

Let us consider the list x1, x2, . . . , xN , with N = 2k, of all the strings
in {a, b}k in some fixed order. For each subset S ⊆ {1, 2, . . . , N}, we define
a string wS as follows. Let S = {i1, i2, . . . , in}, 1 ≤ i1 < i2 < . . . < in ≤ N . We
define wS = xi1xi1xi1xi2xi1xi3xi1 · · · xinxi1 if S 	= ∅, otherwise w∅ = ε. In other
words, if S is nonempty, then wS is the ordered sequence of factors correspond-
ing to the elements of S interleaved with occurrences of xi1 . In particular, xi1

occurs at the beginning of the sequence and after every factor. Now, consider
two sets S, T ⊆ {1, 2, . . . , N}, with S 	= T . Hence, there is a string x ∈ {a, b}k
contained exactly in one of them. Without loss of generality, assume x ∈ S
and x /∈ T . We prove that wSx ∈ L2

k and wTx /∈ L2
k. Let x = xi� . If 	 > 1,

then xi1xi1xi1xi2xi1 · · · xi�−1xi1 ∈ Lk and xi�xi1xi�+1xi1 · · · xinxi1xi� ∈ Lk.
If 	 = 1, then xi1xi1 ∈ Lk and xi1xi2xi1 · · · xinxi1xi1 ∈ Lk. Hence, in both
cases, wSx ∈ L2

k. On the other hand, the string wTx is not in L2
k because x does

not occur in any other position of wT . Actually, for the same reason, wTx /∈ L∗
k.

This observation easily allows to extend our result to the star operation. Hence x
distinguishes wS and wT with respect to both the languages L2

k and L∗
k. Since

there are 2N subsets of {1, 2, . . . , N}, each 1dfa accepting Lk ·Lk and each 1dfa

accepting L∗
k needs at least 22

k

states. Moreover, since the conversion of d1-las
into 1dfas costs exponential [9], each d1-la accepting Lk · Lk and each d1-la
accepting L∗

k has size at least 2O(k). ��
In conclusion, starting from two d1-las A′ and A′′ accepting the languages L′

and L′′ (resp., from a d1-la A accepting a language L), a d1-la for L′ · L′′

(resp., L∗) can be obtained by converting A′ and A′′ (resp., A) into 1dfas,
and then applying the transformation of Theorem 1 (resp., Theorem 2). These
constructions are optimal, in fact we proved that the exponential blowup in size
due to the conversion into 1dfas cannot be avoided.

4 Union, Intersection, and Complementation

4.1 Simulations of Operations on 1DFAs

It is well known that for union, intersection, and complement, the simulations
are easier than the ones for product and star. Even if the target machines are
1dfas, it is possible to obtain polynomial-size simulating devices. For union and
intersection, the resulting 1dfa is obtained by simulating in parallel the 1dfas
accepting the two given languages. Hence, it has a number of states which is the

Performing Regular Operations with 1-Limited Automata 247

product of the number of states of the two given 1dfas. This cannot be improved
in the worst case [16].

If we use a 2dfa as target machine, it can perform the simulation of the
first 1dfa during a sweep from left to right, then, when the end of the input
is reached, the head is brought at the beginning of the tape and the simulation
of the second 1dfa is started. In the case of the union, the 2dfa accepts if the
simulation of at least one 1dfa accepts, while, in the case of the intersection, the
input is accepted if both the simulated 1dfas accept. The 2dfas implementing
these simulations only need to store, in their state, the copies of the simulated
machines, plus one state used to move backward the head at the end of the first
simulation. So the total number of states of the simulating devices is 1 plus the
sum of the numbers of states of the two simulated 1dfas.

From the resulting 2dfas we can directly obtain equivalent d1-las that,
during the first sweep, simply overwrite each tape cell with a copy of the symbol
it originally contains.

Theorem 4. Let A′ = (Q′, Σ, δ′, q′
0, F

′) and A′′ = (Q′′, Σ, δ′′, q′′
0 , F ′′) be two

1dfas. Then there exist

– a d1-la for the language L(A′) ∪ L(A′′) and
– a d1-la for the language L(A′) ∩ L(A′′)

with #Q′ + #Q′′ + 1 states and 2#Σ + 2 working symbols.

The d1-la for the complement can be obtained with a construction analogous
to the standard one used for obtaining a 1dfa for complementation, i.e., just by
complementing the set of the accepting states.

Theorem 5. Let A = (Q,Σ, δ, q0, F) be a 1dfa. Then there exists one d1-la
with #Q states and #Σ + 3 working symbols which accepts L(A)c.

4.2 Simulations of Operations on D1-LAs

Let us now suppose that source and target machines are d1-las. We give con-
structions based on a result on linear-time simulations of 1-las in polynomial
size: In [1] it is showed that, given a 1-la, paying a polynomial growth in size it
is possible to obtain an equivalent one that works in linear time. The idea of the
construction is similar to the technique used for the simulation of the product
of Sect. 3: the simulating device works on a virtual window of fixed size that is
shifted along the tape in a one-way manner. Along each window it is stored the
information useful to simulate the behavior of the 1-la on the cells to the left
of the window without accessing such portion of the tape anymore. In this way,
it is possible to bound the number of visits to each cell (for further details we
address the reader to [1, Theorem 1 and Lemma 6]).

Lemma 1. For each d1-la A = (Q,Σ, Γ, δ, q0, F) there exists an equivalent
d1-la A′ working in linear time with O(#Q4) states and (#Q + 1) · #(Γ \ Σ)
working symbols.

248 G. Pighizzini et al.

For the simulation of union and intersection of the languages accepted by
two d1-las, the machines are simulated in parallel. In particular, two (possibly
different) virtual windows are used and shifted independently. Before entering a
new cell, the simulating device computes the information about the windows of
the simulated d1-las (in this phase, only the cells of the two windows are visited:
it is used the window of the first simulated device and then, when the information
has been gathered, the window of the second simulated device is used). Then
the new cell is entered and the information is written (on two tracks of the
tape), together with the symbols written by the simulated devices (on two extra
tracks).

When the end of the input is reached, in the case of the union the simu-
lating device accepts if at least one simulation accepts, and in the case of the
intersection it accepts if both the simulated devices accept.

Theorem 6. Let A′ = (Q′, Σ, Γ ′, δ′, q′
0, F

′) and A′′ = (Q′′, Σ, Γ ′, δ′′, q′′
0 , F ′′) be

two d1-las, n′ = #Q′, and n′′ = #Q′′. Then there exist

– a d1-la for the language L(A′) ∪ L(A′′) and
– a d1-la for the language L(A′) ∩ L(A′′)

with O(n′4n′′4) states and (n′ +1)(n′′ +1)#(Γ ′ \Σ)#(Γ ′′ \Σ) working symbols.

To accept the complement of the language accepted by a d1-la A, again
Lemma 1 can be used to perform a linear-time (and therefore, halting) simulation
of A. The simulating d1-la accepts if A enters a loop or if it is not in an accepting
state at the end of its computation.

Theorem 7. Let A = (Q,Σ, δ, q0, F) be a d1-la. Then there exists a d1-la
with O(#Q4) states and (#Q+1)#(Γ ′\Σ) working symbols which accepts L(A)c.

5 Reversal

The last operation we study is the reversal. Even in this case, the d1-la for the
reversal of the language accepted by a 1dfa A can be obtained by exploiting
just the capability of the simulating machine of scanning the input in a two-way
fashion, so, again, we first give our result for 2dfas. Roughly, starting from the
initial state of A with the head positioned on the last symbol of the input word,
it accepts if, simulating the transitions of the 1dfa scanning the input from
right to left, enters a final state when the head reaches the left endmarker. This
approach yields a 2dfa with a number of states equal to the one of the simulated
machine, plus two states for adjusting the position of the head along the tape
at the beginning and at the end of the computation.

As a consequence, we are able to construct an equivalent d1-la that uses
the same strategy of the obtained 2dfa, with the only difference that, during
the first sweep from left to right, it rewrites on each cell a copy of the symbol it
scans.

Performing Regular Operations with 1-Limited Automata 249

Theorem 8. Let A = (Q,Σ, δ, q0, F) be a 1dfa. Then there exists one d1-la
with #Q + 2 states and 2#Σ + 2 working symbols which accepts L(A)R.

In the case of d1-las, the reversal has an exponential cost in size. The expo-
nential upper bound can be obtained by converting the d1-la into a 1dfa and
then applying Theorem 8. A matching exponential lower bound has been proved
in [1].

Theorem 9 ([1, Theorem 4]). For any integer k ≥ 2, there exists a d1-la A
of size linear in k such that any d1-la accepting L(A)R needs size exponential
in k.

References

1. Guillon, B., Prigioniero, L.: Linear-time limited automata. Theor. Comput. Sci.
798, 95–108 (2019)

2. Hibbard, T.N.: A generalization of context-free determinism. Inf. Control 11(1/2),
196–238 (1967)

3. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading (1979)

4. Jirásková, G., Okhotin, A.: On the state complexity of operations on two-way finite
automata. Inf. Comput. 253, 36–63 (2017). https://doi.org/10.1016/j.ic.2016.12.
007

5. Kunc, M., Okhotin, A.: State complexity of union and intersection for two-way non-
deterministic finite automata. Fundamenta Informaticae 110(1–4), 231–239 (2011).
https://doi.org/10.3233/FI-2011-540

6. Leiss, E.L.: Succinct representation of regular languages by Boolean automata.
Theor. Comput. Sci. 13, 323–330 (1981). https://doi.org/10.1016/S0304-
3975(81)80005-9

7. Maslov, A.N.: Estimates of the number of states of finite automata. In: Doklady
Akademii Nauk, vol. 194, pp. 1266–1268. Russian Academy of Sciences (1970)

8. Pighizzini, G.: Limited automata: properties, complexity and variants. In: Hos-
podár, M., Jirásková, G., Konstantinidis, S. (eds.) DCFS 2019. LNCS, vol. 11612,
pp. 57–73. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23247-4 4

9. Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found.
Comput. Sci. 25(7), 897–916 (2014)

10. Pighizzini, G., Pisoni, A.: Limited automata and context-free languages. Fundam.
Inform. 136(1–2), 157–176 (2015)

11. Pighizzini, G., Prigioniero, L.: Limited automata and unary languages. Inf. Com-
put. 266, 60–74 (2019)

12. Pighizzini, G., Prigioniero, L., Sádovský, Š.: 1-limited automata: witness languages
and techniques. J. Autom. Lang. Comb. (2022, to appear)

13. Wagner, K.W., Wechsung, G.: Computational Complexity. D. Reidel Publishing
Company, Dordrecht (1986)

14. Yamakami, T.: Behavioral strengths and weaknesses of various models of limited
automata. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOF-
SEM 2019. LNCS, vol. 11376, pp. 519–530. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-10801-4 40

https://doi.org/10.1016/j.ic.2016.12.007
https://doi.org/10.1016/j.ic.2016.12.007
https://doi.org/10.3233/FI-2011-540
https://doi.org/10.1016/S0304-3975(81)80005-9
https://doi.org/10.1016/S0304-3975(81)80005-9
https://doi.org/10.1007/978-3-030-23247-4_4
https://doi.org/10.1007/978-3-030-10801-4_40
https://doi.org/10.1007/978-3-030-10801-4_40

250 G. Pighizzini et al.

15. Yu, S., Zhuang, Q.: On the state complexity of intersection of regular languages.
SIGACT News 22(3), 52–54 (1991). https://doi.org/10.1145/126537.126543

16. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994). https://doi.
org/10.1016/0304-3975(92)00011-F

https://doi.org/10.1145/126537.126543
https://doi.org/10.1016/0304-3975(92)00011-F
https://doi.org/10.1016/0304-3975(92)00011-F

Binomial Complexities
and Parikh-Collinear Morphisms

Michel Rigo , Manon Stipulanti(B) , and Markus A. Whiteland

Department of Mathematics, University of Liège, Liège, Belgium
{m.rigo,m.stipulanti,mwhiteland}@uliege.be

Abstract. Inspired by questions raised by Lejeune, we study the rela-
tionships between the k and (k + 1)-binomial complexities of an infinite
word; as well as the link with the usual factor complexity. We show that
pure morphic words obtained by iterating a Parikh-collinear morphism,
i.e., a morphism mapping all words to words with bounded abelian com-
plexity, have bounded k-binomial complexity. We further study binomial
properties of the images of aperiodic binary words in general, and Stur-
mian words in particular, by a power of the Thue–Morse morphism.

Keywords: Binomial complexity · Powers of Thue–Morse morphism ·
Morphic words

1 Introduction

When interested in the combinatorial structure of an infinite word x over a finite
alphabet A, it is often useful to study its language L(x), i.e., the set of its factors,
and in particular to inspect factors of a given length n. We let Ln(x) denote
L(x) ∩ An. The usual factor complexity function px : N → N counts the number
#Ln(x) of words of length n occurring in x. This is a highly useful notion:
for instance, ultimately periodic words are characterized by a bounded factor
complexity and Sturmian words are exactly those words satisfying px(n) = n+1
for all n [1, §10]. However, to highlight particular combinatorial properties of
the infinite word of interest, other complexity functions such as abelian [16], k-
abelian [8], cyclic [2], privileged [15], and k-binomial [17] complexities have been
introduced. In most cases, one considers the quotient of the language L(x) by
a convenient equivalence relation ∼ and the corresponding complexity function
therefore maps n ∈ N to #(Ln(x)/∼). For instance, a binary (non-periodic)
word is balanced if and only if its abelian complexity is equal to the constant
function 2. This paper focuses on the binomial complexity introduced in [17]
and which is the central theme of Lejeune’s thesis [9]. The notion is based on
the binomial equivalence relations, which have both theoretical and practical
importance in the sciences (see, e.g., [5] and [4] and references therein).

M. Stipulanti and M. Whiteland—Supported by the FNRS Research grants
1.B.397.20F and 1.B.466.21F respectively. M. Whiteland dedicates this paper to the
memory of his father Alan Whiteland (1940–2021).

c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 251–262, 2022.
https://doi.org/10.1007/978-3-031-05578-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_20&domain=pdf
http://orcid.org/0000-0001-7463-8507
http://orcid.org/0000-0002-2805-2465
http://orcid.org/0000-0002-6006-9902
https://doi.org/10.1007/978-3-031-05578-2_20

252 M. Rigo et al.

1.1 Binomial Coefficients and Complexity Functions

General references about word combinatorics can be found in [1,12]. For any
integer k ≥ 1, we let Ak (resp., A≤k; resp., A<k) denote the set of words of
length exactly (resp., at most; resp., less than) k over A. We use A∗ (resp., A+)
for the semi-group of finite words (resp., non-empty finite words) over A equipped
with concatenation. We let ε denote the empty word. The length of a word w
is denoted by |w|, and the number of occurrences of a letter a in w is denoted
by |w|a. Writing A = {a1, . . . , ak} and fixing the order a1 < a2 < · · · < ak on
the letters, the Parikh vector of a word w ∈ A∗ is defined as the column vector
Ψ(w) = (|w|a1 , |w|a2 , . . . , |w|ak

)ᵀ. Let u,w ∈ A∗. The binomial coefficient
(

u
w

)

of u and w is the number of times w occurs as a subsequence of u, i.e., writing
u = u1 · · · un with ui ∈ A,

(
u

w

)
= #

{
i1 < i2 < · · · < i|w| : ui1ui2 · · · ui|w| = w

}
.

By convention,
(
u
ε

)
= 1. See, e.g., [12, Sect. 6] for more on binomial coefficients.

We make the important distinction between a factor and a subword of a word.
The former is a contiguous subsequence of a word, while the latter is just a
subsequence. Let k ≥ 1 be an integer. Two words u, v ∈ A∗ are k-binomially
equivalent, and we write u ∼k v, if

(
u
x

)
=

(
v
x

)
for all x ∈ A≤k. Observe that the

word u is obtained as a permutation of the letters in v if and only if u ∼1 v. In
this case, we say that u and v are abelian equivalent.

Definition 1. Let k ≥ 1 be an integer. The k-binomial complexity function of
an infinite word x is defined as b

(k)
x : N → N, n �→ #(Ln(x)/∼k).

For all k ≥ 1, u ∼k+1 v implies u ∼k v. Thus, for all n, we have

b(1)x (n) ≤ b(2)x (n) ≤ · · · ≤ b(k)x (n) ≤ b(k+1)
x (n) ≤ · · · ≤ px(n). (1)

The k-binomial complexity function has been studied for particular infinite
words: for k ≥ 2, the k-binomial complexity of Sturmian words coincides with
their factor complexity [17] and the same property holds true for the Tribonacci
word [11]. Recently, the 2-binomial complexity of generalized Thue–Morse words
was also computed [13]. The k-binomial complexity of the Thue–Morse word
t, the fixed point of the morphism 0 �→ 01, 1 �→ 10, is bounded by a con-
stant (depending on k) [10], and more generally bounded k-binomial complexity
holds for any fixed point of a prolongable Parikh-constant morphism f [17], i.e.,
Ψ(f(a)) = Ψ(f(b)) for all letters a, b.

1.2 Questions Addressed in This Paper

In this work, we generalize the above property of the fixed points of Parikh-
constant morphisms to what we call Parikh-collinear morphisms f : for all let-
ters a, b, there is a rational number ra,b such that Ψ(f(a)) = ra,bΨ(f(b)).

Binomial Complexities and Parikh-Collinear Morphisms 253

Such morphisms were characterized in [3]; see Theorem 9. In Sect. 3, we provide
a new characterization of these morphisms in terms of the binomial complexity:
they map all words with bounded k-binomial complexity to words with bounded
(k + 1)-binomial complexity. Finally, Corollary 11 shows that fixed points of
Parikh-collinear morphisms have bounded k-binomial complexity.

For all j ≥ 1, the exact value of b(j)t (n) computed in [10] is given by

b
(j)
t (n) =

⎧
⎪⎨

⎪⎩

pt(n) if n ≤ 2j − 1;
3 · 2j − 3, if n ≡ 0 (mod 2j) and n ≥ 2j ;
3 · 2j − 4, otherwise.

(2)

We show in Theorem 14 that such a behavior is not specific to t, but appears for
a large class of words. More precisely, let ϕ be the Thue–Morse morphism. For
any aperiodic binary word y, the word x = ϕk(y) is such that b

(j)
x (n) = b

(j)
t (n)

for all j ≤ k and n ≥ 2j .
In general, not much is known about the general behavior or the properties

that can be expected for the k-binomial complexity. In particular, computing the
k-binomial complexity of a particular infinite word remains challenging. It would
also be desirable to compare in some ways k and (k + 1)-binomial complexities
of a word. For two functions f, g : N → N, we write f ≺ g when f(n) ≤ g(n) for
all n and f(n) < g(n) holds for infinitely many n ∈ N. Our reflection is driven
by the following questions inspired by Lejeune’s questions [9, pp. 115–117] that
are natural to consider in view of (1).1

Question A. Does there exist an infinite word w such that, for all k ≥ 1, b(k)w

is unbounded and b
(k)
w ≺ b

(k+1)
w ? If yes, is there a (pure) morphic such word w?

From (1), notice that b
(k)
w is unbounded for all k ≥ 1 if and only if the abelian

complexity b
(1)
w is unbounded. Even though the Thue–Morse word t has b

(k)
t ≺

b
(k+1)
t for all k ≥ 1, b(k)t remains bounded (recall (2)). So t is not a satisfying

answer to Question A. It is however easy to check that the binary Champernowne
word c, that is, the concatenation of the binary representations of the non-
negative integers, has the required property of Question A. In Sect. 2, we provide
several, more structured, words having this property. (The content of Sect. 3 was
discussed above.)

Section 4 is about binomial properties of powers of ϕ. Going further than (2),
we also study the (k + 1)- and (k + 2)-binomial complexity of words of the form
x = ϕk(y) with y aperiodic. In Sect. 4.1 we prove Theorem 14 discussed above. In
Sect. 4.2, we characterize (k + 1)-binomial equivalence in x with Proposition 22.
As a consequence we obtain b

(k)
x ≺ b

(k+1)
x . These considerations are motivated

by the question of whether it is possible that the factor complexity coincides
with b(k) for some k (dismissing the trivial cases of periodic words).
1 We define ≺ deliberately with “infinitely many” rather than “all large enough”: for

the period-doubling word pd (fixed point of 0 �→ 01, 1 �→ 00) there exist infinitely

many n and m such that b
(2)
pd(n) = ppd(n) and b

(2)
pd(m) < ppd(m) [9, Prop. 4.5.1].

254 M. Rigo et al.

Question B. For each � ≥ 1, does there exist a word w� such that b(1)w� ≺ b
(2)
w� ≺

· · · ≺ b
(�−1)
w� ≺ b

(�)
w� = pw�

? If yes, is there a (pure) morphic such word w�?

Putting together results from Sects. 4 and 5 we answer Question B: Theorem
14 and Proposition 22 provide a word x for which b

(1)
x ≺ b

(2)
x ≺ · · · ≺ b

(k−1)
x ≺

b
(k)
x ≺ b

(k+1)
x , while assuming that y above is Sturmian, we show that b(k+2)

x = px.
We mention that powers of ϕ applied to Sturmian words are studied (among other
words) in [6]. Our construction leads to words with bounded abelian complexity.
Question B is then strengthened in Sect. 5 where we ask for words with unbounded
abelian complexity. We give a pure morphic answer when � = 3.

This paper is an extended abstract of the preprint [18] which is 26-page
long. Due to the page limitation, here most of the proofs, auxiliary results, and
remarks have been omitted. However, the short and long versions have similar
structures; we hope this helps the reader to navigate between the two versions.

2 Several Answers to Question A

We collect a minimal amount of results on k-binomial equivalence. First note that
∼k is a congruence, i.e., for u, v, x, y ∈ A∗, u ∼k v and x ∼k y implies ux ∼k vy.
Second, we have a cancellation property [10, Lem. 10]: for u, v, w ∈ A∗, we have
vu ∼k wu ⇔ v ∼k w ⇔ uv ∼k uw. Finally, let k ≥ 2 and x, y ∈ A∗ such that
|x| = |y|. Then xy ∼k yx if and only if x ∼k−1 y [19, Theorem 3.5]. For the next
results, see [14], [10, Lemmas 30 and 31].

Theorem 2. Let ϕ : 0 �→ 01, 1 �→ 10 be the Thue–Morse morphism. For all
k ≥ 1, we have ϕk(0) ∼k ϕk(1) and ϕk(0) �∼k+1 ϕk(1).

Lemma 3 (Transfer lemma). Let k ≥ 1. Let u, v, v′ be three non-empty words
such that |v| = |v′|. We have ϕk−1(u)ϕk(v) ∼k ϕk(v′)ϕk−1(u).

Observe that the Champernowne word, already mentioned in the introduc-
tion, is not morphic, nor is it uniformly recurrent. In the rest of the section we
provide more “structured” words answering Question A. Let ϕ be the Thue–
Morse morphism and define the morphism g by a �→ a0α, 0 �→ ϕ(0), 1 �→ ϕ(1),
α �→ α2. Let g = gω(a) := limn→∞ gn(a) = a

∏∞
j=0 ϕj(0)α2j

.

Proposition 4. We have that b(1)g is unbounded and b
(k)
g ≺ b

(k+1)
g for all k ≥ 1.

Proof. The first claim follows from the fact that {|u|α : u ∈ Ln(g)} = {0, . . . , n}.
For the second claim, let k be fixed and take un = ϕk(0)αn and vn = ϕk(1)αn

for each n ∈ N; we have un ∼k vn but un �∼k+1 vn by Theorem 2. Consequently
b
(k)
g ≺ b

(k+1)
g for all k ≥ 1. �

We modify the above construction to obtain a morphic binary word.

Proposition 5. With the coding τ : a �→ ε, 0 �→ 0, 1 �→ 1, α �→ 1, we have that
b
(1)
τ(g) is unbounded and b

(k)
τ(g) ≺ b

(k+1)
τ(g) for all k ≥ 1.

Binomial Complexities and Parikh-Collinear Morphisms 255

We note that none of the above words are uniformly recurrent (a word x is
uniformly recurrent if for each x ∈ L(x) there exists N ∈ N such that x appears
in all factors in LN (x)). We recall a particular construction from Grillenberger [7]
for uniformly recurrent words having arbitrary entropy. The word of interest is
constructed as follows. Define D0 = {0, 1}. Assuming Dk is constructed, let uk be
the product of words of Dk in lexicographic order, assuming 0 < 1. Define then
Dk+1 := ukD2

k. Now the sequence (uk)k∈N converges to a uniformly recurrent
word u = 0100010101100111 · · · .

Lemma 6. Let k ≥ 1. If, for some j ≥ 0, Dj contains two words u, v, such
that u ∼k v and u �∼k+1 v, then Dj+1 contains words x, y, z and w such that
x ∼k y but x �∼k+1 y; z ∼k+1 w but z �∼k+2 w.

Proposition 7. The map b
(1)
u is unbounded and b

(k)
u ≺ b

(k+1)
u for all k ≥ 1.

Proof. First we show that b
(1)
u is unbounded. Assume, for some j ≥ 0, that Dj

contains words u, v with |u|0−|v|0 = 2j (this holds for j = 0). Then by definition
Dj+1 contains the words x = ujuu and y = ujvv, for which |x|0 − |y|0 =
2(|u|0 − |v|0) = 2j+1. This observation suffices for the claim.

We then prove the second part of the statement. Observe that D1 contains
the words 0101 and 0110, which are abelian equivalent, but not 2-binomially
equivalent (as

(
0101
01

)
= 3 and

(
0110
01

)
= 2). The above lemma then implies that

for all k ≥ 1 and for all j ≥ k, the set Dj contains words that are k-binomially
equivalent, but not (k + 1)-binomially equivalent. The claim follows. �

3 An Interlude: Parikh-Collinear Morphisms

In this section, we show that, given an infinite fixed point of a prolongable
Parikh-collinear morphism, its k-binomial complexity is bounded for each k.

Definition 8 (Parikh-collinear morphisms). A morphism f : A∗ → B∗ is
Parikh-collinear if, for all a, b ∈ A, Ψ(f(b)) = ra,bΨ(f(a)) for some ra,b ∈ Q.

Theorem 9 ([3, Theorem 11]). A morphism f : A∗ → B∗ maps all infinite
words to words with bounded abelian complexity if and only if it is Parikh-
collinear.

We extend the above theorem to the following one, where 0-binomial complexity
has to be understood as the trivial complexity function corresponding to the
“equal length” equivalence relation.

Theorem 10. A morphism f : A∗ → B∗ maps, for all k ≥ 0, all words with
bounded k-binomial complexity to words with bounded (k + 1)-binomial complex-
ity if and only if it is Parikh-collinear.

Before proving this result in Sect. 3.2, let us mention a straightforward con-
sequence, which generalizes [17, Theorem 13] from Parikh-constant to Parikh-
collinear morphisms.

256 M. Rigo et al.

Corollary 11. Let z be a fixed point of a Parikh-collinear morphism. For any
k ≥ 1 there exists a constant Cz,k ∈ N such that b(k)z (n) ≤ Cz,k for all n ∈ N.

Proof. Let f : A∗ → A∗ be a Parikh-collinear morphism whose fixed point is z.
Since f(z) = z, Theorem 9 implies that z has bounded abelian complexity. For
any k ≥ 1, we have that z = f(fk−1(z)) implying that z has bounded k-binomial
complexity by induction and the previous theorem. �

3.1 A Characterization of Parikh-Collinear Morphisms

In proving Theorem 10, we characterize Parikh-collinear morphisms as follows.

Proposition 12. Let f : A∗ → B∗ be a morphism. The following are equivalent.

(i) For all k ≥ 2 and u, v ∈ A∗, u ∼k−1 v implies f(u) ∼k f(v).
(ii) There exists an integer k ≥ 2 such that for all u, v ∈ A∗, u ∼k−1 v implies

f(u) ∼k f(v).
(iii) For all u, v ∈ A∗, u ∼1 v implies f(u) ∼2 f(v).
(iv) f is Parikh-collinear.

3.2 Proof of Theorem 10

The next technical result can be extracted from the proof of [3, Theorem 12].

Lemma 13. Let x be a an infinite word over A with bounded abelian complexity.
Let f : A∗ → B∗ be a morphism and assume y = f(x) is an infinite word. Then
for all c ∈ N there exists Dx,c ∈ N such that if

∣
∣|f(u)| − |f(v)|

∣
∣ ≤ c, for some

u, v ∈ L(x), then
∣
∣|u| − |v|

∣
∣ ≤ Dx,c.

Proof (of Theorem 10). If f : A → B∗ maps all words with bounded 0-binomial
complexity (i.e., all words) to words with bounded 1-binomial complexity, then
f is Parikh-collinear by Theorem 9.

Assume thus that f is Parikh-collinear. Theorem 9 implies that f maps
all words (i.e., all words with bounded 0-binomial complexity) to words with
bounded 1-binomial complexity. Let then k ≥ 1 and let x be a word with
bounded k-binomial complexity. Let n ∈ N. Any length-n factor of f(x) can
be written as pf(u)s, where the word u is a factor of x, p is a suffix of f(a)
and s is a prefix of f(b) for some letters a, b ∈ A. Here n − 2m < |f(u)| ≤ n,
where m := maxa∈A |f(a)|. The (k + 1)-binomial equivalence class of pf(u)s is
completely determined by the words p, s, and the k-binomial equivalence class
of f(u), which itself is determined by the k-binomial equivalence class of u by
Proposition 12.

The former two words p and s are drawn from a finite set, as their lengths
are bounded by the constant m (depending on f). The length of u can be cho-
sen from an interval whose length is uniformly bounded in n. Indeed, assume
we have equal length factors w = pf(u)s and w′ = p′f(v)s′. As observed
above, n ≥ |f(u)| and |f(v)| > n − 2m, so that

∣
∣|f(u)| − |f(v)|

∣
∣ < 2m.

Binomial Complexities and Parikh-Collinear Morphisms 257

Applying Lemma 13 (by assumption, x has bounded k-binomial complexity and
thus, x has bounded abelian complexity by (1)) there exists a bound D such
that

∣
∣|u| − |v|

∣
∣ ≤ D uniformly in n. Since the number of k-binomial equivalence

classes in x of each length is uniformly bounded by assumption, and the number
of admissible lengths for u above is bounded, we conclude that the number of
choices for the k-binomial equivalence class of u is bounded. We have shown that
the number of (k + 1)-binomial equivalence classes among factors of length n in
f(x) is determined from a bounded amount of information (not depending on
n), as was to be shown. �

4 Binomial Properties of the Thue–Morse Morphism

In this section, we consider binomial complexities of powers of the Thue-Morse
morphism ϕ on aperiodic binary words. Repeated application of Theorem 10
shows that, for any k ≥ 1 and any binary word y, the k-binomial complexity
function of the word ϕk(y) is bounded. We will prove the sharper result:

Theorem 14. Let j, k be integers with 1 ≤ j ≤ k and let y be an aperiodic
binary word. Let x = ϕk(y). For all n ≥ 2j, we have b

(j)
x (n) = b

(j)
t (n) which is

given by (2) and, for n < 2j, b(j)x (n) = px(n).

This is a generalization of [10, Theorem 6], which says that, for all j ≥ 1,
the j-binomial complexity of the Thue–Morse word t is given by (2). Notice it
implies that b(1)x ≺ b

(2)
x ≺ · · · ≺ b

(k)
x . The aim of Sect. 4.2 is to go one step further

and get b(k)x ≺ b
(k+1)
x . To do so, we characterize k-binomial and (k +1)-binomial

equivalence among factors of x (Theorem 19 and Proposition 22).

4.1 The First k Binomial Complexities

Before proving Theorem 14, we require the following general lemma about ape-
riodic binary words. There, we let · denote the complementation morphism
defined by a = 1 − a, for a ∈ {0, 1}.

Lemma 15. Let z be an aperiodic binary word. Then for all n ≥ 2 we have
Ln(z) ∩ L �= ∅ for each L ∈ {0A∗1, 1A∗0, 0A∗0 ∪ 1A∗1}. Furthermore, for all
n ≥ 2 and a ∈ {0, 1}, we have (Ln(z) ∩ aA∗a) ∪ (Ln+1(z) ∩ aA∗a) �= ∅.

Definition 16. Let j ≥ 0. For any factor u of ϕj(y) of length at least 2j − 1
there exist a, b ∈ {0, 1} and z ∈ {0, 1}∗ with azb ∈ L(y) such that u = pϕj(z)s
for some proper suffix p of ϕj(a) and some proper prefix s of ϕj(b). (Note that
z could be empty.) The triple (p, ϕj(z), s) is called a ϕj-factorization2 of u. The
word azb (resp., zb; az; z) is said to be the corresponding ϕj-ancestor of u when
p, s are non-empty (resp., p = ε and s �= ε; p �= ε and s = ε; p = s = ε).

2 We warn the reader that the term ϕ-factorization has a different meaning in [10].
Our ϕj-factorization corresponds to their “factorization of order j”.

258 M. Rigo et al.

Since the words ϕj(0) and ϕj(1) begin with different letters, we notice that
if s �= ε in a ϕj-factorization of a word, then the letter b is uniquely determined.
Similarly the jth images of the letters end with distinct letters, whence the letter
a is uniquely determined once p �= ε.

Proof (of Theorem 14). Let j ∈ {1, . . . , k}. Notice all factors of length at most
2j − 1 of x = ϕk(y) occur already in the Thue–Morse word t: such factors
appear in factors of the form ϕj(ab), ab ∈ L(y). Since ϕj(ab) appears in the
Thue–Morse word for all a, b ∈ {0, 1}, it follows from (2) that all such words are
pairwise j-binomially non-equivalent. Hence we have shown that b(j)x (n) = px(n)
for n ≤ 2j − 1.

In the remaining of the proof we let n ≥ 2j . We show that Ln(t)/∼j =
Ln(x)/∼j by double inclusion, which suffices for the claim since Theorem 14
holds true for x = t.

Let u ∈ L(x); we show that there exists v ∈ L(t) such that u ∼j v. To this
end, let z = ϕk−j(y) so that x = ϕj(z). Let u have ϕj-factorization pϕj(u′)s
with ϕj-ancestor au′b ∈ L(z). The Thue–Morse word contains a factor av′b,
where |v′| = |u′| (see, e.g., [10, Proposition 33]). It follows that t contains the
factor v := pϕj(v′)s. Now u ∼j v because ϕj(u′) ∼j ϕj(v′) by Theorem 2.

Let then u ∈ L(t) have ϕj-factorization pϕj(u′)s with ϕj-ancestor au′b ∈
L(t). As before we show that there exists v ∈ L(x) such that u ∼j v. By the
previous lemma, z contains, at each length, factors from both the languages 0A∗1
and 1A∗0. Hence, if a and b above are distinct, we may argue as in the previous
paragraph to obtain the desired conclusion. Assume thus that a = b. Again the
previous lemma says that z contains a factor of length |u′| + 2 in the language
1A∗1 ∪ 0A∗0. Assume without loss of generality that it contains a factor from
0A∗0. Then, if a = b = 0, we may again argue as in the previous paragraph. So
assume now that a = b = 1 and L|u|′+2 z∩1A∗1 = ∅. Notice that by the previous
lemma, L|u|′+2 z ∩ 0A∗0 �= ∅ and, further, L|u|′+2±1 z ∩ 0A∗0 �= ∅. To conclude
with the proof, we have four cases to consider depending on the length of p and
s which can be less or equal, or greater than 2j−1.

Case 1: Assume that p is a suffix of ϕj−1(0) and s is a prefix of ϕj−1(1).
For all v′ such that |v′| = |u′| − 1, ϕj(u′) ∼j ϕj(v′1) by Theorem 2. By the
Transfer Lemma (Lemma 3), ϕj(v′1) ∼j ϕj−1(1)ϕj(v′)ϕj−1(0). Consequently

u ∼j pϕj−1(1)ϕj(v′)ϕj−1(0)s =: v

where pϕj−1(1) is a suffix of ϕj(0) and ϕj−1(0)s is a prefix of ϕj(0). Hence v
is a factor of ϕj(0v′0). Recall that a factor of the form 0v′0 appears in z by
assumption, and thus ϕj(0v′0) appears in x. To recap, we have shown a factor
v of x j-binomially equivalent to u.

The three other cases where 2j−1 ≤ |p| < 2j or 2j−1 ≤ |s| < 2j are similar. �

4.2 The (k + 1)-Binomial Complexity

The previous subsection dealt with the j-binomial equivalence in x = ϕk(y),
where y is an aperiodic binary word and j ≤ k. Here, we are concerned with

Binomial Complexities and Parikh-Collinear Morphisms 259

the (k + 1)-binomial equivalence in such words. To this end, we take a closer
look at the k-binomial equivalence in x. First, we have a closer look at the ϕj-
factorizations of a word and in particular at the associated prefixes and suffixes.

Definition 17 ([10, Definition 43]). Let j ≥ 1. Let us define the equivalence
relation ≡j on A<2j × A<2j

by (p1, s1) ≡j (p2, s2) whenever there exists a ∈ A
such that one of the following situations occurs:

1. |p1| + |s1| = |p2| + |s2| and 2.
∣
∣|p1| + |s1| − (|p2| + |s2|)

∣
∣ = 2j and

(a) (p1, s1) = (p2, s2); (a) (p1, s1) = (p2ϕj−1(a), ϕj−1(ā)s2);
(b) (p1, ϕj−1(a)s1) = (p2ϕj−1(a), s2); (b) (p2, s2) = (p1ϕj−1(a), ϕj−1(ā)s1).
(c) (p2, ϕj−1(a)s2) = (p1ϕj−1(a), s1);
(d) (p1, s1) = (s2, p2)

= (ϕj−1(a), ϕj−1(ā));

The next lemma is essentially [10, Lemmas 40 and 41] (except that with an
arbitrary word y instead of the Thue–Morse word t, we cannot use the fact
that t is overlap-free, so factors such as 10101 may appear in y). To each ϕj-
factorization there is a natural corresponding ϕj−1-factorization, though two ϕj-
factorizations may correspond to the same ϕj−1-factorization. The next lemma
says that in such a case the ϕj-factorizations are related.

Lemma 18. Let j ≥ 1. Let u be a factor of ϕj(y) such that |u| ≥ 2j − 1 with
a ϕj-factorization of the form (p, ϕj(z), s) and z0zzn+1 being the corresponding
ϕj-ancestor (where according to Definition 16 z0, zn+1 or z could be empty). The
factor u has a unique ϕj-factorization if and only if the word z0zzn+1 contains
both letters 0 and 1. Otherwise stated, the ϕj-factorization is not unique if and
only if u is a factor of ϕj−1(m) with m ∈ (01)∗∪(10)∗∪1(01)∗∪0(10)∗. Moreover,
when the ϕj-factorization is not unique, i.e., if there is another ϕj-factorization
(p′, ϕj(z′), s′), then (p, s) ≡j (p′, s′).

We have the following theorem, the proof of which is essentially the proof
of [10, Theorem 48]. Indeed, the lemmas leading to its proof do not require
that the factors u and v are from the Thue–Morse word, only that they have
ϕj-factorizations.3

Theorem 19. Let y be an aperiodic binary word. Let k ≥ j ≥ 1. Let u and v
be equal-length factors of x = ϕk(y) with ϕj-factorizations u = p1ϕ

j(z)s1 and
v = p2ϕ

j(z′)s2. Then u ∼j v if and only if (p1, s1) ≡j (p2, s2).

We then turn to the (k + 1)-binomial equivalence in x.

Lemma 20. Let u, v be two binary words of equal length. For k ≥ 1, u �∼1 v
implies ϕk(u) �∼k+1 ϕk(v). Moreover, if u ∼1 v, for k ≥ 1, u �∼2 v implies
ϕk(u) �∼k+2 ϕk(v).

3 We note that [10, Theorem 48] is stated for j ≥ 3. The case j = 1 is trivial. The
case j = 2 is obtained by looking closely at the proof of [10, Theorem 34].

260 M. Rigo et al.

We define some notation regarding factors of y. For n ≥ 1 we let S(n) =
Ln(y). Further, for all a, b ∈ {ε, 0, 1} such that ab �= ε, we define Sa,b(n) =
Ln+|ab|(y) ∩ aA∗b. We call these sets factorization classes of order n.

Consider now a factor u of ϕ(y). We associate with u some factorization
classes as follows. Let aϕ(u′)b be the ϕ-factorization of u with ϕ-ancestor au′b ∈
L(y). If ab = ε, we associate the factorization class S(|u′|). For ab �= ε, we
have that u is a factor of ϕ(au′b). In this case we associate the factorization
class Sa,b(|u′|). If u is associated with a factorization class T , we write u |= T ,
otherwise we write u �|= T .

Observe that u |= S(n) implies that |u| = 2n. Also, for ab �= ε, u |= Sa,b(n)
implies that |u| = 2n+ |ab|. Notice also that a factor u of ϕ(y) can be associated
with several factorization classes: take, e.g., (10)�1 = 1(01)� which is associated
with both Sε,1(�) and S0,ε(�), or (01)�+1 = 0(10)�1 which is associated with both
S(� + 1) and S1,1(�).

Lemma 21. Let u, v ∈ L(ϕ(y)) be such that u ∼2 v. If u |= T for some factor-
ization class T , then v |= T . Furthermore, a factor u of ϕ(y) is associated with
distinct factorization classes if and only if u ∈ L = (01)∗∪(10)∗∪1(01)∗∪0(10)∗.

The next result characterizes (k+1)-binomial equivalence in x = ϕk(y) when
y is an arbitrary binary word.

Proposition 22. Let u and v be factors of length at least 2k − 1 of x with the
ϕk-factorizations u = p1ϕ

k(z)s1 and v = p2ϕ
k(z′)s2. Then u ∼k+1 v and u �= v

if and only if z ∼1 z′, z′ �= z, and (p1, s1) = (p2, s2).

Notice that the proposition claims that those factors of x having more than one
ϕk-factorization are (k + 1)-binomially equivalent only to themselves (in L(x)).

Proof. The “if”-part of the statement follows by a repeated application of Propo-
sition 12 on the Thue–Morse morphism together with the fact that the morphism
is injective.

Assume that u ∼k+1 v for some distinct factors. It follows that u ∼k v, which
implies that (p1, s1) ≡k (p2, s2) by Theorem 19. Next we show that (p1, s1) =
(p2, s2) and z ∼1 z′. We have the following case distinction from Definition 17:

(1.a): We have that (p1, s1) = (p2, s2). By deleting the common prefix p1 and
suffix s1, we are left with the equivalent statement ϕk(z) ∼k+1 ϕk(z′). If z �∼1 z′,
then we have a contradiction with Lemma 20. The desired result follows in this
case.

In the remaining cases, we assume towards a contradiction that (p1, s1) �=
(p2, s2).

(1.b): Suppose that (p1, s2) = (p2ϕk−1(a), ϕk−1(a)s1). Deleting the common
prefixes p2 and suffixes s1, we are left with ϕk−1(aϕ(z)) ∼k+1 ϕk−1(ϕ(z′)a).
Now aϕ(z) ∼1 ϕ(z′)a, but aϕ(z) �∼2 ϕ(z′)a by Lemma 21 (otherwise aϕ(z) =
ϕ(z′)a and thus u = v contrary to the assumption). Lemma 20 then implies that
ϕk−1(aϕ(z)) �∼k+1 ϕk−1(ϕ(z′)a), which is a contradiction.

(2.a): Suppose that (p1, s1) = (p2ϕk−1(a), ϕk−1(ā)s2). After removing com-
mon prefixes and suffixes, we are left with ϕk−1(aϕ(z)a) ∼k+1 ϕk−1(ϕ(z′)).

Binomial Complexities and Parikh-Collinear Morphisms 261

We have that aϕ(z)a ∼1 ϕ(z′), but by Lemma 21 aϕ(z)a �∼2 ϕ(z′) (otherwise
z = a� and z′ = a�+1, implying that u = v, a contradiction). This is again a
contradiction by Lemma 20.

The rest of the cases go exactly the same way. �

Corollary 23. Let x = ϕk(y), where y is an arbitrary aperiodic binary word.
We have b

(1)
x ≺ b

(2)
x ≺ . . . ≺ b

(k)
x ≺ b

(k+1)
x .

Proof. Recall that y contains arbitrarily long factors of the form aza, a ∈
{0, 1}. Therefore x contains the k-binomially equivalent (by Lemma 3) factors
ϕk−1(a)ϕk(z) and ϕk(z)ϕk−1(a). However, by Proposition 22 these factors are
either not (k + 1)-binomially equivalent, or ϕk−1(a)ϕk(z) = ϕk(z)ϕk−1(a). The
latter happens when ϕk(z) = ϕk−1(a)� for some � ≥ 0 (indeed, it is not hard
to show that ϕ(w) is primitive whenever w is), and thus only when � = 0 and
z = ε. This observation suffices for showing b

(k)
x ≺ b

(k+1)
x . The rest of the claim

follows by Theorem 14. �

5 Answer to Question B and Beyond

Theorem 24. Let ϕ be the Thue–Morse morphism and s a Sturmian word. For
each k ≥ 0, the word sk = ϕk(s) has b

(1)
sk ≺ b

(2)
sk ≺ · · · ≺ b

(k+1)
sk ≺ b

(k+2)
sk = psk

.

In particular, putting the Fibonacci word for s, the family sk answers Question
B positively with morphic words.

Proof. Observe that sk has bounded (k + 1)-binomial complexity as a straight-
forward application of Theorem 10 (because s has bounded abelian complexity),
and thus b(k+1)

sk ≺ psk
. By Corollary 23, we need only to show that b(k+2)

sk = psk
.

Let u and v be distinct factors of sk. Assume they are (k + 2)-binomially
equivalent. By Proposition 22, we have that u = pϕk(z)s, v = pϕk(z′)s with
z ∼1 z′. If z �= z′, then z �∼2 z′ by [17, Theorem 7]. But then Lemma 20 implies
that ϕk(z) �∼k+2 ϕk(z′), contradicting the assumption. Hence we deduce that
z = z′, but then u = v contrary to the assumption. �

Notice that the binomial complexities b
(1)
sk , . . . , b(k+1)

sk are bounded. To go
beyond Question B, one might require that b

(1)
w is unbounded. To this end we

provide the following partial answer.

Theorem 25. The word h = 0112122122212222122222 · · · fixed point of the
morphism 0 �→ 01, 1 �→ 12, and 2 �→ 2 is such that its abelian complexity b

(1)
h is

unbounded and b
(1)
h ≺ b

(2)
h ≺ b

(3)
h = ph.

References

1. Allouche, J.P., Shallit, J.: Automatic Sequences Theory, Applications, Generaliza-
tions. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/
CBO9780511546563

https://doi.org/10.1017/CBO9780511546563
https://doi.org/10.1017/CBO9780511546563

262 M. Rigo et al.

2. Cassaigne, J., Fici, G., Sciortino, M., Zamboni, L.Q.: Cyclic complexity of words.
J. Comb. Theory Ser. A 145, 36–56 (2017). https://doi.org/10.1016/j.jcta.2016.
07.002

3. Cassaigne, J., Richomme, G., Saari, K., Zamboni, L.Q.: Avoiding Abelian powers in
binary words with bounded Abelian complexity. Int. J. Found. Comput. S. 22(4),
905–920 (2011). https://doi.org/10.1142/S0129054111008489

4. Cheraghchi, M., Gabrys, R., Milenkovic, O., Ribeiro, J.: Coded trace reconstruc-
tion. IEEE Trans. Inf. Theory 66(10), 6084–6103 (2020). https://doi.org/10.1109/
TIT.2020.2996377

5. Dud́ık, M., Schulman, L.J.: Reconstruction from subsequences. J. Comb. Theory,
Ser. A 103(2), 337–348 (2003). https://doi.org/10.1016/S0097-3165(03)00103-1

6. Frid, A.: Applying a uniform marked morphism to a word. Discrete Math Theor.
Comput. Sci. 3(3), 125–139 (1999). https://doi.org/10.46298/dmtcs.255

7. Grillenberger, C.: Constructions of strictly ergodic systems. I. Given entropy. Z.
Wahrscheinlichkeit. 25, 323–334 (1973). https://doi.org/10.1007/BF00537161

8. Karhumäki, J., Saarela, A., Zamboni, L.Q.: On a generalization of Abelian equiva-
lence and complexity of infinite words. J. Comb. Theory Ser. A 120(8), 2189–2206
(2013). https://doi.org/10.1016/j.jcta.2013.08.008

9. Lejeune, M.: On the k-binomial equivalence of finite words and k-binomial complex-
ity of infinite words. Ph.D. thesis, University of Liège (2021). http://hdl.handle.
net/2268/259266

10. Lejeune, M., Leroy, J., Rigo, M.: Computing the k-binomial complexity of the
Thue-Morse word. J. Comb. Theory Ser. A 176, 44 (2020). https://doi.org/10.
1016/j.jcta.2020.105284

11. Lejeune, M., Rigo, M., Rosenfeld, M.: Templates for the k-binomial complexity of
the Tribonacci word. Adv. Appl. Math. 112, 26 (2020). https://doi.org/10.1016/
j.aam.2019.101947

12. Lothaire, M.: Combinatorics on Words. Cambridge Mathematical Library.
Cambridge University Press, Cambridge (1997). https://doi.org/10.1017/
CBO9780511566097

13. Lü, X.T., Chen, J., Wen, Z.X., Wu, W.: On the 2-binomial complexity of the
generalized Thue-Morse words (2021, preprint). https://arxiv.org/abs/2112.05347

14. Ochsenschläger, P.: Binomialkoeffizienten und shuffle-zahlen. T.H. Darmstadt,
Technischer bericht, Fachbereicht Informatik (1981)

15. Peltomäki, J.: Introducing privileged words: Privileged complexity of Sturmian
words. Theor. Comput. Sci. 500, 57–67 (2013). https://doi.org/10.1016/j.tcs.2013.
05.028

16. Rigo, M.: Relations on words. Indag Math. New Ser. 28(1), 183–204 (2017).
https://doi.org/10.1016/j.indag.2016.11.018

17. Rigo, M., Salimov, P.: Another generalization of abelian equivalence: binomial
complexity of infinite words. Theor. Comput. Sci. 601, 47–57 (2015). https://doi.
org/10.1016/j.tcs.2015.07.025

18. Rigo, M., Stipulanti, M., Whiteland, M.A.: Binomial complexities and Parikh-
collinear morphisms (2022, preprint). https://arxiv.org/abs/2201.04603

19. Whiteland, M.A.: Equations over the k -binomial monoids. In: Lecroq, T., Puzyn-
ina, S. (eds.) WORDS 2021. LNCS, vol. 12847, pp. 185–197. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-85088-3 16

https://doi.org/10.1016/j.jcta.2016.07.002
https://doi.org/10.1016/j.jcta.2016.07.002
https://doi.org/10.1142/S0129054111008489
https://doi.org/10.1109/TIT.2020.2996377
https://doi.org/10.1109/TIT.2020.2996377
https://doi.org/10.1016/S0097-3165(03)00103-1
https://doi.org/10.46298/dmtcs.255
https://doi.org/10.1007/BF00537161
https://doi.org/10.1016/j.jcta.2013.08.008
http://hdl.handle.net/2268/259266
http://hdl.handle.net/2268/259266
https://doi.org/10.1016/j.jcta.2020.105284
https://doi.org/10.1016/j.jcta.2020.105284
https://doi.org/10.1016/j.aam.2019.101947
https://doi.org/10.1016/j.aam.2019.101947
https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.1017/CBO9780511566097
https://arxiv.org/abs/2112.05347
https://doi.org/10.1016/j.tcs.2013.05.028
https://doi.org/10.1016/j.tcs.2013.05.028
https://doi.org/10.1016/j.indag.2016.11.018
https://doi.org/10.1016/j.tcs.2015.07.025
https://doi.org/10.1016/j.tcs.2015.07.025
https://arxiv.org/abs/2201.04603
https://doi.org/10.1007/978-3-030-85088-3_16

Rational Index of Languages
with Bounded Dimension of Parse Trees

Ekaterina Shemetova1,3,4 , Alexander Okhotin1(B) ,
and Semyon Grigorev2,4

1 Department of Mathematics and Computer Science, St. Petersburg State
University, 14th Line V. O., 29, Saint Petersburg 199178, Russia

alexander.okhotin@spbu.ru
2 Department of Mathematics and Mechanics, St. Petersburg State University,

7/9 Universitetskaya nab., Saint Petersburg 199034, Russia
3 St. Petersburg Academic University, ul. Khlopina, 8,

Saint Petersburg 194021, Russia
4 JetBrains Research, Primorskiy prospekt 68-70, Building 1,

St. Petersburg 197374, Russia
{ekaterina.shemetova,semyon.grigorev}@jetbrains.com

Abstract. The rational index ρL of a language L is an integer function,
where ρL(n) is the maximum length of the shortest string in L ∩ R,
over all regular languages R recognized by n-state nondeterministic finite
automata (NFA). This paper investigates the rational index of languages
defined by (context-free) grammars with bounded tree dimension, and
shows that it is of polynomial in n. More precisely, it is proved that
for a grammar with tree dimension bounded by d, its rational index is
O(n2d), and that this estimation is asymptotically tight, as there exists
a grammar with rational index Θ(n2d).

Keywords: Dimension of a parse tree · Strahler number · Rational
index · Context-free languages · CFL-reachability

1 Introduction

The notion of a rational index was introduced by Boasson, Courcelle and Nivat [3]
as a complexity measure for context-free languages. The rational index ρL of a
language L is an integer function, where ρL(n) is the maximum length of the
shortest string in a language of the form L ∩ R, where R is a regular language
recognized by n-state nondeterministic finite automata (NFA), and the maxi-
mum is taken over all such languages R with L ∩ R �= ∅. The rational index
plays an important role in determining the parallel complexity of practical prob-
lems, such as the CFL-reachability problem and the more general Datalog query
evaluation.

The CFL-reachability problem is stated as follows: for a context-free grammar
G given an NFA A over the same alphabet, determine whether L(G) ∩ L(A)

Research supported by the Russian Science Foundation, project 18-11-00100.

c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 263–273, 2022.
https://doi.org/10.1007/978-3-031-05578-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_21&domain=pdf
http://orcid.org/0000-0002-1577-8347
http://orcid.org/0000-0002-1615-2725
http://orcid.org/0000-0002-7966-0698
https://doi.org/10.1007/978-3-031-05578-2_21

264 E. Shemetova et al.

is non-empty. With A is regarded as a labelled graph, this is a kind of graph
reachability problem with path constraints given by context-free languages. This
is an important problem used in static code analysis [16] and graph database
query evaluation [19].

The CFL-reachability problem is P-complete already for a fixed context-
free grammar [9]. The question on the parallel complexity of this problem was
investigated by Ullman and Van Gelder [17] in a much more general case, with a
rich logic for database queries instead of grammars, and it was proved that under
an assumption called the polynomial fringe property the problem is decidable in
NC [17]. In the special case of grammars, the result of Ullman and Van Gelder [17]
gives an NC2 algorithm for the CFL-reachability problem, under the assumption
that the grammar’s rational index is polynomial.

Theoretical properties of the rational index have received some attention in
the literature. Pierre and Farinone [15] proved that for every algebraic number
γ � 1, a language with the rational index in Θ(nγ) exists. An upper bound
on the rational index, shown by Pierre [14], is 2Θ(n2/ lnn), and this bound is
reached on the Dyck language on two pairs of parentheses. For several important
subfamilies of grammars, such as the linear and the one-counter languages, there
are polynomial upper bounds on the rational index, which imply that the CFL-
reachability problem is in NC2; they can be proved to lie in NL by direct methods
not involving the rational index [11,12].

In this paper we investigate the rational index of a generalization of linear
languages: the languages of bounded tree dimension, that is, those defined by
grammars with a certain limit on branching in the parse trees. The notion of
tree dimension is well-known in the literature under different names: Chytil and
Monien [6] use the term k-caterpillar trees, Esparza et al. [7] call this the Strahler
number of a tree and mention numerous applications and alternative names for
this notion, while Luttenberger and Schlund [13] use the term tree dimension,
which is adopted in this paper.

Linear languages are languages of tree dimension 1, and their rational index is
known to be O(n2) [3]. It can be derived from the work of Chytil and Monien [6]
that languages of tree dimension bounded by d have rational index O(n2d):
this is explained in Sect. 3 of this paper. The new result of this paper, pre-
sented in Sect. 4, is that, for every d, there is a language of tree dimension
bounded by d with rational index Θ(n2d). Some implications of this result are
presented in Sect. 5: the rational index is asymptotically determined for super-
linear languages [4], and some bounds are obtained for languages of bounded
oscillation [8,18].

2 Definitions

A (context-free) grammar is a quadruple G = (Σ,N,R, S), where Σ is an alpha-
bet; N is a set of nonterminal symbols; R is a set of rules, each of the form
A → α, with A ∈ N and α ∈ (Σ ∪ N)∗; and S ∈ N is the start symbol. A parse
tree is a tree, in which every leaf is labelled with a symbol from Σ, while every

Rational Index of Languages with Bounded Dimension of Parse Trees 265

internal node is labelled with a nonterminal symbol A ∈ N and has an associated
rule A → X1 . . . X� ∈ R, so that the node has � ordered children labelled with
X1, . . . , X�. The language defined by each nonterminal symbol A ∈ N , denoted
by LG(A), is the set of all strings w ∈ Σ∗, for which there exists a parse tree,
with A as a root and with the leaves forming the string w, The language defined
by the grammar is L(G) = LG(S).

A grammar G is said to be is in the Chomsky normal form, if all rules of R
are of the form A → BC, with B,C ∈ N , or of the form A → a, with a ∈ Σ.

A nondeterministic finite automaton (NFA) is a quintuple A =
(Σ,Q,Q0, δ, F), where Q is a finite set of states, Σ is a finite set of input sym-
bols, Q0 ⊆ Q is the set of initial states, δ : Q×Σ → 2Q is the transition function,
F ⊆ Q is the set of accepting states. It accepts a string w = a1 . . . an if there is
a sequence of states q0, . . . , qn ∈ Q with q0 ∈ Q0, qi ∈ δ(qi−1, ai) for all i, and
qn ∈ F . The language of all strings accepted by A is denoted by L(A).

For a language L over an alphabet Σ, its rational index ρL is a function
defined as follows:

ρL(n) = max
A:NFA with n states

L∩L(A) �=∅

min
w∈L∩L(A)

|w|

Tree Dimension. For each node v in a parse tree t, its dimension dim v is an
integer representing the amount of branching in its subtree. It is defined induc-
tively: a leaf v has dimension 0. For an internal node v, if one of its children
v1, v2, . . . , vk, with k � 1, has a greater dimension than all the others, then v has
the same dimension, and if there are multiple children of maximum dimension,
then the dimension of v is greater by one.

dim v =

{
maxi∈{1,...,k} dim vi if there is a unique maximum
maxi∈{1,...,k} dim vi + 1 otherwise

The dimension of a parse tree t, denoted by dim t, is the dimension of its root.

Definition 1 (Grammars of bounded tree dimension). A grammar G is
of d-bounded tree dimension if every parse tree t of G has dim t � d, where d is
some constant. This constant is called the dimension of G, denoted by dim G = d.

Classical transformation to the Chomsky normal form preserves the class of
grammars of d-bounded tree dimensions. Languages defined by such grammars
are called languages of d-bounded tree dimension.

3 Upper Bound on the Rational Index

The first result of this paper is that, if the dimension of trees in a grammar is
bounded by a constant d, then the rational index of its language is bounded by
O(n2d), where the constant factor depends upon the grammar.

266 E. Shemetova et al.

Theorem 1. Let G be a grammar of d-bounded tree dimension, and let A be an
NFA with n states, with non-empty intersection L(G)∩L(A). Then the length of
the shortest string in L(G) ∩ L(A) is at most |G|dn2d, where |G| =

∑
A→α(|α|+

2) is number of symbols used for the description of the grammar.

The main component of the proof is the following lemma by Chytil and Monien
[6], which they used in their study of unambiguous grammars of finite index.

Lemma 1 (Chytil and Monien [6, Lemma 7]). Let G = (Σ,N,R, S) be a
grammar, let m be the maximal length of the right-hand side of its rules, and
assume that there exists a parse tree of dimension d � 1 in this grammar. Then
the grammar defines some string of length at most (|N |(m − 1) + 1)d.

The proof proceeds by simplifying the tree of dimension d by removing
paths beginning and ending with the same nonterminal symbol. This contraction
results in a parse tree of a bounded size, which has the same dimension d [6].

Proof (of Theorem 1). A given grammar G is first transformed to the Chomsky
normal form, resulting in a grammar G′ = (Σ,N ′, R′, S′) with the same bound
on the dimension of parse trees and with at most |G| nonterminal symbols.

Next, a grammar G′′ for the language L(G)∩L(A) is obtained from G′ and A
by the classical construction by Bar-Hillel et al. [2], which produces |N ′| · n2 + 1
nonterminal symbols: these are triples of the form (A, p, q), where A ∈ N ′ and
p, q are two states of the automaton, as well as a new start symbol. The grammar
G′′ is still in the Chomsky normal form, that is, the maximum length of a right-
hand side of any rule is m = 2. Since G′′ defines at least one string, there exists a
parse tree of dimension at most d. Then, by Lemma 1, the length of the shortest
string defined by this grammar is at most (|N ′| · n2 + 1 + 1)d � (|G| · n2)d. �	

4 Lower Bound on the Rational Index

The upper bound O(n2d) on the rational index of a language defined by a gram-
mar with tree dimension bounded by d has a matching lower bound Ω(n2d). It
is first established for a convenient infinite set of values of n, to be extended to
arbitrary n in the following.

Lemma 2. For every d � 1, there is a grammar G of bounded tree dimension
d, such that for every n � 2d+1 divisible by 2d there is an n-state NFA B, such
that the shortest string w in L(G) ∩ L(B) is of length at least 1

2d2+3d−3 n2d.

Proof. The grammar and the automaton are constructed inductively on d, for
every d and only for n divisible by 2d. Each constructed NFA shall have a unique
initial state, which is also the unique accepting state.

Basis. dim(G) = 1. The family of languages having dimension d = 1 coincides
with the family of linear languages. Let G be a linear grammar with the rules
S → aSb | ab, which defines the language L(G) = {aibi | i � 1}.

Rational Index of Languages with Bounded Dimension of Parse Trees 267

...
.

..
.

p1

q0

q1

qm–1

a
a

a
a

b
b

b

b

p2 qm–2

q2
p –1

p –2

Fig. 1. NFA B defined in Lemma 2 for d = 1.

For every n � 4 divisible by 2d = 2, let � = n
2 , m = n

2 + 1. Then � and m
are coprime integers. Define an NFA B over the alphabet {a, b}, which consists
of two cycles sharing one node, q0, which is both the initial and the unique
accepting state. The cycle of length � has all transitions by a, and the other by
b, as shown in Fig. 1. The automaton has � + m − 1 = n states.

Every string in L(G)∩L(B) is of the form aibi, with i � 1. For the automaton
to accept it, i must be divisible both by � and by m. Since the cycle lengths are
relatively prime, the shortest string w with this property has i = �m, and is
accordingly of length 2�m. Its growth with n is estimated as follows.

|w| = 2�m = 2
n

2
·
(n

2
+ 1

)
=

1
2
n2 + n

This example is well-known to the community [10,19].

Inductive Step. dim(G) = d.
By the induction hypothesis, there is a grammar Ĝ = (Σ̂, N̂ , R̂, Ŝ) of bounded
dimension dim(Ĝ) = d − 1, which satisfies the statement of the lemma. The
new grammar G = (Σ,N,R, S) of dimension d is defined over the alphabet
Σ = Σ̂∪{a, b, c}, where a, b, c �∈ Σ̂ are new symbols. It uses nonterminal symbols
N = N̂ ∪ {S,A}, adding two new nonterminals A,S �∈ N̂ to those in Ĝ, where
S is the new initial symbol. Its set of rules includes all rules from Ĝ and the
following new rules.

S → ASc | Ac

A → aAb | aŜb

To see that the dimension of the new grammar is greater by 1 than the
dimension of Ĝ, first consider the dimension of any parse tree t with the root
labeled by the nonterminal A, shown in Fig. 2(right). The dimension of the Ŝ-
subtree at the bottom is at most d− 1 by the properties of Ĝ. This dimension is
inherited by all A-nodes in the tree, because their remaining children are leaves.

Now consider the dimension of a complete parse tree t with the start symbol
S in the root, as in Fig. 2(left). All A-subtrees in this tree have dimension at
most d − 1. Then the bottom S-subtree, which uses the rule S → Ac, also has

268 E. Shemetova et al.

c

S

S

S

S

S
d–1d–1

d–1
A

d

A

d–1
A

d–1
A

d

d

d

0

c
0

c
0

c
0

...

A

A

A

A

d–1

d–1

d–1

d–1

d–1

b
0

b
0

b

0...

a
0

a
0

a
0

S

Fig. 2. Parse trees for S and for A, annotated with dimensions of their vertices

dimension at most d − 1. Every S-subtree higher up in the tree uses a rule
S → ASc, and its dimension is at most d, because getting a higher dimension
would require two subtrees of dimension d, which is never the case.

Now, for every n � 2d+1 divisible by 2d, the goal is to construct an n-state
NFA over the alphabet Σ, so that the shortest string w in L(G) ∩ L(B) is of
length at least 1

2d2+3d−3 n2d. Since the number n
2 is at least 2d and is divisible by

2d−1, the induction hypothesis for the grammar Ĝ asserts that there is an NFA
B̂ = (Q̂, Σ̂, δ̂, q̂0, {q̂0}), with n

2 states, with the shortest string ŵ in L(Ĝ) ∩ L(B̂)
of length 1

2(d−1)2+3(d−1)−3 (n
2)2(d−1).

The desired n-state NFA B = (Σ,Q, q0, δ, {q0}) is constructed as follows. Let
� = n

4 and m = n
4 + 1, these are two coprime integers. The set of states of B

contains all n
2 states from Q̂, in which B it operates as B̂, and m + � − 1 = n

2
new states forming a cycle of length � and a chain of length m, which share a
state.

Q = Q̂ ∪ {p1, . . . , p�−1, q0, . . . , qm−1}
The new initial state q0 has a transition by a leading to the initial state of B̂,
from where one can return to q1 by b.

δ(q0, a) = {q̂0}
δ(q̂0, b) = {q1}

Rational Index of Languages with Bounded Dimension of Parse Trees 269

a
b

a
b

a
bq0

q1

q0

b

a
a b

a
b

a
b.. .

. . .q2 q3 qm–1

p1

p2

c

.

c

c
c

c

c
p –1

p –2

qm

Fig. 3. NFA B defined in Lemma 2 for d, which incorporates NFA ̂B for d − 1.

There is a chain of transitions by a from qm−1 to q0, and another chain b in the
opposite direction, from q1 to qm−1 and back to q0.

δ(qi, a) = {qi−1}, with 1 � i � m − 1
δ(qi, b) = {qi+1}, with 1 � i � m − 2

δ(qm−1, b) = {q0}
There is a cycle by c in the states q0, p1, . . . , p�−1; for uniformity, denote p0 = q0.

δ(pi, c) = {pi+1 mod �}, with 0 � i � � − 1

The general form of B is shown in Fig. 3.
Let w be the shortest string in L(G)∩L(B). Consider how w is formed. Start

state is q0. According to the grammar rule S → ASc | Ac, the string w should
start with a substring u in LG(A). There is the only one outgoing edge labeled
with a, so the next state is q̂0. The next part of w should be a symbol a or a
string v in L(Ĝ). As there is no outgoing edge labeled with a, the string v is
the shortest string in L(Ĝ) ∩ L(B̂), and, hence, v = ŵ. Now the first part of
w is aŵ. To complete a substring derived by the nonterminal A, there is only
one possible transition, which is an edge from q̂0 to q1 labeled with b. The next
substring should be symbol c (the rule S → Ac) or a string derived by A. The
only suitable transition here is from q1 to q0 by a, so a substring in L(A) is
started. Again, to complete the string generated by A, one goes to the state q2,
and w now starts with aŵbaaŵbb. By the construction of NFA B, this process
continues until one comes to the state q0 without starting a substring derived by

270 E. Shemetova et al.

the nonterminal A (notice that such substrings are the shortest possible). Clearly,
it happens after m iterations. Then it is left to read m symbols c by going from
q0 to q0. But m and � are coprime, so to balance the number of substrings derived
by the nonterminal A and the number of symbols c, one needs to repeat the first
cycle � times and the second cycle m times.

Accordingly, the shortest string w has the following structure. Let wi be the
shortest string such that there exists computation qi−1

wi� qi (qm−1
wm� q0 for

wm) for 1 � i � m in B and wi ∈ L(A). Notice that wi = awi−1b and w0 = ŵ,
and there exists computation q0

w1� q1
w2� q2

w3� . . .
wm−1� qm

wm� q0 in B.
Considering the above and the rules S → ASc | Ac of the grammar G, the

string w is of the following form:

w =
(m∏

i=1

wi

)�

cm�

Then the length of w can be bounded as follows.

|w| =
(m∑

i=1

|wi|
)
� + �m =

(m∑
i=1

(|ŵ| + 2i)
)
� + �m � �m|ŵ|

Using the lower bound on the length of ŵ, the desired lower bound on the length
of w is obtained.

�m|ŵ| � n

4
· n

4
· 1
2(d−1)2+3(d−1)−3

(n

2

)2(d−1)

=

=
n2

16
· 1
2d2+d−5

· n2d−2

22d−2
=

1
2d2+3d−3

n2d

�	
Theorem 2. For every d � 1, there is a grammar G of bounded tree dimension
d, such that for every n � 2d+1 there is an n-state NFA B, such that the shortest
string w in L(G) ∩ L(B) is of length at least 1

2d2+d−332d
n2d.

Proof. Let G be the grammar given for d by Lemma 2. Let 2dr � n < 2d(r +1),
for some integer r. Then r � 2 (for otherwise n < 2d+1), and 2dr � 2d+1.

Since 2dr is divisible by 2d, by Lemma 2, there is an NFA B with 2dr � n
states, such that the length of the shortest string w in L(G) ∩ L(B) is at least

1
2d2+3d−3 (2dr)2d. This is the desired n-state NFA.

The inequality n < 2d(r + 1) implies that n < 2d 3r
2 , because r + 1 is at

most 3r
2 for r � 2. Then 2dr > 2

3n, and the lower bound on the length of w is
expressed as a function of n as follows.

|w| � 1
2d2+3d−3

(2dr)2d � 1
2d2+3d−3

(2
3
n
)2d =

1
2d2+d−332d

n2d

�	

Rational Index of Languages with Bounded Dimension of Parse Trees 271

For finite automata with fewer than 2d+1 states, no lower bounds are given,
as the construction in the proof relies on having sufficiently long cycles in the
automata.

Overall, the rational index of grammars with tree dimension bounded by d
is Θ(n2d) in the worst case.

5 Rational Indices for Some Language Families

Superlinear Languages. A grammar G = (Σ,N,R, S) is superlinear (Brzo-
zowski [4]) if its nonterminal symbols split into two classes, N = Nlin ∪ Nnonlin,
where rules for each nonterminal A ∈ Nlin are of the form A → uBv or A → w,
with B ∈ Nlin, u, v, w ∈ Σ∗, while rules for a nontermial A ∈ Nnonlin are of the
form A → αBβ, with B ∈ N and α, β ∈ (Σ ∪ Nlin)∗. A language is superlinear
if it is generated by some superlinear grammar.

Corollary 1. For every superlinear grammar G, the rational index ρL(G) is at
most |G|2 · n4.

Proof. Parse trees in a superlinear grammar G have dimension at most 2. Then,
by Theorem 1, the rational index ρL(G) is bounded by |G|2 · n4.

Turning to a lower bound, note that the grammar constructed in Theorem 2
for d = 2 is actually superlinear.

Corollary 2. There exists a superlinear grammar G with rational index
ρL(G)(n) � 1

648n4.

Bounded-Oscillation Languages. The notion of oscillation of runs in pushdown
automata, applicable to Turing machines with auxiliary pushdown tape, was
introduced by Wechsung [18]. Languages with oscillation bounded by k are then
a generalization of the linear languages (as one-turn pushdown automata are
those with oscillation bounded by k = 1).

This family was later studied by Ganty and Valput [8], who introduced the
corresponding notion of oscillation in parse trees of grammars.

Among other results, they prove that oscillation of a parse tree is closely
related to its dimension.

Lemma 3 (Ganty and Valput [8]). Let G = (Σ,N,R, S) be a grammar in
the Chomsky normal form, and let t be a parse tree in G. Then, osc t − 1 �
dim t � 2 osc t.

Thus, k-bounded-oscillation grammars have dimension of parse trees
bounded by 2k, and Theorem 1 gives the following upper bound on the rational
index of these languages.

Corollary 3. Let L be a k-bounded-oscillation language. Then ρL(n) = O(n4k).

272 E. Shemetova et al.

6 Conclusion and Open Problems

Languages of bounded tree dimension were proved to have polynomial ratio-
nal index. This implies, in particular, that the CFL-reachability problem and
Datalog query evaluation for these languages is in NC, and the degree of the
polynomial becomes a constant factor for the circuit depth.

There is another family of languages which has polynomial rational index,
the one-counter languages. Their rational index is known to be O(n2) [5]. Could
this class be generalized in the same manner as linear languages, preserving the
polynomial order of the rational index? One can consider the Polynomial Stack
Lemma by Afrati et al. [1], where some restriction on the PDA stack contents is
given, or investigate the properties of the substitution closure of the one-counter
languages, which is known to have polynomial rational index [3].

Acknowledgment. The authors are grateful to the anonymous reviewers for numer-
ous helpful remarks and suggestions, and particularly for alerting the authors of the
work by Chytil and Monien [6].

References

1. Afrati, F., Papadimitriou, C.: The parallel complexity of simple chain queries.
In: Proceedings of the Sixth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, PODS 1987, pp. 210–213. ACM, New York (1987).
https://doi.org/10.1145/28659.28682

2. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phreise struc-
ture grammars. STUF Lang. Typol. Univ. 14(1–4), 143–172 (1961). https://doi.
org/10.1524/stuf.1961.14.14.143

3. Boasson, L., Courcelle, B., Nivat, M.: The rational index: a complexity measure
for languages. SIAM J. Comput. 10(2), 284–296 (1981)

4. Brzozowski, J.A.: Regular-like expressions for some irregular languages. In: 9th
Annual Symposium on Switching and Automata Theory (swat 1968), pp. 278–286
(1968). https://doi.org/10.1109/SWAT.1968.24

5. Chistikov, D., Czerwinski, W., Hofman, P., Pilipczuk, M., Wehar, M.: Shortest
paths in one-counter systems. Log. Methods Comput. Sci. 15(1) (2019). https://
doi.org/10.23638/LMCS-15(1:19)2019

6. Chytil, M.P., Monien, B.: Caterpillars and context-free languages. In: Choffrut, C.,
Lengauer, T. (eds.) STACS 1990. LNCS, vol. 415, pp. 70–81. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52282-4 33

7. Esparza, J., Luttenberger, M., Schlund, M.: A brief history of strahler numbers.
In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 1–13. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-04921-2 1

8. Ganty, P., Valput, D.: Bounded-oscillation pushdown automata. Electron. Proc.
Theor. Comput. Sci. 226, 178–197 (2016). https://doi.org/10.4204/eptcs.226.13

9. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation: P-
completeness Theory. Oxford University Press Inc., New York (1995)

10. Hellings, J.: Path results for context-free grammar queries on graphs. CoRR
abs/1502.02242 (2015)

https://doi.org/10.1145/28659.28682
https://doi.org/10.1524/stuf.1961.14.14.143
https://doi.org/10.1524/stuf.1961.14.14.143
https://doi.org/10.1109/SWAT.1968.24
https://doi.org/10.23638/LMCS-15(1:19)2019
https://doi.org/10.23638/LMCS-15(1:19)2019
https://doi.org/10.1007/3-540-52282-4_33
https://doi.org/10.1007/978-3-319-04921-2_1
https://doi.org/10.1007/978-3-319-04921-2_1
https://doi.org/10.4204/eptcs.226.13

Rational Index of Languages with Bounded Dimension of Parse Trees 273

11. Holzer, M., Kutrib, M., Leiter, U.: Nodes connected by path languages. In: Mauri,
G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 276–287. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-22321-1 24

12. Komarath, B., Sarma, J., Sunil, K.S.: On the complexity of L-reachability. In:
Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp.
258–269. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09704-6 23

13. Luttenberger, M., Schlund, M.: Convergence of newton’s method over commutative
semirings. Inf. Comput. 246, 43–61 (2016). https://doi.org/10.1016/j.ic.2015.11.
008

14. Pierre, L.: Rational indexes of generators of the cone of context-free lan-
guages. Theor. Comput. Sci. 95(2), 279–305 (1992). https://doi.org/10.1016/0304-
3975(92)90269-L

15. Pierre, L., Farinone, J.M.: Context-free languages with rational index in θ(nγ) for
algebraic numbers γ. RAIRO - Theor. Inf. Appl. - Informatique Théorique et Appl.
24(3), 275–322 (1990)

16. Reps, T.W.: Program analysis via graph reachability. Inf. Softw. Technol. 40, 701–
726 (1997)

17. Ullman, J.D., Van Gelder, A.: Parallel complexity of logical query programs. In:
27th Annual Symposium on Foundations of Computer Science (sfcs 1986), pp.
438–454 (Oct 1986). https://doi.org/10.1109/SFCS.1986.40

18. Wechsung, G.: The oscillation complexity and a hierarchy of context-free languages.
In: Fundamentals of Computation Theory, FCT 1979, Proceedings of the Confer-
ence on Algebraic, Arthmetic, and Categorial Methods in Computation Theory,
Berlin/Wendisch-Rietz, Germany, 17–21 September 1979, pp. 508–515 (1979)

19. Yannakakis, M.: Graph-theoretic methods in database theory. In: Rosenkrantz,
D.J., Sagiv, Y. (eds.) Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, Nashville, Tennessee, USA, April
2–4, 1990, pp. 230–242. ACM Press (1990). https://doi.org/10.1145/298514.298576

https://doi.org/10.1007/978-3-642-22321-1_24
https://doi.org/10.1007/978-3-319-09704-6_23
https://doi.org/10.1016/j.ic.2015.11.008
https://doi.org/10.1016/j.ic.2015.11.008
https://doi.org/10.1016/0304-3975(92)90269-L
https://doi.org/10.1016/0304-3975(92)90269-L
https://doi.org/10.1109/SFCS.1986.40
https://doi.org/10.1145/298514.298576

Measuring Power of Locally Testable
Languages

Ryoma Sin’ya(B)

Akita University, Akita, Japan

ryoma@math.akita-u.ac.jp

Abstract. A language L is said to be C-measurable, where C is a class
of languages, if there is an infinite sequence of languages in C that con-
verges to L. In this paper we investigate the measuring power of LT
the class of all locally testable languages. Although each locally testable
language only can check some local property (prefix, suffix, and infix of
some bounded length), it is shown that many non-locally-testable lan-
guages are LT-measurable. In particular, we show that the measuring
power of locally testable languages coincides with the measuring power
of unambiguous polynomials. We also examine the measuring power of
some fragments of unambiguous polynomials.

1 Introduction

A language L is called star-free if it can be represented as a finite combina-
tion of Boolean operations and concatenation of finite languages, and L is called
locally testable if it is a finite Boolean combination of languages of the form
uA∗, A∗v and A∗wA∗. After the celebrated Schützenberger’s theorem giving an
algebraic characterisation [18] and McNaughton–Papert theorem giving a logical
characterisation [10] of star-free languages, both algebraic and logical counter-
parts of many fragments of star-free languages are deeply well-investigated: see
a survey [6] or [11] for example. In particular, McNaughton [9], Zalcstein [24],
and Brzozowski–Simon [4] showed that it is decidable whether a given regular
language is locally testable by giving an algebraic counterpart. Although the
definition of locally testable languages is quite simple, this result is non-trivial
and a proof relies on a deep algebraic decomposition theory.

In this paper, we shed new light on the fragments of star-free languages by
using measurability which is a measure theoretic notion on formal languages.
C-measurability for a class C of languages is introduced by [21] and it was used
for classifying non-regular languages by using regular languages. A language L
is said to be C-measurable if there is an infinite sequence of languages in C
that converges to L. Roughly speaking, L is C-measurable means that it can
be approximated by a language in C with arbitrary high precision: the notion
of “precision” is formally defined by the density of formal languages. Hence
that a language L is not REG-measurable, where REG is the class of all regular
languages, means that L has a complex shape so that it can not be approximated
c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 274–285, 2022.
https://doi.org/10.1007/978-3-031-05578-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_22&domain=pdf
https://doi.org/10.1007/978-3-031-05578-2_22

Measuring Power of Locally Testable Languages 275

by regular languages. While the membership problem for a given language L
and a class C asks the existence of single language K ∈ C such that L = K,
the C-measurability asks the existence of an infinite sequence of languages in
C that converges to L. In this sense, measurability is much more difficult than
the membership problem and its analysis is a challenging task. For example, the
author [22] showed that, for the class SF of all star-free languages, the class of
all SF-measurable regular languages strictly contains SF but does not contain
some regular languages. However, the decidability of SF-measurability is still
unknown.

Instead of the class of all regular languages or star-free languages, in this
paper we consider LT-measurability where LT is the class of all locally testable
languages and also consider measuring power of three other fragments of star-
free languages: the class UPol of all unambiguous polynomials, the class PT of all
piecewise testable languages and the class AT of all alphabet testable languages.
The main results of this paper are briefly summarised as follows.

(1) LT-measurability and UPol-measurability are equivalent (Theorem 6 and
Theorem 7).

(2) AT- and PT-measurability are strictly weaker than LT-measurability and
decidable for regular languages (Theorem 8, Theorem 9–11).

The result (1) is the first example of two incomparable subclasses of regular
languages with the same measuring power. The result (2) (PT-measurability, in
particular) is the first non-trivial examples of subclasses of regular languages
with decidable measurability. Historically, locally testable languages [10] and
unambiguous polynomials [17] are originally introduced with two different moti-
vations: “locality” versus “unambiguity”. But interestingly, they have the
same measuring power.

The structure of this paper is as follows. Section 2 provides preliminaries
including density, measurability and definitions of fragments of star-free lan-
guages. The measuring power of LT,UPol and AT,PT are investigated in Sect. 3
and Sect. 4, respectively. A summary of all results and future work are described
in Sect. 5.

2 Preliminaries

This section provides the precise definitions of density, measurability and local
varieties of regular languages. REGA denotes the family of all regular languages
over an alphabet A. We assume that the reader has a standard knowledge of
automata theory including the concept of syntactic monoids (cf. [8]).

2.1 Density of Formal Languages

For a set X, we denote by #(X) the cardinality of X. We denote by N and Z the
set of natural numbers including 0 and the set of integers, respectively. For an
alphabet A, we denote the set of all words (all non-empty words, respectively)

276 R. Sin’ya

over A by A∗ (A+, respectively). We write |w| for the length of w and A≤n for
the set of all words of length less than or equal to n. For a word w ∈ A∗ and a
letter a ∈ A, |w|a denotes the number of occurrences of a in w. We denote by
alph(w) = {a | |w|a > 0} the set of all letters contained in w. A word v is said to
be a subword of a word w if w = xvy for some x, y ∈ A∗. For a language L ⊆ A∗,
we denote by L = A∗ \L the complement of L. A language L is said to be dense
if L ∩ A∗wA∗ �= ∅ holds for any w ∈ A∗. L is not dense means L ∩ A∗wA∗ = ∅
for some word w by definition, and such word w is called a forbidden word of L.

Definition 1 (cf. [2]). The density δA(L) of L ⊆ A∗ is defined as

δA(L) = lim
n→∞

1
n

n−1∑

k=0

#
(
L ∩ Ak

)

#(Ak)

if its exists, otherwise we write δA(L) = ⊥. L is called null if δA(L) = 0, and
conversely L is called co-null if δA(L) = 1.

Example 1. It is known that every regular language has a rational density
(cf. [16]) and it is computable. Here we explain two examples of (co-)null lan-
guages.

(1) For each word w, the language A∗wA∗, the set of all words that contain w
as a subword, is of density 1 (co-null). This fact is sometimes called infinite
monkey theorem. A language L having a forbidden word w is always null:
this means A∗wA∗ ⊆ L and δA(A∗wA∗) ≤ δA(L) which implies δA(L) = 1
by infinite monkey theorem.

(2) The semi-Dyck language D = {ε, ab, aabb, abab, aaabbb, . . .} over A = {a, b}
is dense but null. This follows from the fact that #

(
D ∩ A2n

)
equals the

n-th Catalan number whose asymptotic formula is Θ(4n/n3/2).

As explained above, “dense” does not imply “not null”. But these two notions
are equivalent for regular languages as the following theorem says. We denote
by ZOA the family of all null or co-null regular languages over A (ZO stands for
“zero-one”).

Theorem 1 (cf. [16]). A regular language L is not null if and only if L is dense.

2.2 Measurability of Formal Languages

The notion of “measurability” on formal languages is defined by a standard
measure theoretic approach as follows.

Definition 2 [21]. Let CA be a family of languages over A. For a language
L ⊆ A∗, we define its CA -inner-density μCA

(L) and CA-outer-density μCA
(L)

over A as

μCA
(L) = sup{δA(K) | K ⊆ L,K ∈ CA, δA(K) �= ⊥} and

μCA
(L) = inf{δA(K) | L ⊆ K,K ∈ CA, δA(K) �= ⊥} , respectively.

Measuring Power of Locally Testable Languages 277

A language L is said to be CA -measurable if μCA
(L) = μCA

(L) holds. We say
that an infinite sequence (Ln)n of languages over A converges to L from inner
(from outer, respectively) if Ln ⊆ L (Ln ⊇ L, respectively) for each n and
limn→∞ δA(Ln) = δA(L).

Example 2 [21]. The semi-Dyck language D = {ε, ab, aabb, abab, aaabbb, . . .} over
A = {a, b} is REG-measurable. We notice that there is no regular language
L such that δA(L) = 0 and D ⊆ L, since any null regular language has a
forbidden word but D has no forbidden word. Hence we should construct an
infinite sequence (Lk)k of different regular languages that converges to D from
outer. This can be done by letting Lk = {w ∈ A∗ | |w|a = |w|b mod k}. Clearly,
D ⊆ Lk holds and it can be shown that δA(Lk) = 1/k holds. Hence δA(Lk) tends
to zero if k tends to infinity. We will see this type of languages Lk again in the
next section.

For a family CA of languages over A, we define its Carathéodory extension
and regular extension as ExtA(CA) = {L ⊆ A∗ | L is CA-measurable} and
RExtA(CA) = ExtA(CA) ∩ REGA, respectively. We say that “CA has a stronger
measuring power than DA” if ExtA(CA) ⊇ ExtA(DA) holds.

Theorem 2 [22]. Let CA ⊆ REGA be a family of regular languages over A.
Then L ∈ REGA is CA-measurable if and only if L satisfies the following
Carathéodory’s condition:

∀X ⊆ A∗ μCA
(X) = μCA

(X ∩ L) + μCA
(X ∩ L).

Moreover, this is equivalent to μCA
(L) + μCA

(L) = 1 (the case X = A∗ in the
above condition).

2.3 Fragments of Star-Free Languages

In this paper we examine measuring power of several subclasses of star-free
languages equipping rich closure properties. For a family CA of languages over
A, we denote by BCA the Boolean closure of CA. Then the class LTA of all locally
testable languages can be defined as LTA = B{wA∗, A∗w,A∗wA∗ | w ∈ A∗}. A
family of regular languages over A is called local variety [1] over A if it is closed
under Boolean operations and left-and-right quotients. The reason why we focus
on this type of families is that, the notion of measurability is well-behaved on
Boolean operations and quotients as the following theorem says.

Theorem 3 [22]. ExtA is a closure operator, i.e., it satisfies the following
three properties for each C ⊆ D ⊆ 2A∗

: (extensive) C ⊆ ExtA(C), (monotone)
ExtA(C) ⊆ ExtA(D), and (idempotent) ExtA(ExtA(C)) = ExtA(C). Moreover,
RExtA is a closure operator over the class of all local varieties of regular lan-
guages over A, i.e., CA-measurability is preserved under Boolean operations and
quotients for any local variety CA.

278 R. Sin’ya

Example 3. By Theorem 1, for any regular language L in ZOA, L or its comple-
ment has a forbidden word, which implies ∅ ⊆ L ⊆ A∗wA∗ or A∗wA∗ ⊆ L ⊆ A∗.
This fact and infinite monkey theorem implies that ZOA ⊆ RExtA(B{A∗wA∗ |
w ∈ A∗}) holds. On the other hand, B{A∗wA∗ | w ∈ A∗} ⊆ ZOA holds because
ZOA forms a local variety (cf. [20]). Moreover, it was shown that RExtA(ZOA) =
ZOA in [22]. By combining these facts with Theorem 3 we have the following
chain of inclusion: ZOA ⊆ RExtA(B{A∗wA∗ | w ∈ A∗}) ⊆ RExtA(ZOA) = ZOA

where the second inclusion ⊆ follows from the monotonicity of RExtA.

The corresponding notion of a family of finite monoids is called local pseu-
dovariety [1], and there is a natural one-to-one correspondence between the class
of all local varieties and the class of all local pseudovarieties [7]. The class SFA

of all star-free languages over A forms a local variety and its corresponding local
pseudovariety is the class of all aperiodic monoids [18]. Thanks to Theorem 3,
the regular extension RExtA(SFA) of star-free languages is also a local variety.
The following theorem says that RExtA extends SFA non-trivially, while it does
not for ZOA.

Theorem 4 [22]. SFA � RExtA(SFA) � REGA if #(A) ≥ 2.

The class LTA of all locally testable languages over A is also a local variety.
The characterisation given in [4,9,24] says that L is locally testable if and

only if its syntactic semigroup is locally idempotent and commutative (see the
full version [23] for more details).

We end this section by giving precise definitions of three additional sub-
classes of star-free languages. We denote by ATA the Boolean combination of
languages of the form B∗ where B ⊆ A (AT stands for “alphabet testable”,
cf. [15]). This class also can be represented as ATA = B{A∗aA∗ | a ∈ A} and
hence ATA � LTA. ATA forms a (finite) local variety, and its corresponding local
pseudovariety is idempotent and commutative monoids (cf. [6]). Clearly, the den-
sity of every language in ATA is either zero or one, thus we have ATA ⊆ ZOA.
A language L is called monomial if it is of the form A∗

0a1A
∗
1a2A

∗
2 · · · A∗

n−1anA∗
n

where each ai ∈ A,Ai ⊆ A and n ≥ 0. A monomial defined above is said to
be simple if Ai = A for each i. For w = a1a2 · · · an we denote by Lw the sim-
ple monomial A∗a1A

∗a2A
∗ · · · A∗anA∗. A language is called piecewise testable

if it can be represented as a finite Boolean combination of simple monomials.
The class PTA of all piecewise testable languages over A forms a local vari-
ety. The corresponding local pseudovariety of PTA is the class of all J -trivial
monoids [19]. A monomial L = A∗

0a1A
∗
1 · · · anA∗

n is unambiguous if for all w ∈ L
there exists exactly one factorisation w = w0a1w1 · · · anwn where each i satis-
fies wi ∈ A∗

i . A language is an unambiguous polynomial if it is a finite disjoint
union of unambiguous monomials. The family UPolA of all unambiguous poly-
nomials over A forms a local variety [17]. In particular, the complement of an
unambiguous polynomial is also an unambiguous polynomial. This fact plays
a key role in the next section. By definition we have the following chain of
inclusion ATA � PTA � UPolA � SFA and every inclusion is strict. We also
notice that PTA (UPolA, respectively) and LTA are incomparable. For example,

Measuring Power of Locally Testable Languages 279

A∗abaA∗ ∈ LTA \ PTA (because the syntactic monoid of A∗abaA∗ is not J -
trivial) and Laba = A∗aA∗bA∗aA∗ ∈ PTA \ LTA (because the syntactic monoid
of Laba is not locally idempotent). Every J -trivial finite monoid has a zero ele-
ment, and a language whose syntactic monoid has a zero is of density zero or
one (cf. [20]), thus we have PTA � ZOA.

3 Measuring Power of Locally Testable Languages

In this section we examine the measuring power of locally testable languages:
what kind of languages are LTA-measurable and what are not? First we show
there are “many” LTA-measurable languages.

Proposition 1. For any language L ⊆ A∗, A∗LA∗ is LTA-measurable.

Proof. If L = ∅ then A∗LA∗ = ∅ is in LTA. If L �= ∅, we can choose w ∈ L
and the ideal language A∗wA∗ ⊆ A∗LA∗ is co-null by infinite monkey theorem.
Hence μ

LTA
(A∗LA∗) = 1 i.e., A∗LA∗ ∈ ExtA(LTA). �

If A contains two distinct letters a and b, then the subword relation x � y (⇔
“x is a subword of y”) has an infinite antichain in A∗, e.g., {abna | n ≥ 0}.
Two different subsets L1 and L2 of this infinite antichain produce two differ-
ent languages A∗L1A

∗ and A∗L2A
∗. Hence the above theorem implies there

are uncountably many LTA-measurable languages. In fact, in [22], a stronger
statement was shown as follows1.

Theorem 5 [22]. For any real number α ∈ [0, 1] there is a LTA-measurable
language with density α if #(A) ≥ 2.

The following proposition says that languages with modulo counting, which
were used for the convergent sequence to the semi-Dyck language in Example 2,
are LTA-immeasurable (see the full version [23] for details).

Proposition 2. The language Lk = {w ∈ A∗ | |w|a = |w|b mod k} over A =
{a, b} is LTA-immeasurable for any k ≥ 2.

The next theorem says that LTA has a stronger measuring power than UPolA.

Theorem 6. ExtA(LTA) ⊇ ExtA(UPolA) for any A.

We use the following simple lemma for proving this theorem.

Lemma 1. The concatenation LK of two null regular languages L and K is
also null.

1 [22] considered REGA-measurability instead of LTA-measurability, but the conver-
gent sequence constructed in the proof of Theorem 5 is actually a sequence of locally
testable languages.

280 R. Sin’ya

Proof. By Theorem 1, L and K have some forbidden words u, v ∈ A∗, i.e.,
L ⊆ A∗uA∗ and K ⊆ A∗vA∗. Then uv is a forbidden word of LK as follows. For
any word w ∈ A∗uvA∗ and any factorisation w = xy, either x contains u or y
contains v as a subword. This means x /∈ L or y /∈ K, thus w is not in LK. �
Proof (of Theorem 6). By the monotonicity and idempotency of ExtA (Theo-
rem 3), it is enough to show UPolA ⊆ ExtA(LTA): this implies ExtA(UPolA) ⊆
ExtA(ExtA(LTA)) = ExtA(LTA). Let L =

⊎k
i=1 Mi be an unambiguous polyno-

mial where each Mi is an unambiguous monomial and � represents the disjoint
union.

We show that, for each monomial Mi, μ
LTA

(Mi) = δA(Mi) holds, i.e., we
can construct a convergent sequence (Li,j)j of locally testable languages to Mi

from inner : Li,j ⊆ Mi for each j and limj→∞ δA(Li,j) = δA(Mi). If Mi is null,
then clearly we can take Li,j = ∅ for each j. Hence we assume Mi is not null.
In this case, Mi should be of the form Mi = A∗

0a1A
∗
1 · · · A∗

n−1anA∗
n and (�)

there is a unique � satisfying A� = A. We show (�). Notice that at least one �
satisfies A� = A, because if not every A∗

� and every a� is clearly null and hence
these concatenation Mi is also null by Lemma 1. Suppose there are two � < �′

with A� = A�′ = A. In this case the word (a1 · · · an)2 ∈ Mi has two different
factorisations:

(ε, a1, . . . , a�, a�+1 · · · ana1 · · · a�︸ ︷︷ ︸
A∗

�

, a�+1, . . . , a�′ , ε︸︷︷︸
A∗

�′

, a�′+1, . . . , an, ε)

(ε, a1, . . . , a�, ε︸︷︷︸
A∗

�

, a�+1, . . . , a�′ , a�′+1 · · · ana1 · · · a�′
︸ ︷︷ ︸

A∗
�′

, a�′+1, . . . , an, ε)

This contradicts with the unambiguity of Mi. Hence (�) is true and we can write
Mi = PA∗S where P = A∗

0a1A
∗
1 · · · A∗

�−1a� and S = a�+1A
∗
�+1 · · · A∗

n−1anA∗
n.

Because Mi is unambiguous, for each word w ∈ Mi, there is a unique factorisation
w = xyz where x ∈ P , y ∈ A∗ and z ∈ S, respectively. Hence, for any n ≥ 0, we
have

#(Mi ∩ An)

#(An)
=

#({(x, y, z) ∈ P × A∗ × S | |xyz| = n})
#(An)

=
#

(⊎
(x,z)∈Un

xA∗z ∩ An
)

#(An)

=

∑
(x,z)∈Un

#(xA∗z ∩ An)

#(An)
=

∑
(x,z)∈Un

#(A)−|xz| (1)

holds where Un =
{
(x, z) ∈ P × S | |x| + |z| ≤ n

}
. Because the sequence

(#(Mi ∩ An) /#(An))n is bounded above by 1 and non-decreasing, the limit of
(1) exists, say limn→∞(1) = α. In general, if a sequence converges to some value,
then its average also converges to the same value. Hence we have δA(Mi) = α.
For each j ∈ N, the language Li,j =

⋃
(x,z)∈Uj

xA∗z is locally testable, because
(i) for each x, z ∈ A∗, xA∗z = (xA∗ ∩ A∗z) \ {w ∈ A∗ | |w| < |x| + |z|}
is locally testable, and (ii) Uj is finite. Moreover, Li,j ⊆ Mi for each j and
δA(Li,j) =

∑
(x,z)∈Uj

#(A)−|xz|. Hence limj→∞ δA(Li,j) = α = δA(Mi), i.e.,

Measuring Power of Locally Testable Languages 281

μ
LTA

(Mi) = δA(Mi). This fact implies that μ
LTA

(L) = δA(L) because we have
the following equality:

μ
LTA

(L) = μ
LTA

(
k⊎

i=1

Mi

)
=

k∑

i=1

μ
LTA

(Mi) =
k∑

i=1

δA(Mi) = δA(L).

Next we show μ
LTA

(L) = δA(L). Notice that the complement of L is also an

unambiguous polynomial since UPolA is a local variety. Thus L =
⊎k′

i=1 M ′
i holds

for some unambiguous monomials M ′
i . Hence we can conclude that μ

LTA
(L) =

δA(L) = 1−δA(L) which implies μ
LTA

(L)+μ
LTA

(L) = 1. Because LTA is closed

under complementation, we have μ
LTA

(K) = 1 − μLTA
(K) for any K. Thus

μLTA
(L) + μLTA

(L) = 1, i.e., L is LTA-measurable by Theorem 2. �
Next we show the reverse inclusion of Theorem 6. This direction is more easy.

Theorem 7. ExtA(UPolA) ⊇ ExtA(LTA) for any A.

Proof. By the monotonicity and idempotency of ExtA (Theorem 3), this is equiv-
alent to LTA ⊆ ExtA(UPolA). Moreover, UPolA-measurability is preserved under
Boolean operations by Theorem 3, we only have to show that wA∗, A∗w and
A∗wA∗ are all UPolA-measurable for each w ∈ A∗. Let w = a1 · · · an where each
ai ∈ A.

First we show wA∗ ∈ ExtA(UPolA). This is easy because the language wA∗ =
∅∗a1∅∗a2∅∗ · · · ∅∗anA∗ itself is actually an unambiguous polynomial. Similarly,
we also have A∗w ∈ UPolA.

Next we show A∗wA∗ ∈ ExtA(UPolA). This language is not in UPolA in
general. For example, A∗abA∗ is not an unambiguous polynomial if A = {a, b, c}
(cf. [6]). Since the case w = ε is trivial, we assume w = a1 · · · an where ai ∈ A and
n ≥ 1. Define Wk = (Ak\Kk)wA∗ where Kk = {u ∈ Ak | ua1 · · · an−1 ∈ A∗wA∗}
for each k ≥ 0. Intuitively, Wk is the set of all words in which w firstly appears
at the position k + 1 as a subword. Wk is in UPolA for each k, because it can
be written as Wk =

⊎
v∈(Ak\Kk)

vwA∗, where each vwA∗ is an unambiguous
polynomial as shown above, which means that this disjoint finite union Wk is
also an unambiguous polynomial. Clearly, Wi ∩Wj = ∅ and δA(Wi) > 0 for each

i �= j, thus we have
⊎

k≥0 Wk = A∗wA∗ and hence limn→∞ δA

(⊎n
k≥0 Wk

)
= 1

i.e., μ
UPolA

(A∗wA∗) = 1. Thus A∗wA∗ ∈ ExtA(UPolA). �

Combining Theorem 6 and Theorem 7, we have the following equivalence.

Corollary 1. ExtA(LTA) = ExtA(UPolA) for each A.

We showed that LTA has a certain measuring power, but yet we do not know
whether LTA-measurability on REGA is decidable or not. We only know that
RExtA(LTA) forms a local variety thanks to Theorem 3.

282 R. Sin’ya

4 Measuring Power of Alphabet and Piecewise Testable
Languages

For any alphabet A, ATA is a finite family of regular languages, hence we can
decide, for a given regular language L ⊆ A∗, whether L is ATA-measurable or
not: enumerate every pair (L1, L2) of languages in ATA and check L1 ⊆ L ⊆ L2

and δA(L1) = δA(L2) = δA(L) holds. But the next theorem gives us a more
simpler way to check ATA-measurability than this näıve approach.

Theorem 8. A co-null language L ⊆ A∗ is ATA-measurable if and only if L
contains

⋂
a∈A A∗aA∗.

Proof. Clearly,
⋂

a∈A A∗aA∗ ∈ ATA and δA(
⋂

a∈A A∗aA∗) = 1 holds. Thus
any language L ⊇ ⋂

a∈A A∗aA∗ is ATA-measurable. If L �⊇ ⋂
a∈A A∗aA∗, then

any subset of L in ATA is null, because every language in ATA not containing⋂
a∈A A∗aA∗ is a subset of

⋃
B�A B∗ and hence it is clearly null. �

We notice that the above theorem also gives a characterisation of null ATA-
measurable languages: because ATA is closed under complementation, L is ATA-
measurable if and only if L is ATA-measurable by Theorem 2. Hence a null
language L ⊆ A∗ is ATA-measurable if and only if L contains

⋂
a∈A A∗aA∗. The

latter condition is equivalent to the following: alph(w) �= A for any w ∈ L.
Next we give a simple different characterisation of PT-measurability. The

following lemma can be considered as a specialised version of Theorem 1 (a
regular language is co-null if and only if it contains an ideal language A∗wA∗)
to piecewise testable languages. Notice that A∗wA∗ ⊆ Lw always holds hence
Lw is more “larger” than A∗wA∗.

Lemma 2. A piecewise testable language L ∈ PTA is co-null if and only if it
contains a simple monomial.

Proof. (⇐:) this is trivial: every simple monomial Lw is co-null by infinite mon-
key theorem.
(⇒:) Let L ∈ PTA be a co-null piecewise testable language. By definition of
PTA, L can be written as a finite Boolean combination of simple monomials,
hence it can be written as a disjunctive normal form L = I1 ∪ · · · ∪ In where
n ≥ 1 and each Ii is the intersection of some simple monomials or complements
of simple monomials. δA(L) = 1 implies that, at least one Ii is the intersection of
some simple monomials (otherwise δA(L) = 0), say Ii = Lw1 ∩ · · · ∩ Lwk

. Hence
we can conclude that L contains a simple monomial Lw1···wk

⊆ Ii ⊆ L. �
Theorem 9. A co-null language L ⊆ A∗ is PTA-measurable if and only if Lw ⊆
L holds for some w ∈ A∗.

Proof. (⇐): trivial.
(⇒): L is PTA-measurable means there is a convergent sequence (Lk)k of piece-
wise testable languages to L from inner. This means that, for some i ≥ 0,
δA(Lj) = 1 holds for any j ≥ i because the density of each Lk is either zero or
one. By Lemma 2, Lj contains a simple monomial Lwj

for each j ≥ i. Hence
Lwi

⊆ Li ⊆ L, in particular. �

Measuring Power of Locally Testable Languages 283

Table 1. Correspondence of language-algebra-logic and summary of our results.

Language Algebra Logic Measurability

SF Aperiodic FO SF � RExtA(SF) � REG [22]

Locally idempotent
LT ExtA(LT) = ExtA(UPol)

and commutative

UPol DA FO2

PT � RExtA(PT) � ZO

PT J -trivial BΣ1 L is PT-measurable iff L or L

contains a simple monomial

AT � RExtA(AT) � RExtA(PT)
Idempotent

AT FO1 L is AT-measurable iff L or L
and commutative

contains
⋂

a∈A A∗aA∗

We notice that the above theorem also gives a characterisation of null PTA-
measurable languages: because PTA is closed under complementation, L is PTA-
measurable if and only if L is PTA-measurable by Theorem 2. By using Lemma 2,
we can also show that the measuring power of PTA is strictly weaker than ZOA

as follows.

Theorem 10. PTA � RExtA(PTA) � ZOA if #(A) ≥ 2.

Proof (sketch). By using some combinatorial reasoning, we can show that
A∗wA∗ �∈ ExtA(PTA) holds for any word w ∈ A∗ satisfying |w| ≥ 3. See the full
version [23] for the proof. �

Finally, we give an algebraic characterisation of PTA-measurability based on
Theorem 9. We notice that the syntactic monoid of every co-null regular language
has the zero element 0 (cf. [20]). We use Green’s J -relation =J and <J on a
monoid M defined by x =J y ⇔ MxM = MyM and x <J y ⇔ MxM � MyM ,
respectively (cf. [8]).

Theorem 11. A co-null regular language L ⊆ A∗ is PTA-measurable if and
only if (♦) for every x ∈ M \ {0} there is a letter a ∈ A such that x′η(a) <J x′

for every x′ =J x, where η : A∗ → M and M is the syntactic morphism and
monoid of L, respectively.

Due to the space limitation, we omit the proof of the above theorem (see
the full version [23] for details). Because the syntactic monoid of every regular
language is finite, the condition (♦) is decidable.

Corollary 2. PTA-measurability is decidable for REGA.

5 Summary and Future Work

For simplicity, in this section we only consider alphabets with two more letters,
and omit the subscript A for denoting local varieties. Table 1 shows algebraic and

284 R. Sin’ya

logical counterparts of local varieties we considered (left) and a summary of our
results (right). Here FOn stands for first-order logic with n-variables and BΣ1

is the Boolean closure of existential first-order logic. The hierarchy of languages
is strictly decreasing top down excluding that LT and UPol (PT, respectively)
are incomparable. All algebraic and logical counterparts in Table 1 are nicely
described in a survey [6], with the sole exception LT [4,9,24].

Our future work are two kinds.

(1) Prove or disprove ExtA(LT) � ExtA(SF).
(2) Prove or disprove the decidability of LT-measurability.

To show the decidability, perhaps we can use some known techniques related
to locally testable languages, for example, the so-called separation problem for
a language class C: for a given pair of regular languages (L1, L2), is there a
language L in C such that L1 ⊆ L and L∩L2 = ∅ (L “separates” L1 and L2)? It is
known that the separation problem for PT, LT, and SF are all decidable [12–14].
Theorem 8 and Theorem 9 says that, AT-measurability and PT-measurability
does not rely on the existence of an infinite convergent sequence, but relies on
the existence of a single language ∩a∈AA∗aA∗ and Lw as a subset, respectively.
But from Theorem 5, we can observe that, the situation of LT-measurability
is essentially different: LT-measurability heavily relies on the existence of an
infinite sequence of different locally testable languages. Because the density of
every regular language is rational (cf. [16]), for each LTA-measurable language
L with an irrational density, there is no single pair of regular languages (L1, L2)
such that L1 ⊆ L ⊆ L2 and δA(L1) = δA(L2) = δA(L).

Between SF and LT, there is a fine-grained infinite hierarchy called the dot-
depth hierarchy originally introduced by Cohen and Brzozowski [5] in 1970. For
a family C of languages, we denote by M C = {L1 · · · Lk | k ≥ 1, L1, . . . , Lk ∈
C} ∪ {{ε}} the monoid closure of C. The dot-depth hierarchy starts with the
family B0 of all finite or co-finite languages, and continues as Bi+1 = BMBi

for each i ≥ 0. Brzozowski and Knast [3] showed that this infinite hierarchy
is strict: Bi � Bi+1 for each i ≥ 0. By definition, we have SF =

⋃
i≥0 Bi, and

actually, we also have B0 � LT � B1 because each of wA∗, A∗w and A∗wA∗ is
obtained by concatenating a finite language {w} and a co-finite language A∗.
Although the dot-depth hierarchy was introduced in a half-century before and
much ink has been spent on it, the decidability of the membership problem
for Bi is open for i ≥ 3 and the research on this topic is still active: see a
survey [11] or a recent progress given by Place and Zeitoun [15] that shows
the decidability of the separation problem for B2, which implies the decidability
of membership of B2. The equation ExtA(LT) = ExtA(SF) means that the dot-
depth hierarchy collapses via ExtA. But if not, it might be interesting to consider
the new hierarchy B0 = ExtA(B0) � ExtA(B1) ⊆ ExtA(B2) ⊆ · · · ⊆ ExtA(SF).

Acknowledgements. I am grateful to my colleague Y. Yamaguchi (Osaka University)
and Y. Nakamura (Tokyo Tech) for useful discussions. I also thank to anonymous
reviewers for many valuable comments. This work was supported by JSPS KAKENHI
Grant Number JP19K14582 and JST ACT-X Grant Number JPMJAX210B, Japan.

Measuring Power of Locally Testable Languages 285

References

1. Adámek, J., Milius, S., Myers, R.S.R., Urbat, H.: Generalized eilenberg theorem I:
local varieties of languages. In: Foundations of Software Science and Computation
Structures. pp. 366–380 (2014)

2. Berstel, J., Perrin, D.: Theory of codes, Pure and Applied Mathematics, vol. 117.
Academic Press Inc. (1985)

3. Brzozowski, J., Knast, R.: The dot-depth hierarchy of star-free languages is infinite.
J. Comput. Syst. Sci. 16, 37–55 (1978)

4. Brzozowski, J., Simon, I.: Characterizations of locally testable events. Disc. Math.
4, 243–271 (1973)

5. Cohen, R.S., Brzozowski, J.: Dot-depth of star-free events. J. Comput. Syst. Sci.
5, 1–16 (1971)

6. Diekert, V., Gastin, P., Kufleitner, M.: A survey on small fragments of first-order
logic over finite words. Int. J. Found. Comput. Sci. 19(3), 513–548 (2008)

7. Gehrke, M., Grigorieff, S., Pin, J.: Duality and equational theory of regular lan-
guages. In: Automata, Languages and Programming, pp. 246–257 (2008)

8. Lawson, M.V.: Finite Automata. Chapman and Hall/CRC (2004)
9. McNaughton, R.: Algebraic decision procedures for local testability. Math. Syst.

Theory 8, 60–76 (1974)
10. McNaughton, R., Papert, S.: Coutner-Free Automata. The MIT Press (1971)
11. Pin, J.: The dot-depth hierarchy, 45 years later. In: The Role of Theory in Com-

puter Science - Essays Dedicated to Janusz Brzozowski, pp. 177–202 (2017)
12. Place, T., van Rooijen, L., Zeitoun, M.: Separating regular languages by locally

testable and locally threshold testable languages. In: IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, pp.
363–375 (2013)

13. Place, T., van Rooijen, L., Zeitoun, M.: Separating regular languages by piecewise
testable and unambiguous languages. In: Mathematical Foundations of Computer
Science 2013, pp. 729–740 (2013)

14. Place, T., Zeitoun, M.: Separating regular languages with first-order logic. Log.
Methods Comput. Sci. 12(1) (2016)

15. Place, T., Zeitoun, M.: Separation for dot-depth two. Log. Methods Comput. Sci.
17 (2021)

16. Salomaa, A., Soittola, M.: Automata Theoretic Aspects of Formal Power Series.
Springer, New York (1978)

17. Schützenberger, M.: Sur le produit de concaténation non ambigu. Semigroup Forum
13, 47–75 (1976)

18. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8(2), 190–194 (1965)

19. Simon, I.: Piecewise testable events. In: Automata Theory and Formal Languages,
pp. 214–222 (1975)

20. Sin’ya, R.: An automata theoretic approach to the zero-one law for regular lan-
guages. In: Games, Automata, Logics and Formal Verification, pp. 172–185 (2015)

21. Sin’ya, R.: Asymptotic approximation by regular languages. In: Current Trends in
Theory and Practice of Computer Science, pp. 74–88 (2021)

22. Sin’ya, R.: Carathéodory extensions of subclasses of regular languages. In: Devel-
opments in Language Theory, pp. 355–367 (2021)

23. Sin’ya, R.: Measuring power of locally testable languages (full version) (2022).
http://www.math.akita-u.ac.jp/∼ryoma/misc/LTmeasure full.pdf

24. Zalcstein, Y.: Locally testable languages. J. Comput. Syst. Sci. 6(2), 151–167
(1972)

http://www.math.akita-u.ac.jp/~ryoma/misc/LTmeasure_full.pdf

The Power Word Problem in Graph
Products

Florian Stober and Armin Weiß(B)

FMI, Universität Stuttgart, Stuttgart, Germany
armin.weiss@fmi.uni-stuttgart.de

Abstract. The power word problem of a group G asks whether an
expression px1

1 . . . pxn
n , where the pi are words and the xi binary encoded

integers, is equal to the identity of G. We show that the power word prob-
lem in a fixed graph product is AC0-Turing-reducible to the word prob-
lem of the free group F2 and the power word problem of the base groups.
Furthermore, we look into the uniform power word problem in a graph
product, where the dependence graph and the base groups are part of
the input. Given a class of finitely generated groups C, the uniform power
word problem in a graph product can be solved in AC0(C=L

PowWPC). As
a consequence of our results, the uniform knapsack problem in graph
groups is NP-complete.

1 Introduction

The word problem is among the most fundamental algorithmic questions in
group theory: given a word in the generators of a finitely generated (f.g.) group,
decide whether that word is equal to the identity in the group. More than a
century ago, Max Dehn [3] recognized the importance of the word problem with
its consequences for topology. Moreover, with the discovery of finitely presented
groups with undecidable word problem [16], it also became a topic of active study
within computer science. Indeed, there are many natural classes of groups where
the word problem is efficiently decidable. One of the most prominent examples
is the class of linear groups (groups embeddable into matrix groups over some
field): here the word problem can be decided in LOGSPACE [10].

In recent years variants of the word problem have been studied where the
input is given in compressed form. Most notably is the so-called compressed word
problem (or circuit value problem) where the input is given as a straight-line
program (a context free grammar producing a single word). The compressed word
problem is not only interesting on its own, but it naturally appears when solving
the word problem in certain automorphism groups or semidirect products [11,
Sect. 4.2].

The power word problem is somehow in between the word problem and
the compressed word problem. It has been proposed by Lohrey and the sec-
ond author [13]. The input is given as two lists (p1, . . . , pn) and (x1, . . . , xn),
where pi is a word in the generators of the group and xi is a binary encoded
c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 286–298, 2022.
https://doi.org/10.1007/978-3-031-05578-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_23&domain=pdf
https://doi.org/10.1007/978-3-031-05578-2_23

The Power Word Problem in Graph Products 287

integer for each i. The problem is to decide whether px1
1 . . . pxn

n is equal to the
identity in the group. In [13] it is shown that the power word problem for a
finitely generated free group is AC0-Turing reducible to the word problem in the
free group with two generators F2; thus, essentially, it is as difficult as the word
problem.

In this work we study the power word problem in right-angled Artin groups
and graph products: A right-angled Artin group (RAAG, also known as graph
group or free partially commutative group) is a free group subject to rela-
tions that certain generators commute. Graph products, introduced by Green
in 1990 [7], are a generalization of RAAGs: Let (L, I) be an undirected simple
graph and let Gα for α ∈ L be groups. The graph product GP(L, I; (Gα)α∈L)
is the free product of the Gα subject to the relations that g ∈ Gα and h ∈ Gβ

commute whenever (α, β) ∈ I. In particular, RAAGs are graph products where
all Gα are infinite cyclic groups.

Since RAAGs are linear, their word problem can be solved in LOGSPACE
(see [4]). Moreover, in [9], Kausch gave precise a characterization of the com-
plexity of the word problem in RAAGs and graph products – both in the case
that the group is fixed and in the case that the (in-)dependence graph and the
groups Gα are part of the input (the so-called uniform case). In the easiest case,
for a fixed RAAG, he showed that the word problem is uAC0-Turing reducible to
the word problem in the free group with two generators F2 (meaning that it can
be decided by a DLOGTIME-uniform family of bounded-depth, polynomial-size
Boolean circuits with oracle gates for the word problem in F2). Moreover, in the
uniform case for graph products, the word problem can be solved in the counting
logspace class C=L with an oracle for the (uniform) word problem in the base
groups Gα.

On the other hand, the compressed word problem of a fixed graph prod-
uct is polynomial time Turing reducible to the compressed word problem in the
base groups [8]. Moreover, for a fixed non-abelian RAAG it is P-complete [11].
Whether the uniform compressed word problem in RAAGs is solvable in poly-
nomial time is posed as an open problem in [12].

In this work, we fill the gaps in this picture for the power word problem in
RAAGs and graph products. Our approach follows the outline in [13] for free
groups. However, we have to overcome several additional difficulties: indeed, the
main part of this paper considers the construction and computation of a certain
“nice” normal form of the input. Moreover, we have to adapt the algorithms
and proofs from [9] for the word problem to some restricted variant of the power
word problem. Altogether this leads us to the following results:

Theorem A. Let G = GP(L, I; (Gα)α∈L) be a graph product of f.g. groups. The
power word problem in G can be decided in uAC0 with oracle gates for the word
problem in F2 and for the power word problems in the base groups Gα.

Theorem B. Let C be a non-trivial class of f.g. groups. The uniform power
word problem for graph products, where (L, I) and Gα ∈ C for α ∈ L are part
of the input, can be decided in uAC0(C=L

PowWPC) where PowWPC denotes the
uniform power word problem for the class C.

288 F. Stober and A. Weiß

Theorem C. Let G be a RAAG. The power word problem in G is uAC0-Turing
reducible to the word problem in the free group F2 and, thus, in LOGSPACE.

The knapsack problem is a classical optimization problem. Myasnikov et al.
have formulated the decision variant of the knapsack problem for a group G:
Given g1, . . . , gn, g ∈ G, decide whether there are x1, . . . , xn ∈ Z, with xi ≥ 0,
such that gx1

1 . . . gxn
n =G g [15]. Lohrey and Zetzsche have studied the knapsack

problem for fixed RAAGs showing, in particular, that, if G is a RAAG with
independence relation I and I contains an induced subgraph C4 or P4, then
the knapsack problem for G is NP-complete [14]. However, membership of the
uniform version of the knapsack problem for RAAGs in NP remained open. Using
our results on the power word problem, solves this missing piece:

Corollary D. The uniform knapsack problem for RAAGs is NP-complete: On
the input of a RAAG G (given as alphabet Σ and independence relation I ⊆ Σ×
Σ) and g1, . . . , gn, g ∈ G, it can be decided in NP whether there are x1, . . . , xn ∈
Z with xi ≥ 0 such that gx1

1 . . . gxn
n =G g.

This work is based on the first author’s master thesis [17]. Due to lack of
space most proofs are omitted and can be found in the full version on arXiv [18].

2 Preliminaries

The free monoid over Σ is the set of words M(Σ) = Σ∗ together with the
concatenation operation. Its identity is the empty word 1. An element of Σ is
called a letter. For A ⊆ Σ we write |w|A for the number of letters from A in w
and we set |w| = |w|Σ . A word w = w1 · · · wn has period k if wi = wi+k for all i.

Let M be a monoid. We write x =M y to indicate equality in M (as opposed
to equality as words). Let x =M uwv for some x, u, w, v ∈ M ; we say u is a
prefix, w is a factor and v is a suffix of x. We call u a proper prefix if u �= x.
Similarly, w is a proper factor if w �= x and v is a proper suffix if v �= x. An
element u ∈ M is primitive if u �=M vk for any v ∈ M and k > 1. Two elements
u, v ∈ M are transposed if there are x, y ∈ M such that u =M xy and v =M yx.
We call u and v conjugate if they are related by a series of transpositions. For a
transposition in a free monoid we use the term cyclic permutation. Two elements
u, v ∈ Σ∗ are related by a cyclic permutation if and only if they are conjugate.

By F2 we denote the free group with two generators. If G is a group, then
u, v ∈ G are conjugate if and only if there is a g ∈ G such that u = g−1vg.

The (Power) Word Problem. Let G be a group with a presentation over the
alphabet Σ. The word problem WP(G) is to decide for w ∈ Σ∗ whether w =G 1.
A power word is a word w = wx1

1 . . . wxn
n , where w1, . . . , wn ∈ Σ∗ is a list of

words and x1, . . . , xn ∈ Z is a list of binary encoded integers. The power word
problem PowWP(G) is to decide whether w =G 1, where w is a power word. Let
C be a class of groups. We write PowWPC for the uniform power word problem
for groups in C: on input of G ∈ C and a power word w, decide whether w =G 1.

The Power Word Problem in Graph Products 289

Circuit Complexity. A language L ⊆ {0, 1}∗ is AC0-Turing-reducible to K ⊆
{0, 1}∗ if there is a family of constant-depth, polynomial-size Boolean circuits
with oracle gates for K deciding L. More precisely, L ⊆ {0, 1}∗ belongs to
AC0(K) if there exists a family (Cn)n≥0 of circuits which, apart from the input
gates x1, . . . , xn are built up from not, and, or, and oracle gates for K (which
output 1 if and only if their input is in K). All gates may have unbounded fan-in,
but there is a polynomial bound on the number of gates and wires and a constant
bound on the depth (length of a longest path). In the following, we only consider
DLOGTIME-uniform AC0(K) for which we write uAC0(K). For more details on
these definitions we refer to [19]. We may use oracle gates from a finite class of
languages C. We write A ∈ uAC0(C) to indicate that A can be decided in uAC0

with oracle gates for the problems in C.

Counting Complexity Classes. Counting complexity classes are built on the idea
of counting the number of accepting and rejecting paths of a Turing machine.
For a non-deterministic Turing machine M , let acceptM denote the number
of accepting paths and let rejectM denote the number of rejecting paths. We
define gapM = acceptM − rejectM . The class of functions GapL and the class of
languages C=L are defined as follows:

GapL =
{

gapM

∣∣∣∣ M is a non-deterministic, logarithmic space-bounded
Turing machine

}

C=L = {L | There is f ∈ GapL with ∀w∈Σ∗ : w ∈ L ⇐⇒ f(w) = 0}

We write GapLK and C=L
K to denote the corresponding classes where the

Turing machine M is equipped with an oracle for the language K. We have the
following relationships of C=L with other complexity classes – see e. g., [1].

uTC0=uAC0(WP(Z))⊆uAC0(WP(F2))⊆LOGSPACE⊆NL⊆C=L⊆uAC0(C=L)

Rewriting Systems. A relation S ⊆ Σ∗ × Σ∗, where Σ is an alphabet, is called
a rewriting system. We use the notation l → r to denote that (l, r) ∈ S. Based
on the set S, the rewriting relation =⇒

S
is defined by u =⇒

S
v whenever there

are (l, r) ∈ S and p, q ∈ Σ∗ with u = plq and v = prq.
Let +=⇒

S
define the transitive closure and ∗=⇒

S
the reflexive, transitive

closure. We write u
≤k=⇒
S

v to denote that u can be rewritten to v using at
most k steps. We say that a word w ∈ Σ∗ is irreducible w. r. t. S if there is no
v ∈ Σ∗ with w =⇒

S
v. The set of irreducible words is denoted as IRR(S) =

{w ∈ Σ∗ | w is irreducible}.

Partially Commutative Monoids. Let M(Σ) = Σ∗ be the free monoid over the
set of generators Σ. Let I ⊆ Σ × Σ be symmetric and irreflexive. The partially
commutative monoid defined by (Σ, I) is M(Σ, I) = M(Σ)/{ab = ba | (a, b) ∈
I}. Thus, the relation I describes which generators commute; it is called the
commutation relation or independence relation. The relation D = (Σ × Σ) \ I is
called dependence relation and (Σ,D) is called dependence graph.

290 F. Stober and A. Weiß

Elements of a partially commutative monoid can represented by a directed
acyclic graph: Let w = u1 . . . un with ui ∈ Σ. Each ui is a node in the graph;
there is an edge ui → uj if and only if i < j and (ui, uj) ∈ D. Some v ∈ M(Σ, I)
is said to be connected if this directed acyclic graph is weakly connected – or,
equivalently, if the induced subgraph of (Σ,D) consisting only of the letters
occurring in v is connected.

Graph Products. Let (Gα)α∈L be a family of groups and I ⊆ L × L be an
irreflexive, symmetric relation (the independence relation). The graph product
GP(L, I; (Gα)α∈L) is defined as the free product of the Gα modulo the relations
that Gα and Gβ commute whenever (α, β) ∈ I.

For representing a graph product, we use Γ =
⋃

α∈L(Gα \ {1}) as an
alphabet. For u, v ∈ Gα we write [uv] for the element obtained by multiply-
ing uv in Gα (whereas uv denotes the two-letter word in Γ ∗). For w ∈ Γ
we define alph(w) = α where w ∈ Gα. For u = u1 . . . uk ∈ Γ ∗ we define
alph(u) = {alph(u1), . . . , alph(uk)}. We extend the independence relation over
Γ × Γ by I = {(u, v) | (alph(u), alph(v)) ∈ I} and even further to I ⊆ Γ ∗ × Γ ∗

by (u, v) ∈ I whenever (α, β) ∈ I for all α ∈ alph(u) and β ∈ alph(v). Hence,

GP(L, I; (Gα)α∈L) = 〈Γ | uv = [uv] for u, v ∈ Gα; uv = vu for (u, v) ∈ I〉 .

We represent elements of a graph product by elements of the correspond-
ing partially commutative monoid M(Γ, I). The canonical homomorphism
M(Γ, I) → GP(L, I; (Gα)α∈L) is surjective. A reduced representative of a group
element is a representative of minimum length. Equivalently, w ∈ M(Γ, I) is
reduced if there is no two-letter factor uv of w such that alph(u) = alph(v). A
word w ∈ Γ ∗ is called reduced if its image in M(Γ, I) is reduced. A word w ∈ Γ ∗

is called cyclically reduced if for all u, v ∈ Γ ∗ with w =M(Γ,I) uv the transposed
word vu is reduced. Let S be the rewriting system for G defined by the following
relations, where a, b ∈ Γ and u ∈ Γ ∗.

aub → [ab]u if alph(a) = alph(b) and (a,u) ∈ I(∗)

Then w ∈ Γ ∗ is reduced if and only if w ∈ IRR(S). Moreover, observe that
w

∗=⇒
S

1 if and only if w =G 1.

Remark 1. Let G = GP(L, I; (Gα)α∈L) and M = M(Γ, I) and u, v ∈ Γ ∗. If
u =M v, then also u =G v. Moreover, if u and v are reduced, then u =M v if
and only if u =G v.

Since Γ might be an infinite alphabet, for inputs of algorithms, we need to
encode elements of Γ over a finite alphabet. For α ∈ L let Σα be an alphabet
for Gα (i. e., there is a surjective homomorphism Σ∗

α → Gα). Then, clearly every
element of Γ can be represented as a word over Σ =

⋃
α∈L Σα. However, in

general, representatives are not unique. To decide whether two words w, v ∈ Σ∗
α

represent the same element of Γ is the word problem of Gα.

The Power Word Problem in Graph Products 291

3 Cyclic Normal Forms and Conjugacy

In this section we develop various tools concerning combinatorics on traces,
which later we will use to solve the power word problem in graph products.
In particular, we aim for some special kind of cyclic normal forms ensuring
uniqueness within a conjugacy class (see Definition 9 below).

Cyclic Normal Forms. By ≤L we denote a linear order on the set L. The length-
lexicographic normal form of g ∈ G is the reduced representative nfG(g) = w ∈
Γ ∗ for g that is lexicographically smallest. Note that this normal form is on the
level of Γ . Each letter of Γ still might have different representations over the
alphabet Σ as outlined above.

Definition 2. Let w ∈ Γ ∗ be cyclically reduced. We say w is a cyclic normal
form if w is a length-lexicographic normal form and all its cyclic permutations
are length-lexicographic normal forms.

Cyclic normal forms have been introduced in [2] for RAAGs. Moreover, by [2],
given an element which has a cyclic normal form, it can be computed in linear
time. In Theorem 5 below, we show that they also exist in the case of graph
products and that they also can be computed efficiently. It is easy to see that
every cyclic normal form is connected. To emphasize the importance of being
connected we always require connectedness explicitly in the following. In partic-
ular, not every element has a cyclic normal form. Moreover, there can be more
than one cyclic normal per conjugacy class; however, by Definition 2 they are
all cyclic permutations of each other.

We make use of the following two crucial properties of cyclic normal forms.
The proof of Lemma 3 follows the outline given in [2] for RAAGs.

Lemma 3. Let u, v ∈ Γ ∗ be cyclic normal forms with |alph(u)| , |alph(v)| ≥ 2.
Then u and v are conjugate (in G) if and only if u is a cyclic permutation of v
(as words over Γ).

Lemma 4. Let u ∈ Γ ∗ be a connected cyclic normal form with |alph(u)| ≥ 2. If
u =G vk, then nfG(v) is a cyclic normal form and u = nfG(v)k (as words).

Theorem 5. In the following, w is cyclically reduced and connected.

– Let G = GP(L, I; (Gα)α∈L) be a graph product of f.g. groups. Then computing
a cyclic normal form conjugate to w ∈ Γ ∗ is in uAC0 ⊆ uAC0(WP(F2)).

– Given a non-trivial class of f.g. groups C, computing a cyclic normal form
conjugate to w ∈ G = GP(L, I; (Gα)α∈L), where (L, I) and Gα ∈ C for α ∈ L
are part of the input, is in uAC0(NL).

Proof (Sketch). We use the fact, that if v is cyclically reduced and conjugate
to w|L|, then v is already transposed to w|L| (which is not true for w itself).
Therefore, the cyclic normal form can be computed with the following algorithm:

292 F. Stober and A. Weiß

1. Compute the length-lexicographic normal form w̃ = nfG(w|L|).
2. Let w̃ = ydz, where d ∈ Gα such that α is maximal w. r. t. ≤L, y ∈ (Γ \Gα)∗

and z ∈ Γ ∗. Compute the cyclic permutation dzy. That is, rotate the first
occurrence of d to the front.

3. Compute the length-lexicographic normal form of dzy. We have nfG(dzy) =
u|L|, where u is a cyclic normal form conjugate to w.

The complexity of the algorithm is dominated by the computation of the length-
lexicographic normal form, see [9, Theorem 6.3.7, Theorem 6.3.13]. ��

Factors, Suffixes and Prefixes. Next we characterize the shape of a prefix, suffix
or factor of a power in a graph product (denoted as above). We write σ = |L|.
Lemma 6. Let p ∈ M(Γ, I) be connected, k ∈ N. Then we have:

(i) Every prefix w of pk can be written as w = pxw1 · · · ws where x ∈ N, s < σ
and wi is a proper prefix of p for each i.

(ii) Every suffix u of pk can be written as u = u1 · · · utp
x where x ∈ N, t < σ

and ui is a proper suffix of p for each i.
(iii) Given a factor v of pk at least one of the following is true.

– v = u1 · · · uav1 . . . vbw1 · · · wc where a, b, c ∈ N, a + b + c ≤ 2σ − 2, ui is
a proper suffix of p for 1 ≤ i ≤ a, vi is a proper factor of p for 1 ≤ i ≤ b
and wi is a proper prefix of p for 1 ≤ i ≤ c.

– v = u1 · · · uapbw1 · · · wc where a, b, c ∈ N, a, c < σ, ui is a proper suffix of
p for 1 ≤ i ≤ a and wi is a proper prefix of p for 1 ≤ i ≤ c.

Projections to Free Monoids. We define a projection to a direct product of
free monoids similar to [20]. Let A = {Γα ∪ Γβ | (α, β) ∈ D}. For Ai ∈ A let
πi : Σ∗ → A∗

i be the projection to the free monoid A∗
i , defined by πi(a) = a

for a ∈ Ai and πi(a) = 1 otherwise. We define Π : Σ∗ → A∗
1 × · · · × A∗

k, w �→
(π1(w), . . . , πk(w)). By Lemma 1 the following lemmata presented in [5] for trace
monoids hold also for reduced representatives in graph products of groups.

Lemma 7. Proposition 1.2 in [5] For reduced u, v ∈ M = M(Σ, I) we have
u =M v if and only if Π(u) = Π(v).

Lemma 8. Proposition 1.7 in [5] Let w ∈ M = M(Σ, I) and t > 1. Then,
there is u ∈ Σ∗ with w =M ut if and only if there is a ∈ ∏

A∗
i with Π(w) = at.

We are going to apply Lemma 8 to the situation that G = GP(L, I; (Gα)α∈L)
is a graph product of groups and w ∈ Γ ∗ is cyclically reduced, connected, and
|alph(w)| ≥ 2. Then, for any t > 1 there exists u ∈ Γ ∗ with w =G ut if and only
if there is a ∈ ∏

A∗
i with Π(w) = at.

The Power Word Problem in Graph Products 293

Conjugacy. For the rest of this section let G = GP(L, I; (Gα)α∈L) be a graph
product and M(Γ, I) as in Sect. 2.

Definition 9. Let Ω be the set of all w ∈ Γ ∗ satisfying the following properties:

– |alph(w)| ≥ 2 (in particular, w �=G 1),
– w is cyclically reduced,
– w represents a primitive and connected element of M(Γ, I),
– w is a cyclic normal form,
– w is minimal w. r. t. ≤L among its cyclic permutations and the cyclic permu-

tations of a cyclic normal form of its inverse.

The crucial property of Ω is that each w ∈ Ω is a unique representative for
its conjugacy class and the conjugacy class of its inverse. That leads us to the
following theorem, which is central to solving the power word problem in graph
products (see Lemma 15 below). The intuition behind it is that, if there are two
powers px and qy, where p, q ∈ Ω and q �= p, then in pxqy only a small number
of letters can cancel out. Conversely, if a sufficiently large suffix of px cancels
with a prefix of qy, then p = q. In the end this will allow us to decrease all the
exponents of p simultaneously as described in Definition 18.

Theorem 10. Let p, q ∈ Ω, and x, y ∈ Z. Moreover, let u be a factor of px and
v a factor of qy (read as elements of M(Γ, I)) such that u and v are reduced and
uv =G 1. If |u| = |v| > 2σ(|p| + |q|), then p = q.

We derive Theorem 10 from the following lemma. Note that, if p is connected,
px is cyclically reduced if and only if p is cyclically reduced and |alph(p)| ≥ 2.

Lemma 11. Let p, q, v ∈ M(Γ, I), x, y ∈ N such that p and q are primitive
and connected, px and qy are cyclically reduced and have a common factor v.
If p2 and q2 are factors of v, then for all i the projections πi(p) and πi(q) are
conjugate as words.

Proof. We define Jv = {i | alph(Ai) ⊆ alph(v)} = {i | |alph(πi(v))| = 2}. For
each i ∈ Jv we write πi(p) = p̃si

i and πi(q) = q̃ri
i where p̃i and q̃i are primitive.

As v is a common factor of px and qy, its projection πi(v) is a common factor
of πi(px) = p̃six

i and πi(qy) = q̃riy
i . Thus πi(v) has periods |p̃i| and |q̃i|. Since

p2 is a factor of v, πi(p2) is a factor of πi(v). This yields the lower bound
2|p̃i|, and by symmetry 2|q̃i|, on the length of πi(v). Combining those we obtain
|πi(v)| ≥ max{2|p̃i|, 2|q̃i|} ≥ |p̃i| + |q̃i| ≥ |p̃i| + |q̃i| − 1. By the theorem of Fine
and Wilf [6], we have that |p̃i| = |q̃i|. As p is a factor of v, we have that p̃i is a
factor of πi(v) and transitively of πi(qy) = q̃ri·y

i . Hence, p̃i and q̃i are conjugate.
Assume that for some i we have si �= ri. Then, there are λ and μ such

that λsi = μri. W. l. o. g. let μ �= 1 and gcd{λ, μ} = 1. Now μ divides si. Let
J be the set of indices j ∈ Jv such that λsj = μrj . Clearly i ∈ J . Let � be
an index such that A� ∩ Aj �= ∅ for some j in J . Let {α} = alph(A� ∩ Aj).
We write |w|α for |w|Γα

. We have s�|p̃�|α = |p|α = sj |p̃j |α. Similarly, we have
r�|q̃�|α = |q|α = rj |q̃j |α, which is equivalent to r�|p̃�|α = rj |p̃j |α (as p̃i and q̃i are

294 F. Stober and A. Weiß

conjugate for all i). Thus, we obtain λs�|p̃�|α = λsj |p̃j |α = μrj |p̃j |α = μr�|p̃�|α.
Since |p̃�|α �= 0, we conclude λs� = μr�. As p is connected, we obtain J = Jv by
induction. Thus, every si is divisible by μ, and by Lemma 8 we can write p = uμ

contradicting p being primitive. ��
The proof idea for Theorem 10 is as follows: We use the length bound from

Lemma 6 in order to show that the requirements of Lemma 11 are satisfied.
After applying that lemma, we show that p and q are conjugate using Lemma
7. From the definition of Ω it follows that p = q.

4 The Power Word Problem in Graph Products

In this section we show our main results: In order to solve the power word
problem, we follow the outline of [13]. In particular, our proof also consists of
three major steps:

– In a preprocessing step we replace all powers with powers of elements of Ω.
– We define a symbolic rewriting system which we use to prove correctness.
– We define the shortened word, replacing each exponent with a smaller one,

bounded by a polynomial in the input.

Here we rely on Theorem 10 instead of [13, Lemma 11], an easy fact about words.

The Simple Power Word Problem. Let G = GP(L, I; (Gα)α∈L) be a graph prod-
uct. A simple power word is a word w = wx1

1 . . . wxn
n , where w1, . . . , wn ∈ Γ

(each wi again encoded over the finite alphabet Σ as outlined above) and
x1, . . . , xn ∈ Z is a list of binary encoded integers. Note that this is more restric-
tive than a power word: We only allow powers of elements in a single base group.
The simple power word problem SPowWP(G) is to decide whether w =G 1, where
w is a simple power word.

The following result on the complexity of the simple power word problem is
obtained by using the corresponding algorithm for the word problem [9, Theorem
5.6.5, Theorem 5.6.14] and replacing the oracles for the word problem of the base
groups with oracles for the power word problem in the base groups.

Proposition 12. For the simple power word problem the following holds.

– Let G = GP(L, I; (Gα)α∈L) be a graph product of f.g. groups. Then
SPowWP(G) ∈ uAC0({WP(F2)} ∪ {PowWP(Gα) | α ∈ L}).

– Let C be a non-trivial class of f.g. groups, G = GP(L, I; (Gα)α∈L). Then
SPowWP(GPC) ∈ C=L

PowWPC.

Preprocessing. Let G = GP(L, I; (Gα)α∈L) be a graph product of f.g. groups. We
define the alphabet Γ̃ = Γ × Z, where (v, z) represents the letter vz. Note that
Γ̃ is the alphabet of the simple power word problem in G. During preprocessing,
the input is transformed into the form w = u0p

x1
1 u1 . . . pxn

n un, where pi ∈ Ω and
ui ∈ Γ̃ ∗ for all i. We denote the uniform word problem for graph products with
base groups in C by WPGPC.

The Power Word Problem in Graph Products 295

Lemma 13. The preprocessing can be reduced to the word problem.

– Let G = GP(L, I; (Gα)α∈L) be a graph product of f.g. groups. Then computing
the preprocessing is in uAC0(WP(G),WP(F2)).

– Let C be a non-trivial class of f.g. groups. Given w ∈ G = GP(L, I; (Gα)α∈L),
where (L, I) and Gα ∈ C for α ∈ L are part of the input, the preprocessing
can be done in uAC0(WPGPC,NL).

Proof (Sketch). The preprocessing consists of several steps: First, we reduce all
powers pi cyclically using [9, Lemma 7.3.4]. Next, we replace the powers by their
connected components. In the uniform case this requires to solve the (undirected)
path connectivity problem, which is in NL. Then, we replace each element of Γ
by a unique (but arbitrary) representative over the finite alphabet Σ. After that
we can compute cyclic normal forms using Theorem 5 and replace a power p by
the lexicographically minimal cyclic permutation of this cyclic normal form. By
Lemma 3 this gives us a unique representative for each conjugacy class. Finally,
in order to make the powers primitive, we use Lemma 4. ��

Symbolic Rewriting System. Let G = GP(L, I; (Gα)α∈L) be a graph product of
f.g. groups. Let S denote the rewriting system from (∗). As before, let σ = |L|.
Recall that we defined the input alphabet of the simple power word problem
Γ̃ = Γ × Z. A letter (v, z) ∈ Γ̃ is interpreted as vz. In Γ̃ ∗ we can have powers of
individual letters (which are words in the base groups), but not powers of words
containing letters from multiple base groups. For some x ∈ Z \ {0} we denote by
sgnx ∈ {±1} the sign of x. We define the alphabet Δ by Δ′ =

⋃
p∈Ω Δp, Δ′′ = Γ̃

and Δ = Δ′ ∪ Δ′′, where for p ∈ Ω

Δp =

⎧⎨
⎩βip

xα

∣∣∣∣∣∣
x ∈ Z,
α ∈ IRR(S) is a prefix of pσsgnx and p is no prefix of α,
β ∈ IRR(S) is a suffix of pσsgnx and p is no suffix of β.

⎫⎬
⎭

The rewriting system T over Δ∗ is defined by the following rules, where βpxα,
δpyγ, δqyγ ∈ Δ′; a, b ∈ Δ′′; r ∈ Δ′′∗; d, e ∈ Z; 0 ≤ k ≤ σ; ai ∈ Δ′′ and u ∈ Δ∗.

βpxαuδpyγ → βpx+y+dγu if αδ
∗=⇒
S

pd and (p,u) ∈ I(1)

βpxαuδpyγ → βpx−dα′a1 ··· akuδ′py−eγ(2)
if ((�c ∈ Z : αδ

∗=⇒
S

pc) or (p,u) /∈ I) , βpxαu ∈ IRR(S),

uδpyγ ∈ IRR(S), and pxαuδpy +=⇒
S

px−dα′a1 ··· akuδ′py−e ∈ IRR(S)

βpxαuδqyγ → βpx−dα′a1 ··· akuδ′qy−eγ(3)

if p �= q and pxαuδqy +=⇒
S

px−dα′a1 ··· akuδ′qy−e ∈ IRR(S)
βpxα → r if βα

∗=⇒
S

r ∈ IRR(S) and x = 0(4)

auβpxα → a′uβ′px−dα(5)

if (a,u) ∈ I and auβpx +=⇒
S

a′uβ′px−d ∈ IRR(S)

296 F. Stober and A. Weiß

βpxαua → βpx−dα′ua′(6)

if (a,u) ∈ I and pxαua
+=⇒
S

px−dα′ua′ ∈ IRR(S)
aub → ru if (a,u) ∈ I, alph(a) = alph(b), and r = [ab](7)

We define the projection π : Δ∗ → Γ ∗ by π(a, k) = ak for (a, k) ∈ Δ′′ and
π(βpxα) = βpxα for βpxα ∈ Δ′ and π(w) = π(w1) . . . π(wn). We write |w|Γ to
emphasize that w is a word in Γ ∗. The following fact about T is crucial.

Lemma 14. For u ∈ Δ∗ we have π(u) =G 1 if and only if u
∗=⇒
T

1.

Lemma 15. The following length bounds hold:

– Rule (2): |d| ≤ 2σ and |e| ≤ 2σ
– Rule (3): |d| ≤ 4σ|q|Γ and |e| ≤ 4σ|p|Γ
– Rule (4): |r|Γ < 2(σ − 1)|p|Γ
Proof (Sketch). When applying rule (3) we have a suffix α′′ of pxα and a prefix
δ′′ of δqy such that α′′δ′′ ∗=⇒

S
a1 . . . ak. The Γ -length of the suffix of α′′ that

cancels with a prefix of δ′′ is at most 2σ(|p|Γ + |q|Γ). Otherwise, we would have
p = q by Theorem 10 contradicting p �= q. Considering the additional letters
a1, . . . , ak and the bound on |α′|Γ from Lemma 6, we obtain |d| < 4σ|q|Γ . The
bound on |e| follows by symmetry. The other cases follow similarly. ��

Let w = w1 . . . wn ∈ Δ∗. We define μ(w) = max{|p|Γ | wi = βpxα ∈ Δ′} and
λ(w) = |w|Δ′′ +

∑
wi=βpxα∈Δ′ |p|Γ .

Lemma 16. If w
∗=⇒
T

v, then w
≤k=⇒
T

v with k = 10σ3λ(w) + 6σ2λ(w)2.

Proof (Sketch). Rules (4) and (1) clearly can be applied at most |w|Δ′ times in
total. We conclude that rules (2) and (3) can be applied at most 2σ|w|Δ′ times.
Hence, at most (2σ2 + 2(σ − 1)λ(w))λ(w) new letters from Δ′′ are created.
Rule (7) reduces the length of the word, rules (5) and (6) either reduce the
length or preserve it. One can compute an upper bound of 10σ3λ(w)+6σ2λ(w)2

on the total number of rules which can be applied. ��

The Shortened Word. In this section we describe the shortening process. It is an
almost verbatim repetition of [13] and we keep it as short as possible. Let u ∈ Δ∗

and p ∈ Ω. We write u = u0 β1p
y1α1 u1 . . . βmpymαm um with ui ∈ (Δ \ Δp)∗

and βip
yiαi ∈ Δp. We define ηp =

∑m
j=1 yj and ηi

p =
∑i

j=1 yj . The following
lemma follows from the bounds given in Lemma 15.

Lemma 17. Let u, v ∈ Δ∗ and u =⇒
T

v. For every prefix v′ of v there is a prefix
u′ of u such that |ηp(u′) − ηp(v′)| ≤ 4σμ(u) for all p ∈ Ω.

If the applied rule is neither (1) nor (4), then for all p ∈ Ω and 0 ≤ i ≤ m
we have |ηi

p(u) − ηi
p(v)| ≤ 4σμ(u).

The Power Word Problem in Graph Products 297

From Lemma 16 we know that, if π(u) =G 1, then u
≤k=⇒
T

1 with k =
10σ3λ(w) + 6σ2λ(w)2. By Lemma 17, each application of a rule changes ηp(·)
by at most 4σμ(u) ≤ 4σλ(u). Thus, the partial sums of the exponents change
by at most K = 40σ3λ(u)2(σ + λ(u)). We define a set of intervals CK

u,p that will
be carved out of the exponents during the shortening process. Let {c1, . . . , c�} ={
ηi

p(u) | 0 ≤ i ≤ m
}

be the ordered set of the ηi
p(u), i. e., c1 < · · · < c� and define

(1) CK
u,p = {[ci + K, ci+1 − K] | 1 ≤ i < �, ci+1 − ci ≥ 2K} .

Definition 18. Write CK
u,p = {[lj , rj] | 1 ≤ j ≤ �} (with lj in increasing order).

The shortened version of u is SCK
u,p

(u) = u0β1p
z1α1u1 . . . βmpzmαmum.

The new exponents are given by zi = yi − sgn(yi) · ∑
j∈Ci

dj, where dj =
rj − lj + 1 and Ci is the set of intervals to be removed from yi, defined by

Ci =
{{

j | 1 ≤ j ≤ k, ηi−1
p (u) < lj ≤ rj < ηi

p(u)
}

if yi > 0,{
j | 1 ≤ j ≤ k, ηi

p(u) < lj ≤ rj < ηi−1
p (u)

}
if yi < 0.

Lemma 19. π(u) =G 1 if and only if π(SCK
u,p

(u)) =G 1.

Lemma 20. Let SCK
u,p

(u) = u0β1p
z1α1u1 . . . βmpzmαmum for some u ∈ Δ∗.

Then |zi| ≤ 80mσ3λ(u)2(σ + λ(u)) for 1 ≤ i ≤ m.

Solving the Power Word Problem. Now we are ready for the proofs of our main
results from the introduction:

Proof of Theorem A. By Lemma 13 the preprocessing can be done in uAC0 with
oracles for the word problems in G and F2 (thus, by [9, Theorem 5.6.5, Theorem
5.6.14] in uAC0(WP(F2), (WP(Gα))α∈L) ⊆ uAC0(WP(F2), (PowWP(Gα))α∈L)).
The shortening procedure can be computed in parallel for each p ∈ {pi | 1 ≤
i ≤ n}. It requires iterated additions, which is in uTC0 ⊆ uAC0(WP(F2)).
By Lemma 20 the exponents of the shortened word are bounded by a poly-
nomial. We write the shortened word as a simple power word of polynomial
length and solve the simple power word problem, which by Lemma 12, is in
uAC0(WP(F2), (PowWP(Gα))α∈L). ��

The proof of Theorem B is analogous to the proof of Theorem A using the
respective statements of the lemmas for the uniform case.

Proof of Corollary D. By [14, Theorem 3.11], there is a polynomial p(N), where
N is the input length, such that if there is a solution, then there is a solution
x1, . . . , xn with xi ≤ 2p(N). Therefore, we can guess a potential solution within
the bound in NP. From Theorem B it follows that the uniform power word
problem in RAAGs can be decided in P. Hence, the uniform knapsack problem
can be decided in NP. Finally, NP-completeness follows immediately from the
NP-completeness of the knapsack problem for a certain fixed RAAGs, which has
been shown in [14]. ��
Note that this proof even shows NP-completeness of the slightly more general
problem of uniformly solving exponent equations for RAAGs as defined in [14].

298 F. Stober and A. Weiß

References

1. Allender, E.: Arithmetic circuits and counting complexity classes. Compl. Comput.
Proofs Quaderni di Matematica 13, 33–72 (2004)

2. Crisp, J., Godelle, E., Wiest, B.: The conjugacy problem in subgroups of right-
angled artin groups. J. Topol. 2(3), 442–460 (2009)

3. Dehn, M.: Über unendliche diskontinuierliche gruppen. Math. Ann. 71(1), 116–144
(1911)

4. Diekert, V., Kausch, J., Lohrey, M.: Logspace computations in Coxeter groups and
graph groups. Contemp. Math. (Amer. Math. Soc.) 582, 77–94 (2012)

5. Duboc, C.: On some equations in free partially commutative monoids. Theoret.
Comput. Sci. 46, 159–174 (1986)

6. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math.
Soc. 16(1), 109–114 (1965)

7. Green, E.R.: Graph products of groups. Ph.D. thesis, University of Leeds (1990)
8. Haubold, N., Lohrey, M., Mathissen, C.: Compressed decision problems for graph

products and applications to (outer) automorphism groups. IJAC 22(08), 218–230
(2012)

9. Kausch, J.: The parallel complexity of certain algorithmic problems in group the-
ory. Ph.D. thesis (2017). http://dx.doi.org/10.18419/opus-9152

10. Lipton, R.J., Zalcstein, Y.: Word problems solvable in logspace. J. ACM 24, 522–
526 (1977)

11. Lohrey, M.: The Compressed Word Problem for Groups. SM, Springer, New York
(2014). https://doi.org/10.1007/978-1-4939-0748-9

12. Lohrey, M., Schleimer, S.: Efficient computation in groups via compression. In:
Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp.
249–258. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74510-
5 26

13. Lohrey, M., Weiß, A.: The power word problem. In: MFCS 2019, Proceedings.
LIPIcs, vol. 138, pp. 43:1–43:15 (2019). https://doi.org/10.4230/LIPIcs.MFCS.
2019.43

14. Lohrey, M., Zetzsche, G.: Knapsack in graph groups. Theor. Comput. Syst. 62(1),
192–246 (2018)

15. Myasnikov, A., Nikolaev, A., Ushakov, A.: Knapsack problems in groups. Math.
Comput. 84(292), 987–1016 (2015)

16. Novikov, P.S.: On the algorithmic unsolvability of the word problem in group theory
(1955)

17. Stober, F.: The power word problem in graph groups. Master’s thesis (2021).
https://doi.org/10.18419/opus-11768

18. Stober, F., Weiß, A.: The power word problem in graph products .https://arxiv.
org/abs/2201.06543 (2022)

19. Vollmer, H.: Introduction to Circuit Complexity. Springer, Berlin (1999)
20. Wrathall, C.: The word problem for free partially commutative groups. J. Symb.

Comput. 6(1), 99–104 (1988)

http://dx.doi.org/10.18419/opus-9152
https://doi.org/10.1007/978-1-4939-0748-9
https://doi.org/10.1007/978-3-540-74510-5_26
https://doi.org/10.1007/978-3-540-74510-5_26
https://doi.org/10.4230/LIPIcs.MFCS.2019.43
https://doi.org/10.4230/LIPIcs.MFCS.2019.43
https://doi.org/10.18419/opus-11768
https://arxiv.org/abs/2201.06543
https://arxiv.org/abs/2201.06543

On One-Counter Positive Cones of Free
Groups

Zoran Šunić(B)

Department of Mathematics, Hofstra University, Hempstead, NY 11549, USA

zoran.sunic@hofstra.edu

Abstract. We present an uncountable family of (left) orders on non-
cyclic free groups of finite rank. The orders are encoded by bi-infinite
words of certain form. Each order in the family is the limit of explicitly
constructed orders whose positive cones are represented by one-counter,
thus context-free, languages. As an application, we provide three explicit
constructions of Cantor spaces of orders on free groups. The first two
consist of orders extending the lexicographic and the short-lex order,
respectively, on the free monoid, while the third one consists of discrete
orders. Each has a dense subset of orders with one-counter positive cones.

Keywords: Order · Free group · Positive cone · Infinite word ·
Short-lex · Lexicographic · Discrete order · One-counter language ·
Cantor space

1 Introduction

General Setting. All group and semigroup orders in the text are left orders.
Let A be a finite alphabet with |A| = k ≥ 2, and Fk the free group over A.

Let A−1 = {a−1 | a ∈ A} be a disjoint copy of A consisting of formal inverses,
and e a symbol outside of A � A−1 = A±.

Language Complexity of Orders. Our goal is to provide a countable set of
left orders on the free group Fk, each of which is explicitly defined by a one-
counter language over A±. First, an uncountable set of orders is defined, encoded
by certain bi-infinite words, and then it is shown that each order encoded by an
eventually orientably periodic word (definition given later) can be described by
a one-counter language. Both the space of words and the space of orders admit
natural topologies and our construction respects them – the function associating
orders to bi-infinite words is continuous. As an application, we provide an explicit
construction of an infinite set of orders on Fk, forming a Cantor space, extending
the lexicographic order on the free monoid over A, another Cantor space of orders
extending the short-lex order, and a third one consisting of discrete orders, all
three having dense subsets of orders with one-counter positive cones.

An order ≤ on a group G is a total order on the set G that is compatible
with the (left) multiplication, that is, for all f, g, h ∈ G, if f ≤ g, then hf ≤ hg.
c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 299–311, 2022.
https://doi.org/10.1007/978-3-031-05578-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_24&domain=pdf
http://orcid.org/0000-0001-7861-158X
https://doi.org/10.1007/978-3-031-05578-2_24

300 Z. Šunić

If ≤ is an order on G, then the set of positive elements P = {g ∈ G | e < g}
is the positive cone of G with respect to ≤. The positive cone P is a semigroup
such that G = P−1 � {e} � P , and f ≤ g if and only if f−1g ∈ P . Conversely, if
P is a subsemgroup of G such that G = P−1 � {e} � P , an order can be defined
on G by f ≤ g if and only if f−1g ∈ P . Under this order, P is the set of positive
elements of G. Thus, any order is determined by its positive cone.

It is known since the 1940s [7] that the free group Fk admits orders, and in
fact, two-sided orders, but unlike the case of free monoids, where many compre-
hensible orders are in everyday use (lexicographic and short-lex come to mind),
explicitly defined orders on free groups are rare and far between. We may follow
the work of Shibmireva [7], which relies on the earlier work of Magnus [4], and
define orders on Fk as follows. The lower central series quotients γ1(Fk)/γ2(Fk),
γ2(Fk)/γ3(Fk), . . . are free abelian groups of finite rank. Place an order on each,
independently, as desired (say, lexicographic by coordinates). A nontrivial ele-
ment g is declared positive in Fk if it is positive in the quotient γn−1(Fk)/γn(Fk),
where n is the smallest positive integer such that g �∈ γn(Fk). This gives a con-
tinuum of orders on Fk, but they are not particularly easy to work with on the
concrete level, as deciding if a concrete element g is positive requires collecting
commutators until one reaches the correct n.

Example 1. We provide, informally, two examples of orders on F2, with base
A = {a, b}, whose positive cones can be recognized by the two machines in
Fig. 1. The machines read the input from right to left. The initial states of the
machines are not shown. We assume that each machine has a register, initially
set at 0, that can store an integer and it can add or subtract from it. After
reading the initial letter (A and B stand for a−1 and b−1, respectively), the
machine enters one of the four states a, b, A, or B through the dotted arrows,
depending on the initial letter. It continues by reading the next letter of the
input, it follows the arrow to the next state, depending on the letter, and so
on. Each time it follows an arrow, it adds the amount indicated on the arrow to
the register. The machine works like this until it reads the entire input, and it
accepts the word if the number in the register at that moment is positive.

Fig. 1. Two machines recognizing positive cones in F2

On One-Counter Positive Cones of Free Groups 301

The only words that can be read completely by the two machines are the
freely reduced words over A±. We claim that the sets of reduced words that are
accepted by these machines represent positive cones in F2 (proved later). The
point of the examples is to show simple, explicit representations of positive cones
of F2 in the flavor of our general results. Deciding if f < g amounts to calculating
the reduced form of f−1g, running it through the corresponding machine and
checking if the sign of the number in the register at the end is positive.

We compare ba and aba. The sequence of configurations of the form (remain-
ing input) × state × register, on input ABaba, for the machine on the left,
is

(ABaba, start, 0) � (ABab, a, 1) � (ABa, b, 3) � (AB, a, 1) � (A, B, −3) � (ε, A, −1),

implying that ABaba is rejected, it is a negative element of F2, and ba > aba.
On the other hand, ABaba is accepted by the machine on the right and, under
that order, ba < aba. As we will see later, the orders represented by these
machines extend the lexicographic and the short-lex order, respectively, from
the free monoid {a, b}∗ to the free group F2. This claim is consistent with our
calculation showing that ba > aba in the first case, and ba < aba in the second.

Definition 1. Let L be a language over the finite alphabet Σ. An order ≤ on
a finitely generated group G is represented by L if there is a homomorphism
Σ∗ → G such that the image of L is the positive cone P of G with respect to ≤.

We may classify orders by the complexity of the languages that represent
them and call an order, or its corresponding positive cone, regular if it admits
representation by a regular language, context-free if it admits a representation
by a context-free language, and so on.

Calegary [2] showed that no regular language representing a positive cone
of a hyperbolic 3-manifold group can consist of geodesics. Hermiller and the
author [3] showed that no order on a free product of orderable groups is regular.
In particular, no order on the free group Fk is regular. On the positive side,
Rourke and Wiest [6] showed that certain mapping class groups admit regular
orders. Su [8] showed that R, the class of groups admitting regular orders is
closed under subgroups of finite index. Antoĺın, Rivas, and Su [1] showed that
R is closed under extensions and wreath products. In particular, all orderable
poly-cyclic groups admit regular orders.

We contribute to the positive side by constructing explicitly the first count-
able family of one-counter (hence, context-free) orders on the free group Fk.
Given that no order on a free product is regular [3], a representation by one-
counter languages seems to be the best one can do. Only finitely many examples
of one-counter orders on Fk have appeared previously in [9,10], where it was
stated, without a proof, that those finitely many examples yield one-counter
positive cones (the emphasis in those works was elsewhere, the orders in [10]
were constructed and analyzed by using quasi-morphisms).

Our our one-counter machines are deterministic, read the input from right to
left, at most one symbol at a time. The bottom of the stack symbol is immutable

302 Z. Šunić

and unmovable, it is present from the beginning, and the machine can check its
presence at the top of the stack, that is, the machine can test if the stack is
empty. If an attempt is made to pop from an empty stack the machine stops.

2 One-Counter Languages and Bi-infinite Words

A partial function φ on Z is eventually right-periodic with period p if there exists
n0 ∈ Z such that for each n ≥ n0, either φ(n) = φ(n + p) or none of n and n + p
is in the domain of φ. Left-periodicity is defined in analogous way. A function is
eventually periodic if it is both left and right-periodic (the periods may differ).

Let Φ be a finite set of partial functions on Z and φ ∈ Φ. The jump function
δΦ : Z → Z of φ is defined, wherever φ is, by δφ(n) = φ(n) − n. Let n be in the
domain of φγ, where φ ∈ Φ and γ is a composition of members of Φ. Then

φγ(n) = γ(n) + δφ(γ(n)). (1)

Let n0 be in the domain of γ = φm · · · φ1, and set ni = φi · · · φ1(n0), and δi = δφi
,

for i = 0, . . . ,m. Equation (1) implies

φm · · · φ1(n0) = nm−1+δm(nm−1) = n0+δ1(n0)+δ2(n1)+ · · ·+δm(nm−1). (2)

Proposition 1. Let Φ be a finite set of partial functions on Z such that their
jump functions are eventually periodic. Let R be any regular language over Φ
such that, for every word γ = φm · · · φ1 ∈ R, the number 0 is in the domain of
γ. Then, the language L = {γ ∈ R | γ(0) > 0} is a one-counter language.

Our construction of orders on Fk relies on intervals that are spaced apart on
R. To simplify the presentation, we use bi-infinite words indexed by the set Zodd

of odd integers (we are “reserving” the even numbers for the requisite spacing).
The set S of spaced words over A± consists of all odd-indexed bi-infinite

words ξ = . . . ξ−3 ξ−1 ξ1 ξ3 ξ5 ξ7 . . ., where ξi ∈ A±, for i ∈ Zodd, such that:

– ξ has infinitely many appearances of each letter in A±, in both directions,
– exactly one appearance of each letter from A± in ξ is marked.

A spaced sequence is a strictly increasing bi-infinite sequence (xn)n∈Z of odd
integers. Such sequences do not have lower or upper bounds. A spaced structure
over A± is a function I : A± × Z → Zodd such that:

– I is bijective,
– for every a ∈ A±, the sequence (Ia,n)n∈Z is spaced.

For a ∈ A±, let Ia = {Ia,n | n ∈ Z} and Ie be the set of even integers. The
2k +1 sets Ia, for a ∈ A± �{e}, partition Z, since I is bijective. Setting ξi = a if
and only if i ∈ Ia and marking, for each a ∈ A±, the appearance of a in position
(the index in ξ) Ia,0 provides a well defined spaced word ξ over A±. Conversely,
given a spaced word ξ ∈ S, we construct a spaced structure I over A± as follows.
For a ∈ A±, set Ia,0 to be the position of the marked occurrence of a in ξ.

On One-Counter Positive Cones of Free Groups 303

For n > 0, set Ia,n to be the position of the nth occurrence of a in ξ to the right
of the marked position Ia,0 and, for n < 0, the position of the |n|th occurrence
of a to the left of the marked position Ia,0. Thus, whenever either a spaced word
or a spaced structure is given, we consider that its counterpart is given too.

Example 2. Let A = {a, b}. An example of a corresponding pair of a spaced
word ξ and a spaced structure I is shown below. The top two rows in the table
provide a spaced word ξ, with marked positions indicated by underlined letters.
Row 1, 3, and 4 provide the function I. Each pair in a singe column in rows 3
and 4 is a pair in A± × Z, and the corresponding entry in the same column in
row i is its value under I. E.g., consider the b-columns, indicated by boldface.

i . . . −9 −7 −5 −3 −1 1 3 5 7 9 11 13 15 17 19 . . .

ξ . . . a−1 a b−1 b a b a b a−1 b−1 a a b a a−1 . . .

A± . . . a−1 a b−1 b a b a b a−1 b−1 a a b a a−1 . . .

Z . . . −1 −3 0 −1 −2 0 −1 1 0 1 0 1 2 2 1 . . .

We have Ib,−1 = −3, Ib,0 = 1, Ib,1 = 5, and Ib,2 = 15, because the marked b
appears in position 1 in ξ, the first and second b to the right of it are in positions
5 and 15, and the first b to the left of it is in position −3.

For a ∈ A± and n ∈ Z, denote I ′
a,n = {i | Ia,n−1 < i < Ia,n} and I ′

a = Z \ Ia.
For a ∈ A±, let φa : Z → Z be the partial function defined, only on I ′

a−1 , by

φa(i) =

{
Ia,n, a ∈ A,

Ia,n−1, a ∈ A−1,
for all i with Ia−1,n−1 < i < Ia−1,n.

In other words, φa is characterized by the property

φa(I ′
a−1,n) =

{
Ia,n, a ∈ A,

Ia,n−1 a ∈ A−1.
(3)

Example 3. We continue our previous example. The black vertices in the row
labeled φb−1 in Fig. 2 are elements of Ib. All other integers, including the even

Fig. 2. The partial function φb−1 : I ′
b → Z

304 Z. Šunić

ones, are in I ′
b, the domain of φb−1 . We have Ib,1 = 5, Ib,2 = 15, and Ib−1,1 = 9.

Thus, for all i ∈ I ′
b,2 = {6, 7, 8, 9, 10, 11, 12, 13, 14}, we have φb−1(i) = 9 (the even

numbers are not shown in the figure). Similarly, I ′
b,1 = {2, 3, 4} and φb−1(2) =

φb−1(3) = φb−1(4) = Ib−1,0 = −5.

An orientable word over A± is a word of length 2k in which very letter from
A± appears exactly once. There are exactly (2k)! such words. An eventually
orientably periodic word in S is a word ξ that is eventually periodic and its
periods on both ends are products of orientable words. Let So be the set of
eventually orientably periodic words in S.

Proposition 2. If ξ is an eventually orientably periodic, spaced word in S, then
the jump functions δa corresponding to φa, for a ∈ A±, are eventually periodic.

Example 4. It is not sufficient to require that ξ is eventually periodic in order
to obtain eventually periodic jump functions. For instance, let A = {a, b} and
ξ = · · · a a−1 a−1 b b−1 . a a−1 a−1 b b−1 a a−1 a−1 b b−1 · · · , where the dot indi-
cates the position between −1 and 1. Then φa(10n+1) = 20n+1, which implies
δa(10n + 1) = 10n, and the jump function is not even bounded.

3 Free Groups and Bi-infinite Words

Line Homeomorphisms and Spaced Sequences of Intervals. By a half-
open interval we mean a non-empty interval of the form [x, x′), for some x, x′ ∈ R

with x < x′. A bi-infinite sequence (Jn)n∈Z, where Jn = [xn, x′
n), of half-open

intervals in R is spaced if . . . < x−1 < x′
−1 < x0 < x′

0 < x1 < x′
1 < x2 <

x′
2 < . . . and the sequences of endpoints are not bounded at either end. Let

J ′
n = [x′

n−1, xn) be the half-open interval of points between Jn−1 and Jn. The
sequence (J ′

n)n∈Z is also spaced and the intervals in the two sequences together
partition R. Let (Kn)n∈Z, where Kn = [yn, y′

n), be another spaced sequence of
half-intervals, with complementary sequence (K ′

n)n∈Z, where K ′
n = [y′

n−1, yn).
For n ∈ Z, let αn : Jn → K ′

n+1 and α′
n : J ′

n → Kn be any homeomorphisms
(e.g., linear). Since αn(xn) = y′

n and α′
n(x′

n) = yn+1, the maps αn, α′
n combine

in an order preserving homeomorphism α : R → R (Fig. 3), given by

α(x) =

{
αn(x), if x ∈ Jn, for some n ∈ Z,

α′
n(x), if x ∈ J ′

n, for some n ∈ Z.

We say that α is defined by the sequence (Jn)n∈Z in the domain and the sequence
(Kn)n∈Z in the codomain. For n ∈ Z, we have

α(Jn) = K ′
n+1 and α(J ′

n) = Kn. (4)

A spaced interval structure over A± is a function J from A± × Z to the set
of half-open intervals on R such that, for each a ∈ A±, (Ja,n)n∈Z is a spaced
sequence of half-open intervals, the sequences are strongly disjoint (meaning
that, whenever (a, n) �= (a′, n′), the closures of the intervals Ja,n and Ja′,n′

are disjoint), and the complement Je = R\⋃
a∈A±

⋃
n∈Z

Ja,n contains 0. Denote
Ja = ∪n∈ZJa,n. For a ∈ A±, let (J ′

a,n)n∈Z be the spaced sequence complementary
to (Ja,n)n∈Z and denote J ′

a = ∪n∈ZJ ′
a,n.

On One-Counter Positive Cones of Free Groups 305

Free Groups of Line Homeomorphisms and Spaced Interval Struc-
tures. For a ∈ A, define the order preserving automorphism αa : R → R based
on the sequence (Ja−1,n)n∈Z in the domain and (Ja,n)n∈Z in the codomain. Let
α : Fk → Homeo+(R) be the extension of the map a 	→ αa, for a ∈ A, to a
homomorphism, that is, for a ∈ A±, we have αa−1 = α−1

a , and if g = am . . . a1

is a word over A±, then αg = αam
· · · αa1 ∈ Homeo+(R).

y2

y′
1

K′
2

y1

K1

y′
0

K′
1 α

y0

K0

y′
−1

K′
0

x−1
J−1

x′
−1

J′
0

x0
J0

x′
0

J′
1

x1
J1

x′
1

Fig. 3. The order preserving homeomorphism α : R → R

By (4), for every a ∈ A, we have αa(Ja−1) = J ′
a and αa(J ′

a−1) = Ja, implying
α−1

a (J ′
a) = Ja−1 and αa(J ′

a−1) = Ja. Since α−1
a = αa−1 , we may summarize the

last two equalities into a single one by saying that, for all a ∈ A±,

αa(J ′
a−1) = Ja. (5)

Since, for any two distinct letters a and b in A±, we have Ja ∩ Jb = ∅, the
Ping-Pong Lemma and (5) imply that the group generated by αa, for a ∈ A, is
free with basis {αa | a ∈ A}. In other words, α : Fk → Homeo+(R) is injective,
that is, α is a faithful representation of the free group Fk.

If am · · · a1 is a nonempty reduced word over A±, the equality (5) shows that

αam···a1(J
′
a−1
1

) ⊆ Jam
. (6)

Indeed, αam···a2a1(J
′
a−1
1

) = αam···a2(Ja1) ⊆ αam···a2(J
′
a−1
2

) = αam···a3(Ja2) ⊆
. . . ⊆ Jam

. By (6), we have

αam···a1(Je) ⊆ αam···a1(J
′
a−1
1

) ⊆ Jam
⊆ R \ Je. (7)

Proposition 3. The homomorhpism α : Fk → Homeo+(R), extending the map
a → αa, for a ∈ A, is a faithful representation of Fk in Homeo+(R). The free
group Fk acts freely on the orbit of 0 (in fact, any point in Je).

Proof. By (7), no element in Je is fixed by any nontrivial element of Fk.

306 Z. Šunić

Orders on Free Groups and Bi-infinite Words. Any faithful representation
α of Fk in Homeo+(R) with a free orbit at 0, defines a left order on Fk by

g > e ⇐⇒ αg(0) > 0. (8)

(This is true for any group with a faithful left action on R by order-preserving
homeomorphisms, and a free orbit at 0.) This order can also be expressed by
saying g < h if and only of αg(0) < αh(0). The equalities (4), for a ∈ A and
n ∈ Z, give αa(Ja−1,n) = J ′

a,n+1 and αa(J ′
a−1,n) = Ja,n, which implies

αa(J ′
a−1,n) =

{
Ja,n, if a ∈ A,

Ja,n−1, if a ∈ A−1.
(9)

At this point, a comparison of (3) and (9) is inevitable and we make the
connection explicit. For distinct a, b ∈ A± and n ∈ Z, there are only finitely many
intervals Ja,i that lie between Jb,n−1 and Jb,n. Therefore, Je is a countable union
of half-open intervals that are strongly disjoint, and one of these Je-intervals
contains 0. Thus, all intervals Ja,n, for a ∈ A± and n ∈ Z, together with the
intervals partitioning Je can be arranged in a single bi-infinite sequence

· · · < T−3 < T−2 < T−1 < T0 < T1 < T2 < T3 < · · · (10)

that agrees with the order of these intervals on R (intervals further to the right
get higher index), the union of the even numbered intervals is Je, the interval
J0 contains 0, and ∪n∈ZTn = R.

We can think of J as a bijection from A± × Z to the set of odd-indexed
intervals in (10), inducing a bijection I : A± × Z → Zodd, given by

Ia,n = p ⇐⇒ Ja,n = Tp. (11)

The function I is a spaced structure over A± and, therefore J induces a spaced
word ξ in S. Conversely, let ξ be a spaced word in S and I the corresponding
spaced structure. We can construct a corresponding spaced interval structure as
follows. Set Ti = [i, i + 1), for i ∈ Z and define J on A± × Z by using (11).
The spaced sequences of intervals (Ja,n)n∈Z, for a ∈ A±, satisfy the conditions
for a spaced interval structure. Therefore, we obtain a faithful representation
α : Fk → Homeo+(R), along with the corresponding order given by (8).

Lemma 1. Let I ↔ J be a corresponding pair of a spaced structure and a spaced
interval structure. For a ∈ A± and i, j ∈ Z,

i ∈ I ′
a−1 ⇐⇒ Ti ⊆ J ′

a−1 and φa(i) = j ⇐⇒ αa(Ti) ⊆ Tj .

As a consequence, for every nonempty, reduced word am . . . a1 over A±,

φam
· · · φa1(0) = p ⇐⇒ αam

· · · αa1(T0) ⊆ Tp.

On One-Counter Positive Cones of Free Groups 307

Proof. By (11), for a ∈ A± and i, n ∈ Z, we have Ia−1,n−1 < i < Ia−1,n if and
only if Ja−1,n−1 < Ti < Ja−1,n, that is, i ∈ I ′

a−1,n if and only if Ti ⊆ J ′
a−1,n.

Therefore,

φa(i) =

{
Ia,n, a ∈ A,

Ia,n−1, a ∈ A−1
⇐⇒ αa(Ti) ⊆

{
Ja,n, a ∈ A,

Ja,n−1, a ∈ A−1.

Corollary 1. Let I ↔ J be a corresponding pair of a spaced structure and a
spaced interval structure. For nonempty, reduced words g = am . . . a1 over A±,

g > e ⇐⇒ αg(0) > 0 ⇐⇒ φg(0) > 0.

Proof. We have αg(0) > 0 if and only if αg(0) ∈ Tp for some positive p. On the
other hand, αg(0) ∈ Tp if and only if αg(T0) ⊆ Tp if and only if φg(0) = p.

Theorem 1. If ξ is an eventually orientably periodic, spaced word in S, then
the positive cone of the order on Fk defined by ξ is a one-counter language.

Proof. By Proposition 2 and Proposition 1, the jump functions are eventually
periodic and L = {am · · · a1 ∈ R | φam

· · · φa1(0) > 0} is a one-counter language,
where R is the regular language of reduced words over A±. By Corollary 1, the
language L represents the positive cone of the order defined by ξ.

Example 5. The examples in the introduction correspond, respectively, to the
periodic words · · · a bB A . a bB A a bB A · · · and · · · B Aa b .B Aa bB Aa b · · · .
From our perspective here, the finitely many examples in [10], exactly (2k)! of
them, correspond to the periodic words · · · W.WW · · · , where W is an orientable
word, with marked letters in the W to the right of the decimal point.

4 The Space of Orders Defined by Spaced Words

Let LF be the metric space of all left orders on Fk. Two orders are close if their
positive cones agree on large balls around e. For concreteness, we can define the
distance between two distinct orders ≤ and ≤′ on Fk to be 1/2�, where � is the
length of the shortest reduced word which is in one of the positive cones P≤
and P≤′ , but not in the other. It is known that this set has the structure of a
Cantor space [5] (recall that a Cantor space is a compact, metrizable, totally
disconnected, perfect space; it is unique, up to a homeomorphism). Let L and
Lo be the subspaces of LF defined by the words in S and So, respectively.

Theorem 2. The map ord from the space of words S to the space of orders LF
associating orders to spaced words is continuous. The range of this map, L, is a
totally disconnected, metric space with no isolated points. The space Lo is also
a totally disconnected, metric space with no isolated points, it is dense in L and
its topological closure Cl(Lo) in LF is a Cantor space.

308 Z. Šunić

The following lemma provides a criterion to decide which way the jump δa(i)
goes when i is in the domain of φa. Note that part (iii) of the lemma shows, among
other things, that the set {φg(0) | g ∈ Fk} is unbounded in both directions.

Lemma 2. Let ξ be a word in S with associated interval structure I, and a ∈ A.
(i) Let i ∈ I ′

a−1,n′ and n be the smallest integer such that i ≤ Ia,n. Then

φa(i) < i if n′ < n,
φa(i) > i if n′ > n,
φa(i) > i if n′ = n and ξi �= a,
φa(i) = i if n′ = n and ξi = a.

(ii) Let i ∈ I ′
a,n and n′ be the smallest integer such that i < Ia−1,n′ . Then

φa−1(i) < i if n′ > n,
φa−1(i) > i if n′ < n,
φa−1(i) < i if n′ = n and ξi �= a−1,
φa−1(i) = i if n′ = n and ξi = a−1.

(iii) Let i ∈ I ′
a−1,n′ ∩ I ′

a,n. Then

φa(i) < i < φa−1(i), if n′ < n,
φa−1(i) < i < φa(i), if n′ ≥ n.

Proof (Proof of Theorem 2). Let ξ be a word in S and ≤ the corresponding order
on Fk. The set Br of elements of length at most r in Fk is finite, making the set
Br(0) = {g(0) | g ∈ Br} finite. Let n be a positive integer such that Br(0) ⊆⋃n

i=−n Ti. Increase n, if necessary, to make sure that {−n, . . . , n} includes all
positions of the marked letters. Any bi-infinite word ξ′ that agrees with ξ in the
positions up to n, in both directions, defines an order that agrees with ξ on the
entire ball Br. Thus, ord is continuous.

The spaces L and Lo are totally disconnected, metric spaces, since they are
subspaces of the totally disconnected, metric space LF .

Let us show that L has no isolated points. Let ξ be a word in S and r a
positive number. We need to show that there exists a word ξ′ in S that agrees
with ξ on the positions up to r, in both directions, and that defines an order that
is different from the order ≤ defined by ξ. Without loss of generality, increase r
to make sure that the positions of all marked letters are included (this makes the
open set around ξ smaller). We will show that there exists two words ξ′ and ξ′′

in So that agree with ξ on the positions up to ±r and that define two different
orders (thus, at least one of them must be different from the order defined by
ξ). This will also show that Lo has no isolated points.

Fix two distinct elements a and b in A and a reduced group word h over
{a, b} such that φg(0) = j > r and all the jumps along the way are positive
(possible by Lemma 2). Without loss of generality, assume that ξj ∈ {a, a−1}
(jump once more to the right, if necessary). Let g = b′h, where b′ ∈ {b, b−1} is
chosen so that φg(0) = i > j. Let n and n′ be the unique integers such that

On One-Counter Positive Cones of Free Groups 309

i ∈ I ′
a−1,n′ ∩ I ′

a,n. Define ξ′ to be equal to ξ on positions up to ±i, and extend ξ′

beyond ±i in an eventually orientably periodic way. Define ξ′′ to be equal to ξ
up to ±j, insert d = |n − n′| + 1 symbols a−1 between positions j and i in ξ, if
n′ < n, or d symbols a between positions j and i in ξ, if n′ ≥ n, and extend ξ′′

in an eventually orientably periodic way beyond positions ±(i + d). The count
of b′ letters in ξ′′ between positions j and i + d is the same as the count of b′

letters between j and i in ξ, since only a± letters are inserted. Thus, we have

ξ′
i = b′, φξ′

g (0) = φg(0) = i and ξ′′
i+d = b′, φξ′′

g (0) = φg(0)+d = i+d.

Since ξ and ξ′ agree on positions up to ±i, the a± counts at position i are the
same for ξ and ξ′, which means that the directions of the jumps δξ

a(i) and δξ′
a (i)

agree. On the other hand, the insertion of the a± letters, whichever case it may
be, in ξ′′ in positions between j and i causes the relative count between a± to
flip. Therefore, the directions of the jumps δξ

a(i) and δξ′′
a (i+d) disagree, implying

that the directions of the jumps δξ′
a (i) and δξ′′

a (i + d) disagree. This implies that
φξ′

ag(0) < φξ′
g (0) if and only if φξ′′

ag(0) > φξ′′
g (0), that is, ag <′ g if and only if

ag >′′ g. Thus, the orders defined by ξ′ and ξ′′ are different.
Finally, since Lo does not have isolated points, its closure Cl(Lo) in LF does

not have isolated points either. Nonempty, closed subspaces of the Cantor space
without isolated points are themselves Cantor spaces, completing the proof.

We distinguish a special subspace of S. Namely, let S be the set of words in
S with marking on the first occurrence of each letter in A± at a positive index.

For the remainder of the text we set A = {a1, . . . , ak}.
Let Wlex be the set of k! oriented words of the form a1 . . . akw, Slex the Cantor

space of all bi-infinite words over Wlex viewed as a subspace of S, and Llex the
space of orders induced by the words in Slex. Let So

lex be the space of eventually
periodic words in Slex and Lo

lex the corresponding space of orders.

Proposition 4. The Cantor space of bi-infinite words Slex and the space of
orders Llex are homeomorphic under ord. All orders in Llex are extensions of
the lexicographic order on the free monoid A∗ based on a1 < . . . < ak. Each
order in the dense subset Lo

lex of Llex has a one-counter positive cone.

Proof. Let ξ = · · · W−1.W0W1W2 · · · , where Wi = a1 · · · akwi ∈ Wlex. For a, b ∈
A and n ∈ Z, we have Ia−1,n−1 < Ib,n < Ia−1,n, implying φa(Ib,n) = Ia,n. Since
Ia−1,−1 < 0 < Ia−1,0, we have φa(0) = Ia,0. Thus, for a ∈ A and u ∈ A∗, we
have φau(0) = Ia,0 > 0, showing that all nonempty words in A∗ are greater than
the empty word. If a, b ∈ A are two distinct letters with a < b, then for any
words u, v ∈ A∗, we have φau(0) = Ia,0 < Ib,0 = φbv(0), showing that au < bv.
Therefore the order ≤ induced by ξ on A∗ is the lexicographic order.

The restriction of ord on Slex and Llex is surjective by definition, and contin-
uous by Theorem 2. We claim that it is injective. Suppose ξ is as above, and
ξ′ = · · · W−1.W0 · · · Wn−1W

′
nW ′

n+1 · · · is a word in Slex different from ξ. Assume,
further, that ξ and ξ′ differ for the first time at some n ≥ 0 (the argument when
n < 0 is similar). For 0 ≤ i ≤ n − 1, let wi = b−1

i,1 · · · b−1
i,k . By Lemma 2,

φ
akbi,1b

−1
i,k

a−1
1

(Iak,i) = φ
akbi,1b

−1
i,k

(I
a−1
1 ,i

) = φakbi,1 (Ib−1
i,k

,i
) = φak (Ibi,1,i+1) = Iak,i+1.

310 Z. Šunić

Therefore, for the reduced word h = (akbn−1,1b
−1
n−1,ka−1

1) · · · (akb0,1b
−1
0,ka−1

1)ak

of length 4n + 1, we have φh(0) = φ′
h(0) = Iak,n, since ξ and ξ′ agree on

W0, . . . ,Wn−1. Since Wn = a1 · · · akwn and W ′
n = a1 · · · akw′

n are different, there
exist two different letters a, b ∈ A such that a−1 is before b−1 in wn and b−1 is
before a−1 in w′

n. Consider the reduced words g = a−1a−1
1 h and bg = ba−1a−1

1 h.
The positions φg(0) and φ′

g(0) are the positions of the occurrence of a−1 in
wn and w′

n, respectively, while φbg(0) = Ib,n and φ′
bg(0) = Ib,n+1. Therefore,

bg < g and bg >′ g, showing that the orders defined by ξ and ξ′ are different.
Since bijective continuous maps from a Cantor space to a Hausdorff space are
homeomorphisms, Slex and Llex are homeomorphic.

The argument above showing injectivity shows also that Lo
lex is dense in Llex,

since we can alter ξ at any position n and then extend it periodically beyond n.

The proofs of the remaining two propositions are similar to the one above, but
less technical (the construction of the elements proving injectivity is simpler).

Let Ws.lex be the set of k! oriented words of the form wa1 . . . ak, Ss.lex the
Cantor space of all bi-infinite words over Ws.lex viewed as a subspace of S, and
Ls.lex the space of orders induced by the words in Ss.lex. Let So

s.lex be the space of
eventually periodic words in Ss.lex and Lo

s.lex the corresponding space of orders.

Proposition 5. The Cantor space of bi-infinite words Ss.lex and the space of
orders Ls.lex are homeomorphic under ord. All orders in Ls.lex are extensions of
the short-lex order on the free monoid A∗ based on a1 < . . . < ak. Each order
in the dense subset Lo

s.lex of Ls.lex has a one-counter positive cone.

Example 6. The two orders in the introduction are extensions of the lexico-
graphic and the short-lex order, respectively, on the free monoid {a, b}∗, based
on a < b.

Let Wdis be the set of (2 ∗ (k − 1))! oriented words of the form a1wa−1
1 , Sdis

the Cantor space of all bi-infinite words over Wdis viewed as a subspace of S,
and Ldis the space of orders induced by the words in Sdis. Let So

dis be the space
of eventually periodic words in Sdis and Lo

dis the corresponding space of orders.
An order is discrete if its positive cone has a smallest element.

Proposition 6. The Cantor space of bi-infinite words Sdis and the space of
orders Ldis are homeomorphic under ord. All orders in Ldis are discrete with
smallest positive element a1. Each order in the dense subset Lo

dis of Ldis has a
one-counter positive cone.

References

1. Antoĺın, Y., Su, H.L., Rivas, C.: Regular left-orders on groups (2021). (to appear
in Journal of Combinatorial Algebra)

2. Calegari, D.: Problems in foliations and laminations of 3-manifolds. In: Topology
and geometry of manifolds (Athens, GA, 2001), Proceedings of Symposia in Pure
Mathematics, vol. 71, pp. 297–335. American Mathematical Society, Providence,
RI (2003)

On One-Counter Positive Cones of Free Groups 311

3. Hermiller, S., Šunić, Z.: No positive cone in a free product is regular. Internat. J.
Algebra Comput. 27(8), 1113–1120 (2017)

4. Magnus, W.: Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring.
Math. Ann. 111(1), 259–280 (1935)

5. Rivas, C.: Left-orderings on free products of groups. J. Algebra 350, 318–329 (2012)
6. Rourke, C., Wiest, B.: Order automatic mapping class groups. Pacific J. Math.

194(1), 209–227 (2000)
7. Shimbireva, H.: On the theory of partially ordered groups. Rec. Math. [Mat.

Sbornik] N.S. 20(62), 145–178 (1947)
8. Su, H.L.: Formal language convexity in left-orderable groups. Internat. J. Algebra

Comput. 30(7), 1437–1456 (2020)
9. Šunić, Z.: Explicit left orders on free groups extending the lexicographic order on

free monoids. C. R. Math. Acad. Sci. Paris 351(13–14), 507–511 (2013)
10. Šunić, Z.: Orders on free groups induced by oriented words (2013). http://arxiv.

org/abs/1309.6070

http://arxiv.org/abs/1309.6070
http://arxiv.org/abs/1309.6070

Kolmogorov Complexity Descriptions
of the Exquisite Behaviors of Advised
Deterministic Pushdown Automata

Tomoyuki Yamakami(B)

Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

TomoyukiYamakami@gmail.com

Abstract. Kolmogorov complexity has proven itself to be a useful, prac-
tical tool in obtaining numerous impossibility results in various scien-
tific fields. Among them are the non-regularity and non-deterministic-
context-freeness of formal languages by Li and Vitányi [SIAM J. Com-
put., 24 (1995) 398–410] and Glier [SIAM J. Comput., 32 (2003) 1389–
1394], who proposed the so-called KC-DCF(L) lemma. This is viewed as
a Kolmogorov complexity analogue of a pumping lemma (or an itera-
tion theorem) for deterministic context-free (dcf) languages but it is not
applicable to “advised” dcf languages, composed of accepted strings by
one-way deterministic pushdown automata helped by external sources of
additional information, called advice. To amend the lack of applicabil-
ity, we propose a new practical form of the lemma for those advised dcf
languages. This new lemma provides another criterion, which is incom-
parable to the KC-DCF(L) lemma of Li, Vitányi, and Glier.

1 Background and Our Challenges

1.1 Kolmogorov Complexity Approaches to Formal Languages

The notion of Kolmogorov complexity dates back to the mid 1960s. This com-
plexity expresses the minimal size of a program p that, along with an auxiliary
input w, produces a target string x on a fixed universal Turing machine. The
notation C(x | w) is commonly used to denote this minimal size and it is fur-
ther abbreviated as C(x) if w is the empty string. Since a different choice of
a universal Turing machine only adds up an additive constant, this complex-
ity measure turns out to be a robust notion and it thus works out as a basis
of algorithmic information theory. Kolmogorov complexity has found numerous
applications to a wide range of scientific fields. Refer to, e.g., the textbook [5]
for more information on such applications.

In 1995, Li and Vitányi [4] sought a direct application of Kolmogorov complex-
ity to formal languages and automata theory, in particular, targeting two funda-
mental families REG and DCFL of regular languages and deterministic context-
free (dcf) languages. These languages are precisely recognized by one-way deter-
ministic finite automata (or 1dfa’s, for short) and one-way deterministic pushdown
c© Springer Nature Switzerland AG 2022
V. Diekert and M. Volkov (Eds.): DLT 2022, LNCS 13257, pp. 312–324, 2022.
https://doi.org/10.1007/978-3-031-05578-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05578-2_25&domain=pdf
https://doi.org/10.1007/978-3-031-05578-2_25

Kolmogorov Complexity Descriptions of the Exquisite Behaviors 313

automata (or 1dpda’s). Li and Vitányi firstly gave a Kolmogorov-complexity char-
acterization of regular languages in a similar way as the Myhill-Nerode character-
ization. They further proposed a new Kolmogorov-complexity-theoretical prop-
erty (called the KC-DCF(L) lemma) for dcf languages (unfortunately, this prop-
erty was faulty and amended later by Glier [2]). This lemma roughly asserts the
following. Let x, y, z, u, vn, wn denote strings for all n ∈ N and fix a 1dpda M ,
where N is the set of natural numbers. The succinct notation γ(w) indicates the
stack content of M obtained just after reading input w. Given a constant c > 0,
there exists another constant c′ > 0 such that, for any sufficiently large number
n ∈ N, Conditions (i)–(iii) below imply C(wn) < c′. (i) For any factorization
vn = v′v′′, C(v′′ | α) ≤ c follows, where α is any stack content, which provides
“essentially” the same computation as the stack content obtained by processing
xunv′. (ii) C(vn) ≥ 2 log log n. (iii) C(wn | γ(xunyvnz)) ≤ c. Moreover, the size
of γ(xunyvnz) is upper-bounded by a certain constant [8]. This lemma is useful to
verify that, e.g., the language Pal = {w | w ∈ {a, b}∗, w = wR} of palindromes
is not in DCFL, where wR expresses the reverse of w. Other applications of Kol-
mogorov complexity to pushdown automata were also found in the past literature,
e.g., [14].

Because of the usefulness of Kolmogorov complexity, it has been expected to
expand the scope of the application of Kolmogorov complexity within the field
of formal languages and automata theory. In this paper, we look for another
interesting application to “advised” pushdown automata, which will be reviewed
in the subsequent subsection in details.

1.2 Advice-Aided Languages and Pumping Lemmas

It is often practical to provide an external source of supplemental information,
dubbed generally as advice, to an underlying machine in order to significantly
enhance the power of its computation. Among various forms of such advice,
we are particularly interested in the advice discussed first in 1982 by Karp and
Lipton [3] for underlying Turing machines. The advice notion of Karp and Lipton
was later adapted to formal languages and automata theory. The past literature,
e.g., [1,9,10,13] has proposed several feasible advised models for one-way read-
once1 finite automata as well as pushdown automata, depending on how to access
given advice. In the advice model of [9,11], however, we feed an advice string
to an underlying one-way read-once finite automaton in such a way that this
machine simultaneously reads the advice string given in parallel to a standard
input string and it processes them promptly. This simultaneous processing is
achieved by splitting the machine’s single input tape into two tracks, one of which
(i.e., upper track) holds the standard input and the other (i.e., lower track) holds
the advice string, and a single tape head scans both tracks simultaneously from
left to right along the input tape. Even with such a restrictive access to advice,
advised finite automata can exhibit a significant enhancement of computational

1 A one-way tape is read-once if its tape head never moves back to the left and,
whenever it reads a non-ε symbol, it must move to the right.

314 T. Yamakami

power over non-advised machines. As a quick demonstration of the power of
advice in this model, it is possible to show that, with the help of resourceful
advice, appropriately-designed finite automata can recognize even non-context-
free languages, such as L3ab = {anbncn, anb2ncn | n ≥ 0} and 3Pal = {wcnwR |
w ∈ {a, b}n, n ≥ 0}. The rest of this paper will focus on this particular advice
model for its simplicity and an easy handling of its computations in hope that a
number of related questions to be solved. We therefore leave the study of other
advice models to the avid reader.

An advised version of the family DCFL of dcf languages, called advised dcf
languages, refers to languages recognized by 1dpda’s helped by externally given
advice (see Sect. 3 for their precise definition). The notation DCFL/n denotes
the family of all advised dcf languages. We wonder whether DCFL/n is closed
under union or intersection since so is DCFL.

In the past literature [9–13], two special advised language families, REG/n
and CFL/n, which are obtained respectively from REG and the family CFL of
all context-free languages by supplying advice in parallel to input strings using
two tracks, were discussed extensively, where “n” symbolizes the use of advice
strings whose sizes match the size n of each input.

Whereas numerous properties of context-free languages are naturally trans-
ferred to the advise setting (e.g., union and concatenation), certain important
properties do not hold for advised context-free languages. For instance, a struc-
tural property, known as a pumping lemma (or an iteration theorem), is useful
to demonstrate the non-membership of a given language to CFL; however, it
does not work in the advice setting because, if input size changes, so does advice,
causing an underlying pushdown automaton to behave quite differently. We thus
need to seek out a similar useful lemma for advised languages. For this purpose,
there are a few lemmas, such as the interchange lemma [7] and the swapping
lemma [10,13], which may serve in the nondeterministic case. Unfortunately, the
deterministic case lacks similar lemmas.

1.3 Overview of Main Contributions

The main goal of this paper is to prove a new structural property of advised dcf
languages, which can be described in terms of Kolmogorov complexity.

When we attempt to disprove the membership question of a given language to
CFL, a traditional approach takes an appropriate use of practical but technical
tools, known as pumping lemmas, interchange lemma [7], and swapping lemma
[10, Lemma 3.1] and [13, Corollary 4.2].

As for an advised variant of CFL, CFL/n, the swapping lemma has been
proven to be useful in disproving the membership of several languages to CFL/n
[10,13]. However, there is no such lemma known for the advised dcf languages.
We therefore wish to seek for a new practical means to handle those languages.

In this paper, in the spirit of [2,4], we look for a practical structural property
for advised 1dpda’s in terms of Kolmogorov complexity. Recall that an underly-
ing idea of the KC-DCF(L) lemma of Li and Vitányi [4] and Glier [2] comes from
pumping lemmas; however, those pumping lemmas do not serve well for advised

Kolmogorov Complexity Descriptions of the Exquisite Behaviors 315

machines because pumped strings change their sizes. We thus hope to develop
a different but practical lemma that properly works for DCFL/n. In Sect. 4.1,
we will propose such a lemma, dubbed as the KC-DCFL/n lemma, in order to
disprove that a given language belongs to DCFL/n. Three applications of this
new lemma will be given in Sect. 4.2.

All omitted proofs will be included in a complete version of this paper.

2 Preparation: Notions and Notation

2.1 Numbers, Alphabets, Languages, etc.

The notation N denotes the set of all natural numbers (i.e., nonnegative integers)
and N

+ denotes N − {0}. Given two integers m,n with m ≤ n, [m,n]Z denotes
the integer interval, which is the set {m,m + 1,m + 2, . . . , n}. In particular, for
any n ∈ N

+, [1, n]Z is abbreviated as [n]. For a set A, P(A) denotes the power
set of A.

A finite nonempty set of “symbols” or “letters” is called an alphabet. We
denote by ε the empty string of length 0. For a string w and a number i ∈ [|w|],
the ith symbol of w is expressed as (w)(i). For convenience, we additionally set
(w)(0) = ε. A subset of Σ∗ is a language over alphabet Σ. Given a number n ∈ N

and a language L, L=n (resp., L≤n) consists of all strings of length exactly n
(resp., at most n) in L. Note that L coincides with

⋃
n∈N

L=n.
Given three strings x, y, and z, if z = xy, then x is a prefix of z and y is

a suffix of z. In this case, we write x � z. The notation Pref(L) denotes the
language {z ∈ Σ∗ | ∃w ∈ L[z � w]}. Obviously, L ⊆ Pref(L) follows. Given a
language L over Σ and a string x ∈ Σ∗, the left quotient x\L is the language
{y ∈ Σ∗ | xy ∈ L} and the right quotient L/x is {z ∈ Σ∗ | zx ∈ L}. Given a
string w, a tuple (x1, x2, . . . , xn) of strings is said to be a factorization of w if
w = x1x2 · · · xn. In this case, (x1, x2, . . . , xn) is also said to build the string w.

2.2 One-Way Deterministic Pushdown Automata

The main topic of this paper is one-way deterministic pushdown automata
(or 1dpda’s, for short). A 1dpda M is formally defined as a nonuple
(Q,Σ, {�}, Γ, δ, q0,⊥, Qacc, Qrej), where Q is a finite set of inner states, Σ is an
input alphabet, Γ is a stack alphabet, q0 is the initial (inner) state, Qacc and Qrej

are sets of accepting states and of rejecting states, respectively. Let Σ̌ = Σ∪{�},
Σ̌ε = Σ̌ ∪ {ε}, and Γ (−) = Γ − {⊥}. Let Qhalt = Qacc ∪ Qrej and call any ele-
ment in Qhalt a halting (inner) state. Moreover, δ maps (Q−Qhalt)× Σ̌ε ×Γ to
P(Q × Γ≤e), where the minimum number e is called the push size of M , and δ
must satisfy the following deterministic requirement : (i) |δ(q, σ, a)| ≤ 1 for any
(q, σ, a) ∈ (Q − Qhalt) × Σ̌ε × Γ and (ii) if δ(q, ε, a) �= ∅, then δ(q, σ, a) = ∅ for
all σ ∈ Σ̌. For readability, we express a transition of the form (p, z) ∈ δ(q, σ, a)
as δ(q, σ, a) = (p, z) in the rest of this paper. The entire content of a stack
(briefly called the stack content) is viewed as a string a0a1a2 · · · an with an = ⊥,

316 T. Yamakami

a topmost stack symbol a0, and ai ∈ Γ (−) for any i ∈ [n]. We assume that ⊥ is
not pushed or removed at any moment. The stack height of a stack content γ is
the length |γ|. The notation γ(top) denotes the topmost stack symbol of γ and
γ(−) denotes γ except for γ(top). Initially, an input string with the endmarker �
is given to an input tape, and a tape head is stationed at the leftmost tape cell
with ⊥ in the stack.

A configuration of M on input x is a triplet (q, w, z) such that q is an inner
state in Q, w is a suffix of x̃, and z is a stack content, where x̃ denotes x�. The
initial configuration of M on x is of the form (q0, x̃,⊥). We write (q, w, z) �M

(q′, w′, z′) if M starts with a configuration (q, w, z) and changes it to another one
(q′, w′, z′) by a single application of δ. If M takes a number of consecutive steps
(including 0 step) from (q, w, z) to (q′, w′, z′), we use the notation (q, w, z) �∗

M

(q′, w′, z′). When w = w′, we call this move (or a transition) an ε-move (or
an ε-transition). There may be a consecutive series of possible ε-moves (called
an ε-chain) after each non-ε-move. It is sometimes useful to group an entire ε-
chain together. For this purpose, we write (q, w, z) �ε,M (q′, w′, z′) if (q′, w′, z′)
is reached from (q, w, z) by a single non-ε-move followed by a chain of all possible
ε-moves.

In this paper, M accepts (resp., rejects) x if there exist an inner state q′ ∈
Qacc (resp., q′ ∈ Qrej) and a stack content β for which (q0, x̃,⊥) �∗

M (q′, ε, β).
Given an input string x, we write γ(x) to denote the stack content obtained
by M on x just after reading off x and performing the subsequent ε-chain. A
language L is said to be recognized by M if (i) for any x ∈ L, M accepts x and
(ii) for any x ∈ Σ∗ − L, M rejects x. We write L(M) to express the language
that is recognized by M .

A stack history refers to a sequence of stack contents of M produced in a
given computation. Such a stack history induces a sequence of stack heights.
In a computation, it suffices to focus our attention on a certain portion of a
stack content. We introduce the notion of surface behavior of a 1dpda. A surface
behavior of M during a computation (q, w, z) �∗

ε,M (q′, w′, z′) is represented
by a series of transitions τ1, τ2, . . . , τm of the form δ(p, σ, a) = (r, s) applied
sequentially to produce this computation. If the surface behavior of M on y
starting in inner state q with stack content γ is the same as that of M on
y starting in inner state q and stack content α, then we say that these two
computations are essentially the same computation.

In practice, we need to pay our attention only to 1dpda’s of a restricted
form called “ideal shape”. A one-way pushdown automaton is in an ideal shape
[16] if each transition must be one of the following forms: (1) scanning σ ∈ Σ∗,
preserve the topmost stack symbol, (2) scanning σ ∈ Σ∗, push a new symbol
without changing any other symbol in the stack, (3) scanning σ ∈ Σ∗, pop the
topmost stack symbol, (4) without scanning an input symbol (i.e., ε-move), pop
the topmost symbol, and additionally (5) the stack operation (4) comes only
after either (3) or (4). Notice that a machine in an ideal shape has push size
of 2.

Kolmogorov Complexity Descriptions of the Exquisite Behaviors 317

It is known that every 1dpda can be transformed into an equivalent 1dpda
whose transitions are restricted to the ideal shape (see, e.g., [16] for more infor-
mation and references). To simplify the analysis of 1dpda’s in the proof of Lemma
5, because of the use of the right endmarker �, it is possible to demand that the
stack of a 1dpda becomes empty (except for ⊥) when it halts.

Lemma 1. Let N denote any 1dpda that always halts. There exists a 1dpda M
that satisfies the following three conditions: (i) L(M) = L(N), (ii) M is in an
ideal shape, and (iii) M always enters a halting state with the empty stack.

2.3 Kolmogorov Complexity Primer

We fix a universal deterministic Turing machine equipped with a read-only input
tape (or two input tapes for auxiliary inputs), multiple rewritable work tapes,
and a write-once2 output tape. Such a universal machine U takes, as a bundle of
inputs, an appropriately-defined encoding of a “program” (or a Gödel number)
p and a string w, simulates the program p on w, produces an output string x on
its output tape, and finally halts. In this case, we briefly write U(p,w) = x.

The conditional Kolmogorov complexity of a string x conditional to auxiliary
information w, denoted by C(x | w), is defined to be minp∈Σ∗{|p| : U(p,w) = x}.
In particular, when w = ε, we succinctly write C(x) and call it the (uncondi-
tional) Kolmogorov complexity of x.

For more details, the reader should refer to a textbook, e.g., [5].

3 Advised Computation

An advice function is a map h from N to Θ∗ for a certain fixed alphabet Θ (called
an advice alphabet). Each value of such a function is called an advice string.
Notice that we do not require the “computability” of such advice functions.
Initially, an advice string is provided onto the lower track of the input tape
whereas the upper track keeps a standard input string. To express a parallel
combination of these two strings, we use the track notation of [9]. Given two
alphabets Σ and Θ, we define a new alphabet ΣΘ = {[σ

τ] | σ ∈ Σ, τ ∈ Θ}.
For two strings x = x1x2 · · · xn ∈ Σ∗ and y = y1y2 · · · yn ∈ Θ∗, we express
[x1
y1][

x2
y2] · · · [xn

yn] as [x
y]. An advised 1dpda takes strings over ΣΘ as “actual” inputs

given to its input tape.
A function h : N → Θ∗ is length-preserving if |h(n)| = n for all n ∈ N. When

a length-preserving advice function h : N → Θ∗ is given, an advised 1dpda
M reads a string of the form [x

h(|x|)] written on its input tape, either accepts
or rejects the standard input x, and halts. A language recognized by such an
advised 1dpda together with an advice function is called an advised dcf language.
Since advice is not in general computable, some advised languages are not even
recursive. Let DCFL/n denote the family of all advised dcf languages, where
2 A tape is called write-once if its tape head never moves back to the left and, exactly
when it writes a non-blank symbol, it moves to the right.

318 T. Yamakami

the symbol “n” refers to the fact that the length of advice strings matches the
corresponding input length n.

Lemma 2. Given a language L, L ∈ DCFL/n iff there exist a set A ∈ DCFL
and a length-preserving advice function h such that L = {x | [x

h(|x|)] ∈ A}.
Lemma 3. DCFL/n is closed under union and intersection with languages in
REG/n.

To promote the reader’s understanding on the expressive power of advised
dcf languages, we provide a quick example below.

Example 4. Consider the non-context-free language 3Pal = {wcnwR | n ≥
0, w ∈ {a, b}n}. We define h(n) = 0k10k−110k−1 if n = 3k ≥ 3, and h(n) = 1n

otherwise. The desired advised 1dpda takes [x
h(|x|)] and checks the first symbol,

say, a of h(|x|). If a = 1, then M rejects immediately. Otherwise, M stores w
with the help of 0k, M skips cn using 10k−1, and M compares the stack content
with the rest of the input symbol by symbol. This concludes that 3Pal belongs
to DCFL/n.

4 Kolmogorov Complexity Approach

4.1 Key Lemma – KC-DCFL/n Lemma

The KC-DCF(L)-lemma of Li and Vitányi [4] and Glier [2] plays as an alterna-
tive tool to a pumping lemma for DCFL. Unfortunately, there is no structural
property known for DCFL/n. Our key lemma (Lemma 5) is at this moment the
only “generic” way to demonstrate the non-membership of a large number of
languages to DCFL/n, some of which will be exemplified in Sect. 4.2.

Recall from Lemma 2 that every language L in DCFL/n is recognized
by an appropriate choice of a language A in DCFL and a length-preserving
advice function h. Given two languages L1 and L2, we say that a program p
decides L1 over L2 if (i) p always halts on any input string x in L2 and (ii) p
accepts input strings x if x is in L1 ∩ L2, and p rejects x if x is in L2 − L1 [2].
We do not demand that, for any input not in L2, p halts and makes a correct
decision.

In what follows, we assume a natural enumeration of all strings in {0, 1}∗

according to the “lexicographic” order, by which we first sort strings by length
and then lexicographically.

Lemma 5 (KC-DCFL/n Lemma). Let L be any language in DCFL/n over
an input alphabet Σ and let h denote a length-preserving advice function from
N to Θ∗ for an advice alphabet Θ witnessing “L ∈ DCFL/n”. Given any two
positive constants c and d, there exists another constant c′ > 0 such that, for
any sufficiently large number n ∈ N and for any strings x, y, u, v ∈ Σ∗ and
e1, e2, e3, e4 ∈ Θ∗ satisfying |xuvy| = n, h(n) = e1e2e3e4, |x| = |e1|, |u| = |e2|,
|v| = |e3|, and |y| = |e4|, if the following six conditions are all met, then we
conclude that C(y | x, e1, e2, e3, e4) ≤ c′.

Kolmogorov Complexity Descriptions of the Exquisite Behaviors 319

1. For any factorizations u = u′u′′ and e2 = e′
2e

′′
2 with |e′

2| = |u′|, let τ =
(x, u′, v, y, e1, e

′
2, e3, e4) and let pτ denote any program that enumerates all

strings z ∈ Σ|e′′
2 | in xu′\L=n/vy in the lexicographic order with the help of

the auxiliary input e′′
2 . It then follows that C(u′′ | pτ , e′′

2) ≤ c.
2. For any factorizations x = x′x′′ and e2 = e′

2e
′′
2 , C(u | x′′, e′′

1 , e′
2, e

′′
2) + d ≥ |u|

holds, where e1 = e′
1e

′′
1 with |e′

1| = |x′|.
3. For any factorizations v = v′v′′ and e3 = e′

3e
′′
3 with |e′

3| = |v′|, let τ =
(x, u, v′, y, e1, e2, e

′
3, e4) and let pτ be any program that decides xuv′\L=n/y

over Pref({v′′}) with the help of the auxiliary inputs e′′
3 . It then follows that

C(v′′ | pτ , e′′
3) ≤ c.

4. C(v | e2, e3) + d ≥ C(u | e2).
5. For any factorizations x = x′x′′ and v = v′v′′, C(v′′ | x′, e′

1, e
′′
3) + d ≥

log log |v′′| follows, where e1 = e′
1e

′′
2 and e3 = e′

3e
′′
3 with |e′

1| = |x′| and
|e′

3| = |v′|.
6. Let τ = (x, u, v, e1, e2, e3) and let pτ be any program that enumerates all

strings z ∈ Σ|e4| in xuv\L=n in the lexicographic order with the help of the
auxiliary input e4. It then follows that C(y | pτ , e4) ≤ c.

Note that the partitioned portions, ei, e
′
i, e

′′
i , of the advice string are used

as auxiliary inputs in C(u | e2), C(v | e2, e3), etc. They also provide necessary
information on the lengths, |ei|, |e′

i|, |e′′
i |, for the algorithmic constructions of u,

v, and x.
The KC-DCFL/n Lemma is a direct consequence of the stronger statement

given as Lemma 6. This statement concerns with the behavior of an underlying
1dpda with the help of advice.

In the following description, we always assume that a 1dpda M has the form
(Q,Σ, {�}, Γ, δ, q0,⊥, Qacc, Qrej) and satisfies all the properties of Lemma 1.

Lemma 6 (Stronger Form). Let M denote any 1dpda over an input alphabet
Σ using a set Q of inner states and let h denote a length-preserving advice
function from N to Θ∗ for an advice alphabet Θ. Assume that M satisfies all the
properties of Lemma 1. Given any two positive constants c and d, there exists
another constant c′ > 0 such that, for any sufficiently large number n ∈ N and
for any strings x, y, u, v ∈ Σ∗ and e1, e2, e3, e4 ∈ Θ∗ satisfying |xuvy| = n,
h(n) = e1e2e3e4, |x| = |e1|, |u| = |e2|, |v| = |e3|, and |y| = |e4|, if the following
six conditions are all met, then C(y | x, e1, e2, e3, e4) ≤ c′ follows.

1. For any factorizations u = u′u′′ and e2 = e′
2e

′′
2 with |u′| = |e′

2|, any two stack
contents α and β, and any two inner states q and q′, if (q, [u

′′
e′′
2
], γ([xu′

e1e′
2
])) �∗

ε,M

(q′, ε, γ([xu
e1e2])) and (q, [u′′

e′′
2
], α) �∗

ε,M (q′, ε, β) are essentially the same com-
putation, then C(u′′ | q, α, β, e′′

2) ≤ c follows.
2. For any factorizations x = x′x′′ and e2 = e′

2e
′′
2 , C(u | x′′, e′′

1 , e′
2, e

′′
2) + d ≥ |u|

holds, where e1 = e′
1e

′′
1 with |e′

1| = |x′|.
3. For any factorizations v = v′v′′ and e3 = e′

3e
′′
3 with |v′| = |e′

3|, any stack con-
tents α and β, and any two inner states q and q′, if (q, [v′′

e′′
3
], γ([uv′

e2e′
3
])) �∗

ε,M

(q′, ε, γ([uv
e2e3])) and (q, [v′′

e′′
3
], α) �∗

ε,M (q′, ε, β) are essentially the same compu-
tation, then C(v′′ | q, α, e′′

3) ≤ c follows. (Note that β is not included.)

320 T. Yamakami

4. C(v | e3) + d ≥ C(u | e2).
5. For any factorizations x = x′x′′ and v = v′v′′, C(v′′ | x′, e′

1, e
′′
3) + d ≥

log log |v′′| follows, where e1 = e′
1e

′′
2 and e3 = e′

3e
′′
3 with |e′

1| = |x′| and
|e′

3| = |v′|.
6. C(y | γ([xuv

e1e2e3]), e4) ≤ c.

Here is a brief, informal, and intuitive description of why the lemma is
correct. While processing [u

e2], the stack of M grows because x is irrelevant
to u due to Condition 2. By Condition 1, we can algorithmically construct u
from (q′, α, β, e2) on a certain Turing machine. From C(u | q′, α, β, e2) = O(1),
C(u | x, e2) + d ≥ |u|, and C(q′) = O(1), it follows that C(α, β) ≥ |u| and
C(u | α, β, e2) = O(1). Conditions 3–4 then imply that, while processing v,
β is erased from the stack. After the processing of xuv, the stack content has
only the information associated with x. Thus, we can construct γ([xuv

e1e2e3]) from
(x, e1, e2). Since Condition 5 yields C(y | γ([xuv

e1e2e3], e4) = O(1), we conclude that
C(y | x, e1, e2, e3, e4) = O(1).

Let us prove the KC-DCFL/n lemma using Lemma 6.

Proof of Lemma 5. Given L and h in the premise of Lemma 5, we take a
language A ∈ DCFL for which L = {w | [w

h(|w|)] ∈ A} by Lemma 2. We then
take a 1dpda M that recognizes A with the properties of Lemma 1. Let xuvy
be any string in L of length n. Let h(n) = e1e2e3e4 with |e1| = |x|, |e2| = |u|,
|e3| = |v|, and |e4| = |y|. Assume that Conditions 1–6 of the lemma hold. Our
goal is to draw a conclusion of C(y | x, e1, e2, e3, e4) ≤ c′. For this purpose, it
suffices to demonstrate that Conditions 1, 3, and 6 of Lemma 6 are all met since
the desired conclusion then follows.

To show Condition 1 of Lemma 6, we assume that (*) (q, [u′′
e′′
2
], γ([xu′

e1e′
2
])) �∗

ε,M

(q′, ε, γ([xu
e1e2])) and (q, [u′′

e′′
2
], α) �∗

ε,M (q′, ε, β) are essentially the same compu-
tation. Based on the given tuple τ = (x, u′, v, y, e1, e

′
2, e3, e4), we construct a

program pτ as follows. By taking all strings z ∈ Σ|e′′
2 | one by one in the lexico-

graphic order, using τ , we first run M on [z
e′′
2
], starting with the inner state q

and α, and then check if the resulting inner state and track content are respec-
tively q′ and β. If so, then we output z; otherwise, we continue the process.
Note by (*) that, if a string z ∈ Σ|e′′

2 | satisfies (q, [z
e′′
2
], α) �∗

ε,M (q′, ε, β), then
z must belong to xu′\L=n/vy because of xuvy ∈ L=n. Thus, pτ can enumer-
ate all strings z ∈ Σ|e′′

2 | in xu′\L=n/vy. By Condition 1 of Lemma 5, this
implies that C(u′′ | pτ , e′′

2) ≤ c. Note that pτ is algorithmically constructed
from (q, q′, α, β, e′′

2). Since q and q′ are expressed by a constant number of
bits, we thus conclude that C(pτ | q, q′, α, β, e′′

2) = O(1). Combining this with
C(u′′ | pτ , e′′

2) ≤ c, we obtain C(u′′ | q, q′, α, β, e′′
2) = O(1), as requested.

Next, we target Condition 3. Let v = v′v′′ and e3 = e′
3e

′′
3 be arbitrary

factorizations with |e′
3| = |v′|. Assume that (q, [v

′′
e′′
3
], γ([uv′

e2e′
3
])) �∗

ε,M (q′, ε, γ([uv
e2e3]))

and (q, [v′′
e′′
3
], α) �∗

ε,M (q′, ε, β) are essentially the same computation. Letting
τ = (x, u, v′, y, e1, e2, e

′
3, e4), we define a program pτ as follows. Given any prefix

z � v′′, we start with the inner state q and the stack content α, run M on

Kolmogorov Complexity Descriptions of the Exquisite Behaviors 321

[z
e′′
3
], and check if |z| = |e′′

3 |. If M finally enters q′, then we accept the input;
otherwise, we reject it. As a result, pτ can be constructed from (q, q′, α, e′′

3),
implying C(pτ | q, q′, α, e′′

3) = O(1). Condition 3 of Lemma 5 then ensures that
C(v′′ | pτ , e′′

3) ≤ c. It thus follows that C(v′′ | q, q′, α, e′′
3) = O(1).

Finally, we show Condition 6. Given γ = γ([xuv
e1e2e3]) and e4, we need to

reconstruct y. Letting τ = (x, u, v, e1, e2, e3), we design a program pτ in the
following fashion. Let q denote the inner state obtained after running M on
[xuv
e1e2e3]. Starting with (q, γ) and the auxiliary input e4, we run M on [z

e4] for all
strings z ∈ Σ|e4| to check if z ∈ xuv\L=n and we then enumerate all such z’s
in the lexicographic order. By Condition 5 of Lemma 5, we then conclude that
C(y | pτ , e4) ≤ c. Since pτ is built from (q, γ) and q is expressed by a constant
number of bits, we obtain C(y | γ, e4) = O(1). ��

4.2 Applications of the KC-DCFL/n Lemma

Hereafter, we demonstrate how to apply the KC-DCFL/n lemma (Lemma 5)
to two example languages. These examples suggest the usefulness of the KC-
DCFL/n lemma for advised dcf languages.

Example 7. Let Double = {x#yu#v | n ∈ N, x, y, u, v ∈ {0, 1}n, (x �= uR ∨ y �=
vR)}. Note that Double ∈ CFL/n. We intend to show that Double /∈ DCFL/n.
Let FORM = {x#yu#v | n ∈ N, x, y, u, v ∈ {0, 1}n} and D = Double∩FORM .
Since Double ∈ DCFL/n implies Double ∈ DCFL/n and thus D ∈ DCFL/n by
Lemma 3, it suffices to prove that D /∈ DCFL/n.

Toward a contradiction, we assume that D ∈ DCFL/n via a length-preserving
advice function h. Take a sufficiently large number n satisfying C(n) ≥ n. Con-
sider any string of the form z#wzR#wR with |z| = |w| = n. Let n̂ = 4n+2 and
let h(n̂) = e1e2e3e4 with e1 = ε, |e2| = 2n + 1, |e3| = n, and |e4| = n + 1. With-
out loss of generality, each ei has an “indicator” (i.e., a special advice symbol)
that marks the end of ei. This indicator signals an underlying 1dpda where to
partition h(n̂).

Take z and w of length n to satisfy that C(z | h(n̂)) ≥ |z|, C(w | h(n̂)) ≥ |w|,
C(z | w, h(n̂)) ≥ |z|/2, and C(w | z, h(n̂)) ≥ |w|/2. We set x = ε, u = z#w,
v = zR, and y = #wR. Note that |xuvy| = n̂. Our goal is to show that Conditions
1–6 of Lemma 5 are all satisfied. By the definition, Conditions 2, 4, and 5 hold.

To see Condition 1, let τ = (x, u′, v, y, e1, e
′
2, e3, e4) and let pτ denote any

program that enumerates all z ∈ Σ|e′′
2 | in xu′\L=n̂/vy in the lexicographic order.

Since u′′ is uniquely determined from (u′, vy), we can construct u′′ uniquely by
running pτ . Thus, C(u′′ | pτ , e′′

2) = O(1) follows.
Next, we look into Condition 3. For τ = (x, u, v′, y, e1, e2, e4), pτ denotes any

program that decides xuv′\L=n̂/y over Pref({v′′}). Let z = z1z2 with |z2| = |v′|.
Note that xuv′ = z#wzR

2 and v′′ = zR
1 . Since v′′ is uniquely determined from

xuv′, we can construct v′′ from pτ and e′′
3 .

For Condition 6, let τ = (x, u, v, e1, e2, e3) and let pτ be any program that
enumerates all z ∈ Σ|e4| ∩ xuv\L=n̂ in the lexicographic order. Notice that y is
uniquely determined from u. Hence, we obtain C(y | pτ , e4) = O(1).

322 T. Yamakami

Lemma 5 then concludes that C(y | x, e1, e2, e3, e4) ≤ c′. However, since
x = ε, it follows that C(y | x, e1, e2, e3, e4) ≥ C(w | e1, e2, e3, e4) − O(1) ≥
|w|−O(1) = n−O(1), a contradiction. We thus obtain the desired consequence.

Example 8. Our next example is the pattern matching of the form PM =
{x#yxRz | x, y, z ∈ {0, 1}∗}. We obtain PM ∈ CFL by simply guessing the
location of xR. We want to prove that PM /∈ DCFL/n. Toward a contradiction,
we assume that PM ∈ DCFL/n, witnessed by an appropriate length-preserving
advice function h.

As in the premise of Lemma 5, we take any sufficiently large number n
satisfying C(n) ≥ log n, and we set n̂ = 6n + 1. Consider four strings x, u, v, y
such that |x| = n, u = r#, v = rR, y = xRrRs1, and ŷ = s2r

RxR for appropriate
strings r, s1, and s2 of length n. Let w = xuvy and ŵ = xuvŷ. Moreover, we set
h(n̂) = e1e2e3e4 with |e1| = |x|, |e2| = |u|, |e3| = |v|, and |e4| = |y|. Note that
|w| = |ŵ| = n̂ and xuv = xr#rR. Clearly, y, ŷ ∈ xuv\L=n̂ holds for any s1 and
s2 of length n.

We choose x and r for which C(x | e1, e4) ≥ n and C(r | x, e1, e2, e3, e4) ≥ n.
It then follows that C(y | x, e1, e2, e3, e4) + d ≥ C(r | x, e1, e2, e3, e4) ≥ n for a
certain constant d > 0.. To utilize Lemma 5, we need to check that Conditions 1–
5 of the lemma are all satisfied. Conditions 2, 4, and 5 are trivial by the choice of
u and v. In what follows, we thus need to focus our attention only on Conditions
1, 3, and 6.

Firstly, we show Condition 1. Let u = u′u′′ and e2 = e′
2e

′′
2 with |u′| = |e′

2|. Let
τ = (x, u′, v, y, e1, e

′
2, e3, e4) and let pτ denote any program that enumerates all

z ∈ Σ|e′′
2 | in xu′\L=n̂/vy. Since u′′ has #, we can easily identify u′′ by checking

and running pτ . Thus, we obtain C(u′′ | pτ , e′′
2) = O(1).

Condition 3 is shown as follows. Consider two arbitrary factorizations v =
v′v′′ and e3 = e′

3e
′′
3 with |e′

3| = |v′|. Since v = rR, let v′ = rR
2 and v′′ = rR

1 with
r = r1r2. Let τ = (x, u, v′, y, e1, e2, e4) and let pτ denote a program that decides
xuv′\L=n̂/y over Pref({v′′}). Note that xuv′ = xr#rR

2 . Since v′′ is uniquely
determined from v′ and u, we can algorithmically construct v′′ from pτ and e′′

3 .
Thus, we obtain C(v′′ | pτ , e′′

3) = O(1).
Finally, we show Condition 6. By setting s1 = s2 = 0n, if we are given a

program pτ that enumerates all z ∈ Σ|e4| in xuv\L=n̂ with an auxiliary input
e4, then we can produce y and ŷ uniquely. Therefore, C(y | pτ , e4) is O(1).

Lemma 5 then yields the inequality C(y | x, e1, e2, e3, e4) ≤ c′. This obviously
contradicts the choice of y. Therefore, PM is outside of DCFL/n.

To close this subsection, we show a non-closure property of DCFL/n by a
direct application of the key lemma. This property naturally reflects the specific
trait of DCFL regarding non-closure properties; however, we also remark that a
non-closure property of DCFL/n does not in general follows directly from that
of DCFL.

Proposition 9. DCFL/n is neither closed under intersection nor closed under
union.

Kolmogorov Complexity Descriptions of the Exquisite Behaviors 323

Proof. Consider two languages K1 = {x#yu#v | n ∈ N, x, y, u, v ∈ {0, 1}n, x �=
u} and K2 = {x#yu#v | n ∈ N, x, y, u, v ∈ {0, 1}n, y �= vR}. Clearly, both K1

and K2 are in DCFL/n. Since the union K1 ∪ K2 equals Double, this union is
not in DCFL/n, as shown in Example 7. The case of intersection follows from
the fact that DCFL/n is closed under complementation. ��

There are still numerous questions that have been left open regarding the
power and limitation of advice in automata theory. For instance, consider the
collection DCFL(k) of all intersections of k dcf languages [15]. It is known that
DCFL(k) �= DCFL(k + 1) for all k ∈ N

+ [6] (re-proven in [15]). By expanding
DCFL(k), we can define DCFL(k)/n. For every k ∈ N

+, is DCFL(k + 1)/n
different from DCFL(k)/n? A similar question was raised in [13] for CFL(k)/n.

References

1. Damm, C., Holzer, M.: Automata that take advice. In: Wiedermann, J., Hájek,
P. (eds.) MFCS 1995. LNCS, vol. 969, pp. 149–158. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60246-1 121

2. Glier, O.: Kolmogorov complexity and deterministic context-free languages. SIAM
J. Comput. 32, 1389–1394 (2003)

3. Karp, R.M., Lipton, R.: Turing machines that take advice. Enseign. Math. 28,
191–209 (1982)

4. Li, M., Vitányi, P.: A new approach to formal language theory by Kolmogorov
complexity. SIAM J. Comput. 24, 398–410 (1995)

5. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 3rd edn. Springer (2008)

6. Liu, L.W., Weiner, P.: An infinite hierarchy of intersections of context-free lan-
guages. Math. Syst. Theory 7, 185–192 (1973)

7. Ogden, W., Ross, R.J., Winklmann, K.: An “interchange lemma” for context-free
languages. SIAM J. Comput. 14, 410–415 (1985)

8. Rubtsov, A.A.: A structural lemma for deterministic context-free languages. In:
Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 553–565. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98654-8 45

9. Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing
machines. Theor. Comput. Sci. 411, 22–43 (2010)

10. Yamakami, T.: Swapping lemmas for regular and context-free languages (2008).
arXiv:0808.4122

11. Yamakami, T.: The roles of advice to one-tape linear-time Turing machines and
finite automata. Int. J. Found. Comput. Sci. 21, 941–962 (2010)

12. Yamakami, T.: Immunity and pseudorandomness of context-free languages. Theor.
Comput. Sci. 412, 6432–6450 (2011)

13. Yamakami, T.: Pseudorandom generators against advised context-free languages.
Theor. Comput. Sci. 613, 1–27 (2016)

14. Yamakami, T.: One-way bounded-error probabilistic pushdown automata and Kol-
mogorov complexity. In: Charlier, É., Leroy, J., Rigo, M. (eds.) DLT 2017. LNCS,
vol. 10396, pp. 353–364. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-62809-7 27

https://doi.org/10.1007/3-540-60246-1_121
https://doi.org/10.1007/978-3-319-98654-8_45
http://arxiv.org/abs/0808.4122
https://doi.org/10.1007/978-3-319-62809-7_27
https://doi.org/10.1007/978-3-319-62809-7_27

324 T. Yamakami

15. Yamakami, T.: Intersection and union hierarchies of deterministic context-free lan-
guages and pumping lemmas. In: Leporati, A., Mart́ın-Vide, C., Shapira, D., Zan-
dron, C. (eds.) LATA 2020. LNCS, vol. 12038, pp. 341–353. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-40608-0 24. Extended at arXiv:2112.09383

16. Yamakami, T.: The no endmarker theorem for one-way probabilistic pushdown
automata (2021). arXiv:2111.02688

https://doi.org/10.1007/978-3-030-40608-0_24
http://arxiv.org/abs/2112.09383
http://arxiv.org/abs/2111.02688

Author Index

Aiswarya, C. 57
Atminas, Aistis 69

Bonizzoni, Paola 3
Bulgakova, Dora 78

Carton, Olivier 90
Charlier, Émilie 102
Cheon, Hyunjoon 115
Cisternino, Célia 102

Day, Joel D. 13
De Felice, Clelia 3
Di Crescenzo, Giovanni 33
Dolce, Francesco 127

Frid, Anna 78
Frosini, Andrea 139

Grigorev, Semyon 263

Hahn, Joonghyuk 115
Han, Yo-Sub 115
Heikkilä, Elias 152
Herva, Pyry 152
Hoffmann, Stefan 164

Ibarra, Oscar H. 177

Jirásek, Jozef 189

Kahrobaei, Delaram 33
Kari, Jarkko 152
Khodjaeva, Matluba 33
Klíma, Ondřej 201
Kolegar, Jonatan 201
Łopaciuk, Szymon 213

Lozin, Vadim 69

Maletti, Andreas 226
Mancini, Ilaria 139
McQuillan, Ian 177, 189
Mhaskar, Sahil 57

Nász, Andreea-Teodora 226

Okhotin, Alexander 263

Pighizzini, Giovanni 239
Pirola, Yuri 3
Praveen, M. 57
Prigioniero, Luca 239

Reidenbach, Daniel 213
Rigo, Michel 251
Rinaldi, Simone 139
Rizzi, Raffaella 3
Romana, Giuseppe 139

Sádovský, Šimon 239
Scanvic, Jérémy 78
Sciortino, Marinella 139
Shemetova, Ekaterina 263
Shpilrain, Vladimir 33
Sin’ya, Ryoma 274
Stipulanti, Manon 102, 251
Stober, Florian 286
Šunić, Zoran 299

Tahay, Pierre-Adrien 127

Weiß, Armin 286
Whiteland, Markus A. 251

Yamakami, Tomoyuki 312

Zaccagnino, Rocco 3
Zizza, Rosalba 3

	Preface
	Organization
	Abstracts of Invited Talks
	Algebraic Methods for Periodicity in Multidimensional Symbolic Dynamics
	Non-deterministic Transducers
	Origin-Equivalence for Macro Tree Transducers
	Contents
	Invited Talks
	Can Formal Languages Help Pangenomics to Represent and Analyze Multiple Genomes?
	1 Introduction
	2 Preliminaries
	3 Lyndon Words and Lyndon-Based Factorization
	3.1 Some Applications: Representing and Querying Read Sequences

	4 Sample Specific Strings and Structural Variations in Human Genome
	5 Open Problems
	References

	Word Equations in the Context of String Solving
	1 Introduction
	2 String Solving
	3 A Closer Look at Solution-Sets
	3.1 Parametric Solutions
	3.2 Graph Representations of Solution-Sets
	3.3 Nielsen Transformations
	3.4 Restricted Word Equations

	4 Conclusions
	References

	A Survey on Delegated Computation
	1 Introduction
	2 Model and Definitions
	3 Delegated Computation of Ring Multiplication
	3.1 Algebraic Setting
	3.2 An Example Protocol
	3.3 Related Work

	4 Delegated Computation of Group Exponentiation
	4.1 Algebraic Setting and Preliminaries
	4.2 An Example Protocol
	4.3 Related Work

	5 Delegation of Pairings
	5.1 Algebraic Setting
	5.2 An Example Protocol
	5.3 Related Work

	6 Conclusions and Directions for Future Research
	References

	Regular Papers
	Checking Regular Invariance Under Tightly-Controlled String Modifications
	1 Introduction
	2 Preliminaries
	3 Model
	4 Complexity of the Invariance-Checking Problem
	5 Invariance-Checking : Special Case
	6 Conclusions and Future Work
	References

	Deciding Atomicity of Subword-Closed Languages
	1 Introduction
	2 Main Result
	3 Concluding Remarks and Open Problems
	References

	Prefix Palindromic Length of the Sierpinski Word
	1 Introduction
	2 Definitions, Notation, Known Results
	3 Auxiliary Functions qj(n)
	4 Function q and Its First Differences
	5 Difference Between p(n) and q(n)
	6 First Differences of p(n)
	References

	Preservation of Normality by Unambiguous Transducers
	1 Introduction
	2 Basic Definitions
	2.1 Normality
	2.2 Automata and Transducers
	2.3 Weighted Automata

	3 Results
	4 Markov Chain of an Unambiguous Automaton
	5 Sketches of Proofs
	6 Conclusion
	References

	A Full Characterization of Bertrand Numeration Systems
	1 Introduction
	2 Basic Notation
	3 Characterization of Bertrand Numeration Systems
	4 Linear Bertrand Numeration Systems
	5 Lexicographically Greastest Words of Each Length
	6 The Non-canonical -shift
	References

	On the Decidability of Infix Inclusion Problem
	1 Introduction
	2 Preliminaries
	3 IIP on Finite Languages
	4 IIP on Infinite Languages
	5 Conclusions
	References

	Column Representation of Sturmian Words in Cellular Automata
	1 Introduction
	2 Preliminaries
	2.1 Words
	2.2 Continued Fraction Expansion
	2.3 Standard Sequences and Directed Sequences

	3 Cellular Automata
	4 Construction of Numbers
	5 Construction of Prefixes
	6 Conclusions
	References

	Logarithmic Equal-Letter Runs for BWT of Purely Morphic Words
	1 Introduction
	2 Preliminaries
	3 BWT-Highly Compressible Morphisms
	4 Upper and Lower Bounds for rbwt
	4.1 Combinatorial Structure of Binary Morphisms
	4.2 Logarithmic Bounds for rbwt in Case of Binary Morphisms

	5 Conclusions and Further Work
	References

	On Perfect Coverings of Two-Dimensional Grids
	1 Introduction and Preliminaries
	2 Line Polynomial Factors
	3 Perfect Coverings
	3.1 Infinite Grids
	3.2 General Convex Neighborhoods

	4 Algorithmic Aspects
	References

	Automata-Theoretical Regularity Characterizations for the Iterated Shuffle on Commutative Regular Languages
	1 Introduction
	2 Preliminaries
	3 Type I Languages
	4 Type II Languages
	5 Automata-Theoretical Characterizations
	6 Decision Problems
	7 Conclusion
	References

	On the Complexity of Decision Problems for Counter Machines with Applications to Coding Theory
	1 Introduction
	2 Preliminaries
	3 Complexity of Decision Problems for Restrictions of 2NCM
	3.1 The Non-emptiness Problem
	3.2 Other Decision Problems

	4 Complexity of k-Infix-Freeness of Languages
	5 Generalizations of k-Infix-Freeness
	References

	Visit-Bounded Stack Automata
	1 Introduction
	2 Preliminaries
	2.1 Stack Automata

	3 Visit-Bounded Automata
	4 Semilinearity
	5 Other Expensive Instruction Sets
	References

	Well Quasi-Orders Arising from Finite Ordered Semigroups
	1 Introduction
	2 Preliminaries
	3 What Makes an Ordered Semigroup Congenial
	4 Effective Characterization of the Class C
	5 Other Necessary and Sufficient Conditions
	6 Conclusion
	References

	The Billaud Conjecture for 69640972 86418188 = 4, and Beyond
	1 Introduction
	2 Preliminaries
	3 Languages of Fixed Points and Their Parents
	4 A `Blueprint' for a Billaud Conjecture Proof for Fixed
	5 A Proof for the Billaud Conjecture for 69640972 86418188 = 4
	References

	Weighted Tree Automata with Constraints
	1 Introduction
	2 Preliminaries
	3 Weighted Tree Grammars with Constraints
	4 Closure Properties
	5 Towards HOM Problem
	References

	Performing Regular Operations with 1-Limited Automata
	1 Introduction
	2 Preliminaries
	3 Product and Kleene Star
	3.1 Simulations of Operations on
	3.2 Simulations of Operations on

	4 Union, Intersection, and Complementation
	4.1 Simulations of Operations on
	4.2 Simulations of Operations on

	5 Reversal
	References

	Binomial Complexities and Parikh-Collinear Morphisms
	1 Introduction
	1.1 Binomial Coefficients and Complexity Functions
	1.2 Questions Addressed in This Paper

	2 Several Answers to Question A
	3 An Interlude: Parikh-Collinear Morphisms
	3.1 A Characterization of Parikh-Collinear Morphisms
	3.2 Proof of Theorem 10

	4 Binomial Properties of the Thue–Morse Morphism
	4.1 The First k Binomial Complexities
	4.2 The (k+1)-Binomial Complexity

	5 Answer to Question B and Beyond
	References

	Rational Index of Languages with Bounded Dimension of Parse Trees
	1 Introduction
	2 Definitions
	3 Upper Bound on the Rational Index
	4 Lower Bound on the Rational Index
	5 Rational Indices for Some Language Families
	6 Conclusion and Open Problems
	References

	Measuring Power of Locally Testable Languages
	1 Introduction
	2 Preliminaries
	2.1 Density of Formal Languages
	2.2 Measurability of Formal Languages
	2.3 Fragments of Star-Free Languages

	3 Measuring Power of Locally Testable Languages
	4 Measuring Power of Alphabet and Piecewise Testable Languages
	5 Summary and Future Work
	References

	The Power Word Problem in Graph Products
	1 Introduction
	2 Preliminaries
	3 Cyclic Normal Forms and Conjugacy
	4 The Power Word Problem in Graph Products
	References

	On One-Counter Positive Cones of Free Groups
	1 Introduction
	2 One-Counter Languages and Bi-infinite Words
	3 Free Groups and Bi-infinite Words
	4 The Space of Orders Defined by Spaced Words
	References

	Kolmogorov Complexity Descriptions of the Exquisite Behaviors of Advised Deterministic Pushdown Automata
	1 Background and Our Challenges
	1.1 Kolmogorov Complexity Approaches to Formal Languages
	1.2 Advice-Aided Languages and Pumping Lemmas
	1.3 Overview of Main Contributions

	2 Preparation: Notions and Notation
	2.1 Numbers, Alphabets, Languages, etc.
	2.2 One-Way Deterministic Pushdown Automata
	2.3 Kolmogorov Complexity Primer

	3 Advised Computation
	4 Kolmogorov Complexity Approach
	4.1 Key Lemma – KC-DCFL/n Lemma
	4.2 Applications of the KC-DCFL/n Lemma

	References

	Author Index

